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A B S T R A C T   

Satellite remote sensing (SRS) provides huge potential for tracking progress towards conservation targets and 
goals, but SRS products need to be tailored towards the requirements of ecological users and policymakers. In 
this viewpoint article, we propose to advance SRS products with a terrestrial biodiversity focus for tracking the 
goals and targets of the Kunming-Montreal global biodiversity framework (GBF). Of 371 GBF biodiversity in-
dicators, we identified 58 unique indicators for tracking the state of terrestrial biodiversity, spanning 2 goals and 
8 targets. Thirty-six shared enough information to analyse their underlying workflows and spatial information 
products. We used the concept of Essential Biodiversity Variables (EBV) to connect spatial information products 
to different dimensions of biodiversity (e.g. species populations, species traits, and ecosystem structure), and 
then counted EBV usage across GBF goals and targets. Combined with published scores on feasibility, accuracy, 
and immaturity of SRS products, we identified a priority list of terrestrial SRS products representing opportu-
nities for scientific development in the next decade. From this list, we suggest two key directions for advancing 
SRS products and workflows in the GBF context using current instruments and technologies. First, existing 
terrestrial ecosystem distributions and live cover fraction SRS products (of above-ground biomass, ecosystem 
fragmentation, ecosystem structural variance, fraction of vegetation cover, plant area index profile, and land 
cover) need to be refined using a co-design approach to achieve harmonized ecosystem taxonomies, reference 
states and improved thematic detail. Second, new SRS products related to plant physiology and primary pro-
ductivity (e.g. leaf area index, chlorophyll content & flux, foliar N/P/K content, and carbon cycle) need to be 
developed to better estimate plant functional traits, especially with deep learning techniques, radiative transfer 
models and multi-sensor frameworks. Advancements along these two routes could greatly improve the tracking 
of GBF target 2 (‘improve connectivity of priority terrestrial ecosystems), target 3 (‘ensure management of 
protected areas’), target 6 (‘control the introduction and impact of invasive alien species’), target 8 (‘minimize 
impact of climate change on biodiversity’), target 10 (‘increase sustainable productivity of agricultural and 
forested ecosystems’) and target 12 (‘increase public urban green/blue spaces’). Such improvements can have 
secondary benefits for other EBVs, e.g. as predictor variables for modelling species distributions and population 
abundances (i.e. data that are required in several GBF indicators). We hope that our viewpoint stimulates the 
advancement of biodiversity monitoring from space and a stronger collaboration among ecologists, SRS scientists 
and policy experts.   

1. Introduction 

Global biodiversity is rapidly declining and human impacts impair 
the distribution and abundance of wild species, the distinctness of 
ecological communities, and the extent and integrity of ecosystems 
(Díaz et al., 2019). Since the 1992 Rio Earth Summit, the Convention on 

Biological Diversity (CBD) has aimed to promote sustainable develop-
ment and conservation of biodiversity through national policies. In 
December 2022, governments have released the final text of the 
Kunming-Montreal Global Biodiversity Framework (GBF) with a set of 
ambitious long-term goals (to be achieved in 2050) and specific targets 
(for 2030) that require immediate action (CBD, 2022a). Within the 
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monitoring framework of this GBF, 371 headline, component and 
complementary biodiversity indicators —created by non-governmental 
organisations, research institutes and other partners of the Biodiver-
sity Indicators Partnership (BIP)— have been identified to track progress 
towards achieving these goals and targets (CBD, 2022b). We believe that 
satellite remote sensing (SRS) could play a vital role in providing data to 
feed into these biodiversity indicators if ecological and policy re-
quirements can be met. With this viewpoint article, we review the po-
tential importance of SRS observations from current instruments and 
technologies for monitoring the state of terrestrial biodiversity in the 
GBF context and suggest key directions for advancing and developing 
SRS products and workflows. 

Assessments of progress towards global conservation goals and tar-
gets require a multitude of datasets that can feed into biodiversity in-
dicators. Besides in-situ monitoring, SRS has been suggested to play a 
vital role in the development of reliable indicators, especially in the 
terrestrial realm (Cavender-Bares et al., 2022; Pettorelli et al., 2016; 
Skidmore et al., 2015; Turner, 2014; Wang and Gamon, 2019). One 
advantage of SRS is that it acquires spatially contiguous data on biodi-
versity and ecosystems with a (near-)global extent, and with a high 
consistency over the lifetime of the mission. Nevertheless, within ecol-
ogy and biodiversity science the use of SRS products has been mostly 
seen in the context of predictor variables to extrapolate in-situ obser-
vations of species distributions and population abundance into contin-
uous variables in space and time (Pereira et al., 2017; Randin et al., 
2020). This contrasts with the view that SRS observations can be used to 
monitor specific aspects of biodiversity directly from space (Alleaume 
et al., 2018; Pettorelli et al., 2016; Skidmore et al., 2021, 2015). Recent 
studies do indeed show that SRS can provide observations (Koskikala 
et al., 2020) and derived products (e.g. fractional cover, forest cover or 
land cover) for monitoring the distribution, fragmentation and hetero-
geneity of ecosystems (Lock et al., 2022). Moreover, with increasing 
amounts of new SRS products (Kuenzer et al., 2014) and new satellite 
missions emerging (Briottet et al., 2022; Cawse-Nicholson et al., 2021), 
the range of observations that can directly contribute to biodiversity 
indicators will further broaden. Examples include imaging spectrome-
ters for estimating phylogenetic and trait diversity of plants (Asner et al., 
2017; Helfenstein et al., 2022; Schneider et al., 2017), radar for mapping 
forest biodiversity (Bae et al., 2019), LiDAR sensors for measuring the 
3D structure of ecosystems (Valbuena et al., 2020), or a combination of 
multispectral images from different satellite sensors to count large 
terrestrial mammals (Wu et al., 2023). However, an ecological 
perspective of how SRS can be improved in the context of the final 
Kunming-Montreal GBF is currently lacking, apart from a preliminary 
perspective on the 1st draft version (Cavender-Bares et al., 2022). 

