
GPU acceleration of preconditioned solvers for

ill-conditioned linear systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties, in het openbaar te verdedigen op

maandag 9 november 2015 om 12:30 uur

door

ROHIT GUPTA
Master of Science in Computer Engineering, Technische Universitiet Delft

geboren te Kanpur, U.P., India

Dit proefschrift is goedgekeurd door de
promotor : Prof.dr.ir. C. Vuik
copromotor : Dr.ir. Martin B. van Gijzen

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof.dr.ir. Kees Vuik Technische Universiteit Delft, promotor
Dr.ir. Martin B. van Gijzen, Technische Universiteit Delft, copromotor

Onafhankelijke leden

Prof.dr.ir. A.W. Heemink, Technische Universiteit Delft, The Netherlands
Prof. B.J. Boersma, Technische Universiteit Delft, The Netherlands
Dr. D. Lukarski PARALUTION Labs UG (haftungsbeschrnkt)

& Co. KG, Germany
Dr. Edmond Chow, Georgia Institute of Technology, Atlanta,

United States
Prof.dr.ir. K.J. Batenburg, University of Antwerp, Belgium

GPU acceleration of preconditioned solvers for ill-conditioned linear systems.
Dissertation at Delft University of Technology.
Copyright c© 2015 by Rohit Gupta

The work described in this thesis was financially supported by the Delft Insti-
tute of Applied Mathematics.

Cover page and invitation design:
’Bubbly Flow’ as imagined by Alyona Vyacheslavovna Mezentseva (age 11)
ISBN 978-94-6186-526-7

Summary

GPU acceleration of preconditioned linear solvers for
ill-conditioned linear systems

Rohit Gupta

In this work we study the implementations of deflation and preconditioning
techniques for solving ill-conditioned linear systems using iterative methods.
Solving such systems can be a time-consuming process because of the jumps
in the coefficients due to large difference in material properties. We have de-
veloped implementations of the iterative methods with these preconditioning
techniques on the GPU and multi-core CPUs in order to significantly reduce
the computing time. The problems we have chosen have a symmetric and
positive definite coefficient matrix. We have further extended these imple-
mentations for scalability on clusters of GPUs and multi-core CPUs.

We outline the challenges involved in making a robust preconditioned solver
that is suitable for scaling in a parallel environment. To start with, we ex-
perimented with simple techniques to establish the feasibility of implementing
specialized preconditioning schemes (deflation) for specific problems (bubbly
flow). We provide an analysis for the choices we make for implementing certain
parts (e.g. solution of inner system in deflation) of these operations and tune
the data structures keeping in mind the hardware capabilities. We improve
our solvers by refining the choices we make for the application of these tech-
niques (Neumann Preconditioning and better deflation vectors). For different
options available we compare the effect when varying problem parameters (e.g.
number of bubbles and deflation vectors). After testing our methods on stand-
alone machines with multi-core CPUs and a single GPU we make a parallel

iii

iv

implementation using MPI. We explore different data divisions in order to
establish the effect of communication and choose the more scalable approach.
In order to make our results more comprehensive we also test the implemen-
tations on two different clusters. We show the results for two versions of our
code: one for multi-core CPUs and another one for multiple GPUs per node.
Our methods show strong scaling behavior.

To further evaluate the use of deflation combined with a simple precon-
ditioning technique we test our implementation of the iterative method for
solving linear systems from porous media flow problems. We use a library
with many different kinds of preconditioners on parallel platforms. We test
implementations with and without deflation. Our results show good perfor-
mance of the iterative methods we use in combination with deflation and
preconditioning for a number of problems.

Through our experiments we bring about the effectiveness of deflation for
implementation on parallel platforms and extend its applicability to problems
from different domains.

Samenvatting

GPU versnelling van gepreconditioneerde solvers voor
slecht geconditioneerde lineaire stelsels

Rohit Gupta

In dit werk bestuderen we implementaties van deflatie- en preconditioner-
ingstechnieken voor het oplossen van slecht geconditioneerde lineaire stelsels
met behulp van iteratieve methoden. Het oplossen van dergelijke stelsels kan
een tijdrovend proces zijn vanwege de sprongen in de cofficinten als gevolg
van grote verschillen in materiaaleigenschappen. We hebben implementaties
van iteratieve methoden met deze preconditioneringstechnieken voor de GPU
en multi-core CPUs ontwikkeld om de rekentijd aanzienlijk te verminderen.
De problemen die we gekozen hebben, hebben een symmetrische en positief
definiete cofficintmatrix. Verder hebben we deze implementaties uitgebreid
voor schaalbaarheid op clusters van GPU’s en multi-core CPU’s.

We beschrijven de uitdagingen van het maken van een robuuste geprecondi-
tioneerde solver die schaalbaar is in een parallelle omgeving. Om te beginnen
hebben we gexperimenteerd met eenvoudige technieken om de haalbaarheid
van de implementatie van gespecialiseerde preconditioneringsmethoden (de-
flatie) voor specifieke problemen (bubbly flow) te bepalen. We bieden een anal-
yse van de keuzes die we maken voor de implementatie van bepaalde onderde-
len (bijv. de oplossing van de binneniteratie in deflatie) van deze operaties
en passen de datastructuren aan, rekening houdend met de hardwaremogeli-
jkheden. We verbeteren onze solvers door het verfijnen van de keuzes die we
maken voor de toepassing van deze technieken (Neumann preconditionering en
betere deflatievectors). Voor verschillende opties die beschikbaar zijn vergeli-

v

vi

jken we het effect door probleemparameters te variren (bijv. het aantal bellen
en deflatievectors). Na het testen van onze methoden op autonome machines
met multi-core CPU’s en n GPU maken we een parallelle implementatie met
behulp van MPI. We onderzoeken verschillende dataopdelingen om het effect
van de communicatie te onderzoeken en kiezen de meer schaalbare aanpak.
Om onze resultaten omvattender te maken testen we de implementaties ook
op twee verschillende clusters. We tonen de resultaten voor twee versies van
onze code: een voor multi-core CPU’s en een andere voor meerdere GPU’s per
node. Onze verbeterde implementaties tonen een sterke schaalbaarheid.

Om het gebruik van deflatie gecombineerd met een eenvoudige precondi-
tioneringstechniek verder te evalueren, testen we onze implementatie van de
iteratieve methode voor het oplossen van lineaire stelsels van poreuze media
stromingsproblemen. We maken gebruik van veel verschillende soorten precon-
ditioners op parallelle platformen. We testen implementaties met en zonder
deflatie. Onze resultaten tonen goede prestaties van de iteratieve methoden
die we gebruiken in combinatie met deflatie en preconditionering voor een
aantal problemen.

Door middel van onze experimenten verhogen we de effectiviteit van de-
flatie voor de uitvoering op parallelle platformen en breiden we de toepas-
baarheid uit naar problemen in andere domeinen.

Acknowledgments

Throughout my time in Delft, first during my masters and then while working
on this dissertation I came across so many kind people, without acknowledging
whom this work will not be complete. First and foremost I want to thank
Kees Vuik for trusting me when I only had fluffy excitement about, parallel
computing in general and wanted to do something with it. The masters thesis
that I completed under his guidance was a big challenge for me as I chartered
into the unknown waters of parallel computing and Applied Mathematics. I
came across, collaborated and befriended many people just by working with
you, Kees. The funny thing is that these were the fringe benefits of working
with you. The primary return is this book. The wealth of knowledge, humility
and patience which you practice, and which I have benefited from on countless
occasions, leave me thankful for having worked with you. You are the most
important reason that Delft feels like home every time I come back there.

I want to express my gratitude to my co-promotor, Martin van Gijzen, for
being critical about my work and for carefully going through my excitement
and helping me understand tough concepts. It was you who brought me back
on course many a times during this research.

This research might not have been possible if Jok Tang would not have done
a remarkable research before me on the Deflated Preconditioned Conjugate
Gradient Method (DPCG). Not only was your thesis book my reference for
extending this method on parallel platforms, but your advice on research and
patience with my incessant questions was something I will stay thankful for.

The people I met here at the Numerical Analysis department during my
study and research have also taught me many things. I would like to thank
Fred for being a strict but friendly teacher. The Finite Elements course that
you taught helped me figure out all the ditches and gorges that were present

vii

viii

in my understanding of the subject and in being precise with derivations in
general. I want to thank Duncan van der Heul for the most constructive
and complete critique of the first presentation I gave about my work. I kept
the suggestions you gave to me safe inside my mind and recall them when I
present to any audience till date. I also had the chance to take interesting and
challenging courses with Domenico, Jennifer and Henk which I want to thank
them for.

The most interesting and relieving activity that I indulged all these years
in research was conversations with my colleagues. Dennis has to be on the top
of this list. I must say that our ways of thinking are different (and certainly the
taste in music). I seemed to have had so many ’aha’ moments just explaining
the issue at hand in my work to you on the whiteboard. Your rigor (and
apparent ease) at solving those ugly equations (step by step not missing even
one minor detail) in finite elements and volumes is something I have always
hoped I could cultivate.

I wish to thank my colleagues Daniel, Martijn and Serguey with whom
I had the chance to share the office and have great conversations during my
time at the department.

I had the chance to be with wonderful colleagues like Fahim, Abdul, Joost,
Guido, Yue, Elwin, Domenico, Fei, Reinaldo and Manuel. Our conversations
on various topics whether on the whiteboard, over lunches in the EWI cafe or
just in the corridors of our department have been always refreshing. A special
thanks to Fahim and Abdul for organizing the multi-cultural dinner which I
enjoyed a lot.

I must acknowledge Kees Lemmens for being an excellent coach and a very
interesting colleague who has shared many a philosophies with me and also
his passion for flying airplanes. Kees, I hope you forgive me for never coming
with you to the airstrip again.

Thank you Thea for helping me with the part of this thesis that required
struggling with my limited knowledge of dutch. I would also like to thank
Xiaozhou for helping me with ideas on printing this book. I also wish to
thank Shiming Xu for sharing his knowledge on performance analysis of GPU
implementations.

At a professional level I was also lucky to get support from some very
good system administrators at the clusters I misused and abused during my
research. Kees Verstoep(DAS-4) and Thomas Geenen (SURFSARA) are some
of the most patient people who helped me complete my work and on many
instances helped me make the best use of the resources available at their
discretion.

I want to thank Deborah and Cindy for being an excellent and helpful
secretaries who helped get administrative issues resolved efficiently.

During my research I had a chance to collaborate with people within the

ix

numerical analysis group, outside of it, within Netherlands and also outside
of it. These opportunities have left my work enriched and added value to my
experience as a researcher and an engineer.

I was lucky to collaborate with Paulien van Slingerland, Guus Segal, Dun-
can and Tom Jönsthövel on various occasions during the course of my research
and I want to thank all of you for giving me a chance to use your work and
for the fruitful collaborations.

I was lucky to have worked with Jan thorbecke from CRAY and Jonathan
Cohen, Joe Eaton and Maxim Naumov from NVIDIA. I want to thank you
for the collaboration in writing the software that you were developing.

Johan van de Koppel shares my appreciation amongst the list of people who
trusted my fluffy understanding of parallel computing and applied mathemat-
ics. Thank you for giving me the chance to work with you at the Netherlands
Institute of Ecology. The work I was able to complete with the help of excel-
lent researchers like you at the institute has given me a breadth of experience
which I couldn’t have built otherwise.

My time in Delft and in the Netherlands would have been lifeless and
uneventful, had I not gotten the chance to befriend some of the best people
I know today. I would start with Tabish who just like me arrived in Delft
for Masters and we shared student housing. There are many things which I
have learned from you and that includes cooking and having a good taste in
movies. I want to thank you for being around during all this time as a helpful
friend whether it was in studies, finances or advice. Not to mention that you
also are an excellent person to talk to about all the things that crossed my
mind about life, worries of the future and other vagaries. I also want to thank
Pranjal for his jovial companionship during our time in Delft and for making
many of us smile through during the hard times.

It seems during my time here somebody high above the clouds was choosing
roommates for me: those who cook excellent food and those who are kind-
hearted and extremely good at making interesting conversations. Tabish was
the first and then Aditya Thallam Thattai. Thanks Aditya for being a great
friend all this time.

I met people who really make me believe that language and nationality is
secondary when it comes to friendship. Behrouz Raftarnagabi, Jing Zhao and
Alexandro Mancusi I thank you for trusting me and making me feel comfort-
able in your presence. Thank you for sharing your thoughts, fears and ideas
with me.

My list of friends will not be complete if I do not mention the three lovely
ladies that taught me how to make friends and keep them steadfast by my
side. I was lucky to get to know Alessia Moneta, Juliette Ly and Yayu La
Nafie whom I met during my first stint at the NIOO [now NIOZ] in Yerseke.
You are few of the most beautiful women I have come to know. Thank you

x

for the numerous gifts, cakes, chocolates that have added to my inches, not to
mention the hugs, kisses and wishes that are very dear to me.

A host of people made Delft more homely and comfortable than it initially
was when I arrived here a good 7 years back. Rajat, Akhil, Purvil, Harsha,
Bhaskar, Ramavatar, Rahul, Tiggy, Krishna, and Choka, thank you very much
for the most amazing dinners and times together when we celebrated birthdays
and festivals that made me feel at home in the Netherlands.

When I left my family for my dreams of higher education, they stood by
my decision and supported me with love and encouragement. I cannot be who
I am without the blessings of my father, mother and my sister. I want to
thank my mother for making me feel comfortable with my trifling struggles
to get good grades in the initial few months of my masters. I have learnt so
much at giving from you. I consider that as one of the most beautiful things
I have come to practice in life.

No man can claim to be the man he is without recognizing and marveling
at what a woman does for him. As a mother and as a wife. I want to take
this opportunity to express my gratitude to my wife for believing in me and
for giving me the best gift I have ever got in the form of our son, Fyodor.

Rohit Gupta
Breda, October 2015.

CONTENTS

Summary iii

Samenvatting v

Acknowledgments vii

1 Introduction 1

1.1 Background . 1

1.2 Graphical Processing Unit (GPU) computing 2

1.2.1 GPU architecture . 2

1.2.2 Compute Unified Device Architecture (CUDA) 4

1.2.3 Performance pointers for Scientific Computing with GPUs 5

1.3 Applications . 7

1.3.1 Bubbly flow . 7

1.3.2 Porous media flow . 9

1.3.3 Mechanical problems . 9

1.4 Scope of the thesis . 10

1.5 Outline of the thesis . 11

2 Iterative methods and GPU computing 13

2.1 Basic iterative methods . 13

2.2 Krylov subspace methods . 14

2.2.1 Conjugate Gradient method 14

2.3 First Level preconditioning . 16

2.3.1 Diagonal scaling . 16

2.3.2 Incomplete LU (ILU) preconditioning 16

xi

xii CONTENTS

2.3.3 Incomplete Cholesky . 17

2.3.4 Block incomplete Cholesky 17

2.3.5 Multi-elimination ILU 19

2.3.6 Sparse approximate inverse (SPAI) preconditioner . . . 20

2.3.7 Multigrid based preconditioners 21

2.3.8 IP preconditioning . 23

2.4 Second level preconditioning . 23

2.4.1 Motivation to use deflation for problems with strongly
varying coefficients . 25

2.4.2 Choices of deflation vectors 25

2.4.3 Cost and benefits of deflation 27

2.5 Matrix storage formats and SpMV 27

2.5.1 CSR - Compressed Sparse Row 28

2.5.2 DIA - Diagonal . 28

2.5.3 COO - Co-ordinate . 29

2.5.4 ELL . 29

2.5.5 HYB - Hybrid . 29

2.6 A brief overview of GPU computing for preconditioned Conju-
gate Gradient (PCG) . 30

2.6.1 Linear algebra and GPU computing 30

2.6.2 OpenCL and OpenACC 30

2.6.3 PCG with GPUs . 31

2.6.4 Multi-GPU implementations 32

3 Neumann preconditioning based DPCG 35

3.1 Introduction . 35

3.2 Preconditioning . 36

3.2.1 IP preconditioning with scaling 36

3.2.2 Truncated Neumann series based preconditioning 36

3.3 Problem definition . 37

3.4 Comparison of preconditioning schemes and a case for deflation 39

3.5 Implementation . 40

3.5.1 Storage of the matrix AZ 41

3.5.2 Extension to real (bubble) problems and 3D 42

3.6 Experiments and results . 43

3.6.1 Stripe-wise deflation vectors - Experiments with 2D test
problem . 44

3.6.2 Stripe and plane-wise deflation vectors - Experiments
with 3D problems . 47

3.7 Conclusions . 50

CONTENTS xiii

4 Improving deflation vectors 53

4.1 Introduction . 53

4.2 Problem definition . 53

4.3 Block-wise sub-domains based deflation vectors 54

4.3.1 Level-set deflation vectors 55

4.4 Using the explicit inverse for the solution of the coarse system . 56

4.5 Experiments and results . 57

4.5.1 Notes on implementation 57

4.5.2 Differences between CPU and GPU implementations . . 58

4.5.3 Results . 59

4.6 Conclusions . 64

5 Extending DPCG to multiple GPUs and CPUs 67

5.1 Introduction . 67

5.2 Problem definition . 68

5.3 Data divisions . 69

5.3.1 Division by rows . 69

5.3.2 Division by blocks . 69

5.3.3 Communication scaling 71

5.4 Implementation . 71

5.4.1 Calling software and solver routine 72

5.4.2 Communication outline in multi-compute unit imple-
mentation . 74

5.5 Experiments and results . 76

5.5.1 Results on the DAS-4 cluster 78

5.5.2 Experiments on Cartesius cluster 91

5.6 Conclusions . 100

6 Comparing DPCG on GPUs and CPUs for different problems101

6.1 Introduction . 101

6.2 First-level preconditioning techniques 102

6.2.1 Black-box ILU-type preconditioners 103

6.2.2 Multi-colored symmetric Gauss-Seidel 104

6.2.3 Truncated Neumann series (TNS)-based preconditioning 105

6.2.4 Factorized Sparse Approximate Inverse (FSAI)-based pre-
conditioners . 105

6.3 Second-level preconditioning . 106

6.3.1 Physics based deflation vectors 106

6.4 Implementation details . 106

6.4.1 Sparse matrix storage 106

6.4.2 Speedup and stopping criteria 107

6.4.3 LU-type preconditioners 107

xiv CONTENTS

6.4.4 Factorized sparse approximate inverse-based precondi-
tioners . 108

6.4.5 Truncated Neumann series (TNS)-based preconditioning 108

6.4.6 Deflation . 108

6.5 Numerical experiments . 109

6.5.1 Bubbly flow problem . 110

6.5.2 Porous Media Flows . 113

6.6 Experiments with varying grid sizes and density ratios 118

6.6.1 Using CG with Algebraic Multigrid (AMG) precondi-
tioner for the layered problem and the problem from oil
industry . 119

6.7 Conclusion . 121

7 Conclusions 123

7.1 Introduction . 123

7.2 Suitability . 123

7.3 Scalability . 124

7.4 Usability . 125

7.5 Suggestions for future research 125

7.5.1 Using newer programming paradigms 125

7.5.2 Investigation of problems with irregular domains 126

7.5.3 Improving scaling on multi-GPU 126

7.5.4 Using better deflation vectors for multi-GPU implemen-
tations . 126

7.5.5 Applicability to other problems 127

Appendices

A IDR(s) implementation in NVIDIA AmgX 129

A.1 Introduction . 129

A.2 The IDR(s) method . 129

A.3 AmgX . 130

A.3.1 Implementation of IDR(s) method in AmgX 130

A.4 Experiments . 132

A.4.1 Setup . 132

A.4.2 Atmospheric problems - from Florida matrix collection . 132

A.4.3 Reaction-Convection-Diffusion equation 136

A.4.4 Variance in iterations between single and multi-GPU im-
plementations . 136

A.4.5 Profiling using NVVP 141

A.5 Conclusions . 142

CONTENTS xv

B Using DPCG with matrices originating from Discontinuous
Galerkin (DG) discretizations 143
B.1 Introduction . 143
B.2 Problem definition . 145

B.2.1 Brief description about the design of custom software . 146
B.3 Numerical experiments . 146
B.4 Results . 147

B.4.1 Poisson problem . 147
B.4.2 Bubbly problem . 148
B.4.3 Inverse bubbly problem 148

B.5 Observations . 149

C Multi-GPU results when matrices A, L and LT are stored in
COO format 153

Curriculum vitae 157

List of publications and presentations 159

CHAPTER 1

Introduction

1.1 Background

The solution of very large linear system of equations can take the bulk of
computation time of a numerical simulation. The linear system is denoted by

Ax = b, (1.1)

where A ∈ RN×N is the coefficient matrix, b ∈ RN is the right-hand side and
x ∈ RN is the vector of unknowns.

The coefficient matrix A is often large and sparse. It could also have some
special characteristics like positive-definiteness and symmetry. For linear sys-
tems having such coefficient matrix, the iterative method of conjugate gradi-
ents (CG) is most suitable. If the coefficient matrix A is very ill-conditioned
then the convergence of CG method is slow. Ill-conditioning refers to the large
condition number1, which is the ratio of the largest to the smallest eigenvalue
of the matrix A, when A is Symmetric Positive Definite (SPD).

In order to accelerate convergence we have to combine the CG method
with preconditioning. This changes the system (1.1) to

M−1Ax = M−1b, (1.2)

where matrix M is the preconditioner. M is SPD and (1.3) holds for M .

κ(M−1A) << κ(A), (1.3)

1For a general matrix A the condition number is defined as κ(A) =‖ A ‖‖ A−1 ‖

1

2 Chapter 1. Introduction

where κ is the condition number. The preconditioner must be computationally
cheap to store and to apply.

