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Partially automated driving systems are designed to perform specific driving tasks—such 
as steering, accelerating, and braking—while still requiring human drivers to monitor the 
environment and intervene when necessary. This shift of driving responsibilities from human 
drivers to automated systems raises concerns about accountability, particularly in scenarios 
involving unexpected events. To address these concerns, the concept of meaningful human 
control (MHC) has been proposed. MHC emphasises the importance of humans retaining oversight 
and responsibility for decisions made by automated systems. Despite extensive theoretical 
discussion of MHC in driving automation, there is limited empirical research on how real-
world partially automated systems align with MHC principles. This study offers two main 
contributions: (1) an empirical evaluation of MHC in partially automated driving, based on 
103 semi-structured interviews with users of Tesla’s Autopilot and Full Self-Driving (FSD) Beta 
systems; and (2) a methodological framework for assessing MHC through qualitative interview 
data. We operationalise the previously proposed tracking and tracing conditions of MHC using 
a set of evaluation criteria to determine whether these systems support meaningful human 
control in practice. Our findings indicate that several factors influence the degree to which 
MHC is achieved. Failures in tracking—where drivers’ expectations regarding system safety 
are not adequately met—arise from technological limitations, susceptibility to environmental 
conditions (e.g., adverse weather or inadequate infrastructure), and discrepancies between 
technical performance and user satisfaction. Tracing performance—the ability to clearly assign 
responsibility—is affected by inconsistent adherence to safety protocols, varying levels of driver 
confidence, and the specific driving mode in use (e.g., Autopilot versus FSD Beta). These findings 
contribute to ongoing efforts to design partially automated driving systems that more effectively 
support meaningful human control and promote more appropriate use of automation.
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1. Introduction

Partially automated driving systems—classified as SAE Level 2 automation—are designed to assist drivers with specific tasks such 
as steering, accelerating, and braking, while still requiring human drivers to maintain vigilance and be prepared to take control 
when necessary (SAE International, 2021). The deployment of these systems raises critical questions about the allocation of driver 
responsibility, especially in unexpected situations. Recent fatal collisions involving Tesla’s Autopilot and Ford’s BlueCruise have 
brought these concerns to prominence, particularly in instances where neither the driver nor the system adequately responded to 
visible obstacles (National Transportation Safety Board, 2017, 2018; Robins-Early, 2024). Currently, manufacturers such as Tesla 
explicitly assign oversight responsibility to the driver, as clearly stated in official safety documentation, which instructs users to 
remain attentive and ready to intervene when required (Tesla, 2024). Consequently, a driver’s failure to take timely corrective action 
may render them liable in the event of a collision.

However, supervising partially automated driving systems presents significant challenges for human drivers (Martinho et al., 
2021). Empirical studies involving Tesla Autopilot users have shown that prolonged exposure to reliably performing Level 2 automa-
tion often results in “passenger-like viewing behaviours,” including extreme cases such as drivers sleeping at the wheel (Nordhoff 
et al., 2023). These behaviours illustrate the risks associated with overreliance on automation, leading to reduced attention and in-
creased distraction. This phenomenon echoes Bainbridge’s seminal analysis of the “ironies of automation,” which demonstrated how 
automation can undermine operator engagement, foster overdependence, and degrade manual driving skills over time Bainbridge 
(1983). Supporting this perspective, Banks et al. (2018b) found that drivers responsible for monitoring partially automated systems 
frequently become complacent, raising concerns about their capacity to intervene effectively. Banks further argued that attributing 
fault to drivers for failures arising from the design and implementation of Level 2 and Level 3 systems is ethically questionable. 
Moreover, research indicates that drivers of partially automated vehicles are often held disproportionately accountable for collisions, 
even in situations where system limitations significantly constrain their ability to respond (Li et al., 2016; Awad et al., 2020; Beckers 
et al., 2022). These findings underscore ongoing concerns regarding the fair distribution of responsibility in the context of partially 
automated driving.

1.1. Meaningful human control

Delegating control to automated systems—those capable of executing tasks with varying degrees of autonomy, ranging from 
partial to full automation—may give rise to responsibility gaps, in which it becomes unclear which human agent should be held 
accountable for the outcomes of the system’s actions (Matthias, 2004; Santoni de Sio & Mecacci, 2021). To address this challenge, 
the concept of meaningful human control (MHC) has gained increasing prominence in scholarly debates on responsibility attribution 
within automated contexts (Santoni de Sio & Van den Hoven, 2018). Originally proposed in relation to autonomous weapon systems 
(Docherty, 2015), MHC emphasises the principle that humans must retain some degree of control over automated decisions to remain 
morally and legally accountable for the system’s behaviour (Santoni de Sio & Van den Hoven, 2018).

Although MHC was initially formulated in the context of fully automated systems—those functioning without human intervention, 
such as SAE Level 5 vehicles—it has since been expanded to encompass a broader range of automated technologies, including systems 
that still require human supervision, such as partially automated driving systems (Mecacci & Santoni de Sio, 2020). This wider 
applicability is particularly relevant in road transport, where system deployment must consider not only the vehicle’s operational 
capabilities but also the complex nature of the transport ecosystem, including interactions with human drivers, pedestrians, cyclists, 
infrastructure, and the inherently unpredictable dynamics of traffic and weather.

To enhance understanding of how MHC applies across different levels of vehicle automation, the CCAM Taxonomy provides a 
useful conceptual framework (Connected Automated Driving, 2024). According to this classification, SAE Level 5 vehicles are fully 
autonomous and operate without any human intervention. In contrast, SAE Levels 1 to 4 represent varying degrees of automation, 
each requiring some level of human oversight. For instance, Level 1 systems incorporate minimal automation, such as basic cruise 
control, while Level 4 systems are highly automated but may still necessitate driver intervention under certain conditions.

Designing automated systems in accordance with the principles of MHC is essential for addressing responsibility gaps—particularly 
in contexts where ethical decision-making depends upon clearly defined parameters for human intervention and accountability (Cav-
alcante Siebert et al., 2023; Santoni de Sio & Mecacci, 2021). Even when human operators are not directly managing a system’s 
real-time functions, they must retain meaningful control over its behaviour to ensure ongoing oversight and the appropriate assign-
ment of responsibility.

While there is broad consensus in the literature regarding the importance of maintaining MHC in the context of automation 
(Mecacci & Santoni de Sio, 2020; Cavalcante Siebert et al., 2023; Calvert et al., 2024), there is less agreement on how MHC should 
be conceptualised and implemented (George et al., 2023; Santoni de Sio & Van den Hoven, 2018; Kwik, 2022; Steen et al., 2023). 
Despite these differing interpretations, Robbins (2023) identify the framework developed by Santoni de Sio and Van den Hoven 
(2018) as a valuable foundation for designing systems in line with MHC principles. In their work, Santoni de Sio and Van den Hoven 
(2018) proposed a philosophical framework through which systems can be evaluated for meaningful human control, outlining two 
key conditions that must be satisfied: tracking and tracing.

The tracking condition requires that automated systems respond appropriately to the relevant reasons of the human agents involved 
in their design and deployment. These “reasons” can be understood as expectations—that is, the considerations that justify how an 
automated system ought to behave to align with human values, objectives, and societal norms (Veluwenkamp, 2022). For clarity, the 
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term ‘expectations’ will be used throughout this paper to refer to these reasons. In essence, the tracking condition stipulates that the 
behaviour of automated systems should reflect the expectations of the relevant human stakeholders.

The tracing condition, by contrast, requires that automated systems be designed in a manner that enables their actions to be 
attributed to at least one human agent involved in their development or operation. Tracing presupposes the existence of an individual 
who not only understands the system’s functionality but also accepts moral responsibility for its behaviour.

Taken together, the tracking and tracing conditions proposed by Santoni de Sio and Van den Hoven (2018) provide a foundational 
conceptual framework for operationalising meaningful human control in cooperative and automated driving contexts (Calvert & 
Mecacci, 2020), as well as for the broader design and engineering of automated systems, including automated vehicles (Cavalcante 
Siebert et al., 2023).

1.2. Evaluation of MHC over partially automated driving systems

To ensure that MHC principles are upheld, comprehensive assessments of partially automated driving systems are essential. This 
involves examining how well these systems comply with MHC principles by evaluating both the tracking and tracing conditions 
(Mecacci & Santoni de Sio, 2020). In the context of automated driving systems, tracking emphasises that the system should respond 
to the expectations of its designers and the humans who interact with it. For example, if a driver of a partially automated system 
expects the system to comply with road regulations, the system should behave in accordance with those regulations to effectively 
track the driver’s expectations.

Tracing, on the other hand, requires that at least one human agent involved in the design or operation of the system understands 
its capabilities and accepts moral responsibility for its actions. In the context of automated driving systems, this means that drivers 
must be fully aware of their supervisory role and receive adequate training to supervise and intervene when necessary (Cabrall et al., 
2019).

Several studies evaluating MHC have employed the tracking and tracing framework as a basis for analysis. For instance, Calvert 
et al. (2020) used the framework to evaluate partially automated driving systems, while Calvert et al. (2021) applied these criteria 
to assess cooperative vehicles and truck platooning systems.

While these contributions offer valuable insights into the assessment of partially automated driving systems, they primarily rely 
on hypothetical scenarios or post-incident analyses. Notably absent from much of the existing literature are the subjective experiences 
of real-world users of such systems. Yet these experiential insights are critical for understanding how users interact with automated 
driving technologies in everyday contexts. This perspective is essential for ensuring appropriate system use, a core element of both 
MHC and broader traffic safety considerations (Cavalcante Siebert et al., 2023).

Recent work by Suryana et al. (2024) has begun to address this gap by examining drivers’ perceptions of safety and trust in relation 
to the tracking dimension of MHC. However, comprehensive evaluations of MHC compliance—encompassing both the tracking and 
tracing conditions—based on users’ subjective experiences remain limited in the current literature.

1.3. Research gaps and objectives

1. Theoretical Gap: There is a lack of clarity regarding the application of tracking and tracing methodologies to assess MHC in real-
world driving contexts. This issue is particularly critical, as previous studies have demonstrated that drivers frequently exhibit 
unsafe behaviours—such as complacency, falling asleep behind the wheel, or engaging in non-driving activities—while using 
automated systems (Wörle & Metz, 2023; Nordhoff et al., 2023). Such behaviours challenge adherence to MHC principles and 
raise concerns about whether these systems are genuinely under meaningful human control in everyday driving scenarios.

2. Practical Gap: Existing assessments of MHC have largely neglected the subjective experiences of drivers operating partially 
automated systems in real-world settings. For example, the ways in which drivers perceive their supervisory role, interpret system 
behaviour, and how their perceptions of accountability evolve over time remain insufficiently explored. These experiential factors 
are essential for determining whether partially automated systems are truly under meaningful human control.

3. Methodological Gap: Current approaches to evaluating MHC often overlook critical elements of human-automation interaction. 
They fail to investigate whether the system’s performance consistently aligns with human expectations, or whether drivers fully 
comprehend their responsibilities and are capable of reclaiming control when necessary. These limitations hinder the effective 
evaluation of meaningful human control in real-world driving contexts.

To address these gaps, this study applies the framework of MHC to real-world driving contexts, drawing on previously collected 
interview data from users of Tesla Autopilot and Full Self-Driving Beta systems (Nordhoff et al., 2023). By moving beyond hypothetical 
scenarios and post-accident analyses, this research offers a dynamic assessment of MHC in everyday driving situations. It further 
investigates how drivers perceive their responsibility in supervising automation, the evolution of their trust and safety perceptions, 
and how they interpret system behaviour—dimensions that have been largely neglected in prior evaluations. Finally, by employing 
a qualitative methodology that captures the nuanced and context-dependent nature of human-automation interaction, this study 
provides a more comprehensive approach to evaluating MHC compliance. Collectively, these contributions deepen the understanding 
of meaningful human control in partially automated driving systems, offering valuable insights for both theoretical development and 
practical design improvements aimed at enhancing the safety and accountability of driving automation.
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2. Method

2.1. Dataset

This study draws on a dataset comprising 103 semi-structured interviews with active users of Tesla’s Autopilot and Full Self-
Driving (FSD) Beta systems. The interviews focused on participants’ real-world experiences and interactions with these technologies, 
capturing a broad range of topics including perceived safety, trust, control, and responsibility.