Requirements for developing new SRS products can be defined by 
assessing the feasibility, accuracy and (im)maturity of SRS products 
(Skidmore et al., 2021), e.g. regarding the potential of novel approaches 
(Skidmore et al., 2021, 2015), the validity of data products (Mayr et al., 
2019) or the capability of processing chains (Paganini et al., 2016). Such 
assessments, often conducted by the remote sensing community, provide 
a high level of technological detail which is useful for space agency 
engineers and SRS scientists, but difficult to understand for ecologists 
and policy makers (Kuenzer et al., 2014; O’Connor et al., 2015; Paganini 
et al., 2016; Petrou et al., 2015). On the other hand, reviews of con-
servation policies often fail to provide detailed information on specific 
SRS requirements. Only a few reviews (O’Connor et al., 2015; Petrou 
et al., 2015; Secades et al., 2014; Vihervaara et al., 2017) have bridged 
the gap between policy, remote sensing and biodiversity science. How-
ever, the current relevance of these reviews for the Kunming-Montreal 
GBF is limited considering their focus on national targets (Vihervaara 
et al., 2017) or on the previous set of Aichi targets (O’Connor et al., 
2015). No detailed user requirement analysis of SRS products has yet 
been performed in the GBF context, which limits the capacity of the 
scientific community to contribute to the development of new SRS 
products and workflows that can be used in biodiversity indicators. 

Here, we review those biodiversity indicators of the Kunming- 
Montreal GBF (CBD, 2022a, 2022b) that capture the state of terrestrial 
biodiversity, and analyse their workflows and underlying spatial infor-
mation products to provide our view on key directions for development 
of ecologically relevant SRS products in the next decade. We use the 
concept of Essential Biodiversity Variables (EBVs) (Pereira et al., 2013) 
as an abstraction layer to sort spatial information products from the GBF 
indicators into major dimensions of biodiversity (i.e. variables related to 
species populations, species traits, community composition, ecosystem 
structure and ecosystem functioning). This allows us to count and score 
the EBV usage across GBF goals and targets, and to assess the relevance 
of SRS products for monitoring terrestrial biodiversity in a global policy 
context. Together with scores of the feasibility, accuracy and (im) 
maturity of SRS products from a comprehensive expert assessment 
(Skidmore et al., 2021), we rank SRS products and associated EBVs to 
create a top priority list. From this list, we provide our viewpoint on how 
the scientific community could advance biodiversity monitoring in the 
next decade with SRS in the context of the GBF. For clarity on the ter-
minology, we provide a glossary of key terms used in this manuscript 
(see Table 1). 

2. Materials and methods 

Our methodology for analysing scientific opportunities for devel-
oping SRS products in the next decade included a review of the GBF to 
classify and filter goals and targets that contain biodiversity indicators 
for monitoring the state of terrestrial biodiversity with SRS (Fig. 1, top). 
We subsequently analysed workflows of these biodiversity indicators 
and summarized which spatial information products are used (Fig. 1, 
right). By classifying each product into the EBV framework and counting 
the usage of different EBVs (Fig. 1, bottom), we could calculate the 
relevance of such products in the GBF context. Together with scorings of 
the feasibility, accuracy and (im)maturity of SRS products by current 
instruments and technologies from an expert assessment (Skidmore 
et al., 2021), we then ranked associated EBVs on their summary scores 
and created a top priority list of SRS products for scientific development 
(Fig. 1, left). 

2.1. Filtering of Kunming-Montreal goals and targets 

The GBF defines four goals for 2050 (A–D) and 23 targets for 2030 
(CBD, 2022a). A monitoring framework has been developed to track 
progress towards these goals and targets, composed of three groups of 
biodiversity indicators (i.e. headline, component and complementary) 
(CBD, 2022b). We used a filtering approach (Fig. 1, top) to include only 
biodiversity indicators that capture the state of terrestrial biodiversity 
and which are potentially observable from space (see Table S1.2 in 
Supplementary Material S1). For this, we classified keywords within the 
descriptions of the goals and targets of the GBF (Table 1). We only 
included those goals and targets that capture the state of biodiversity 
following the Driver-Pressure-State-Impact-Response (DPSIR) frame-
work (Burkhard and Müller, 2008). 