In this work we precondition A on two levels. At first we precondition
A, transforming the linear system in (1.1) to (1.2). The spectrum of the
preconditioned matrix M−1A can still have small eigenvalues and in order
to remove them from the spectrum we apply another level of precondition-
ing which is called deflation. We implement this deflated preconditioned CG
(DPCG) method on a Graphical Processing Unit (GPU). We minimize com-
putation time by exposing the fine-grain parallelism in CG, preconditioning
and deflation steps. We also explore options to improve the deflation method
and test our method for different applications. In order to test the scalability
of our method we perform tests with multiple GPUs and CPUs. We report
the challenges we face in such an implementation with respect to the balance
between communication and computation.

1.2 Graphical Processing Unit (GPU) computing

1.2.1 GPU architecture

GPUs were originally designed to deliver very high-fidelity video/gaming ex-
perience on desktop machines. They have a large array of simple processors
that can be divided to paint different parts of the screen and can do that
in parallel. This is different from the CPU which has few cores and a lot of
special control logic which takes care of features like branch prediction, out-of-
order execution, score-boarding and such advanced techniques in order for the
CPU to deliver a reliable desktop experience. In Figure 1.1 we see a general

Figure 1.1: Comparing CPU and GPU architectures. (photos courtesy
NVIDIA CUDA programming guide [17])

example of the CPU and GPU architecture. The CPU has fewer (Arithmetic
and Logical Units) ALUs and a large chunk of the silicon is devoted to control.
The ALUs share a fast cache memory and a main memory which is one level
higher than the cache. In comparison, the GPU has a large number of ALUs.

1.2. Graphical Processing Unit (GPU) computing 3

They are grouped together and each group shares a relatively small control
and cache and fixed number of registers. These units or simple processing
elements can work independently on different data using the same set of in-
structions. In other words, they can process large amounts of data in parallel.
Large transfers of data back and forth from the DRAM are supported by the
wide bandwidth of the GPU.

Over the past decade the scientific computing community has seen a num-
ber of different architectures emerge which could be used to accelerate appli-
cations. Some of the prominent names are the CELL processor 2, the GPUs
from NVIDIA 3, GPUs from ATI 4, Intel Xeon Phi processors 5 and Clear-
Speed processors 6. Amongst these the GPUs from NVIDIA have been used
extensively and have evolved (Figure 1.2) (and are being improved7) rapidly
to cater to the demands of scientific applications. In Figure 1.2 we see how the
normalized SGEMM (single precision general matrix-matrix product) per watt
capability has improved and is predicted to improve for GPUs from NVIDIA.

Figure 1.2: NVIDIA roadmap

For these reasons and because the GPUs from NVIDIA have an active
community of developers, support and libraries we have chosen GPUs from

2http://researcher.watson.ibm.com/researcher/view_group.php?id=2649
3http://www.nvidia.com/object/what-is-gpu-computing.html
4http://www.amd.com/en-us/products/graphics
5http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.

html
6http://www.clearspeed.com/products/csx700.php
7http://www.anandtech.com/show/7900/nvidia-updates-gpu-\

roadmap-unveils-pascal-architecture-for-2016

 http://researcher.watson.ibm.com/researcher/view_group.php?id=2649
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.amd.com/en-us/products/graphics
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.clearspeed.com/products/csx700.php
 http://www.anandtech.com/show/7900/nvidia-updates-gpu-\ roadmap-unveils-pascal-arc hitecture-for-2016
 http://www.anandtech.com/show/7900/nvidia-updates-gpu-\ roadmap-unveils-pascal-arc hitecture-for-2016

4 Chapter 1. Introduction

(a) CUDA abstraction of a GPU (b) CUDA threads, blocks and grids

Figure 1.3: CUDA programming model. (photos courtesy NVIDIA CUDA
programming guide [17])

NVIDIA for our implementations. NVIDIA GPUs have evolved from being a
small co-processor inside a desktop to being able to deliver desktop supercom-
puting at affordable price and energy budget.

1.2.2 Compute Unified Device Architecture (CUDA)

NVIDIA provides an extension to the C/Fortran programming language in
order to enable its GPUs to execute scientific computing codes. The Compute
Unified Device Architecture or CUDA programming platform allows for using
GPU much like an SIMD[33] (Single Instruction Multiple Data) processor (or
Single Instruction multiple threads, SIMT as per NVIDIA documentation).
In each GPU (refer Figure 1.3(a)) there are a number of so called Streaming
Multiprocessors or SMs. Each SM has a set of processor cores which have
a fixed amount of registers, shared memory and caches. These are simple
processors capable of doing floating point calculations. The responsibility is
handed over to the programmer to write their application in such a way that
all cores on all SMs can be engaged in useful computation and the device is
used to its full potential. Each core on the SM works on a kernel. A kernel is
a sequence of commands that execute on a set of data. Each kernel can have
its own data or can share it amongst the same SM. A kernel can be thought
of as a simple for loop that executes a matrix addition code. On GPU devices

1.2. Graphical Processing Unit (GPU) computing 5

it is possible to launch thousands of these kernels so that the CUDA cores can
compute with all the data in parallel using the kernel.

The kernels themselves are called by threads and the threads on the GPU
are arranged in grids (refer Figure 1.3(b)). The grids are sub-divided into
blocks. Each block contains a set of threads which are launched on the CUDA
cores in each SM. The grid/block structure is defined by the programmer when
launching a kernel.

To utilize the device or the GPU to its maximum capacity is often not
straightforward as there are only a limited number of registers that a kernel
can use. It could also be the case that there is not enough work for the GPU
due to dependencies in data or control flow. It is also possible that there
are unavoidable branches in the code or the data access pattern does not
allow maximal bandwidth usage. The programmers must be able to maximize
performance of their codes within these constraints. In newer architectures
(e.g. from NVIDIA) some of these constraints have been relaxed but still care
must be taken when writing kernels to maximize the device utilization.

1.2.3 Performance pointers for Scientific Computing with GPUs

Prior to GPUs, parallel machines with Single Instruction Multiple Data (SIMD),
vector architectures8 and extended instruction sets9 were used to acceler-
ate computing the solution of large systems. GPUs present us with a new
paradigm of computation. Notably, there are two things which must be taken
into account when designing an algorithm to extract the best performance out
of a parallel platform and specifically for the GPU:

1. Fine-grain Parallelism;

2. High Flop/Byte Ratio.

For an algorithm to exhibit fine-grain parallelism it must be possible to re-write
it in such a way that there are a lot of individual units of work. These must
be completely independent from each other. For example, consider matrix
addition. The core kernel of this operation looks like

C[i][j] = A[i][j] +B[i][j] (1.4)

where A, B are matrices whose sum is calculated and stored in C. The pair i,
j denote the specific element of each matrix. In this operation each sum can be
calculated separately without any relation to any other sum. No information
is being shared and there are no overlaps between any two individual sum

8http://www.freescale.com/webapp/sps/site/homepage.jsp?code=PCPPCP
9http://cache.freescale.com/files/32bit/doc/ref_manual/ALTIVECPEM.pdf

 http://www.freescale.com/webapp/sps/site/homepage.jsp?code=PCPPCP
 http://cache.freescale.com/files/32bit/doc/ref_manual/ALTIVECPEM.pdf

6 Chapter 1. Introduction

operations. This means that if we can launch all these individual units of
computation in parallel then we are only limited by the hardware required for
such a parallel execution.

On the GPU one can launch thousands of threads, so such operations
are very well suited for the GPU. On modern GPUs10 the peak number of
calculations per second exceeds a teraFLOP (=1012 FLOPs), where a FLOP
means a floating point operation.

The second important characteristic that must be exposed in an algorithm
is a high ratio of computation done compared to the memory transfers. We
discuss the example of Sparse Matrix Vector Multiplication (SpMV). A sparse
matrix has a significantly smaller number of non-zeros per row than the num-
ber of columns in the matrix. Let us assume that there are only 5 elements per
row. Now in order to calculate the product of such a matrix with the vector
one has to read 5 elements per row of the matrix and 5 elements of the vector.
Followed by this read from memory one has to compute 5 products and 4 sums
and one write back to the (at the corresponding row index) memory of the
final product. Summing the individual operations we get 11 memory opera-
tions and 9 floating point operations. These numbers assume the addition and
multiplication operation to have the same cost (in terms of clock cycles) and
that the matrix and vector are stored in single/double precision format.

This leads to a ratio of 9
11 for computation versus communication, which

is less than one. Such a behavior is common to algorithms that use a lot
of bandwidth and do comparatively less computation. They are also called
bandwidth-bound algorithms. Such algorithms are most challenging for GPU
implementation. However, by arranging the data in such a way that bandwidth
usage can be maximized (coalescing) it is possible to improve performance.

A very intuitive way of looking at such a relation between communication
and computation is the FLOP/Byte ratio. It is useful to know this number
to understand/predict the speedup or performance available on a particular
machine. The Roofline Model [80] (Figure 1.4) shows how for different archi-
tectures one can have differing performance in number of computations per
second when compared to their FLOP/Byte ratio.

The model predicts that if you have a FLOP/Byte ratio less than one it is
hard to reach the peak FLOP performance that the device can offer. Although
the authors in [80] do not say much about the current GPUs (or the ones used
in this thesis), it is equally applicable to them.

We can compare the example of SpMV to one that has a FLOP/Byte ratio
higher than one. Dense matrix-matrix multiplication is one such example.
A dense matrix has non-zeros equal to the product of number of rows and

10http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.

pdf

http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf
http://www.nvidia.com/content/tesla/pdf/NVIDIA-Tesla-Kepler-Family-Datasheet.pdf

1.3. Applications 7

Figure 1.4: Roofline model for AMD Opteron X2 from [80].

columns of the matrix. For two matrices of dimensions N×N . We have O(N2)
memory transfers (2N2 read and N2 write) and O(N3) FLOPs. This gives a
FLOP/Byte ratio of O(N) which directly translates to a better performance
according to the roofline model.

It must be noted in this example that the denominator (memory transfers)
are taken to be the order of the problem size and it is considered as the
maximum memory bandwidth available. For dense matrix operations that
can be the case for sufficiently large problems.

1.3 Applications

The accelerated solution of a linear system can be exploited for problems
arising from very different applications. Our research is mainly concerned with
the solution of problems emanating from elliptic partial differential equations
with large contrasts in material properties. In this section we enumerate some
of the applications which can benefit from our implementations.

1.3.1 Bubbly flow

Flow phenomena occur in different physical processes. Some of these processes
are crucial to understand for a wide variety of industries. A clear understand-
ing of these processes allow for a better design and can be instrumental in
improving the efficiency, robustness and even safety of certain equipment.

An example is bubbly flow, where the bubbles of one medium travel within
another medium. One can picture these to be air bubbles in water or water

8 Chapter 1. Introduction

bubbles in oil. This sort of composition is common in extraction mechanisms
for crude oil production.The densities of these two mediums vary significantly
with ratio of the densities in excess of 103.

Figure 1.5: Bubbly flow

To model two-phase flow, the incompressible Navier Stokes equations are
used. These equations define the continuous change in velocity, pressure, mo-
mentum and mass of the fluid whose flow is to be monitored. However, in a
computer simulation we must work with discrete quantities so the equations
are discretized using a suitable scheme.

In our research we use the Mass-Conserving Level-Set (MCLS) method
(refer [68]) for solving the two-phase Navier Stokes equations. While solving
the discretized system of equations over time using the MCLS method one en-
counters a linear system (1.1). It arises from the discretization of the pressure
correction equation,

−∇.(1

ρ(x)
∇p(x)) = f(x), x ∈ Ω (1.5a)

∂

∂n
p(x) = g(x), x ∈ ∂Ω (1.5b)

where Ω, p, ρ, x and n denote the computational domain, pressure, density,
spatial coordinates, and the unit normal vector to the boundary, ∂Ω, respec-
tively.

Due to the contrasts in densities the matrix A is ill-conditioned. The
DPCG method applied to this problem has been previously studied in [62, 63,
64, 65, 61]

1.3. Applications 9

1.3.2 Porous media flow

To describe porous media flows one uses the Darcys’ Law and the continuity
equation. As a part of the simulation of such flows one needs to solve

−∇.(σ(x)∇p(x)) = f(x), x ∈ Ω (1.6)

where Ω, p, σ(x) denote the computational domain, pressure, and the per-
meability of the medium through which the flow occurs respectively. Suitable
boundary conditions are imposed on Ω. Discretizing (1.6) gives a linear system
of equations. These problems can arise while modeling extraction of oil from
deep within the earths’ surface. Different layers within the earths’ crust can
have varying densities and flow of the oil through these layers is dependent on
their permeability. Modeling this phenomena gives insight that is valuable in
deciding where to drill, how much to drill and it can be used to predict the
potential yield.

The discretized system from (1.6) has a large contrast owing to different
permeabilities for the rigid and soft layers of material in the subsurface. This
leads to some very small eigenvalues in the spectrum of A (which is also SPD)
and therefore we can use the DPCG method to solve this system. The choice
of deflation vectors can be problem dependent and has been studied previously
in [76].

1.3.3 Mechanical problems

The authors of [38] consider mechanical problems that are characterized by
high contrast in the coefficients. Specifically they consider a problem where
two (or more) different materials are involved with varying stiffness.

Figure 1.6: Tomography scans of asphalt. Photo courtesy CAPA-3D http:

//capa-3d.org/CAPA3D/Home.html.

http://capa-3d.org/CAPA3D/Home.html
http://capa-3d.org/CAPA3D/Home.html

10 Chapter 1. Introduction

In Figure 1.6 we see the slice of asphalt which is composed of different
materials. These scans are used to generate accurate discretizations of the
material to be studied. The matrices that arise from the discretization of the
equations that describe the mechanical response of these materials are SPD
and therefore suited to the CG method. However, they are ill-conditioned and
may have small eigenvalues corresponding to the different stiffness (rigid body)
modes corresponding to each material. The convergence of CG method can
be accelerated in this case by using deflation. The authors of [38] use the rigid
body modes deflation or the mathematically equivalent kernel deflation. Using
these variants of deflation they manage faster convergence of the iterative
method.

1.4 Scope of the thesis

This thesis work deals with acceleration of the DPCG method on the GPU.
In the prior work [62], DPCG was proven to be an effective technique for
solving linear systems arising from bubbly flow. The linear system solved and
studied in [62] uses the Mass Conserving Level-Set Method which appeared as
result of the work in [69]. Even though the DPCG method discussed in [62]
is better than just one level preconditioning it was not optimized for parallel
platform like GPUs or multiple CPUs. In this research we extend [62] by
dealing with the challenges of parallel implementation of DPCG on parallel
machines (GPUs, multicore CPUs and multi-GPU/CPU clusters). We also ex-
plore the application of the DPCG method on other applications. Specifically
our research brings forth implementation challenges for the DPCG method
on single and multiple GPUs and CPUs. We have developed precondition-
ing schemes that exhibit fine-grain parallelism and are competitive to parallel
variants of the preconditioning schemes discussed in [62]. In our work we use
techniques of optimized storage to maximize bandwidth usage on the GPU,
overlap communication with computation for multiple GPUs and CPUs and
use optimized libraries along with our own computation kernels.

In order to compare our method with different choices of first level precon-
ditioning we use the PARALUTION11 library. These preconditioning schemes
are implemented on the GPU and multi-core CPUs. They are a direct re-
sult of the work presented in [49] and later extended into the PARALUTION
library. Our work differs from the work presented in [49] since they utilize
re-organization of the matrix using multi-coloring to make preconditioners
(with fine-grain parallelism) whereas we use a preconditioner that has struc-
tural similarity to the coefficient matrix. They focus mainly on one level of
preconditioning whereas we couple first level preconditioning with deflation.

11http://www.paralution.com

1.5. Outline of the thesis 11

We began our investigations with a combination of a preconditioner with
fine-grain parallelism combined with deflation [31] followed by experimenting
with deflation vectors [29]. We explore different techniques of deflation [65]
and report improvements for their efficient execution on the GPU. We take our
implementations a step further with multi-GPU/CPU implementations that
were reported in [30].

1.5 Outline of the thesis

The outline of the thesis is as follows:

2. Iterative methods and GPU computing - In this section we review
Krylov subspace methods, preconditioning techniques and the use of GPUs
for preconditioned iterative methods.

3. Neumann preconditioning based DPCG - We introduce our ap-
proach to combine Truncated Neumann Series Preconditioning with deflation
in Chapter 3. Experiments with simple problems are presented with analysis
to support further research.

4. Improving deflation vectors - In Chapter 4 we discuss improvements
made to deflation vectors and their implementation on the GPU.

5. Extending DPCG to multiple GPUs and CPUs - In this Chapter
we discuss how our implementation of the DPCG method has been extended
to multiple GPUs and CPUs.

6. Comparing DPCG on GPUs and CPUs for different problems
-We compare our preconditioning scheme with other preconditioning schemes
for two different problems in Chapter (6).

7. Conclusions - We present our conclusions and summarize the key find-
ings of our work.

CHAPTER 2

Iterative methods and GPU
computing

Iterative methods are used to solve systems of linear equations by generating
approximate solution vectors xj in every iteration j. The aim of these methods
is to come as close as desired to the exact solution x. A stopping criteria with
tolerance, ε, defines how much reduction in error is desired. When the jth

iterate has achieved the desired precision the method is said to have converged.

2.1 Basic iterative methods

A basic iterative method can be built by considering a splitting of the coeffi-
cient matrix.

A = M −N, M,N ∈ RN×N (2.1)

where M is assumed to be invertible. If we substitute this splitting into the
original linear system given by

Ax = b (2.2)

we get

Mx = Nx+ b (2.3)

From (2.3) a basic iterative method can be devised as

Mxj+1 = b+Nxj (2.4)

13

14 Chapter 2. Iterative methods and GPU computing

where the unknown at iteration j + 1 can be determined using the unknown
at the previous iteration, xj . If we define the residual as rj = b−Axj then we
can re-write (2.4) as

xj+1 = xj +M−1rj , (2.5)

where M is called the preconditioner. Now we have a recurrence relation (2.5)
for the update to the unknown we wish to calculate. Further, M can be chosen
so that iterates can be generated easily and a desired tolerance can be achieved
quickly.

The basic iterative methods using the recurrence in (2.5) can take a lot of
iterations and may prove to be impractical in achieving convergence for large
and ill-conditioned systems. Therefore, we explore the more general Krylov
subspace methods.

2.2 Krylov subspace methods

Krylov subspace methods search for the solution in a space spanned by vectors
of the type Ajv, where j ∈ 0, 1, This subspace is given by

Kj(A, r0) = span {r0, Ar0, A2r0, ...A
j−1r0}, (2.6)

where r0 = b−Ax0. We focus our attention on the CG method which is also
the method we use in our implementations.

2.2.1 Conjugate Gradient method

The Conjugate Gradient (CG) method utilizes the fact that A is symmetric
and positive definite. It was discovered by Hestenes and Stiefel and reported
in [34]. In the CG method we update the residual every iteration by looking
in a particular search direction. These search directions pj are conjugate with
respect to A which means that

(Api, pj) = 0, i 6= j, (2.7)

where we denote the dot product (dot) operator by (,). It can be shown that
(2.7) is equivalent to having orthogonal residuals,

(ri, rj) 6= 0, i 6= j. (2.8)

In order to generate new iterates, recurrence (2.9) is used in CG, where j
denotes the iteration number.

xj+1 = xj + αjpj , where αj ∈ R. (2.9)

2.2. Krylov subspace methods 15

Multiplying (2.9) by A yields a recurrence for r.

rj+1 = rj − αjApj . (2.10)

αj is calculated using,

αj =
(rj , rj)

(Apj , pj)
. (2.11)

It can be shown that (2.11) minimizes ‖ xj−x ‖A for all choices of αj and also
that (2.8) is satisfied. The search directions are updated using the residuals:

pj+1 = rj+1 + βjpj , (2.12)

where βj ∈ R is calculated using

βj =
(rj+1, rj+1)

(rj , rj)
. (2.13)

Calculating β using (2.13) ensures that (2.7) is satisfied. More details about
the method and its derivation can be found in [34] and also in the text of [58].

Preconditioned Conjugate Gradient

Convergence to a desired accuracy of the solution vector in CG can be slow if
there are small eigenvalues (λi) in the spectrum of the coefficient matrix. In
other words if the condition number of A is large then the convergence of the
CG method could be prohibitively slow. In order to accelerate convergence
we instead convert the linear system into an equivalent one that preserves
the properties of the matrix (e.g. Symmetric Positive Definite (SPD)). The
transformed system reads

Ãx̃ = b̃ (2.14)

where,

Ã = M
−1
2 AM

−1
2 , x̃ = M

1
2x, b̃ = M

−1
2 b. (2.15)

The matrix M is called the preconditioner and it is assumed that M is
SPD. In general it is never required to calculate the inverse square root of
the matrix M . Instead the preconditioned CG algorithm is formulated using
M−1.

16 Chapter 2. Iterative methods and GPU computing

2.3 First Level preconditioning

In order to improve the convergence of the linear system, a wide variety of
preconditioners exist in the literature [9]. In this section we briefly summarize
the preconditioning schemes that are well-known including the preconditioning
schemes we have used in our implementations.

2.3.1 Diagonal scaling

Diagonal Scaling is a highly parallel preconditioner. The preconditioner is
defined as

M = D, (2.16)

D=diag(A), the main diagonal of A. It is also called Jacobi preconditioner.
Its application to a vector is also completely parallelizable. However, it is not
a very effective preconditioner for a matrix which is ill-conditioned.