Although participants were not explicitly introduced to the concept of Meaningful Human Control (MHC), the interviews contained 
numerous responses that align with its theoretical components—specifically, aspects related to tracking (e.g., alignment between 
system behaviour and human expectations) and tracing (e.g., attributions of responsibility and control). This made the dataset well-
suited for retrospective analysis through the lens of the MHC framework.

Details regarding recruitment and study procedures are provided in the following subsections.

2.1.1. Recruitment

The dataset utilised in this study was collected through a recruitment process and interview procedure approved by the Human 
Research Ethics Committee of Delft University of Technology (ID: 2316). Participants were initially identified through special interest 
groups related to Tesla vehicles on various social media platforms, including Discord, Facebook, Twitter, Reddit, YouTube, Instagram, 
Tesla Motors Club, and the Tesla Motors Forum. Snowball sampling was subsequently employed, with participants referring others 
via email. As Full Self-Driving (FSD) Beta was available only to residents of North America and Canada during the study period, 
recruitment efforts were predominantly focused on these regions. Eligibility for participation was determined based on self-reported 
access to Autopilot and FSD Beta. FSD Beta users were individuals selected by Tesla according to safety scores and ownership status. 
Prior to granting access, Tesla provided the following usage guidelines to FSD Beta users:

“Full Self-Driving is in limited early access Beta and must be used with additional caution. It may do the wrong thing at the worst time, so 
you must always keep your hands on the wheel and pay extra attention to the road. Do not become complacent. When Full Self-Driving Beta 
is enabled, your vehicle will make lane changes off highway, select forks to follow your navigation route, navigate around other vehicles and 
objects, and make left and right turns. Use Full Self-Driving Beta only if you will pay constant attention to the road, and be prepared to act 
immediately, especially around blind corners, crossing intersections, and in narrow driving situations. Every driver is responsible for remaining 
alert and active when using Autopilot and must be prepared to take action at any time. As part of receiving FSD Beta, your vehicle will collect 
and share VIN-associated vehicle driving data with Tesla to confirm your continued eligibility for FSD Beta feature. If you wish to be removed 
from the limited early access FSD Beta please email xxx.”

2.1.2. Procedure

Interviews were conducted remotely via Zoom, with both audio and video recordings. To ensure consistency and minimise in-
terview bias, a predefined interview protocol was developed using Qualtrics (https://www.qualtrics.com). The link to the protocol 
was shared with participants via Zoom’s chat function at the commencement of the interview, enabling them to follow the questions 
and progress through them independently. This approach was specifically designed to reduce the interviewer’s potential influence on 
participants’ responses.

At the outset of the interviews, participants provided their informed consent to take part in the study. The first section of the 
interview primarily comprised open-ended questions, focusing on participants’ perceptions and experiences with Autopilot and Full 
Self-Driving (FSD) Beta, including aspects such as feelings of safety, trust, and typical usage (see Table A.5). For example, participants 
were asked to describe situations in which they felt unsafe using these systems, as well as how their trust and safety perceptions evolved 
over time. The second section of the interview comprised closed-ended questions concerning participants’ socio-demographic profile, 
travel behaviour (e.g., age, gender, education level, frequency of Autopilot/FSD Beta use), and their general attitudes towards traffic 
safety.

The interviewer’s role was primarily observational, intended to minimise bias by allowing participants to navigate the question-
naire independently. However, follow-up questions were posed to clarify responses or explore new themes that emerged during the 
interview. Participants were also encouraged to skip any questions that had already been addressed. The interviews lasted an average 
of 78 minutes, resulting in approximately 12,200 words of transcribed data.

To ensure the integrity of the data, four interviews conducted in German were excluded from the analysis to avoid potential issues 
associated with missing transcriptions or mistranslations that could arise from translating the responses into English. Consequently, 
99 of the original 103 interviews were considered suitable for further analysis.

2.2. Data analysis

An evaluation framework for MHC was developed to assess whether Tesla’s Full Self-Driving (FSD) Beta and Autopilot systems 
align with the expectations of relevant human agents (tracking), and to what extent individuals involved in the operation and design of 
these systems understand their capabilities and recognise their moral accountability for the systems’ actions (tracing). This evaluation 
follows a structured five-step process, as detailed below.

2.2.1. MHC component identification

Tracking component: (1) human agents and (2) their expectations In this step, we identified the human agents and their safety 
expectations in order to evaluate tracking alignment. Using the MHC taxonomy as a framework (Fig. 1), we defined two categories 

https://www.qualtrics.com
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Fig. 1. Taxonomy of tracking and tracing, adapted from the work of Calvert and Mecacci (2020). 

of human agents based on their relationship with the system: drivers, classified as proximal internal agents (those who interact 
directly with the system), and manufacturers, classified as distal internal agents (those responsible for designing and regulating system 
functionality). We also defined their safety expectations as tactical expectations, reflecting real-world interactions. Specifically, drivers 
expected the system to prevent accidents (e.g., by providing collision warnings or automatically applying the brakes in emergency 
situations), while manufacturers expected the system to comply with safety standards (e.g., meeting regulatory requirements for 
collision avoidance). This categorisation provided a structured framework for evaluating whether system behaviour aligns with the 
safety expectations of these human agents.

Tracking component: (3) features that influence vehicle behaviour In addition to defining human agents and their expectations, this 
step also identifies the active safety features in Tesla’s Autopilot and FSD Beta systems that directly influence the vehicle’s behaviour 
and contribute to meeting safety expectations. These features act as key indicators of how effectively the system tracks and responds 
to the expectations of human agents.

• Automatic Emergency Braking (AEB): Detects vehicles or obstacles in the vehicle’s path and applies the brakes if necessary. 
• Forward/Side Collision Warning (F/SCW): Alerts the driver to potential collisions with slower-moving or stationary vehicles or 

obstacles alongside the vehicle.
• Blind Spot Monitoring (BSM): Warns the driver when a vehicle or obstacle is detected in the blind spot during lane changes.
• Lane Departure Avoidance (LDA): Applies corrective steering to assist in keeping the vehicle within its intended lane.

These features were selected because they directly influence the vehicle’s behaviour and are critical for ensuring safety in real-
world driving scenarios. By focusing on these features, we were able to assess how effectively the system tracks and responds to the 
expectations of human agents, thus providing a robust foundation for evaluating alignment with the MHC principle.

Tracing component To evaluate tracing, it is necessary to identify a human agent who understands the system’s capabilities and 
recognises their moral accountability in the design and operation of the system. In the case of Tesla, we selected the driver as 
the accountable human, as the company explicitly assigns this responsibility to drivers through its operational guidelines (Tesla, 
2024). Prior to engaging Autopilot, drivers must agree to ‘keep their hands on the wheel at all times’ and to ‘remain in control of 
and responsible for their vehicle at all times.’ This requirement highlights the driver’s role as the primary human responsible for 
overseeing system performance and intervening when necessary.
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Table 1
Tracing evaluation criteria.

Criteria Details 

Knowledge
(1) To stay alert and 
(2) To keep both hands on the steering wheel 

Capability To be able to perform corrective action 
Moral awareness To maintain operational responsibility 

2.2.2. Defining MHC evaluation criteria
Tracking evaluation criteria To assess whether Tesla’s Autopilot and Full Self-Driving (FSD) Beta systems align with human agents’ 
safety expectations, we adapted two evaluation criteria: Safety of the Intended Functionality (SOTIF) (International Organization for 
Standardization, 2019) and Perceived Safety and Trust (PST). The SOTIF framework was selected because evaluating the safety of 
automated driving systems necessitates a standardised approach, while PST was included because even technically safe systems may 
fail to align with human expectations if their behaviour is perceived as unpredictable or unreliable.

These criteria were chosen to evaluate both the technical performance of the system and the subjective experiences of drivers. For 
SOTIF, we employed an adjusted version, termed ad-SOTIF, to compare drivers’ descriptions of system behaviour with Tesla’s official 
specifications. If the system’s behaviour aligned with the manufacturer’s descriptions, it was classified as ad-SOTIF ( + ); deviations 
were classified as ad-SOTIF (-).

For PST, we assessed drivers’ perceptions of safety and trust based on their interview responses. As our study evaluates safety 
expectations through driver perceptions, PST serves as a proxy for assessing tactical expectations, as depicted in the tracking taxonomy 
in Fig. 1. Trust was incorporated as a criterion due to its strong positive relationship with perceived safety, given that trust is often 
modelled as a function of perceived safety (Nordhoff et al., 2021). This approach enabled us to capture additional facets of drivers’ 
safety experiences that may not be explicitly expressed through the word “safe” in interviews, thereby providing a more comprehensive 
understanding of their perceptions. Positive perceptions, such as feelings of reliability or confidence, were classified as PST ( + ), while 
negative perceptions, such as distrust or feelings of risk, were classified as PST (-).

This dual approach enabled us to assess both the technical alignment of the system with its intended functionality and the subjective 
experiences of drivers, thereby ensuring a comprehensive evaluation of whether the system meets the safety expectations of both 
drivers and manufacturers.

Tracing evaluation criteria To evaluate driver compliance with tracing requirements, we derived three criteria from Tesla’s usage 
guidelines (Nordhoff et al., 2023), as outlined in Section 2.1.1, and aligned them with the MHC tracing taxonomy (Calvert & Mecacci, 
2020). These criteria include: knowledge (staying alert and keeping hands on the steering wheel), capability (performing corrective 
actions), and moral awareness (maintaining operational responsibility).

These instructions provide the foundation for operationalising the criteria. For instance, the requirement to “keep hands on the 
wheel” was categorised under knowledge, while “be prepared to act immediately” was mapped to capability. By grounding the 
criteria in both Tesla’s instructions and the MHC framework, this step ensures a structured evaluation of driver compliance with 
tracing requirements. The criteria are summarised in Table 1.

2.2.3. Locating MHC-related content

The process of locating MHC-related content in the interview data depends on whether the questions are already aligned with the 
tracking and tracing evaluation criteria. In instances where the questions were not directly related, additional steps were required 
to identify and extract relevant content. For example, in our study, the interview questions were not explicitly designed to address 
tracking criteria, necessitating a more detailed preprocessing and keyword search approach. This method was essential due to the 
unstructured nature of the data, and keyword searches enabled us to systematically identify segments of the interviews that discussed 
specific safety features (e.g., Automatic Emergency Braking or Lane Departure Avoidance). In contrast, the tracing criteria were 
addressed through specific questions in the interview protocol, facilitating the direct extraction of relevant responses. Below, we 
outline the distinct methodologies used for locating content related to tracking and tracing.

Locating tracking-related content: (1) data preprocessing To systematically identify tracking-related content in the interview data, 
we began by preprocessing the transcribed text, transforming it into word tokens and applying several cleaning steps. Preprocessing 
ensures that only meaningful content is retained, eliminating noise that could affect the accuracy of subsequent keyword searches. 
In line with best practices in text analysis (Banks et al., 2018a; Hickman et al., 2022), we used the NLTK Python package (NLTK 
Project, 2024) to perform the following steps: (1) removal of newline characters and extra spaces, (2) tokenisation into individual 
words, (3) elimination of short words (< 2 characters) and long words (> 30 characters), numbers, and punctuation, (4) conversion to 
lowercase and filtering of English stopwords, and (5) lemmatisation to normalise words to their root forms. For example, the sentence 
One advantage of the larger Autopilot was that it could automatically stop at traffic lights. was transformed into the list [‘one’, ‘advantage’, 
‘larger’, ‘autopilot’, ‘automatically’, ‘stop’, ‘traffic’, ‘lights’]. This preprocessed dataset was then utilised in subsequent keyword searches.

