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A B S T R A C T

With the increasing use of Big Data in varied applications to improve decision mak-
ing and provide new insights, the research explores the potential of the Uber Move-
ment data set released by Uber comprising of travel times from one zone to the other.
A better understanding of the potential of the dataset could lead to the addition of
the existing tool kit of Transport planners and city officials at the municipality of
Amsterdam. Moreover, it would be the first of a kind data set enabling an under-
standing of taxi movement in the city.

The Uber Movement Travel Time comprises of the average travel time between two
wijken, where the ‘sourceid’ and ‘dstid’ do not correspond to the origin and desti-
nation of a trip but simply represent the directionality of the travel time measured.
The data is aggregated across different levels of temporal detail and the number of
data points directly corresponds to the level of temporal aggregation. For instance,
if the quarterly aggregated data for the different days of the week is downloaded,
the number of data points between a ‘sourceid’ and ‘dstid’ cannot exceed seven.

Three aspects of the data set were explored: 1) ability to capture the demand
for Ubers 2) ability to capture recurrent congestion and 3) ability to capture non-
recurrent congestion. While the data according to the Uber Movement and previ-
ously used instances, the data is suited for performance (recurrent congestion and
non-recurrent congestion) and impact-related studies of the network. The absence
of route related information limits the applications of the data. The potential of
the data is also limited by the data sparsity. The potential of the data was best
revealed through demand studies which indicated a skewed user group of tourists,
airport users (to and fro), work-related trips and users using Ubers late at night. In
addition, with respect to the goals of the municipality in managing traffic activity
across different zones and time periods, by implementing and extending an exist-
ing model in the form of adding ‘occupancy related measures’ and ‘shortest path’.
Thus, based on the data penetration levels and travel time data, the model devel-
oped offers insights at a strategic level to the city in the form of Spatio-temporal
concentration of Uber vehicles, occupancy levels through the day. The potential of
the data lies in its ability to offer strategic insights to the city of Amsterdam and
the greater Amsterdam region in the form of the unique Spatio-temporal spread of
Uber vehicles across different hours of the day.
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P R E FA C E

This document is the end product of 8 months of research at Delft University of
Technology & Gemeente Amsterdam. The thesis is aimed at introducing a data set
to the Urban Traffic Data ecosystem by highlighting its unique applicability. As
big data continues to expand its footprint in the field of transport and planning, it
was considered essential to address the dataset. The context and results from the
research are largely Amsterdam specific. An exploratory approach was taken to
understand the implications of the open source Uber Movement travel time data.
The data set is tested for different possibilities related to its ability to capture taxi
demand and reflect traffic congestion. Chapter 1 forms the basis of the research
and Chapter 2 offers the state of the art. Readers can focus on the tables in chapter
3 at the end of each section to have an overview on the exploratory part of the re-
search. The final phase of the research, involves the implementation of a model to
offer the spatio-temporal distribution of Uber taxis. The model results are coherent
with the conclusions derived from the demand studies in the exploratoy part of the
research. The final chapter of recommendations lists the data attributes, the munici-
pality should aim for, to enable an extensive analysis of Uber taxis in the city and to
enable modelling their spatio-temporal distribution. The motivation behind focus-
ing on the spatio-temporal distributon stems from the goals of the municipality to
introduce access control in parts of the city to prevent taxis from causing congestion
and pollutuion. Additionally, the goals of the municipality are to ensure electrifi-
cation of all taxi fleets. The model results can form a basis for priortising charging
infrastructure in the city. The research and the model are an essential first step to
gain an understanding related to the user of Ubers. For broader implications of
the research, the author suggests the ‘Implications for Urban Data data ecosystem’
section in chapter 6. An interview with someone who drives for Uber is also offered
in Appendix C . The interview is not meant for scientifc validation of the study, but
offers another perspective. My profound gratitude to Ottmar Francisca for agreeing
to talk to me.

Vishruth Krishnan
Delft, December 2019

”All data is wrong but some are useful.”
-A play on words on the original quote by George E.P Box
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1 I N T R O D U C T I O N

The chapter provides the motivation, research questions, scope and scientific/social
relevance of the research undertaken. The chapter is concluded with the outline of
the report.

1.1 background, objectives & motivation
Data dominates discourse. As the field of Transportation engineering continues
to evolve, emerging data streams can potentially solve new and old issues in the
field. There is an increase in the availability of data, thereby offering previously
unavailable insights. Antoniou et al. [2019], attributes the enormous increase in
data sources to a spurt in non-conventional data sources such as the internet of
things, crowd-sourcing and superior computational means to store and gather large
sources of data. Another important and well-acknowledged development is the om-
nipresence of personal mobile phones equipped with internet and GPS. Large scale
data collected from GPS sources can now unravel mobility patterns within a city
[Grauwin et al., 2015], they offer network-wide information on weather-related in-
cidents, road closures, and their effect on traffic. The era of Big Data, Laney [2001]
refers to as data sets which are characterised by volume (large size of the data set),
velocity (the speed at which data is logged) and variety (range of data sources and
types) could offer new insights in transportation. Big data extends itself well to
transportation as it is dynamic, transient and stochastic. Transport operations in-
volve a multitude of agents interacting with each other over space and time. Big
data can capture the invisible patterns [Gkania and Dimitriou, 2018] and also ad-
dress previously held notions about how mobility in cities work. The challenge
is to develop a semantic which can be used by Transportation engineers to under-
stand and apply this data. Three major impediments in developing better tools to
understand data are; firstly, privacy concerns, data often needs to be aggregated
and anonymised, which then leads to a loss of information; secondly only a few
data sets are open source and can be accessed by researchers and city officials; and
thirdly the lack of understanding and complexity of the data makes it difficult to
use.

The objective of the research is to add a tool to the Transportation Planner’s
toolbox in the form of a new data set offered by Uber Technologies Inc., (simply
referred to as Uber) under the Uber Movement initiative [Movement, 2019a]. Uber
is a multinational company offering ride-hailing services, food delivery (Uber Eats),
and bicycle sharing (JUMP). The Uber Movement initiative, at the time of writing
the report, offered average travel time data from one zone to the other (administra-
tive spatial unit or Traffic Analysis Zone) for thirty-six cities across the world. The
travel times are derived from over two billion rides. The data is open source and
aggregated to ensure the privacy of their riders. Figure 1.1 represents the visualisa-
tion of zones and travel times in the Uber Movement website. The website provides
an easy to use interface, where one can download the travel time data between two
zones for a particular date in the year or across all zones for a quarter of the year.
Uber derived the travel time data from the GPS location of their drivers carrying
passengers. The Methodology behind the same can be found in [Movement, 2019b].

1
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Due to the method of aggregation, the trajectory or route of trips is lost.

Figure 1.1: Visualisation of Travel time for Amsterdam in Uber Movement [Movement,
2019a]

The motivation of the research stems from the emergence of ride-hailing services
such as Uber, Didi-Chuxing (China), Lyft (United States of America), Grab (Singa-
pore) and Ola (India) who have capitalised on technological advancements with the
advent of the platform economy. Ride-hailing has become a mainstream option in
cities across the world and this has led to an important addition in terms of choices
to the urban traveller/commuter. Their emergence can be attributed to advance-
ment in smart-phones (enabling a mobile phone-based application), GPS (real-time
position of the vehicles) and social media networks (user-driver ratings and inter-
action). Uber offered easy payment options and a door to door service without
the hassle of finding a parking place or paying for it, in cities where parking can
be scarce and expensive. These simplifications proved crucial in the rise of the
ride-hailing service. On the user’s end, users have been open to ride-sharing (the
platform economy) and are open to sharing data for services [Deloitte, 2018]. The
rise of transportation network companies suggests an increase in the availability of
data-sets generated by ride-hailing services and the research tries to establish the
potential of one such dataset through exploratory research.

In addition to this, there is a growing crop of datasets derived from users of-
fered by software companies. The intended audience of these datasets is city and
transport planners. An example of such a company is Strava, which through its
Strava Metro initiative, has released counts (aggregated and anonymised) of cy-
clists, and pedestrians commuting or pursuing recreational activities while using
the Strava application. Strava, claims the dataset can be effectively used to under-
stand the movement patterns of such users in cities, offering cities a way to evaluate
and possibly construct new infrastructure targeting pedestrians and cyclists [Strava-
Metro, 2019]. Populus.ai is another organisation offering real-time data to cities
from shared mobility modes such as bikes, scooters, and ride-hailing services in the
United States of America [Populus.ai, 2019]. However, these datasets are not open-
source unlike Uber Movement but are derived from the platform economy. Thus,
the rise of the platform economy and the subsequent generation and availability of
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data generated has presented an opportunity to understand the context in which
the Uber Movement data set can fit.

According to Uber, the dataset is meant for Transportation Planners and Policy
Makers to understand congestion patterns in the city. As part of the exploratory
research, three different objectives are formulated to understand the potential of
the data set. The first objective relates to identifying how the data can fit in, con-
sidering the larger urban traffic data ecosystem. It is important to understand the
context in which the dataset is available i.e. the usage patterns of Uber would be
different across cities, the data is offered. The scope of the research is restricted to
the Amsterdam Uber Movement data set. Thus, the first objective of the research
can be thus stated as

Research Objective I: Establishing the advantages, limitations and the unique
value of the Uber movement data for a Transport Planner in the Amsterdam con-
text.

To further enhance the insights gained from a data set, multi-source data fusion
is adopted. The need for data fusion results from the need to improve data output
quality. Data sources such as Public Transport smart card data, Mobile phone data,
Bluetooth data, Automatic Vehicle Location data, Social Media data from sites such
as Twitter (in terms of Traffic Engineering), Navigation systems such as WAZE &
Tom-Tom host information about road infrastructure and congestion patterns. Inte-
gration with one or more of these data sets can be especially valuable in the case
of travel time data between zones which is an indicator of the travel costs involved
between two points. Thus, the intention is to identify how the Uber Movement data
set can be integrated with other relevant data sets. The second research objective
can be stated as follows:

Research Objective II: Establishing the possible synergy gains by fusing Uber
Movement Data with other relevant data sets.

Data needs to be translated into information. The information needs to be rele-
vant to the problem it is addressing and needs to be based on the findings of the
first and second research objective, a potential application of the data will be imple-
mented to better realise the usefulness of the data. The third research objective is
addressing the absence of a tool or model which utilises the unique value addition
offered by Uber Movement to provide a valuable insight which leads to an applica-
tion and can be stated as follows:

Research Objective III: Identifying and estimating a model for translating Uber
Movement Data into actionable insights

Data is finding its way to make traffic models more realistic and accurate. Under-
standing the significance of Uber Movement data in traffic congestion analysis and
management, will lead to better utilisation of existing infrastructure and prevent
information excess in the era of big data. An in-depth exploratory analysis would
serve as a blueprint for the use of data gathered from ride-hailing services while
also creating a new tool for the city of Amsterdam derived from the added value
of the data set. Thus, the main objective of this research can be succinctly stated
as identifying the potential of the Uber movement Travel Time Data for the city of
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Amsterdam, leading to the development of a tool or model which can lead to a
Congestion analysis or Traffic Management application.

1.2 research questions
The research objectives and motivation of the project have been specified in the first
section. The second section will elaborate on the formulation of research questions.
The research objectives specified establish the need for an exploratory study to
understand what the data is capable of offering. This leads to the following main
research question:

Main Research Question: What is the potential of using Uber Movement Travel
Time Data, either singularly or in fusion with other data sets for Traffic

Congestion Analysis and management in the city of Amsterdam?

To answer the main research question, a list of sub-questions are formulated. The
first sub-question formulates the need to highlight the state of the art, concerning
the use of Uber Movement data and other Taxi GPS data. A review of related work
and literature study can offer an overview of methods to use the data and help
identify possible applications. Besides, data sources which can be fused with Uber
Movement for synergy analysis can also be identified. Thus, the first research ques-
tion can be formulated as:

Sub Question 1: What is the current state of the art concerning the use of Uber
Movement Travel Time Data and other Taxi GPS data sources for applications in
Traffic congestion analysis and management?

To understand the potential of the data, one needs to understand the context of
the data set. Answering the question of ’Why’ and ’Who’ are the people using Uber
in Amsterdam, is crucial to understanding the data and its eventual application.
The second sub-question can thereby be formulated as:

Sub Question 2: Which user groups are likely to use Uber in Amsterdam and for
what purpose?

Congestion can be recurrent or non-recurrent as specified in Skabardonis et al.
[2003]. Recurrent congestion is caused by demand fluctuation during certain times
of the day due to the design of the road, or operation measures. Non-recurrent con-
gestion, on the other hand, is incident related such as an accident, an unexpected
Jam or bad weather. To perform a thorough congestion analysis with Uber Move-
ment Data, both need to be looked at separately. This leads to the third and fourth
sub research questions:

Sub Question 3: To what extent can recurrent congestion analysis be carried out
using Uber Movement Travel Time data, either singularly or fused?

Sub Question 4: To what extent can non-recurrent congestion analysis be carried
out using Uber Movement Travel Time data, either singularly or fused?

The fifth and final sub-question looks to answer the need to identify the unique
value of the data set in addition to the existing data sets being used in Amsterdam
for traffic congestion analysis and management.
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Sub Question 5: What is the unique value addition of the Uber Movement Travel
Time data set to Transport Planners and officials at the city of Amsterdam?

1.3 scope
The current section defines the scope of the research. The research utilises Travel
Time data from Uber movement for the city of Amsterdam, from 2016 to 2018. At
the time of writing the report, travel time data was available until the first quarter
of 2019. However, the decision was made to analyse the data for three full years.
While the data exclusively comprises of trips made by Uber’s taxi services, the com-
pany claims it has validated the data to ensure it represents the regular movement
in a city. The data includes the arithmetic mean, geometric mean and standard de-
viations for aggregated travel time over a select date-range between two zones or a
quarter of the year between all origin and destinations in the city.

The spatial granularity of the data is limited and is defined at the Wijk or the
neighbourhood level for the city of Amsterdam. The data stems from urban traffic
in the city of Amsterdam and the larger Metropolitan region of Amsterdam1. The
analysis of the data will be across different temporal levels (hours, days, weeks,
months and quarters of a year) to derive regular and irregular patterns of conges-
tion. The applications to be suggested will be based on the context of Traffic con-
gestion Analysis and the traffic management of taxis in Amsterdam. The dataset
will also be fused with other data sets to improve the possible insights gained from
the data. The data can understandably be used for different purposes. However,
the research would focus on analysis and solution development from the perspec-
tive of the municipality. The analysis will be done at a macroscopic scale i.e. at a
network-wide level dictated by the spatial detail of the data.

1.4 scientific & societal relevance
Enriching existing data sources to better analyse and quantify mobility and acces-
sibility problems is important for cities [Casadei et al., 2018]. The need to make
justifiable decisions using limited resources requires insights based on data-driven
models. Making use of data can help identify the pertinent problems in the city
and help prioritise projects and measures. Moreover, gathering this data requires
limited resources from the city’s perspective. While motorways and major arterial
roads are usually equipped with loop detectors, inner roads and streets often lack
the same. This is a challenge when estimating travel time in Urban networks. Under-
standing Uber data will also lead to a better understanding of data available from
ride-hailing (and sharing) services. Their relevance signifies a continued stream of
data.

From the perspective of congestion Analysis, understanding mobility patterns
in a city can help in ITS (Intelligent Transportation Systems) applications for man-
aging traffic, and route guidance. Use of taxi trip data, for traffic flow, has been
extensively researched.[Liu et al., 2013] explored taxi trip patterns obtained from
four days worth of taxi data, [Zhu et al., 2017a] explored Spatio-temporal mobility

1 The metropolitan region of Amsterdam: https://en.wikipedia.org/wiki/Amsterdam metropolitan
area

https://en.wikipedia.org/wiki/Amsterdam_metropolitan_area
https://en.wikipedia.org/wiki/Amsterdam_metropolitan_area
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patterns at the street level (data collected over a period of three months), and [Cui
et al., 2016] looked at urban accessibility using taxi GPS data from a period of two
months. The Uber data enables one to derive patterns based on data which has
been gathered over a long period (3 years). The ubiquity of Uber Taxis (Figure 1.2)
and longitudinal nature, leads to the potential of using the data in developing traffic
models to evaluate emission levels, accessibility in a city, and predictive models to
estimate travel times or congestion patterns such as in [Castro et al., 2012].

Figure 1.2: Uber service areas across the Netherlands [Uber Nederland, 2019]

Uber as one of the most valued private companies in the world holds immense
data resources and is likely to expand its Uber movement portfolio with the addition
of street speeds and data on it’s shared biking company-Jump. It is important to
acknowledge, Uber has experienced controversies and criticism. The company has
been banned from operating in certain countries, found itself amid a 2016 data
breach, and has been criticised for unfair treatment of its drivers [Pelzer et al., 2019].
However, Uber and other ride-hailing services are unlikely to disappear due to their
ease of use and thereby remain relevant in the field of mobility.

1.5 report outline
The outline of the report is as illustrated in Figure 1.3. In Chapter 2, the state of
art concerning the work done using Uber Movement travel time data along with
the broader applications of Taxi GPS data is summarised. Chapter 3, forms the
principal data analysis and exploratory part of the research. The emphasis is on
the usage patterns and demand for Ubers followed by recurrent and non-recurrent
congestion analysis using the dataset. Chapter 4, utilises the understanding gained
from Chapter 3, to rationalise the selection and application of a model employed in
the research based on the data’s unique value. The model is extensively described in
the chapter. Chapter 5, offers case studies based on the model. Chapter 6 comprises
of conclusions and the final recommendations are included in chapter 7.
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2 I N T R O D U C I N G U B E R M O V E M E N T &
R E L AT E D W O R K

The chapter introduces the Uber Movement travel time data for Amsterdam and
the related descriptive statistics in the first section. The introduction of the data
facilitates an early understanding to streamline the literature review. The second
section comprises of the literature survey on the existing applications and use of
the data-set. The third section reviews the applications of other taxi GPS data in
academia. The chapter is concluded with a section on the research methodology.

2.1 uber movement data
The section explains the Uber Movement Data in terms of the attributes of the data,
spatial detail and temporal detail and offers the descriptive statistics of the dataset.
The Uber Movement data was released in 2017 (2018 in Amsterdam) to offer trans-
port planners and city officials, open-source historical travel time data from Ubers
operating in cities. Uber Movement offers travel time from one wijk to the other
for the greater Amsterdam metropolitan region across different levels of temporal
detail. The data is collected from Uber taxis travelling across different wijken and
comprises exclusively of occupied trips i.e trips with a passenger. The travel time
calculation method is offered in the Uber Movement Methodology Report. Travel
times are calculated from the Uber trip app which generates GPS signals, offering
the trajectory and thereby the realised travel time across different wijken. The GPS
signals are matched to a wijk and the trajectory information is lost [Movement,
2019b].

The Uber Movement data can be expressed as a four tuple (oi,di,ti,Ti); a data point
comprises of the origin oi at time period Ti, heading to destination di realised in
Travel Time ti. These attributes are typical of taxi GPS data. A fifth possible element
is a route, which is absent from the Uber Movement data. The data is collected from
Uber taxis travelling across different wijken and comprises exclusively of those trips
when there was a passenger.

The attributes oi corresponds to the ’sourceid’, di corresponds to the ’dstid’, ti cor-
responds to the Time period: ’hour of day’, ’day of the week’ or ’month’ for the
quarterly data and across time periods available in the disaggregated data set which
include the early morning period (00:00 to 06:00), the A.M peak (07:00 - 09:00), the
midday (10:00 to 15:00), the P.M peak (16:00 to 18:00) and the evening time period
(19:00 to 23:00). The different attributes of the data set are tabulated in Table 2.1.

The number of Ubers in Amsterdam is estimated to be 2100 (35% of the total 6000

taxis registered at Amsterdam) as of 2018 [Gemeente Amsterdam, 2019]. The num-
ber of Ubers offers an overview of the penetration rate which has a direct impact on
the volume and quality of the data. Ubers are found to be limited in the Dutch Taxi
market, owing to the existence of alternative modes and a well developed public
transit system.

The data from the Uber Movement Website can be derived in two separate ways.
One is by specifying an Origin wijk, Destination wijk followed by the desired date
and time-period for which the travel times are required. For instance, travel time

8
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Table 2.1: Attributes for the quarterly aggregated Uber Movement Data

Attributes Description

sourceid
Origin wijk -

Does not correspond to the pick-up point

dstid
Destination wijk -

Does not correspond to the destination point

hod or dow or month

Temporal detail at which the quarterly data can
be downloaded

hod - Hour of Day
dow - Day of week

month

mean travel time
Mean Travel Time between origin wijk and

destination wijk in seconds
standard deviation travel time Standard deviation with respect to the mean travel time

geometric mean travel time
Geometric mean travel time between origin wijk and

destination wijk in seconds
geometric standard deviation

travel time
Standard deviation with respect to the

geometric Mean Travel Time

between an Origin wijk and a Destination wijk on the 03/08/2018 for the morning
peak. The second approach is to download the aggregated data which is aggregated
at the quarter of a year and is available for all Origin-Destination pairs. Disaggre-
gated data can be downloaded as four different ’.csv’ files as shown in Figure 2.1.

Select another 
Date Range for 

comparison

Select Date 
Range + Time 

of Day

Mean Travel Time 
from selected 
Origin to all 
Destinations

Mean Travel Time 
between O-D pair 
across all dates 
specified in the 

range

Aggregated mean 
Travel Time per 

Day of Week

Specific Origin-Destination 
Pairs

Aggregated mean 
Travel Time per 

Time of Day

For both data 
ranges

.csv files

Figure 2.1: Deriving disaggregated Travel Time data by specifying an Origin and Destination
problem

The aggregated data, on the other hand, can be downloaded for multiple Origin-
Destination pairs. The data is available at different levels of temporal detail as
shown in Figure 2.2. For instance, travel time by per hour of the day gives the mean
travel time between an Origin wijk and Destination wijk between 08:00 to 09:00 for
the second quarter of the year. Similarly, the mean travel time on a Monday for the
fourth quarter of the year or the mean travel time between two wijken for a month
of the year in 2018. Additionally, it is possible to distinguish between weekday and
weekend data for the hour of day and months. The data points for disaggregated
and aggregated data are released under the condition there are five unique trips
and two unique drivers. This was done to ensure rider and driver privacy.

As specified previously, the research conducted utilises data from 2016 to 2018.
However, the following chapters will utilise the 2018 data set due to it being the
most recent data set available for a full year, has larger data coverage spatially (data
points for more wijken). The descriptive statistics for the weekday 2018 data is
tabulated in Table 2.2 and for the weekend data Table 2.3. The datasets do not re-
quire pre-processing as the data set does not contain empty fields, and despite the
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All OD Pairs

2.3.1 Travel Time 
by Hour of Day 

2.3.2 Travel Time 
by Day of Week

2.3.3 Travel 
Times by Month

Travel Times by 
month (all days)

Travel Times by 
month 

(weekdays)

Travel Times by 
month 

(weekends)

Travel Time by 
Hour of Day 
(Weekdays)

Travel Time by 
Hour of Day 
(Weekends) 

Travel Time by 
Hour of Day  
(All Days)

.csv files

.csv files

Figure 2.2: Deriving aggregated Travel Time data for multiple Origin and Destinations

presence of outliers, there is no rationale to remove them for analysis. The maxi-
mum standard deviation of mean travel time observed in the 2018 weekday data is
4608.28 seconds (76 minutes) between Slotermeer Norddoost and Weesperbuurt at
13:00 for the third quarter of 2018. This would mean a vehicle travelling between
the two wijken could experience ±76.76 minutes in addition to the mean travel time
of 3519.33 seconds (58 minutes). However, for analysis, this reveals the variabil-
ity in travel time experienced. A high standard deviation can indicate, travel time
variability on the route caused by conditions on the route such as the opening and
closing of a bridge, or a lack of data points.

The dataset also offers the geometric mean. While the arithmetic mean is the
sum of the travel times divided by the total number of elements, the geometric
mean is the product of the travel times followed by the under root as shown in
Equation 2.1 where xn represents the travel time between an origin and destination
wijk. The geometric mean is useful in finding the central tendency of skewed data
as it reduces the influence of large values. The travel times in an Urban network
are an example of skewed data, with a long-tailed distribution where most of the
values are normally distributed except for a few large values resulting in the long
tail.

Xgeometric =
n

√
n

∏
i=1

=
√

x1.x2.....xn (2.1)

On conducting a Hypothesis test, to check if the distribution of travel times in
the Uber Movement data set follows a heavy-tailed distribution, a Kolmogorov-
Smirnov test was conducted. The null hypothesis of the test being, the distribution
is normal and the alternative hypothesis being the method is significantly different
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Table 2.2: Descriptive statistics for 2018 Hour of day weekday Uber Movement data

sourceid dstid hod mean travel time
standard deviation

travel time

count 1056845 1056845 1056845 1056845 1056845

mean - - - 793.75 seconds 289.05 seconds
std - - - 377.25 seconds 151.14 seconds
min 1 1 0 9.11 seconds 1.54 seconds
25% - - - 518.29 seconds 197.98 seconds
50% - - - 767.80 seconds 264.04 seconds
75% - - 1033.82 seconds 347.70 seconds
max 181 181 23 3737.71 seconds 4608.28 seconds

geometric mean travel time geometric standard deviation travel time

count 1056845 1056845

mean 744.65 seconds 149.52 seconds
std 373.21 seconds 381.91 seconds
min 3.31 seconds 1.02 seconds
25% 471.28 seconds 1.29 seconds
50% 721.97 seconds 1.39 seconds
75% 984.72 seconds 1.56 seconds
max 3100.33 seconds 20.64 seconds

from a normal distribution and follows a log-normal distribution. The p-value
was significant at 1%, proving the null-hypothesis as False and the distribution is
indeed not normal. The Figure 2.3 represents the distribution of arithmetic mean
travel time from all data points for 2018; both weekdays and weekends, indicating
a heavy-tailed distribution.