2.3.2 Incomplete LU (ILU) preconditioning

A sparse matrix A can be decomposed into a lower, L and and upper trian-
gular, U matrix as in

A = LU. (2.17)

Such a decomposition is called an LU decomposition of A. An incomplete LU
decomposition can be generated by deciding on a sparsity pattern for L and
U . This could be the sparsity pattern of A. For the decomposition (2.17) a
fill-in strategy or a threshold can be decided, that is to say, which elements to
keep or drop. The generated ’incomplete’ LU decomposition can then be used
as a preconditioner in the CG method (if LU is Symmetric Positive Definite
(SPD)).

Many versions of ILU preconditioners are discussed in literature. For a
detailed introduction to these we refer the reader to [58]. We briefly mention
some of the variants here.

ILU with fill-in is denoted as ILU(p) where p denotes the level of fill-in.
A common fill-in pattern used is from the fill-in pattern of the powers of
A. So ILU(2) refers to ILU decomposition with the fill-in pattern resembling
that of A2. Threshold techniques are denoted as ILU-T(t) where t is a value
below which all non-zeros are discarded. Combinations of fill-in and threshold
techniques are also possible.

2.3. First Level preconditioning 17

2.3.3 Incomplete Cholesky

For an SPD matrix one can decompose the coefficient matrix into a product
of a lower triangular matrix and its transpose.

A = LLT , where A ∈ RN×N . (2.18)

In order to calculate the elements of L which is a lower triangular matrix we
use Algorithm 1. aij denotes the element of the original coefficient matrix A.
In this algorithm aij is overwritten by lij ∀ i ≥ j.

Algorithm 1 Cholesky decomposition (Column version)

1: for k := 1, 2, . . . , N do do
2: aii = (aii −

∑i−1
k=1 a

2
ik)

1
2

3: for i := k + 1, . . . , N do do
4: aji = 1

aii
(aij −

∑i−1
k=1 aikajk)

5: end for
6: end for

The most common way of making this factorization incomplete is to use
the sparsity pattern of the coefficient matrix A and impose it on L. This is to
say that L has non-zeros only where A has non-zeros. The CG method with
incomplete Cholesky factorization without any fill-in (following only sparsity
pattern of A) is abbreviated as ICCG(0). More details can be found in the
text of [24].

2.3.4 Block incomplete Cholesky

The incomplete Cholesky preconditioner discussed in Section 2.3.3 can be
modified for use on a parallel platform as suggested by the authors in [51]. We
consider an adapted incomplete Cholesky decomposition: A = LD−1LT − R
where the elements of the lower triangular matrix L and diagonal matrix D
satisfy the following rules:

1. lij = 0 ∀ (i, j), where aij = 0 i > j,

2. lii = dii,

3. (LD−1LT)ij = aij ∀ (i, j) where aij = 0, i 6= j

R defines the set of non-zeros that have to be dropped. In order to make
blocks for the block incomplete Cholesky (Block-IC) approach we first apply
the block structure on the matrix A. As an example in Figure 2.1 we show how

18 Chapter 2. Iterative methods and GPU computing

0 8 16 24 32 40 48 56 64
0

8

16

24

32

40

48

56

64

Figure 2.1: Block-IC block structure. Elements excluded from a 8× 8 grid for
a block size of 2n = 16.

some of the elements belonging to the 5-point Poisson type matrix are dropped
when a block incomplete scheme is applied to make the preconditioner for A.
The red colored dots are the elements that are dropped since they lie outside
the blocks. We make L as suggested in Section 2.3.4. In each iteration we
have to compute y from

y = MBIC
−1r, where MBIC = LD−1LT . (2.19)

This is done by doing forward substitution followed by diagonal scaling and
then backward substitution. The blocks shown in Figure 2.1 can be solved in
parallel. The number of blocks is N

g , where g is the size of the blocks. Within
a block all calculations are sequential. However, each block forms a system
that can be solved independently of other blocks. The parallelism offered by
Block-IC is limited to the number of blocks. In order to increase the number
of parallel operations we must decrease the block size, g. However, doing this
would lead to more loss of information in the preconditioner (the elements
outside the blocks are dropped in Figure 2.1), and consequently, convergence
is delayed. The diagonal preconditioner discussed in Section 2.3.1 is an extreme
case of the Block-IC preconditioner when the number of blocks is equal to the
number of rows in the matrix.

2.3. First Level preconditioning 19

2.3.5 Multi-elimination ILU

In this section we closely follow the description for multi-elimination ILU as
described in [58]. The idea of multi-elimination ILU has to be explained by
first looking at Gaussian elimination. Within Gaussian elimination one has to
find independent sets of unknowns. Independent unknowns are those that do
not depend on each other according to a binary relation defined by the graph
of the matrix. This puts the original matrix into the form given by,(

D E
F C

)
(2.20)

where D is a diagonal and C can be arbitrary. If we define the binary relation
as the color of each node in the graph of the matrix then no two adjacent
nodes must have the same color. In this method of multi-coloring the set of
vertices from a adjacency graph are grouped such that the unknowns in these
equations do not have unknowns from any other set. The rows belonging to
an independent set can be used as pivots rows simultaneously. When such
rows are eliminated we are left with a part of the original matrix in which the
process of finding independent sets is repeated. For details on this process we
refer to [58].

Now we present an exact reduction step. Let Aj be the matrix obtained
after jth step of reduction, j = 0, . . . , nlev with A0 = A and nlev are the
number of decided levels. After an independent set ordering is applied to Aj

and the matrix is permuted as follows:

PjAjP
T
j =

(
Dj Fj

Ej Cj

)
(2.21)

where Dj is a diagonal matrix. Now we eliminate the unknowns of the inde-
pendent set to get the next reduced matrix,

Aj+1 = Cj − EjD
−1
j Fj (2.22)

This results in an implicit block-LU factorization

PjAjP
T
j =

(
Dj Fj

Ej Cj

)
=

(
I 0

EjD
−1
j I

)
×
(
Dj Fj

0 Aj+1

)
(2.23)

with Aj+1 as defined previously in (2.22). In order to solve a system with
matrix Aj both forward and backward substitution need to be performed with
block matrices on the right-hand side of the system in (2.23). The backward
solves involve solution with Aj+1. The block factorization can be used until a
system results that can be solved by the standard method.

20 Chapter 2. Iterative methods and GPU computing

In order to formulate the ILU preconditioner with Multi-elimination we
first need to make the decomposition incomplete. This is achieved by redefin-
ing Aj+1

Aj+1 = Cj − EjD
−1
j Fj −Rj (2.24)

where Rj is the matrix of elements dropped in the jth reduction step. Thus
in order to generate the entire factorization we have to do a sequence of ILU
factorizations of the form

PjAjP
T
j =

(
Dj Fj

Ej Cj

)
=

(
I 0

EjD
−1
j I

)
×
(
Dj Fj

0 Aj+1

)
+

(
0 0
0 Rj

)
(2.25)

with Aj+1 defined as (2.24).

2.3.6 Sparse approximate inverse (SPAI) preconditioner

The main idea of this approach is that a sparse matrix M−1 can be explicitly
computed and used as a preconditioner. However the inverse of A could be
dense. Some of the techniques discussed in [11] are worth mentioning:

SPAI based on Frobenius norm minimization

We use the description of this method as presented in [8]. The main idea is to
construct a sparse matrix H ≈ A−1 as the solution of the following constrained
minimization problem

arg min
H∈S

‖ I −AH ‖F (2.26)

where S is a set of sparse matrices and ‖ . ‖F denotes the Frobenius norm of
the matrix. Since

‖ I −AH ‖2F=
N∑
j=1

‖ ej −Ahj ‖22, (2.27)

where ej denotes the jth column of the identity matrix. The computation of
H involves solving N independent least squares problems with sparsity con-
straints. This makes it an ideal candidate for parallelization and distributed
implementation.

Factorized sparse approximate inverse

If the matrix A admits an incomplete factorization of the kind A = LDU ,
where U = LT then A−1 = U−1D−1L−1. Further one can make approxima-
tions to U−1 and L−1. One of the first works with this approach was studied
in [43].

2.3. First Level preconditioning 21

Inverse ILU techniques

Using the idea of incomplete factorization in the previous technique once can
also say A ≈ L̂Û . In this method, one approximates the inverses for L̂ and Û .
Approximate inverses can be calculated by solving the 2N triangular systems

L̂xi = ei, Ûyi = ei, (2.28)

where 1 ≤ i ≤ N . In principle these linear systems can be solved in parallel
so ample parallelism can be exploited in this preconditioning technique. Some
of the approaches are given in [1, 71].

2.3.7 Multigrid based preconditioners

A representative discussion on the use of multigrid as a preconditioner ap-
pears in [54]. The authors measure the effectiveness of the multigrid method
as a solver and a preconditioner. Multigrid methods accelerate convergence
by global correction while solving the coarse problem. Multigrid method in
general has three steps:

1. Smoothing - Reduction of the errors with high frequency with a basic
iterative method.

2. Restriction - Projecting the reduced errors on a coarse grid.

3. Prolongation - A correction calculated on the coarse grid is interpolated
to a fine grid.

Multigrid Method

The multigrid method can be defined as a sequence of the operations of
smoothing, restriction and prolongation applied to a set of unknowns. When
using multigrid as a preconditioner, the preconditioning step, My = r in the
standard PCG algorithm [58] involves solving a system of equations. This can
be solved using the two-level algorithm in Algorithm 2.

Algorithm 2 Two level Multigrid algorithm

1: for i:=0,..., until convergence do
2: y− = S(yi,M, r,m)
3: rc = R(r −My−)
4: ec = (M c)−1rc

5: y+ = y− + Pec

6: yi+1 = S(y+,M, r,m)
7: end for

22 Chapter 2. Iterative methods and GPU computing

Figure 2.2: V and W cycles in multigrid

In Algorithm 2 we denote the prolongation and restriction operators by
P and R, the coarse grid operator by M c and the smoother by S. In the
first step of Algorithm 2, m smoothing steps are performed on the system of
equations followed by restricting the residual in the next step. Subsequently,
coarse grid equations are solved to get a coarse grid approximation to the fine
grid error. This coarse grid error is then prolonged to the fine grid and added
to the current fine grid solution approximation calculated in the previous step.
Finally some more smoothing steps are applied on to the finer system. This
is defined as a a two-grid V-cycle. It is highlighted in orange in Figure 2.2.
One can make W cycles which stay longer on the coarse grids1. In Figure 2.3
we can see a coarse and a fine grid. In geometric multigrid the unknowns on
these two grids take part for example in the 2-grid V-cycle.

Multigrid methods can also be constructed directly from the system matrix
(instead of refining/coarsening the grid/ discretized domain). Such methods
are classified as the Algebraic multigrid (AMG) methods. The levels created
in the AMG method are oblivious to any geometric interpretation.

In [3] the authors merge the benefits of both these multigrid approaches
to precondition a linear system arising from a groundwater flow problem. We
would like to mention that this is one of the techniques and many other vari-
ants of multigrid method for geometric and algebraic methods are known in
literature [44, 55, 56, 61].

In order to ensure that the preconditioner is symmetric and positive defi-
nite the multigrid preconditioner must have equal number of smoothing steps
before and after each coarse grid correction.

1From MIT opencourseware http://math.mit.edu/classes/18.086/2006/am63.pdf

http://math.mit.edu/classes/18.086/2006/am63.pdf

2.4. Second level preconditioning 23

Figure 2.3: Multigrid method

2.3.8 IP preconditioning

In [2], a new kind of incomplete preconditioning is presented. The precondi-
tioner is based on a splitting of the coefficient matrix A using its strictly lower
triangular part L and its diagonal D,

A = L+D + LT . (2.29)

Specifically the preconditioner is defined as,

MIP
−1 = (I − LD)(I −DLT). (2.30)

After calculation of the entries of M−1, the values that are below a certain
threshold value are dropped, which results in an incomplete decomposition
that is applied as the preconditioner. As this preconditioner was used for a
Poisson type problem, the authors call it the Incomplete Poisson (IP) pre-
conditioner. A detailed heuristic analysis about the effectiveness of this pre-
conditioning technique can be found in [2]. The main advantage of this tech-
nique is that the preconditioning operation M−1r is reduced to sparse matrix-
vector products which have been heavily optimized for many-core platforms
[5, 6, 47, 79].

2.4 Second level preconditioning

For ill-conditioned problems that may have small eigenvalues that retard the
convergence of the PCG method, one can use an additional level of precon-
ditioning. Deflation [19, 53] is one such technique that aims to remove the

24 Chapter 2. Iterative methods and GPU computing

remaining bad eigenvalues from the preconditioned matrix, M−1A. This oper-
ation increases the convergence rate of the Preconditioned Conjugate Gradient
(PCG) method. We define the matrices

P = I −AQ,Q = ZE−1ZT , E = ZTAZ, (2.31)

where E ∈ Rd×d is the invertible Galerkin matrix, Q ∈ RN×N is the correction
matrix, and P ∈ RN×N is the deflation operator. Z ∈ RN×d is the so-called
’deflation-subspace matrix’ whose d columns consist of ’deflation’ or ’projec-
tion’ vectors. Z is full rank with d < N − k, where k is the number of zero
eigenvalues if any. The deflated system is now

PAx̂ = Pb. (2.32)

The vector x̂ is not necessarily a solution of the original linear system, since
x might contain components in the null space of PA, N (PA). Therefore this
’deflated’ solution is denoted as x̂ rather than x. The final solution has to be
calculated using the expression x = Qb + P T x̂. It must be noted that PA is
a singular matrix with PA = AP T . The matrix P is a projector and P 2 = P .
More of the properties of P and PA are discussed in [62, 66]

The deflated system in (2.32) can be solved using a symmetric positive
definite (SPD) preconditioner, M−1. We therefore seek a solution of

M−1PAx̂ = M−1Pb. (2.33)

The resulting method is called the Deflated Preconditioned Conjugate Gradi-
ent (DPCG) method [62, 66] as listed in Algorithm 3.

Algorithm 3 Deflated preconditioned Conjugate Gradient algorithm

1: Select x0. Compute r0 := b − Ax0 and r̂0 = Pr0, Solve My0 =
r̂0 and set p0 := y0.

2: for i:=0,..., until convergence do
3: ŵi := PApi
4: αi := (r̂i,yi)

(pi,ŵi)
5: x̂i+1 := x̂i + αipi
6: r̂i+1 := r̂i − αiŵi

7: Solve Myi+1 = r̂i+1

8: βi := (r̂i+1,yi+1)
(r̂i,yi)

9: pi+1 := yi+1 + βipi
10: end for
11: xit := Qb+ P Txi+1

In order to implement deflation one can break the computation of Prj
down into a series of operations,

2.4. Second level preconditioning 25

a1 = ZT rj , (2.34a)

a2 = E−1a1, (2.34b)

a3 = AZa2, (2.34c)

s = rj − a3. (2.34d)

(2.34b) shows the solution of the coarse system that results during the imple-
mentation of deflation.

2.4.1 Motivation to use deflation for problems with strongly
varying coefficients

Deflation is useful in solving a linear system when the spectrum of the coeffi-
cient matrix has some very small eigenvalues. By making a suitable deflation
subspace these small eigenvalues can be removed from the spectrum of PA. In
the case of bubbly flow, due to the heavy contrast between the densities of the
two media, small eigenvalues appear corresponding to the interfaces. Advan-
tages of using deflation as opposed to only using one level of preconditioning
(for the CG method) like Incomplete Cholesky with zero fill-in, ICCG(0) has
been studied in [62, 63].

2.4.2 Choices of deflation vectors

Deflation vectors form the columns of the matrix Z. In order to remove the
small eigenvalues in the spectrum of M−1A or A that delay convergence eigen-
vectors corresponding to these eigenvalues must be sored in the columns of Z.
To calculate the exact eigenvectors would be ideal but it is also computation-
ally expensive. This is the reason why approximations to these eigenvectors
are calculated in practice and they constitute the matrix Z.

A relatively cheap method for making reasonably good approximations to
the eigenvectors is to use piece-wise constant vectors.

Piece-wise constant deflation vectors

Piece-wise constant deflation vectors can be constructed in 2 broad varieties

1. Depending on the geometry of the problem.

2. Depending on the underlying physics of the problem.

The first class of vectors divides the domain into sub-domains. Each sub-
domain corresponds to a vector. The vector has non-zero values only for
cells over which its sub-domain is defined. For the second type additional
information from the problem is used to generate deflation vectors.

26 Chapter 2. Iterative methods and GPU computing

(a) Stripe-wise sub-
domain

(b) Block-wise sub-
domain

(c) Level-set

Figure 2.4: Three kinds of deflation vectors. Each color corresponds to a
column in Z.

Sub-domain deflation vectors Let Ω, be the domain on which the prob-
lem is defined, be divided into sub-domains Ωi, i = 1, 2, · · · , k, such that
Ωi
⋂

Ωj = ∅ for all i 6= j. The discretized sub-domains are denoted by Ωhi
.

For each Ωhi
, we introduce a deflation vector, zi, as follows:

(zi)j :=

{
0, xj ∈ Ωh

1, xj ∈ Ωhi

(2.35)

Then the Z matrix for sub-domain deflation vectors is defined by

ZSD := [z1z2 · · · zk], (2.36)

It must be mentioned that sub-domain vectors can also be made in another
way using the stripe-wise division. As shown in Figure 2.4(a) it is slightly
different from block-wise in the places where ones are placed in each column.
In the example of Figure 2.4(a) and 2.4(b) one can consider a 2D grid with 8
stripe-wise vectors in Figure 2.4(a) and 4 block-wise vectors in Figure 2.4(b)
corresponding to different colors. The ZSD matrix composed of zi vectors is
further used to create the AZ matrix and the E = ZTAZ matrix.

Level-set deflation vectors The level-set deflation vectors [64] utilize the
knowledge of the physical problem underlying the simulation and can be very
effective at accurately approximating the deflation subspace. Level-set func-
tion is defined as a signed distance function which takes values of opposite
signs on either side of the interface between two materials with different phys-
ical properties. One can imagine the Level-Set vectors also to be a kind of a
piece-wise constant vectors. Since the only difference from sub-domain based
piece-wise constant vectors is that the non-zero values are now prescribed by
a function (level-set) as opposed to a domain.

2.5. Matrix storage formats and SpMV 27

Level-set sub-domain deflation vectors It is possible to extend the level-
set deflation vectors with sub-domain vectors and improve their effectiveness.
In particular such a combination must aim at being able to capture the physics
underlying the problem and combine it with the sub-domain approach effec-
tively. These vectors will be explained in detail for the individual problems for
which we use deflation. These problems are discussed in subsequent chapters.

2.4.3 Cost and benefits of deflation

The deflation operation when broken down into the steps mentioned in (2.34)
involves one or two matrix vector multiplications, solution of a small linear sys-
tem and a vector update. The operation ZT r may not always be implemented
as a matrix-vector operation. It depends on what kind deflation vectors are
chosen to make Z. These could be stripe-wise / block-wise sub-domain, level-
set vectors or the combination of the two. The sparsity pattern of Z depends
on the choice of the constituent vectors of Z. For simpler Z (e.g. from stripe-
wise sub-domain vectors) the operation (2.34a) can be as simple as a set of
reduction operations.

To solve the coarse system in (2.34b) one can use different approaches.
The size of the matrix E depends on the size of the deflation subspace d.
So if a lot of vectors are chosen, d is large. This can be true if there are a
lot of undesirable eigenvalues and/or the information from the physics of the
problem is used in conjunction with e.g. sub-domain/ level-set sub-domain
deflation vectors. When d is large, E is also large (E ∈ Rd×d). In this case
CG can be used to solve this coarse system making a nested method. For
comparatively smaller sizes one can use a factorization followed by a solve or
for considerably smaller sizes a good approach is to invert E. The dense E−1

can be then subjected to a general matrix vector (gemv) operation to obtain
a2.

2.5 Matrix storage formats and SpMV

In this research we work with coefficient matrices that are sparse. Sparse ma-
trices can have non-zeros distributed arbitrarily across the matrix. Choosing
a right storage format is instrumental in getting best locality of data and uti-
lization of the memory bandwidth for the GPU or the CPU. Sparse matrices
can be stored in a variety of formats depending on the positions of non-zeros
in the matrix. On the GPU the benefits of having a storage format that can
exploit its bandwidth could be very promising. This is partly the reason why
a lot of research [5, 13, 14, 15, 52, 74] has been devoted to devising smarter
storage formats for sparse matrices.

28 Chapter 2. Iterative methods and GPU computing

2.5.1 CSR - Compressed Sparse Row

This data format is the most commonly used and optimized sparse matrix
storage formats. Prominent libraries on CPU2 and GPU3 provide optimized
implementations for SpMV product routines that use this matrix format. To
store a matrix in this format one requires 3 arrays. One array is that of non-
zero values. Another one is for the column indices of each of these non-zeros.
The last array stores the row offsets and has the length equal to the number
of rows in the matrix plus one. An example is shown in Figure (2.5).

Figure 2.5: CSR matrix storage format

More details of this storage format, its performance for different matrices
and the SpMV routines are given in [6].

BCSR - Block compressed sparse row

The BCSR format is an extension on the CSR format. A certain block size is
decided and if the matrix is N ×M and the block size chosen is m then the
matrix is divided into block matrices of size m ×m. Each of these matrices
can be given a row and column index between 0 and N

m/
M
m assuming N and

M are multiples of m. It requires three arrays for its storage. The first array
stores all the non-zero elements. The second array stores the column indices
of the block matrices and the third array stores row offsets for these block
matrices per block row. A description of this storage format with examples is
given in the CUSPARSE documentation4.