2.2. Biodiversity indicator workflow analysis 

For the identified goals and targets, we performed an in-depth 
analysis of the associated biodiversity indicators (listed in Table S3.1 
of Supplementary Material S3). For each indicator, we screened the 
workflow as described in scientific publications, technical reports, and 
websites (sources in Table S3.2 of Supplementary Material S3) in terms 
of its relevance for tracking the state of terrestrial biodiversity. We 
identified all data products that are required by each workflow. Products 
that were highlighted for complementing the indicator or for dis-
aggregating the indicator to a regional level were not included. From the 
identified list of data products, we selected those with biological geo-
spatial information, e.g. products of biodiversity hotspots (Dinerstein 
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et al., 2019). To provide relevant information for future SRS products, 
we also included spatial information products that are currently 
collected with methods other than SRS. Furthermore, we did not weigh 
SRS products by their relative importance for a given indicator workflow 
or by their direct or indirect use, because there is insufficient informa-
tion to conduct sensitivity analyses of multiple scenarios for every 
workflow (Rowland et al., 2021). 

Spatial information products were then sorted into the EBV classifi-
cation (Fig. 1, bottom). The EBV concept was useful here because it 
provides an intermediate (ecological) abstraction layer for connecting 
the spatial information products from the GBF indicators with products 
obtained from SRS (Fig. 1). Currently, a total of 21 EBVs across six EBV 
classes are recognised by the Group on Earth Observations Biodiversity 
Observation Network (GEO BON) (https://geobon.org/ebvs/what-are- 
ebvs/, accessed 30 January 2023). We sorted each spatial information 
product into one of the 21 EBVs based on the elements of biodiversity 
they capture. For instance, the ESA Landcover CCI data product (ESA, 
2017) was grouped into the live cover fraction EBV because it provides 
38 layers of fractional cover for various ecosystem types (e.g. grassland, 
deciduous shrubland, lichens and mosses). Similarly, the ‘Terrestrial 
Ecoregions of the World’ (Sayre et al., 2020) was grouped into the 
ecosystem distribution EBV, as it provides information on distinct 
ecological assemblages (but not on fractional cover). This grouping 
provided us with information on how often EBVs and EBV classes are 
represented in the different biodiversity indicators of the GBF (full de-
tails provided in Supplementary Material S4). 

2.3. Ranking EBV usage 

The next step was to integrate the results from the workflow analysis 
into a ranking of specific products from current SRS instruments and 

technologies (Fig. 1, left). For this, we first counted how often EBVs were 
used for each goal and target. We then applied a natural breaks classi-
fication to assign scores to the usage (1 for a usage > 15, 2 for a usage >
1 AND <=15, and 3 for usages ≤ 1). This allowed us to be consistent 
with the three-point scoring system used by Skidmore et al. (2021) for 
the other criteria. To test how our results might change if additional 
indicators are included that are currently insufficiently described (listed 
in see Table S3.3 in Supplementary Materials S3), we also performed a 
sensitivity analysis on this relevance score using descriptions of these 
(immature) indicators to specify the potential usage of EBVs (see 
Table S3.4 in Supplementary Materials S3). 

We combined the scores for the relevance, feasibility, accuracy, and 
immaturity criteria (Table 2) into a summary score and created a 
ranking list from the summary scores to identify which SRS products 
could be developed by the scientific community to expand the tracking 
of GBF goals and targets. We therefore adapted the results from Skid-
more et al. (2021) in the following way (see overview in Table 2). First, 
we used our relevance score (see above) to explicitly capture the rele-
vance for the Kunming-Montreal GBF. Second, we defined immaturity as 
the inverse of the maturity score (Skidmore et al., 2021) to highlight the 
potential of (current and upcoming) SRS technologies rather than those 
that are currently already operational, as was the aim of Skidmore et al 
(2021). By combining the scores, we identified which SRS products from 
current instruments and technologies are most promising for future 
development. In the summary scores, we did not weigh the criteria to 
keep them equally important as well as comparable with the results of 
Skidmore et al. (2021). From the ranking of the summary scores, we 
then identified the top priority products by focusing on the upper 10th 
percentile of the list, corresponding to a threshold of a summary score 
equal to 7. 

Table 1 
Glossary of key terms. The list captures key terms, descriptions, and an example focused on target 2 in goal A of the Kunming-Montreal global biodiversity framework 
(GBF).  

Key term Description Example 

Goal Four long-term goals (A, B, C, D) are defined by the Kunming-Montreal GBF ( 
CBD, 2022a) to be achieved by 2050. 

Goal A: The integrity, connectivity and resilience of all ecosystems are 
maintained, enhanced, or restored, substantially increasing the area of 
natural ecosystems by 2050. Human induced extinction of known threatened 
species is halted, and, by 2050, extinction rate and risk of all species are 
reduced tenfold, and the abundance of native wild species is increased to 
healthy and resilient levels. The genetic diversity within populations of wild 
and domesticated species, is maintained, safeguarding their adaptive 
potential. 

Target For each goal, several action-oriented conservation targets (23 in total) are 
defined to be met in 2030. 

Target 2: Ensure that by 2030 at least 30 per cent of areas of degraded 
terrestrial, inland water, and coastal and marine ecosystems are under 
effective restoration, in order to enhance biodiversity and ecosystem 
functions and services, ecological integrity and connectivity. 

Target component In the zero and first draft of the GBF, each target is divided into target 
components to aid in tracking the progress towards that target. 

Target 2 is divided into two target components, including T2.2 
‘Connectivity’. 

Monitoring element In the zero draft of the GBF, each target component is divided into elements to 
aid the selection of biodiversity indicators. 

For the ‘Connectivity’ target component, six monitoring elements are 
defined, including the ‘Trends in extent and rate of change of terrestrial 
ecosystems’. 