Figure 2.3: Log-normal travel time distribution for travel time in 2018

The geometric mean also has expectedly smaller standard deviations, as it is less
sensitive to extreme values compared to the arithmetic mean. The use of the geo-
metric mean for analysis will be a logical choice considering the nature of the data.
The spatial detail of the Uber Movement Data set is at the wijk level. The wijk is
a combination of neighbourhoods at which land-use data is provided by the Cen-
tral Bureau of Statistics in the Netherlands. For a lack of an English equivalent,
the research will refer to the spatial unit as a wijk and wijken in the plural. The
wijken are not limited to the municipality of Amsterdam and extend over to the
Greater Amsterdam Metropolitan region. The availability of data for the wijken
varies temporally. Figure 2.4 represents the wijken and their area in km2. As men-
tioned in Movement [2019b], the mean travel time from one wijk to another wijk,
and the pick-up/drop-off point or the trajectory followed when passing through the
wijken is lost in aggregation. This would suggest spatial coarseness as the wijk can
be about 0.46 km2 (Tuindorp Buiksloot) to 117 km2 (Amstelveen). Thus, the Uber
Movement data offers mean travel time from one wijk to the other along with the
standard deviation. The section establishes the attribute, descriptive statistics and
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Table 2.3: Descriptive statistics for 2018 Hour of day weekend Uber Movement Data

sourceid dstid hod mean travel time standard deviation travel time

count 964435 964435 964435 964435 964435

mean - - - 729.43 seconds 267.84 seconds
std - - - 337.14 seconds 132.23 seconds
min 1 1 1 7.17 seconds 1.46 seconds
25% - - - 483.725 seconds 186.56 seconds
50% - - - 712.16 seconds 246.04 seconds
75% - - - 948.89 seconds 321.29 seconds
max 181 181 23 3246.570 seconds 4465.780 seconds

geometric mean travel time geometric standard deviation travel time

count 964435 964435

mean 682.92 seconds 1.50 seconds
std 335.24 seconds 0.39 seconds
min 3.31 seconds 1.01 seconds
25% 437.46 seconds 1.29 seconds
50% 667.89 seconds 1.4 seconds
75% 904.12 seconds 1.57 seconds
max 3183.82 seconds 13.09 seconds

Figure 2.4: wijken available in the Uber Movement Data set and their area in km2

spatial/temporal detail of the dataset. The main insights from the section include;
the data offers travel time data across different temporal details (Hour of Day, Day
of Week, Month) for weekdays and weekends, it is possible to derive travel times
on a specific date, however for a time period of the day i.e. the AM peak (07:00 to
09:00), PM peak ( 16:00 to 18:00), midday (09:00 to 16:00), evening (18:00 to 00:00)
and early morning (00:00 to 07:00). The Geometric mean is a more relevant mea-
sure than the arithmetic mean for the uber movement travel time. The standard
deviation is a possible measure to establish the validity of travel time variability i.e.
travel times exceeding the mean ±standard deviation and be established as a case of
when travel times were higher or lower than expected. In terms of some limitations
identified; the spatial detail is coarse, especially the quarterly data, there is a lack of
trajectory information, and the reliability of the travel time values (how the sample
travel time available differ from the population) cannot be calculated due to the
unknown number of Uber vehicles which resulted in the data point. The following
section looks at the previous work done with the data set.
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2.2 previous work with uber movement data
The data source has not been actively explored in academia. We thereby explore
case studies available at the Uber Movement website in addition to the research
available from academia. The limited research with the data set could be attributed
to the aggregated nature of the data, and the data has been made available publicly
only in 2017. The first two subsections discuss the previous work done with the
different aggregation levels of the data.

2.2.1 Congestion Analysis using disaggregated Uber Movement Data

The subsection discusses the case studies [Uber Movement, b] carried out using the
Uber Movement data set. The case studies looked at Travel Time Variability caused
due to infrastructure closure (closure of the London Tower Bridge and Disruption
of the Washington Metro Rail Service), Event-related (Festival in New Delhi, India),
and weather-related events (Flash floods in Nairobi, Kenya and Rainstorm in Pitts-
burgh, USA).

These applications use a base date range and time of day for comparison with
the date range the non-recurrent event took place. For instance, when the London
Tower Bridge was closed for three months (from 1st October to 31st December 2016).
For comparison, the first month of the closure was compared to the first month of
the year, across the PM peak period. A 65% increase in Travel Time was found travel
South of the bridge and a 30% increase for travel North of the bridge. The spatial
units selected were located at the entry and exit of the bridge. The rise in travel
time was attributed to the limited number of links across the river [Uber Movement,
a]. The table Table 2.4 summarises the different case studies conducted using Uber
Movement.

Table 2.4: Uber Movement Case Studies done previously [Uber Movement, b]

Case Title Type of disruption Extent of travel time change

Analysing trends in 2015

holiday travel conditions

Holiday season travel patterns
leading to longer travel times to

the airport and shopping districts.
Especially during off peak hours.

i) 70 minutes compared to
16 minutes (CBD to CBD)

ii) 58 minutes compared to
37 minutes

(CBD to CBD)
The effects of DC metrorail

disruption
Effects of a system wide shutdown
followed by a single line shutdown

10-30% higher than typical

Examining the impact of
London Tower Bridge

Closure
Infrastructure closure for a month

i) 65% increase in South bound
travel times

ii) 30% increase in North bound
travel times

How March Floods affected
Nairobi Travel Times

Effects of adverse weather
Travel time increase of 124%
from the CBD to the South

and East zones

The case studies utilise the web user interface (as shown in Figure 2.5) by Uber
Movement to download data for a particular date or a range of dates on which the
event of interest has occurred and compares it against a base range. Travel time
variability caused by specific events has been investigated. Researchers and traffic
operators term these types of incidents as incidents of non-recurrent congestion.
Non-recurrent congestion is caused by unexpected events like traffic accidents, bad
weather, jams, large-scale events, and infrastructure-related closures [Anbaroglu,
2013],[Dowling et al., 2004a]. Figure 2.6 represents the causal relationships leading
to recurrent and non-recurrent congestion. Traffic Control Devices such as signal
control affect the physical capacity of the network and on interaction with Demand
and volume leads to recurrent or bottleneck congestion. Other causes for recurrent
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congestion are daily/seasonal variation, for example in the Uber Movement case
studies; the holiday travel conditions in Manilla, Planned events such as the clo-
sure of the London Tower Bridge for one month and effect of a line shutdown in
Washington DC for a period of fifteen days fall under the Special events category
affecting the demand/volume of traffic. The effect of weather, incidents and work
zones have also been identified, in the Uber movement case studies, non-recurrent
congestion is caused by Weather in the Nairobi case, and the system-wide shut-
down of the Washington DC metro rail for a day.

Figure 2.5: Travel Time comparisons before and after closing of the London Tower bridge -
Uber Movement Web Interface [Uber Movement, a]

Physical	Capacity Demand	Volume

Base	Delay
"Recurring	or	Bottleneck"

Traffic	Control
Devices

Daily/Seasonal
Variation Special	Events

Event	Related	Delay

Weather

Work	Zones

Incidents

Total	Congestion
leading	to	Travel	Time

changes

..interacts	with..
..lowers	Capacity	&
Changes	Demand..

Planned
or

Emergencies

..can	cause

..can	cause

..determine..

Figure 2.6: Factors affecting recurrent and non-recurrent congestion(adapted from Adminis-
tration et al. [2004])

Thus, the data set has been used for looking at Travel Time variability. How-
ever, the method of checking for travel time variability relied on creating an ar-
bitrary baseline comparison. For instance, in the London bridge closure case the
travel times were compared to that of the month before the closure. The travel
time changes in the case of localised incidents such as accidents have also not been
explored. Thus, this creates the exploratory possibility of looking at the potential
of the Uber movement data set for an ex-post analysis on the travel time changes
caused recurrent and non-recurrent congestion.



2.2 previous work with uber movement data 15

2.2.2 Congestion Analysis using aggregated Uber Movement Data

The subsection discusses the use of quarterly aggregated data. Pearson and Samaniego
[2017] attempted at representing temporal patterns of cities using Uber Movement
Data. The Traffic Analysis zones (the Spatial unit of the dataset can vary across
cities) were represented by a single node at the centroid, the travel time data was
used to weigh the edges connecting the centroids, which enabled creating a static
Spatial graph which represented the Euclidean distances between nodes and a dy-
namic temporal graph weighted by the travel time between the centroids. The
indicators calculated include Degree centrality, Betweenness Centrality, Closeness
centrality and Page Rank and HITS for both spatial and temporal graph. The re-
search also utilises the community detection tool, which enables identifying latent
communities based on distance and time using the Girvan Newman algorithm [Gir-
van and Newman, 2002]. The notion of communities is used to identify latent
communities which exist in a social network. The latent communities are identified
by identifying those communities which are connected more densely among each
other than other sub-communities. Due to computational complexity, the method
has shown to work better with sparser networks. A list of other methods used for
community detection can be found in [Csardi and Nepusz, 2005]. There is no single
best method to approach community detection. Thus, the research looked at how
the mobility patterns change temporally over a day in comparison to a static spatial
network. The paper offers a method to macroscopically represent Uber Movement
data for cities based on network indicators.

The paper also attempts at discovering congestion hotspots, by weighing the Inde-
gree using the mean Travel Time between two Traffic Analysis zones. Thereby, the
resulting summation of travel time represents nodes which take higher travel time
to reach. However, there was no mention of normalisation. Higher travel times can
be a function of the distance. Also, if there are more edges required to reach a node,
it would result in higher travel time in total. We will overcome the limitation by
normalising the weighted in-degree by distance and the number of edges incident
on the node.

Redelosa and Lim [2018] calculated degree centrality for the city of Boston and
Manilla. The degree centrality for different zones was compared by plotting a cumu-
lative distribution function. The centrality here is referred to as ‘Used centrality’ for
indicating the usage across the nodes representing zones in the city. The research
utilises the notion, that only after a certain number of traversals through a node can
the travel time be made available (since Uber has to aggregate and anonymise). The
underlying assumption being, if the number of travel time observations are higher
for a node (Across weeks, months, quarters and years), the more traversed is the
node.

While the Uber Movement data does not offer the number of pick-
ups and drop-offs in a spatial unit, the data penetration levels can
suggest the extent of how often a spatial unit is traversed.

Both papers rely on Graph theory, which provides a framework for representing
complex networks. A graph (G) can be composed of Nodes (V) and edges that
connect the edges (E) i.e G = (V, E). The edges can be weighed and the nodes can
represent spatial units. As both papers have already illustrated, network graphs
are especially suited to represent the Uber Movement data. Degree centrality refers
to the number of edges incident on a node. While, the measure offers insights on
how frequently a node is visited, to describe the flow, the betweenness centrality is
used. The indicator identifies the nodes crucial to the network, by indicating the
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number of shortest passing through the node. For instance, nodes in the centre of
a city are likely to have higher betweenness centrality. The measure is sensitive to
how the edges are weighed. In an unweighted graph (where the weight of all edges
equal one), can result in a different set of nodes with high betweenness centrality
compared to that of one weighted by distance or time.

The Uber movement data is essentially travel time data which
should be able to reflect travel time variability under the event of
recurrent or non-recurrent congestion either singularly or when
fused with another data set. Also, the network graphs are a useful
way to represent the Uber movement network.

2.2.3 Uber Movement Travel Time Comparison

Wu [2018] compared Google Map Travel Time obtained from the Google Distance
Matrix API with the Uber Movement Data Travel Times. It was found, Uber Move-
ment Travel Times were systematically lower, a ratio of Travel Time from Google
API to Uber Movement ranged between zero and three, with the heavier tail of the
distribution ranging towards higher travel time.

The author speculates two possible causes for the longer travel time. The first one re-
lates to how Google API travel times were aggregated spatially. The travel times de-
rived were based on the address found at the actual centroid of the zone. However,
in Uber’s case, the driver may not have driven up to the centroid but somewhere
in the zone. The other cause relates to how Google Maps, provides an Estimated
travel time to the user and might include buffer time to ensure the satisfaction of the
user. Whereas the Uber Movement Data is based on actually realised travel times
by Uber vehicles. Thus, integrating data sources requires one to investigate the dif-
ferences (mainly spatial and temporal in the case of Taxi GPS data) to be able to
use and compare them. The article aggregated the spatial unit of origin-destination
pairs data from the Google API as per that of Uber Movement for Sydney and also
discarded intra-zonal trips. The centroid of the zone was selected for determining
travel times in the case of the Google API. Thus, validating the differences between
the data set. The work remains the only one which compares the Uber Movement
Data set with another data set to test its validity.

It is possible to establish the approximate error-bounds for travel
times caused by the spatial aggregation of the Uber data set by
comparing it with travel time data available at the coordinate level.
another data set.

2.2.4 Travel Time Prediction

Uzel [2018] offered a method to use Uber Movement Data using a machine-learning
approach for Travel Time prediction. For computational efficiency a sub-set of the
origin-destination pairs were selected, actual distances between centroids of a zone
were determined from Open Street Maps and combined with Travel Time from Uber
Movement data. An algorithm termed Random Forest is then used for machine
learning. Seventy per cent of the data set is used for estimation and the rest 30%
hold out data for validation. The algorithm was able to estimate travel times with a
6% error rate. Considering the Google Maps Travel Time to be the base truth. The
article suggested separate models for inner districts and the outskirts to reduce the
prediction error. Especially since the inner spatial units are smaller and hence have
a smaller error rate compared to the outer zones.

The Uber Movement data set cannot only be used for ex-post anal-
ysis but also prediction.
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2.3 taxi gps data sources and their applications
As specified earlier, Taxi GPS data can take the four or five tuple format in terms of
attributes. Depending on the source, collection method, and privacy issues, the data
set may contain all or select dimensions. The following subsections comprise of the
applications for which historical taxi GPS data has been utilised. Open Source Taxi
GPS Data can be crucial in unravelling a city’s mobility pattern. New York and
Chicago have published GPS data from Taxi companies operating in the city for
the use of traffic engineers, city planners and researchers. The data-set from Porto
was made available for Kaggle Taxi Travel Time prediction challenge, and the T-Drive
data set collected by Microsoft research. The Geo-Life data set for Beijing was also
collected by Microsoft research. The San Francisco data set emerged from a Taxi
GPS data collection initiative called Cabspotting and was collected to reveal mobil-
ity patterns across the city. Table 2.5 tabulates the different data sets on the basis of
the collection period, Spatio-temporal granularity, number of taxis, thereby the pen-
etration rate, number of trips and trajectory information (string of GPS coordinates
offering trajectory information).

Table 2.5: Taxi GPS data from alternative sources and their attributes compared to Uber
Movement

Dataset Period of Collection Temporal Unit Pick-up Location

Amsterdam
(Uber Movement)

01/2016-12/2018 Per hour At the wijk Level

Chicago 01/2013 - 05/2017 15 minutes Coordinates
Porto 07/2013 - 01/2014 Seconds Coordinates

New York 01/2009 - 12/2018 Seconds Coordinates
T-Drive(Beijing) 02/2008 Average - Seconds Coordinates

Geo-Life(Beijing) 04/2007-08/2012 1.5 Seconds Coordinates (GPS trajectories)
Cabspotting

(San Francisco)
05/2008-06/2008 seconds Coordinates

Drop-Off Location Taxis Trips

Amsterdam
(Uber Movement)

At the wijk Level - -

Chicago Coordinates >6000 >100 million
Porto Coordinates 442 1.7 million

New York Coordinates >12000 >1 billion
T-Drive(Beijing) Coordinates 10,357 15 million

Geo-Life(Beijing) Coordinates (GPS trajectories) 178 25 million
Cabspotting(San Francisco) Coordinates 536 11 million

Trajectory information Other information in the dataset

Amsterdam
(Uber Movement)

No Realised travel times and standard deviations

Chicago No Taxi fare, Taxi company, Payment Type
Porto Yes N.A

New York No Taxi fare, Taxi company, Payment Type
T-Drive(Beijing) Yes N.A

Geo-Life(Beijing) Yes N.A
Cabspotting

(San Francisco)
Yes Occupancy

On comparison with other open-source Taxi GPS data, the apparent lack of Spatio-
temporal detail in the Uber movement data is evident. The New York and Chicago
taxi GPS data sets would enable a much more disaggregated analysis. For instance,
exploring the actual pick-up and drop-off points enables one to derive the activities
pursued by the user, track actual trajectories and thereby the distance travelled. The
Porto, Beijing, and San Francisco data sets have not been updated and in certain
cases only subsets of the data are available. The Uber movement data is updated
every quarter and comprises data for several major cities across the world. Appli-
cations built using Uber Movement Data can enable applications for the different
cities.
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In a broader sense, taxi GPS data is a type of Urban Traffic Data. The Urban
Traffic data can be categorised as Supply Data, Demand Data, Performance Data
and Impact data [Huang, 2003] for Transport and Planning decisions. Based on
the level of detail available in the data, Taxi GPS data can fall under each of these
categories. Following subsections discuss the applications of Taxi GPS data under
each of the data types.

2.3.1 Taxi GPS data for Supply and Demand related applications

Taxi GPS data in terms of supply related applications can offer information related
to the physical infrastructure i.e. the transport network. Zhu et al. [2017b] looked at
the resilience of the New York transport network during adverse weather conditions
by utilising the New York Taxi GPS data set and Subway ridership data. Variations
in the usage were suggestive of the parts of the network which were usable and the
extent to which they could be used. Liu et al. [2018b] utilised Beijing’s taxi GPS
data and employed AP (affinity propagation) and K-means clustering to identify
hot-spots for Taxis which in turn can be used as car-sharing depots, to ensure an
adequate supply of vehicles in urban environments. Bock et al. [2017] proposed a
methodology to validate the parking sensor measurements with Taxi trajectories in
San Francisco. A model was built to estimate the parking tendency of taxis and
thereby derive the number of taxis parking at a location. This was compared to the
parking sensor measurements. Thus, the taxi GPS data was used as crowd-sensing
data.

Taxi GPS data in terms of supply can also relate to the availability of taxis in a
certain area during a period. Thereby, the number of taxis available for riders at a
point in time. Maintaining the supply-demand equilibrium for taxis is a complex
problem. In Hangzhou, the trajectories of 5,500 taxis were analysed to determine
taxi drivers best strategies to pick up passengers at a given time and location [Li
et al., 2011]. A study in Shenzhen explored taxi-drivers operation patterns with the
focus on differences between the behaviour of top drivers and ordinary ones. En-
suring the supply of taxis to meet the varying demand Spatio-Temporally is beyond
the scope of the research [Liu et al., 2010].

Bischoff et al. [2015] analysed Taxi GPS data in Berlin and evaluated the demand-
supply equilibrium, and found the peaks for taxi demand was well-matched with
the supply. Additionally, the demand patterns for Berlin suggested most trips were
between the city centre and Tegel Airport, most trips were found to be exclusively
in the city centre, and central zones were likely to be destinations of taxi trips but
outskirts were also found to be a popular destination. The research also seems
to conclude points of special interest are a destination for taxi trips, such as train
stations, the fairgrounds and major event locations. Temporally, it was found taxi
demand is the highest during weekdays with peaks at 09:00 and a smaller one dur-
ing the afternoon. During weekends the demand for taxis was found to be generally
lower. In terms of asymmetry for taxi demand (taxi flow incoming and outgoing)
which can prompt empty trips, the asymmetry was found to be the highest at the
airport.

Thus, taxi data can be evaluated in terms of demand which can
vary spatiotemporally and help identify points of interest and also
if there exists asymmetry in demand. The usage of taxis is often
city-specific and highly context-dependent.

Yang et al. [2018] developed two linear regression models for pick-ups and drop-
offs with land-use data as explanatory variables using Taxi GPS data from Washing-
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ton DC. The research offers a method to assess taxi demand based on land-use data
such as Industrial density, residential density etc. and measured an entropy factor
which defines how monofunctional is the zone (a higher entropy is suggestive of
varied land-usage) and can take a value between zero to one.

2.3.2 Taxi GPS data for Performance related applications

The second category of applications noted was the use of Taxi GPS data to evalu-
ate the performance of the road network. Kuang et al. [2015], converted the road
network in Harbin in China, to virtual nodes, with a defined traffic demand at ev-
ery node. These nodes were then assigned a subregion and traffic anomalies (for
instance: accidents) were detected at when the traffic flow conditions deviated from
the usual. The modal share of taxis account for 23% in the city and was assumed to
be representative of not only routes traversed by taxis but also other traffic. Zhan
et al. [2013] employed the New York taxi data set to estimate travel times at the link
level and [Castro et al., 2012] developed a predictive model for predicting future
traffic states based on historical observations. The GPS data was sampled at every
minute, obtained from 5000 taxis over a period of one month in Shanghai, resulting
in 300 million GPS entries. The authors hypothesized a regularity in traffic flow
obtained over a month enables prediction of future traffic states. The network was
composed into edges and their orientation based on Taxi GPS pick-up and drop-off
as the authors found trajectory points resulted in a cluttered plot. A probabilis-
tic matrix (for the transition to a future state) was defined for traffic propagation
from one edge-orientation pair to the other based on the Markov property of how
an edge-orientation pair in the future is dependent solely on the immediate states
of its neighbouring edge orientation pairs. The transition (time-step) took place
at every fifteen minutes as the distribution variability between every minute was
very high. So, the probabilistic matrix offered the probability of current density
at one edge-orientation pair to flow to another edge-orientation pair. The model
was based on one week’s worth of data and was validated based on the other three
weeks worth of data. In order to test the validity of the model, the mean density
was calculated for every 15 minutes and compared with the predicted density by
calculating the error involved.

The paper also offered a method to determine congestion as calculation of densities
was considered an incomplete understanding of the city’s dynamics, by determin-
ing the ratio of GPS vehicles with high speed to those in low speed, and set a ratio
of 0.4 as an indicator for congestion. This can be interpreted as the number of vehi-
cles moving in slower speeds (defined at 20 km/h) is 2.5 times more than vehicles
at higher speeds. Thereby, indicating congestion.

The use of individual Taxi Trajectories, to identify vehicle traffic patterns has been
carried out by [Keler et al., 2017]. The research utilised Taxi GPS coordinates and
velocity data from seven thousand to ten thousand taxis in Shanghai to plot trajec-
tories of individual vehicles. Trajectory Intersection Points (TIP) were derived by
intersecting trajectories. It was found, a high-speed difference among the vehicles
and a large number of trajectories, indicated a point of congestion in the city. The
capacity of the road was quantified by plotting nodes on intersections using Open
Street Maps and in turn using it as a dummy variable for capacity (more lanes,
more nodes thereby indicating a higher capacity), as the authors were unaware of
the actual capacity of roads in the network.

Thus, Taxi GPS data can be used for evaluating the performance
of the network but also the future states with respect to congestion
and travel time prediction. The high penetration rates of taxis can
enable a network-wide performance analysis.
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2.3.3 Taxi GPS data for Impact related implications

The third category of impact-related implications involves measuring negative ex-
ternalities such as pollution on the network. Lu et al. [2017] fused taxi GPS data,
carbon emission data, road networks, point of interests in a city and meteorological
data to predict carbon emissions. The paper offers a method to calculate emissions
on a grid-based level and extends emission estimation from not only taxis but also
other vehicles by estimating the flow of traffic in the trajectories followed by the
taxis. The emission model developed enables estimation based on traffic patterns
on road segments and showed the emissions are consistent with the peak and off-
peak traffic flows in the city.

2.4 conclusion and next steps
Three distinct application categories can be found for taxi GPS data from the liter-
ature. This includes demand and supply related applications, performance-related
applications and impact-related implications. To establish the unique potential of
the Uber Movement data set, the data set will be explored in terms of its ability
to establish the demand for Ubers as part of demand studies and performance of
the network in the form of recurrent and non-recurrent congestion studies. Impact
related potential is not explored as it is a by-product of the data set being able to
offer performance-related solutions. The outline for the exploratory phase is shown
in Figure 2.7.

Comparison	against
alternative	travel	time

data
Demand	related	potential

Performance	related
potential-Recurrent	&

Non-Recurrent
congestion

Identifying	the	unique
value	of	the	data

Model	development	&
implementation

Figure 2.7: Next steps to identify the unique value of the data



3 E X P LO R AT I O N W I T H U B E R
M O V E M E N T DATA

The current chapter explains the exploratory part of the research. The insights
gathered from the previous chapter with respect to the applications of Taxi GPS
data are utilised here. For benchmarking the data, the data set is first compared
against the Nationale Databank Wegverkeersgegevens (NDW) travel time data. This
is followed by looking at the demand and supply related application of the data in
Section 3.2 and after which the performance-related applications are evaluated in
Section 3.3 and Section 3.4.

3.1 uber movement data & ndw travel times
As the first step of data exploration, the travel times are compared against the NDW

through the Dexter Web Interface which enables one to download travel time for the
national highways (A - Autosnelwegen) and major arterial roads (the N - Provincial
roads and the S- City roads) at different levels of temporal detail (minute, quar-
ter, hour and day). The travel time data is collected from different sensors which
include ANPR (Automated Number Plate Recognition), floating car data (sourced
from mobile operators), road detector data for A roads (from RWS).

The travel times from Uber Movement data are realised from Uber trips with pas-
sengers in them. Liu et al. [2018a] illustrated taxi drivers knowingly take longer
routes (detours) with non-local passengers in New York City from the airport
whereas Uber drivers tend to take longer routes during surge pricing. Dynamic
surge pricing is a phenomenon where the Uber fares go up during peak hours, due
to limited supply and greater demand. The phenomenon is not limited to the peak
hour and can be induced whenever there are limited supply and greater demand.
The difference in route choice behaviour of Uber drivers will affect the travel times
observed in the Uber Movement Data set. However, there is no empirical evidence
of this happening in Amsterdam. The travel times are compared against the NDW
travel times The comparison will help validate the data against a dataset adopted by
policymakers in the Netherlands and also establish the approximate error bounds
caused by the spatial aggregation.

The comparison of these two datasets requires Spatio-temporal matching. The dif-
ference between the two datasets is demonstrated in Table 3.1. The spatial matching
is achieved by determining starting and end coordinates of the polyline from the
NDW data and placing it in the wijk. For temporal matching, the NDW data is
downloaded at per hour detail for all dates in a quarter. The mean travel time is
calculated across all dates per hour of the day. For instance, the travel time now be-
comes an average of travel time at 00:00 across all dates in a quarter of the year. The
standard deviation is also calculated for every hour of the day. The methodology
for spatial and temporal matching is depicted in Figure 3.1.

The Spatio-temporal matching of the datasets is not straightforward. The direc-
tion of travel for which travel times are obtained need to be adhered to. Also, the

21
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Table 3.1: Uber Movement and NDW Spatio-Temporal Detail
Uber Movement NDW

Spatial Detail
Wijken (administrative spatial units -

combination of neigbourhoods)
Polylines represeting road segments

Temporal Detail Travel Time per hour of the day per quarter of the year
Can range from one minute to a day.

Available detail: 1 minute, Quarter, Hour
and Day

Uber	Movement
Shape	File
(Polygons)

NDW	shape	file
(Polylines)

Uber	Movement
Travel	Time	data
(Hour	of	Day	per

Quarter)

NDW	Travel	Time
Data	(Hour	of	Day
across	a	quarter)

Temporal	Match

Spatial	Match

Input	Data

Cluster	wijken	across	different
quartiles	defined	by	area

Spatially	match	polylines	from
NDW	data	to	clustered	polygons

from	Uber	Movement

Cluster	wijken	across	different
quartiles	defined	by	area

Aggregate	NDW	travel	times	and
Standard	Deviations	per	hour	of	the

per	quarter	of	the	year

Uber	Movement	travel	times	per
hour	of	the	day	per	quarter

Figure 3.1: Methodology for comparison of Uber Movement and NDW travel time data

trajectory obtained will not necessarily correspond to the route taken by the Uber
drivers and this is a limitation to be considered when interpreting the results. The
decision to cluster the wijken according to the area in the Uber Movement dataset
stemmed from a need to determine error bounds caused by spatial aggregation.
The four clusters were based on the four area-based quartiles. The trajectory identi-
fied from the first quartile was from Burgwallen Nieuwe Zijde to Burgwallen Oude
Zijde, the second quartile has a trajectory was from Sloterdijk to Spaarndammer,
the third quartile has a trajectory from Frankendael to Overamstel and the fourth
quartile has a trajectory from Badhoevedorp to Sloter and Riekerpolder. Each of the
trajectories is presented in Figure 3.2.