Locating tracking-related content: (2) identifying seed words To identify tracking-related content, we selected seed words asso-
ciated with the four active safety features (AEB, F/SCW, BSM, and LDA), which act as indicators of relevant discussions within the 
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Table 2
Seeds related to active safety features.

Category Sub-category Knowledge-based seeds Seeds for keyword search

Active safety features AEB emergency AND braking (emergency OR urgent OR disaster OR immediate OR assistance) AND (braking OR 
deceleration OR steering OR traction OR acceleration)

F/SCW collision AND warning (collision OR accident OR collide OR crash OR head-on OR mishap) AND (warning 
OR warn OR alert OR indication OR danger OR caution)

BSM blind AND spot AND monitor (blind OR mistaken OR sight OR impossible) AND (spot OR place OR there OR 
where) AND (monitor OR tracking OR surveillance OR alerting OR evaluation OR 
utilization)

LDA lane AND keeping (lane OR road OR freeway OR crossing OR roadway OR highway OR ramp) AND 
(keeping OR kept OR keeps OR putting OR bringing OR maintain)

interview data. These safety features represent broader themes, while the seed words serve as specific indicators to help locate perti-
nent content. Adopting a knowledge-based approach (Watanabe & Zhou, 2022), we chose initial seed words—such as “emergency,” 
“braking,” “collision,” “warning,” “blind spot,” and “lane departure”—based on their strong association with these safety features.

Once the initial seed words were selected, we applied the pre-trained Global Vector (GloVe) model in Python to enhance the seed 
word set. The GloVe model, a machine learning technique for generating word embeddings, was employed to identify synonyms 
and semantically related terms that may not have been initially considered. Details of the pre-trained model and setup instructions 
are available at the official GloVe project page (https://nlp.stanford.edu/projects/glove/). This enrichment process strengthened the 
robustness of the keyword search by ensuring that a broader range of relevant terms could be identified within the interview data. For 
example, the seed word “braking” was enriched with terms such as “deceleration,” “traction,” and “acceleration,” while “collision” 
was expanded to include “accident,” “collide,” and “crash.” The final enriched seed word set was then used in a systematic search 
to locate content pertinent to the active safety features. Table 2 presents a detailed overview of the initial and enriched seed words, 
illustrating the outcomes of this process. By combining both expert knowledge and machine learning techniques, this step ensured 
that the keyword search algorithm effectively identified relevant interview content.

Locating tracking-related content: (3) keyword search algorithm To systematically identify tracking-related content in the inter-
view data, we applied a keyword search algorithm proposed by Suryana et al. (2024), which utilises enriched seed words to detect 
relevant segments. This algorithm was applied to the lemmatised tokens generated during the data preprocessing phase. It employed 
the enriched seed words, generated by the GloVe model, to scan the tokenised data and identify segments where the seed words 
appeared (see Algorithm 1).

The algorithm incorporated logical operators to refine the search process. The ‘OR’ operator allowed the inclusion of synonyms for 
the seed words, while the ‘AND’ operator ensured that paired seed words, as defined in Table 2, appeared together within a 20-token 
sliding window in the lemmatised, tokenised data. The choice of a 20-token window was informed by prior work (Suryana et al., 2024), 
which demonstrated that this window size effectively captures meaningful contextual relationships between related terms in similar 
textual analyses. For instance, when applying the knowledge-based seed words for AEB, “emergency” and “braking,” the algorithm 
would detect the occurrence of the word “emergency” in the token sequence and then scan the subsequent 20 tokens to check for the 
presence of the paired seed word “braking.” If both seed words were found within this 20-token window, the corresponding segment 
of the original transcribed interview would be extracted for further analysis using classifications such as ad-SOTIF( + ), ad-SOTIF(-), 
PST( + ), or PST(-).

Algorithm 1: Keyword Search Algorithm (Suryana et al., 2024).
Data: Seed words (seeds), tokenised data (tokenList), Buffer size (bufferSize)
Result: Retrieved list (list)

1 bufferSize ← 20; 
2 list ← []; 
3 threshold ←

∑
(seed in seeds); 

4 for token, index in tokenList do

5 if token in seeds then

6 tokenBuffer ← tokenList[index ∶ index+ bufferSize]; 
7 seedCount ←

∑
seed in seeds(seed in tokenBuffer); 

8 if seedCount > threshold then

9 list ← tokenBuffer; 

Locating tracing-related content: direct extraction from interview responses To identify and extract interview segments related 
to the tracing evaluation criteria defined in Step 2, we focused on responses to specific questions in the interview protocol: Q25, 
Q26, Q34, and a question concerning the maintenance of control and responsibility (see Appendix A). For example, Q25 asked, “Do 
you typically keep your hands on the steering wheel at all times?” and Q26 asked, “Are you typically fully attentive and alert at 

https://nlp.stanford.edu/projects/glove/
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all times?”, both of which directly relate to drivers’ knowledge. Similarly, Q34 (“Do you typically stay prepared to take corrective 
actions at all times?”) provided insights into drivers’ capability. The question regarding the maintenance of control and responsibility 
was not explicitly stated in Appendix A, but it could be inferred from drivers’ responses. For instance, when drivers read the question 
aloud and responded with statements such as, “Do not maintain control and responsibility for my car? I strongly disagree,” it ad-
dressed the moral awareness criterion, ensuring that drivers recognised their accountability for the system’s behaviour. The extracted 
responses were then prepared for qualitative assessment, facilitating a focused and efficient evaluation of drivers’ understanding of 
their responsibilities.

2.2.4. MHC evaluation

Tracking evaluation: content analysis Following the extraction of tracking-related conversation segments in Step 3, a content 
analysis was conducted to classify the content based on the evaluation criteria defined in Step 3: ad-SOTIF and PST. The objective of 
this step was to determine whether Tesla’s Full Self-Driving (FSD) Beta and Autopilot systems comply with the tracking requirements 
of the MHC framework.

For ad-SOTIF, we compared drivers’ descriptions of active safety features in the interview data with the intended functionalities 
outlined on Tesla’s official website (Tesla, 2024). If the descriptions aligned with the manufacturer’s specifications, the features were 
classified as ad-SOTIF ( + ). For instance, if a driver described Automatic Emergency Braking (AEB) as functioning consistently with 
Tesla’s description (e.g., braking automatically when an obstacle is detected), this was categorised as ad-SOTIF ( + ). Conversely, if 
drivers reported discrepancies or failures in system behaviour (e.g., AEB not activating when required), the features were classified 
as ad-SOTIF (-).

For PST, we evaluated drivers’ perceptions of safety and trust based on their interview responses. To assess trust, we identified 
terms such as “depend,” “rely,” and “trust,” which indicated whether drivers had a positive level of trust in the system. Similarly, 
terms related to safety, such as “relax,” “risk,” and “safe,” were used to gauge drivers’ perceived safety. These terms were selected 
based on established questionnaires for evaluating trust (Choi & Ji, 2015) and perceived safety (Xu et al., 2018). If drivers expressed 
confidence in the system’s reliability and felt safe using it, the content was classified as PST ( + ). For example, a driver stating, “I feel 
relaxed using Autopilot because it handles most situations well,” would be categorised as PST ( + ). In contrast, if drivers expressed 
distrust or felt unsafe (e.g., “I don’t trust the system to handle sudden stops”), the content was classified as PST (-).

This qualitative analysis enabled us to classify the extracted content into four categories: ad-SOTIF( + ), ad-SOTIF(-), PST( + ), and 
PST(-). By combining these classifications, we were able to assess not only the technical alignment of the system with its intended 
functionality but also the subjective experiences of drivers. This dual approach ensured a comprehensive evaluation of whether the 
system meets the safety expectations of both drivers and manufacturers, as outlined by the MHC framework. The results of this analysis 
provided a structured basis for understanding how well Tesla’s systems track and respond to human agents’ needs, highlighting both 
areas of alignment and potential gaps.

Tracing evaluation: thematic analysis To evaluate whether drivers’ experiences with Tesla’s Autopilot and FSD Beta systems comply 
with the tracing evaluation criteria, we conducted a thematic analysis of their responses. This involved categorising responses into 
subcategories that reflected drivers’ understanding of their responsibilities, knowledge, and capabilities. Following inductive coding 
principles (Nordhoff, 2024), we performed open coding, reviewing the extracted responses line-by-line to identify recurring themes, 
such as “keeping hands on the wheel,” “monitoring the road,” or “feeling responsible for interventions.” These themes were then 
grouped into broader subcategories based on their similarities and distinctions. For instance, responses mentioning “hands on the 
wheel” and “staying alert” were grouped under a subcategory such as Compliance with Hands-on Requirements. To ensure robustness, 
we retained only those subcategories mentioned by at least five drivers, as this frequency threshold helped validate the relevance 
and significance of each subcategory. In cases where a single quote applied to multiple subcategories, each relevant subcategory was 
assigned a frequency count of one. This systematic approach ensured that the subcategories were both data-driven and representative 
of drivers’ experiences, providing a structured foundation for further analysis.

2.2.5. Illustrative quotes

Tracking quotes Representative quotations were selected from the classified content to illustrate the findings. These quotations ex-
emplify each of the four classifications: ad-SOTIF( + ), ad-SOTIF(-), PST( + ), and PST(-). For each category, excerpts from the interview 
data were chosen to clearly represent either alignment with or deviation from manufacturer specifications (ad-SOTIF), or to reflect 
positive or negative driver perceptions regarding safety and trust (PST).

Tracing quotes To provide concrete examples of the subcategories identified in Step 4, we selected up to three representative 
quotations per subcategory. Priority was given to quotes that clearly exemplified the theme and reflected common driver experiences.

3. Results

This section presents the results of our evaluation of Tesla’s Full Self-Driving (FSD) Beta and Autopilot systems in relation to 
the concept of meaningful human control (MHC), with a specific focus on the tracking and tracing requirements. To illustrate how 
drivers’ feedback aligns with these requirements, we include quotations that reflect their experiences. Each quote is accompanied 
by the participant ID number for reference. To highlight key insights, we have selected several representative quotes. The results, 
supported by these quotations, are further discussed in Sections 3.1 and 3.2.
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Fig. 2. Tracking evaluation results for the four active safety features of Tesla vehicles—Automatic Emergency Braking (AEB), Forward/Side Collision Warning (F/SCW), 
Lane Departure Avoidance (LDA), and Blind Spot Monitoring (BSM)—are presented. For each feature, the stacked bars represent the percentage of instances in which 
each performance category—alignment with intended functionality (ad-SOTIF) or perceived safety and trust (PST)—was mentioned in the interviews. The numbers 
in parentheses below the percentages indicate the total number of mentions for each category.

3.1. Tracking evaluation results

Our tracking evaluation revealed a varied distribution of safety features across the tracking evaluation criteria (Fig. 2). For ex-
ample, in the ad-SOTIF( + ) PST( + ) category, Lane Departure Avoidance (LDA) and Blind Spot Monitoring (BSM) exhibit a higher 
percentage distribution compared to Automatic Emergency Braking (AEB) and Forward/Side Collision Warning (F/SCW). Percentage 
distributions above 80% indicate that LDA and BSM more frequently meet both driver and manufacturer safety expectations, com-
pared to instances where they fail to align with one or both expectations. In contrast, there were no instances of ad-SOTIF(-) PST( + ), 
suggesting that when the features did not perform as intended, drivers never held a positive perception of them.

To provide a more detailed insight into the tracking evaluation of the safety features, we classified them into three categories 
based on the co-occurrence of positive and negative instances of ad-SOTIF and PST. It is important to note that each safety feature 
could be assigned to multiple categories depending on the variation in user experiences:

• Inconsistent tracking: Safety features that were described both as (1) functioning as intended and generating positive perceptions 
of safety and trust, and (2) not functioning as intended and generating negative perceptions. A feature was assigned to this 
category when the number of instances with ad-SOTIF( + ) PST( + ) was comparable to those with ad-SOTIF(-) PST(-), indicating 
inconsistency in performance and perception.