2.5.2 DIA - Diagonal

For problems having a regular stencil like a 5-point or 7-point stencil, where
there is a main diagonal and an equal number of off-diagonals on either side,

2IntelMathKernelLibrary(MKL)https://software.intel.com/en-us/intel-mkl
3http://docs.nvidia.com/cuda/cusparse/index.html
4http://docs.nvidia.com/cuda/cusparse/#block-compressed-sparse-row-format-bsr

Intel Math Kernel Library (MKL) https://software.intel.com/en-us/intel-mkl
http://docs.nvidia.com/cuda/cusparse/index.html
 http://docs.nvidia.com/cuda/cusparse/#block-compressed-sparse-row-format-bsr

2.5. Matrix storage formats and SpMV 29

DIA format is most suitable. As the name suggests, we store each diagonal in
a separate array. So if we assume a penta-diagonal matrix arising out of the
discretization of a poisson type (2D) problem with N = n× n unknowns. We
have diagonals with offsets ±1 and ±n. Now the main diagonal has N non-
zeros but the diagonals with offsets ±1 and ±n have less number of non-zeros.
In DIA format of storage all the diagonals are stored in separate arrays of
length N and the empty places are filled with zeros. This format is most useful
for GPU implementations of SpMV for structured matrices as it maximizes
memory bandwidth utilization. For details we refer to [6].

2.5.3 COO - Co-ordinate

This is the most intuitive sparse matrix storage format with three arrays, each
the size of the number of non-zero elements. The first two arrays store the
row and column index of the non-zero element and at the same position in
the third array the non-zero element is stored. This storage scheme is most
general and takes the maximum space amongst those discussed in this text.
We often use it for debugging as it is the easiest to understand.

2.5.4 ELL

In the ELL storage format a fixed number of non-zeros per row are decided
for each row of the matrix. This is usually the largest number of non-zeros
any row has. Then a storage space of number of rows times maximum number
of non-zeros in any row is created. In order to store the rows and columns
indices another matrix of the same size is created that has column indices
in place of non-zeros for each of the non-zeros. It can be inferred that the
ELL format is most useful in the case when the rows have equal number of
non-zeros and average number of non-zeros is less. Otherwise there is either
too much wastage or little saving from compression of a full matrix into this
format. The SpMV routine for this method can be referred to in the article
from NVIDIA [6].

2.5.5 HYB - Hybrid

HYB format combines the benefits of the ELL and COO format. It calculates
a typical number of non-zeros per row. This might as well be the average
number of non-zeros in the matrix per row. It then uses ELL format for
storing non-zeros up to this average number in the ELL format. For all other
non-zeros which lie outside of the average number of non-zeros range the COO
format is utilized. Details, benchmarks and SpMV routines for this method
can be found in the paper from Bell and Garland [6].

30 Chapter 2. Iterative methods and GPU computing

2.6 A brief overview of GPU computing for precon-
ditioned Conjugate Gradient (PCG)

2.6.1 Linear algebra and GPU computing

In 2003 a new approach [12] was suggested where GPUs could be utilized for
the Conjugate Gradient Method. The authors used GPUs from NVIDIA and
made abstractions to use the video card as a general purpose computing device
for solving a linear system.

This was followed by the advent of CUDA in 2006. CUDA allowed ex-
tensions to be added to C or Fortran code which could hide the architectural
details of NVIDIA GPUs in order to make parallel code run on the GPU. This
launched a series of efforts to write and optimize codes for building blocks of
linear algebra operations for the GPU. One of the most useful of these is the
work done on SpMV products. Researchers at NVIDIA presented a report [7]
which showed the comparison of different storage schemes for a set of matrices
and how the SpMV operation can be optimized for each of the storage formats.
Researchers at IBM also [50] came up with optimized SpMV implementations
at the same time. Block-based SpMV approach was used in [52]. Following the
block-based approach they divide their matrix into strips which are then di-
vided into blocks. They further economize on the memory footprint by storing
block indices in a single word. Their implementations perform up to 2 times
better on average on a set of matrices. MAGMABLAS, which is a library for
improving dense matrix operations on the GPU [36] was introduced in 2009.
It includes various decompositions and triangular solvers for linear systems
amongst its collection of optimized BLAS operations on dense matrices.

2.6.2 OpenCL and OpenACC

OpenCL5 and OpenACC6 are alternative methods of parallel programming
with accelerators.

OpenCL is a language which has its own API and has a very generic out-
look at being able to exploit any platform that allows parallel computing. This
can include multi-core CPUs, GPUs, APUs and even application specific hard-
ware. It accesses and uses the resources of an accelerator as specified by the
programmer in order to run a parallel program. In [60], we come across a good
introduction to OpenCL as a paradigm for accelerator programming. A de-
tailed comparison of OpenCL and CUDA appears in [20, 21, 40]. The authors
in these works compare CUDA with OpenCL for different applications and
arrive at varying conclusions. In particular they measure the portability ad-

5https://www.khronos.org/OpenCL/
6http://www.openacc-standard.org/

https://www.khronos.org/OpenCL/
http://www.openacc-standard.org/

2.6. A brief overview of GPU computing for preconditioned
Conjugate Gradient (PCG) 31

vantages of OpenCL versus the specialized capabilities of CUDA at extracting
performance out of a parallelizable application. Overall the OpenCL platform
shows promise, however, CUDA based acceleration gives tough competition to
OpenCL in all studies. The authors in [20] also comment on the discrepancies
in both OpenCL and CUDA and suggest auto-tuning as an option to automate
parallelization.

OpenACC on the other hand is much more like CUDA. Although it tar-
gets a variety of accelerators. Some people even compare OpenACC as a
counterpart for OpenMP, which indeed is a set of compiler directives for uti-
lizing multi-core CPUs. The programmer has to provide the compiler with
supplementary information like specifying which parts or loops of the code
must be placed on the accelerator platform and other such pointers for per-
formance improvement. In [78] the authors note the usefulness of OpenACC
as opposed to using low level accelerator programming and weigh it against
the possibility of sub-optimal performance. The potential of OpenACC can
be estimated from the works in [32, 46] where the authors port complex codes
and try to tune them for single GPU, multi-core CPUs and even exascale
machines. They report the ease of programming OpenACC provides for sim-
ple (single GPU, multi-core CPU) and complex (multi-core CPU+GPU over
MPI) programming platforms.

2.6.3 PCG with GPUs

Preconditioning has been a subject of active research on the GPU since it is
often a highly sequential operation in the PCG method. Some of the most
effective schemes like ILU or Incomplete Cholesky are sequential methods be-
cause of the forward and backward substitution steps. On the GPU such
schemes are not efficient as they do not utilize the device to its full capac-
ity. In [2] one of the first preconditioners that exhibited fine-grain parallelism
was reported. Another preconditioner based on Truncated Neumann Series ap-
proximation was reported in [57]. They make this approximation to the SSOR
preconditioner [58] and suggest an optimum value of ω for their problem. We
also use a similar approach for our preconditioners but do not use the relax-
ation parameter ω. Chebyshev polynomial based preconditioners were also
optimized for the GPUs as reported in [39]. The authors mention the design
challenges and also show computational savings with respect to a Block In-
complete LU preconditioner. Multigrid based preconditioners have also been
explored for Krylov subspace based iterative linear solvers. In [22] the au-
thors use multigrid based preconditioners for solving linear systems arising
from power networks. They report being able to simulate larger test cases to
accurately model their problem and up to an order of magnitude computa-
tional speedup. In [35] an incomplete LU decomposition based preconditioner

32 Chapter 2. Iterative methods and GPU computing

with fill-in is used combined with reordering using multi-coloring. By using
these techniques the preconditioners exhibit greater degree of fine-parallelism
which make them attractive for GPU implementation. In [13] the authors
do a comparison between a CPU and a GPU PCG solver and point out the
different basic linear algebra operations (axpy, dot) that must be tuned for
best performance of the PCG algorithm.

2.6.4 Multi-GPU implementations

Multi-GPU implementations have now become more common even for a band-
width bound method like CG. The research focus has been at developing pre-
conditioners and optimizing the matrix-vector product routines to be able to
utilize the parallelism available in compute nodes (multi-core CPUs, GPUs).

In [14] the authors use 4 GPUs on a single board and a specific data storage
format called JDS (Jagged diagonal storage format) in order to achieve double
the number of FLOPs using 4 GPUs instead of one. They cite cache misses
as the primary reason for the low scaling they observe.

In [81] the authors present the result of a Jacobi preconditioned CG algo-
rithm for a fluid dynamics solver and show the results for up to 8 GPUs using
MPI. They notice that communication becomes central when an algorithm is
ported to multiple GPUs across MPI ranks.

GMRES, which is another Krylov subspace method, was used by the re-
search presented in [4], where they used 12 GPUs (2 on each node) and com-
pared against 24 CPU cores for up to 1 million unknowns. They point out
that using GPUs in a distributed way is only feasible for large sparse matrices.

In [41] the authors use a shifted Laplace multigrid based preconditioner
for a Helholtz solve and report an improvement in speedup when a split algo-
rithm based implementation is used. They also compare it to multi-core CPUs
and outline the challenges of communication when using a multi-GPU/CPU
approach. An interesting study and a theoretical model to predict gains from
multi-GPU implementations appeared in [75]. The authors propose using a
new implementation of the BCSR (Section 2.5.1) sparse matrix storage for-
mat and show that it is superior for their test cases. They also predict that
sparse matrices with sizes larger than 2.5 million can achieve good scalability
on GPUs. Discussion on bandwidth, matrix storage and parameters of SpMV
are identified as key areas of their contribution and focus for future research.

Using Pthreads and MPI the authors in [67] manage to get impressive
speedups on an Intel Duo core CPU. They show results for both single and
double precision versions of their code and quantify the speedup for adding
multiple GPUs to their implementation.

Exploring parallelism at all levels and using MPI, OpenMP and CUDA
in order to accelerate their solvers the authors in [37] present a large scale

2.6. A brief overview of GPU computing for preconditioned
Conjugate Gradient (PCG) 33

study with 17.2 billion unknowns on 256 GPUs. They use 1-D partitioning for
their data to be shared amongst processors. They conclude that improvements
in network speeds and throughput could be crucial to such implementations.
They also note that three level parallel (OpenMP + MPI +CUDA) model
holds very little advantage as compared to two level (MPI + CUDA) model
using only MPI and CUDA.

A shifted Laplace based multigrid preconditioner for the Bi-CGSTAB method
is studied in [42] and implementations on multi-GPU, multi-core CPUs and
single GPU are compared. The authors report better performance on the GPU
and face a challenge at recovering scaling when they move to multiple GPUs.

In order to address the problems that arise with communication in algo-
rithms like CG, the authors in [23] suggest delaying inner products, accumu-
lating a certain error in calculating, say, the residual and correcting it later
on when the communication is complete. By this way they save on synchro-
nization time in multi-GPU implementations (of Krylov subspace methods)
for global operations like dot-products.

CHAPTER 3

Neumann preconditioning based
DPCG

3.1 Introduction

In this chapter we present the results of our preliminary experiments with
deflation. We show how our choices for the first level preconditioner were
made and what effects they have on our implementations. Through simple
test problems we show the advantages of deflation with preconditioning and
the need for exposing fine-grain parallelism. We report on the data structures
used to expose parallelism and limitations of certain kind of deflation vectors.
In this chapter we focus on the bubbly flow problem.

The work presented in this chapter also appears in:

Rohit Gupta, Martin B. van Gijzen, and Kees Vuik. Efficient two-level preconditioned
Conjugate Gradient method on the GPU. In Michel Dayd, Osni Marques, and Kengo
Nakajima, editors, High Performance Computing for Computational Science - VECPAR
2012, volume 7851 of Lecture Notes in Computer Science, pages 36–49. Springer Berlin
Heidelberg, 2013.

35

36 Chapter 3. Neumann preconditioning based DPCG

3.2 Preconditioning

3.2.1 IP preconditioning with scaling

The incomplete Poisson preconditioner introduced in section 2.3.8 cannot ac-
celerate convergence for even a 2D problem with contrasts (refer [26]). To
improve the performance we used scaling of the linear system. Specifically in
the results that follow we use IP preconditioner with scaling, abbreviated as
ip(scale). We modify the linear system (1.1) into

Ã = D−
1
2AD−

1
2 . (3.1)

x̃ = D
1
2x. (3.2)

b̃ = D−
1
2 b. (3.3)

3.2.2 Truncated Neumann series based preconditioning

Another preconditioner that can be derived from the factorization of A is the
Truncated Neumann Series (TNS) based preconditioner. The IP precondi-
tioner mentioned in section 2.3.8 and 3.2.1 is not necessarily a good choice
for highly ill-conditioned problems [28]. Moreover, in [2] the choice of the
preconditioner is not very well motivated. So we start with a standard Sym-
metric Gauss Siedel preconditioner. We define the preconditioning matrix,
M = (I + LD−1)D(I + (LD−1)

T
), where L is the strictly lower triangular

part and D is the diagonal of A, the coefficient matrix. This is also called
the Symmetric Successive Over Relaxation (SSOR) preconditioner (for details
we refer to [58]). We apply the truncated Neumann series for approximating

M−1. Specifically, for (I+LD−1) (and similarly for (I+ (LD−1)
T

)) the series
can be defined as

I − LD−1 + (LD−1)
2 − (LD−1)

3
+ · · · (3.4)

which converges to (I + LD−1)
−1

if ‖ LD−1 ‖∞< 1. So we can redefine M−1

as

M−1 ≈ (I −D−1LT + · · ·)D−1(I − LD−1 + · · ·). (3.5)

For making this preconditioner (computationally) feasible, the series (3.4)
must be truncated after 1 or 2 terms. We refer to these as the TNS1 (3.6) and
TNS2 (3.7) preconditioners. Note that

M−1TNS1 = (I −D−1LT)D−1(I − LD−1) (3.6)

M−1TNS2 = (I −D−1LT + (D−1LT)
2
)D−1(I − LD−1 + (LD−1)

2
). (3.7)

3.3. Problem definition 37

0 50 100 150 200 250
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Index of eigenvalues

M
a

g
n

it
u

d
e

eigenvalues of Single−Phase A

eigenvalues of Two−Phase A

Figure 3.1: 2D grid (16× 16) with 256 unknowns. Jump at the interface due
to density contrast.

We define K = (I − LD−1) for M−1TNS1 and K = (I − LD−1 + (LD−1)
2
)

for M−1TNS2. Every term in the expansion of M−1x = KTD−1Kx can be
(roughly) computed at the cost of one LD−1x operation. This is close to 2N
multiplications and N additions. It must be noted that only L and D−1 are
stored when applying this preconditioner and K is not explicitly computed or
stored.

3.3 Problem definition

We define a test problem (see Figure 3.2 and 3.3) for our preconditioning
schemes. We define a unit square as our computational domain in 2D (Figure
3.2). It has two fluids with a density contrast (ρ1 = 1000, ρ2 = 1). It has
an interface layer (at y = 0.5), where there is a jump in coefficient values due
to the contrast in densities of the two fluids. This jump is also visible in the
eigenvalue spectrum as shown in Figure 3.1. Boundary conditions are applied
to this domain as indicated in Figure 3.2. The resulting discretization matrix
A is sparse and SPD. It has a penta-diagonal structure due to the 5-point
stencil discretization. For a grid of dimensions (n+ 1)× n the matrix A is of
size N = n× n. Stopping criteria is defined as

‖ ri ‖2≤‖ b ‖2 ε, (3.8)

where ri is the residual at the i-th step, b is the right-hand side and ε is the
tolerance. For our experiments we choose ε equal to 10−6. The initial guess,
x0 is a random vector to avoid artificially fast convergence due to a smooth
initial error.

38 Chapter 3. Neumann preconditioning based DPCG

Figure 3.2: unit square with boundary conditions.

Through this test case we can ascertain the effectiveness of deflation for
such problems on the GPU. The final goal, however, remains to be able to
make a solver capable of handling the linear systems arising in bubbly flow
problems. To this end we also define a test case with a unit cube containing

Figure 3.3: unit cube in 3D.

bubbles. This 3D formulation poses additional challenges and is a harder
problem to solve due to many more small eigenvalues corresponding to the
number of bubbles in the system. In Figure 3.4 we present two cases where
there is a single bubble and 8 bubbles inside the domain presented in Figure

3.4. Comparison of preconditioning schemes and a case for
deflation 39

(a) 1 bubble (b) 8 bubble

Figure 3.4: 3 geometries for realistic problems.

3.3. The contrast between the densities of the bubble and the surrounding
medium is of the same order as in the 2D problem.

In the 3D case we apply Neumann boundary conditions on all faces. The
matrix is SPSD (Symmetric Positive Semi-Definite) and has a septa-diagonal
structure. The problem size is N = n×n×n. We maintain the same stopping
criteria, tolerance and initial vector as the 2D problem. The bubbles are
placed symmetrically in the test cases (depicted in Figure 3.4) whose results
we present in section 3.6.2.

In the text that follows we refer to the Block Incomplete Cholesky Precon-
ditioners (refer section 2.3.4) as blkic(g), where g can be a multiple of n. n
is the dimension of the domain in any one direction. So for a 2D grid where
the number of unknowns are given by N = n × n we can have block sizes
n, 2n, . . . etc.. The truncated Neumann series based preconditioning (refer
section 3.2.2) is referred to as TNS1 and TNS2. Jacobi preconditioner is
referred to as diagonal and we also use a variant of IP Preconditioning (refer
section 3.2.1) called as ip(scale).

3.4 Comparison of preconditioning schemes and a
case for deflation

We first demonstrate with MATLAB implementations of our DPCG algo-
rithm, how the two levels of preconditioning incrementally work at reducing
the number of iterations it takes for the Conjugate Gradient Method to con-
verge. The experiments are done for three different 2 dimensional grids (refer
Figure 3.3) with sizes 16× 16, 32× 32 and 64× 64. The ratio of densities for
the two fluids modeled is 103. The deflation vectors used are stripe-wise (refer
section 2.4.2).

Figure 3.5 shows how the number of iterations varies with different precon-
ditioners for the CG method. We note that the Neumann type preconditioners

40 Chapter 3. Neumann preconditioning based DPCG

(a) with preconditioning only (b) with deflation and preconditioning

Figure 3.5: iterations with two levels of preconditioning.

denoted by TNS1 and TNS2 are comparable to the Block-IC approaches with
block size 4n (blkic(4n)). We have not shown the results for incomplete Pois-
son preconditioning (without scaling) here since they are at least 3 times higher
than the diagonal preconditioning results. That is the reason why we do not
give IP preconditioning any further attention in this thesis. In Figure 3.5 we
also notice how deflation effectively halves the number of iterations required
for convergence.

3.5 Implementation

We store the matrix A in the diagonal (DIA) format and follow the imple-
mentation as detailed in [6] for the sparse matrix-vector product (SpMV). For
BLAS operations we use CUBLAS in CUDA 5.0. For deflation, every iteration
we have to solve the system Ea2 = a1. This can be done in two ways.

1. Calculating E−1 explicitly (we use Meschach library1 to calculate the
inverse) so that the E−1a1 becomes a dense matrix-vector product which
can be calculated using the general matrix vector (gemv) routine from
MAGMABLAS (v1.2)[36] library for the GPU.

2. Using triangular solve routines from the MAGMABLAS (v1.2)[36] li-
brary. Specifically we use the dpotrs2 and dpotrf3 functions.

1http://homepage.math.uiowa.edu/~dstewart/meschach/
2dpotrs - solves a system of linear equations with a factorization previously prepared by

dpotrf
3dpotrf - computes the Cholesky factorization of a real SPD matrix A

http://homepage.math.uiowa.edu/~dstewart/meschach/

3.5. Implementation 41

We define the degree of parallelism as the number of independent tasks that
an algorithm can be broken down into. The first method has a higher degree
of parallelism compared to the second. Dense matrix-vector multiplication is
an embarrassingly parallel operation on the GPU. On the other hand, in the
first method, the calculation of E−1 (which is only done once in the setup
phase) becomes expensive as the number of deflation vectors increases. In
case of our test problem the setup times for the second method are one-third
when compared to the first method (refer Figure 3.13). However, this one time
calculation can make the operation a2 = E−1a1 very quick on the GPU. So
a selection of high-quality deflation vectors (such that d << N), which lead
to a smaller E matrix and hence computationally cheaper inversion, proves to
be advantageous for a GPU implementation.

3.5.1 Storage of the matrix AZ

The structure of the matrix AZ stored as an N × d matrix, where d is the
number of domains/deflation vectors, can be seen in Figure 3.6. In Figures
3.6 to 3.8 it must be noted that d = 2n and N = n× n = 64, n = 8. The AZ
matrix is formed by multiplying the Z matrix (a part of which is shown in the
adjoining figure of matrix AZ in Figure 3.6) with the coefficient matrix, A.
The colored boxes indicate non-zero elements in AZ. They have been color
coded to provide reference for how they are stored in compact form. The red
elements are in the same space as the deflation vector. The green elements
result from the horizontal fill-in and the blue elements result from the vertical
fill-in. The arrangement of the deflation vectors (on the grid) is shown in
Figure 3.8. Each ellipse corresponds to the non-zero part of the corresponding
deflation vector in matrix Z. Matrix AZ stored in this way (for the GPU)
makes sure that memory accesses are coalesced. For this we need to have a
look at how the operation a3 = AZa2 works, where a2 is a d × 1 vector. For
each element of the resulting vector a3 we need an element from at most 5
different columns of the AZ matrix. Now it must be recalled that in case of A
times x we have 5 elements of A in a single row multiplied with 5 elements of x
as detailed in [6]. Different colored elements are grouped together so that the
access pattern to calculate each element of a3 is similar to the Sparse-Matrix
Vector Product operation. Wherever there is no element in AZ we can store
a zero. Thus in the compacted form the N × d matrix, AZ can be stored in
5N elements as illustrated in Figure 3.7. The down pointing arrows in Figure
3.7 show how each thread on the GPU can compute one element when the
operation AZa2 is performed where a2 is a d × 1 vector. The curved black
arrows show the accesses done by multiple threads. This is similar to the DIA
format of storage and calculating Sparse Matrix Vector Product as suggested
in [6].