For simplicity, the trajectories chosen were such that they lead from one adjacent
wijk to others. The travel time differences have been tabulated in Table 3.2 while
the speed differences can be seen in Table 3.3. It can be noted the travel time differ-
ences are the highest in the first quarter, while the speed differences are the lowest.
These speeds become nearly equal, as the distance between centroids is higher than
the length of the NDW trajectory (1.2km >0.518km). The different clusters do not
suggest a consistent pattern of higher travel time differences in larger spatial units
and smaller travel time differences in smaller wijken because the travel time errors
are linked dependent. The length, capacity of the link, number of vehicles and the
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Figure 3.2: Selected segments from the NDW data- from left to right (a) Burgwallen Nieuwe
Zijde to Burgwallen Oude Zijde (b) Sloterdijk to Spaarndammer/Zeeheldenbuurt
(c)Frankendael to Overamstel (d) Badhoevedorp to Sloter/Riekerpolder

route taken would need to be established for the data to be comparable. The extent
of noise in the Uber Movement data renders it difficult to establish the spatial error
bounds. Thus, the comparison of the Uber Movement and NDW data while be-
ing an effective way to establish the supposed travel time differences, the unknown
route taken by Uber vehicles is a significant limitation.

Table 3.2: Comparison of Uber Movement Travel Time data with NDW travel time data for
trajectories across four clusters

Trajectory

Mean travel time
difference

across all hours
of the day (s)

% Mean travel time
difference

across all hours
of the day

Distance between
Geographical

centroids
from OSRM (km)

Length of the
trajectory

from NDW (km)

Cluster I
Burgwallen Nieuwe Zijde

to
Burgwallen Oude Zijde

118.35 59% 1.2 0.518

Cluster II
Sloterdijk to

Spaarndammer and
Zeldenbuurt

-96.55 -45% 3.65 2.58

Cluster III
Frankendael to

Overamstel
40.85 17% 4.4 2.15

Cluster IV
Badhoevedorp to

Sloter and Riekerpolder
-56.08941667 -34% 2.95 5.04

3.2 uber movement data - demand studies
The number of trips across an Urban area made by taxis can be valuable informa-
tion in deriving the proportion of taxis in traffic and areas frequented by them. An
understanding of the demand is fundamental to be able to manage the Uber Traffic
in Amsterdam. The section aims to determine the usage patterns for Uber through
the Uber Movement Data set i.e. the section will aim to answer ’why’ are Ubers
being used in Amsterdam. The insights gathered from this can help answer the
second sub-question.
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Table 3.3: Resulting speed differences through comparison of travel time data from NDW
and Uber Movement

Trajectory

Mean Speed difference
across all hours of

the day
(km/h)

% Speed difference
across all hours

of the day

Cluster I
Burgwallen Nieuwe Zijde

to
Burgwallen Oude Zijde

-2.13 -9%

Cluster II
Sloterdijk to

Spaarndammer and
Zeldenbuurt

31.81 50%

Cluster III
Frankendael to

Overamstel
27.781 40%

Cluster IV
Badhoevedorp to

Sloter and Riekerpolder
-19.61 -29%

SQ2: Which user groups are likely to use Uber in Amsterdam and for what pur-
pose?

An understanding of the demand and is fundamental to be able to manage the
Uber Traffic in Amsterdam. To determine the user groups, the research first deter-
mines where are the Ubers being used by utilising the notion of data penetration
to identify wijken which are frequently visited by Uber users in Amsterdam. The
’where’ in turn is used to derive ’why’ by fusing with Land-Use data.

• The number of trips per hour or the production and attraction between one
wijk to another wijk.

• The activities performed by passengers using the Uber Movement data.

The above two are determined across the following two subsections:

3.2.1 The production and attraction between wijken

To determine the production i.e. the number of Ubers originating from a wijk and
the attraction i.e the number of Ubers ending their trip at a wijk, there is a need
for the pick-up and drop-off location. Both of which is not made available in the
Uber Movement data set as the aggregation method followed by Uber Movement
results in a loss of all trajectory related information. This renders it impossible to
derive the pick-up and drop-off locations. Exploratory analysis of the production
and attraction revealed the data points are aggregated by the temporal detail i.e
only one data point comprising of the source ID, destination ID and average travel
time is released per temporal aggregation level. For example, a travel time data
point is released between two wijken in the city centre per hour of the day per
quarter of the year. Therefore, it is not possible to derive the actual number of Uber
trips. Figure 3.3 indicates the data points between the wijken as ninety-six. This is
a consequence of the twenty-four hours and the four quarters of the year.

The threshold for a data point to be released is five, and the number of unique
drivers is equal to two. The absence of a data point leads to a qualitative indication,
about the intensity of trips between two wijken. To better understand, the qualita-
tive insights which can be gathered, origin-destination matrices were constructed
representing the sum of production and attraction. An illustration of the same can
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(a) Data points available for 2018 where ‘sourceid’ and ‘dstid’ were within the central ring - here the
Origin-Destination pair represents a single data point

(b) Wijken represented in the central ring

Figure 3.3: Data penetration in the centre of Amsterdam

be seen for the morning peak in Figure 3.4. This can be especially useful to under-
stand the data penetration during different time periods of the day. The maximum
possible data points are 96 in the matrix. This relates to the four quarters of the
year and 24 hours of the day. The matrix can help understand the relative flow
between wijken. For instance, ‘Amsterdamsewijk’ has lower data points leading to
Delftwijk compared to the movement to ‘Haarlmerhoutkwartier’ which resulted in
the maximum possible data points of 96. This can indicate greater movement, on a
qualitative basis.

The qualitative interpretation consequently results in a caveat. A data point can
represent any number of vehicles, a single data point can represent ’ni’ number of
vehicles and two data points can represent a number ’nj’ which can be less than
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Figure 3.4: Data penetration for Haarlem - AM peak

’ni’. Thus, there is limited applicability of the Uber Movement data in determining
the demand apart from offering a qualitative indication. However, the research will
utilise the qualitative insights and derive activities, and thereby the trip purpose in
the next subsection.

3.2.2 Activities performed by Uber passengers in Amsterdam

The activities performed by Uber passenger relate to the motives behind which Uber
vehicles are used in the city. As was already determined in the previous section, the
number of vehicles arriving or leaving a wijk cannot be determined. Instead, the
research uses data penetration i.e. the number of data points made available (a
summation of the ’sourceid’ and ’dstid’ attributes of the data). The data penetra-
tion across wijken is fused with the publicly available land-use data for the city
of Amsterdam. The land-use data offers information on the functions of different
buildings in the city. The functions may include retail, public transport, care, activi-
ties and meeting, education, sports etc.

Table 3.4: Uber Movement and Amsterdam open-source land-use data spatial detail

Uber Movement Amsterdam Open Source Land-Use data

Spatial Detail
Wijken (administrative spatial units -

combination of neighbourhoods)
across the Amsterdam metropolitan region

Building level function detail
for the area within the municipality

The land-use data was integrated with the data penetration levels between 08:00

to 09:00 for the first quarter of 2018 as presented in Figure 3.5. The darker shades of
green indicating a greater number of instances when the wijk had a ‘sourceid’ data
point. The top three functions revealed include, retail at 32.1%, Hotels, bars and
restaurants at 19% and Offices at 16.3%. However, this is not necessarily indicative
of how Ubers are used due to the lack of pick-up/drop-off points and the spatial
aggregation.
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(a) Data penetration between 08:00 to 09:00 for the first quarter of 2018

(b) Function of wijken post fusion with Land-Use data

Figure 3.5: Integrating Land-Use data and comparing it with data penetration

The land-use split is not necessarily indicative of how Ubers are used due to the
lack of pick-up/drop-off points and the spatial aggregation. The spatial aggrega-
tion is a drawback because a wijk in the centre of the city tends to have a variety of
functions. On aggregation, the most dominant function is assigned i.e. if the ma-
jority of the businesses are retail-related, the wijk is assigned the land use function
of retail. On calculating the land-use entropy, used to define the extent to which a
zone has mixed land use, the entropy was found to be high for the wijken in the
centre of Amsterdam. These have been tabulated in Table 3.5. A value closer to one
indicates greater entropy and is calculated as shown in Equation 3.1. Here, Pk is
the proportion of total land area of kth land use category found in the tract being
analysed and k is the number of land-use categories. The ‘k’ value can be constant
and can be applied for every wijk, or depending on the availability of land-use cate-
gories per wijk, the value can vary. Both possible ‘k’ values were implemented and
the tabulated results confirm the spatial aggregation to the wijk level prevents one
from establishing the purpose of the trips made by Uber passengers. Additionally,
the land-use data available was limited to the municipality boundaries of Amster-
dam. wijken with activity outside the municipality has not been captured when
integrated with land-use data.
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LandUseEntropy = −∑
k

Pk ×
ln(pk)

ln(K)
(3.1)

Table 3.5: Land-Use entropy for wijken in the central ring of Amsterdam

Wijk
Land-Use Entropy with

a constant k
Land-Use Entropy with

a variable k

Burgwallen Nieuwe Zijde 0.67 0.71

Burgwallen Oude Zijde 0.60 0.62

De Weteringschans 0.58 0.60

Grachtengordel-West 0.60 0.61

Grachtengordel-Zuid 0.56 0.58

Haarlemmerbuurt 0.65 0.68

Jordaan 0.80 0.83

Nieuwmarkt/Lastage 0.75 0.75

Oostelijke Eilanden
/Kadijken

0.73 0.78

Weesperbuurt 0.65 0.70

The Uber Movement data covers the greater Amsterdam Metropolitan Region
and comprises of neighbouring municipalities. This is an advantage of the data
set as it does not treat Amsterdam as an island and captures the movement across
different municipalities which can account as longer trips than the ones carried out
in the centre of the city. For instance, the data can capture travel times to Schiphol
airport. It lies in the municipality of Haarlemmermeer and airports are traditionally
an important spot for taxi movement.

As a next step, a heatmap for movement across municipalities from the 2018 hour of
day data was plotted as shown in Figure 3.6. The heatmap is a normalised matrix,
controlling the data points for the number of wijken in a municipality. The total
number of data points were divided by the number of wijken. This is to avoid a
skewed matrix where data points from Amsterdam dominate. Amsterdam is likely
to have higher data points and as it has the maximum number of wijken. The figure
while being labelled with an origin and destination only indicates if the ‘sourceid’
and ‘dstid’ data point belonged to the municipality.

The heatmap while once again qualitative indicate activity in Haarlem, Haarlem-
mermeer, Velsen, Waterland, Zaanstad and Zandvoort. The municipality of Haar-
lemmermeer comprises of Schiphol airport, Hoofddorp, Badhoevedorp, Bloemen-
daal and Vijfhuizen among others which are wijken with hotels and places of work
near the airport. Additionally, Zaanstad is a tourist destination North of the IJ river.
Zandvoort is also a popular beach destination away from the centre of the city. Bloe-
mendaal also indicates activity and has a beach along with a major steel refinery.
Activity in areas such as Heemstede and Velsen could just be due to the route taken
to reach Zandvoort and Bloemendaal respectively. The heatmap suggests the use
of Uber to tourist destinations especially those which are way from the centre of
the city. This does seem logical as one would tend to walk in the dense centre of
Amsterdam and rely on alternative modes to reach areas further away from the city.
The trips to Schiphol does seem to suggest a principle user group of airport users,
and those unfamiliar with the city.

To explore the temporal detail of the activities carried out in the wijken, the data
penetration across a different hour of days was plotted along with the data points
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Figure 3.6: Data penetration across different municipalities (normalised by the number of
wijken in a municipality)

in different quarters of the year. Figure 3.7 represents the number of data points
available per hour of the day in 2018 for the municipality of Zaanstad for weekdays
and weekends. For the data penetration during weekdays, it increases over the day,
with the lowest point being between 07:00 to 09:00 and the highest at 11:00. For
weekends, the number of data points peak between 12:00 to 02:00 and gradually
reduce till 06:00. Both graphs suggest increased activity during night time but more
in the case of the weekend. The figure also represents the increasing Uber activity
across different quarters of 2018 for weekdays and weekends respectively. The data
penetration progressively increases, pointing to increased usage or wider coverage
resulting in a greater number of data points.

The number of data points progressively increases in Zandvoort during the day
and decreases post-midnight. Figure 3.8 reveals a higher number of data points
post-midnight in the case of weekends and shows minimal data penetration during
the morning peak. The lack of data penetration in the morning peak in the Zand-
voort and Zaanstad case would suggest, the activity carried out by Uber passengers
are not work-related. Another indication of the municipality being visited for the
beach is the data penetration across different quarters in 2018. The data penetration
is higher for the second and third quarter during the warmer months of the year,
which might be a result of Uber usage by beachgoers. The increased data penetra-
tion post-midnight like in the case of Zaanstad could once again point to a lack of
public transport connectivity during these hours during weekends.

In the municipality of Haarlemmermeer, despite a peak in data points during
midnight, the data penetration remains fairly constant through the day as shown in
Figure 3.9. Schiphol airport has a single operational runway at midnight, and the
frequency of flights is lesser during these hours. Despite the limited arrivals and
departures, a peak in data points for Uber indicates the lack of Public Transport
connectivity during these hours. However, it is important to note Schiphol airport
has frequent trains operated by NS (Nederlandse Spoorwegen - Dutch railways) at
night. Last-mile connectivity might be an issue despite the availability of trains.
The data points also peak in the second and third quarter of the year. The peak
might be a result of the increased visitor/tourist activity during the second and
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third quarters of the year.

Figure 3.7: Data penetration for Zaanstad (from left to right) across (a) Weekdays (b) Week-
ends (c) Quarter of the year on weekdays (d) Quarter of the year on weekends

The temporal analysis reveals a variation in data penetration across different
hours of the day. The variation in data penetration temporally suggests a differ-
ence in the number of Uber vehicles originating and ending at the municipalities.
This could suggest the prevalence of Uber drivers travelling empty kilometres to
pick-up passengers. Distance travelled without passengers while the taxi driver is
either searching for a ride hailer or driving up to a pick-up point can contribute to
congestion among other negative externalities such as emissions. These are referred
to as empty-vehicle kilometres or deadheaded trips. Figure 3.11a represent the data
points for when the ‘sourceid’ was in Zaanstad and ‘dstid’ in Zaanstad. The figure
suggests a greater number of data points with ‘dstid’ in Zaanstad, post-midnight.
This is possibly an indication of limited Public Transport connectivity to and from
Zaanstad post-midnight during weekends. A higher number of ‘dstid’ data points
can be seen post-midnight for weekdays and weekends. During the middle of the
day, more data points emerge for ‘sourceid’ indicating a greater number of trips
originating during these hours. The weekend graph suggests the movement of
Ubers originating from Zaanstad to be higher during the middle of the day. Fig-
ure 3.11b represents data points with the ‘sourceid’ and ‘dstid’ in Zandvoort. All
graphs indicate a disbalance in the number of trips originating and ending at Za-
anstad and Zandvoort. For example, on weekdays in Zandvoort, the difference in
data points between 12:00 and 01:00 for ‘sourceid’ and ‘dstid’ is 1,220 and 1,661 data
points. This results in a difference of 441 data points (a 36% increase compared to
sourceid points). If every data point is assumed to represent five trips, made by
five different vehicles, it can result in a total of 2,205 empty trips to pick-up the pas-
senger from Zaanstad, assuming they do not originate at Zaanstad. The magnitude
of dead headed trips are higher during the evening and late at night during both
weekdays and weekends. The finding indicates the potential of the dataset to deter-
mine the empty or deadheaded trips by assuming the trip distance, the magnitude
of trips every data point represents. The pioneering research by King and Saldar-
riaga [2018] used the New York Cab Taxi Data set to estimate the dead-headed trips
to the business district of Manhattan, John F. Kennedy airport, La Guardia airport
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Figure 3.8: Data penetration for Zandvoort (from left to right) across (a) Weekdays (b) Week-
ends (c) Quarter of the year on weekdays (d) Quarter of the year on weekends)

and Newark airport. The proportion of empty vehicle kilometres was found to be
20.8%. The research was however not based on the actual route but the shortest
route determined through the Open Street Routing Machine as the route taken by
the cabs were not available. Figure 3.11c represents the data penetration for Haar-
lemmermeer with Schiphol airport.The difference in data points across 24 hours of
the day is 8.15% and 11.16% for weekdays and weekends respectively. This is con-
siderably lesser than Zaanstad and Zandvoort. The reason behind this could be the
frequent pick-up and drop-off at the airport resulting in fewer dead-headed trips.

3.2.3 Conclusion – Uber Demand Studies

The current section explored the potential of the Uber Movement Data to capture
the demand for Uber taxis in terms of production and attraction between wijken,
its integration with land use data to reveal activity patterns, the macro mobility pat-
terns between municipalities to understand the ‘where’ and ‘purpose’ behind the
use of Ubers. The temporal differences of ’sourceid’ and ’dstid’ points suggest the
prevalence of empty vehicle kilometres as illustrated in the previous subsection.

In terms of production and attraction, the Uber Movement data does not offer
the number of trips between wijken. The data is aggregated by the temporal detail
at which it is available. The maximum number of data points possible between a
sourceid and dstid is 96 in a year for data aggregated by per hour of the day and per
quarter of the year (24 x 4). Due to the unknown magnitude of trips and also the
precise pick-up/drop-off points the Uber Movement data set cannot act as a data
source for the estimation or validation of taxi trips across the city of Amsterdam,
instead it offers a qualitative understanding on the wijken frequented by Uber as
data points are not released till the minimum threshold of five unique trips and two
unique drivers are met. Thus, the aggregation of the data set prevents one from
estimating the pick-ups and drop-offs but nevertheless offers only a qualitative in-
dication.
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Figure 3.9: Data penetration for Haarlemmermeer (from left to right) across (a) Weekdays
(b) Weekends (c) Quarter of the year on weekdays (d) Quarter of the year on
weekends

On integration with land-use data which has the land-use function at the building
level to evaluate the activities performed by Uber passengers, the aggregated spatial
detail of the Uber Movement data renders the insights gathered to be inconclusive
as to the dominant function, tends to act as the land-use function of the wijk. To
derive activity patterns, one would require relatively precise pick-up and drop-off
points which are absent in the Uber Movement data. Thus, trip purpose cannot be
determined using the Uber movement data. However, macroscopic movement pat-
terns across municipalities such as Haarlemmermeer, Zaanstad, Zandvoort, Velsen,
Haarlem and Bloemendaal indicate the use of Uber vehicles to reach farther off des-
tinations from the city. The municipality of Haarlemmermeer with Schiphol and
nearby hotels is a place for airport users visiting the city for work and leisure. Za-
anstad and Zandvoort can be considered as destinations for tourism. The quarterly
data penetration (which was higher during the warmer months) for Zandvoort fur-
ther reinforced the notion of using Uber for visiting the beach. Thus, based on the
exploratory study, the likely users of Ubers are airport users, visitors for leisure and
tourism who are either unfamiliar with the city or have to travel long distances.

There was also an imbalance in the ‘sourceid’ and ‘dstid’ data points suggestive of
asymmetry in demand across the different hours of the day. The difference in data
points was higher in the night for Zaanstad and Zandvoort. The higher data points
can reveal approximate dead-headed trips over per hour of the day per quarter
of the year. While the precise the origin of the dead headed trips are not known
the distance in km from the assumed origin point to the assumed pick-up point
can be determined by the Open Street Routing machine. This can be a valuable
insight while managing taxi traffic in the city and regulating its movement. The
main conclusions from the demand studies have been tabulated in Table 3.6
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Figure 3.10: Data penetration for Amsterdam (from left to right) across (a) Weekdays (b)
Weekends (c) Quarter of the year on weekdays (d) Quarter of the year on week-
ends

3.3 uber movement data & recurrent congestion
Recurrent congestion relates to congestion patterns which are frequent and occur
over an extended period, as the flow of traffic exceeds the design capacity. This
is especially during peak and off-peak hours. As a means for the abstraction of
the Uber network in Amsterdam, network graphs were constructed to be able to
derive congestion patterns. The section explains the method of construction, indi-
cators identified and used to explain network characteristics to explore the ability
of the data to capture recurrent congestion and thereby answer the following sub-
questions:

SQ3: To what extent can recurrent congestion analysis be carried out using Uber
Movement Travel Time data, either singularly or fused?

3.3.1 Construction of network graphs

The network graphs were constructed using the ’.geojson’ shapefile made available
on the Uber Movement website. The shapefile comprises the geometry of wijken
in the form of polygons and their respective attributes. The polygons in the centre
of Amsterdam can be represented as shown in Figure 3.12. The centroids for each
of the wijken are calculated using the geopandas library in python [Jordahl et al.,
13 ]. The centroids are now assumed to represent a wijk and thereby as a node
in the network graph. The edges are constructed based on an adjacency matrix.
An adjacency matrix represents a matrix with nodes as the column names and row
names. Binary coding is used to indicate a connection between two nodes. If there
exists a connection, the cell value is attributed with one and zero otherwise.

The connection is defined by a shared boundary. For instance, wijk 27 in the
figure shares its boundaries with wijk 28, 24 and 22 and have direct edges. wijk 27 is
connected to wijk 25 by wijk 24 or any of the other possible routes. A spatial graph
and a temporal graph is constructed. The temporal graph comprises of directed
edges and nodes. The graph is directed because the travel time from an origin to
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(a) Data points with ‘sourceid’ in Zaanstad (light green) and data points with ‘dstid’ in Zaanstad (dark
green) across different hours of the day - Weekday (left) and Weekend (right) 2018

(b) Data points with ‘sourceid’ in Zandvoort (light green) and data points with ‘dstid’ in Zandvoort (dark
green) across different hours of the day - Weekday (left) and Weekend (right) 2018

(c) Data points with ‘sourceid’ in Haarlemmermeer (light green) and data points with ‘dstid’ in Haar-
lemmermeer (dark green) across different hours of the day - Weekday (left) and Weekend (right)
2018

Figure 3.11: Difference in ’sourceid’ and ’dstid’ data points suggestive of empty vehicle kilo-
meters

a destination can be different from the return trip. Two types of spatial graphs are
constructed. First is an unweighted spatial graph where all edges are weighted by a
value of 1. The second graph is a weighted graph, where the edges are weighted by
the Open Street Map distances. The visualisation of the unweighted and weighted
spatial graph can be seen in Figure 3.13. Here, the nodes correspond to the actual
geographic centroid of wijken in the data set. For constructing a weighted graph,
the values of one are replaced by the respective weight of the edge in the adjacency
matrix.

The spatial graphs are static in nature i.e. the weights do not change temporally
and can be represented as shown in Equation 3.2 where Vs, Es and ws represent
the nodes, edges and weights respectively. Temporal graphs can be represented as
shown in Equation 3.3 where where Vt, Et and wt represent the nodes, edges and
weights respectively of temporal graphs. Temporal graphs are subsets of spatial
graphs Equation 3.4. The reason behind this is the sparsity of travel time data.
Data points for origin-destination pairs could be missing during certain hours of
the day. Temporal graphs have their edges weighted by travel time. As a rule,
geometric mean travel time was used to weigh the edges of the temporal graph.
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Table 3.6: Principle conclusions from Uber Movement Demand exploration

Applicability of the data Limitations

Production &
Attraction

Qualitatively suggests wijken
which are more frequently visited as
the Uber passes through, picks-up or

drops-off a passenger

Absence of route, pick-up, drop-off
points and aggregation by temporal

detail resulting in limited data points.

Purpose of Trip

At the municipality level
(with a dominant land use function),

high data penetration rates are
indicative of ‘tourist’ and
‘airport goer’ user groups

At the wijk level, it is difficult to
determine the purpose of the trip.
due to the absence of pick-up and

drop-off points, especially
in the case of mixed land-use in the

city centre.

Dead headed trips

Difference in ’sourceid’ and ’dstid’ points
are indicative of temporally

asymmetrical demand thereby suggestive
of Ubers redistributing spatially.

The ’sourceid’ and ’dstid’ data points
are not the same as origin and

destination points and the
applicability relies on the

assumption, the higher ’sourceid’
data points are suggestive of greater
origin trips and ’dstid’ data points

of destination points.

Figure 3.12: Construction of edges based on shared boundaries between wijken derived from
the adjacency matrix

This is because the geometric mean travel time is a better measure for averaging
travel times in an Urban network due to the heavy-tailed distribution of travel time
as explained in Section 2.1. The next subsection discusses temporal graphs in detail.

Gs = (Vs, Es, ws) (3.2)

Gt = (Vt, Et, wt) (3.3)

Gt ⊂ Gs (3.4)

3.3.2 Temporal Graphs

Temporal graphs as already discussed in the previous sub-section are dynamic in
nature. The research employs dynamic graphs to calculate the following network
indicators:
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Figure 3.13: Spatial Graph for the Uber Movement Network (from left to right) (a) Un-
weighted (b) Weighted

• Indegree and Outdegree

• Betweenness Centrality

3.3.2.1 Indegree/Outdegree

In a directed graph, degree centrality is measured in terms of indegree and outde-
gree. Indegree accounts for the number of edges incident on a node and outdegree
is a measure of the number of edges projecting from the node. In the graph Gt,
the in-degree value is calculated as the number of incident edges representing the
travel time between a ’dstid’ and ’sourceid’ from adjacent wijken and vice-versa for
outdegree.

ind(Vi) =
∑ Vn

(indmaxVj − 1)
(3.5)

out(Vi) =
∑ Vn

(outmaxVk − 1)
(3.6)

To visualise and better understand the indegree and outdegree centrality values
for the network, a heatmap representing the indegree and outdegree for 2018 across
different wijken for 24 hours of the day using weekday data has been plotted in Fig-
ure 3.14a and Figure 3.14b respectively. The uniformity in the vertical lines exists
due to the limited number of data points possible per ’sourceid’ and ’dstid’ per
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hour of the day. The blank spots in the heatmap (wijken 148 to 161) suggest limited
data penetration. The indegree and outdegree can be used to understand data pen-
etration in the city and the greater Amsterdam region changing temporally i.e. the
indegree and outdegree are better suited for demand studies. For recurrent conges-
tion studies, the weighted indegree Figure 3.14c is better suited and utilises the sum
of travel times incident on the edges. The heatmap captures the travel time variabil-
ity across different hours of the day for every wijk. Temporally, longer travel times
(indicated by darker lines) darker can be observed between 06:00 to 19:00. Spatially,
wijken numbered 15 (Vijfhuizen), 21 (Amstelveen), 32 (Bedrijventerrein Sloterdijk),
and 108 (Waterland) show longer travel times across the heatmap compared to the
rest of the wijken.

(a) Indegree for 2018

(b) Outdegree for 2018

(c) Weighted Indegree for 2018

Figure 3.14: Weighted Indegree (pickups) at wijken (numbered according to Movement ID)
across different hours of day for different years

Weighted indegree is the sum of edges weighted by travel times incident on the
node. It helps identify the wijken in the city which takes longer travel times to
arrive at. The weighted indegree can thereby be interpreted as stress points in the
city. The research normalises the weighted indegree in two steps. First, it divides
the sum of edges by the number of incident edges, followed by the sum of distance.
A higher number of incident edges would lead to a higher sum of travel times, and
longer distances would naturally lead to longer travel times. The normalisation
process prevents both the biases. Table 3.7 depicts the wijken with the ten highest
normalised weighted indegree across, 24 hours of the day, the morning peak and
the evening peak respectively. Figure 3.15a, Figure 3.15b & Figure 3.15c represent
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the wijken with the twenty most highest normalised weighted indegree across the
same.