• Gap between performance and perceived safety/trust: Safety features that technically functioned as intended but failed to generate 
positive perceptions of safety and trust. In such cases, although the features aligned with manufacturers’ safety expectations, 
they failed to meet drivers’ expectations. Features with a notable proportion of ad-SOTIF( + ) PST(-) instances were assigned to 
this category.

• Consistent tracking: Safety features that not only functioned as intended but also consistently elicited positive perceptions of safety 
and trust among drivers. Features were included in this category when there was a high occurrence of ad-SOTIF( + ) PST( + ) and 
a low occurrence of ad-SOTIF(-) PST(-), indicating strong alignment with both driver and manufacturer safety expectations.

It is important to emphasise that although only a limited number of illustrative quotations are presented in the following sections, 
each theme was derived from multiple participant responses. The frequency with which each theme was mentioned varied; some were 
discussed by a larger number of participants, while others emerged less frequently. Moreover, individual responses often encompassed 
multiple themes, as participants’ experiences with the system frequently addressed several aspects of its performance simultaneously. 
These tracking categories were developed to capture the full range of relevant patterns observed in the data, ensuring that both 
commonly and less frequently reported experiences were taken into account.

3.1.1. Inconsistent tracking

Automatic Emergency Braking (AEB) and Forward/Side Collision Warning (F/SCW) were found to align with both drivers’ and 
vehicle manufacturers’ safety expectations in certain scenarios, while failing to do so in others. To better understand how AEB and 
F/SCW can both meet and fall short of these expectations, we analysed participant feedback regarding the performance of these 
systems. The data revealed several recurring themes in drivers’ perceptions of these features:
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• Effective functionality - ad-SOTIF( + ) PST( + )
Participants mentioned that AEB performs well in detecting vehicles ahead that the driver may not see, thereby preventing 
potential collisions. One user expressed appreciation for this feature: 

“I would have actually hit someone, but they stopped suddenly for some reason, maybe someone was crossing.. I didn’t see it, but the 
system detected it and prevented a collision by performing an emergency brake. It worked really well, and I’m very grateful (R047 -
AEB)” 

Similarly, the F/SCW feature proved effective in alerting drivers to potential collisions from the front and sides. One participant 
expressed their appreciation for this feature: 

“An autopilot averted a potential accident.. I was very impressed. While driving, my car started.. telling me to take control immediately. 
I looked in my blind spot, and a car in the next lane veered into mine. I didn’t see it, but Autopilot did and reacted right away (R091 -
F/SCW)” 

• False positive and false negative errors - ad-SOTIF(-) PST(-)

Despite the overall positive performance, drivers also reported instances where AEB and F/SCW did not function as intended. 
For example, there were cases in which the automated systems failed to respond to debris on the highway and missed alerting 
the drivers. Both situations are considered false negatives, which led to feelings of unsafety among participants. 

“I think what’s unsafe is just right now it only has a front collision warning.. It doesn’t gonna detect anything..comes to you from the 
side.. If it does it.. only if you drive at the really slow speed. (R058 - F/SCW)” 

“If I didn’t take over, it would drive right over the piece of wood and probably created a lot of damage that might have caused an accident 
because hitting at highway speeds, a piece of debris.. Tesla uses cameras as their technology, but you could probably detect better debris 
and just alert.. like they have some alerts when you’re driving if it’s uncertain. So they could do that to make it safer (R073 - AEB and 
F/SCW)” 

Additionally, the system sometimes engaged in “phantom braking,” a false positive case in which the brakes were applied without 
the presence of an actual obstacle. This led to annoyance among drivers: 

Autopilot take care of 99% of driving.. The only issues.. it’s not a perfect system.. there are a lot of false positives, particularly in one 
lane roads where in cars are coming at you fast. It sometimes thinks it’s going into your lane and does a phantom brake. In the case.. it.. 
annoys you by saying, “hey, there’s a forward collision warning” when it’s not. (R078 - AEB and F/SCW) 

• Software issues - ad-SOTIF(-) PST(-)

Drivers also reported unsettling software issues, including automatic warnings upon vehicle reboot and inconsistencies in alarm 
triggering. These problems contributed to undesirable experiences among drivers: 

“It was.. scary enough that.. a non informed user would not know what to do. Autopilot would constantly disengage my visualization.. 
rebooting about every three seconds, and every time it rebooted, a forward collision warning would occur. It would not slow down my 
car, but it would make like the super loud multiple beeps like I’m gonna hit something. (R055 - F/SCW)”

Overall, our analysis indicates that the AEB and F/SCW systems generally align with both driver and vehicle manufacturer safety 
expectations under typical driving conditions. Specifically, AEB was frequently noted for its effectiveness in detecting vehicles ahead, 
while F/SCW was recognised for its ability to alert drivers to potential frontal and lateral collisions.

However, participants also reported instances where these systems failed to meet expectations. These failures included both 
false positives and false negatives. A commonly reported false positive was phantom braking—where the vehicle applied the brakes 
without a discernible obstacle. False negatives included failures to detect road debris, side collisions, or to provide timely warnings 
to the driver. In addition, several participants reported software inconsistencies, such as unexpected system reboots, which further 
undermined the reliability of the tracking function. These issues suggest that while AEB and F/SCW often perform as intended, 
limitations remain that affect their consistency and overall effectiveness.

3.1.2. Gap between performance and perceived safety/trust

Three safety features—AEB, F/SCW, and LDA—were classified under this category.1 This classification was based on driver re-
sponses indicating that these features generally functioned as intended but were nonetheless associated with negative perceptions 
of safety and trust (PST). Based on participants’ feedback, we identified several potential causes for this perception gap, which are 
outlined below.

1 Blind Spot Monitoring (BSM) was not included in this category, as the only driver who expressed low trust in the BSM system attributed this to the placement of 
the warning symbol rather than concerns about its functional performance.
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• Premature collision warnings - ad-SOTIF( + ) PST(-)

One participant described a situation in which their vehicle issued collision warnings for vehicles that were still a considerable 
distance away and then abruptly applied the brakes. Although this suggests that the warning system was effective at alerting the 
driver to potential future collisions, the participant felt that these warnings were unnecessary, as the vehicle in front still had 
sufficient time to complete the turn before the partially automated driving system reached it. This issue led to frustration with 
the system: 

“One of the annoying things.. this is a little tiny bit as safe.. You’re from Holland.. So you are on the right side of the road.. So when 
you’re driving.. someones turning left in front of you and they’re like way ahead.. like the test slams on the brakes. Sometimes with the 
forward collision warning and.. it’s like 200 meters ahead of you.. like they’ll easily turn out past you.. But.. rear ending potential.. that’s 
the worry. (R006 - F/SCW)” 

• Inadequate distance - ad-SOTIF( + ) PST(-)

Finally, one driver reported that the vehicle failed to maintain a sufficiently safe distance from a parked vehicle, even though it 
did not result in a collision. This situation made them feel unsafe: 

“I’m not gonna say terribly unsafe, but uncomfortable. I do feel very unsafe if there’s vehicles parked on the right hand side and the 
vehicles attempting to maintain the lane, but it comes far too close to the vehicles on the right hand side. That is very I feel that’s very 
unsafe and that’s very stressed. (R041 - LDA) 

• Inappropriate braking - ad-SOTIF( + ) PST(-)

The driver described experiences in which the vehicle’s emergency braking behaviour was problematic, particularly due to 
hesitation after braking in heavy traffic. While the system still performed effectively in preventing collisions, the driver implicitly 
expressed concerns about safety due to this behaviour. Specifically, if traffic clears and speeds up, such behaviour could disrupt 
the flow of traffic, as it acts in a way that is not anticipated by other drivers. 

“The emergency brake checking that goes on, where the car will break.. in heavy traffic. It’s okay when the car’s hitting the brakes and 
hesitating. But when it opens up, and we’re moving faster, and there’s more space.. People are anticipating you to stay at your speed.. 
You don’t want.. hitting the brakes at those speeds.. those are the biggest situations. (R081 - AEB)”

Although AEB, F/SCW, and LDA successfully tracked vehicle manufacturers’ safety expectations—such as braking to prevent 
collisions in heavy traffic, issuing warnings of potential collisions, and maintaining lane position—drivers reported several concerns 
that negatively affected their perceptions of safety and trust. These issues suggest that the active safety features did not consistently 
align with drivers’ safety expectations. For example, AEB was reported to brake unnecessarily or hesitate in dense traffic conditions, 
disrupting traffic flow and raising safety concerns. F/SCW was criticised for issuing premature warnings and engaging in unnecessary 
braking when no imminent threat was present, often leading to frustration. LDA was noted for failing to maintain a safe lateral 
distance from parked vehicles, which resulted in driver discomfort and a diminished sense of security.

3.1.3. Consistent tracking

Two active safety features—BSM and LDA—were categorised as exhibiting consistent tracking, as they were reported to effectively 
meet both vehicle manufacturers’ and drivers’ safety expectations in most scenarios.

The specific situations in which drivers indicated that LDA successfully aligned with their safety expectations are outlined below.

• Long trips - ad-SOTIF( + ) PST( + )
Two drivers highlighted how their vehicle performed exceptionally well in maintaining its lane during long trips, particularly on 
highways. They described the feature as “flawless,” suggesting that they perceived the system as both safe and trustworthy. 

I did a.. 7500 Mile road trip from Connecticut to California and back.. 99% of the trip on the highways.. was done using Autopilot. And 
it worked pretty much flawless. (R026 - LDA) 

Additionally, one driver noted that the system outperformed human drivers, particularly in maintaining focus and avoiding 
complacency during extended drives. This suggests that the driver trusted the system to remain vigilant and to avoid complacency.

For autopilot.. used on a highway, I would say I’m the worst driver in the fact that it does a better job of long distance drives keeping lane 
centred. You know, watching.. not becoming complacent, I guess, which is so easy on a longer drive. (R087 - LDA) 

• Managing complex highway infrastructure - ad-SOTIF( + ) PST( + )
Two drivers highlighted how their vehicle assisted them in navigating complex highway traffic. One driver emphasised that FSD 
Beta maintained their lane and did not drift into incoming on-ramps, noting that it performed merging manoeuvres better than 
Autopilot. 
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There’s been a few highways where FSD beta can be engaged at highway speeds. And it does solve many of the problems they’ve had with 
navigate on autopilot, and then it merges better. It doesn’t shift over into incoming on ramps like navigating like I’ll it does it steers better. 
It maintains speed better overall. (R007 - LDA) 

Another driver described a highway they considered a “scary” place to drive due to the numerous on- and off-ramps on both 
sides of the interstate. They noted that Autopilot kept them in the correct lane, something they felt they might not have been 
able to maintain on their own. 

I don’t think I could get through Atlanta if I didn’t have Autopilot because their interstate is twice as wide as ours and they have on ramps 
and off ramps on both sides of the interstate. And it is a crazy, hectic, scary place to drive and. If I didn’t have autopilot keeping me 
where I needed to be, I don’t think I could do it. Nerves of steel there and I don’t have it. (R099 - LDA) 

• Less mental workload - ad-SOTIF( + ) PST( + )
Drivers consistently reported experiencing a reduced mental workload when using the vehicle’s lane-keeping features. This 
reduction in cognitive effort was attributed to the vehicle’s ability to handle routine tasks, such as maintaining lane position and 
adjusting for nearby traffic. One driver described how the system’s reliability in keeping the car centred in the lane fostered a 
sense of security, allowing them to relax and trust the technology: 

I trust full self-driving to keep me in my lane. So no, I don’t pay as close attention to where I am in the lane. I trust that it’s keeping me 
in the lane. (R044 - LDA) 

One driver emphasised that the system’s effectiveness in maintaining lane position significantly reduced fatigue, leading to a 
more positive driving experience. 