42 Chapter 3. Neumann preconditioning based DPCG

Figure 3.6: parts of Z and AZ matrix.
number of deflation vectors =2n.

Figure 3.7: AZ matrix after
compression.

Figure 3.8: deflation vectors for
the 8× 8 grid.

3.5.2 Extension to real (bubble) problems and 3D

The storage format discussed for AZ in the previous section can accommodate
bubbles in the domain. In this case, only the values of coefficients change but
the structure of the matrix remains the same. For a 3D problem, deflation
vectors that correspond to planes or stripes can lead to an AZ matrix that is
similar in structure compared to the matrix A and hence can be stored using
the ideas presented in the previous section.

In Figure 3.9 we provide an example for a 3D scenario in order to explain
what planar and stripe-wise vectors look like. We use piecewise constant

Figure 3.9: Planes and stripes for a 83 uniform cubic mesh.

3.6. Experiments and results 43

stripe-wise deflation vectors. Every vector has length N . Each vector has
ones for the row on which it is defined and zeros for the rest of the column.
Planar vectors are an extension of stripe-wise vectors and are defined on n2

cells (have n2 ones and rest of the column has zeros). It must be noted that
for a 3D problem the number of unknowns or problem size is N = n3 where n
is the size of the grid in any dimension. For our experiments in section 3.6.2
we use n2 stripe-wise and n planar vectors.

3.6 Experiments and results

We performed our experiments on the hardware available within the Delft
Institute of Applied Mathematics.

• For the CPU version of the code we used a single core of Q9550 @ 2.83
Ghz with 12MB L2 cache and 8 GB main memory.

• For the GPU version we used a NVIDIA Tesla(Fermi) C2070 with 6GB
memory.

We use optimized BLAS libraries (MAGMA and ATLAS) on both GPU and
CPU for daxpys, dot products and calculation of norms.

All times reported in this section are measured in seconds. The time we
report for our implementations is the time taken (this excludes the setup time,
specifically the steps 2 to 10 in Algorithm 3 from section 2.4) for completing
iterations required for convergence. In our results, speedup is measured as
a ratio of this iteration time on the CPU versus the GPU. The setup phase
includes the initializing the memory and assigning values to the variables and
the operations required to be done before entering the iteration loop, namely,

1. Assigning space to variables required for temporary storage during the
iterations.

2. Making matrix AZ.

3. Making matrix E.

4. Populating x, b.

5. Doing the operations as specified in the first line of Algorithm 3 in section
2.4.

It also involves the setup for the operation Ea2 = a1 using either of the two
approaches mentioned in section 3.5.

44 Chapter 3. Neumann preconditioning based DPCG

3.6.1 Stripe-wise deflation vectors - Experiments with 2D test
problem

For the 2D problem we have used 2n deflation vectors unless otherwise men-
tioned. In Table 3.1 we present the number of iterations required for con-

Grid Sizes

Preconditioning variant 1282 2562 5122 10242

M−1Blk−IC(2n) 76 118 118 203

M−1Blk−IC(4n) 61 98 98 178

M−1Blk−IC(8n) 56 86 91 156

M−1TNS1 76 117 129 224

M−1TNS2 61 92 101 175

Table 3.1: Iterations required for convergence of 2D problem using DPCG
with 2n deflation vectors.

vergence of different preconditioning schemes across four different grid sizes.
The number of iterations is not affected by the choice of implementation
for the deflation method discussed in section 3.5. It can be noticed that
for nearly all grid sizes the number of DPCG iterations for the second type
(TNS2) of Truncated Neumann Series (TNS) based Preconditioner (with K =

(I − LD−1 + (LD−1)
2
)) are comparable to the Block Incomplete Cholesky

(Block-IC) scheme with block size 4n. These results show that TNS-based
preconditioners can be used to replace some variants of Block-IC precondi-
tioner, as they are able to accelerate the convergence of the DPCG method
equally well in comparison to the block-IC preconditioners.

Next in Figure 3.10 we compare the speedup for all flavors of block-IC
preconditioning for two deflation implementations. We notice that the speedup
for Block-IC variants (of DPCG) with a larger block size (8n) is similar to
those with smaller block sizes (2n) for smaller grid sizes but for larger grid
sizes the smaller block-size variants have a larger speedup. This observation
holds for both cases of implementing DPCG with triangular and explicit solve.
However, the overall speedup of the DPCG method for smaller block sizes with
explicit inverse based deflation implementation is larger. This shows for the
given data that

1. Using more blocks can be beneficial on the GPU.

2. Explicit inverse based solve of the inner system is always faster than
triangular solve.

The reason for better performance of Block-IC variants with smaller block-
size is the increased fine grain parallelism. However, smaller block-sizes have

3.6. Experiments and results 45

Figure 3.10: Comparison of explicit versus triangular solve strategy for DPCG.
Block-IC preconditioning with 2n, 4n and 8n block sizes.

the adverse effect of slower convergence. This was visible in Table 3.1. Increas-
ing the number of blocks (and decreasing block sizes) delays convergence since
the quality of the preconditioner is degraded due to loss of more information.

In Table 3.2 we present the execution times for DPCG implementations
that use explicit inverse for inner system solve on the CPU and GPU for one
of the grid sizes which has one million unknowns. We notice that the speedup

Preconditioning variant CPU GPU

M−1Blk−IC(2n) 28.4 9.8

M−1Blk−IC(4n) 25.48 10.15

M−1Blk−IC(8n) 22.8 11.28

M−1TNS1 20.15 1.29

M−1TNS2 25.99 1.47

Table 3.2: Wall-clock times for DPCG on a 2D problem with N = 1024×1024.

for DPCG implementations with TNS based preconditioners is substantial
for explicit inverse based implementation. The reason is that TNS based
preconditioners exhibit fine-grain parallelism and hence are very well suited
to the GPU. In comparison, for the DPCG implementation which uses Block
incomplete Cholesky as the first-level preconditioner, the difference in speedup
between the two deflation implementations to compute coarse grid solution
(Ea1 = a2) as mentioned in the beginning of section 3.5 is relatively low
(Figure 3.10). This is due to the fact that in this case the majority of the
time is spent in the preconditioning step and it dominates the iteration time,
so the effect of the deflation operation is overshadowed.

In contrast, the choice of coarse system solve in the deflation step be-

46 Chapter 3. Neumann preconditioning based DPCG

Figure 3.11: Comparison of explicit versus triangular solve strategy for DPCG.
Neumann series based preconditioners M−1 = KTD−1K, where K = (I −
LD−1 + (LD−1)

2
)

comes decisive in the length of execution time for DPCG implementation with
TNS-based first-level preconditioners (refer Figure 3.11). As the number of
unknowns increase the solution of the inner system becomes increasingly time
consuming with triangular solve. However, for the explicit inverse case there
is an increase in parallelism with increase in size of the inner system and the
resources of the GPU can be better utilized. The speedup attainable for the
complete solver with explicit inverse (E−1) based calculation of a2 is four times
that of the triangular solve strategy.

(a) CPU (b) GPU

Figure 3.12: Setup time as percentage of the total (iteration+setup) time for
triangular solve approach across different sizes of deflation vectors for DPCG.

In Figure 3.12 and 3.13 we compare the setup time as a percentage of
the total time required to solve the linear system for three different deflation
vector sizes across two different grid sizes. As one may expect, for a large
number of deflation vectors the explicit inverse based scheme becomes very
expensive on the GPU. This is also true for the triangular solve case since it
is mostly sequential. For the CPU version of the code however in both cases

3.6. Experiments and results 47

(a) CPU (b) GPU

Figure 3.13: Setup time as percentage of the total (iteration+setup) time for
explicit E−1 approach across different sizes of deflation vectors for DPCG.

there is little variation in the percentages. This is because on the CPU the
solution time is much larger than the GPU.

3.6.2 Stripe and plane-wise deflation vectors - Experiments
with 3D problems

It is possible to use stripes for 3D problems and problems involving bubbles
as well. However, stripe-wise deflation vectors are not the best choice one can
make for the deflation subspace. For 3D experiments we measure our results
against an optimized CPU implementation that utilizes sub-domain deflation
vectors (block-shaped vectors (refer section 2.4.2)). Block vectors do not suit
the storage pattern that we have utilized for this study but they give good
results. In Table 3.3 and 3.4 we see the results for a case when we have a 3D
geometry. For the first set of results presented in Table 3.3 the geometry is
that of slabs of different material. It must be noted now that N = n3 and not
n2. The computational domain is a unit cube. We present the results with n
plane and n2 stripe-wise deflation vectors for the GPU. There are three slabs
in the unit cube. The middle slab is 0.5 units thick. Its density is 10−3 times
the density of the surrounding slabs.

The results of Table 3.3 show that the speedup is reduced and is absent for
the case with 16384 deflation vectors. This is a consequence of the fact that
the inner system takes a lot of time to solve now and the data structure and
the associated kernels for the operation AZa2 do not perform well for very
large number of deflation vectors. Moreover, if more (n2) vectors are used the
setup times become prohibitive and there is no speedup at all. The iteration
times are high since we use the triangular solve method for inner system. This
is because, with the explicit inverse based inner solve we cannot solve up to

1CPU version uses CG for inner system solve.
2GPU version uses triangular factorization based inner solve.

48 Chapter 3. Neumann preconditioning based DPCG

CPU1 GPU2

8 block vectors 128 plane vectors 16384 stripe vectors

DICCG(0) DPCG(TNS2)

Number of iterations 206 324 259

Setup time 0.3 0.36 148.5

Iteration time 35.18 7.66 112

Speedup - 4.59 −

Table 3.3: 3D Problem (1283 points in the grid) with 3 layers. Middle layer
0.5 units thick. Tolerance set at 10−6. Density contrast 103. Comparison of
CPU and GPU implementations.

the tolerance of 10−6. To find out the reason why the explicit inverse based
solve doesn’t converge for this tolerance we plotted the relative norm of the
residual (Figure 3.14) for the solution of the layered problem with 3 layers
(results shown in Table 3.4) we notice how the explicit inverse based solution
cannot handle lower tolerances and begins to diverge.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

iterations

R
e

la
ti
v
e

 n
o

rm
 o

f
th

e
 r

e
s
id

u
a

l

Explicit inverse based deflation

Triangular solve based deflation

Figure 3.14: Relative norm of the residual across two deflation implementation
techniques for a 1283 3D grid with 3 layers with contrast in material densities.

We also plot the relative norm of the residual (Figure 3.15) for the inner
(coarse) systems that are solved using the two different solution methods.

We can notice that the relative norm of the residual for the inner system
can never go below 10−7 whereas for the triangular solve based inner system

3.6. Experiments and results 49

solve the relative norm of the residual becomes machine precision (10−16) after
a little over 450 iterations and it also fails to converge for higher tolerances.

200 400 600 800 1000 1200 1400 1600 1800 2000
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

iterations

R
e

la
ti
v
e

 n
o

rm
 o

f
th

e
 r

e
s
id

u
a

l
(c

o
a

rs
e

 s
y
s
te

m
)

Explicit inverse based deflation

Triangular solve based deflation

Figure 3.15: Relative norm of the residual (coarse system) across two different
deflation implementation techniques for a 1283 3D grid with 3 layers with
contrast in material densities.

In results presented in Table 3.4 we continue to have a unit cube but
instead of slabs of different material we now consider bubbles in the system.
In particular, we have a single bubble with its center coinciding with the center
of the cube and another case when we have eight bubbles, 2 in each dimension
and equally spaced (Figure 3.4). It can be noticed from the results that the
speedup becomes worse for the problem with more bubbles and that can be
explained by the fact that stripe-wise vectors cut the bubbles and are poor
approximations of the eigenvectors of the preconditioned matrix.

We only show the results with n vectors in Table 3.4 since with n2 vectors
there is no speedup. In Tables 3.3 and 3.4 the GPU version uses triangular
solves for the inner system since with explicit solve and stripe-wise vectors
the round-off errors in the solution of the inner system (due to explicit inverse
calculation) grow very quickly and convergence is never achieved. One expla-
nation for this is that in the case of inverse calculation the Meschach library
uses an LU decomposition followed by multiple forward and back substitution
steps to form the individual columns of the inverse matrix. So there are many

1CPU version uses CG for inner system solve.
2GPU version uses triangular factorization based inner solve.

50 Chapter 3. Neumann preconditioning based DPCG

1 bubble

CPU1 GPU2

8 block vectors 128 plane vectors

DICCG(0) DPCG(TNS2)

Number of iterations 237 287

Setup time 0.31 0.64

Iteration time 40.44 6.79

Speedup - 5.95

8 bubbles

Number of iterations 142 402

Setup time 0.3 0.36

Iteration time 24.4 9.51

Speedup - 2.56

Table 3.4: 3D Problem (1283 points in the grid) with 1 and 8 bubbles. Tol-
erance set at 10−6. Density contrast 10−3. Comparison of CPU and GPU
implementations.

more additions and multiplications where the chance of round-off error to add
up, is increased. However, in the case of the MAGMABLAS routines which
use triangular solve an LU decomposition is calculated of the symmetric pos-
itive define matrix E and only one solve is done every iteration to arrive at
the solution for the coarse system.

3.7 Conclusions

We have shown how two-level preconditioning can be adapted to the GPU
for computational efficiency. In order to achieve this we have investigated
preconditioners that are suitable to the GPU. At the same time we have made
new data structures in order to optimise deflation operations.

With our results we demonstrate that the combination of Truncated Neu-
mann series based preconditioning and deflation proves to be computationally
efficient on the GPU. At the same time the number of iterations it takes to
converge are also comparable to the method of Block-incomplete Cholesky
preconditioning which is not suitable for GPU implementation.

Through this study we have learnt that the choice made in the implemen-
tation of deflation method is crucial for the overall run-time of the method.
The main drawback we faced in using stripe-wise vectors was that a lot of
them must be used in order the DPCG method converged in fewer iterations.
This means a larger E matrix, whose inverse calculation takes most of the
time. In the subsequent chapters we show how to extend our work to 3D

3.7. Conclusions 51

problems with bubbles. We continue using the approach of calculating the
inverse of the matrix E explicitly. We also saw that using stripe-wise vectors
for 3D problems required using the triangular solve based inner system solve
since with explicit inverse based solve, convergence was not possible for the
desired tolerance (10−6).

In the next chapter we employ better deflation vectors based on the un-
derlying physics of the problem in order to overcome the possibly large setup
time and to avoid delayed convergence. For bubbly flow we use level-set sub-
domain deflation. Using these deflation vectors for bubbly flow we can better
approximate the eigenvectors corresponding to the small eigenvalues in the
spectrum of M−1A which we wish to project out using deflation. This over-
comes the slow convergence we witnessed for 3D domains as mentioned in
section 3.6.2. A small number of these vectors can capture the small eigenval-
ues and result in an effective deflation step (this is discussed in [29] and [65]).
This directly translates into a low setup time and overall gain in this approach
of implementing deflation.

CHAPTER 4

Improving deflation vectors

4.1 Introduction

In the previous chapter we have seen how deflation can be used to improve the
performance of PCG. Moreover, using new data structures that expose the fine
grain parallelism on the GPU can make deflation computationally efficient.

In this chapter we propose deflation vectors that are better than stripe-wise
vectors at accelerating convergence for 3D problems (section 3.6.2). We pro-
pose using block-wise sub-domain deflation vectors and combine them with
level-set information to make effective deflation vectors. Throughout this
chapter we consider the problem of bubbly flow and use deflation vectors that
suit this problem.

4.2 Problem definition

For our experiments we consider a problem defined on a unit cube like in
the previous chapter (Figure 3.3). Neumann boundary conditions are applied
on all sides of this cube. In addition to the 8 bubble problem we used for

The work presented in this chapter also appears in:

R. Gupta, M. B. van Gijzen, and C. Vuik. 3D bubbly flow simulation on the GPU
- iterative solution of a linear system using sub-domain and level-set deflation. In
Proceedings of PDP 2013, pages 359–366. IEEE CPS, 2013.

53

54 Chapter 4. Improving deflation vectors

our experiments earlier (Figure 3.4(b)) we also consider a 9 bubble problem
(Figure 4.1). For deflation vectors we use block-wise sub-domain, level-set and
level-set sub-domain (piece-wise constant) deflation vectors.

Figure 4.1: 9 bubbles in a unit cube

4.3 Block-wise sub-domains based deflation vectors

We have previously described block-wise sub-domain deflation vectors in sec-
tion 2.4.2 in the background section of this thesis. The block-based sub-domain
vectors are different from stripe-wise vectors in the way they are constructed.
For a unit cube, block-based sub-domain deflation vectors are constructed by
dividing the unit cube into smaller cubes.

In this section we enumerate two restrictions that must be adhered to
in order to ensure effectiveness of block-based sub-domain deflation vectors.
Firstly, it must be ensured, whenever possible, that at most one bubble or
a part of it is captured by a single sub-domain. If this does not hold e.g.
when two bubbles intersect with a sub-domain; then even after application of
the deflation operation small eigenvalues will persist in the spectrum of A or
M−1A.

Another guideline to ensure effective sub-domain deflation vectors for bub-
bly flow is to ensure the matrix E is not singular. While making sub-domain
vectors it is possible that we end up with a Z matrix that causes the coarse
system matrix E to be singular. This is possible e.g. in a case when A has
a Laplacian stencil and Neumann boundary conditions are imposed on the
domain of discretization. A singular E will no longer admit the calculation

4.3. Block-wise sub-domains based deflation vectors 55

of E−1. To remedy this problem we can make a Z and then remove one col-
umn from it. This renders E non-singular and an inverse can be calculated.
Consequently, we can still solve the inner system using an explicit inverse.

4.3.1 Level-set deflation vectors

To construct level-set deflation vectors, we utilize the information in the level-
set function [68]. The level-set function is a signed distance function. This
means that the function takes, say for bubbly flow, a positive value inside
a bubble and a negative value outside of it. Using this information we can
mark the interfaces and this information can be used to make better deflation
vectors.

These vectors are piece-wise constant (section 2.4.2). If there are k bubbles
in the system then we can define k vectors zk which can be assembled to form
Z. The vectors have a constant (non-zero) value over the part of the domain
on which the bubble is defined and zeros elsewhere. For details about this
technique for assembling matrix Z we refer the interested reader to [62].

Level-Set Sub-Domain (LSSD) vectors

It is possible to extend the level-set vectors with sub-domain vectors and
improve their effectiveness for solving the bubbly flow problem. We can define

ZLSSD := [Z1, Z2], (4.1)

Z1 consists of all sub-domain vectors of ZSD (Z matrix containing sub-domain
deflation vectors) where the entries corresponding to the medium outside the
bubble are zero. Z2 consists of columns whose entries correspond to the bub-
bles divided by the sub-domains of ZSD. It utilizes the information from ZLS ,
which is the matrix containing level-set deflation vectors. The ZLSSD matrix
may cause the inner system to be singular and therefore dropping a column
of ZLSSD could be used to ensure we can calculate the inverse of E. More
details on this method of creating level-set sub-domain deflation vectors can
be found in [62].

Stripe-wise vectors

Stripe-wise vectors (Figure 2.4(a)) are easy to implement and use on the GPU.
For an effective deflation operation many of these vectors must be used (as
found out in [31] and in the previous chapter). However, this directly translates
into a larger Galerkin matrix E and a consequent bottleneck in the calculation
of E−1. In this chapter we do not use these vectors.

56 Chapter 4. Improving deflation vectors

4.4 Using the explicit inverse for the solution of the
coarse system

In order to solve the coarse system that appears while applying deflation we
have to choose a solution strategy. In the previous chapter we saw that for
stripe-wise vectors explicit inverse based solution of the coarse system imposed
serious restrictions on the kind of tolerance to which we solve the linear system
iteratively using the DPCG method. This is evident from the plot of the
relative norm of the residual for the inner system shown in Figures 3.15. The
relative norm of the residual for the explicit inverse based solve cannot be less
than 10−7 when stripe-wise vectors are used.

In Figure 4.2 we present the results for the relative norm of the residual
for the inner system when block-wise vectors are used. The problem chosen
for the plots discussed is the 9 bubble problem mentioned in section 4.2. The
deflation vectors used are block sub-domain type. It must be noted that for
level-set sub-domain type vectors the plots are similar.

In Figure 4.2 we see a much lower relative norm for the residual for both
explicit and triangular solve based deflation implementations.

200 400 600 800 1000 1200 1400 1600 1800 2000
10

−16

10
−15

10
−14

10
−13

iterations

R
e

la
ti
v
e

 n
o

rm
 o

f
th

e
 r

e
s
id

u
a

l
fo

r
c
o

a
rs

e
 s

y
s
te

m

Explicit inverse based deflation

Triangular solve based deflation

Figure 4.2: Comparison of the relative norm of the residual for inner system
across two deflation implementations.

The performance of the explicit inverse is better with block-based sub-
domain deflation vectors (or level-set sub-domain deflation vectors) as we have
less vectors and hence a reduced setup time to calculate the explicit inverse.
Further, the solution of the coarse system is quicker because of the highly
parallelizable dense matrix vector product. Finally, the method converges

4.5. Experiments and results 57

faster as the block sub-domain based deflation vectors augmented with level-
set information are a better approximation of the deflation subspace. This is
the reason why we use explicit inverse based solution for the coarse system
for the experiments discussed in this chapter in combination with block sub-
domain vectors.