Table 3.7: Wijken with the highest normalised Weighted Indegree(2018)
MOVEMENT ID Across 24 hours MOVEMENT ID AM peak MOVEMENT ID PM peak

1 3

Europawijk
(Haarlem)

2 Spaarndam 3

Europawijk
(Haarlem)

2 19

Heemstede West van
de Spoorbaan

19

Heemstede West van
de Spoorbaan

19

Heemstede West van
de Spoorbaan

3 23 Burgwallen Nieuwe Zijde 23 Burgwallen Nieuwe Zijde 23 Burgwallen Nieuwe Zijde
4 24 Grachtengordel-West 24 Grachtengordel-West 24 Grachtengordel-West
5 25 Grachtengordel-Zuid 25 Grachtengordel-Zuid 25 Grachtengordel-Zuid
6 37 Landsmeer 37 Landsmeer 37 Landsmeer
7 49 Nieuwe Pijp 49 Nieuwe Pijp 49 Nieuwe Pijp
8 53 Dapperbuurt 53 Dapperbuurt 53 Dapperbuurt
9 56 Oostzaan 56 Oostzaan 56 Oostzaan
10 86 Volewijck 61 Ouder Amstel 86 Ouder Amstel

(a) Wijken with the highest normalised Weighted Indegree across 24 hours (2018)

(b) Wijken with the highest normalised Weighted Indegree across AM peak (2018)

(c) wijken with the highest normalised Weighted Indegree across PM peak(2018)

Figure 3.15: Wijken with the highest normalised weighted indegree(2018)

Most wijken consistently features across the different levels of temporal detail.
Europawijk, Haarlem features as the wijk with the highest normalised indegree
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across 24 hours of the day and the evening peak. The wijk has the important ar-
terial road Europaweg connecting the centre of Haarlem and Haarlem Schalkwijk.
Spaarndam, located in the municipality of Haarlem, is a commuter town with the
A9 passing through it. Majority of the residents work in Amsterdam and Haarlem.
While it is unknown if trips originate at Spaarndam, or is it simply traversed, the
wijk has a normalised weighted indegree value of zero during the PM peak. Thus,
the travel time values are influenced by data penetration. Thus, the wijken fea-
tured here are influenced by the usage of Uber. This can be treated as an important
limitation of the data when evaluating cases of recurrent congestion through the
dataset. According to the data set, the most congested wijken in Amsterdam include
Burgwallen Nieuwe Zijde, Grachtengordel West, Grachtengordel-Zuid, Dapperbu-
urt and Volewijck. The wijken Dapperbuurt and Volewijck are the ones located
outside the city centre. Dapperbuurt, located in the Eastern district and Volewijck
located North of IJ river are suggestive of accessibility issues. Incidentally, Volewi-
jck borders the Nord station of the Nord-Zuid metro line. The next subsection
discusses the betweenness centrality derived from the network graph.

3.3.2.2 Betweenness Centrality

Betweenness centrality is the measure of the number of shortest paths passing
through a node. The centrality indicator can help identify nodes where the ma-
jority of the flow passes through. A higher betweenness centrality indicates the
importance of the node in terms of how much flow does the node receive. The
weighted betweenness centrality is used where the edges passing through the nodes
are weighted by travel time. Thereby, leading to betweenness centrality where the
number of shortest edges based on travel time is calculated. The centrality measure
can be expressed as shown in Equation 3.7.

CB(V) = ∑
dV(i, j)
D(i, j)

(3.7)

Where,

dV(j,j) = number of shortest paths between node i and node j through node V, and
D(i,j) = number of shortest paths between node i and node j
CB(V) = Betweenness Centrality of node V

The betweenness centrality is valuable in highlighting the flow of ‘traffic’ which
might not be the actual centres of flow but instead the centres through which the
shortest paths of the network graph pass. The weighted betweenness centrality re-
veals the points (weighted by travel time) through which much of the flow passes
across different hours of the day. wijken with the highest betweenness centrality
for 2018 includes Westelijk Havengebied, Vijfhuizen, and Buiteveldert West. West-
elijkhaven Gebied is the port area located North-West of Amsterdam suggesting a
concentration of data points around the harbour area from the centre. For instance,
Amsterdam Sloterdijk with offices is located just South of Westelijk Havengebied.
Vijfhuizen is located North of Schiphol and is also adjacent to Badhoevedorp, which
comprises of the P5 Parking terminal at Schiphol, next to which Uber vehicles re-
quired to wait before picking up passengers from the arrival area. wijken adjacent to
Vijfhuizen also have hotels and places of work. Buitenveldert West is located South
of the Zuidas NS train station and is an area dominated by office space. Zuidas
as such features in area with high betweenness centrality across different hours of
the day. The heatmap for wijken with the highest betweenness centrality in 2018 is
visualised in Figure 3.16.
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Figure 3.16: Heatmap showing wijken with the highest betweenness centrality (2018)

The other wijken which feature include wijken located in the municipality of
Zaandam, Zandvoort and Bloemendaal. The findings are coherent with which
was found concerning data penetration in the previous chapter. This suggests user
groups, who frequently use the airport, live and work in areas close to the airport,
the Harbour and South Amsterdam. The third user group being visitors to Bloe-
mendaal, Zaandam and Zandvoort. wijken with the highest betweenness centrality
have been visualised in Figure 3.17a. In order to validate the indication of Uber
users being those unfamiliar with the city and foreign, the cellphone data with in-
formation on the number of international sims across different days of November
2018 were plotted and can be visualised as shown in Figure 3.17b and the spatial
attributes of the two data sets have been tabulated in Table 3.8. The magnitude of
international sims is the highest in the old centre of the city (tourist movement), the
harbour area, the Sloterdijk area, South Amsterdam, Amstelveen (residential area
for expats) and Badhoevedorp, North of Schiphol. Each of these areas (except Am-
stelveen) have shown high betweenness centrality. This is further indicative of the
usage of Uber by visitors to the city. The sim card data was limited to the wijken in
Amsterdam and thereby cannot validate the activity seen in Zaanstad, Zandvoort,
Haarlem and Bloemendaal. Wijken with the highest international sims has been
tabulated in Table 3.9.

Table 3.8: Spatial detail and temporal range for fusing Uber Movement Data and Cellphone
Data

Uber Movement Data Cellphone Data

Spatial Detail
wijken (administrative spatial units

combination of neigbourhoods)
Postal Code Level Four

Temporal range The whole of 2018 November 2018



3.3 uber movement data & recurrent congestion 41

(a) Wijken with the highest betweenness centrality (2018)

(b) Wijken with the highest concentration of international and european sims (Nov 2018)

Figure 3.17: Wijken with the highest normalised weighted indegree(2018)

3.3.3 Conclusion - Uber Movement Data & Recurrent Congestion

The Uber Movement data can offer insights on the congestion patterns in the city i.e
the Uber Movement data can capture Recurrent congestion patterns between two
wijken across different hours of the day, day of the week per quarter of the year and
monthly for 2016, 2017 and 2018. Network graphs offer a method for the abstraction
of the Uber Movement network. The weighted indegree is an effective method to
establish wijken which take longer travel times to reach i.e. areas which face fre-
quent congestion. This can enable an accessibility analysis study, for taxis, and the
variation of stress points across different quarters of the year and urban planning
decisions.

However, as illustrated in the case of stress points varying across different time
periods for the 2018 data, the results of the wijken with the most congestion are
directly influenced by the areas frequented by Ubers. The data points for Spaarn-
dam did not feature in the PM peak while it was the wijk with the highest weighted
indegree during the AM peak. It was found data points were absent to Spaarndam
during the PM peak. This can lead to faulty interpretations on which particular
wijken are congested during different times of the day.

In terms of ex-ante analysis or prediction of future congestion patterns, the num-
ber of data points available per OD pair per hour is 12 data points for three years.
The number of data points further reduces in the case of the day of the week and
month. This leads to an insufficient number of data points for reliable predictions.
The conclusions from the section are tabulated in Table 3.10
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Table 3.9: International sim card penetration for November 2018

International + EU cellphone sim cards

Burgwallen-Oude Zijde 40301

Burgwallen-Nieuwe Zijde 40301

Grachtengordel-Zuid 40301

Nieuwmarkt/Lastage 40301

Weesperbuurt/Plantage 40301

Oostelijke Eilanden/Kadijken 40301

Amstelveen 37136

Westelijk Havengebied 32914

Bedrijventerrein Sloterdijk 32914

Table 3.10: Principle conclusion for the use of Uber Movement Travel time to evaluate recur-
rent congestion

Applicability of the data Limitations

Ex-post Analysis
for recurrent
congestion

1. The data set can be abstracted as network
graphs which enables the

calculation of additional indicators.
2. Indegree weighted by travel time can

represent congested wijken
across different levels of temporal detail

in the city.
3. Can be used to understand travel times

experienced by Ubers.

Data sparsity for certain wijken
can lead to false interpretations.

3.4 uber movement data & non-recurrent con-
gestion

The fourth aspect of the data explored is the ability of data to capture travel time
changes due to non-recurrent events or incidents. One of the performance indi-
cators for recurrent congestion travel time [OECD, 2007]. The occurrence of non-
recurrent congestion is identified as a measure which deviates from the usual travel
time taken (defined by Historical observations) on a route. For instance, Dowling
et al. [2004b] measured travel times on a route using ANPR (Automated Number
Plate Recognition) data and considered recurrent congestion to be 1.2 times the
travel times. This would imply non-recurrent congestion occurs when travel times
are greater than a factor of 1.2.

Data sources for traffic incident detection can be classified as traffic surveillance
data i.e. loop detectors, CCTV, camera, ANPR data; non-transportation related re-
ports such as police reports and crowdsourced data from social networks such as
twitter, and WAZE [Amini et al., 2016]. The research utilises the WAZE data set.
The WAZE data is a particularly advantageous data set which offers incident data
as part of its connected citizen programme where cities share planned network
closures with WAZE and in return the company shares incidents reported by the
users and the ones provided by the city government in shapefiles. The incidents
can include accidents, road-closures, unexpected jams on the network or large scale
events. Previous research has highlighted the advantage of the data as an essential
source of crowdsourced data for traffic managers [Niforatos et al., 2015]. In the
Netherlands, WAZE provides incident data information as part of the programme
for the road network and is not exclusive to Amsterdam. This becomes especially
advantageous when fusing with Uber data which comprises of travel time from the
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greater Amsterdam metropolitan region.

The section looks at the exploring travel time changes caused by traffic incidents
reported in WAZE data i.e. to it describes to what extent does the different type
of incidents reported in WAZE data correspond with travel time changes in Uber
movement? Additionally, the data set explores the ability of the data to capture
events of non-recurrent congestion caused by large scale events. This is explained
through the Amsterdam marathon case.

The question stems from a hypothesis related to the data fusion process undertaken
in the section i.e. the Uber movement data set is essentially travel time data which
can be investigated and should reflect travel time changes under the event of non-
recurrent congestion incidents reported in the WAZE data and thereby answering
the subquestion:

SQ4: To what extent can non-recurrent congestion analysis be carried out using
Uber Movement Travel Time data, either singularly or fused?

The following subsection, explains the methodology applied to derive an event of
non-recurrent congestion when fused with WAZE data. Section 3.4.3 explains the
methodology for large scale events separately.

3.4.1 Methodology - WAZE & Uber Movement Data

The WAZE data is understandably at a finer temporal and spatial level of detail
than, the Uber Movement data. The methodology to fuse the WAZE data and check
for travel time variability in the Uber data can be found in Figure 3.18. To create
grounds for comparison, the WAZE data is brought to the same level of Spatio-
temporal detail as the Uber Movement data. This can be achieved by, using the
Spatial join tool available in the Python Geopandas package, assigning the inci-
dent reports at the wijk level and dissolving the coordinate level detail. The data
provided was in the form .geojson shapefiles and was parsed and analysed using
the Geopandas and Pandas library available in Python. The columns contained
in the shapefile can be seen to provide the information for jam and alert. For the
study, the WAZE alert data is utilised, as it offers information on the different type
of events under the column label: ‘type’, these include: Accidents, Road closures,
Jams, Weather hazards and policeman. The ’policeman’ type of incident is not con-
sidered as it is irrelevant to the study undertaken.

The temporal detail of the Uber Movement data, when derived from the Web in-
terface at movement.uber.com is provided as time periods of the day which include
; Early Morning (12:00 to 06:00), AM peak (07:00 to 09:00), midday (10:00 to 15:00),
PM peak (16:00 to 19:00) and evening (20:00 to 23:00). The incident reported in the
WAZE data is matched to one (or more) of these periods. For instance, if an accident
was reported at 06:00 in the morning, the incident is matched to the early morning
time period and a road closure incident could occur over more than one period of
the day and possibly the daily average i.e. mean travel time between the OD pair
for the entire day.

Post the temporal and spatial match, each type of incident: Accident, Road clo-
sures, Jams and Weather Hazards are returned using a query based on the highest
reliability and check for different road types available. The attributes of the WAZE
data are tabulated in Table A.1. If two reports with the same type of incident and re-
liability are returned, report with the higher number of Thumbs Up is selected. For
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Figure 3.18: Methodology for fusing Uber Movement and WAZE data

example, if two road closure incidents with the same reliability and type of road are
found, the decision is made to check for travel time variability in the incident with
a higher number of thumbs up. The reliability is used as a measure for choosing
incidents as it relates to the verification of the incident occurring by fellow users.
Higher reliability would suggest, a greater number of users have approved of the
incident’s occurrence. The approach has also been employed while testing the reli-
ability of WAZE data in the state of Iowa, United States of America [Amin-Naseri
et al., 2018].

To test if the travel times were higher than what is considered free flow or average,
the Planning Time is used (the 95th percentile travel time). The travel measure is
recommended by the Cambridge Systematics and Texas Transportation. However,
the measure is used for freeways. Travel time reliability studies in Urban networks
are done through microscopic (vehicle to vehicle interaction is studied) and meso-
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scopic levels (packet of vehicles defined by the speed-density function) of simula-
tion where the effect of the traffic of signals, right of way and access restrictions are
considered to establish expected reliability of arriving at a destination. This can be
noted as a limitation of the study. However, due to the continuous nature of the
data, absence of information on the number of vehicles per time period, and the
route, the measure is be deemed suitable for the study.

The planning time measure can be derived from distributions of the continuous
data available from the ‘Hour of day’ data available for every quarter from 2016-
2018. Moreover, the hour of days can be combined to form different time periods of
the day as available in the web interface. The planning time measure cannot be used
across trips i.e. trips will have different lengths, different routes can be taken be-
tween an OD pair and directionality also needs to be taken into account. Therefore,
the planning time is derived for every possible Origin-Destination pair available in
the data and for every time period of the day. An extra layer of temporal detail is the
planning time can be derived for the weekday and weekends separately. Thus, the
planning time of an incident during the Monday morning peak would differ from
the Saturday Morning peak for an OD pair. As an illustration, the planning times
for Waterland and Waterlandpleinbuurt for the early morning period is shown in
Figure 3.19.

Figure 3.19: Planning time between Waterland and Waterlandpleinbuurt for the early morn-
ing period

The disadvantage of using the planning time here can stem from how the data
is aggregated, the travel times available for every OD pair, per hour of the day is
aggregated over a quarter. The data points are instances of ‘mean travel times’ and
not the actual travel times. This implies the data points are the only representative
of average conditions. The 95th percentile travel time is derived from a total of 12

data points for every hour (4 quarters x 3 years) and depending on the time period,
this can go up to 72 data points when a time period is considered. Thus, an incident
may have occurred at 05:00 in the morning, but the planning time for the morning
period comprises of data points (from 00:00 to 06:00) and it is likely the travel time
variability may be overestimated or underestimated here. However, the strictest
possible measure of the 95th percentile is considered, and the aggregated data will
be from Uber taxis.

3.4.1.1 Data Fusion

The higher level of Spatio-temporal aggregation of the Uber Movement results in
a minimal level of detail, however when fused with a more detailed data source
such as WAZE it is possible to reveal additional insights. Table 3.11 tabulates the
difference in temporal and spatial of the two data sources. Figure 3.20 depicts the
GPS coordinates of reports in the WAZE data from July to September and the spatial
detail at which travel time data is available from Uber Movement. The following
sections will explain the steps to fuse the data and the methodology used to study
the travel time variability.
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Table 3.11: Spatial detail and temporal range for fusing Uber Movement Data and WAZE
data

Uber Movement Data WAZE Data

Spatial Detail
wijken (administrative spatial units

combination of neigbourhoods)
GPS coordinate pings at the location

of the incident

Temporal range

Time
periods of day defined as Early Morning -
12:00 to 06:00, AM peak – 07:00 to 09:00,

MD – Midday – 10:00 to 15:00,
PM – 16:00 pm to 18:00,
Evening – 19:00 to 23:00)

15 minute periods from July 2018

(a) Uber Movement

(b) WAZE

Figure 3.20: Spatial detail of (a) Uber Movement at the wijk level and b) WAZE at the coor-
dinate level

3.4.2 Incidents

The subsection describes the incidents based on the methodology described in the
previous subsection. For brevity, the report discusses a single incident from acci-
dents, road closures, jams and weather hazards.

3.4.2.1 Accidents

On querying incidents which were accidents with the highest possible reliability
(maximum value = 10), four different accident reports were returned as shown in
Table A.2. It can be seen, two reports of the same road type (S108 Hobbemakade
and S112 Gooiseweg) can be found, in this scenario, the report with the higher num-
ber of Thumbs Up is investigated (thereby, S112) as it is reflective of the number of
WAZE users approving the incident. The available road types (with accidents as
incidents) are 3, 6 and 7 which correspond to an A road (national highways), N
road (provincial roads) and an S road (arterial roads) respectively. Three accidents
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are derived from this table; the first one belonging to the wijk: Waterland, with an
accident at N247 Slochterweg during the early morning hours on the 6th of July.
The second being an accident in Bijlmer Oost along the S112 – Gooiseweg during
the evening peak and an accident along the A9 at Nellestein during the early morn-
ing hours.

The case of the N247 Slochterweg is discussed. Travel times were derived from the
Uber Movement website after specifying the origin, as the name of the wijk from the
fused data set and selecting the appropriate date and time period. The destination
was arbitrarily chosen as a neighbouring wijk. This was because the interface offers
a ‘.csv’ file with travel times from the specified origin to all other destinations. The
next step was to specify the origin as adjacent wijken of the specified origin wijk
and downloading travel time files for each of them to understand the wider net-
work impacts. The wijken adjacent to Waterland include; Landsmeer (wijk no. 37),
Nieuwendammerdijk and Buiksloterdijk (wijk no. 92), Waterlandpleinbuurt (wijk
no. 99), Buikslotermeer (wijk no. 101), Noordelijke IJ-oevers Oost (wijk no. 107),
Elzenhagen (wijk no. 109), Broek in Waterland (wijk no. 157) and Watergang (wijk
no. 161).

Here, Waterland was specified as the origin wijk in the web interface. The date
range was set to (07/06/2018) and the travel period was specified as early morning
(12:00 to 06:00). The destination was taken as a neighbouring wijk, travel times were
downloaded, and this was followed by specifying each adjacent wijk as an origin
and downloading their respective travel time files. To understand if the accident
along N247 Slochterweg impacted travel times, the obtained travel time values will
be compared against the planning time. The planning time, mean travel time and
the travel time have been plotted in Figure 3.21. To ascertain, if the incident had
an impact, the travel times to and from adjacent wijken were found and can be
tabulated as shown in Table A.4. Table A.3 illustrates the adjacent wijken where
travel time to and from Waterland exceeded the planning time. The wijken where
the travel times to and from adjacent wijken did exceed the planning time can be
visualised as shown in Figure 3.22.

Figure 3.21: Travel times form Waterland (N247 Slochterweg) to other wijken – 6th July 2018

– Early morning period

Two of the three accident incidents with the highest reliability correlated in travel
time changes greater than the planning time. The accident at the A9 in the Nellestein
wijk did not lead to enough data points to perform an analysis. The results of the
travel time variability analysis for accidents have been tabulated in Table 3.12.

3.4.2.2 Road Closures

The Road closure incidents tend to have a spatial and temporal spread. Whereas,
jams and accidents tend to be localised. Road closures often last a few days and can
extend over more than one wijk. A query was run to reveal road closure incidents
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(a) Waterland to Landsmeer and Broek in Waterland (left) & Broek in Waterland to Watergang (right)

(b) Elzenhagen to Waterland and IJ-Oever oost

Figure 3.22: wijken to and from Waterland where travel time exceeded the planning time

Table 3.12: Results for accident incidents with the highest reliability

Type of Incident Name Type of Road Time Period
Exceeds planning time to

neighbouring wijken

Accident Waterland - N247 Slochterweg 6 Provincial 6th July – Early Morning Yes
Nellestein – A9 3 National 3rd July – Early Morning No*

Bijlmer Oost – S112 Gooiseweg 7 City 12th July - PM Yes

*Insufficient data points

with the highest reliability and the results are displayed in Table A.5. Multiple re-
ports of the same streets (‘Singel’,’Lijnbaansgracht’ & ‘Reijnier Winkeleskade’) were
reported with the same reliability. For conciseness, only the first and last report (the
first and last date of the report) are included in the table for each street. The road
closure reports made no mention of the road type, and the three reports returned
are from streets in the inner city.

As mentioned earlier due to the nature of road closures, an extra step was taken to
test if the road closure incidents were reported in more than one wijk. For instance,
it was found, the road closure at Singel was reported across wijken; Burgwallen
Nieuwe Zijdge and Haarlemebuurt. Thereby, a spatial spread was noted and travel
times from both wijken are investigated. In terms of the temporal detail, it was
assumed the road closure lasted from the first and till the last report of the incident.
For example, the first report of the road closure at Singel was 3rd July 2018 and it
was last reported on 19th July 2018. The planning time or the percentile travel times
were compared against this period using the daily average for both weekdays and
weekends. The report will discuss the road closure across the two wijken.

Singel lines the Singelgraacht (Singelcanal) on either side. The road closure inci-
dent reported in Singel was found to be from two wijken in the same time period.
The locations reported by WAZE user and the spatially matched wijken with the
road closure incident can be visualised as shown in Figure 3.23. The travel time
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variability has been compared against the 95th percentile daily average travel time
of the investigated OD pairs.

Figure 3.23: GPS pings by WAZE users for the road closure (left) & wijken in Uber Move-
ment with the road closure (right)

It was found the travel time did not increase to any of the neighbouring wijken.
As indicated previously, it was found 3rd July 2018 was the first instance of the
report in July, and the 19th of July 2018 was the last instance. An obvious limitation
would be its inability to capture the temporal extent of the road closure i.e. if it
started before the reporting date and if it lasted after the reporting date. However,
one can be certain the road closure event lasted in the time period investigated and
thereby the daily average travel times for the date range were compared against the
planning time and mean as shown in Figure 3.24a.

Figure 3.24b depicts the travel times from Monday 9th July to Friday 13th July.
The intention was to verify if higher travel times were observed during weekdays
and the travel times were compared against the planning time of weekday traffic.
Similarly, Figure 3.24c depicts the travel times during weekends of the 14th and
15th July compared against, planning time for weekend traffic conditions. In both
scenarios, the travel time to adjacent wijken from Burgwallen Nieuwe Zijde did
not exceed the planning time. The adjacent wijken include Burgwallen-Oude Zijde
(wijk no. 22), Grachtengordel-West (wijk no. 24), Grachtengordel-Zuid (wijk no.
25), Nieuwmarkt/Lastage (wijk no. 26) & Haarlemmerbuurt (wijk no. 27).

Travel times from the AM and PM peaks during the weekdays of 9th to 13th July
2018 were also explored. No instances of the travel time exceeding the planning
time was found in the AM peak except at wijk 50 (Zuid Pijp). In the PM peak,
travel times to Hoofddorppleinbuurt (wijk no. 70) and wijk 115 (Lutkemeer/Ook-
meer) exceeded the planning time. Neither of the wijken is adjacent to Burgwallen
Nieuwe Zijde. Thus, in the case of the road closure incident reported at Burgwallen
Nieuwe Zijde, the travel times from Uber Movement did not exceed the planning
time. While the aggregation and noise of the data could be a reason behind this,
the non-increase could also be attributed to multiple alternative routes and traffic
management measures in place which prevented increased travel times. Due to the
spatial spread of the road closure, travel times from Haarlemmerbuurt were also
investigated and the findings have been discussed in the next paragraph.
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(a) Comparisons of Travel Time from Burgwallen Nieuwe Zijde to other wijken from 3rd to 19th July

(b) Comparisons of Travel Time from Burgwallen Nieuwe Zijde to other wijken on the weekdays between
9th to 13th July 2018

(c) Comparisons of Travel Time from Burgwallen Nieuwe Zijde to other wijken on the weekends of 14th
and 15th July 2018

Figure 3.24: Comparisons of Travel Time from Burgwallen Nieuwe Zijde to other wijken

Haarlemmerbuurt is adjacent to Burgwallen Nieuwe Zijde. The first and last re-
ported date of the road closure was the same (3rd and 19th July respectively). A
similar set of temporal levels are investigated against the planning time as in the
previous wijk. Daily average travel times were compared against the planning time
from both weekday and weekend data (the date range comprises of both weekdays
and weekends) and have been depicted in Figure 3.25a. Travel times during the
weekdays (9th to 13th July) and weekends (14th to 15th July) have also been investi-
gated separately and depicted in Figure 3.25b and Figure 3.25c. As was previously
seen in the Burgwallen Nieuwe Zijde’s case, travel times from Uber movement did
not exceed the planning time when considering trips originating at Haarlemmerbu-
urt to all other destinations except for wijken which were not adjacent to the wijken
under consideration and significantly further away from the road closure incident.
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While road closures do not necessarily lead to localised travel time changes, it is dif-
ficult to ascertain if the road closure led to the travel time increase in the exceptions
mentioned.

(a) Comparisons of Travel Time from Haarlemmerbuurt to other wijken from 3rd to 19th July

(b) Comparisons of Travel Time from Haarlemmerbuurt to other wijken on the weekdays between 9th to
13th July 2018

(c) Comparisons of Travel Time from Haarlemmerbuurt to other wijken on the weekends of 14th and
15th July 2018

Figure 3.25: Comparisons of Travel Time from Haarlemmerbuurt to other wijken

None of the road closure incidents correlated with travel time changes greater
than the planning time. The Lijnbaansgracht road closure did result in travel times
to neighbouring wijken greater than the 90th percentile. The decision to use the
95th percentile would ensure a stricter indicator as the travel time data points from
quarterly data are essentially average travel times per hour of the day from different
quarters of 2016 to 2018. The road closure incidents tend to have a spatial spread
as in the case of Burgwallen Nieuwe Zijde and Haarlemmerbuurt, where Singel
extended into both wijken. They also have a temporal spread and are not restricted
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to a few hours or a day. Road closure incidents can occur all through the day from
few to several months, or during certain times of the day such as off-peak hours.
It was not possible to derive the precise period at which the road closure incident
occurred. Instead, the first and last reported date of the incident as treated as the
period of road closure and daily average travel times are looked at. In addition, to
this, the peak hours (AM & PM), Weekdays and weekends are additionally explored.
The date and time of the incidents reported are also investigated. None of the
temporal levels resulted in travel time changes greater than the planning time. This
could be attributed to road closures being planned and the occurrence of these road
closures at streets in inner parts of the city leaving sufficient alternatives routes. The
results from the road closure incidents have been tabulated in Table 3.13. The next
subsection discusses travel time variability caused by jams reported in the WAZE
data.