And the reason it makes it a lot less fatigue.. is that you don’t have to mentally think about all the micro adjustments. So when you’re 
driving down the road, you have to constantly make sure you’re centred in the lane, make sure you’re keeping distance from the car in 
front of you.. That’s my experience.. I really positive with Autopilot now for Full Self Driving Beta. (R079 - LDA) 

Another driver described how the system allowed them to shift their focus towards broader situational awareness, which they 
considered a safer and more efficient way of driving: 

I’m no longer having to concentrate on keeping that car.. I just simply don’t even think about it anymore. In fact, it’s odd when I take it 
off of all the pilot effect.. this is like starting out driving again all over because it’s just something you get used to that the car keeps it so 
well on its lane that you just don’t think about that anymore. What you do is looking ahead. You’re looking for other things happening 
to you.. and you’re making sure that you react appropriately. Does really good. (R062 - LDA)

Despite the reported excellence of LDA, one driver highlighted a situation where LDA kept them in the wrong lane, which led to 
them feeling scared. While LDA was still functioning as intended by keeping the vehicle within the lane, it did so in the wrong lane.

• Stay on the wrong lane - ad-SOTIF(-) PST(-)

“It’s really scary. It just does all sorts of weird things today. I was like coming home from work and it stayed. It was two lane road. It 
stayed in the left lane, which turned into a turn lane and it just like blew right through the turn lane and just kept writing through. We 
call it here as suicide lanes where you have a you can make a left or a right turn either direction. And it just kept driving right through 
it. (R076 - LDA)”

The following aspects were highlighted regarding the effectiveness of the BSM system.

• Safe lane changing - ad-SOTIF( + ) PST( + )
Drivers consistently praised the vehicle’s BSM system as a crucial safety feature that enhances the driving experience during lane 
changes. One participant highlighted that the system effectively monitors the vehicle’s surroundings and facilitates safer lane 
changes by detecting vehicles in blind spots. This feature was reported to significantly increase their confidence and sense of 
safety while manoeuvring between lanes. 

A very complete functionality, features and.. ability to.. monitor everything around you and that lets you change lanes if there’s a car in 
your blind spot or coming through and you’re using it and stuff like that. Definitely makes me feel much safer when I’m doing it. (R026 
- BSM) 

Another participant expressed appreciation for the BSM feature, noting that it helped prevent accidental lane changes resulting 
from limited peripheral vision. They found the BSM display particularly useful for enhancing situational awareness and reducing 
the likelihood of unintended lane merges. 



Transportation Research Part F: Psychology and Behaviour 113 (2025) 213–236

225

L.E. Suryana, S. Nordhoff, S. Calvert et al. 

When we go on vacation.. we’re gonna be doing a lot of miles.. driving across the country. It takes a lot of.. drive.. I.. really enjoy it 
because I am blind on my entire right side. I have no peripheral vision, so it makes it with the screen being there and you know, blind 
spot awareness and all of those interesting features. It makes it harder for me to accidentally merge into someone if I don’t look forward 
enough to the side to see if anybody’s in there. (R099 - BSM) 

• Understanding what the system perceives - ad-SOTIF( + ) PST( + )
Drivers reported that the Blind Spot Monitoring (BSM) system enhances their awareness of the vehicle’s surroundings. One par-
ticipant expressed appreciation for the system’s graphical display, which allowed them to compare the vehicle’s sensor feedback 
with their own visual observations. This feature was perceived as highly accurate and contributed to a greater sense of situational 
awareness. 

I would say.. 90% of the time my eyes are on the road. You typically monitor vehicle and its surroundings at all times.. I also enjoy the 
graphic that it gives you so you can understand our like to constantly compare with the vehicle sees to what I see and see what I can spot. 
That vehicle doesn’t yet. And for the most part it’s. Like 95% accurate. (R032 - BSM) 

Another participant emphasised that the visual feedback provided by the system on the display screen enhanced their confidence, 
as it allowed them to see exactly what the vehicle was detecting. This level of transparency contributed to a greater sense of 
safety and environmental awareness, reinforcing their trust in the system’s ability to identify and avoid potential hazards. 

For both of them it’s. You know, I feel safer because I see the perception. On the screen so I can see what it sees. And you know that 
gives me confidence of. Knowing exactly what it is seeing compared to.... And a lot of the perception part of this avoids that. Avoid those 
situations or helps avoid the situations. (R087 - BSM)

However, one participant reported a case in which the BSM system did not function as intended, resulting in an unsafe situation. 
According to the driver, the malfunction was caused by direct sunlight interfering with the sensor’s ability to detect surrounding 
vehicles.

• Weather-related sensor limitations - ad-SOTIF(-) PST(-)

“The place where I feel it’s starting to get unsafe is the changing weather conditions. And sometimes lighting. That’s one other one. When 
you get a bright hit of sunlight across into one of the panel doors, it’ll just blind the camera. It can’t compensate, and some levels. And I 
think they’re gonna have to improve some of the cameras all around the car to be able to decrease their contrast to avoid it. These are 
the situation with you so unsafe. (R061 - BSM)”

Both LDA and BSM were noted for effectively tracking both vehicle manufacturers’ and drivers’ safety expectations. Specifically, 
LDA was praised for its ability to maintain lane position during extended highway travel and in complex driving environments, 
contributing to reduced driver fatigue and mental workload. BSM was commended for enhancing safety and driver confidence during 
lane changes by reliably monitoring blind spots and improving overall situational awareness. This feature was particularly valued by 
drivers with limited peripheral vision, who found the system especially beneficial.

Despite these strengths, instances of tracking failures were reported. BSM occasionally failed to function correctly due to sensor 
interference from direct sunlight. In the case of LDA, one participant reported a failure to maintain lane position, although the precise 
cause of this issue could not be determined.

3.1.4. Summary

To summarise the tracking evaluation results, we aggregated the commonly reported situations for each safety feature across the 
three categories discussed in Sections 3.1.1 to 3.1.3 (Table 3). The classification of ‘tracked’ or ‘not tracked’ is based on the presence 
of recurring themes in participant responses for each safety feature, as described in the corresponding sections. If a particular theme 
was mentioned by participants, the safety feature was classified accordingly in the table.

This analysis revealed that for each safety feature, there are situations in which the feature successfully tracked both the driver’s 
and the vehicle manufacturer’s safety expectations, as well as situations where it did not. Notably, failures to track the vehicle 
manufacturer’s safety expectations were always accompanied by failures to track the driver’s safety expectations. However, the 
reverse was not always true; in some cases, the system met the manufacturer’s expectations but failed to align with the driver’s 
expectations.

3.2. Tracing evaluation results

Using thematic analysis, we evaluated tracing by identifying ten subcategories within participants’ responses, corresponding to 
the four tracing evaluation criteria. We also analysed the number of drivers who mentioned each subcategory (Table 4). These 
subcategories provide insight into how drivers operationalise the tracing criteria in practice, offering a deeper understanding of how 
responsibility, knowledge, and control are perceived and enacted.
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Table 3
Assessment of the tracking condition of meaningful human control based on common situations mentioned by users of partially automated driving systems. A 
positive mark ( + ) indicates that the respective human agent’s expectations are tracked, while a negative mark (–) indicates that the expectations are not tracked. 
The final column indicates whether both the driver’s and the automaker’s expectations are tracked.

Safety Feature Described situation Tracking of driver’s 
expectations (PST)

Tracking of automaker’s 
expectations (ad-SOTIF)

Human expectations 
are ..

BSM
Driver can detect objects in their blind spot while driving + + Tracked
BSM’s sensors dysfunction due to weather such as sunlight – – Not tracked

LDA

Driving on long highway trips with complex driving 
conditions

+ + Tracked

Drivers don’t have to perform minor adjustments of the 
vehicle within its lane

+ + Tracked

LDA keeps the vehicle on the wrong lane – – Not tracked
LDA maintains lane, but the distance with surrounding 
objects is too close

– + Partially tracked

F/SCW

F/SCW warns the driver of unseen potential front and side 
collisions with sound and on-screen icons

+ + Tracked

F/SCW warns the driver of potential collisions that are still 
distant

– + Partially tracked

F/SCW responds to false positive information and does not 
react to false negatives

– – Not tracked

Annoying warnings after system reboots – – Not tracked
Warning dysfunctions when vehicle with high speed 
approaches

– – Not tracked

AEB

AEB brakes to prevent collision in unforeseen/unexpected 
situations

+ + Tracked

AEB responds to false positive information and does not 
react to false negatives

– – Not tracked

AEB brakes to prevent collision, but the driver dislikes the 
way it brakes

– + Partially tracked

Table 4
Sub-categories related to tracing evaluation criteria. For each sub-category, count indicates the number of participants 
who mentioned each sub-category.

Tracing evaluation criteria Sub-categories Count 
Knowledge: keeping both hands on the steering wheel Driving with both hands on the steering wheel 39 

Driving with one hand on the steering wheel 13 
Driving mode 16 

Knowledge: staying alert Observation of the surrounding situations 17 
Highway 7 
Driving mode 26 

Capacity: corrective action Control over steering wheel 19 
Control over the pedals 10 
Driving mode 28 

Maintaining operational responsibility Agree to maintain control and responsibility 19 

The frequency of mentions also indicates that certain subcategories were discussed more frequently than others. For instance, the 
39 references to driving with both hands on the steering wheel suggest that a relatively large number of participants either understood 
or actively practised this behaviour. This number is notably higher than the 13 mentions of driving with only one hand on the wheel.

To provide deeper insight, the following sections offer detailed explanations and representative quotations for each tracing eval-
uation criterion, along with their corresponding subcategories.

3.2.1. Knowledge: keeping both hands on the steering wheel

This tracing requirement concerns whether drivers possess adequate knowledge regarding system use. Specifically, we assessed 
whether participants understood the importance of keeping both hands on the steering wheel and whether they reported complying 
with this guideline. Based on the interview data, we identified three categories of responses that addressed this topic.

• Driving with both hands on the steering wheel

Several participants reported consistently keeping both hands on the steering wheel. This behaviour was often attributed to legal 
requirements, with some noting that they adhered to this practice to avoid reprimands or penalties. 

“Do you typically keep your hands on the steering wheel at all times? I do (R041)” 

“According to the law, the hands must be on the wheel. I actually keep my hands on the wheel, and I feel the resistance. (R047)” 
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“I do keep my hands on the steering wheel mostly so I don’t get dinged. (R067)” 

• Driving with one hand on the steering wheel

Other participants reported typically keeping only one hand on the steering wheel. For some, this was primarily to meet the 
system’s torque detection requirements, while others adopted this behaviour when using Autopilot, often describing a more 
relaxed driving posture during such instances. 

“I typically keep one hand on the steering wheel at all times. I keep it there just enough to satisfy the torquing requirement, where there 
needs to be weight on the system.” (R054) 

“Do you always keep both hands on the wheel? No, generally, I keep one hand. So, I have my left hand always on the wheel. It’s usually 
on my knee, on the door, or on my elbow.(R087)” 

“Yes, I keep my hands a little bit stream at all times. When.. I’m not have my hands on the steering wheel, I either have one hand like on 
the bottom.. like one hand in this picture. But I at least always have one hand on the steering wheel. (R098)” 

• Driving mode

Participants reported varied behaviours concerning hand placement on the steering wheel depending on the driving mode. While 
some consistently used one hand when operating Autopilot, others indicated that they were more likely to keep both hands on 
the wheel when using FSD Beta. The responses also revealed a range of strategies for maintaining system engagement while 
using Autopilot, including resting hands underneath the wheel, intermittently jiggling it to satisfy system prompts, or applying 
continuous pressure with one hand to meet torque detection requirements. 