4.5 Experiments and results

In this section we present results of experiments we conducted and comment
on the results obtained. The hardware we use is a single core of a dual core
CPU (E8500 a @3.16GHz) and the solution (generated on the CPU) of the
linear system is compared with those generated on NVIDIA C2070 GPU.
As an extension to this experiment we also provide results for an OpenMP
accelerated CPU implementation that is executed on a dual-quad core Xeon
CPU from Intel. The CPU version of the code is highly optimized to reduce
operations and computationally speedup the DPCG algorithm (more details
in the appendices of [62]). All calculations are done in double precision.

4.5.1 Notes on implementation

We use MAGMABLAS (v1.2.1) 1 library for the gemv operation and for trian-
gular solve (dpotrf and dpotrs), depending on how we solve the inner system.

We use CUSP(v0.3.0) and CUSPARSE (with CUDA v5.5) in our imple-
mentations on the GPU. This is in contrast to our software using which we
presented results in the previous chapter. The motivation for this change is the
structure of the Z matrix based on block sub-domain and/or level-set vectors.
The level-set vector is used to extract the position of the interfaces, which in
a time-dependent problem will change every time step when the linear system
(1.1) is solved. This change is reflected in the storage of the AZ matrix which
can now have non-zeros which do not have a regular pattern as was shown
in Figure 3.6 with stripe-wise vectors. This means that the Sparse Matrix-
Vector (SpMV) routine for multiplying AZ with a vector has to accommodate
a generic sparse matrix storage format (e.g. CSR, HYB etc.). Generic stor-
age formats are also required for Z and correspondingly sparse matrix-matrix
multiplication routines are also required with the changes in Z. CUSP and
CUSPARSE provide optimized routines for these operations.

We use different storage formats in order to extract the best performance
for the SpMV routine corresponding to a specific matrix. Particularly for
CUSP we store

1. A in DIA,

1http://icl.cs.utk.edu/magma/docs/

58 Chapter 4. Improving deflation vectors

2. AZ in HYB,

3. E−1 in dense,

4. Z in ELL,

5. LD−1 in DIA.

For CUSPARSE we store all matrices in CSR format.

We use the CUSP2 library for GPU implementation of the DPCG method.
CUSP provides BLAS routines that are based on the THRUST3 library for
GPUs. For CUSP implementations the GPU code runs and stays entirely on
the GPU except for the following steps in the CG algorithm, namely,

1. For the calculation of the ratio of dot products; and

2. Comparing the norm of the current residual with the stopping criteria
to decide whether to continue to the next iteration or not.

Since these operations only involve sending back one scalar value to the host
(CPU) and potentially do not make a significant contribution to the complete
execution time we have not tried to write our own kernels for dot products
and/or residual norm calculation and have used standard routines in the CUSP
library. As mentioned earlier in section 3.5 there are two options to solve the
inner system. We will only present results for deflation implemented using
explicit inverse of E. This is because with the improved (block-wise sub-
domain) vectors we do not have to choose a large number of vectors to achieve
faster convergence and in this case the triangular solve and explicit inverse
method have the same computational times.

4.5.2 Differences between CPU and GPU implementations

On the CPU we have a FORTRAN code that runs the DICCG(0) algorithm for
solving the same problem that we solve on the GPU with DPCG and TNS2
preconditioner for the first level. On the CPU only sub-domain deflation
vectors are used whereas on the GPU we show results with level-set and level-
set sub-domain deflation vectors also. The reason for no level-set deflation on
the CPU is that we have a FORTRAN code that was developed as a part of
the work in [62] and only sub-domain vectors were dealt with in that software.
Significant optimizations to reduce storage space and increase computational
efficiency were implemented in this software (refer appendices of [62]).

2http://cusplibrary.github.io/
3http://thrust.github.io/

4.5. Experiments and results 59

Our focus has been to develop a new DPCG implementation (especially
for the GPU), and therefore we did not implement the level-set sub-domain
deflation vectors in the FORTRAN code. All of the vectors on the CPU and
GPU are piece-wise constant. On the GPU for the coarse system solve we
use the explicit inverse of E whereas on the CPU the inner system is solved
using the CG method, which is the standard method used when in the CPU
code. The choice for using explicit solves stems from the fact that on the
GPU we can exploit the parallelism in the solution of the inner system. On
the GPU, solving the inner system iteratively using CG takes more memory
and computational time than the explicit inverse based option so we do not
use CG to solve the inner system.

We note, however, that for larger number of vectors (O(n2)) it might prove
useful compared to the explicit E−1 option. On the CPU using CG makes the
solution of the inner system immune to the singularity in E. It must also be
said that in the CPU version of the code (written in FORTRAN) the focus
was not to parallelize but to research the properties of deflation.

The tolerance for the inner system is kept lower in comparison to the outer
tolerance which is 10−6 unless otherwise mentioned.

4.5.3 Results

In this section we present the results of two-level preconditioned CG for two
representative geometries mentioned in Figure 3.4(b) and 4.1. These ge-
ometries are instrumental in capturing the effect of different deflation vector
choices.

Speedup and computing times

The speedups we report are the ratios of the time it takes for the iterations
of the DPCG algorithm on the CPU vis-a-vis the GPU. We report total time
which includes the time required to do iterations and setup time. Setup time
refers to translating raw data (A, x and b) into the library data structures.
It also includes the time to setup Z, AZ, E−1 (in explicit solve case), LD−1,
D−1LT (for TNS2 preconditioner) and the time it takes to do the operations
before entering the CG iteration. Note that memory allocation times are not
included in ’Total time’, since they can be done once when this iterative linear
system solver is integrated into the full software for the simulation of bubbly
flow using the Level-set approach.

In all our experiments we have a 3D grid with 128 grid points per dimen-
sion. The tolerance (ε) is set to 10−6. The outer medium’s density is 103

times the density of the inner medium. In the results that follow this jump in
density is mentioned as the density contrast of 103.

60 Chapter 4. Improving deflation vectors

An explanation of some of the abbreviations in the tables that follow are
given below.

1. DICCG(0) - runs exclusively on the CPU.

2. The following apply to the GPU code.

• DPCG(TNS2) - refers to DPCG with the TNS2 preconditioner and
an explicit inverse based inner system solve.

• SD-j refers to sub-domain and LSSD-j refers to level-set sub-domain
vectors for deflation. The j refers to the number of columns in Z. j
has been calculated according to the information given in sections
4.3 and 4.3.1. In subsequent sections we also have LS-j which has
been constructed on the basis of the discussion in section 4.3.1.

Eight Bubbles

We consider 8 bubbles placed symmetrically inside the 3D unit cube (Figure
3.4(b)). The arrangement of the bubbles is such that when (block-wise) sub-
domain vectors are used, each of the block vectors contains a bubble. It
is a favorable arrangement of bubbles as it helps in making a point about
sub-domain deflation and the speedup we have achieved with this variety of
deflation vectors.

CPU

DICCG(0)

SD-8

Number of iterations 197

Total time 33.79

Iteration time 33.49

Table 4.1: 8 bubbles. CPU implementation.

Further we discuss the implementation on the GPU for the problem where
the inner system, (2.34b), is solved with an explicit inverse of E using a gemv
operation.

From Table 4.2 we can see how level-set sub-domain deflation can be ef-
fective at accelerating convergence but takes more time per iteration. The
speedup can be attributed to the fact that,

• There are more vectors in the level-set sub-domain based Z, and;

• For this geometry all bubbles are inside the sub-domains so that level-set
sub-domain is the optimal choice to create Z.

4.5. Experiments and results 61

CUSP CUSPARSE

SD-7 LS-7 LSSD-15 SD-7 LS-7 LSSD-15

Number of iterations 245 381 203 245 381 203

Total time 7.4 9.5 6.6 8.65 9.56 8.8

Iteration time 4.4 6.5 3.6 7.3 6.3 7.92

Speedup 7.6 5.1 9.3 4.58 5.31 3.80

Table 4.2: 8 bubbles. Comparison of deflation vector choices on the GPU
(CUSP & CUSPARSE based implementation).

For CUSPARSE results in Table 4.2 the speedup falls across all deflation
variants. Setup time for CUSPARSE is less than CUSP (for some versions)
but iteration times are larger in almost all cases. This continues to be the
trend for all the experiments that follow so we do not present CUSPARSE
results from this point on.

Nine bubbles

The 9 bubble case (from Figure 4.1) is an extension of the scenario presented
in the previous section (4.5.3). It has the 8 bubbles as in the previous case but
in addition it has a 9th bubble. In this problem the number of sub-domains are
kept fixed at 8 as in the previous problem. The sub-domains are now cutting
(Figure 4.1) the bubble in the middle and this delays the convergence of sub-
domain deflation. This example highlights the advantage of using level-set
and level-set sub-domain deflation vectors.

In Table 4.3 the convergence seems to be considerably delayed compared
to the neatly arranged 8 bubble case discussed in the previous section. To
remedy this we have to consider better deflation vector choices.

CPU GPU-CUSP

DICCG(0) DPCG(TNS2)

SD-8 SD-7 LS-7 LSSD-23

Number of iterations 508 632 381 206

Total time 85.9 14.4 9.3 6.8

Iteration time 85.6 11.3 6.5 3.8

Speedup - 7.57 13.1 22.5

Table 4.3: 9 bubbles. Comparison of deflation vector choices for deflation on
the GPU (CUSP based implementation) vs. CPU.

For GPU results in Table 4.3 we can infer that the level-set vectors alone
can accelerate convergence, but level-set sub-domain vectors are better.

62 Chapter 4. Improving deflation vectors

More vectors

In this section, we increase the number of deflation vectors (in all variants)
for the 9 bubble problem and see the effect on speedup and convergence.
We consider two new sizes. One of 64 sub-domains and another of 512 sub-
domains.

The level-set only case is not presented since the results do not change.
This is because level-set vectors stay the same since the number and position
of the bubbles do not change.

The tolerance had to be made bigger when increasing the number of vectors
from 8 to 64 and 512. This is due to the increase in rounding errors in the
solution of the inner system which becomes increasingly ill-conditioned.

For the case of 8 sub-domain vectors, we refer to Table 4.3. We observe
how speedup for these implementations changes. Level-set sub-domain GPU
versions are the most effective.

Looking at Table 4.4 we can say that for CUSP based implementations it
is possible to obtain more than 30 times speedup. Due to the increase in the
number of vectors for the deflation operation for the level-set sub-domain case,
the gemv operation (using explicit inverse of E) for (2.34b) has greater data
parallelism to exploit. level-set sub-domain based vectors better approximate
the deflation subspace so the iteration counts also go down.

CPU GPU-CUSP

DICCG(0) DPCG(TNS2)

Inner Tolerance=10−9 -

SD-64 SD-63 LSSD-135

Number of iterations 472 603 136

Total time 81.39 13.61 5.58

Iteration time 81.1 10.61 2.48

Speedup - 7.64 32.7

Table 4.4: 9 bubbles. Two deflation variants. GPU and CPU execution times
and speedup. 64 sub-domains.

In table 4.5 level-set sub-domain deflation does not show any effect on
convergence because the sub-domains have become so small that each sub-
domain has at most one part of the bubble in the center. Hence the problem
again is suited to sub-domain deflation more than to Level-Set sub-domain
(like in section 4.5.3). It is also interesting to note that the speedup in Table
4.5 solely reduces (when compared with 64 vectors case in Table 4.4) due to the
decrease in number of iterations of the CPU version (owing to more accurate
solution of the inner system) of the code by a drastic amount.

4.5. Experiments and results 63

CPU GPU-CUSP

DICCG(0) DPCG(TNS2)

Inner Tolerance=10−10 -

SD-512 SD-511 LSSD-583

Number of iterations 67 81 81

Total time 12.51 4.56 4.62

Iteration time 12.18 1.56 1.62

Speedup - 7.81 7.52

Table 4.5: 9 bubbles. Two deflation variants. GPU and CPU execution times
and speedup. 512 sub-domains.

We have tested the CPU version with OpenMP parallelization but the
CPU version gains are limited due to the fact that majority of the time is
spent in the IC preconditioner which is inherently serial.

In Table 4.6 we show the new execution times for the CPU results presented
in Tables 4.3, 4.4 and 4.5 but with the CPU code accelerated with OpenMP.
The CPU used is a dual-quad-core system running at 2.4GHz and the number
of OpenMP threads is set to be 8.

CPU-OpenMP(8 threads)

SD-8 SD-64 SD-512

Inner tolerance 10−8 10−9 10−10

Number of iterations 508 472 67

Total time 72 68.35 10

Iteration time 71.76 68.1 9.7

Table 4.6: 9 bubbles. CPU versions of DPCG with 8, 64 and 512 vectors with
OpenMP acceleration.

In Table 4.7 we show the results for the execution of our CPU implemen-
tation on a single core of the same quad-core machine used to generate results
in Table 4.6.

In Figure 4.3 we compare the speedups that we achieve for a sequential
CPU code (from Table 4.7) (running on one core of the dual quad core CPU)
versus the OpenMP version(from Table 4.6) as compared to the GPU imple-
mentation presented in Tables 4.3, 4.4 and 4.5. On the Y-axis in Figure 4.3 the
CPU version / GPU version of the code are mentioned. The speedup figures
change by at most 25% by the use of OpenMP (8 threads) because in the CPU
version the Incomplete Cholesky (IC) preconditioning is the bottleneck.

64 Chapter 4. Improving deflation vectors

CPU(single thread)

SD-8 SD-64 SD-512

Inner tolerance 10−8 10−9 10−10

Number of iterations 508 472 67

Total time 82.1 77.56 13.26

Iteration time 81.83 77.28 12.96

Table 4.7: 9 bubbles. CPU versions of DPCG with 8, 64 and 512 vectors
without OpenMP acceleration (on single core of a dual quad core).

Figure 4.3: Comparison of speedup on the GPU with respect to the CPU with
openMP parallelization

4.6 Conclusions

Our results show that with suitable deflation vectors derived from sub-domain
based on blocks and level-set function can substantially reduce the setup time
for calculating E−1 (since the number of vectors is small). Furthermore, these
vectors better approximate the eigenvectors corresponding to the small eigen-
values which delay convergence. Therefore, the deflation step is effective in
accelerating convergence. Deflation implemented in such a way in combina-
tion with TNS2 preconditioning for the first level can deliver up to 5-30 times
speedup for certain problems. We note that increasing the number of vectors
must be balanced with the approach to reduce setup times.

In the next chapter we show how to further optimize the code so that setup

4.6. Conclusions 65

times can be reduced. In the subsequent experiments we implement our al-
gorithm for multiple GPUs and multiple multi-core CPUs connected through
a fast interconnect to test the scalability of our two-level preconditioning ap-
proach.

CHAPTER 5

Extending DPCG to multiple GPUs
and CPUs

5.1 Introduction

In the previous two chapters we have shown that deflation can be an effective
choice to accelerate the preconditioned Conjugate Gradient method on the
GPU. However, with increasing problem sizes more memory is required on
the GPU. To overcome this limitation we must think of parallelization of the
algorithm on multiple compute units (CUs). We define a compute unit as a
single core of a multi-core CPU or a single GPU.

Parallelizing an algorithm on multiple CUs requires communication be-
tween the CUs. This communication adds to the execution time of the algo-
rithm. As the number of CUs increases one has to make sure that the rising
costs of communication can be kept under control.

In this chapter we show how we have parallelized the DPCG method on
the GPU. We present the results on two different clusters where we tested our

The work presented in this chapter also appears in:

Rohit Gupta, Martin B. van Gijzen, and Cornelis Vuik. Multi-GPU/CPU deflated
preconditioned conjugate gradient for bubbly flow solver. In Proceedings of the High
Performance Computing Symposium, HPC ’14, pages 14:1–14:8, San Diego, CA, USA,
2014. Society for Computer Simulation International.

67

68 Chapter 5. Extending DPCG to multiple GPUs and CPUs

implementation.

On the first cluster (DAS-41) which has less GPUs we tested two parti-
tioning strategies and discuss in detail about the more effective strategy. We
outline the implementation details that we had to take care of while developing
this multi-GPU, multi-CPU implementation with MPI.

On the second (Cartesius2 cluster at SURFSARA3) cluster with more
GPUs and multiple GPUs per node we experiment with different storage for-
mats for the coefficient matrix and report the advantages of using one storage
format over the other in a multi-GPU/CPU implementation. We compare the
performance difference when one or more GPUs per node are used.

Our results on the first cluster consist of the execution times for the DPCG
method with TNS-based preconditioning for the first level and deflation for
the second level of preconditioning. For the results on the second cluster we
also present results with diagonal preconditioning based DPCG and compare
them with their TNS-based counterpart.

5.2 Problem definition

Throughout this chapter we consider the bubbly flow problem. Our imple-
mentation has two parts. The first part is the calling software and the second
one is the linear system solver. The calling software is a software implemen-
tation of the Navier Stokes equations which are solved in discrete time steps.
Every time-step, a linear system arising from the discretization of the pressure
correction equation must be solved. The solution of the linear system is the
most time-consuming part of the solution as it takes up to 70 − 80% of the
time. In this chapter we use two different calling softwares and for each calling
software we use a specific data division scheme which we will explain in the
next section. The calling softwares have been written in FORTRAN. The first
one is the same code that was used in the previous chapters [62] and the sec-
ond calling software forms the basis of the work of [45]. We have replaced the
linear system solver in both these calling softwares with our preconditioned
iterative solver that runs on multiple CUs and uses a particular data division.

We note the benefits of the level-set sub-domain approach as outlined in
the previous chapter but in this chapter we use only sub-domain deflation
vectors for all the experiments (on both clusters). The reason for this choice
is a simpler software design that can also be implemented easily. We have
focused exclusively on implementing our linear solver in a multi-GPU/CPU
environment using MPI communication layer. Our effort has been dedicated

1http://www.cs.vu.nl/das4/
2https://surfsara.nl/systems/cartesius/description/
3https://surfsara.nl/

5.3. Data divisions 69

to finding out the merits of the data divisions, storage formats, overlapping
communication and computation and using multiple GPUs (or multiple CPU
cores) per node.

The problem discussed in the first part of the results (Section 5.5.1) on
the DAS-4 cluster is still defined on a unit cube as introduced in Section
3.3 (Figure 3.3). Nine bubbles (Figure 4.1) are present inside the cube as
mentioned previously in Section 4.2. Neumann boundary conditions are used
on all faces of the cube. All other parameters (except for the problem size)
remain the same as in the problem defined in Section 4.2. The calling software
used is from the work of [62].

The problem which we solve on the Cartesius cluster in the second part of
the results (Section 5.5.2) is defined on a cuboid and uses the calling software
from [45]. This is mentioned in the subsequent Sections (Section 5.5.1) along
with the bubble arrangement (Figure 5.4). Periodic boundary conditions are
used for this problem.

In both problems the density contrast is 103 between the bubbles and the
rest of the medium.

5.3 Data divisions

We examine two different approaches for distributing data amongst the CUs
to achieve load balancing.

5.3.1 Division by rows

In a division by rows, we divide the coefficient matrix and vector amongst
the CUs. The vectors are divided into N

p chunks where N is the number of
unknowns and p is the number of CUs. It is required for the vector to have
a ghost region or halo cells around it in order to account for the columns of
the matrix that lie outside the N

p column range (because of the off-diagonal
values). In this division there can be three specific cases for inclusion of these
ghost regions in the vector. For the first processor the halo cells are at the
end of the N

p rows of the vector. For the pth processor this region is in the
beginning and for CUs in between it is on both sides of the vector. Figure 5.1
shows an example of these regions for the pth processor.

5.3.2 Division by blocks

In a division by blocks we divide the grid composed of individual cells in 3D.
It can be broken down into cuboids which can be distributed to individual
CUs. Furthermore, local coefficient matrices can be constructed which are
then appended with halo values for the cells that lie on the boundaries of

70 Chapter 5. Extending DPCG to multiple GPUs and CPUs

F
igu

re
5.1:

D
ata

layou
t

for
C

U
s

2
to

P
-1.

5.4. Implementation 71

the cuboid. In this division the vector also needs to be supplemented with
values from neighboring CUs each and every time a matrix-vector operation
is performed.

5.3.3 Communication scaling

The technique mentioned in Section 5.3.1 is simpler to construct than the
one in Section 5.3.2, however, it involves a serious cost as the problem size
increases. We briefly explain it here.

The Sparse-Matrix Vector Product (SpMV) operation can be used to un-
derstand the difference in behavior for these two data division with respect to
scaling. We calculate communication costs involved in this operation to pro-
vide an estimate of how this cost changes with increase in problem size and
number of processors for the two data divisions. In the block division scheme
of Section 5.3.2 the communication happens on all the faces. Each face is of
dimension N

1
3 , where N = n3, (for 3D case) where n is the size of the grid in

any one dimension. If we assume for simplicity that the number of processors
in each dimension is p

1
3 , where p is the total number of processors amongst

which the problem is divided. Then, the number of values exchanged at any
face of the cube/cuboid of the problem with each processor with another ad-

jacent processor is N
p

1
3
2

. For the 6 faces of the cube it would be a multiple of
6 times this number. Since it depends on p, this division of work scales better
with increasing p.

In the case of row-based division of work, the order of communication is
always N

2
3 per block so it does not scale with increasing number of CUs.

5.4 Implementation

In this section we explain some of the choices we have made in implementing
the algorithm with two different data division schemes. In both codes on the
GPU as well as on the CPU (and across both cluster implementations) the
same algorithm is used. As a reference we present the (abridged) Deflated Pre-
conditioned Conjugate Gradient (DPCG) Algorithm for a single compute unit
(complete Algorithm is given in [62]). In our multi-GPU/CPU implementa-
tion of this algorithm, a number of synchronization and communication steps
can be recognized. In Algorithm 4 we mark steps that involve global commu-
nication with cyan and those involving nearest neighbor communication with
magenta. Specifically, SpMV operations involving A, L or LT involve nearest
neighbor communication and dot products, verification of termination criteria
and calculation of vector a1 (from (2.34a)) require global communication.