Biodiversity 
indicator 

To track the progress of each GBF goal and target, several (headline, 
component and complementary) biodiversity indicators are defined (CBD, 
2022b). 

For goal A, 22 biodiversity indicators (out of 45) are promoted by the 
Biodiversity Indicators Partnership (BIP) to track the state of terrestrial 
biodiversity, including the ‘Biodiversity Habitat Index’ (Hoskins et al., 2016) 
and the ‘Species Protection Index’ (GEO BON, 2015). 

Biodiversity 
indicator 
workflow 

Analytical steps (e.g., through computer-algorithms, data-processing, GIS- 
analyses)that are needed to process available data products (from remote 
sensing or in-situ observations) into biodiversity indicators. 

The ‘Biodiversity Habitat Index’ is calculated by the ‘Biogeographic 
modelling Infrastructure for Large-scale Biodiversity Indicators’ (Hoskins 
et al., 2020) to map spatial patterns of the distribution of biodiversity. 

Satellite remote 
sensing product 

Satellite remote sensing (SRS) products are derived from satellite imagery, 
here referring to those which capture aspects of biodiversity and ecosystems ( 
Skidmore et al., 2021). 

The Global Forest Cover product (Hansen et al., 2013) is used (with 
additional biodiversity data) to calculate the ‘Biodiversity Habitat Index’. 

Essential 
biodiversity 
variable 

Essential Biodiversity Variables (EBVs) are a minimum set of complementary 
measurements (https://geobon.org/ebvs/what-are-ebvs/; accessed on 30 
January 2023), conceptually located between low-level primary observations 
and high-level biodiversity indicators, to capture major dimensions of 
biodiversity change (Pereira et al., 2013). 

Examples of EBV data products are available from the GEO BON EBV data 
portal (https://portal.geobon.org). An example is the’Forest loss year 
(2000–2018)’ product as an ecosystem distribution EBV (in the EBV class 
‘Ecosystem structure’).  
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3. Results 

3.1. Filtering of Kunming-Montreal goals and targets 

Across the goals and targets of the Kunming-Montreal GBF (CBD, 
2022a), we identified 54 keywords (see Table S1.1 in Supplementary 
Materials S1). Following the classification of these keywords, we iden-
tified 5 keywords (see Table S1.2 in Supplementary Materials S1) to be 
drivers of biodiversity (e.g., agriculture, harvest), 8 to be pressures (e.g., 
acidification, extinction), 11 to represent the state (e.g., integrity, con-
nectivity and resilience), 8 to characterise the impact (e.g., contributions 
to human, utilization), and 22 as responses to biodiversity loss (e.g., 
adaptation, implementation, policy). By selecting only those goals and 
targets that pertain to the state of the biodiversity, we identified two 
GBF goals and eight targets (see Table 3) of which targets T01, T02, T03, 
T06 and T08 aimed at goal A and T10, T11 and T12 at goal B. This se-
lection was consistent with a previous analysis performed by us on the 
monitoring elements of the updated zero draft version of the GBF (see 
Fig. S1.1, Table S1.2, and Table S1.3 of Supplementary Materials S1). 
None of the targets in goals C and D focused on monitoring the state of 
terrestrial biodiversity with SRS observations, as these goals focus on 
genetic resources (goal C) and management practises (goal D). For the 
identified goals and targets, we found 87 usages of (non-unique) 
terrestrial and agnostic biodiversity indicators, spread over goal A (n =
32) and goal B (n = 8) and specific targets (n = 47) (see Table S3.1 in 
Supplementary Material S3). We also found that some indicators are 
used multiple times within different goals and targets, such as the 
Bioclimatic Ecosystem Resilience Index (2 × ) and the Red list Index (9 
× ), finally leading to a total of 58 unique indicators. 

3.2. Biodiversity indicator workflow analysis 

Of the 58 unique biodiversity indicators, 36 provided sufficient in-
formation on their workflows (details in Table S3.2 in Supplementary 

Material S3), whereas 22 were insufficiently described because they are 
still in development (see Table S3.3 in Supplementary Material S3). 
From the 36 workflows providing sufficient information, we identified 
95 spatial information products (details in Table S4.1 in Supplementary 
Material S4). This included, for instance, the Global Forest Change 
product (Hansen et al., 2013) and the CCI landcover product (ESA, 
2017). Each spatial information product was then classified into one of 
the 21 EBVs (see detailed overview in Supplementary Material S4). 
Products associated with the EBV classes ‘species populations’ and 
‘ecosystem structure’ were most often used (Fig. 3). Within the 
‘ecosystem structure’ EBV class, the highest usage was related to the 
ecosystem distribution EBV and live cover fraction EBV (Fig. 3). Within 
the ‘species populations’ EBV class, most spatial information products 
were related to the species distributions EBV and less to the species 
abundances EBV (Fig. 3). 

3.3. Ranking EBV usage 

Products of live cover fraction, ecosystem distribution, and species 
distributions EBVs were most often used in the GBF (Fig. 2), which 
resulted in a high relevance score (=1). In contrast, products associated 
with the EBV classes ‘community composition’ (e.g. community abun-
dance) and ‘ecosystem functioning’ (e.g. primary productivity and 
ecosystem disturbance) were moderately used by the identified biodi-
versity indicators and therefore given a moderate relevance score (=2). 
All other EBVs received a low relevance score (=3) (see numbers at 
bottom of Fig. 2). 