Table 3.13: Results for road closure incidents with the highest reliability

Type of Incident Name Type of road Time Period
Exceeds planning time to

neighbouring wijken

Burgwallen Nieuwe Zijde
/Haarlemmerbuurt - Singel

Street

3rd to 19th July –
Weekday and weekend

Daily averages/Weekday/Weekend/
AM/PM/Specific days at which

incident was
reported

No

Road Closures
Jordaan -

Lijnbaansgracht
Street

17th July to 26th
July – Weekday and weekend Daily

averages/Weekday/Weekend/
AM/PM/Specific days at which

incident was reported

No

Museum Kwartier -
Reijnier Vinkeleskade

Street

3rd July to 26th July Weekday and weekend
Daily averages/Weekday/Weekend/

AM/PM/Specific days
at which incident was reported

No

3.4.2.3 Jams

The WAZE data contains incidents of jams reported by WAZE users. On running
the query of returning Jam incidents with the highest reliability, only five incidents
were returned and are displayed in Table A.6. Three different road types were found
in the data; the road type N (Provincial roads), S (City arterial roads) and A (Na-
tional Highways). Jam incidents with the highest reliability were found, followed
by the ones with the highest thumbs up for each road category. For the S road – two
incidents are returned, due to a higher number of Thumbs Up; the Centrale Markt
(S105 Jan van Galenstraat) is selected. The A9 case is discussed in the report.

The A9 national highway is the Southern by-pass of the city of Amsterdam and
runs till Alkmaar, and a jam related incident was reported on the 13th of July 2018

during the midday period. The incident was spatially matched to the wijk Holen-
drecht in the Uber movement data set. The travel time from Holendrecht to all
other wijken have been plotted in Figure 3.26. It can be visually noted, at wijk 145

& 147, the travel times higher than the planning the time and has been tabulated in
Table A.7.

Travel times from adjacent wijken have also been investigated and tabulated in
Table Table A.8. The wijken with higher travel time than the planning time has
also been visualised in Figure 3.27. It can be seen travel time from Holendrecht
to Nellestein is higher, and the wijk Nellestein also has the A9 passing through
it. However, on investigating travel times for adjacent wijken it can be noted, travel
times tend to be higher Southward as well. This can be seen in Figure 3.27b (Bijlmer
Centrum to Bullewijk/Bijlmer Oost to Bijlmer Centrum, Bullewijk & Nellestein) and
Figure 3.27c (Nellestein to Bullewijk). It is difficult to ascertain the jammed direc-
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Figure 3.26: Travel time from Holendrecht to all other wijken compared against mean travel
time and planning time

tion as travel times tend to be higher Northwards and Southwards. Travel time to
or from Abcoude, (while an adjacent wijk) did not exceed the planning time, the
wijk does not connect to the A9, unlike other wijken. Thus, it is likely the jam at the
A9 has resulted in higher travel times.

All jam incidents correlated with higher travel time changes, interestingly the Jam
incident at N247-Slochtetweg was caused by an accident, also reported in the WAZE
data and offered the only incident at a national highway which correlated with
travel time changes. The Jam incidents have subtypes such as JAM HEAVY TRAFFIC
and JAM MODERATE TRAFFIC. However, it is difficult to ascertain the severity of
the Jam as they tend to be a subjective response of the user. The results for the jam
incidents have been tabulated in Table 3.14.

Table 3.14: Results for jam incidents with the highest reliability

Type of Incident Name Type of road Time Period
Exceeds planning time to

neighbouring wijken

Waterland – N247

Slochterweg
6 Provincial

6th July
Early Morning

Yes

Jams Holendrecht – A9 3 National
13th July
Midday

Yes

Centrale Markt – S105

Jan van Galenstraat
7 City

6th July
Midday

Yes

3.4.2.4 Weather Hazards

The fourth type of incident offered in the WAZE data is the weather hazard. The
weather hazard was the most frequently reported type of incident from the July to
September data set and has subtypes including Hazard due to road construction,
hazard on road due to pothole etc. The incident does not describe the level of pre-
cipitation or wind speed etc., instead, it mentions a hazardous situation caused by
the weather. As was done in the previous three types, the intention is to identify
reports with the highest reliability. Here, the weather hazards for the same location
have been reported across multiple days. For instance, in the case of Anderlecht-
laan, diverse road works were planned from March 2018 to late 2019 [Bouw en
verkeersprojecten, 2018]. Weather-related incidents such as heavy rain would have
led to potentially hazardous situations, requiring vehicles to travel at lower speeds
and an incident would have been reported whenever it rained.

Three road types were obtained, after running a search query with the type of
incident as ‘WEATHER HAZARD’ and sorting the data by reliability for the month
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(a) Holendrecht to Nellestein (left) & Bullewijk to Bijlmer Oost (right)

(b) Bijlmer Centrum to Bullewijk (left)& Bijlmer Oost to Bijlmer Centrum, Bullewijk & Nellestein(right)

(c) Nellestein to Bullewijk

Figure 3.27: Wijken to and from Holendrecht where the travel time exceeded the planning
time

of July. The ones selected have been tabulated in Table A.9. Unlike the previous
cases, it was possible to derive travel time data from Uber Movement for a national
highway (A10). Anderlechtlaan is an arterial road connecting the on and off-ramps
of the A4, North of Schiphol airport.

The third weather incident investigated, is at S112 Prins Bernhardplein located
adjacent to Amsterdam Amstel station Figure 3.29 The S112 has been spatially
matched to Frankendael, and the reports primarily posted at 18:00 and were se-
lected as the temporal period for the investigation. Travel times for the 7th of July
evening from Frankendael to all other wijken compared against the mean and plan-
ning time is as shown in Figure 3.28.
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Figure 3.28: Travel time from Frankendael to all other wijken compared against mean travel
time and planning time

The travel times exceed the planning time to the wijken for the adjacent wijken as
shown in Table A.10. wijken 82 (Middenmeer), 83 (Betondorp) and 84(Omval/Over-
amstel) are neighbouring wijken and does reflect longer travel times. Noticeably wi-
jken 143 (Bijlmer Centrum), and wijk 164(Diemen Zuid) are both wijken accessible
via the S112. wijk 23 (Burgwallen Nieuwe-Zijde-comprises of metro station Rokin)
is located within the 17th-century ring and is not directly accessible by the S112.

Travel times from the adjacent wijken was also looked at and has been tabulated
in Table A.11. All adjacents wijken had higher travel times except wijk 51 and 54.
However, it’s important to take note of the directionality. Travel times to wijken 80,
81 and 84 from wijk 54 (Transvalbuurt) were also found to be higher and each of
this wijken is accessible by the S112, suggesting the accident did have an impact on
the travel times. Similarly travel times from wijk 51 to wijken adjacent (80 and 84)
to Frankendael were found to be higher.

If one looks at the subtypes for weather hazards, they refer to roadworks or
hazard caused by stopped vehicles. Thus, in principle, these could not be related to
the weather at all. To ascertain if the weather did play a part, one would need to
match the data with weather data. The weather hazards are the most common type
of incident reports from the July, August and September data. The weather hazards
are the most common type of incident reports from the July, August and September
data. However, two of the three weather incidents did result in travel times greater
than the planning time. These have been tabulated in Table 3.15.

Table 3.15: Results for weather hazard incidents with the highest reliability

Type of Incident Name Type of road Time Period
Exceeds planning time to

neighbouring wijken

Sloter and Riekerpolder
Anderlechtlaan

2

4th July
Midday

Yes

Weather
Hazard

Middenmeer
A10

3 National
9th July

AM & Early Morning
Yes

Frankendael
S112 Prins Bernhardplein

7 City
7th July

Evening period
Yes

3.4.3 Events

Events can widely vary in how they impact congestion. Their similarities lie in
the ability to cause non-recurrent stress in terms of capacity reduction, demand
surge and reduced safety [Amini et al., 2016]. Unlike the incidents discussed in
Section 3.4.2, large scale events are predictable in terms of their spatio-temporal
impacts i.e. where and when the event is occurring and relatively predictable in
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(a) Frankendael to Omval-Overamstel, Betondorp and Middenmeer (left) & Omval-Overamstel to Frank-
endael and Rijnbuurt (right)

(b) Weesperzijde to Rijnbuurt and Omval-Overamstel (left)& Transvaalbuurt to Frankendael, Omval-
Overamstel & Rijnbuurt (right)

Figure 3.29: Wijken to and from Frankendael where the travel time exceeded the planning
time

terms of the demand fluctuation. This creates the potential for implementing traf-
fic management measures in advance. The Uber Movement data can identify the
effectiveness of traffic management measures with travel time as a performance in-
dicator. The limitation of estimating the precise route taken by the visitors to the
event and those impacted by the event remains.

The current subsection identifies the usability of the Uber Movement data to eval-
uate travel time changes during large scale events. The subsection will specifically
discuss the case of the 2017 Amsterdam Marathon. The case is especially interest-
ing as specific routes in the city are closed to create routes for runners. In 2017, the
Amsterdam marathon was held on the 15

th of October. The travel times data are
downloaded from movement.uber.com with Stadionbuurt as an origin wijk. The
marathon was held between 09:30 to 17:00, the travel times for the time periods;
Morning peak (07:00 - 09:00) i.e. before the start of the marathon, midday (09:00 to
16:00) i.e. during the marathon and pm peak (16:00 to 18:00) i.e. during the closure
of the marathon are downloaded. The travel times and its comparison against the
mean travel time for the period and the planning time is visualised as shown in Fig-
ure 3.30a, Figure 3.30b & Figure 3.30c. The travel times for the AM peak suggest the
wijken exceed the planning time from Stadionbuurt (the wijk at which the marathon
starts) to wijken Zuidas (wijk no. 47), Apollobuurt (wijk no. 75), Prinses Irenebuurt
(wijk no. 85) & Buitenveldert-West (wijk no. 136). Travel times for the midday
period show travel times exceed the planning time to wijken Zuidas (wijk no. 47),
Hoofddorppleinbuurt (wijk no. 70), Willemspark (wijk no. 72), & Buitenveldert-
West (wijk no. 136). In the PM peak, while there are instances of wijken exceed the
planning time, none of the values exceeds the mean +standard deviation values.
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The travel times, planning time, mean and the differences illustrated in the figures
have been tabulated in Table A.12,Table A.13 & Table A.14 for AM peak, midday
and PM peak respectively.

(a) Comparisons of Travel Time from Stadionbuurt to other wijken on 15/10/2017 during the AM peak

(b) Comparisons of Travel Time from Stadionbuurt to other wijken on 15/10/2017 during midday

(c) Comparisons of Travel Time from Stadionbuurt to other wijken on 15/10/2017 during the PM peak

Figure 3.30: Comparisons of Travel Time from Stadionbuurt to other wijken against mean
travel time and planning time

The travel times to adjacent wijken during the midday period and morning peak
is a clear indication of the travel times being impacted by the Amsterdam marathon.
Additionally, the travel times return to normalcy in the PM peak after the marathon
is over, is suggestive of the opening of roads closed during the marathon. On an
average travel time to adjacent wijken increased by 50.11 % & 54 for the AM peak,
and midday respectively.
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3.4.4 Conclusion - Uber Movement Data & Non-Recurrent Congestion

The WAZE data (specifically WAZE alert data) has been investigated concerning
the type of incidents reported and post-spatiotemporal matching, travel times were
investigated from the Uber Movement data set. Despite the aggregated nature of
the Uber Movement data set, an incident reported in the WAZE data triggered
travel time changes according to Uber Movement in the cases of accidents, jams
and weather hazards. The data was unable to reflect travel time changes due to
road closures. This might be an indication of a traffic management measure during
the road closure event. The Amsterdam marathon case study also revealed the abil-
ity of the data to capture travel time changes during large scale events.

Thus, the Uber Movement data can be used to perform an ex-post analysis of the
travel time changes caused by non-recurrent congestion in the city. A methodology
has been developed to perform the same. The WAZE data can be replaced by any
type of incident data. The methodology can be used to evaluate travel time changes
caused by incidents at the streets and inner Urban roads and not exclusively for the
S (City arterial roads), N (Provincial roads) and A (National motorways) roads in
Amsterdam. Thus, revealing insights which were not previously available.

A major disadvantage of using the Uber Movement travel time data for an ex-
post analysis of the travel time changes is the limited data penetration of the data
when compared to existing data-sets used by policymakers at the municipality of
Amsterdam. For instance, the NDW travel time data includes (but not limited to)
Automatic Number Plate Recognition, Sensors and Floating car data whereas, the
Uber Movement Data is derived from a smaller sample of approximately 5000 uber
vehicles in Amsterdam which cover limited routes during different times of the day.

While capturing travel time changes is an important application of the data set,
it does not necessarily perform better than existing data sets at the disposal of the
municipality. The unknown route, between two wijken (to ascertain if the incident
and route can be spatially matched) and the absence of the number of vehicles (to
estimate the reliability of travel times), are both limitations. Additionally, the data
is aggregated according to time periods compared to the 15 minute time periods
of the WAZE data, resulting in further loss of the detail. The strength of the data
while evaluating non-recurrent congestion lies in the simplicity of using the data
set, which can be downloaded also using a web scraper and additionally offers
insights in terms of Origin-Destination pairs and not route segments as in the case
of the NDW data. The principal conclusions from the section have been tabulated
in Table 3.16.

Table 3.16: Principle conclusion for the use of Uber Movement Travel time to evaluate non-
recurrent congestion

Applicability of the data Limitations

Ex-post Analysis
for non-recurrent

congestion

1. Can be spatio-temporally fused
with incident data to provide travel

time variability for Origin-Destination
pairs

2. Offers travel time variability for Jams,
accidents & weather hazards.

1. Limited data penetration as data is only
representative for Uber vehicles.

2. Temporal and Spatial aggregation
necessitated by the Uber Movement data set

leads to loss of detail.
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3.5 conclusion - data exploration
The chapter concludes the data exploration phase of the research. The objective of
the chapter was to find the usability and unique value of the data through demand
studies, travel time variability due to recurrent congestion and travel time variabil-
ity due to non-recurrent congestion. The conclusions will be used to answer:

Sub Question 5: What is the unique value addition of the Uber Movement Travel
Time data set to Transport Planners and officials at the city of Amsterdam?

The unique value of the data set determined from the demand studies include;
the usage of Ubers by airport goers, tourists visiting places further away from the
city such as Zaandam, Zandvoort & Bloemendaal. Additionally, it was revealed,
there exists a disbalance in the ’sourceid’ and ’dstid’ data points for these locations.
These are suggestive of empty trips being made to pick-up clients. The externalities
of these dead-headed trips include congestion and related emissions.

Exploratory studies with recurrent congestion have revealed, network graphs are
an effective method for the abstraction of the network and revealing congested
hotspots across different levels of temporal detail quarterly. This can aid in accessi-
bility analysis and Urban planning decisions. An important limitation relates to the
data sparsity as not all wijken are visited by Ubers. Thus, the results of the conges-
tion analysis may simply be a symptom of the skewed Spatio-temporal distribution
of Uber vehicles. Thereby, the unique value revealed is the difference in the wijken
frequented by Uber which may differ from other traditional data sets which offer a
more comprehensive overview of the congestion patterns in the city (For instance,
the NDW data).

Concerning non-recurrent congestion, it was found, the Uber data reflected travel
time changes caused by large scale events (the Amsterdam marathon), accidents,
jams and weather hazards. The data sparsity and the absence of the route taken,
once again limit the applicability of the data. There is also the issue of spatial
and temporal aggregation necessitated by the Uber Movement data set. Thus, the
unique value of the Uber Movement lies in its skewed user base dictating a skewed
Spatio-temporal distribution of taxi cabs. Additionally, the next step of the research
will focus on developing a model which utilises this aspect and create a tool to pre-
dict the Spatio-temporal distribution of taxis across different wijken. Based on the
conclusions from data exploration and confining to the objectives of deriving the la-
tent potential of data such that it can meet the goals of the municipality in managing
taxi traffic, the next chapter focuses on the development of a model which focuses
on the Spatio-temporal distribution of taxis. The model will use the insights gained
from demand studies for building the model.
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D E F I N I N G T H E M O D E L F O R
S PAT I O -T E M P O R A L D I S T R I B U T I O N O F
U B E R S

The chapter defines and estimates a model based on the unique value identified in
the previous chapter. The results from data exploration suggest the Spatio-temporal
distribution of Ubers revealed by data penetration, the temporal asymmetry in de-
mand can offer additional insights which are crucial to meeting the municipality’s
goals concerning taxis. The intention is to employ travel time data to estimate
the demand between wijken. The intended result can be best described as Origin-
Destination matrices for throughout the day depicting the production and attrac-
tion of Ubers. Most methods rely on traffic counts, travel diaries with an estab-
lished pick-up and drop-off point. This is unavailable in the Uber Movement data.
[Krishnakumari et al., 2019] utilises flow and speeds to estimate production and
attraction. It was shown that given the outgoing flows of zone i during time period
t and incoming flows of zone j during period t, realised travel times and link counts,
the production and attraction can be determined by placing a set of constraints on
the possible routes and employing a logit model with realised travel times as an
explanatory variable for determining the proportion of flow on each route and is
provided with a path size factor penalising overlapping of routes. Ultimately the
method of estimating the Spatio-temporal distribution is dependent on the avail-
able input data and thereby the assumptions required to build the model. The data
available for the current problem is mean travel time data between two centroids of
a wijk and standard deviation.

To unlock the intrinsic value of the data, the research utilises a model developed by
Aryandoust et al. [2019] which utilises Uber Movement data for estimating the traf-
fic activity per zone in Melbourne, Australia. The research will from here on citing
the model as the reference model. The chapter will explain the conceptual model
and the modelling steps involved. The model is extended in the current research
by introducing the ability to introduce occupancy followed by the route taken by
Ubers. The reference model was built with the intention of not only simulating
Ubers but all traffic activity in the city. The intention in the current research is to
develop a model exclusively for simulating the movement of Uber vehicles.

The model is based on Markov chains where the transition from one state to the
other depends only on the previous state. This is called the memoryless nature or
the Markov property. The conditions governing transitions are conditional proba-
bilities which are stochastically sampled. Markov chains has been extensively used
in transport-related and especially traffic prediction related applications (Faizrah-
nemoon et al. [2015] & Guoqiang Yu et al. [2003]). The following sections discuss
the modelling steps.

4.1 introducing the model
The intention to model Spatio-temporal distribution of taxis originates from a need
to understand the taxi activity in cities which in turn creates the scope for managing
them and implementing solutions at a strategic level. The current section explains
the various modelling steps and mentions instances when the modelling process

60
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has differed from that followed by the reference model which utilised the Julia
programming language. The model in the current research is developed using the
Python programming language. The rationale behind the model relates to increased
flow between two wijken if the travel times between them are higher relative to the
other wijken. The data is revealed in nature establishes areas which have been vis-
ited and differ from a route choice problem where one would minimise travel costs.
Higher travel times are assumed to be indicative of greater congestion (and thereby
higher density) when normalised by distance. In addition to this, an assumption is
made concerning the fleet size ‘C’ as this is absent in the Uber Movement data. The
‘C’ number of Uber vehicles need to now drive and travel between two wijken. In
order to achieve this p drive (probability an Uber vehicle drives) is established as
a binomial distribution for each wijk at a time period T and p dest (probability a
wijk is chosen as a destination) is in the form of a multinomial distribution as the
interaction now represents the popularity of choosing one wijk over all the others.
The probability that an Uber vehicle is occupied (p occ) is also estimated in the form
of a binomial distribution for each zone but is dependent on the data penetration.
As a next step, each of these probabilities can be stochastically sampled at every
time step T. This ensures the model is not deterministic in nature. It is stochasti-
cally sampled by checking if the probability (p drive or p dest) is greater than a
randomly generated number. If the Uber vehicle now drives (or decides to park or
travel between a wijk), and chooses a destination wijk, a likely route in the form
of wijken traversed can be found by using a spatial graph. Thus, the model holds
the ability to be modified and extended. For instance, in addition to occupancy,
the probability a vehicle is charged can be modelled to identify wijken for charging
infrastructure. The modelling framework can be visualised as shown in Figure 4.1.
The steps have been described in the following sub-sections.

4.2 preparing the data sets
Preparing the data sets to be utilised in the model is done over two steps. The first,
preparing the data matrices comprised of travel times and standard deviation. The
second, being the distance matrix with distances between a ‘sourceid’ and ‘dstid’.
The steps can be explained as follows:

4.2.1 Preparing the data matrices

2018, the hour of the day, aggregated over a quarter of the year is utilised. The
rationale behind choosing the 2018 data set lies in it being the most recent and
complete data set available at the time of the research. The ‘hour of the day’ data
is the finest temporal detail available in the data. The columns: ‘sourceid’, ‘dstid’,
‘mean travel time’, ’standard deviation travel time’ are retained. This is followed
by converting the data in the form of matrices of the dimensions N x N x T x 2

where N is the number of zones (181 in the case of Amsterdam), T refers to the time
period (hour of day in this case), and 2 refers to separate matrices of one comprising
of mean travel time and the other standard deviations. The data sparsity is checked
for using the formula in Equation 4.1:

Datasparsity = 100×
(

1−
length(∀tijεTij)

Tij

)
(4.1)

Here, tij is the travel time data point between ‘sourceid’ i and ‘dstid’ j for the time
period and Tij is the maximum possible data points between sourceid ‘i’ and dstid
‘j’ for the time period. The maximum possible data points are determined based on
the time period. For instance, for the hour of the day, one-quarter of the year data,
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Figure 4.1: Conceptual framework of the model

the maximum possible data points between a ‘sourceid’ and ‘dstid’ cannot exceed
24 for a quarter and 96 for the whole year. The length of the available data points
is divided by the maximum possible data points and the percentage in the current
research for the 2018 data was found to 60.14%. The implication of the data sparsity
is the limited coverage of the data. However, it will also supplement the model
in estimating the frequently visited wijken in Amsterdam. The data sparsity could
stem from the limited usage of Uber in Amsterdam or the concentration of Ubers
spatially. For reference, the Melbourne data set had a data sparsity of 91%.

4.2.2 Preparing the distance matrix

The distances between a ‘sourceid’ and ‘dstid’ point were determined using the
OSMNX package available in Python. The package utilises Open street maps for
calculating distances between two coordinates. First, the centroid of each wijk is
calculated and every wijk is assigned a centroid. As a result every ‘sourceid’ and
‘dstid’ points now have coordinates. In OSMNX, the coordinates are matched to
the closest possible road network and the shortest path between them is calculated
using real-world distances available in the map. The distances calculated are com-
paratively realistic than adopting Euclidean distances (as was done in the reference
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model) as it adheres to a road network. This is a computationally intensive step but
needs to be run only once. The permutations of all origin-destination pairs and the
distances between them are stored. The distances calculated are not entirely realis-
tic. The route taken does not acknowledge access restrictions. Moreover, the actual
pick-up and drop-off coordinates will vary from the centroid calculated for the wijk.
Figure 4.2 visualises the road network available in OSMNX and the matching which
took place between two coordinates.

Figure 4.2: OSMNX package in Python determines distances between coordinates by match-
ing the Amsterdam road network

The distances are generated for every ‘sourceid’ and ‘dstid’ combination, result-
ing in a permutation of 181 data points and 2 samples which equals to 32,580 data
points. Thus, the distance from A to B is not the same as the distance from B to A.
The distance matrix is a 181 x 181 matrix. The Coordinate Reference System (CRS)
employed is the EPSG: 3256 which enables the calculation of distance in meters.

4.3 defining probability distributions
The subsection discusses the process of defining probability distributions. The ref-
erence model had probability distributions related to the probability of driving and
the probability of choosing a destination. The current research extends upon it by
introducing a probability of occupancy i.e the probability of an Uber being occupied
in binary terms. We define the process of obtaining each of the distributions below:

4.3.1 Generating the probability of driving - p drive

We define the probability of driving from a particular zone at a particular hour of
the day. Thus, resulting in a N x T matrix where N is 181 and T is 24. The first step
is to calculate the sum of the (mean) travel time ‘t’ out of every sourceid ‘i’ to all
other dstid ‘j’ i.e. ∑ ti∀ j=1,2,3.. for t = 1,2,3..., this is followed by determining the
minimum and maximum sum of travel time to all other zones for every hour of the
day. The probability is then calculated using Equation 4.2. The sum of mean travel
times from a zone to all other zones at a particular hour of the day is subtracted
from the minimum sum of travel time out of at that hour of the day for all zones.
This is divided by the subtraction of the maximum and minimum sum. The result
is then multiplied by the difference of pmax and pmin set to 0.9 and 0.1 respectively.
The value has been retained from the reference model. The result of pdrive is then
exponentially increased by a factor edrive. The value is set to two as was done in
the reference model. If the vehicle does not drive, it is assigned a value of zero
and is assumed to be in a parked state. The probability of parking can be simply
expressed as shown in Equation 4.3. An additional value introduced is the dij
which is the distance between sourceid ‘i’ and dstid ‘j’ obtained from the distance
matrix. The addition of distance ensures higher travel times are not a direct result
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of longer distances. The pdrive across 24 hours of the day for different Wijken can
be visualised as visible in Figure 4.3.

pdrive
ij =


pmin − (pmax − pmin) ×

∑
j=1
n

µi,j,t
dij −mint

{
∑

j=1
N

µi,j,t
dij

}
maxt

{
∑

j=1
N

µi,j,t
dij

}
−mint

{
∑

j=1
N

µi,j,t
dij

} maxt

{
∑

j=1
N

µi,j,t
dij

}
> 0

0 maxt

{
∑

j=1
N

µi,j,t
dij

}
= 0


(4.2)

ppark
ij = 1− pdrive

ij (4.3)

Figure 4.3: Probability of driving across 24 hours of the day as determined for; (a) Haarlem-
merliede en Spaarnwoude (b) Zwaanshoek (c) Delftwijk

4.3.2 Generating the probability of occupancy - p occ

Post defining if the car drives or not, we determine if the vehicle is occupied. We
define the probability of an Uber being occupied if it is driving and is an extension
made over the reference model. The occupancy is determined in binary terms and
not the actual number of passengers. Once again, the resulting probabilities will be
stored in a 181 x 24 matrix. The sum of data points is determined from one sourceid
‘i’ to all other dstid ‘j’ for a particular time period. The minimum and maximum
values are also obtained for every hour of the day. The weighting parameter eocc is
set to 2 and the values pmax and pmin are set to 0.9 and 0.1 as was done previously
in pdrive. The formula for determining pocc is shown in Equation 4.4. Here t refers
to one data point from sourceid ‘i’ to dstid ‘j’. The formula only differs from pdrive
in the use of data penetration points over travel time and is not normalised by
distance. The probabilities generated can be visualised as shown in Figure 4.4. The
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probability of the vehicle not being occupied will be the supplement of pocc as
shown in Equation 4.5.

pocc
ij =

pmin − (pmax − pmin) ×
∑

j=1
n ti,j,t−mint

{
∑

j=1
N ti,j,t

}
maxt

{
∑

j=1
N ti,j,t

}
−mint

{
∑

j=1
N ti,j,t

} maxt

{
∑

j=1
N ti,j,t

}
> 0

0 maxt

{
∑

j=1
N ti,j,t

}
= 0


(4.4)

punocc
ij = 1− pocc

ij (4.5)

Figure 4.4: Probability of occupancy across 24 hours of the day as determined for; (a) Haar-
lemmerliede en Spaarnwoude (b) Zwaanshoek (c) Delftwijk

4.3.3 Generating the probability of choosing a destination - p dest

The final probability distribution to be generated is the probability a vehicle at
sourceid ‘i’ will choose ‘dstid’ j at a given time of the day. Due to the directionality
involved, we now generate N x N x T matrices (181 x 181 x 24) resulting in 786,264

probabilities. The pdest is calculated by obtaining the difference of the travel time
between a sourceid ‘i’ and dstid ‘j’ at a particular hour of the day and the minimum
travel time between that sourceid ‘i’ and dstid ‘j’ across all 24 hours of the day. This
is then divided by the difference of the maximum and minimum travel time for the
sourceid-dstid pair across all hours of the day. The weighting parameter edrive is
set to 2. Thus, pdest can be calculated as shown in Equation 4.6. The probability of
choosing a certain destination from multiple ‘sourceid’ at a certain hour of the day
is obtained and the resulting multinomial probability distribution can be visualised
as shown in Figure 4.5. The rationale behind the formula can be expressed as; if the
travel time at an instant is closer to the maximum travel time to a zone across all
hours of the day, then the probability the driver chooses the destination is higher.

pdest
ij =

 1
Nit

µi,j,t−min{µi,j,t}
max{µi,j,t}−min{µi,j,t} max

{
µi,j,t

}
> 0

0 max
{

mi,j,t
}
= 0

(4.6)
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Figure 4.5: Probability of choosing destination at hod = 0 for (a) Molenwijk (b) Burgwallen-
Nieuwe Zijde

4.4 sampling the distributions and determining
the indicators

The sampling steps involve establishing if a vehicle drives, if yes, is it occupied and
where does it drive to. Besides, the travel time, route and distance are calculated.
The inclusion of occupancy and route are an extension over the reference model. A
state matrix is defined of the dimensions N x c x T representing the number of cars
across Wijken and 24 hours. Here, c refers to the number of vehicles to be simulated
per wijk. The state matrix can be represented as shown in Equation 4.7

Sc,t =


c1,1 c1,2 c1,3 . . . c1,T
c2,1 c2,2 c2,3 . . . c2,T
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cC,1 cC,2 cC,3 . . . cC,2T

 (4.7)

This is followed by generating transition matrices, which contain the informa-
tion for the next state at time period t+1. The transition matrices have the same
dimensions as the state matrix. Five transition matrices are prepared for storing if
a car drives, the occupancy, the destination is chosen, the travel time, route and the
fifth one for distance. These matrices are filled in with new values, as the Markov
property is memoryless in nature and does not retain information on the previous
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state. The sampling process involves comparing the probabilities generated against
a randomly generated number.