72 Chapter 5. Extending DPCG to multiple GPUs and CPUs

In the next section we give information about the calling softwares for both
data divisions.

Algorithm 4 Deflated Preconditioned Conjugate Gradient (abridged)

1: Select x0. Compute r0 := b−Ax0, r0 = Pr0
2: for i:=0,..., until convergence do
3: Solve Kwi−1 := ri−1 // Preconditioning
4: ρi−1 = ri−1

Twi−1
5: Calculate β and pi.
6: qi = PApi // Deflation
7: αi = ρi−1/pi

T qi
8: Update x and r.
9: Check convergence.

10: end for
11: Correction step.

5.4.1 Calling software and solver routine

In this section a description of the implementations of the different steps in
Algorithm 4 are given. Some of these are common to both data divisions and
others are implemented differently for both divisions. The calling softwares
for block-based and row-based data divisions are FORTRAN codes which have
been written for simulating the Navier-Stokes equations to describe bubbly
flow. One of them is based on the work in [45] and the other on the work
in [62]. We use the software developed in [62] to call the row-based solver
and the software that formed the basis of the research in [45] is used to call
the block-based DPCG linear system solver. Through these experiments we
want to experimentally verify the effect of the data division schemes on multi-
CPU and multi-GPU implementations. Both calling software pieces provide
a coefficient matrix, right-hand side and an initial guess to the linear system
solver which then applies DPCG to arrive at a solution. However, there are still
some differences in how these three quantities are passed to the linear solver
and that makes its software design significantly different from each other.

In one of the calling softwares the division of data is done first and then
the solver is launched whereas in the other the data division is implicit. We
provide more details in the following subsection.

Row-based division

In case of row-based division the entire coefficient matrix A, and the right-
hand side b, are generated in a FORTRAN code that solves the Navier-Stokes

5.4. Implementation 73

equations for fluid flow. The FORTRAN software passes these variables to the
C/CUDA code. The matrix and the variables are then divided into parts and
sent to all compute units (including the originating compute unit). Using these
parts and with some communication amongst the CUs, parts of the matrices
(AZ, AZT , E−1, Z, L and LT) are setup on each CU. This constitutes the
setup phase of the solver with row-based data division.

The deflation vectors in the code having row-based data division are of the
sub-domain kind (for details refer Section 2.4.2, [62] and [64]).

Block-based division

In case of block-based division also the GPU/CPU solver is called as a func-
tion from FORTRAN. However, the FORTRAN code is already running on
multiple compute units and each compute unit receives a part of the coefficient
matrix and the right-hand side relevant to it. So each node can immediately
calculate its local part of the matrices like in the row-based case with lesser
communication. Hence, the setup phase in the block-based division is shorter
(and computationally cheaper) compared to the row-based for the same num-
ber of unknowns. The FORTRAN code provides a coefficient matrix A with
the external coefficients embedded in it. These coefficients are stored in sep-
arate arrays once and then can be used every time an SpMV operation is to
be performed using A, L or LT .

It must be noted that in both cases while making the matrix E−1 (for
deflation since we solve the coarse grid using the gemv operation) some global
communication is required since each CU has a part of E (since they have
a part of A and Z and E = ZTAZ) that is generated independently. With
an MPI Alltoall communication step, E is aggregated and its inverse is in-
dependently calculated by each CU. The deflation vectors in the block-based
code are of the sub-domain variety (refer Section 2.4.2, [64], and for details
refer [62]). Also, the number of these vectors is one less than the number of
the CUs, e.g., if there are 8 CUs used to solve the problem then there are only
7 deflation vectors. Discarding one deflation vector is required since otherwise
the matrix E will be singular for the problem with Neumann boundary condi-
tions. This in itself may not be a problem (if the inner system is solved using
the CG method) but since we solve the inner system using the explicit inverse
of E we need an invertible E. Removing one vector ensures non-singularity of
E for our problem.

The choice to make one deflation vector (sub-domain) per CU was made to
simplify the deflation operation. If there is only one sub-domain on each cuboid
which is the domain of a single CU, the operation AZ is a simple summing
of rows of A. Depending on the boundary conditions and also because of the
off-diagonal coefficients belonging to the rows corresponding to the cells on

74 Chapter 5. Extending DPCG to multiple GPUs and CPUs

the outside boundaries of each CU’s cuboid, there are non-zero elements in
the rows of AZ.

The multiplication of ZT×AZ is a matrix-matrix multiplication which can
be implemented easily as compared to the case when the sub-domains span
over a portion of the grid that belong to more than one processor.

The solver routine in both data divisions for GPU and CPU execution
makes use of libraries. On the CPU we use the MKL library and on the
GPU we use CUBLAS and CUSPARSE. We decided to use them instead of
CUSP which was used in the previous chapter since CUSPARSE provides a
better ecosystem (in terms of support and knowledge base) for maintaining
and further developing our software.

The BLAS operations and SpMV operations are handled by these libraries
and hence the data available from the FORTRAN code has to be translated
into appropriate data structures which the libraries can interpret.

5.4.2 Communication outline in multi-compute unit imple-
mentation

In the DPCG algorithm distributed over CUs, communication can be of two
varieties. Global communication and communication with nearest neighbors.
When calculating dot products in steps 4 and 7 of Algorithm 4, global com-
munication is needed. MPI Allgather is used in step 9 when the stopping
criteria has to be evaluated. The individual parts of the norm are calculated
(sum of squares of the parts of the residual on each processor). These are then
propagated to all CUs. Once the complete sum is available, a square root is
calculated to get the norm at every step of the iteration. In step 1 and 6 the
deflation operation is performed which involves assembling a vector (a1 from
(2.34a)) for the coarse grid. All the compute units are required to share their
parts of the coarse grid vector using an MPI Allgather call.

Examples of nearest neighbor communication are in steps 1, 3 and 6 of
Algorithm 4 where SpMV operation is performed.

Row-based division - SpMV and preconditioning operation

In the case when the coefficient matrix and vector have been divided by rows,
one CU acts as a master. This CU at the beginning sends out data to all
other CUs (including itself) an extension of parts of A so that L and LT can
be made with overlap regions around them. After this step, all CUs begin their
computations. This ensures that each time before the preconditioning step 3
in Algorithm 4, each CU has to only request part of the ri−1 once from its
nearest neighbors. This part of the residual, ri−1 is, however, extended with
ghost regions (e.g. up to 3 levels on each side for CUs between the 1st and pth).

5.4. Implementation 75

A multiplication of LD−1/D−1LT (with dimensions (Np + k × n2) × N
p + n2

in 3D, where k can be 4 or 2 depending on whether it is a compute unit
with index between 1 and p or its index is 1 or p) with ri−1 is done every
time the preconditioning is applied. This operation results in a vector that
has dimensions N

p × 1 so ri−1 must have extended ghost regions in order to
calculate

(I − L̃T + L̃T
2
)D−1(I − L̃+ L̃2)ri−1 (5.1)

where L̃T = D−1LT and L̃ = LD−1. Expression (5.1) involves four SpMVs
(two with G and two with U). For the SpMV operation in Step 6 within the
iteration loop the ghost region required for Api follows from the ghost regions
that were received from the preconditioning step and hence it can be done
without an additional nearest neighbor communication.

Block-based division

In the case of Block-based division, the preconditioning scheme we have used,
(TNS-based preconditioning, Section 3.2.2), requires four matrix vector mul-
tiplications where LD−1 or D−1LT is multiplied with a vector to generate one
of the terms needed in the calculation of the final result.

The SpMV operation in case of the block-based data division forms a major
component of the computation. Other than steps 1 and 6 of Algorithm 4 where
it is used to multiply the coefficient matrix with a vector, it is also used in
the preconditioning operation of step 3. This is because preconditioning is
implemented as a sequence of following steps:

f1 = LD−1ri−1 f2 = LD−1f1 (5.2a)

f3 = ri−1 − f1 + f2 f4 = D−1f3 (5.2b)

f5 = D−1LT f4 f6 = D−1LT f5 (5.2c)

wi−1 = f4 − f5 + f6. (5.2d)

To make the SpMV operation efficient we do an overlap in communication
and computation. The complete result requires generating a product of the
local matrix with the local vector and summing it up with the products of the
coefficients that lie outside the local block with the corresponding components
of the vector required from neighboring CUs. First, we issue a communication
request to get the components of the vector required from nearest neighbors
and since we do it using a non-blocking asynchronous MPI call, the control
returns immediately. In case when the CU is a GPU, before and after the
MPI transfers a device-host or host-device transfer is also involved. Then we
calculate the SpMV for the local data (this can be on the GPU or the CPU

76 Chapter 5. Extending DPCG to multiple GPUs and CPUs

depending on which kind of CU the code is being executed upon). Hence, while
the vector is being received from the neighboring CUs we do some computation
instead of waiting for data. After finishing the computation and making sure
that all components of the vector have arrived we calculate the rest of the
SpMV with coefficients belonging to outside points with the received parts of
the vector. The SpMV operation in step 1 and 6 of Algorithm 4 uses the same
SpMV routine as is used by the preconditioning scheme.

5.5 Experiments and results

We present the results of our research in this section, starting with a brief
description of the hardware we used. We first present the results of compar-
ison of the data division schemes on the DAS-4 cluster followed by scaling
experiments on the Cartesius cluster.

Definitions and reporting schema

A short description of how we report the timing under different headings
is now presented.

1. Number of cores/CPU - Each node has a CPU with certain number of
cores on it. We mention the number of cores used under this heading.

2. Number of nodes - A particular experiment utilizes a certain number
of nodes with all its cores (or in case of multi-GPU experiments 1 or 2
cores per node). These nodes communicate over MPI with other nodes.

3. Vectors - These are the number of sub-domains into which the domain
is sub-divided. Deflation vectors of the sub-domain variety are then
defined on these domains. This value changes for different executions
in the block-based division (both of Cartesius and DAS-4) but in row-
based division (DAS-4 results) the number of vectors are kept constant
at 7. The number of CUs is equal to the product of number of nodes
and number of cores/node or number of GPUs/node.

4. Configuration - This refers to how the sub-domains are arranged in 3D.
Only true for block-based division of code.

5. Iterations - number of iterations required for convergence.

6. Global setup - This is the time required before the beginning of the CG
algorithm and it includes the time to convert the data coming from the

5.5. Experiments and results 77

FORTRAN code into C/MKL data structures. Conversions to appro-
priate data formats. Preparing matrices L, LT , Z, ZT , AZ, AZT and
E that are required by the algorithm.

7. Local setup - This includes the time required by the CG algorithm before
starting line 1 of Algorithm 4. It also includes the time to translate C
data structures to CUSPARSE data structures. This includes time taken
to transfer data to the GPU.

8. CG - This is the time taken from step 1 to step 10 of Algorithm 4 and
includes time to write back the result to the host.

9. spmv(Ax) - This includes the time taken to do a sparse matrix vector
multiplication of the coefficient matrix with a vector A. For the results
on the Cartesius cluster this also includes the data setup, transfer (com-
munication) and computation times. This is because of the implementa-
tion on Cartesius cluster which involves overlapping communication and
computation (refer Section 5.4.2).

10. precon - This includes the time for preconditioning operation (including
communication for results on Cartesius cluster only).

11. Dot-daxpy-copy - This includes the time required for doing dot product
operations, copy and axpy operations on vectors. Dot products require
global communication.

12. deflation - The time required for doing deflation and correction operation
in the last step including communication.

13. comm-mpi-glbl - Time spent in global communication with MPI (MPI Allgather

and MPI Allreduce).

14. comm-mpi-NN - Time spent in nearest neighbor communication. On the
DAS-4 cluster for row-based divisions, nearest neighbor communication
is done once every iteration before the preconditioing operation and it
gathers the required overlap regions for preconditioning and SpMV oper-
ations. On Cartesius and DAS-4 cluster for block-based divisions nearest
neighbor communication is used in spmv(Ax) and in precon operations
when TNS-based preconditioning is used).

15. comm-h2dd2h - Time spent in host-device device-host transfers. Appli-
cable only to GPU implementations when MPI data has to be exchanged
between two CUs which are GPUs.

78 Chapter 5. Extending DPCG to multiple GPUs and CPUs

16. comm-init - This is the time spent in initial transfer of data from the
master CU to the rest of the CUs that happens in the results for row-
based division on the DAS-4 cluster.

In the Tables that follow these timings can be grouped under sub-heads.
Items 6 and 7 combined give the total Setup time. Item 8 is the execution
time or the time it takes to converge for the DPCG method. Items
9-13 are the break-up of the total execution time. This means that
the numbers appearing against CG in the tables are the sum of the
numbers appearing against spmv(Ax), precon, Dot-daxpy-copy, deflation
and comm-mpi-glbl. Items 13-16 give the break-up of the communication
time.

In the charts that are presented in subsequent sections we provide insets
that are useful in noting the smaller numbers for experiments which are
much faster (up to an order of magnitude) than say e.g. a single node
experiment.

5.5.1 Results on the DAS-4 cluster

Experimental setup

In this section we present results obtained on the DAS-4 cluster in the Nether-
lands. Each node of a DAS-4 node which we use has one GPU and a CPU.
Specifically, each node has a K20 GPU (with around 5.25 GB memory on
board, ECC (error-correcting code) on). The CPUs used are dual quad core
Xeon processors (running at 2.4GHz). Each CPU has 24GB of main memory.
The communication fabric through which the nodes are connected at DAS-4
is Infiniband.

As for the software we use CUDA 5.5 and openMPI (version 1.4.4) for MPI
communication. For compiling the CPU version of the code we use an Intel
compiler (Composer XE 13.3) and Intel MKL (version 11). On the CPU we
use openMPI directives --bind=to-core, --bycore in order to make sure
that we do not have any performance loss due to process movement.

When conducting experiments on the GPU we use one core of the CPU
per node as a control processor to offload entire computation to the GPU and
also act as a bridge to communicate with other GPUs (on other nodes) via
their CPUs over MPI. While conducting experiments on the CPU we use a
variety of configurations where we use 1, 2, 4 or 8 nodes. The CPU cores
or GPUs individually are called compute units or CUs. We also report the
time spent in MPI communications and the time it takes on the GPU to do
device-host-device data transfers while running the DPCG code.

5.5. Experiments and results 79

Speedup, stopping criteria and tolerance
In our reporting we mention speedup as the total time (global setup + local
setup + iteration time) spent in the multi-CU (CPU) vs. multi-CU (GPU)
based implementation.

Speedup =
Total T ime on CPU

Total T ime on GPU
(5.3)

We use the stopping criteria given by

‖ ri ‖2≤‖ b ‖2 ε, (5.4)

where ε = 10−6 unless otherwise specified.

Division by rows

In Table 5.1 to 5.4 we present the results for grid sizes 1283 and 2563 on the
CPU and the GPU. The number of iterations for grid size 1283 is 630 and
for grid size 2563 is 1159. The number of iterations stays constant even if we
increase the number of CUs because the number of deflation vectors is constant
at 7 (also mentioned at the end of experimental setup, Section 5.5.1).

1283

Number of cores/CPU 8 1

Number of nodes (Total
cores)

1(8) 2(16) 4(32) 8(8)

Total setup
Global setup 0.2 1 1.2 0.6
Local setup 0.19 0.13 0.1 0.19

Execution CG 37.64 21.11 13.23 14.6

Break-Up

spmv 6.96 3.42 1.71 4.04
precon 14.83 8.35 4.9 4.97
Dot-daxpy-copy 7.31 3.37 1.52 1.87
deflation 4.14 1.77 0.86 1.68

Communication
Comm-mpi-glbl 3.3 3.48 3.72 1.62
Comm-mpi-NN 1.35 0.81 0.62 0.49
Comm-init 0.3 0.69 1.43 0.42

Table 5.1: Results for grid sizes 1283 on the CPU. Row-based domains.

In our results there are two important exceptions. Firstly, for the GPU
results we are not able to show the results for a single GPU since for this
problem size, 2563 all the data structures required to run our implementation
do not fit on a single GPU. Secondly, in the case of problem size 1283 on

80 Chapter 5. Extending DPCG to multiple GPUs and CPUs

2563

Number of cores/CPU 8 1

Number of nodes(Total
cores)

1(8) 2(16) 4(32) 8(64) 8(8)

Total setup
Global setup 5.7 6 8 17 4
Local setup 1.85 0.98 0.84 0.86 1.25

Execution CG 626.55 416.28 234.79 153.25 218.09

spmv 116.21 70 29.27 16.97 59.78
precon 252.9 177.66 102.58 51.97 80.91
Dot-daxpy-copy 135.05 87.44 34.51 15.81 36.34
deflation 78.95 39.4 24.96 11.72 27.25

Communication
Comm-mpi-glbl 30.84 34.77 43.57 56.18 8.46
Comm-mpi-NN 14.76 10.82 7.7 5.24 6.2
Comm-init 2.5 4.08 6.91 15.47 1.99

Table 5.2: Results for grid sizes 2563 on the CPU. Row-based domains.

the CPU we do not present the results for the 64 core case. This is because
of a choice we made in implementing the preconditioning for row-based data
division as mentioned in Section 5.4.2. We need a ghost region of length 4×n2
on each CU and we do only one transfer in order to reduce the communication
cost. In the case when problem size is 1283 and we have 64 CUs on which the
problem is divided, each CU has only 2×128×128 rows so it is not possible for
one neighbor to satisfy the demand for the ghost region of a neighboring CU.
More MPI transfers must be done in order to get the required size of data.
This can turn out to be costlier (and defeats the purpose of our one-time
communication as suggested in Section 5.4.2) if the number of CUs rises. This
communication can hurt the performance of our implementation and hence we
have a limit (in the row-based case) for the number of CUs that can be used
for a given problem size. Specifically, if problem size is n3 then our software
cannot use more than n/4 CUs.

Comparing Tables 5.2 with 5.4 we see that the speedup for the case when
8 GPUs are used compared to when 64 cores are used is up to 2.5 times when
the number of unknowns is 2563. Speedup is defined as the ratio of the total
time (setup(global+local) + CG time) taken on the CPU divided by the total
time on the GPU. This is summarized in Figure 5.2(a).

The cost of setup time in the results presented in Tables 5.1 to 5.4 can
be amortized if the DPCG solver (with row-based division) is used in a time-
stepping simulation where the solution of an ill-conditioned linear system is
required in every time-step. Moreover, if the simulation involves a coefficient
matrix that does not change over time (e.g. in case of seismic modeling of the
earths’ interior) then the setup time is only a one time cost.

For CPU implementations the computation times drop with increasing

5.5. Experiments and results 81

(a) Speedup (b) Memory transfers between GPU and
CPU

Figure 5.2: Speedup (ref. Equation (5.3)) and memory transfers on the GPU
for row-based division. Problem size 2563.

1283

Number of GPUs/node 1 1 1

Number of nodes 2 4 8

Total setup
Global setup 5.3 4.15 3.77
Local setup 4.89 3.61 2.91

Execution CG 12.29 7.9 5.17

Break-Up
spmv(Ax) 0.72 0.38 0.2

precon 1.08 0.6 0.35
Dot-daxpy-copy 0.7 0.43 0.3

deflation 5.96 3.03 1.6

Communication
Comm-mpi-glbl 0.06 1.38 1.44
Comm-mpi-NN 0.11 0.21 0.19
Comm-h2dd2h 3.7 2.01 1.16

Comm-init 0.12 0.29 0.55

Table 5.3: Results for grid sizes 1283 on the GPU. Row-based domains.

82 Chapter 5. Extending DPCG to multiple GPUs and CPUs

2563

No. of GPUs/node 1 1 1

No. of nodes 2 4 8

Total setup
Global setup 40 24 11
Local setup 38.34 20.38 7.92

Execution CG 178.31 93.82 49.67

Break-Up
spmv(Ax) 10.25 5.18 2.6

precon 16.5 8.5 4.49
Dot-daxpy-copy 8.46 4.45 2.33

deflation 85.91 43.03 21.66

Communication
Comm-mpi-glbl 0.45 2.73 2.77
Comm-mpi-NN 0.75 1.68 1.44
Comm-h2dd2h 56.38 28.41 14.38

Comm-init 0.72 1.63 2.56

Table 5.4: Results for grid sizes 2563 on the GPU. Row-based domains.

(a) CPU (b) GPU

Figure 5.3: MPI communication as a percentage of total time. Problem size
2563. Row-based domains

number of CPU cores as individual computations (that become small enough)
can benefit from the caches on the CPUs (Tables 5.1 and 5.2).

In addition we see that communication times increase (shown as percentage
of total time in Figure 5.3(a), they do not form a large part of the GPU times
but increase with the number of nodes. In Figure 5.3(b) we can observe
that as the number of CUs increase in the case of CPUs the percentage time
spent in communication also increases(this is in line with the predictions of
communication costs for row-based division as pointed out in Section 5.4.2).
A significant portion of this time is accounted for in the setup when the CU
that receives all the data has to distribute it to other CUs which maybe on the
same node (then transfers are done via memory copies) or on another node
(then transfers are done via MPI).

5.5. Experiments and results 83

The computation times are quite high since the size of the problem per
CU compared to using 64 cores is much bigger. This is because, when all 8
cores on a single CPU are used there are many more cache misses. Each core
is handling large sets of data (16MB for a vector and around 7 times more
when accessing the part of the coefficient matrix each CU has) and therefore,
there is much more memory contention compared to when only one core is
being used.