The sensitivity analysis showed that relevance scores remained 
comparable when including the 22 insufficiently documented indicators 
(see Fig. S3.1 in Supplementary Material S3). Only data products asso-
ciated with the ecosystem phenology EBV improved their relevance 
score from 3 (poor) to 2 (moderate), but this did not have major impacts 
on the ranking and prioritization of the SRS products (Table S5.1 in 
Supplementary Material S5). 

Fig. 1. Conceptual framework of an integrated user-requirement analysis which combines policy (goals and targets of the Kunming-Montreal global biodiversity 
framework), satellite remote sensing (spatial information products) and ecology (essential biodiversity variables). See method section for further details. 
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Eleven SRS products were ranked highest after combining the rele-
vance scores with the feasibility, accuracy, and immaturity scores into a 
summary score (Fig. 3). The SRS products with the highest rank (sum-
mary score = 6) were fraction of vegetation cover and plant area index 
profile, followed by above-ground biomass, foliar N/P/K content, land 
cover (vegetation type) and leaf area index (summary score = 6.5). Five 
additional SRS products were also included in the top priority list 
(summary score = 7), namely carbon cycle biomass (above-ground 
biomass), chlorophyll content and flux, ecosystem fragmentation, 
ecosystem structural variance, and gross primary productivity (Fig. 3). 

4. Discussion 

Satellite remote sensing plays a vital role for monitoring the pres-
sures, impacts and drivers of biodiversity change (Lehmann et al., 2022; 
Masó et al., 2020), but the role of SRS for directly monitoring the state of 
biodiversity remains less clear. Here, we reviewed the goals, targets and 
biodiversity indicators of the Kunming-Montreal GBF to provide our 
viewpoint on how SRS products could be improved for tracking the state 
of terrestrial biodiversity from space. We identified a priority list of SRS 
products for further development by the scientific community which 
could enhance the monitoring of GBF goals and targets. Our priority list 
contains SRS products that would benefit from improvements for their 
use in the GBF (e.g. fractional cover, landcover, above ground biomass 
and gross primary production), but also immature SRS products that are 
not yet used (e.g. foliar N/P/K content) and products for which alter-
natives and proxies are currently in place (e.g. NDVI for vegetation 
coverage by leaf area index). From our analysis, we suggest two key 
directions for advancing SRS products and workflows in the context of 
the GBF, namely (1) the refinement of SRS products (derived from 
current instruments) associated with ecosystem distribution, live cover 
fraction and species distributions, and (2) the creation of new SRS 
products (from current and upcoming technologies) associated with 
plant physiology and primary productivity. 

Our review reveals that half of the analysed GBF indicators (i.e. 18 
out of 36) require geospatial information about ecosystem distributions, 
such as the Global Forest Change product (Hansen et al., 2013). The data 
sources currently used in the GBF indicator workflows are diverse, with 
strong differences in underlying methodology and spatial resolution, e. 
g. in radiometric correction, classification, legend information and grain 
size (Herold et al., 2008). This can potentially lead to inconsistencies 
between indicators (Martin et al., 2019; Tuanmu and Jetz, 2014) and 
consequently affect their comparability and reliability for tracking the 

GBF goals and targets. We therefore suggest that ecosystem distribution 
products need to be improved to become more consistent, more 
harmonized, and more ecologically relevant. For instance, land use in-
formation often remains too coarse (e.g. 1 km resolution) for ecological 
applications, as many biodiversity indicators —such as the Species 
Protection Index (GEO BON, 2015) or the Bioclimatic Ecosystem Resil-
ience Index (Ferrier et al., 2020)— require finer spatial resolutions (e.g. 
10–30 m). While high resolution SRS products exist, e.g. GlobLand30 
(Chen et al., 2015), Google’s Dynamic World (Brown et al., 2022), or 
ESA’s World Cover (Zanaga et al., 2021), their thematic detail and ty-
pology are insufficient for tracking changes in ecosystem distributions. 
Hence, a large scientific opportunity exists for refining and improving 
such products, e.g. by developing globally consistent typologies for 
ecosystem distribution maps (Keith et al., 2022). Moreover, combining 
SRS products of land cover, vegetation type or function, soil types, 
precipitation and elevation with in-situ observations of plant species (e. 
g. from vegetation plots or citizen science collections) will allow to 
create suitable ecosystem distribution maps, especially through appli-
cations of deep-learning models that include high resolution SRS prod-
ucts with high temporal frequency to capture the spatial structure of 
landscapes (Estopinan et al., 2022). 

Table 2 
Criteria used for scoring satellite remote sensing products in the context of the Kunming-Montreal global biodiversity framework (GBF). See method section for further 
details.  

Criteria Description Score (good = 1) Score (poor = 3) 

Relevance A measure of how satellite remote sensing products with a 
specific biodiversity focus (i.e. related to Essential 
Biodiversity Variables, EBVs) could contribute to the GBF 
2030 targets and goals.  