4.4.1 Sampling p drive and p occ

If the pdrive is higher for a sourceid ‘i’ at hour of day t is higher than a randomly
generated number, the car drives and the transition matrix retains a value of 1. If
pdrive is lower than the randomly generated number, a value of zero implying the
car does not drive is entered. Algorithm 4.1 indicates the algorithm employed for
sampling if a car drives from the probability distribution. Algorithm 4.2 formulates
the algorithm for sampling occupancy. The difference from sampling pdrive lies in
the condition if the car is driving. Thereby, the occupancy is only determined for
those vehicles which are driving.

Algorithm 4.1: Sampling if a car drives
c← C
t← T
origin = state matrix[c, t]
pdrive = pdrive matrix[origin, t]
if pdrive ≥ random() then

transition matrix drive[c, t] = 1

else
transition matrix drive[c, t] = 0

Algorithm 4.2: Sampling if a car is occupied
c← C
t← T
drive = state matrix[c, t]
origin = state matrix[c, t]
if drive = 1 then

pocc = pocc matrix[origin, t]

if pocc ≥ random() then
transition matrix occ[c, t] = 1

else
transition matrix occ[c, t] = 0

4.4.2 Sampling p dest

The sampling of the probability of destination determines the destination, the vehi-
cle will drive at a given hour of the day from a wijk, conditional to the car having
decided to drive. The probability is first sampled from a probability distribution as
shown in Section 4.3.3. The sampling of destination is independent of occupancy.
If the sum of distribution is found to be higher than zero, the randomly generated
number is compared against a lower range and an upper range equivalent to the
probability of choosing the destination. In the event, the number is found to be be-
tween the upper range and lower range, the destination at the instance is assigned
to the transition matrix. If the sum of distribution equals to zero, the vehicle is as-
sumed to drive within the Wijk. The sum of distribution tends to be zero, due to the
absence of data points in the original data set. The sampling process can be algo-
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rithmically described as shown in Algorithm 4.3. Concerning the entire sampling
process, post the completion of one loop at time period T, the next loop receives
an updated state matrix at T+1 with the vehicles in their new locations, which in
turn is chosen as the origin. The process of sampling for driving, occupancy and
destination is repeated with the updated state matrix.

Algorithm 4.3: Sampling if a destination is chosen
c← C
t← T
drive = transition matrix drive[c, t]
if drive = 1 then

origin = state matrix[c, t]
range up = 0

range low = 0

distribution = pdest matrix[origin, :, t]

if distribution.sum() = 0 then
destination = origin

transition matrix dest[c, t] = destination
if distribution.sum() > 0 then

j← J
if range low < random() < range up then

destination = j
transition matrix dest[c, t] = destination
break
range low = range up
destination = origin
transition matrix dest[c, t] = destination

state matrix[c, t + 1] = transition matrix dest[c, t]

4.4.3 Determining Travel Time

After the determination of the origin and destination, the travel time can be esti-
mated from the travel time data matrix. The origin-destination, and hour of the day
are offered as an input along with mean travel time and standard deviation for the
pair. The uber movement travel time data set for Amsterdam follows lognormal
distribution(Section 2.1). Consequently, the travel times are sampled from a lognor-
mal distribution. Travel times for trips within the wijk are not modelled due to the
absence of data points.

4.4.4 Determining route and distance

The route and distance are determined through network graphs and the distance
matrix. Determining the route is an extension made over the reference model. The
spatial graph was constructed with the wijken represented as nodes. A connection
between two nodes exists if the wijk are adjacent to each other. This enabled the
development of an adjacency matrix. The edges are weighted by distances obtained
from the distance matrix. As a next step, the shortest path algorithm was used
to determine the route between an origin wijk and a destination wijk. The edges
which form the shortest path are then determined and the distance is simply a
summation of the weights (distances). The Uber Movement data can be abstracted
as a network graph. This creates the potential for determining the route using
the shortest path algorithm. An additional dimension added when determining
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the distance is occupancy. This enables determining the empty vehicle kilometres.
Each car ID with an occupancy value of 1 or 0 is identified. The movement of these
vehicles across T=24 is determined and the total distance travelled when occupied
and unoccupied can be determined.

4.5 defining the parameters: e drive, e occ and
e dest

The parameters e drive, e occ and e dest are the exponential parameters utilised in
the equations which define the probability for driving, occupancy and choosing a
destination respectively. On testing different values for e drive, it was revealed an
exponent closer to zero, lead to a sharper gradient and the gradient smoothens as
the parameter value increases. This also holds when changing the parameter for
e occ. The curves have been visualised in Figure 4.6 for a wijk across 24 hours of
the day. The e dest parameter was tested with different values and the probability
of choosing the destination Burgwallen Nieuwe Zijde from different ‘sourceid’ with
an hour of the day as zero. The results have been visualised as shown in Figure 4.7.
The parameters are responsible for smoothening the gradient. The reference model
decided on the parameters based on empirical data. The open-source data on the
number of cars on the streets in Melbourne across different hours of the day is
used to estimate the parameter by implementing a gradient descent optimisation
algorithm. The reference model found the optimal parameter for e drive to be 0.5.
For parameter e dest, the measured parking density across different zones is used
to improve the value. The e dest parameter for the reference model was found
to be 0.59. Besides, the parameters, p min and p max were found to be 0.1 and
0.5 respectively and relate to the minimum and maximum probability of driving.
The value used in the current research equals to 2. Validating the ‘e’ parameters
for the traffic activity in Amsterdam can fail to reveal taxi patterns in the city. At
the moment no such empirical data for taxis in Amsterdam exists. The goal of the
reference model was to simulate the general traffic activity across zones for all types
of vehicles, while in the current research the focus is to retain the movement of taxis
brought about by the data penetration levels in the Uber Movement data set.

4.6 initial value problem
The initial value problem relates to the initial state describing the distribution of
vehicles per wijk. The model is initially run with the vehicles equally distributed
across all wijken. This is not an ideal initial state. To solve the initial value problem,
the model is simulated from T=0 to T=24. The time steps can vary based on the
temporal aggregation of the data. It could vary between the hour of the day, day of
the week and month. The T=24 state is set as the initial state. The model is then
re-run with a new initial state.
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Figure 4.6: Varying parameters (a) e drive and (b) e occ for Burgwallen Nieuwe Zijde
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Figure 4.7: Varying e dest values for destination Burgwallen Nieuwe Zijde at hour of day =
0



5 M O D E L C A S E S T U DY & R E S U LT S

The current chapter explains the implementation of the model through a case study
and discusses the results obtained. Also, results and discussion of the the modelling
steps undertaken in the previous chapter is presented. The results from the model
include the spatio-temporal spread of Uber vehicles, the occupancy levels, number
of empty trips, the empty kilometres travelled and the travel time experienced by
Uber vehicles. In addition to this, the most frequently traversed wijken have been
presented.

Three scenarios are simulated. The first scenario is with 1810 Uber vehicles i.e.
every wijk (a total of 181) is initally assigned ten vehicles resulting in 1810 Uber ve-
hicles. and as per the solution to the initial value problem discussed in the previous
chapter, the model is first simulated till the time step T=24. This is then treated as
the inital state and the results from the model are obtained including the properties
such as travel time, distance and occupancy between states. The second and third
scenarios are simulated with 905 (5 Uber vehicles per wijk initially) and 3620 (20

Uber vehicles per wijk initially) respectively. The spatio-temporal distribution for
the latter two scenarios can be found in Figure B.1 and Figure B.2. For brevity, only
the first scenario is discussed in this chapter. The simulation of the second and third
scenarios shows the relative proportion of Uber vehicles across wijken remains the
same only the magnitude of Uber vehicles increases or decreases depending on the
fleet size. The following sections discuss each of the results for the first scenario in
detail.

5.1 spatio-temporal spread of ubers
On simulating 1810 Uber vehicles post solving the initial value problem the spatio-
temporal spread of Uber vehicles i.e. the number of vehicles per wijk per hour
of the day was obtained. The spatial spread across the time periods, early morn-
ing (00:00 - 06:00) Figure 5.1, AM peak (07:00 - 09:00) Figure 5.2, midday (10:00 -
15:00) Figure 5.3, PM peak (16:00 to 18:00) Figure 5.4 and the evening peak (19:00 to
00:00) can be visualized as shown in Figure 5.5. The vehicles concentrate in areas
around Schiphol, the centre of the city (the 17th-century ring), Sloterdijk, the port
area of Westelijk Havengebeid and the wijken, North of the IJ river, of Landsmeer
and Ilpendam.

The number of vehicles across the different time periods are as shown in Table 5.1
and Table 5.2. The AM peak sees Lijnden and Boesingheliede with the highest
number of Uber vehicles. The wijk is located just North of Schiphol and has the
major arterial Schipholweg passing through it. Badhoevedorp is also located North
of Schiphol and comprises of hotels close to the airport. Schiphol Rijk, located South
of Schiphol with the third-highest number of Ubers comprises of freight forwarding
services near the airport and also hotels. The wijk Burgwallen Oude Zijde with the
Amsterdam central station also features and this is followed by Amstelveen, a wijk
close to the Southern Amsterdam business district dominated by expat residences
and hotels. For the PM peak, Heemstede Centrum which neighbours Hoofddorp

72
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Figure 5.1: Spatial spread - Early morning (00:00 to 06:00)

Figure 5.2: Spatial spread - AM peak (07:00 to 09:00)
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Figure 5.3: Spatial spread - Midday (10:00 - 15:00)

Figure 5.4: Spatial spread - PM peak (16:00 to 18:00)
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Figure 5.5: Spatial spread - Evening (19:00 to 00:00)

and Schiphol Rijk feature with the highest number of Uber vehicles. Zwaanshoek,
also next to Hoofddorp has the third-highest number of Uber vehicles as per the
model. None of the Wijken in the centre feature for the PM peak. The wijken in
the centre of Amsterdam: Burgwallen Nieuwe Zijde, Bugwallen Oude Zijde and
Grachtengordel West also have a significant number of Ubers (221, 189 and 184

respectively in the AM peak and 125, 122 and 133 respectively in the PM peak).
Table 5.2 with wijken comprised of the Uber vehicles shows Zwaanshoek, Cruiquis
and Lijnden/Boesingheliede as the Wijken with the most number of Ubers. The
Wijken with the highest number of vehicles tend to remain consistent across all
time periods. This was also noted in the midday and evening period. Wijken from
the peak periods have been indicated in the tables (along with the early morning
period)

Table 5.1: AM peak and PM peak Wijken with the most Uber vehicles (driving and parked)
AM peak PM peak

Wijk Ubers Wijk Ubers
Lijnden / Boesingheliede 383 Heemstede-Centrum 370

Badhoevedorp 338 Schiphol Rijk 359

Schiphol Rijk 309 Zwaanshoek 332

Cruquius 302 Cruquis 326

Schiphol 260 Heemsted Zuid 306

Vijfhuizen 259 Schiphol 261

Zwanenburg 254 Badhoevedorp 254

Zwaanshoek 249 Lijnden / Boesingheliede 243

Burgwallen-Oude Zijde 243 Vijfhuizen 229

Amstelveen 210 Hoofddorp 216
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Table 5.2: Wijken with the highest number of vehicles in the early morning period

Early Morning

Wijk Ubers
Lijnden / Boesingheliede 722

Schiphol Rijk 636

Badhoevedorp 594

Schiphol 586

Cruquius 584

Zwaanshoek 500

Vijfhuizen 478

Zwanenburg 473

Burgwallen-Oude Zijde 419

Amstelveen 401

Discussion - Spatio Temporal spread

The results suggest, Ubers tend to concentrate in and around Schiphol, followed
by the centre of the city and the port area of Westelijk Havengebeid. The Ubers
are used to travel from or to wijken near Schiphol. For instance, wijken such as
Hoofddorp and Schiphol Rijk comprise of hotels Figure D.1. Wijken such as Lijn-
den/Boesingheliede and Badhoevedorp are wijken with traversals but are unlikely
areas of pick-ups and drop-offs. Cruquis and Zwaanshoek also, have a concentra-
tion of Uber likely due to the frequent traversals and the data penetration in these
areas being higher.

Amsterdam Sloterdijk and Westelijk Havengebied are wijken with enterprises and
hotels. Amsterdam Sloterdijk is especially monofunctional concerning it’s land-use
and the concentration of 77 and 76 Ubers in the AM and PM peak respectively is
suggestive of Ubers being used for work-related trips in these Wijken. Amstelveen
is also suggestive of work-related trips. In terms of the applicability, the results
offer spatio-temporal distribution of Ubers. This can in turn offer insights to enable
access control for taxis during cetrain hours of the day. For instance, in the centre
of the city, the number of Ubers across the AM and PM peak have been visualized
as shown in Figure 5.6. The varying number of Ubers can be evaluated to analyse
time periods or wijken when the entry of Ubers can be restricted.

The spatial concentration of Ubers across different time periods is suggestive of
the limited purposes behind Uber usage. The results from the model offer only a
strategic overview of the dynamics of taxi distribution in the greater Amsterdam
metropolitan region and the model cannot simulate precise spatio-temporal distri-
bution due to the aggregation of the data and the absence of an indication of the
actual number. The model instead simulates based on the data penetration levels
and the movement across wijken are a function of travel time divided by distance.
The results from the model are consistent with what was found in data exploration.
For instance, Amstelveen receives a large number of Uber vehicles 210 Ubers and
401 Ubers in the AM and early morning period respectively. Amstelveen has been
found to have a large expatriate population, thereby indicating the primary users of
Ubers as foreigners and tourists. The cellphone data also indicates a large number
of international sims in Amstelveen Table 3.9.

The modelling decisions have a direct impact on the results. One of the assump-
tions made is concerning the probability of driving increasing as the travel time to
a wijk relative to the others increases. The consequence of such a decision is the
increase in p drive during the AM (07:00 to 09:00) and PM peak (16:00 to 18:00)
as travel times are higher during the peak hours. However, in the wijken Zwaan-
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Figure 5.6: Number of Ubers in the centre AM peak (left) & Number of Ubers in the PM
peak(right)

shoek and Delftwijk, the p drive is found to be the highest at midnight. This is a
consequence of the higher data penetration during midnight. Figure 5.7 depicts the
travel time in seconds across the day, the data penetration points and the travel time
divided by distance for Haarlemmerliede and Spaarnwoude. Thus, the probability
of driving and consequently the movement of Ubers across wijken is a function of
both travel time and data penetration.

Figure 5.7: Haarlemmerliede and Spaarnwoude (from left to right) - (a) Mean Travel Time in
seconds across the day (b) Data points across the day (c) Travel time divided by
distance across the day

5.2 occupancy levels
The occupancy level indicates if the Uber vehicle is occupied at the instance when
it is driving. A binary coding system is followed. If the Uber is occupied, it receives
a value of ‘1’, and ‘0’ otherwise i.e. the occupancy is not the actual number of pas-
sengers. The occupancy levels across different hours of the day have been plotted
in Figure 5.8a. The figure suggests occupancy levels are the highest at midnight
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and the evening peak. The number of trips at midnight are the lowest as shown in
Figure 5.8b.

(a) Occupancy levels across the day

(b) Number of trips across the day

Figure 5.8: Occupancy and number of trips as indicated by the model

Discussion - Occupancy levels

The higher occupancy at midnight is indicative of greater demand. The limited
frequency of Public Transport could be one of the principal causes. Uber especially
becomes advantageous as it offers a door to door service. This is consistent with
what was observed in demand studies, where the ‘sourceid’ and ‘dstid’ numbers
went up during midnight. Additionally, the service area of Uber spans the greater
Amsterdam region. Connectivity to areas outside the centre may especially become
sparse, prompting greater usage. Thus, the model result suggesting greater occu-
pancy during these hours only seems logical. The number of trips, however, are
lower at night compared to the peaks and midday period. The lower number of
trips could also pertain to limited empty trips during these hours as Ubers are not
required to relocate to pick-up passengers during these hours of the day. This was
also found when empty vehicle kilometres and occupied vehicle kilometres were
compared in the next section.

5.3 empty vehicle kilometers
Each Uber and its occupancy level was tracked across different hours of the day in
the model. This enabled the calculation of total ‘Occupied vehicle km’ i.e the total
distance travelled by an occupied Uber and ‘Empty vehicle km’ is the number of
kilometres travelled while a vehicle was without a passenger either in the process of
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searching for a passenger or on its way to pick-up a passenger. The empty vehicle
kilometres accounted to about 48,498 km whereas the occupied vehicle kilometres
was considerably lesser at 35,189 km according to the model. Thus, according to the
model, only 42% of the vehicles kilometres were with a passenger. The proportion
of empty vehicle kilometres was found to be higher during the AM peak and mid-
day. The proportion of occupied and empty kilometers can be visualised as seen in
Figure 5.9.

Figure 5.9: Total occupied vehicle kilometres and empty vehicle kilometres

Discussion - Empty vehicle kilometers

The results of the empty vehicle kilometres and occupied vehicle kilometres only
when the occupancy levels and the number of trips are observed. According to the
model, the demand-supply equilibrium is better matched during midnight and is
caused by the higher demand. The relocation, in turn, contributes to empty kilome-
tres. While these aspects have not been captured in the model, the extent of empty
vehicle kilometres is expected to be significant as it is caused by the asymmetry in
demand and can be noted in the data penetration Figure 3.11. The empty vehicle
kilometers will reduce if Equation 4.2 is normalised by the data penetration points,
as the asymmetry will then be account for when p drive is calculated. Occupancy
is a function of the data points, so these peak at midnight as was seen in the data
penetration levels and reduce. Consequently empty vehicle kilometers is a result of
this. Normalisation will lead to reduction in empty vehicle kilometers. Thus, the
results must be interpreted with due consideration of the modelling decisions and
data in this case.

5.4 frequently traversed wijken
An extension of the reference model produces the route followed between an origin
and destination by a network graph and the shortest path algorithm. Besides, occu-
pancy and the route it takes is included as extensions. The intention is to identify
routes which are frequnted by those vehicles which drive empty. The first type of
routes generated are those with no intermediate Wijken. The ‘sourceid’ and ‘dstid’
pairs with no intermediate Wijken and no occupancy has been visualised as a ma-
trix as shown in Figure 5.10. The origin-destination pair of Heemstede Zuid and
Heemstede Centrum have the highest number of empty trips occurring between
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them. All of the Wijken which feature in the matrix are in and around Schiphol
airport.

Figure 5.10: Most frequent ‘sourceid’-‘dstid’ pairs with empty trips

Table 5.3 tabulates the routes where there exists one intermediate Wijk between
the ‘sourceid’ and ‘dstid’ for empty and occupied trips respectively. The most
frequent origin-destination pairs with empty trips are once again in areas around
Schiphol whereas, the occupied trips are at the centre of the city or the North of the
IJ river (Ilpendam). The trend remains consistent in Table 5.4 with two intermediate
wijken as well.

Table 5.3: The paths most frequented with one intermediate wijk
Empty trips across an intermediate wijk

Origin Intermediate wijk Destination Number of trips
Cruquius Heemstede-Centrum Meerwijk 15

Heemsted-Zuid Heemsted-Centrum Heemstede West 13

Occupied trips across an intermediate wijk
Origin Intermediate wijk Destination Number of trips

Haarlemmerbuurt Lijnden/Boesingheliede Burgwallen Nieuwe Zijde 12

Ilpendam Cruquius Meerwijk 9

Discussion-Frequently Traversed Wijken

Network graph offering routes are not the most realistic tool as edges can directly
connect nodes even during the absence of such edges in the real world. Here if a
Wijk is adjacent to another, an edge is established. This is a simplification done but
due to the aggregated nature and absence of routes in the data. This was the best
possible measure. This is especially notable in the Oostelijke Eilanden to Schiphol
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Table 5.4: The paths most frequented with two intermediate wijken
Empty trips across two intermediate wijken

Origin Intermediate wijk - I Intermediate wijk - II Destination Number of trips
Heemstede-Zuid Heemstede Centrum Cruquis Amstelveen 10

Heemstede-Zuid Haarlemmerhoutkwartier Landlust
Grachtengordel

Zuid
5

Occupied trips across two intermediate wijken
Origin Intermediate wijk - I Intermediate wijk - II Destination Number of trips

Oostelijke Eilanden
Weesperbuurt/

Plantage
Hoofddorppleinbuurt Schiphol 5

Vondelkwartier Vogelenwijk Slachthuiswijk Meerwijk 2

Cruquius Vijfhuizen Landlust
Grachtengordel-

West
2

case, where the number of wijken one would traverse would be higher than two.
The higher occupancy trips in the centre seem logical considering these are dense
areas where an Uber is likely to get a trip compared to the sparser areas near the
airport where there might be higher asymmetry in demand. The number of trips
and traversals are insignificant in number to derive conclusions on if these add to
congestion.

5.5 validation
Total vehicle kilometers travelled by taxis according to sectoranalysis mobility re-
port – 460,000 km [Gemeente Amsterdam, 2019]. 35% of the total taxis in operation
are platform vehicles. If assumed 35% of the vehicle kilometers are travelled by
Uber, it results in a total of 126,000 km. According to the model, the distance trav-
elled by 1810 Uber vehicles results in a total of 79,534 km resulting in a percentage
difference of 37%. The distance calculated from Uber vehicles is based on the short-
est path algorithm. Therefore, according to sectoraanlyse mobiliteit, the per capita
vehicle kilometers travelled is 60km a day per vehicle compared to 44 km per day
per vehicle. So a factor difference of 1.36 can be observed between total vehicle
kilometers for Ubers suggested in the report and model results.

A better method for validation could be to employ Automated Number Plate Recog-
nition (ANPR) for blue coloured number plates (taxis in the Netherlands have a blue
coloured number plate) compare the number of taxis across different hours of the
day against the model results. For instance, this can be specifically done for the
center of the city and the number of Ubers depicted in Figure 5.6 can be validated.
To specifically determine if the blue plate is an Uber vehicle, one can check the
registration and remove number plates registered as a taxi at the Toegelaten Taxi
Organisaties (TTO).

5.6 limitations
As with every model, there are limitations and, the most important ones are ex-
plained here. The first one is concerning the nature of the data itself. The model
utilises data penetration to impact the choice of wijken. However, a single data
point can be representative of a minimum of five Uber vehicles, and the number
can go up to the total number of vehicles in Amsterdam. Thus, in reality a single
data point might capture more Ubers than multiple data points. This would signifi-
cantly impact the spatio-temporal distribution generated by the model. The second
limitation is a symptom from the use of Markov chains. The model cannot vary the
fleet size as it progresses from one time step to the other. This is an important lim-
itation as in reality the supply of Ubers can vary throughout the day. For instance,
[Brodeur and Nield, 2018] found the supply of Ubers increased during rains, as
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drivers were encouraged by higher taxi fares (due to the dynamic pricing prevalent
in Ubers). The third limitation relates to the underlying assumption that occupancy
and consequently empty vehicle kilometers is based on the number of data points.
The interpretation of the results must be based on the understanding that they have
been determined as a consequence of modelling choices and are not directly based
on empirical data.



6 C O N C L U S I O N

The chapter offers the main conclusions through answers to the sub-questions and
the main research question. This is followed by the implications section. Answer to
the first sub-question is derived from Chapter 2.

Sub Question 1: What is the current state of the art with respect to the use of
Uber Movement Travel Time Data and other Taxi GPS data sources for applica-
tions in Traffic congestion analysis and management?

The current state of the art concerning use of Uber Movement data has been limited
to case studies where the Uber Movement interface was utilised to evaluate travel
time changes by benchmarking it against a baseline travel time at a data before the
incident. The incident or disruption included effects of bad weather, infrastructure
closure, public transport shut down and holiday season traffic. Thus, events im-
pacting the physical capacity of the network or seasons of higher demand and its
impact on travel time. In academia, previous work has been done with network
graphs, for identifying congestion patterns and using degree centrality as ‘used de-
gree centrality’ to quantify data penetration levels for the spatial units.

Concerning other Taxi GPS data sources, the applications can be broadly cate-
gorised as demand-related, supply related, performance-related and impact related.
Taxi GPS data can be evaluated in terms of demand which can vary spatiotem-
porally and help identify points of interest and also if there exists asymmtery in
demand. For supply and performance-related application, taxi GPS data can help
identify deficiencies in urban networks as they frequently traverse different parts
of the city. Impact related applications relate to the ability of the Taxi GPS data
to identify negative externalities such as air pollution caused by congestion. Thus,
Taxi GPS data has wide variety of applications and their applicability will be de-
termined by the context in how taxis are used, penetration levels of the taxi, and
spatiotemporal detail offered in the taxi data set.

The answer to the second subquestion is based on the demand studies carried
out in Section 3.2.

Sub Question 2: Which user groups are likely to use Uber in Amsterdam and
for what purpose?

The user groups likely to use Ubers are those unfamiliar with the city and travellers
to or from the airport. The demand studies have revealed higher data penetration
in areas such as Bloemendaal, Zandvoort and Zaanstad. Bloemendaal, Zandvoort
are locations dominated by tourists. Thus, the purpose behind Uber trips to these
wijken is leisure. The wijk Haarlemmermeer also resulted in high data penetration
due to the presence of Schiphol airport and the surrounding Wijken are dominated
by hotels serving the airport. On fusion with land-use data for wijken within the
centre of Amsterdam, it was revealed the trip purposes are difficult to derive due
to the mixed land-use patterns and the spatial aggregation of the Uber data. An
exception to this was Amsterdam Sloterdijk, which indicated high data penetration
and is monofunctional concerning its land-use as it primarily comprises of offices.
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Thereby, identifying another user group of people using Uber for work-related trips.
Those unfamiliar with the city are likely to be foreigners. Validation from cellphone
data suggests the concentration of international sim cards and data penetrations
tend to overlap in wijken. For instance, in the case of Sloterdijk.