“I’ll usually have just one hand.. just lean my hand on the bottom of the steering wheel and let the weight kind of be enough to do it, so 
that’s generally how I drive with just to put enough pressure on it. Keep it constant pressure on it so it never really warns me about not 
putting pressure on. I tried to do things around, just occasionally do it, but that becomes more effort than just letting your hand rest on 
the steering wheel when I’m driving with it.. We usually just keep my hand sitting there resting there and it works.(R021)” 

“Then do you typically keep your hands on the steering wheel at all time? Autopilot no, FSD beta yes (R033)” 

“With Autopilot.. depends on where we’re.. if we’re on the highway.. where there are no obvious issues up ahead that I can see, what I’ll 
typically do is rest my hands underneath the wheel. And then as the prompts come up, I’ll just jiggle the wheel a little bit to make the 
prompt go away. With.. beta, most of the time.. Especially during turns. Typically.. I’ll have my hands at.. seven and four or something, 
and just let the wheel sort of brush up against my hands. And sometimes I’ll keep my hands off the wheel.. if I’m comfortable in this 
situation. But I’ve kind of learned not to do that. (R051)”

Overall, the evaluation of drivers’ knowledge regarding the requirement to keep both hands on the steering wheel revealed a range 
of practices. While some participants consistently used both hands in adherence to legal requirements and to avoid penalties, others 
adopted a more relaxed approach—maintaining one hand on the wheel primarily to satisfy the system’s torque detection, particularly 
when using Autopilot. Behaviours also varied by driving mode; drivers were generally more likely to maintain a hands-on approach 
when using FSD Beta compared to Autopilot. From a tracing perspective, although drivers appeared to understand the requirement 
to keep their hands on the steering wheel, their actual behaviours demonstrated considerable variation.

3.2.2. Knowledge: staying alert

According to the vehicle manufacturer, drivers are required to remain alert at all times. Based on this requirement, we identified 
three subcategories of participant responses:

• Awareness of surrounding situations

Participants expressed varied perspectives regarding situational awareness. Some reported that using Autopilot and FSD Beta 
enhanced their attentiveness, allowing them to focus further down the road and experience reduced fatigue. One participant 
noted experiencing heightened alertness while using the technology, citing improved contextual awareness and the ability to 
more effectively scan the driving environment. Another emphasised the importance of remaining fully attentive, particularly 
when using the beta version, to stay aware of the surrounding conditions. 

“Autopilot and FSD beta allow you to actually be more attentive in general then not having autopilot or FSD, and that’s because the car 
is taking care of the rudimentary things for you.. That allows you to focus further down on the road or it allows you to see things that 
maybe you wouldn’t have seen otherwise and it allows you to be less fatigued to where you’re able to. You’re able to be more alert than 
you would be otherwise. That doesn’t mean that you don’t also get distracted at times, but I think when you are paying attention, I think 
it allows you to pay better attention to the road than without autopilot or FSD. (R027)” 
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“For Autopilot and FSD always be alert and attentive. If it’s a beta, it’s required to be fully attentive and alert at all times. Autopilot. I know 
other owners, they’re kind of relaxing, not paying attention. For me on Autopilot, it helps me become more attentive of my surroundings 
during driving.. When I’m driving myself, I usually look forward in once in a while, look left and right, but with autopilot, I’m able to 
watch.. all the mirrors all the time, making sure what I’m aware of what’s going on around me. (R075)” 

“Typically, fully attentive and alert at all times. Pretty excessively alert. As one of the things I love about the beta and regular autopilot 
as well, when they drive it, actually more aware because I can actually look around and take in.. where all the cars are around me. I 
understand.. what’s going on, where it was.. I definitely enjoy it more when I’m not micromanaging those things and I’m able to take in 
and be more contextually aware. (R085)” 

• Highway

Participants’ experiences with staying alert while driving varied depending on the driving context. In particular, some reported 
reduced attentiveness when using Autopilot on highways—especially on familiar routes, during low-traffic conditions, or in the 
absence of external distractions. The following quotations illustrate this variability in driver alertness: 

“And typically fully attentive and alert, you have to be.. Autopilot ..not so much.. I’ve noticed.. I’ll be driving along and.. be able to read 
a sign along the road or something that. Before, you.. you wouldn’t take the time to read and add. But.. if it’s on a Interstate highway, 
it’s no problem. (R010)” 

“I typically fully attentive and alert at all times? No, I’ve gotten comfortable with it over time, so I don’t fully pay a attention anymore, 
specially on roads that I’m familiar with or on highways that I’m familiar with. (R016)” 

“I would say there are moments.. where I haven’t been fully attentive. I obviously don’t let that happen for like minutes.. I’m not gonna 
pull my phone out, look at it, but there’s definitely times when driving on the highway, I look ahead and there’s nobody for a kilometer 
ahead of me. And so I will look after the side and look at something in the scenery and then look back again or look at the passenger 
beside me and then look back again. Not for long periods of time. But longer than you could get away with if you were actually the one 
driving, I would say. (R045)” 

• Driving mode

Participants reported variations in their levels of attentiveness and alertness depending on the driving mode. One participant 
noted that their awareness was lower when using Autopilot compared to FSD Beta, even when feeling fatigued. Another acknowl-
edged being less attentive in Autopilot mode, explaining that it enabled multitasking behaviours that would not be possible during 
conventional driving. A third participant stated that their level of attentiveness while using Autopilot was slightly lower than 
when using FSD Beta. The following quotations offer further insight into these reported differences: 

“Are you typically fully attentive and alert at all times? I’d say with Autopilot I have been in situations where I’ve driven really exhausted 
and I tend to have pretty good situational awareness even when I’m.. super exhausted. But I would say like.. when I use autopilot, it’s not 
always 100 percent peak performance.. With FSD beta.. I’m always alert and fully attentive.(R051)” 

“.. If I were to grade these on how I feel on where I have to be fully attentive and alert at all times, FSD beta requires the most, Autopilot 
requires less (R063)” 

“..typically fully attentive, fully alert.. at all times.. Less.. in autopilot.. I would say that Autopilot does allow you to do other things that 
you might not normally do if you were driving the car normally. (R088)”

The evaluation of drivers’ knowledge regarding the need to remain alert while driving revealed three key insights in relation to the 
tracing condition. First, some participants reported that Autopilot and FSD Beta enhanced their attentiveness by allowing them to focus 
further ahead and reduce fatigue. Second, attentiveness varied depending on the driving context; some drivers reported decreased 
focus on highways, particularly on familiar routes. Third, alertness differed across driving modes, with participants generally reporting 
lower levels of awareness while using Autopilot compared to FSD Beta.

Overall, although participants demonstrated knowledge of the requirement to stay alert—thus formally satisfying the tracing 
condition—their actual behaviours reflected variability in alertness depending on context and system use.

3.2.3. Capacity: corrective action

The tracing condition of MHC requires that drivers not only understand the functionality of partially automated systems but also 
retain the capacity to operate them effectively. Consistent with this requirement, the vehicle manufacturer in our study mandates that 
drivers must be able to perform corrective actions. Based on our analysis of participant responses, we identified three sub-categories 
reflecting this capacity.
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• Control over the steering wheel

Participants demonstrated readiness to take corrective action through their hand positioning while using automated driving 
features. One participant emphasised maintaining a firm grip on the steering wheel, deliberately placing their hands in the lower 
corner to enable a rapid response to unexpected lane drift. Another respondent noted that their approach to hand positioning 
was influenced by how Autopilot handled specific driving situations. Additionally, one participant reported that resting one hand 
on the wheel was ineffective for performing minor corrective actions when using Autopilot. 

“Often when I’m driving on the highway.. if it’s just me, I’ll just have one hand resting on top of the wheel, making minor corrective action. 
But that doesn’t work very well with Autopilot. It thinks that I’m not touching my car so. So I yeah, do like the nine and three or five and 
seven to use gravity. (R028)” 

“Do I prepare to take corrective actions? Absolutely, whether it’s holding that steering wheel really hard in case it wants to just drift off 
really quick or.. really hard.. that’s.. why I hold my hands. The way they’re steering wheels made, that’s also why I hold my hands in that 
lower corner as opposed to up top when you hold it up top. If the car is gonna jerk itself off to the right, especially being left handed, it 
can only go so far before the centre beam and the steering wheel will block it. But if you hold it on the bottoms, it has much less travelled 
before you can get your hand on it. And if anything else, it’s going to stop as soon as it hits you hit one of that centre peg.(R061)” 

“.. Stay prepared to take corrective actions, like more.. than if I was just tracking upon myself. Because technically there’s someone else 
driving the.. car, you know that they’re not very good at driving the car, so I have to pay more attention.. I guess I’m pretty good spatial 
awareness, so I take a lot.. for granted.. in terms how you place your hands on the steering wheel. (R081)” 

• Control over the pedals

Participants described their interactions with the brake pedal as a means of demonstrating their readiness to perform corrective 
actions. One participant noted the importance of being prepared to intervene, particularly in situations where FSD or Autopilot 
might fail to brake in time. Another explained that they positioned their foot in a comfortable location to enable rapid braking 
or acceleration when necessary. A third participant emphasised the ease with which they could engage the brake, as their foot 
was already positioned similarly to when operating vehicles with lower levels of automation. 

“Do you typically stay prepared to make corrective actions at all time? Absolutely, especially with FSD, better you have to be prepared. 
You have to kind of.. exit plan. If it comes down to it with Autopilot, not as much. But there are times where you may have to be ready 
to press the brakes because the car is not breaking in time and it’s getting a little bit too close to the car ahead of you. (R064)” 

“I always stay prepared to take corrective action with FSD beta. But with autopilot on the highway.. feel a little bit more comfortable with 
my foot. Like to the side.. But it is really easy to lift my foot and hit the brake if I need to.. I would say like it’s pretty much the same as 
when I use cruise control on older cars or other cars in the past. It’s the same place. I would put my foot. (R074)” 

“Do you typically stay prepared to take corrective actions at all times? Mostly I keep my feet just like back. I’ll wait from the pedals. Just 
getting a comfortable position unless.. a location where I don’t have as much trust in Autopilot, FSD beta, or there’s a lot of cars around 
me. Then I have my feet ready to like, break or accelerate or anything like that mostly depends on the situation. (R078)” 

• Driving mode

Participants’ perspectives on their preparedness to take corrective action varied depending on the driving mode. One respondent 
strongly emphasised the importance of maintaining vigilance while using FSD Beta, describing a constant state of readiness 
to intervene. Another participant highlighted a contrast between the two modes, reporting a heightened level of awareness—
described as being “hyper-aware”—when using FSD Beta, and a lower level of preparedness when using Autopilot. Additionally, 
some participants indicated that their trust in Autopilot increased over time, leading to a more relaxed driving posture and a 
perception of the system as being safer. The following quotations illustrate these perspectives: 

“Do you typically stay prepared to take corrective action at all times? Autopilots a little bit less than FSD beta. As long as I’m in a 
comfortable realm, there’s no situations around me. I am prepared, but my guards down a little bit more. With FSD beta. I’m always 
ready to take over. (R017)” 

“Do you typically stay prepared to take corrective actions at all times? I certainly do that.. for all the reasons.. But autopilot, I feel like I’m 
typically less prepared because I’m more relaxed. I’m more letting my guard down. Because.. I trust it more. It’s never done as much wrong 
as.. I’m looking at the scenery I’m looking.. I’m enjoying the ride versus driving pretty much. So definitely less prepared on autopilot.. 
Autopilot is safer in my opinion. (R048)” 

“Next question that typically stay prepared to take corrective action. Autopilot.. not so much. I mean, my hand is on the wheel.. With 
Beta. I’m very.. ready to take control. It’s hyper aware. (R096)”
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The evaluation of drivers’ capacity to perform corrective actions—another key component of the tracing condition—revealed 
that participants demonstrated readiness by adjusting their grip on the steering wheel and maintaining their foot near the brake 
pedal. Several drivers also adopted specific strategies to enable rapid intervention when necessary. Preparedness varied by driving 
mode: participants reported feeling more vigilant while using FSD Beta and more relaxed when using Autopilot. Overall, the findings 
suggest that drivers exhibited different levels of readiness to take corrective action, influenced by both the automation mode and 
their individual driving strategies.

3.2.4. Maintaining operational responsibility

The final tracing requirement concerns the maintenance of operational responsibility. According to the tracing condition, at least 
one human must be aware that they hold moral responsibility for the outcomes of the system’s actions. This aligns with the vehicle 
manufacturer’s guidance, which stipulates that drivers are accountable for the operation of the partially automated driving systems.

Unlike the other tracing evaluation criteria, only one subcategory was identified in this area: agreement among participants that 
drivers must maintain control and assume responsibility.