=

⎧
⎨

⎩

1forEBVusage > 15
2forEBVusage > 1&EBVusage ≤ 15

3forEBVusage ≤ 1 

Feasibility The science community knows how to measure the remote 
sensing biodiversity product at appropriate scales that such 
measurements can realistically be made and/or that 
observations already exist 

Indicates the maturity 
of science/ technology/ experience needed to 
make the remote sensing biodiversity product 

Indicates that considerable 
research and development effort remain or that 
remote sensing biodiversity products at the scale 
needed are technically, logistically or financially 
difficult to make 

Accuracy A measure of the accurate observation of a given remote 
sensing variable. It considers the effectiveness of remote 
sensing data and techniques to achieve an accurate and 
precise value of the remote sensing enabled biodiversity 
variable. 

Fully operational network or service is in 
place, generating remote sensing biodiversity 
products that are accurate for the purpose 

Indicates that no or very limited action has been 
taken to generate accurate remote sensing 
biodiversity products 

Immaturity The potential of developing remote sensing biodiversity 
products can be identified and/or proposed to a funding 
body. 

Indicates that at present a 
relevant infrastructure for the remote sensing 
variable is absent and consequently still has a 
high potential to be operationally produced. 

Indicates the remote sensing variable is mature (with 
little development steps required) and is 
operationally produced within a relevant 
infrastructure.   

Table 3 
Summary descriptions of the goals and target components of the Kunming- 
Montreal global biodiversity framework (GBF) which aim to monitor the state 
of terrestrial biodiversity. The eight targets (T) are spread over two goals (A, B) 
and were identified by analysing the full descriptions of the GBF targets and 
goals, provided in Table S1.1 of Supplementary Material S1.  

Goal description Target description 

Goal A: Reduce threats to habitat and wild 
and domesticated species. 

T01. Reduce the loss of areas of high 
biodiversity importance to zero. 
T02. Improve connectivity of priority 
terrestrial ecosystems. 
T03. Ensure management of protected 
areas 
T06. Control introduction and impacts 
of invasive alien species. 
T08. Minimize the impact of climate 
change. 

Goal B: Meet people’s needs by improving 
the sustainable use of ecosystem 
functions and services 

T10. Increase sustainable productivity 
of agriculture and forested ecosystems. 
T11. Enhance nature’s contributions to 
people. 
T12. Increase public urban green/blue 
spaces  
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About half of the biodiversity indicators of the GBF also require 
geospatial data products that are associated with the live cover fraction 
EBV. Live cover fraction products derived from SRS, such as vegetation 
fraction from MODIS (Dimiceli et al., 2015), are already used in biodi-
versity indicators to characterize ecosystem quality (Venter et al., 2016), 
ecosystem integrity (Grantham et al., 2020) and habitat intactness (GEO 
BON, 2015). The potential of SRS to estimate live cover fraction has also 
been widely recognised (Gao et al., 2020; Skidmore et al., 2015; Val-
buena et al., 2020; Vihervaara et al., 2017), but current SRS products do 
not allow to relate the fraction of each vegetation (or plant functional) 
type to an ecosystem reference state (e.g. based on an ecosystem tax-
onomy). Most SRS products of fractional cover, such as the ESA CCI 
product (ESA, 2017), have been developed for climate change modelling 
and hence are not detailed enough for defining ecosystems in the context 
of biodiversity indicators. Hence, it remains understudied how the state 
of fractional cover (e.g. of heath, shrubs, grasses or other growth forms) 
relates to different ecosystem taxonomies as used in biodiversity 

indicators, such as the terrestrial ecoregions of the world (Olson et al., 
2001) or the terrestrial habitat classification of the European Union 
(Chytrý et al., 2020). Development of better ecosystem live cover frac-
tion products will therefore benefit from close collaboration between 
SRS scientists, ecologists and policy experts (Pettorelli et al., 2016). We 
encourage the co-design and co-production of such products together 
with large-scale biodiversity research e-infrastructures (e.g. GBIF, Life-
Watch ERIC), space agencies (e.g. NASA and ESA), biodiversity obser-
vation networks (e.g. GEO BON), and parties developing National 
Biodiversity Strategies and Action Plans (NBSAPs) to ensure an effective 
implementation of the GBF goals and targets (Xu et al., 2021). 

More than one third of the analysed biodiversity indicators of the 
GBF (i.e. 40%) require spatial information products associated with the 
species distributions EBV, e.g. the Living Planet Index (Collen et al., 
2013) or the Red List (Butchart et al., 2007). These products are often 
needed in the context of monitoring threatened, range-restricted species, 
alien invasive species or areas of conservation importance. However, 

Fig. 2. Biodiversity indicators and their required data categorised into Essential Biodiversity Variables (EBVs). Full names of the biodiversity indicators are provided 
in Table S3.2 in Supplementary Material S3. The indicators (y-axis) represent those listed in the Kunming-Montreal global biodiversity framework (GBF) for goals and 
targets that focus on tracking the state of terrestrial biodiversity. As some indicators are used several times by different goals and targets (e.g. Red List Index 9×, Red 
list of Ecosystems 5 × ), we use the following symbol colours: black diamonds = 1, purple triangles = 2, green circles = 3, brown squares > 3. At the bottom, we 
calculate how often EBVs data products are required by the different biodiversity indicators individually (count), and how often across the selected GBF targets and 
goals (current usage). This current usage is then scored (see Table 2) to describe the relevance of these EBVs across the GBF (relevance). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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SRS is rarely used for directly mapping species distributions because 
spatial resolutions of openly accessible products are most often not high 
enough for individual species detection (Sladonja and Damijanić, 2021). 
While classifications of native and invasive plant species in tropical 
forests (Asner et al., 2017; Somers and Asner, 2013) have been per-
formed with imaging spectroscopy data, these applications usually use 
airborne (rather than spaceborne) observations. Using SRS for directly 
mapping species distributions is thus unlikely to become operational in 
the near future unless spaceborne instruments with very high resolu-
tions will become publicly and freely available. Hence, the most obvious 
opportunities for using SRS observations for mapping species distribu-
tions are related to providing co-variates in species distributions models 
(Randin et al., 2020), rather than detecting species directly from space. 
In this context, we see the most promising advances in SRS through 
sensors and products that can better capture the environmental condi-
tion of animal habitats (Gudex-Cross et al., 2021), the environmental 
conditions (Radeloff et al., 2019), and structural heterogeneity derived 
from a combination of LiDAR, radar and multispectral observations 
(Valbuena et al., 2020). 