In addition to this, the model developed showed the wijken with the highest num-
ber of Uber vehicles across different hours of the day to concentrate in and around
Schiphol along with the centre of the city and the office areas of Sloterdijk. The
model also indicates higher demand for Ubers at night, possibly caused by limited
public transport during late hours. Thus, four broad user groups can be identified:
tourists (and those using Uber for trips to places of leisure), travellers to and from
the airport, working professionals working in the business districts of Sloterdijk or
Zuidas, and lastly those using Ubers as an alternative to public transport during
the later hours of the day. It is important to acknowledge these user groups are not
entirely distinct from each other and on the contrary overlap. For instance, tourists
are also likely to use Uber to travel to the airport.

The answer to the third subquestion has been based on the studies with respect
to recurrent congestion carried out in Section 3.3.

Sub Question 3: To what extent can recurrent congestion analysis be carried
out using Uber Movement Travel Time data, either singularly or fused?

Ex-post recurrent congestion analysis using the Uber Movement Travel Time data
set can be carried out by an abstraction of the network as a network graph and
using normalised weighted Indegree which can help highlight congestion points in
the city. A normalised weighted Indegree is the sum of the edges weighted by the
travel time and normalised by distance and the number of edges. The normalisation
prevents a higher indegree value from being a function of the Wijk being located at
a further away distance. The weighted indegree can be dynamically analysed for
different hours of the day, thereby, revealing congestion spots across the day. This
can be done for one quarter of the year or multiple quarters. Europawijk followed
by Heemstede West were the wijken with the highest indegree across 24 hours of
the day for 2018. Both wijken are located in Haarlem. Other wijken which featured
such as Burgwallen Nieuwe Zijde, Grachtengordel-West and Grachtengordel-South
are located in the centre of the city, in the 17th-century ring. A limitation for the
metric stems from the data penetration of the data set. Unavailability of a data-
point can suggest lack of congestion, either by not adding an edge (and thereby
weight in the form of travel-time) or the absence of a node as a whole. Besides,
the data sparsity for 2018 was found to be 60.14%. Thus, the data for most wijken
are not potentially available across different time periods. However, congestion
points frequented by Ubers can be identified. Thus, recurrent congestion analysis
is best carried out through network graphs and weighted indegree, however, the
data penetration limits the application of the insights concerning policy decisions.
Additionally, the aggregated nature of the results (Hour of Day across a quarter)
limits its applications at a tactical or operational level.

The answer to the fourth subquestion has been derived from the fusion of Uber
Movemetn and WAZE data done in Section 3.4.

Sub Question 4: To what extent can non-recurrent congestion analysis be car-
ried out using Uber Movement Travel Time data, either singularly or fused?

Ex-post non-recurrent congestion analysis using the Uber Movement Data set ne-
cessitates fusing it with an additional data set which offer incident-related infor-
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mation. This could be the Coördinatiestelsel Werken aan de weg (CORA) data-set
or crowd-sourced data such as the WAZE dataset. Due to the low spatio-temporal
resolution of the Uber Movemetn data, the incident data must be brought to the
same resolution at the expense of lost detail. In the research, the WAZE data set
was utilised due to its reliability indicators, enabling the researcher to identify if
the event actually took place and also determine the spatial and temporal spread.
Four types of events were investigated; these include Accidents, Road closures, jams
and Weather Hazards. The Uber Movement data set was able to reflect travel time
changes in all incidents except road-closures. Road closures tend to have a spatial
and temporal spread and Traffic management measures are usually in place before
road closures when compared to accidents, jams and weather hazards which tend
to be localised temporally and spatially and cannot be predicted and prepared for.
Post-spatiotemporally matching, the travel times to Wijken adjacent of the Wijk of
interest (where the incident occurred) against the planning time (95th percentile
travel time). It was found, planning times are an effective benchmark to compare
travel time changes caused by incidents. The use of planning time is a significant
improvement over comparing the travel times at a date and time period assumed to
be representative of normal conditions.

Travel time changes though observed when fused with WAZE data, the data does
not ascertain if the incident led to the travel time change. Limitations are mainly
brought by the aggregation levels and the data sparsity. The temporal aggregation
is an issue as the travel times are available for a time period of the day whereas
incidents such as jams or accidents do not span the entire time period. Also, while
the WAZE data offers coordinates on the incident location, aggregation to the Wijk
level and absence of routes in the travel time data prevent one from understanding
the actual cause of travel time change. For instance, the lane or direction of driv-
ing at which the accident took place and how the travel times varied on the routes
cannot be determined. Thus, limiting the applicability of the Uber Movement data
to identify measures to solve incidents of non-recurrent congestion. With respect to
identification, the Uber Movement data can be used and also understand incidents
of non-recurrent congestion experienced by Uber vehicles in regions frequented by
them.

Answer to the fifth subquestion is based on the conclusions from Section 3.5 and
the model results in Section 5.1.

Sub Question 5: What is the unique value addition of the Uber Movement
Travel Time data set to Transport Planners and officials at the city of Amsterdam?

The unique value of the data set is latent in its ability to represent skewed user
groups which in turn have a skewed spatial and temporal distribution compared to
the average traveller. The data sets available at the municipality despite higher levels
of detail, and applicability captures the average traveller. With the increased number
of visitors to the city of Amsterdam, the Uber data offers unique insights into user
groups who are less aware of the city and their spatial concentration. Although, the
intention of the data is released for performance-related or impact-related analysis
existing data sets with the municipality such as the TomTom data, ANPR and Float-
ing car data from NDW are better suited. Demand studies and the model results
strongly suggest the Uber user does not represent the average traveller performing
work-related trips during peak hours, thereby adding to the existing data-ecosystem
by the people who use Uber and the purpose they use it for. Additionally, results
generated from the model can offer the spatio-temporal distribution of Ubers across
different hours of the day. The impact of fleet sizes, and occupancy levels can addi-
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tionally be analysed to implement traffic management solutions to restrict or enable
the movement of Ubers. Thus, the data set offers a strategic overview on the usage
of Uber in the city, where it is used, and the broad reasons behind using it (such as
visiting the airport). The data set serves as a bearing point for further studies on
taxi management and its data requirements.

Main Research Question: What is the potential of using Uber Movement Travel
Time Data, either singularly or in fusion with other data sets for Traffic

Congestion Analysis and management in the city of Amsterdam?

The Uber Movement data is available for multiple cities across the world and be-
ing exclusively derived from Uber trips, presents an opportunity to understand the
travel times experienced by the vehicles and their skewed user base in the Ams-
terdam context. The research has revealed the possible user groups through data
penetration. The results are qualitative in nature. However, based on the model
built there is strong evidence to suggest the usage of Uber is primarily at Schiphol,
the centre of the city and Amsterdam Sloterdijk. The potential of the data set for
Amsterdam, lies in its ability offer the dynamics of spatio-temporal distribution at a
macroscopic scale for Ubers in the greater Amsterdam region through results from
the model. Additional insights, such as occupancy and empty vehicle kilometers
offer added value, however, these are subject to future validation with empirical
data of taxis in Amsterdam. Thus, the data set offers information on a user base not
captured by other data sets at the municipality. With respect to other applications
such as recurrent congestion,the Uber Movement travel time data set has limited
potential for the city of Amsterdam. The spatial aggregation at the wijk level re-
sults in a significant loss of detail for applications to be developed. For example, in
the case of non-recurrent congestion, a localised incident needs to be aggregated at
the wijk level. Similarly, the temporal detail is either the time period of a day or
aggregated across a quarter of the year. This leads to noise in the data and, con-
sequently ascertaining the underlying mechanism which has led to the travel time
in the data set becomes difficult. On evaluating the applicability of the data with
respect to recurrent and non-recurrent congestion, it was found the data can offer
congestion hot spots and reflect travel time changes, however, the existing data sets
at the municipality with a finer temporal and spatial resolution are better suited
for such analysis. Especially, as these lead to policy decisions and investments, the
Uber Movement data is unreliable. The limited data penetration which stems from
the limited use of Ubers in Amsterdam (also, the spatial concentration of where
Ubers are used) and the absence of trajectory or route data further limits the poten-
tial of the data. Due to the absence of the number of vehicles which resulted in the
data, traffic management applications are also limted.

6.1 implications for the urban data ecosystem
The Uber Movement Travel time data is available for multiple cities across the world.
For transport planners and cities to derive usability from the data, a clear objective
will be essential. For instance, an investigation needs to be done to check if the data
is better for validation purposes or estimation of travel time. This will ensure the
usability of the data. The data set does not necessarily enhance the data ecosystem
of a city. For instance, it is possible usage patterns do not differ from the usual ve-
hicle traffic. In such a situation, the data’s temporal and spatial aggregation severly
limits its usage and existing alternatives might already have better utility.

The data set reflects one of the larger issues with big data. The privacy concerns
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and aggregation levels can severely limit its usage. Aggregation due to privacy con-
cerns and interests of the data provider is likely to be prevalent in instances when
the data is provided for free. The research does offer a method to work at the ag-
gregation level, however, the applications become limited. Thus, there needs to be
a balance between addressing privacy concerns while also rendering the data as us-
able. As was shown in the research, the data needs to be translated into actionable
insights. To achieve this, one needs to find the context, iron out the complexities
and create analytical models which can turn data into information and eventually
information into policy decisions. Thus, the introduction of Uber Movement data is
context dependent, requires analytical models, and fusion with other data-sets.

For the city of Amsterdam, the research also indicates the need to standardise at-
tributes released in open data by different stakeholders. The standardisation needs
to ensure the data has usability while ensuring privacy concerns are addressed. The
next chapter offers recommendations on the data attributes which could be made
available to enable a comprehensive analysis.



7 R E C O M M E N DAT I O N S

The chapter comprises of the recommendations for improving the model and iden-
tifying the possible data attributes which can be obtained to enable a more com-
prehensive analysis of Ubers in the city from the perspective of congestion studies
and demand studies. The chapter is concluded with recommendations on future
research.

7.1 recommendations regarding the model
The first recommendation relates to the use of the modelling parameters: p max,
p min, e drive, e dest and e occ as these need to be validated for the taxi move-
ment in Amsterdam. Empirical data can be first collected, and these parameters
can then be optimised to represent the cyclic activity of taxis across different hours
of the day. This would better ensure realistic flows and origin-destination patterns.
Alternatively, these paramters can be validated using Tom Tom data which offers
traffic activity at the street level and can be aggregated to the wijk level. However,
this step would be to risk loosing the taxi flow patterns which are a consequence
of the data penetration. The model can be simulated with the 2019 data set (to be)
offered in Uber Movement and is likely to be less sparse than the 2018 data. The
data penetration levels have been consistently higher from 2016 to 2018 , thus of-
fering insights on areas frequented and thereby improving the model results. The
probability of occupancy in taxis has been crudely modelled. A better way would
be to adopt clustering methods, which consider spatial and temporal correlation of
zones with higher and lower demands. As a result, the taxi will be more likely to
receive a passenger in a zone based on the demand for taxis at a wijk belonging to
a cluster of high, medium or low demand. The data for clustering should ideally
be based on taxi demand patterns from other empirical data. However, considering
that this can be challenging, the data penetration levels in Uber Movement can be
used. The initial value problem for the model has been solved by setting the final
simulation result as the initial step. This can be improved once again using empir-
ical data offering the proportion of taxis across zones. The determination of routes
in the model is based on the application of the shortest path algorithm in network
graphs. A broader understanding of the possible routes or the wijken traversed can
be derived from determing N* , i.e. the ‘n’ possible number of routes and be val-
idated against the routes preferred by vehicles from data sets such as TomTom data.

7.2 recommendations regarding the data
The recommendations act as a guideline for the municipality to establish the min-
imum data requirements to carry out congestion studies from Uber data and de-
mand studies which can eventually enable access control of the taxis. This is ex-
plained across the following two subsections. The data requirements could vary
according to the precise policy goals of the municipality. The following two sub-
sections establish the basic requirements derived from the unavailable attributes of
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the Uber Movement travel time data set. The recommendations are based on the
possibility of the data being historical and not real-time.

7.2.1 Congestion studies

The first data attribute required would be the route undertaken by the taxis. This
will be essential for establishing recurrent and non-recurrent congestion. Addition-
ally, one can understand if the travel time for taxis are different from average vehicle
traffic as taxis can make use of bus-lanes in the city of Amsterdam. Thus, the data
could suggest free-flow travel times even during congested periods. If it is not pos-
sible to obtain the route, the most popular route between two spatial units can be
obtained. The most popular route across different hours of the day is an improve-
ment over the complete absence of the route. The second data attribute would be
the number of Uber vehicles between two spatial units. This can be obtained at the
per hour of the day temporal detail. The different levels of temporal detail and the
attribute levels have been tabulated in Table 7.1.

Table 7.1: Recommended detail for data attributes to perform congestion studies

Route
Route/vehicle Route/’n’ vehicles

Route taken
by each vehicle

Per hour/day

Per hour/
weekday

&
Per hour/
weekend

Per hour/
month

Per hour/
quarter of
the year

Travel Time
(seconds)

Per hour/day

Per hour/
weekday

&
Per hour/
weekend

Per hour/month
Per hour/
quarter of
the year

Number of Ubers Per hour/day

Per hour/
weekday

&
Per hour/
weekend

Per hour/month
Per hour/
quarter of
the year

The spatial attribute can vary depending on the required level of detail. This can
vary between a coordinate point to a polygon at a postal code level or Traffic anal-
ysis zones. The precise pick-up and drop-off location is not relevant to congestion
studies rather the data do not need to establish if a pick-up or drop-off happened as
is the case in the Uber Movement data. The attributes mention in the table enable
the calculation of average speed (Distance travelled on the route / time), rate of
flow (vehicles/temporal unit) and density (vehicles/spatial unit). The fundamen-
tal quantities for traffic flow studies expand the usability of the data and enable
congestion studies. Data fusion can offer additional value. For instance, the data
can be fused with Waze data to understand the impact of incidents on travel time
differences or emissions caused by taxis. Studying emissions caused by taxis can
indeed be a useful barometer to decide the position of environmental zones in the
city and if it can be dynamic across the day. It is important to reiterate that the data
requirements will vary according to the precise policy goals and the level (Strategic,
tactical or operational) at which the decisions need to be made. For instance, one
can also obtain the fleet specifications such as the type of vehicles, vehicle age as is
done by the New York Taxi & Limousine commission [NYC-Open-Data, 2018]. The
data attributes recommended address the crucial attributes missing in the data.
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7.2.2 Demand studies and access control

The demand studies to derive the spatio-temporal distribution of taxis would re-
quire the number of Ubers travelling between two spatial units across different
hours of the day. [Huang, 2003] mentions space and time as scarce resources which
constrain the movement of people. Thus, the two most important data attribute is
the number of Ubers travelling across different temporal units and different traf-
fic analysis zones. Interpreting the demand for Ubers also requires one to take
aspects such as the weather, dynamic pricing employed by ride-sharing services,
waiting time for passengers and events taking place in zones. These can serve as at-
tributes while estimating mode preference in a transport model through a discrete
choice model. Additional attributes can also include, the number of passengers
transported. Since, Uber does not have a carpooling taxi segment yet, this can be
avoided. The spatial detail for the data should be such that the Land-Use entropy
value is closer to zero unlike what was found in Section 3.2.2. A land-use entropy
value closer to zero is suggestive of a dominant land-use function, thereby adding
to the understanding of the behaviour and purpose of Uber users. Table 7.2 tabu-
lates the recommended attributes and the level of detail.

Table 7.2: Recommended detail for data attributes to perform demand studies

Increasing aggregation (left to right)

Pick-up &
Drop-off location

Coordinates
Longitude & Latitude

Postal code level 4

Traffic analysis zone
consistent with transport

demand model

Temporal unit Seconds 15 minutes 1 hour

Trajectory information
Polyline between pick-up

& drop-off

Concerning access control, a model can be developed to predict the number of
Ubers across different hours of the day across zones. The input data for this model
should consist of the number of Ubers across different hours of the day and dif-
ferent zones collected longitudinally over a time period. A model can predict the
demand for Ubers as a function of the land-use, weather (rainy weather can prompt
increased usage), large-scale events, time of the day, weekday or weekend, month
of the year (to capture the tourist season) and public-transport availability (based
on the General Transit Feed specification data). The list is not exhaustive. Regres-
sion, and machine learning techniques can be employed for predicting the demand,
based on the available data attributes.

7.3 recommendations for further research
The recommendations for further research include, the need to collect Taxi data
from other operators (possibly registered at TTO). This will serve two purposes,
one it can help understand if the users of the 65% taxi market (Uber comprises of
35%) behave differently when compared to Uber users. Additionally, it can be used
for validation of the model results. The data can also be used to compare Uber
movement travel times with travel times from other taxis. This can help establish
if the usage of bus and taxi lanes results in travel time differences compared to
an average vehicle user. The other recommendation relates to the observed peak
in data penetration points at midnight. It would be relevant to understand if the
data penetration is indeed caused by a lack of public transport during these hours
of the day. The model implemented can also be extended to determine charging
infrastructure. Extensions such as the charge carried by vehicles can integrated into
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the model. The travel times in the Uber Movement data can also be explored for
accessibility studies and its potential in highlighting accessibility issues. To enable a
disaggregated analysis, a web scraper can be built to scrape travel time data across
time periods for several dates in a year from the Uber Movement website. Another
recommendation is to estimate separate models using the weekday and weekend
travel time data and explore if the model results vary from each other as the travel
times and data penetration could be different.
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A N O N - R E C U R R E N T C O N G E S T I O N

Table A.1: WAZE alert data attributes
Attribute Example Description
reportBy Wegestatus.nl ID of WAZE user reporting the incident
country NL Country

nThumbsUp 4 Number of Thumbs Up to confirm the alert

reportRating 3

Rating of the report, determined by
number of Thumbs Up

confidence 1

Confidence determined
by the number of Thumbs up.

Relates to the reliability of the incident.

nReliability 6

Can take a value
between 0 to 10.

Usually between 5 to 10.
Relates to the number of users who
confirm the presence of the incident

nImages 0

Number of Images
posted with respect to the incident

by the reporter

type ROAD CLOSED
Type of incident

reported by the user
speed 0 Speed in km/h

reportMood 1

Mood of the reporter
displayed through an icon on WAZE

showFacebookPic No
No if no Facebook

images with respect to the event are found

subtype ROAD CLOSED EVENT

Further describing
type of incident.

For example, in the case of a jam
it can specify if the jams are

light, moderate or heavy.

location {”x”:4.872711,”y”:52.379103} Location of the
incident

nComments 1

Number
of comments on the incident by

WAZE users

City Amsterdam
Specifies the city in

which the incident took place

Street Postjesweg
Name of the street at

which the incident has occurred

roadType 2

WAZE assigns roads
from different levels a number.

For instance, S-roads get a value of 7. A
higher value indicating a

road higher in the network hierarchy

reportDescription
Ontscheping
cruiseschip

Description of the
incident

imagesUrl
https:\s3.amazonaws.com\waze.photos
\ac8acfa4-3892-4026-bae5-aabcf390740d

URL to displaying the
image of the incident

geometry POINT (4.848504 52.398977)
Coordiantes

of the incident

Table A.2: Accident incidents reported in the WAZE data with the highest reliability
MOVEMENT ID WK NAAM nThumbsUp reportRati confidence reliabilit type subtype street roadtype Date Time

108 Waterland 3 0 2 10 ACCIDENT None N247-Slochterweg 6 2018-07-06 05:45:00

108 Waterland 4 0 2 10 ACCIDENT None N247-Slochterweg 6 2018-07-06 06:00:00

73 Museumkwartier 4 1 1 10 ACCIDENT ACCIDENT MINOR S108 - Hobbemakade 7 2018-07-26 17:15:00

145 Bijlmer Oost 8 4 3 10 ACCIDENT ACCIDENT MAJOR S112 - Gooiseweg 7 2018-07-12 17:15:00

147 Nellestein 8 5 4 10 ACCIDENT ACCIDENT MINOR A9 3 2018-07-03 06:15:00

145 Bijlmer Oost 10 4 4 10 ACCIDENT ACCIDENT MAJOR S112 - Gooiseweg 7 2018-07-12 17:45:00

96
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Table A.3: Travel Time comparisons and differences - Waterland N247 - Slochterweg
dstid Travel Time (TT) Planning Time (PT) 90th 85th 80th mean TT-PT TT-90th TT-85th TT-80th TT-mean
37 587 363.1475 350.83 344.385 329.22 273.0021 223.8525 236.17 242.615 257.78 313.9979

56 334 426.052 388.062 368.04 356.354 332.4353 -92.052 -54.062 -34.04 -22.354 1.5647

78 707 751.507 705.672 655.249 586.838 516.2371 -44.507 1.328 51.751 120.162 190.7629

98 175 213.867 201.194 188.942 177.676 156.9537 -38.867 -26.194 -13.942 -2.676 18.0463

109 493 288.96 270.82 252.17 246.46 208.0389 204.04 222.18 240.83 246.54 284.9611

129 499 588.09 555.04 540.63 534 483.8161 -89.09 -56.04 -41.63 -35 15.1839

131 542 614.98 599.628 578.784 566.104 532.0027 -72.98 -57.628 -36.784 -24.104 9.9973

133 744 610.095 583.775 575.1425 556.67 496.9717 133.905 160.225 168.8575 187.33 247.0283

144 641 565.6835 552.643 544.9665 536.134 502.5331 75.3165 88.357 96.0335 104.866 138.4669

159 422 352.102 339.478 337.261 335.436 325.1256 69.898 82.522 84.739 86.564 96.8744

161 169 155.097 143.981 142.423 139.244 127.2601 13.903 25.019 26.577 29.756 41.7399
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Table A.4: Travel times from Waterland (N247-Slochterweg) to adjacent Wijks – 6th July 2018

– early morning
sourceid Origin wijk dstid Destination wijk Travel Time Planning Time Arithmetic mean

108 Waterland
37 Landsmeer 587 353.732 249.9909

92

Nieuwendammerdijk
and Buiksloterdijk

- - -

99 Waterlandpleinbuurt 116 201.2655 144.9526

101 Buikslotermeer 230 387 286.8167

107 Noordelijke IJ-oevers Oost - - -
109 Elzenhagen 493 286.459 216.9234

157 Broek in Waterland 249 281.207 254.1446

161 Watergang 169 143.108 126.7611

37 Landsmeer

92

Nieuwendammerdijk
and Buiksloterdijk

- 774.807 542.1467

99 Waterlandpleinbuurt - 725.204 570.306

101 Buikslotermeer - 592.7025 458.194

107 Noordelijke IJ-oevers Oost - - -
108 Waterland - 725.047 545.3471

109 Elzenhagen - 566.143 414.6921

157 Broek in Waterland - - -
161 Watergang - - -

92
Nieuwendammerdijk

and Buiksloterdijk
37 Landsmeer 499 610.596 439.3986

99 Waterlandpleinbuurt 289 352.181 257.7725

101 Buikslotermeer 82 153.8 95.25321

107 Noordelijke IJ-oevers Oost - 258.066 176.9816

108 Waterland 215 331.178 234.7031

109 Elzenhagen 131 219.406 163.448

157 Broek in Waterland - 463.4605 410.0777

161 Watergang 389 360.015 291.5844

99 Waterlandpleinbuurt
37 Landsmeer - 915.5 655.7633

92

Nieuwendammerdijk
and Buiksloterdijk

- 378.013 286.0963

101 Buikslotermeer 115 226.764 177.2632

107 Noordelijke IJ-oevers Oost - 422.479 330.8321

108 Waterland - 134.5 101.8531

109 Elzenhagen - 421.997 304.7334

157 Broek in Waterland -
161 Watergang - 486.8945 421.1425

101 Buikslotermeer
37 Landsmeer 423 513.13 379.6808

92

Nieuwendammerdijk
and Buiksloterdijk

141 214.994 159.022

99 Waterlandpleinbuurt 133 181.0335 135.843

107 Noordelijke IJ-oevers Oost - 349.414 250.0667

108 Waterland 131 212.457 159.0808

109 Elzenhagen 120 197.468 134.3065

157 Broek in Waterland - 402.1965 350.6381

161 Watergang 268 279.05 234.1582

107 Noordelijke IJ-oevers Oost
37 Landsmeer - 741.3435 639.18

92

Nieuwendammerdijk
and Buiksloterdijk

186 243.0425 181.8837

99 Waterlandpleinbuurt - 506.425 402.6742

101 Buikslotermeer 147 339.3875 274.0195

108 Waterland 310 540.175 436.5263

109 Elzenhagen - 607.974 465.326

157 Broek in Waterland -
161 Watergang - 836.67 836.67

109 Elzenhagen
37 Landsmeer - 550.3905 430.396

92

Nieuwendammerdijk
and Buiksloterdijk

101 140.245 96.17325

99 Waterlandpleinbuurt 380 401.745 262.2878

101 Buikslotermeer 209 265.881 154.6627

107 Noordelijke IJ-oevers Oost - 439.192 308.4012

108 Waterland 597 433.5875 308.385

157 Broek in Waterland - 560.2165 398.296

161 Watergang - 399.5525 263.55

157 Broek in Waterland
37 Landsmeer - - -

92

Nieuwendammerdijk
and Buiksloterdijk

- - -

99 Waterlandpleinbuurt - - -
101 Buikslotermeer - - -
107 Noordelijke IJ-oevers Oost - - -
108 Waterland - 387.665 296.3783

109 Elzenhagen - 445.982 403.238

161 Watergang - 266.63 164.6586

161 Watergang
37 Landsmeer -

92

Nieuwendammerdijk
and Buiksloterdijk

- 502.46 391.1321

99 Waterlandpleinbuurt - 714.9575 584.0867

101 Buikslotermeer - 632.044 469.77

107 Noordelijke IJ-oevers Oost -
108 Waterland - 259.05 169.2678

109 Elzenhagen - 460.8165 302.0185

157 Broek in Waterland - 177.0525 145.8629
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Table A.5: Road closed events with the highest reliability reported in WAZE
MOVEMENT ID WK NAAM nThumbsUp reportRati confidence reliabilit type subtype street roadtype Date Time

27 Haarlemerbuurt 4 0 2 10 ROAD CLOSED ROAD CLOSED EVENT Singel NaN 2018-07-17 10:00:00

23
Burgwallen Nieuwe

Zijdge
4 0 2 10 ROAD CLOSED ROAD CLOSED EVENT Singel NaN 2018-07-18 20:15:00

27 Haarlembuurt 4 0 2 10 ROAD CLOSED ROAD CLOSED EVENT Singel NaN 2018-07-19 16:15:00

28 Jordaan 5 0 2 10 ROAD CLOSED ROAD CLOSED EVENT Lijnbaansgracht NaN 2018-07-17 09:45:00

28 Jordaan 5 0 2 10 ROAD CLOSED ROAD CLOSED EVENT Lijnbaansgracht NaN 2018-07-26 11:00:00

73 Museumkwartier 9 0 4 10 ROAD CLOSED ROAD CLOSED EVENT Reijnier Winkeleskaade NaN 2018-07-03 12:45:00

73 Museumkwartier 9 0 4 10 ROAD CLOSED ROAD CLOSED EVENT Reijnier Winkeleskaade NaN 2018-07-26 11:00:00

Table A.6: Jam incidents reported in the WAZE data with the highest reliability
MOVEMENT