Participants expressed this recognition in varying ways. One respondent mentioned feeling personally responsible for ensuring 
that the vehicle did not make errors. Another indicated a strong belief that, in the event of an incident, they would be held fully liable 
and could not shift blame to Autopilot in a legal context. A third respondent explicitly emphasised the importance of maintaining 
control and responsibility, acknowledging that they would accept fault in the case of a collision. The following quotations provide 
illustrative examples: 

“The responsibility is definitely mine,. I wrecked my car.. not tesla fault.. indeed. (R032)” 

Did not maintain control in this? No, I disagree with that. I mean..I get that I’m completely responsible for it. I’m gonna lose in court if I say 
Autopilot made me did it, or autopilot did it.(R067) 

“I’m paying attention to what it’s doing, backing it up to make sure it doesn’t make a mistake.. But.. if it does, I’m responsible for it. So I have 
to be really paying attention to it. So I’m vigilant. But.. I feel like probably secure that it’s doing a good job. (R072)” 

Overall, the evaluation indicates that drivers are aware of their responsibility to oversee the vehicle’s operation and recognise 
their accountability in the event of system errors or legal consequences.

4. Discussion

4.1. Theoretical implications

This section discusses how the proposed MHC evaluation framework can be applied to systems based on real-world driving 
experiences, offering new insights into the dynamic nature of meaningful human control (MHC), particularly in relation to the 
tracking and tracing components. The findings highlight the interplay between system performance and human factors, contributing 
to the existing body of literature by emphasising the roles of contextual variability, subjective risk perception, and the interaction 
between human engagement and system behaviour in the assessment of MHC.

The tracking evaluation revealed notable variations in how different safety features align with both human- and manufacturer-
defined safety expectations across varying driving contexts. Features such as Blind Spot Monitoring (BSM) and Lane Departure 
Avoidance (LDA) demonstrated strong alignment with the tracking component of MHC during routine scenarios, such as highway 
lane-keeping. Drivers particularly valued BSM’s warning system and visual interface for identifying vehicles in blind spots, consistent 
with findings from Kim et al. (2024), who reported that user interfaces offering surrounding information enhance driver trust and 
reduce perceived risk.

However, in emergency or unexpected driving situations—such as encounters with sudden obstacles—features like Automatic 
Emergency Braking (AEB) and Forward/Side Collision Warning (F/SCW) exhibited performance inconsistencies. Although drivers 
acknowledged their effectiveness in preventing collisions, these systems were less reliable in consistently meeting the tracking re-
quirements of MHC. This observation aligns with Cicchino (2017), who found that such features significantly reduce front-to-rear 
crash rates but are not universally effective. These results underscore the importance of ensuring that partially automated systems are 
capable of dynamically adapting to diverse and unpredictable driving environments in order to uphold meaningful human control.

Misalignment between driver and manufacturer safety expectations often arises from technological limitations—such as sensor 
failures in adverse weather conditions, including bright light impairing sensor performance—or from mismatched expectations, such 
as drivers perceiving AEB braking as overly hesitant. Tesla’s manual (Tesla, 2024) explicitly acknowledges limitations such as obscured 
lane markings or weather-related interference (e.g., rain); nevertheless, drivers expressed safety concerns when these limitations 
manifested in practice. These findings underscore the importance of addressing root causes, including the enhancement of sensor 
reliability and better alignment of system behaviour with human expectations.

In addition, drivers’ risk perception played a critical role in the tracking component of MHC. False positives, such as phantom 
braking, diminished trust in the system, whereas successful interventions, such as timely collision avoidance, improved perceived 
safety. This dynamic highlights the need for the tracking component of MHC to account for both objective system performance and 
the subjective experiences of human drivers.
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The tracing evaluation reveals how human factors shape the effectiveness of partially automated systems in meeting tracing 
criteria. Drivers frequently engaged selectively with system warnings or interventions based on their personal risk assessments. For 
instance, some participants reported disregarding Forward/Side Collision Warning (F/SCW) alerts when they judged the following 
vehicle to be at a safe distance, indicating a disconnect between system logic and human judgement.

The paradox of trust also emerged as a critical influence on tracing compliance. While drivers expressed appreciation for features 
like LDA for reducing cognitive load—consistent with findings by Miller and Boyle (2019), who demonstrated increased workload in 
the absence of LDA—over-reliance on such features often resulted in complacency. This supports the argument of Bainbridge (1983), 
who described the “ironies of automation,” wherein human vigilance diminishes as system reliability increases. Young and Stanton 
(2002) further conceptualise this effect through “mental underload,” where reduced task demands lower attentional capacity and 
compromise readiness to intervene.

Although manufacturers attempt to mitigate this risk by assigning drivers the responsibility to remain engaged, in practice, drivers 
often disengage during routine operation, becoming “out-of-the-loop” (Endsley, 2017). This challenge is exacerbated by system design 
approaches that overlook human cognitive limitations in sustained attention and monitoring tasks (Lee & See, 2004). The resulting 
paradox exposes a fundamental design flaw: assigning moral responsibility alone is insufficient to guarantee continuous vigilance. As 
argued by Hansson et al. (2021), systems that promote over-reliance while simultaneously expecting uninterrupted human supervision 
raise significant ethical concerns.

The level of driver engagement was found to vary depending on system behaviour and driving context. Participants tended to be 
more engaged in complex or high-risk driving scenarios, while disengagement was more common during routine tasks. This dynamic 
aligns with findings by Robins-Early (2024) and Oskina et al. (2023), who demonstrated that subjective risk perceptions—such as 
preferences for lateral distance during automated overtaking—significantly influence trust and perceived safety. For instance, some 
drivers reported experiencing stress when LDA maintained a minimal lateral buffer, even if the manoeuvre was technically safe.

Personal preferences, driving modes, and situational contexts also played a significant role in tracing performance. Drivers were 
more likely to comply with hand placement requirements in urban environments when using FSD Beta—perceived as riskier—while 
adopting minimal contact strategies (e.g., resting a hand or applying intermittent torque) on highways with Autopilot, which was 
perceived as more stable. Additionally, some participants admitted to deliberately manipulating the system by applying weight to 
the steering wheel to simulate compliance with hand detection requirements.

This pattern of selective adherence highlights the complex interplay between individual attitudes, perceived risk, and contextual 
factors. It suggests that tracing performance cannot be fully understood without accounting for how drivers interpret and respond to 
system cues within specific driving environments.

4.2. Practical implications

This section offers practical recommendations based on the insights obtained from the MHC evaluation, with a focus on enhancing 
system design and addressing subjective driver experiences.

To improve system design, it is essential to address environmental limitations such as glare from sunlight, adverse weather condi-
tions, and faded lane markings, all of which can impair system reliability. For example, Blind Spot Monitoring (BSM) sensors that are 
susceptible to sunlight interference could be redesigned using alternative sensing technologies or with added redundancy to ensure 
consistent performance. Minimising false positives and false negatives—such as phantom braking or missed hazard detections—is also 
critical for sustaining driver trust. Potential solutions include refining object detection algorithms and integrating contextual aware-
ness to reduce unnecessary alerts. These design improvements are urgent, particularly in light of findings by Paula et al. (2023), who 
reported that 78% of drivers were unable to override phantom braking, thereby heightening safety risks.

Moreover, system behaviour should be calibrated to align more closely with human expectations of safety and trust. For instance, 
Automatic Emergency Braking (AEB) could be adjusted to engage earlier in emergency scenarios, reflecting drivers’ preferences for 
proactive intervention. This recommendation is supported by Koglbauer et al. (2018), who demonstrated that braking behaviour 
significantly influences perceived safety.

Addressing subjective driver experiences is equally critical for improving the effectiveness of partially automated systems. Clear 
and intuitive user interfaces can enhance driver understanding of system behaviour. For example, visual or auditory cues explaining 
why a warning was issued or why braking occurred could reduce confusion and strengthen trust. Encouraging driver engagement is 
also essential. Systems should actively prompt drivers to assume control in edge cases—such as when lane markings are unclear—to 
mitigate over-reliance on automation. Furthermore, educating drivers about system capabilities and limitations remains a key priority. 
Comprehensive training programmes can support more effective use of automation by emphasising the importance of staying attentive 
and prepared to intervene.

To address the broader challenges of driver engagement and over-reliance on automation, we propose several actionable recom-
mendations. First, adaptive Human-Machine Interfaces (HMIs) could be developed to tailor hand placement reminders based on the 
driving context. For instance, stricter prompts may be warranted on highways, where automation is typically perceived as reliable, 
whereas fewer prompts may be appropriate in urban settings, where drivers are more naturally engaged due to increased perceived 
risk.

Second, enhanced training and regulatory measures are essential to reinforce driver readiness. Scenario-based training modules 
could prepare drivers to respond effectively in low-risk contexts, while policies mandating multi-layered engagement checks—
extending beyond easily circumvented measures such as steering torque detection—would promote sustained vigilance.
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Finally, reassessing preparedness expectations is crucial. Given the natural constraints of human attention and the observed 
tendency to over-rely on automation, vehicle manufacturers should reconsider assumptions about how quickly and effectively drivers 
can retake control. By incorporating these recommendations, automated driving systems can better align with human capabilities 
and limitations, thereby ensuring that drivers remain meaningfully engaged and ready to intervene when necessary.

4.3. Are Tesla’s partially automated driving systems under meaningful human control?

Based on our evaluation of tracking and tracing compliance, we conclude that Tesla’s FSD Beta and Autopilot systems do not 
fully satisfy the requirements of meaningful human control (MHC). In contrast to previous studies that primarily assess MHC through 
hypothetical scenarios or post-incident analyses (Calvert et al., 2021, 2020), our evaluation provides a more nuanced understanding 
of real-world system behaviour and its implications for MHC compliance. Below, we summarise the key findings that support this 
conclusion.

4.3.1. Failures in tracking compliance

Tesla’s systems frequently failed to track safety expectations under challenging environmental conditions and in the presence 
of degraded infrastructure. These shortcomings underscore a lack of robustness in the perception systems, which are essential for 
maintaining alignment with both driver and manufacturer safety expectations. For example, adverse weather conditions—such as 
rain, snow, or glare—were reported to impair sensor functionality, resulting in failures to detect obstacles or maintain appropriate lane 
positioning. Similarly, infrastructure-related issues, including faded lane markings and poorly maintained roads, further exacerbated 
these limitations, as the systems rely heavily on visual inputs for accurate operation.

In high-risk or unpredictable scenarios, features such as Automatic Emergency Braking (AEB) and Forward/Side Collision Warn-
ing (F/SCW) often struggled to effectively track safety expectations. Issues such as phantom braking—where the system erroneously 
detects obstacles and applies the brakes unnecessarily—and false negatives—where genuine hazards go undetected—further com-
promised performance. These inconsistencies not only eroded driver trust but also diminished the system’s capacity to meet safety 
expectations in critical situations.

Moreover, even when systems conformed to technical specifications, such as adhering to predefined braking thresholds, they 
frequently failed to meet driver expectations. Subjective perceptions of safety often diverged from objective system performance. For 
instance, participants described AEB interventions as overly cautious or hesitant, despite the system functioning within its intended 
parameters.

4.3.2. Failures in tracing compliance

Failures in tracing compliance stem from inconsistent driver adherence to safety protocols, over-reliance on automation in low-risk 
scenarios, and systemic design shortcomings that inadvertently promote disengagement. Drivers frequently demonstrated selective 
adherence to recommended behaviours, such as maintaining hands on the steering wheel and staying alert. Higher compliance 
was observed in high-risk contexts—such as urban environments with FSD Beta—where the perceived complexity of the driving 
environment prompted greater vigilance. Conversely, in low-risk contexts such as highway driving with Autopilot, compliance levels 
declined substantially as drivers placed greater trust in the system’s reliability.

This variability indicates a troubling dependence on driver confidence rather than on system robustness to ensure safe operation. 
It also reveals a fundamental challenge in tracing compliance: current systems often fail to support sustained driver engagement and 
accountability, especially during routine or low-demand driving conditions.