Current biodiversity indicators often omit SRS products related to 
plant physiology (e.g. leaf area index and chlorophyll content) and 
primary productivity (e.g. foliar N/P/K), or only use them to comple-
ment or disaggregate the information. However, such SRS products 
could provide key information on biodiversity change, e.g. on plant 
phenology (e.g. timing of flowering and fruiting) and stoichiometry (e.g. 
the balance between carbon, nitrogen and phosphorus) (Kissling et al., 
2018b), grassland carbon sequestration (Martini et al., 2019), ecosystem 
resilience (Longo et al., 2018; Schneider et al., 2023) or forest net pri-
mary productivity (Šímová et al., 2019). Information on (canopy and 
leaf) trait dissimilarities further allows to discriminate alien invasive 
species (Große-Stoltenberg et al., 2016), their impact on ecosystem 
functioning (Große-Stoltenberg et al., 2018), nutrient cycling (Kumar 
and Garkoti, 2021) and energy exchange (Musavi et al., 2015). We 
therefore advocate the creation of scalable workflows to produce new 
SRS products that can characterise individual-level plant functioning 
(via physiology), which subsequently can be aggregated at the 
ecosystem level (e.g. primary productivity). At present, most satellite 
observations remain too coarse (≥20 m) in their spatial resolution for 
detecting individual species (Kissling et al., 2018a; Skidmore et al., 
2021). While satellites with higher spatial resolutions (<2 m) exist, e.g. 

Superview and Worldview, they have limited temporal and/or spectral 
capabilities that currently prohibit the estimation of physiological plant 
traits at the species level. One promising opportunity would be to merge 
multiple satellite observations for estimating primary productivity and 
plant physiology at the plant level (Reddy et al., 2021), not just for leaf 
area index, chlorophyll content and foliar nitrogen, but also for other 
plant functional traits (e.g., leaf mass area and water content). Deep- 
learning techniques such as DeepForest can already be applied to map 
individual trees (Brandt et al., 2020; Weinstein et al., 2021), while 3D 
models such as DART can be used to characterise plant heterogeneity 
within coarser pixels (Gastellu-Etchegorry et al., 2004). Similarly, novel 
land surface models with improved radiative transfer modelling such as 
BETHY-SCOPE allow for the inclusion of foliar traits to simulate the 
gross uptake of carbon from optical, fluorescent and thermal observa-
tions (Norton et al., 2019). Using multi-sensor frameworks (Lewis et al., 
2012) and data science techniques, such as model emulators (Gómez- 
Dans et al., 2016; Verrelst et al., 2012) and neural networks (Baret et al., 
2013; Cherif et al., 2023), would allow to integrate the above-mentioned 
components into consistent and scalable products of plant traits and 
primary productivity. This would allow the estimation of leaf area index, 
foliar chlorophyll and nitrogen content with hyperspectral observations 
(Berger et al., 2020; Féret et al., 2021) and even with multi-spectral 
observations (Bossung et al., 2022), which could allow to better track 
plant species phenology, vegetation health, alien invasive species, and 
the consequences of biodiversity change on ecosystem functioning. 

Capitalizing on the abovementioned opportunities for developing 
SRS products could make important contributions to the Kunming- 
Montreal GBF. Currently, SRS products are often only used to comple-
ment and disaggregate indicator information, rather than being directly 
incorporated as variables in the indicator workflows. Hence, new op-
portunities emerge for tracking policy goals and targets in the next 
decade and the subsequent period of 2030–2050, e.g. by ensuring that 
already existing as well as new SRS products become integrated. Until 
2030, the biggest opportunities are those that employ new SRS products 
from current instruments and technologies in indicator workflows to 
track goal A and B, and targets T1, T2, T3, T8, T10, T11 and T12 (Fig. 4). 
For instance, refining ecosystem distribution and live cover fraction 
products could greatly enhance the tracking of goal A (‘reducing species 
extinction rates’) as well as target 2 (‘improve connectivity of priority 
terrestrial ecosystems) and target 3 (‘ensure management of protected 