ID
WK NAAM nThumbsUp reportRati confidence reliabilit type subtype Street roadtype Date Time

108 Waterland 1 2 3 10 JAM JAM HEAVY TRAFFIC N247-Slochterweg 6 2017-07-06 05:15:00

148 Holendrecht 1 0 2 10 JAM JAM MODERATE TRAFFIC A9 3 2018-07-13 14:15:00

87 IJplein/Vogelbuurt 2 3 2 10 JAM JAM HEAVY TRAFFIC
S116

Niuewe Leeuwarderweg
7 2018-07-07 14:15:00

38 Centrale Markt 3 1 3 10 JAM JAM STAND STILL TRAFFIC
S105

– Jan van Galenstraat
7 2018-07-06 13:45:00

38 Centrale Markt 3 1 3 10 JAM JAM STAND STILL TRAFFIC
S105

– Jan van Galenstraat
7 2018-07-06 13:15:00

Table A.7: Travel Time differences to adjacent Wijks – Holendrecht (Jam at A9)
dstid Travel Time Planning Time 90th 85th 80th mean TT-PT TT-90th TT-85th TT-80th TT-mean

21 722 783.1375 756.86 728.73 704.66 636.268 -61.1375 -34.86 -6.73 17.34 85.732

145 345 370.5375 353.841 334.6975 318.906 290.1399 -25.5375 -8.841 10.3025 26.094 54.8601

147 476 173.789 162.379 158.2375 152.67 137.0789 302.211 313.621 317.7625 323.33 338.9211

Table A.8: Travel time comparisons and differences to other Wijk(s) - Holendrecht (Jam at
A9)

sourceid Origin wijk dstid Destination wijk Travel Time Planning Time Arithmethic mean
148 Holendrecht

141 Amstel III/Bullewijk 246 341.05 236.1997

143 Bijlmer Centrum (D,F,H) 162 288.869 217.4392

145 Bijlmer Oost (E,G,K) 345 370.5375 290.1399

147 Nellestein 476 173.789 137.0789

153 Abcoude - 615.23 504.6083

141 Amstel III/Bullewijk
143 Bijlmer Centrum (D,F,H) 197 291.0275 250.8349

145 Bijlmer Oost (E,G,K) 461 522.4035 468.7774

147 Nellestein 817 436.13 337.9811

148 Holendrecht 182 279.427 233.7232

153 Abcoude - 582.33 464.2554

143 Bijlmer Centrum (D,F,H)
141 Amstel III/Bullewijk 313 287.967 254.2319

145 Bijlmer Oost (E,G,K) 217 230.7915 197.5042

147 Nellestein - 350.0975 276.724

148 Holendrecht 176 263.0305 219.1083

153 Abcoude - 976.8105 723.6816

145 Bijlmer Oost (E,G,K)
141 Amstel III/Bullewijk 703 509.095 420.2808

143 Bijlmer Centrum (D,F,H) 224 210.1985 175.2379

147 Nellestein 499 312.5655 246.0868

148 Holendrecht 277 366.076 286.6994

153 Abcoude - 903.824 719.0828

147 Nellestein
141 Amstel III/Bullewijk 599 512.229 335.7667

143 Bijlmer Centrum (D,F,H) - 332.005 272.6667

145 Bijlmer Oost (E,G,K) 278 288.33 245.2019

148 Holendrecht 155 171.125 129.8899

153 Abcoude - 695.587 521.1453

153 Abcoude
141 Amstel III/Bullewijk 317 382.7765 281.7649

143 Bijlmer Centrum (D,F,H) - 851.205 698.2036

145 Bijlmer Oost (E,G,K) - 996.556 789.0797

147 Nellestein - 747.2445 540.1054

148 Holendrecht - 631.6015 489.2236

Table A.9: Weather Hazard incidents reported in the WAZE data with the highest reliability
MOVEMENT

ID
WK NAAM nThumbsUp reportRati confidence reliabilit type subtype Street roadtype Date Time

132 Sloter/Riekpolder 29 2 5 10 WEATHER HAZARD
HAZARD
ON ROAD

CONSTRUCTION
Anderlechtlaan 2 2018/07/04 15:15:00

82 Middenmeer 8 4 4 10 WEATHER HAZARD
HAZARD ON
SHOULDER

CAR STOPPED
A10 Parallel 3 2018/07/02 10:00:00

82 Middenmeer 6 3 3 10 WEATHER HAZARD
HAZARD ON

SHOULDER CAR
STOPPED

A10

Parallel
3 2018/07/31 06:15:00

81 Frankendael 40 2 5 10 WEATHER HAZARD
HAZARD ON ROAD

CONSTRUCTION
S112

– Prins Bernhardplein
7 2018/07/07 21:00:00

81 Frankendael 40 2 5 10 WEATHER HAZARD
HAZARD ON ROAD

CONSTRUCTION
S112

– Prins Berhardplein
7 2018/07/08 07:45:00
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Table A.10: Travel Time comparisons and differences to other Wijks - Frankendael
dstid Travel Time Planning Time 90th 85th 80th mean TT-PT TT-90th TT-85th TT-80th TT-mean

23 824 820.526 807.684 785.6175 769.102 717.762 3.474 16.316 38.3825 54.898 106.238

27 968 1019.142 970.536 955.3565 948.418 896.0177 -51.142 -2.536 12.6435 19.582 71.9823

28 1067 1124.051 1096.402 1033.603 1026.024 980.4355 -57.051 -29.402 33.397 40.976 86.5645

31 628 661.0265 644.094 633.794 626.72 576.9902 -33.0265 -16.094 -5.794 1.28 51.0098

40 1137 1203.602 1173.449 1143.609 1134.492 1056.201 -66.602 -36.449 -6.609 2.508 80.799

59 611 636.9335 627.473 599.1255 566.99 524.454 -25.9335 -16.473 11.8745 44.01 86.546

61 270 272.3915 264.666 257.3125 254.19 241.5988 -2.3915 5.334 12.6875 15.81 28.4012

82 214 199.7685 192.61 186.184 180.7 174.803 14.2315 21.39 27.816 33.3 39.197

83 145 145.113 142.218 140.616 138.734 131.4985 -0.113 2.782 4.384 6.266 13.5015

84 252 237.4905 236.74 230.61 227.204 214.5082 14.5095 15.26 21.39 24.796 37.4918

86 900 1017.805 930.85 903.84 879.4 814.4927 -117.805 -30.85 -3.84 20.6 85.5073

87 818 824.036 808.352 769.8145 760.486 704.6088 -6.036 9.648 48.1855 57.514 113.3912

127 787 651.609 637.608 618.8065 605.168 549.5992 135.391 149.392 168.1935 181.832 237.4008

128 839 926.416 886.585 871.2305 865.61 814.6123 -87.416 -47.585 -32.2305 -26.61 24.3877

143 373 365.26 358.697 355.7365 351.31 340.8795 7.74 14.303 17.2635 21.69 32.1205

145 456 531.937 438.358 428.456 418.462 400.9992 -75.937 17.642 27.544 37.538 55.0008

164 281 260.024 256.806 253.498 250.628 239.2495 20.976 24.194 27.502 30.372 41.7505

165 414 429.3525 413.433 404.1335 399.106 371.5313 -15.3525 0.567 9.8665 14.894 42.4687

Table A.11: Frankendael (Evening) 7th July 2018 – Travel times to and from adjacent Wijks
sourceid Origin wijk dstid Destination wijk Travel Time Percentile Travel Time Arithmetic mean

81 Frankendael
80 Rijnbuurt 320 335.6555 308.8262

82 Middenmeer 214 199.7685 174.803

83 Betondorp 145 145.113 131.4985

84

Omval/
Overamstel

252 237.4905 214.5082

51 Weesperzijde 192 229.9425 196.1682

54 Transvaalbuurt 101 137.035 117.005

80 Rijnbuurt
81 Frankendael 211 265.3915 238.6665

82 Middenmeer 263 318.1435 284.4658

83 Betondorp 199 232.264 205.9818

84

Omval/
Overamstel

110 113.843 94.29583

51 Weesperzijde 369 438.62 400.0633

54 Transvaalbuurt 297 375.2595 345.5617

82 Middenmeer
80 Rijnbuurt 343 413.832 354.1228

81 Frankendael 174 218.9605 183.924

83 Betondorp 141 170.3725 141.8133

84

Omval/
Overamstel

233 278.933 242.8882

51 Weesperzijde 463 604.861 520.8905

54 Transvaalbuurt 210 298.3955 246.1813

83 Betondorp
80 Rijnbuurt 225 262.1465 229.4443

81 Frankendael 131 167.139 138.6417

82 Middenmeer 115 128.987 113.5968

84

Omval/
Overamstel

139 158.462 138.0305

51 Weesperzijde 268 331.4335 265.8472

54 Transvaalbuurt 180 242.7105 207.0842

84
Omval/

Overamstel
80 Rijnbuurt 387 137.2905 116.2393

81 Frankendael 312 275.493 246.814

82 Middenmeer 209 225.435 203.0453

83 Betondorp 127 155.38 135.5522

51 Weesperzijde 387 438.2725 393.2345

54 Transvaalbuurt 312 365.127 333.1345

51 Weesperzijde
80 Rijnbuurt 475 428.8695 395.5097

81 Frankendael 175 186.5465 170.7328

82 Middenmeer 415 473.5605 421.66

83 Betondorp 254 276.186 254.6463

84

Omval/
Overamstel

390 382.5775 352.6058

54 Transvaalbuurt 215 232.2185 203.3768

54 Transvaalbuurt
80 Rijnbuurt 601 549.4845 492.2402

81 Frankendael 158 147.5775 133.2088

82 Middenmeer 160 180.826 159.456

83 Betondorp 313 336.8095 299.655

84

Omval/
Overamstel

533 456.5925 415.698

51 Weesperzijde 107 138.0905 110.3258
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Table A.12: Travel time comparisons and differences to other Wijken - Stadionbuurt - AM
peak - 15/10/2017

dstid Travel Time Planning Time 90th 85th 80th Mean Travel Time TT-PT TT-90th TT-85th TT-80th TT-Mean
11 977 577.2825 549.42 531.7575 521.61 505.4886111 399.7175 427.58 445.2425 455.39 471.5113889

16 1399 948.8175 906.105 876.135 824.54 778.0719444 450.1825 492.895 522.865 574.46 620.9280556

41 715 815.199 768.445 745.988 731.4 676.1141176 -100.199 -53.445 -30.988 -16.4 38.8858824

43 666 729.446 695.278 679.192 664.582 608.3268571 -63.446 -29.278 -13.192 1.418 57.6731429

44 640 688.69 653.875 628.495 607.7 559.7380556 -48.69 -13.875 11.505 32.3 80.2619444

45 844 384.7625 381.24 362.225 355.14 318.6319444 459.2375 462.76 481.775 488.86 525.3680556

46 674 624.6025 597.195 561.1125 538.59 504.4433333 49.3975 76.805 112.8875 135.41 169.5566667

47 505 212.17 201.965 197.3025 195.21 184.1916667 292.83 303.035 307.6975 309.79 320.8083333

61 696 707.0585 687.047 679.9085 664.94 578.8559375 -11.0585 8.953 16.0915 31.06 117.1440625

69 925 519.94 498.09 473.9 462.08 408.295 405.06 426.91 451.1 462.92 516.705

73 426 385.8175 367.195 355.4275 350.3 324.5208333 40.1825 58.805 70.5725 75.7 101.4791667

75 220 201.2625 189.45 176.855 176.73 163.6547222 18.7375 30.55 43.145 43.27 56.3452778

78 667 514.9325 506.04 501.1375 497.06 467.51 152.0675 160.96 165.8625 169.94 199.49

80 683 592.877 575.188 540.95 519.73 493.3088571 90.123 107.812 142.05 163.27 189.6911429

84 649 669.578 643.535 610.063 592.078 521.8428125 -20.578 5.465 38.937 56.922 127.1571875

85 272 196.5625 186.16 175.365 173.48 152.0888889 75.4375 85.84 96.635 98.52 119.9111111

128 759 646.9375 633.845 613.5175 565.1 502.2891667 112.0625 125.155 145.4825 193.9 256.7108333

130 633 354.18 343.54 341.04 336.19 315.1519444 278.82 289.46 291.96 296.81 317.8480556

132 788 416.3125 412.845 397.3625 391.65 372.2258333 371.6875 375.155 390.6375 396.35 415.7741667

136 529 270.4675 265.035 262.165 255.62 243.4075 258.5325 263.965 266.835 273.38 285.5925

138 517 556.445 536.805 517.5775 504.85 467.3155556 -39.445 -19.805 -0.5775 12.15 49.6844444

Table A.13: Travel Time comparisons and differences to other Wijken - Stadionbuurt - Midday
- 15/10/2017

dstid Travel Time Planning Time 90th 85th 80th Mean Travel Time TT-PT TT-90th TT-85th TT-80th TT-Mean
11 1347 663.004 637.951 634.5675 631.504 580.7954167 683.996 709.049 712.4325 715.496 766.2045833

16 1614 896.7425 879.491 867.277 861.058 798.9659722 717.2575 734.509 746.723 752.942 815.0340278

21 951 682.023 671.899 662.731 646.796 605.9179167 268.977 279.101 288.269 304.204 345.0820833

23 1843 1474.7265 1451.019 1447.215 1412.584 1335.146111 368.2735 391.981 395.785 430.416 507.8538889

24 2128 1286.3615 1235.475 1207.0495 1188.302 1129.656111 841.6385 892.525 920.9505 939.698 998.3438889

25 1789 1128.2295 1098.639 1086.618 1066.24 1009.920278 660.7705 690.361 702.382 722.76 779.0797222

26 1433 1396.6635 1373.916 1358.335 1328.528 1240.226111 36.3365 59.084 74.665 104.472 192.7738889

28 1763 1157.8695 1109.156 1087.558 1075.364 1024.684583 605.1305 653.844 675.442 687.636 738.3154167

30 1367 1144.987 1117.477 1109.925 1086.126 1038.640139 222.013 249.523 257.075 280.874 328.3598611

33 1396 913.096 882.31 853.314 835.306 755.4728986 482.904 513.69 542.686 560.694 640.5271014

41 1490 1034.676 979.041 965.306 959.632 907.4581944 455.324 510.959 524.694 530.368 582.5418056

42 1336 1169.62 1095.33 990.64 977.47 897.7614754 166.38 240.67 345.36 358.53 438.2385246

43 1410 916.867 880.373 865.2395 853.36 808.2933333 493.133 529.627 544.7605 556.64 601.7066667

44 1427 834.3965 821.936 807.5605 797.552 742.2445833 592.6035 605.064 619.4395 629.448 684.7554167

45 1750 489.8155 474.055 467.345 460.634 417.03625 1260.1845 1275.945 1282.655 1289.366 1332.96375

46 1330 766.651 759.265 730.492 723.35 676.3638889 563.349 570.735 599.508 606.65 653.6361111

47 579 248.3735 246.857 243.9195 241.636 229.7006944 330.6265 332.143 335.0805 337.364 349.2993056

48 954 784.5715 768.464 761.333 752.812 720.2859722 169.4285 185.536 192.667 201.188 233.7140278

49 733 694.2705 658.955 644.0685 636.602 600.6895833 38.7295 74.045 88.9315 96.398 132.3104167

50 1042 963.99 937.068 904.31 893.26 793.5920408 78.01 104.932 137.69 148.74 248.4079592

51 1330 1061.31 1034.235 1006.8585 996.528 944.5881944 268.69 295.765 323.1415 333.472 385.4118056

52 1297 1129.939 1085.779 1066.764 1056.268 998.5620833 167.061 211.221 230.236 240.732 298.4379167

54 1368 1069.3495 1044.281 1024.4235 1008.3 936.7765517 298.6505 323.719 343.5765 359.7 431.2234483

61 1055 821.83 789.694 759.88 732.864 683.6504167 233.17 265.306 295.12 322.136 371.3495833

63 1394 799.98 781.073 760.5085 745.398 700.59375 594.02 612.927 633.4915 648.602 693.40625

65 1168 747.589 705.406 699.9095 684.222 633.1931944 420.411 462.594 468.0905 483.778 534.8068056

66 1317 1147.659 1106.404 1041.574 1023.542 905.2185106 169.341 210.596 275.426 293.458 411.7814894

67 1090 848.8 790.42 787.44 763.5 689.4239344 241.2 299.58 302.56 326.5 400.5760656

69 1677 641.2435 604.65 595.7425 574.22 520.7263889 1035.7565 1072.35 1081.2575 1102.78 1156.273611

70 959 427.2345 415.888 400.8775 383.834 337.7516667 531.7655 543.112 558.1225 575.166 621.2483333

72 404 195.2985 186.286 184.991 179.326 166.3502778 208.7015 217.714 219.009 224.674 237.6497222

73 518 475.31 467.445 462.591 456.046 430.0847222 42.69 50.555 55.409 61.954 87.91527778

75 180 244.276 236.831 230.4935 226.538 211.8211111 -64.276 -56.831 -50.4935 -46.538 -31.82111111

78 820 605.4315 575.624 564.625 557.134 521.2013889 214.5685 244.376 255.375 262.866 298.7986111

79 1107 956.3115 933.131 862.836 814.768 748.2375 150.6885 173.869 244.164 292.232 358.7625

80 967 695.6305 646.796 637.8655 629.058 585.5088889 271.3695 320.204 329.1345 337.942 381.4911111

81 1351 988.694 977.904 949.482 919.48 859.2853623 362.306 373.096 401.518 431.52 491.7146377

82 1488 1041.448 995.148 939.36 919.206 839.3310769 446.552 492.852 548.64 568.794 648.6689231

83 1146 906.6925 888.445 853.82 825.09 752.2260606 239.3075 257.555 292.18 320.91 393.7739394

84 1039 749.4575 703.03 689.565 674.228 619.0375 289.5425 335.97 349.435 364.772 419.9625

85 205 263.2035 234.17 215.3685 208.292 190.0290278 -58.2035 -29.17 -10.3685 -3.292 14.97097222

128 1359 662.5185 654.89 623.644 616.616 566.3943056 696.4815 704.11 735.356 742.384 792.6056944

130 971 448.538 436.108 421.0005 408.958 385.6641667 522.462 534.892 549.9995 562.042 585.3358333

132 1371 527.8675 510.032 505.1735 496.728 457.8363889 843.1325 860.968 865.8265 874.272 913.1636111

136 752 350.819 341.317 331.8015 330.336 312.4879167 401.181 410.683 420.1985 421.664 439.5120833

138 831 594.4775 578.962 566.79 557.352 529.3983333 236.5225 252.038 264.21 273.648 301.6016667
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Table A.14: Travel Time comparisons and differences to other Wijken - Stadionbuurt - PM -
15/10/2017

dstid Travel Time Planning Time 90th 85th 80th Mean Travel Time TT-PT TT-90th TT-85th TT-80th TT-Mean
11 1151 637.3975 624.59 610.0775 606.29 572.7247222 513.6025 526.41 540.9225 544.71 578.2752778

16 1344 864.7775 840.52 819.9725 811.09 776.545 479.2225 503.48 524.0275 532.91 567.455

21 711 635.1925 624.6 616.7425 604.74 563.8988889 75.8075 86.4 94.2575 106.26 147.1011111

22 1421 1626.795 1535.465 1505.5525 1484.05 1362.025 -205.795 -114.465 -84.5525 -63.05 58.975

23 1467 1464.1525 1392.115 1380.7225 1370.44 1290.644722 2.8475 74.885 86.2775 96.56 176.3552778

24 1495 1226.185 1197.545 1189.0725 1184.2 1112.791111 268.815 297.455 305.9275 310.8 382.2088889

25 1266 1070.51 1055.16 1047.2975 1027.45 970.3486111 195.49 210.84 218.7025 238.55 295.6513889

26 1267 1366.662 1304.624 1280.541 1278.678 1230.963429 -99.662 -37.624 -13.541 -11.678 36.03657143

28 1266 1110.8675 1068.445 1055.4175 1050.62 996.2002778 155.1325 197.555 210.5825 215.38 269.7997222

29 911 890.31 868.34 858.71 849.64 817.1419444 20.69 42.66 52.29 61.36 93.85805556

30 1101 1122.425 1075.508 1072.294 1052.934 1024.410286 -21.425 25.492 28.706 48.066 76.58971429

40 1214 1170.489 1125.536 1101.572 1066.932 1001.351143 43.511 88.464 112.428 147.068 212.6488571

41 1118 1007.7775 998.135 985.9875 965.94 894.0788889 110.2225 119.865 132.0125 152.06 223.9211111

42 1390 1016.564 990.571 976.878 922.446 844.6158824 373.436 399.429 413.122 467.554 545.3841176

43 1096 879.27 868.415 862.1275 855.4 793.1227778 216.73 227.585 233.8725 240.6 302.8772222

44 1038 804.62 794.4 786.2075 774.45 723.9536111 233.38 243.6 251.7925 263.55 314.0463889

46 905 720.1175 705.91 693.9075 688.4 649.9497222 184.8825 199.09 211.0925 216.6 255.0502778

47 333 239.5575 236.58 233.8775 228.97 220.4202778 93.4425 96.42 99.1225 104.03 112.5797222

48 801 747.815 739.09 729.61 725.19 687.8791667 53.185 61.91 71.39 75.81 113.1208333

49 666 663.8925 648.39 642.745 630.14 598.3644444 2.1075 17.61 23.255 35.86 67.63555556

51 1122 1047.9525 1017.4 1002.77 998.21 937.0877778 74.0475 104.6 119.23 123.79 184.9122222

52 1230 1080.595 1068.055 1040.8975 1032.69 989.9363889 149.405 161.945 189.1025 197.31 240.0636111

54 1010 1127.5055 1080.592 1027.0575 1018.144 947.2675 -117.5055 -70.592 -17.0575 -8.144 62.7325

61 843 756.7275 719.63 695.8875 686.23 645.0694444 86.2725 123.37 147.1125 156.77 197.9305556

63 1411 804.1175 758.565 750.485 738.45 687.2213889 606.8825 652.435 660.515 672.55 723.7786111

70 951 360.97 338.31 328.3975 322.24 296.3905556 590.03 612.69 622.6025 628.76 654.6094444

71 525 250.4225 240.1 236.9925 231.45 217.625 274.5775 284.9 288.0075 293.55 307.375

72 387 187.965 175.88 173.82 171.5 162.8311111 199.035 211.12 213.18 215.5 224.1688889

73 474 453.2825 447.2 445.785 435.43 419.2169444 20.7175 26.8 28.215 38.57 54.78305556

75 195 230.7775 219.805 217.1125 213.44 207.1183333 -35.7775 -24.805 -22.1125 -18.44 -12.11833333

78 585 549.655 535.74 525.5575 522.97 493.3444444 35.345 49.26 59.4425 62.03 91.65555556

80 653 609.4275 598.1 593.56 579.85 550.2397222 43.5725 54.9 59.44 73.15 102.7602778

81 847 988.744 951.316 914.156 874.292 842.2557576 -141.744 -104.316 -67.156 -27.292 4.744242424

83 839 825.962 806.038 784.998 760.264 718.0984848 13.038 32.962 54.002 78.736 120.9015152

84 734 649.85 632.735 623.425 619.36 558.9161111 84.15 101.265 110.575 114.64 175.0838889

85 171 210.9675 207.85 204.5525 199.15 182.7419444 -39.9675 -36.85 -33.5525 -28.15 -11.74194444

128 1116 648.785 616.405 588.4875 582.13 540.7980556 467.215 499.595 527.5125 533.87 575.2019444

130 798 418.2925 409.035 395.925 393.55 374.3177778 379.7075 388.965 402.075 404.45 423.6822222

132 933 484.1675 478.59 473.115 471.04 447.1377778 448.8325 454.41 459.885 461.96 485.8622222

136 497 324.615 321.23 319.59 315.3 297.7658333 172.385 175.77 177.41 181.7 199.2341667

138 595 543.0925 541.145 529.345 528.59 493.6936111 51.9075 53.855 65.655 66.41 101.3063889
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(a) Spatial spread - Early morning (left) & Spatial spread - AM peak (right)

(b) Spatial spread - Midday (left) & Spatial spread - PM peak (right)

(c) Spatial spread - Evening

Figure B.1: Spatial spread of Ubers across different time periods on simulating the model
with 905 Uber vehicles
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(a) Spatial spread - Early morning (left) & Spatial spread - AM peak (right)

(b) Spatial spread - Midday (left) & Spatial spread - PM peak (right)

(c) Spatial spread - Evening

Figure B.2: Spatial spread of Ubers across different time periods on simulating the model
with 3620 Uber vehicles



C I N T E R V I E W

The following is an interview with Ottmar Francisca who drives for Uber. The ques-
tions relate to the spatial-temporal aspects and type of users. The questions have
accordingly been split.

Temporal Aspects

1. What period of the day do you tend to get most trips (Early monring - 00:00 to
06:00, AM peak - 07:00 to 09:00, Midday - 09:00 to 15:00, PM peak - 16:00 to 18:00
and evening - 19:00 to 23:00)

AM and PM peak. They are both peak periods. Morning and evening (as well).

2. Do trips around midnight tend to be especially high?

If you mean high by euros (money) than not. Depends on the surge, the trips get higher.
That can be when there are lot of requests in an area. Can be because of rain, events or
promotion.

3. What hours of the day are you travelling around searching for a passenger the
most - (Early monring - 00:00 to 06:00, AM peak - 07:00 to 09:00, Midday - 09:00 to
15:00, PM peak - 16:00 to 18:00 and evening - 19:00 to 23:00)?

My working time is 06.00 Am till 18.00 pm approximately.

4 .Is there a seasonal trend for Uber usage? Do you tend to get more trips in
certain months compared to the others?

November, 1st to 15th December and January are a bit lower than normal. But still good
earnings.

5. Are weekdays or weekends busier?

At the times I work, the best days are Sundays and Mondays. Sundays tourists are going
home, seems there are more trips to the airport. Mondays is the start of the week.

Spatial aspects

6. What are the most popular areas where you have pick-ups and drop-offs (For
instance: Schiphol, Central Station, Blijmer arena) - Does this change according
to the time of the day, day of the week and month? If yes, can you also please
give me some examples?

Airport is always popular. This because the trip from Amsterdam to the Airport is about 15
to 25 km and from the airport you get someone back. Other locations are not very special
only if there is something special like an event.

7. Are there a lot of trips to and from Haarlem?

There are trips to and from Haarlem. I see that the trips on the peak hours getting more each
day. But seems there are not a lot of drivers in Haarlem. This is the reason the surge goes
up during peak hours.

8. Do you also have trips to Bloemendaal, Zandvoort, and Zaandam?
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Yes, especially in the warm months. For Bloemendaal and Zandvoort: these are normally
not tourists. For Zaandam (Zaanseschans), there are a lot of tourists dropped there.

9. Are most of your trips short distance (0-5 km) or long-distance trips (above 5
km)?

There is a mix. I think 60% short and 40% long

Passengers using Uber

10. What is the purpose of most travellers to use Uber? For example: Going to
work, hotels, tourism, shopping etc.?

85 % are tourist. Local people only use Uber when they are late, when they go out or when
it rains.

11. If most of the people using Ubers are tourists? Which places do you have to
drop or pick them?

Picked up from hotels and dropped at hotels and tourist spots



D S U P P L E M E N TA R Y I M A G E

Figure D.1: Spread of hotels across the greater Amsterdam region as per listings on Book-
ing.com [Booking.com, 2019]
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