An inverse relationship was observed between driver confidence and preparedness to perform corrective actions. When drivers 
perceived the system to be safe—such as during routine highway driving with Autopilot—their vigilance and readiness to intervene 
declined. This over-reliance on automation introduces significant risk, as drivers may be insufficiently prepared to take control in 
emergency situations, thereby undermining the system’s ability to maintain meaningful human control.

Although participants generally acknowledged their moral responsibility for overseeing the system’s operation, misuse of automa-
tion features was common. For example, several drivers reported circumventing safety protocols by applying weight to the steering 
wheel to simulate hand presence. This behaviour reveals a deeper structural issue: moral responsibility alone is insufficient to guar-
antee adherence to safety protocols. Current system designs, which rely predominantly on basic compliance checks such as steering 
torque verification, inadvertently facilitate complacency and improper use.

To address this challenge, it is not enough simply to remind drivers of their responsibilities. Instead, automated systems must be 
proactively designed to promote continuous driver engagement and situational awareness. This includes implementing more robust 
human–machine interaction strategies that help ensure drivers remain alert and ready to assume control when necessary.

4.4. Limitations

Despite the insights gained from our research, several limitations may impact the interpretation and generalisability of our findings. 
First, the data used primarily reflect drivers’ subjective perceptions. While these perceptions are valuable for understanding user 
experiences, they may not always correspond to actual driving conditions. To address this limitation, we recommend that future 
research complement subjective reports with objective data (e.g., telemetry or kinematic data), allowing for statistical analysis that 
can more robustly assess system performance and user interaction.
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Second, although all participants used Tesla’s Autopilot or FSD Beta—both classified as SAE Level 2 systems—the original data 
collection did not ask participants to identify the automation level of their vehicle. While this could be seen as a limitation, we 
argue that it does not compromise the validity of our findings for three reasons: (1) users typically interpret automation through 
system behaviour and driver responsibility, rather than formal SAE terms; (2) knowledge-related questions in the interviews revealed 
that participants generally understood system limitations and the need for supervision (Nordhoff & Hagenzieker, 2024); and (3) 
Tesla communicates these limitations clearly through system prompts and manuals. Nonetheless, we recommend that future studies 
explicitly examine users’ awareness of automation classifications or mental models, particularly where this may influence trust, 
expectations, or driver behaviour.

Third, our study is constrained by the fact that we only considered drivers and vehicle manufacturers as human agents in the 
evaluation of meaningful human control (MHC). However, it is important to acknowledge that other stakeholders—such as other 
road users, members of the public, lawmakers, and government authorities—also play a significant role in the operation, deployment, 
and governance of automated driving systems (Calvert & Mecacci, 2020). These stakeholders contribute to the broader sociotechnical 
context in which automated systems function. We therefore recommend that future research broaden the scope of analysis by including 
additional human agents to provide a more holistic evaluation of MHC.

Fourth, our evaluation of human expectations was primarily limited to safety. While safety remains a central concern in the 
context of driving automation, other expectations—such as comfort, regulatory compliance, and time efficiency—are also relevant. 
Future studies should incorporate a wider range of human expectations to enable a more comprehensive understanding of how MHC 
is established and maintained in partially automated systems.

Fifth, our findings are based exclusively on data collected from users of Tesla’s FSD Beta programme in the United States and 
Canada. Variations in the design, implementation, and user interfaces of automated driving systems across manufacturers may lead 
to different user experiences and perceptions. Consequently, we recommend that future research include a more diverse sample of 
both automakers and participants to enhance the representativeness and generalisability of findings related to meaningful human 
control.

Sixth, while the dataset used in this study offers valuable insights into driver interactions with Tesla’s Autopilot and FSD Beta 
systems, several potential biases should be acknowledged. Selection bias may have influenced the sample, as participants were 
recruited exclusively through online platforms. This recruitment method may have excluded individuals who are not active on such 
platforms, potentially leading to the underrepresentation of certain demographic groups. As a result, the sample may not fully reflect 
the diversity of all users of these systems. In addition, response bias may have affected the quality of interview data. Given the remote 
nature of the interviews (e.g., conducted via Zoom), participants may have tailored their responses to align with perceived social 
norms or desirability. These potential biases should be considered when interpreting the findings of this study.

Seventh, as a qualitative study, the analysis is subject to potential researcher bias. Although the study employed structured analyti-
cal frameworks—such as inductive category development and the application of ad-SOTIF and PST assessments—the interpretation of 
participant responses necessarily involved a degree of researcher judgement. To enhance objectivity, future studies could incorporate 
inter-coder validation or triangulation methods to strengthen the reliability and transparency of qualitative coding processes.

Eighth, the retrospective and indirect nature of our evaluation of MHC poses an inherent methodological limitation. The dataset 
was initially collected without explicitly introducing the MHC framework or assessing participants’ understanding of its core 
components—namely, tracking and tracing. As a result, we were unable to directly evaluate participants’ awareness, interpretation, 
or valuation of MHC as a concept. While our indirect approach yielded contextually relevant and theoretically grounded insights, it 
was not originally designed with the explicit goal of evaluating MHC. Future research should therefore be conducted with the explicit 
intent to assess MHC—meaning that while similar questions might be asked, they would be purposefully framed within the MHC 
framework. This would allow for more focused interpretation, targeted measurement, and potentially more valid conclusions about 
how users understand and experience meaningful human control in automated driving contexts.

5. Conclusion

Evaluating meaningful human control (MHC) over partially automated driving systems presents considerable challenges, stemming 
from the complex interactions between human drivers and automation, as well as the variability inherent in real-world driving 
contexts. This study offers a systematic assessment of how such systems adhere to MHC principles beyond post-incident analysis and 
hypothetical scenarios, by focusing on their operation in everyday, real-world situations.

The contributions of this study are twofold. First, we evaluated the extent to which partially automated driving systems in real-
world contexts comply with the requirements of MHC. Second, we introduced a novel methodological approach for assessing the 
tracking and tracing dimensions of MHC, using qualitative data derived from in-depth interviews with users of Tesla’s Autopilot 
and FSD Beta systems. This approach provides richer insights into drivers’ lived experiences with automation and offers a practical 
framework for examining MHC in automated systems.

We evaluated tracking based on how consistently various safety features performed their intended functions, alongside drivers’ 
perceptions of safety and trust. Tracing was assessed through drivers’ knowledge of the requirement to keep both hands on the steering 
wheel and remain alert, their capacity to execute corrective actions, and their awareness of moral responsibility for the system’s 
operation. By applying this evaluation framework, we found that while subsystems of Tesla’s FSD Beta and Autopilot demonstrate 
partial adherence to the principles of meaningful human control, several significant challenges remain. These include inconsistencies 
in tracking both driver and manufacturer safety expectations, as evidenced by the comparatively weaker tracking performance of 
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F/SCW and AEB relative to BSM and LDA. Such issues are frequently linked to technological limitations—such as false positives, false 
negatives, and sensor vulnerabilities under adverse environmental conditions—as well as misaligned user expectations.

Inconsistencies in MHC also arise from variability in driver interaction, including selective adherence to safety protocols, over-
reliance on automation, and misuse of system features. For example, adherence to guidelines—such as maintaining hand contact 
with the steering wheel and staying alert—was found to be inconsistent and often shaped by perceived risk. Drivers exhibited greater 
caution with FSD Beta in urban environments compared to the more relaxed use of Autopilot on highways.

These findings highlight the urgent need for further technological development, user-centred design improvements, and regulatory 
attention to ensure stronger and more consistent meaningful human control in partially automated driving systems.
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Appendix A. Questionnaire

See Table A.5.

Table A.5

Interview questions.

Question 
number

Question

Q1 Do you have the Full Self-Driving Beta (FSD Beta) feature? (1 = Yes, 2 = No)

Q2 Before the first time of using Autopilot and FSD Beta, did you watch / read / listen to information on how to use it? (1 = Yes, 2 = No)

Q3 Please mention the type of information you consulted on how to use Autopilot and FSD Beta (website of Tesla (www.tesla.com), car dealer / sales 
point, online communities and forums, YouTube videos, newspapers and magazines, friends, family, colleagues, driver manual)

Q4 Please describe your experience with using Autopilot and FSD Beta and the benefits and risks associated with using it. Please explain your answer

Q5 Have your expectations of using Autopilot and FSD Beta been fulfilled? Why / why not?

Q6 Why do you use Autopilot and FSD Beta?

Q7 Did you ever stop using Autopilot and FSD Beta (for prolonged periods of time)?

Next, we would like to explore your perceptions regarding four general statements about the operation of Autopilot and FSD Beta 
Q8 The current Autopilot does make driving autonomous. Is that correct? (1 = Yes, 2 = No, 3 = I don’t know)

Q9 There are no safety issues with Autopilot. Is that correct? (1 = Yes, 2 = No, 3 = I don’t know)

Q10 Autopilot is a hands-on feature. Is that correct? (1 = Yes, 2 = No, 3 = I don’t know)

Q11 Tesla FSD Beta is safer than a human. Is that correct? (1 = Yes, 2 = No, 3 = I don’t know)

With the next section, we would like to explore your perceptions of safety while using Autopilot and FSD Beta 
Q12 Do you feel safe when Autopilot and FSD Beta is active? Why / why not?

Q13 What / how do you feel when you feel safe / unsafe? Please explain

Q14 What is it about Autopilot and FSD Beta that is safe / unsafe? Please explain.

Q15 Now please remember the situation / s in which you typically feel unsafe when Autopilot and FSD Beta is active and describe these situations.

Q16 What can Autopilot and FSD Beta do to support your safety in Autopilot and FSD Beta? Please explain

Q17 Does feeling safe / feeling unsafe impact how you use Autopilot and FSD Beta on your next drives / in the future? Please explain.

Q18 Has your perceived safety changed over time? If so, how?

http://www.tesla.com
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Table A.5 (continued)

Question 
number

Question

With the next section, we would like to explore your trust in Autopilot and FSD Beta. 
Q19 How would you position your level of trust in Autopilot and FSD Beta. (1 = I don’t trust it at all, 2 = I don’t trust it, 3 = I neither don’t trust it at 

all nor trust it a lot, 4 = I trust it, 5 = I trust it a lot)

Q20 What can Autopilot and FSD Beta do to support your trust in Autopilot and FSD Beta?

Q21 Does your trust / distrust in Autopilot and FSD Beta impact how you use Autopilot and FSD Beta on your next drives / in the future? Please explain.

Q22 Has your trust changed over time? If so, how?

Q23 When you do compare yourself with other drivers, Autopilot, and FSD Beta, do you think you are ... (1 = A much worse driver, 2 = A worse driver, 
3 = Not a better nor a worse driver, 4 = A better driver, 5 = A much better driver) (De Craen, 2010)

With the next section, we would like to explore how you typically use Autopilot and FSD Beta. 
Q24 How do you typically place your hands on the steering wheel when Autopilot and FSD Beta is active? Please select the image that serves as the best 

representation of your placement of your hands on the steering wheel when Autopilot / FSD Beta is active and explain your answer.

Q25 Do you typically keep your hands on the steering wheel at all times?

Q26 Are you typically fully attentive and alert at all times?

Q27 How often do you typically engage in other secondary activities while Autopilot and FSD Beta is active? (Never, rarely, occasionally, frequently, 
always; monitoring the road ahead, talking to fellow travellers, observing the landscape, using the phone for music selection, using the phone for 
navigation, using the phone for calls, eating and drinking, using the phone for texting, watching videos / TV shows, sleeping)

Q28 Do you disengage Autopilot and FSD Beta? Why / why not?

Q29 Does Autopilot and FSD Beta disengage? When / in which situations?

Q30 How do you typically place your eyes when Autopilot and FSD Beta is active?

Q31 Do you typically keep your eyes on the road at all times?

Q32 Do you typically monitor the vehicle and its surroundings at all times?

Q33 How do you typically place your feet when Autopilot and FSD Beta is active?

Q34 Do you typically stay prepared to take corrective actions at all times?

Q35 Has your use of Autopilot (in terms of how you placed your hands on the steering wheel, eyes on the road, and feet) changed over time? If so, how?

Data availability

Data will be made available on request.
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