Fig. 3. Priority list showing the satellite remote 
sensing products with the best summary score and the 
highest rank. The best ranking reflects those products 
that have the lowest summary score. The colours of 
the bars denote the grouping into the Essential 
Biodiversity Variable framework, and the brightness 
of the bars indicate the scores of the feasibility, ac-
curacy, immaturity and relevance criteria (ranging 
from 1 to 3). See Table S5.1 in Supplementary Ma-
terial S5 for the scores and ranking of all 56 satellite 
remote sensing products.   
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areas’), as these targets already involve biodiversity indicators which 
use such products (see Fig. 4). For SRS products related to primary 
productivity and plant species physiology, novel products could inno-
vate biodiversity indicators to allow better tracking of alien invasive 
species in target 6 (‘control the introduction and impact of invasive alien 
species’), characterise ecosystem resistance to climate change in target 8 
(‘minimize impact of climate change on biodiversity’) as well as a better 
estimation of primary productivity from plant functional traits for target 
10 (‘increase sustainable productivity of agricultural and forested eco-
systems’). Such new SRS products of plant physiology and primary 
productivity and improved ecosystem distribution and live cover frac-
tion products (Schimel et al., 2019) could also be used as predictors for 
modelling species distributions which are broadly needed across most of 
the GBF (see Fig. S4.1 in Supplementary Materials S4). 

For the period 2030–2050, additional improvements in tracking the 
goals for 2050 can be accomplished if biodiversity indicators utilize the 
capabilities of new satellite instruments and missions. With advances in 
the capabilities of new satellites —such as higher spatial resolutions 
(Sadeh et al., 2021), new spectral capabilities (Coppo et al., 2017) and 
laser scanning (Dubayah et al., 2020)— SRS can satisfy user needs that 
are currently not met by existing technologies and products. For 
example, developments in tracking animal movement and population 
sizes from space can provide new potential for SRS products and 
biodiversity indicators to be developed (Jetz et al., 2022; Lahoz-Monfort 
and Magrath, 2021; Wu et al., 2023). While the movement EBV and 
other EBVs (e.g., trait diversity) currently have a low relevance in the 
GBF (see Fig. 2), this is mainly driven by data being not available for 
implementation into biodiversity indicators. To define scientific op-
portunities for the period after 2030, our approach needs to be extended 
to identify mission requirements, for example by adapting the approach 
used in NASA’s Decadal Survey to link driving scientific questions to 
measurement requirements and geophysical observables for their Sur-
face Biology and Geology (SBG) observatory (Schimel et al., 2020; 
Stavros et al., 2023). By including a broad community input (e.g., from 
the CBD’s Ad Hoc Technical Expert Group on Indicators), such an 
approach can ensure to identify needs, gaps and requirements of 
(additional) biodiversity indicators (in development) that are broadly 
supported and agreed on. By advancing SRS products of current in-
struments and technologies for monitoring the 2030 targets and simul-
taneously guiding new technologies for the 2050 goals, SRS can enable a 
transformative and lasting change in tracking and monitoring biodi-
versity and ecosystems at a global scale. 

5. Conclusion 

In our viewpoint article, we have reviewed the biodiversity indicators 
of the Kunming-Montreal GBF for tracking the state of terrestrial 
biodiversity. Using EBVs as a broker between biodiversity policy and 
remote sensing, we identified several opportunities for the scientific 
community to advance terrestrial biodiversity monitoring from space in 
the current decade. Our approach thereby demonstrates how policy 
goals and targets can be translated into scientific opportunities. This 
could be expanded beyond the state of terrestrial biodiversity, e.g. to 
aquatic habitats (e.g. marine, coastal and freshwater systems) or other 
DPSIR classes (i.e. drivers, pressures, impacts and responses), as well as 
to other national or international policy documents that contain con-
servation goals and targets. We hope that this viewpoint inspires more 
collaboration between policy experts, ecologist and remote sensing 
scientists to advance the tracking of policy goals and targets and to 
contribute to reducing the threats to biodiversity while meeting people’s 
needs through the sustainable use of biodiversity. 
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Rozhnov, V., Rienks, F., Rozhnov, V., Rutz, C., Sakhvon, V., Sapir, N., Safi, K., 
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Lewis, P., Gómez-Dans, J., Kaminski, T., Settle, J., Quaife, T., Gobron, N., Styles, J., 
Berger, M., 2012. An Earth Observation Land Data Assimilation System (EO-LDAS). 
Remote Sens. Environ. 120, 219–235. https://doi.org/10.1016/j.rse.2011.12.027. 

Lock, M., van Duren, I., Skidmore, A.K., Saintilan, N., 2022. Harmonizing forest 
conservation policies with essential biodiversity variables incorporating remote 
sensing and environmental DNA technologies. Forests 13, e445. 

Longo, M., Knox, R.G., Levine, N.M., Alves, L.F., Bonal, D., Camargo, P.B., Fitzjarrald, D. 
R., Hayek, M.N., Restrepo-Coupe, N., Saleska, S.R., da Silva, R., Stark, S.C., 
Tapajós, R.P., Wiedemann, K.T., Zhang, K., Wofsy, S.C., Moorcroft, P.R., 2018. 
Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent 
extreme droughts. New Phytol. 219, 914–931. https://doi.org/10.1111/nph.15185. 

Martin, P.A., Green, R.E., Balmford, A., 2019. The biodiversity intactness index may 
underestimate losses. Nat. Ecol. Evol. 3, 862–863. https://doi.org/10.1038/s41559- 
019-0895-1. 

Martini, D., Pacheco-Labrador, J., Perez-Priego, O., van der Tol, C., El-Madany, T.S., 
Julitta, T., Rossini, M., Reichstein, M., Christiansen, R., Rascher, U., Moreno, G., 
Pilar Martín, M., Yang, P., Carrara, A., Guan, J., González-Cascón, R., 
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