Examining the GPU results, around one-third of the time spent in the
execution is consumed by the memory transfers (Figure 5.2(b)) between host-
to-device and vice-versa. For the results shown in Tables 5.1 to 5.4 the total
times is a sum of the operations spmv, precon, Dot-daxpy-copy, deflation,
comm-mpi-NN and comm-mpi-glbl. It must be also noted that all these tim-
ings are for the master node. For each node the timing is different as it depends
on the time spent in synchronizing with other nodes also.

Division by blocks

In the case of row-based data division one can divide the coefficient matrix in
only one way. That is to divide amongst all the compute units N/p rows of
the matrix A vector with appropriate ghost layers/cells. However, in the case
of block-based division the grid is distributed amongst individual CUs. This
gives the possibility of having many configurations when p CUs are available.
A configuration of a grid size n3 is denoted by three numbers (nx, ny, nz)
which stand for the number of CUs logically in each direction of such a grid
division. This leads to a local grid on each CU with dimensions (n

nx
, n
ny

, n
nz

).

In Table 5.5 we show for different values of cores/node (CU is a CPU core)
what configurations are possible for a grid size of 2563 on the CPU (when
number of CUs is fixed at 16).

The choice of a particular configuration and how many cores per node are
used can affect timings and we report these changes. When more cores per
node are used the computation times rise. In Table 5.5 we notice that the num-
ber of iterations are more for the configuration 2, 2, 4 and 4, 2, 2 in comparison
with 2, 4, 2. This is caused by the difference in the way deflation vectors are
made by the virtue of the domain decomposition. The deflation vectors are
chosen piecewise constant per sub-domain and the number of sub-domains is
equal to the number of CUs in our experiments, e.g. in configuration 2, 4, 2
they are 2× 4× 2 = 16 and so on for the rest of the configurations. The indi-
vidual numbers determine how many of them are in each co-ordinate direction
x, y or z.

In Figure 5.4 we show how the bubbles are placed when we divide the grid
amongst CUs using blocks. There are two bubbles with one slightly displaced
with respect to the other one in z and y direction. For the 2, 2, 4 or 4, 2, 2

84 Chapter 5. Extending DPCG to multiple GPUs and CPUs

Number of nodes=2

CUs/node 8

Config. Iter. Setup Execution Comm.

2, 2, 4 376 3.2 86.6 1.4

2, 4, 2 331 3.2 76.2 1.4

4, 2, 2 376 3.3 87.7 1.8

Number of nodes=4

CUs/node 4

Config. Iter. Setup Execution Comm.

2, 2, 4 376 3.2 80.2 1.2

2, 4, 2 331 3.1 70.7 1.1

4, 2, 2 376 3.2 82.5 1.2

Number of nodes=16

CUs/node 1

Config. Iter. Setup Execution Comm.

2, 2, 4 376 3.1 38.5 1

2, 4, 2 331 3.1 33.0 0.82

4, 2, 2 376 3.1 36.8 1.1

Table 5.5: Different configurations. Block-based domains. Grid size 2563 on
the CPU. Using 16 cores across different number of nodes.

5.5. Experiments and results 85

Figure 5.4: 3D problem model with
2 bubbles

Figure 5.5: Top view with deflation
vectors

configuration there are two vectors in y and for the configuration 2, 4, 2 there
are 4 vectors in y. The top view for the case when y direction has 2 or 4 vectors
is shown in Figure 5.5. It must be noted here that the problem is defined on
a cuboid of physical dimensions 4, 5, 4 (Length, Width, Height) units. Hence,
the deflation vectors in y direction are of different width compared to those
in x and z direction. This is one reason for the sensitivity of the vectors
in the y direction. A more convincing reason for the difference in number
of iterations between the three configurations can be seen in the plot of the
2-norm of the residual for the convergence of DPCG method based on these
three configurations of deflation vectors (Figure 5.6).

We can see that for the configurations (2, 2, 4) and (4, 2, 2) the residual is
always larger than for the configuration (2, 4, 2). One can conclude that the
configuration (2, 4, 2) is a better choice for the deflation subspace than the
other two cases and this is the reason why convergence is achieved faster.

As can be seen in Table 5.5, configurations can make some difference in
the number of iterations and execution times but the most striking feature is
that when the number of cores are reduced per node then we see a drop in
execution times up to a factor of about two and a half times.

We devised an experiment to understand the difference in execution times
we see in Table 5.5. In the following section we describe this experiment and
comment on the findings.

Calculation times (axpy) and point-wise multiply variance with dif-
ferent number of cores per node in use
For this experiment, an average of 20 runs per case is taken. Every such av-

86 Chapter 5. Extending DPCG to multiple GPUs and CPUs

0 50 100 150 200 250 300 350 400
10

4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

iteration count

2
 n

o
rm

 o
f

th
e

 r
e

s
id

u
a

l
a

t
e

a
c
h

 i
te

ra
ti
o

n

config(2,2,4)−ITERS=376

config(2,4,2)−ITERS=331

config(4,2,2)−ITERS=376

Figure 5.6: 2-norm of the residual for DPCG method across different config-
urations

erage is calculated 20 more times and the minimum value out of these 20 is
taken. This is done since the individual times to complete one transfer can be
of the order of nanoseconds. Measuring them only a few times can increase
chances of error. Moreover, taking the smallest of the numbers ensures that
the best case performance is recorded. The calculation times for the case when
we use all cores on the CU compared to the case when only one core is used
per CU in case the CUs are CPU cores can vary by up to 2.2 times. This is
visible in the results from Table 5.5. This can be verified from the results in
Figure 5.7 and 5.8 where the element-wise multiplication of two vectors and
calculation of axpy operations is tested on various vector sizes. In Figure 5.7
and 5.8 xCU means how many cores are being used out of 8 available in a
single CPU. The x-axis shows the problem size, N in powers of two. It can be
observed that when all cores are used the computation time for these opera-
tions is almost four times with respect to the case when only one core is used.
This is because when all cores are used there are more memory contentions.
This is after we have used openMPI options of --bind=to-core, --bycore

that enforce locality.

In our implementation of the SpMV (for the block-based data division),
the product of the parts of the vector obtained after communication along
with the corresponding coefficients is calculated separately and the results are

5.5. Experiments and results 87

added to the SpMV result of the interior cells per processor. The interior
SpMV is done using a call to the MKL library.

The preconditioning operation as outlined under the description of the
block-based division in Section 5.4.2 involves scaling operations of the vector
with the matrix D−1, SpMV operations of LD−1x (and analogous operations
in case of D−1LT) and axpy operations when combining individual terms to
make the final product of the residual with the preconditioning matrix.

These three operations take the bulk of the time on the CPU implemen-
tations. In general, it can be expected that preconditioning takes twice the
amount of time as the SpmV operation involving the coefficient matrix with
a vector but in our results we see that it is between three to four times.

In order to understand how the total time is distributed amongst different
operations of Algorithm 4 we did an experiment with 8 CU’s and used 2 CU’s
in each direction. The configuration is (2, 2, 2). In Table 5.6 we see how
preconditioning dominates the total CG time followed by SpMV involving the
coefficient matrix. More cores used per CPU can cause both these times to
increase.

Going back to Table 5.5 the ratio of execution times is around 2.2 when 8
cores are used per node compared to one. Preconditioning alone takes close to
70% of the time and involves sparse matrix-vector products, scaling operations
and vector updates. If this alone is reduced by four times then the effect on
total time would be a reduction of around two times (using Amdahl’s Law).
With this perspective if we weigh the results shown in our test for element-
wise multiplications (which are the primary operations in the preconditioning
step) a possible explanation for the lower execution times when fewer cores
per node are used can be offered for the results in Table 5.5.

As a closing remark to this experiment it must be said that the SpMV
is done using a library and the matrix is stored in COO format, since it is
a generic format. Furthermore, the details of the implementation are hidden
from users so these experiments can provide the best approximation of the
behavior seen in the results.

Now we continue presenting results for multi-CPU and multi-GPU imple-
mentations using block-based data division.

In Table 5.7 and 5.8 we show the results for the block-based decomposition
on CPU and GPU.

The GPU version almost equals the 64 core CPU version if we consider
the timings per iteration (GPU (total) time for 252 iterations would be 14.72
seconds as compared to CPU (total) time of 15.1). It must be noted that
the 64 core CPU version has a larger number (8 times more) of deflation
vectors compared to the GPU version and hence its convergence is accelerated

88 Chapter 5. Extending DPCG to multiple GPUs and CPUs

Number of cores/CPU 4 2 1 8

Number of nodes(Total
Cores)

2(8) 4(8) 8(8) 1(8)

1283

Total Setup
Global setup 0.45 0.45 0.44 0.5
Local setup 0.009 0.0026 0.002 0.002

Execution CG 7.07 4.97 4.55 10.78

Break-Up
spmv 1.34 1.07 1.06 1.66
precon 4.27 2.82 2.62 6.26
Dot-daxpy-copy 0.99 0.0.54 0.55 2.13
deflation 0.27 0.26 0.21 0.6

Communication
Comm-mpi-glbl 0.05 0.23 0.02 0.06
Comm-mpi-NN 0.18 0.245 0.1 0.17

2563

Total setup
Global setup 7.38 6.92 6.9 7.2
Local setup 0.075 0.006 0.007 0.009

Execution CG 122.69 95.8 87.2 194

Break-Up
spmv 21.55 18.7 17.8 27.87
precon 68.4 52.5 48.4 111.1
Dot-daxpy-copy 22.76 18.4 15.9 41
deflation 7.5 4.65 4.67 11.51

Communication
Comm-mpi-glbl 0.7 1.3 0.23 0.14
Comm-mpi-NN 3.4 3.65 0.62 1.1

Table 5.6: Configuration (2, 2, 2). Grid sizes 1283 and 2563 on the CPU.
Block-based domains. Iterations for 1283 = 188 and for 2563 = 375.

5.5. Experiments and results 89

Number of cores/CPU 8

Number of nodes(Total
cores)

2(16) 4(32) 8(64)

Arrangement (2,4,2) (4,4,2) (4,4,4)

Vectors 16 32 64

Grid size 1283

Iterations 166 161 126

Total setup
Global setup 0.29 0.21 0.061
Local Setup 0.009 0.003 0.024

Execution CG 4.83 2.8 0.67

Break-Up

spmv 0.7 0.35 0.13
precon 2.84 1.4 0.33
Dot-daxpy-copy 0.79 0.3 0.1
deflation 0.21 0.15 0.05

Communication
Comm-mpi-glbl 0.03 0.15 0.06
Comm-mpi-NN 0.096 0.085 0.05

Grid size 2563

Iterations 331 323 252

Total setup
Global setup 3.12 1.26 0.45
Local setup 0.01 0 0

CG 72.65 37.74 15.1

Break-Up

spmv 10.73 5.44 2.15
precon 42.9 21.65 8.6
Dot-daxpy-copy 15.04 7.34 2.75
deflation 4.57 2.41 1.11

Communication
Comm-mpi-glbl 0.27 0.85 0.8
Comm-mpi-NN 0.59 0.56 0.36

Table 5.7: Results for grid sizes 1283 and 2563 on the CPU. Block-based
domains. 8 cores/node.

90 Chapter 5. Extending DPCG to multiple GPUs and CPUs

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9
x 10

−9

log
2
(N)+1

T
im

e

pointwise_mply_1CU

pointwise_mply_2CU

pointwise_mply_4CU

pointwise_mply_8CU

Figure 5.7: Calculation times for element-wise multiplication of two vectors

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9
x 10

−9

log
2
(N) + 1

T
im

e

axpy_1CU

axpy_2CU

axpy_4CU

axpy_8CU

Figure 5.8: Calculation times for axpy

compared to the 8 GPU version.

5.5. Experiments and results 91

1283 2563

Iterations 188 375

Global setup 0.54 8.74

Local setup 0.03 0.156

CG 1.89 21.9

spmv(Ax) 1.15 16.3

precon 0.57 4.3

Dot-daxpy-copy 0.08 0.648

deflation 0.08 0.61

Comm-mpi-glbl 0.04 0.07

Comm-mpi-NN 0.21 0.8

Comm-h2dd2h 0.19 1.35

Table 5.8: Results for grid sizes 1283 and 2563 on the GPU. Block-based
domains. Configuration 2, 2, 2. 8 nodes (1GPU/node).

5.5.2 Experiments on Cartesius cluster

In this section we present the results that were generated on the Cartesius
cluster which has been installed by SURFSARA. We only present results from
problems with 2563 unknowns for the problem setup mentioned in the previous
section. The contrast in density, stopping criteria and tolerance is the same
as for the previous set of experiments presented in this chapter.

In this set of experiments we show the effect of using different storage
formats on the performance of the DPCG algorithm. Furthermore, we show
the advantages of using simpler first level preconditioning schemes. Finally,
we also consider the benefits of using multiple GPUs per node.

Experimental setup

We have done our experiments on the accelerator island at the Cartesius cluster
of SURFSARA. Each node has the following configuration

1. 2 × 8-core 2.5 GHz Intel Xeon E5-2450 v2 (Ivy Bridge) CPUs/node,

2. 2 × NVIDIA Tesla K40m GPUs/node (up to 11.25GB DDR5 main mem-
ory with ECC on);

3. 96 GB memory per node.

The interconnect used is Mellanox ConnectX-3 Infiniband adapter providing
4 × FDR (Fourteen Data Rate) resulting in 56 Gbit/s inter-node bandwidth,
with an inter-island latency of 3µs.

92 Chapter 5. Extending DPCG to multiple GPUs and CPUs

We use CUDA 6 and Intel compiler version 13.1 as the GPU and CPU
software suites. For the CPU version we use MKL (version 11.0.2) that ships
with the Intel compiler. For the GPU we use CUBLAS and CUSPARSE in
CUDA 6. The nodes communicate amongst each other using MPI libraries
from Intel.

In the results that follow we only use block-based division and correspond-
ing calling software (discussed in Sections 5.3.2, 5.4.1, 5.4.2 and 5.5.1).

Results

In Tables 5.9 and 5.10 we show the results for multi-CPU implementation with
diagonal and TNS-based preconditioning based DPCG where the matrices A,
L and LT are stored in the COO format on the CPU.

Number of cores/CPU 16

Number of nodes 1 2 4 8 16 32 64

Vectors 16 32 64 128 256 512 1024

Configuration (2,4,2) (4,4,2) (4,4,4) (4,4,8) (8,4,8) (8,8,8) (8,8,16)

Iterations 771 756 552 556 516 299 300

Global setup 2.99 1.18 0.391 0.191 0.1177 0.257 3.12

Local setup 0.002 0.001 0.001 0.0001 0 0.0001 0.017

CG 78.22 39.21 14.19 6.595 2.818 0.84 1.088

spmv(Ax) 25.19 12.71 4.81 2.469 1.221 0.203 0.106

precon(scaling) 7.11 3.59 1.407 0.415 0.176 0.047 0.013

Dot-daxpy-copy 34.74 16.83 5.751 2.85 0.893 0.13 0.055

deflation 11.11 5.91 2.1419 0.71 0.386 0.37 0.7955

Comm-mpi-glbl 0.05 0.18 0.087 0.224 0.24 0.143 0.208

Comm-mpi-NN 0.402 0.229 0.07 0.06 0.04 0.02 0.016

Table 5.9: Diagonal preconditioning based DPCG. Multi-CPU implementa-
tions. Storage of matrices in COO format.

Comparing the results shown in Tables 5.9 and 5.10 we can make the
following observations.

1. TNS-based preconditioning takes roughly half as many iterations for
convergence compared to diagonal preconditioning.

2. For a smaller number of nodes diagonal preconditioning takes less total
time compared to TNS-based DPCG.

These findings can also be noted in Figure 5.9. In Tables 5.11 and 5.12 the
difference from Tables 5.9 and 5.10 is that instead of COO format of storage
for A, L and LT , DIA format is used and corresponding SpMV routines are
utilized. The matrices A, L and LT have non-zeros only on a few diagonals

5.5. Experiments and results 93

Number of cores/CPU 16

Number of nodes 1 2 4 8 16 32 64

Vectors 16 32 64 128 256 512 1024

Configuration (2,4,2) (4,4,2) (4,4,4) (4,4,8) (8,4,8) (8,8,8) (8,8,16)

Iterations 331 323 252 251 245 131 132

Global setup 2.91 1.16 0.395 0.198 0.116 0.2169 3.12

Local setup 0.004 0.004 0.002 0.0015 0.001 0.018 0.0305

CG 67.25 33.9 13.21 6.31 2.73 0.674 0.694

spmv(Ax) 9.04 4.67 1.875 0.961 0.494 0.1239 0.0533

precon 39.07 19.77 7.72 3.82 1.611 0.293 0.129

Dot-daxpy-copy 14.81 7.21 2.755 1.17 0.377 0.066 0.029

deflation 4.27 2.26 0.778 0.255 0.151 0.136 0.372

Comm-mpi-glbl 0.026 0.069 0.101 0.117 0.133 0.101 0.197

Comm-mpi-NN 0.68 0.395 0.275 0.127 0.088 0.02 0.018

Table 5.10: TNS-based preconditioning based DPCG. Multi-CPU implemen-
tations. Storage of matrices in COO format.

and therefore they can benefit from this storage format. These routines were
discussed in [6].

Number of cores/CPU 16

Number of nodes 1 2 4 8 16 32 64

Vectors 16 32 64 128 256 512 1024

Configuration (2,4,2) (4,4,2) (4,4,4) (4,4,8) (8,4,8) (8,8,8) (8,8,16)

Iterations 771 756 552 556 516 299 300

Global setup 3.09 1.252 0.455 0.217 0.131 0.22 3.12

Local setup 0.001 0.0009 0.0007 0.0008 0 0.019 0.022

CG 69.865 34.97 12.68 5.77 2.39 0.755 1.05

spmv(Ax) 16.67 8.392 3.238 1.677 0.792 0.165 0.071

precon(scaling) 7 3.54 1.354 0.44 0.198 0.0408 0.016

Dot-daxpy-copy 35.21 17.054 5.93 2.826 0.897 0.119 0.053

deflation 10.92 5.878 2.06 0.714 0.328 0.333 0.802

Comm-mpi-glbl 0.039 0.114 0.1269 0.154 0.226 0.179 0.203

Comm-mpi-NN 0.41 0.239 0.07 0.06 0.04 0.022 0.013

Table 5.11: Diagonal preconditioning based DPCG. Multi-CPU implementa-
tions. Storage of matrices in DIA format.

Comparing Tables 5.9 and 5.10 with 5.11 and 5.12 we can make an obser-
vation. The time for iterations has reduced between 10−15% in some cases for
the DPCG implementations with storage of matrices in DIA format for both
DPCG variants (with TNS-based and diagonal preconditioning) (summarized
in Figure 5.9). This time can be traced back to the reduction in times for the
spmv(Ax) and precon operations in Tables 5.10 and 5.12. For diagonal precon-

94 Chapter 5. Extending DPCG to multiple GPUs and CPUs

Number of cores/CPU 16

Number of nodes 1 2 4 8 16 32 64

Vectors 16 32 64 128 256 512 1024

Configuration (2,4,2) (4,4,2) (4,4,4) (4,4,8) (8,4,8) (8,8,8) (8,8,16)

Iterations 331 323 252 251 245 131 132

Global setup 3.2 1.3 0.467 0.232 0.132 0.223 3.162

Local setup 0.0048 0.0052 0.0039 0.002 0.0018 0.017 0.022

CG 57 28.67 11.23 5.168 1.945 0.537 0.57

spmv(Ax) 6.382 3.28 1.382 0.684 0.31 0.077 0.035

precon 31.19 15.689 6.253 2.95 1 0.195 0.084

Dot-daxpy-copy 14.978 7.293 2.776 1.191 0.397 0.068 0.025

deflation 4.31 2.26 0.743 0.266 0.152 0.143 0.367

Comm-mpi-glbl 0.212 0.202 0.091 0.088 0.108 0.095 0.123

Comm-mpi-NN 0.74 0.451 0.287 0.137 0.086 0.025 0.016

Table 5.12: TNS-based preconditioning based DPCG. Multi-CPU implemen-
tations. Storage of matrices in DIA format.

Figure 5.9: Reduction in total time when storage formats are changed on the
CPU

5.5. Experiments and results 95

Figure 5.10: Total time when using COO storage formats on the GPU for A,L
and LT matrices

ditioning based DPCG this is true as well but comparing Tables 5.9 and 5.11
we notice that the execution time is significantly reduced for the spmv(Ax)
operation. This is expected because of the suitability of the system/coefficient
matrix and the L and LT matrices for the DIA format. The setup time for
64 nodes are an order of magnitude higher than those for 32 nodes. This
time is mostly spent in the calculation of local inverse of the matrix E for all
the individual cores. Due to the large number of processors and a larger size
for E (since there are 1024 cores the size of E for each core is 1024 × 1024)
the calculation of E−1 can cause memory contention when all 64 cores do the
calculation.

The benefit of changing to the DIA format on the GPU is even more
pronounced as can be seen in Figures 5.10 and 5.11(detailed results for COO
format based multi-GPU implementations appear in Appendix C). The total
time is halved.

In Tables 5.13 and 5.14 we present multi-GPU results for one or two
GPUs/node with diagonal preconditioning based DPCG.

In Tables 5.15 and 5.16 we present the results of TNS-based precondition-
ing based DPCG on multiple GPUs connected via MPI. We show the results
for the case when two GPUs per node are used in Tables 5.16.

Comparing Tables 5.13 with 5.14 and 5.15 with 5.16 we see that the two
GPU per node approach halves the execution time compared to only using
one GPU per node. It must be also kept in mind that increasing the number
of GPUs/node leads to an increase in the number of vectors as well.

For the same number of nodes if we compare the results of using all the

96 Chapter 5. Extending DPCG to multiple GPUs and CPUs

Figure 5.11: Total time when using DIA storage formats on the GPU for A,L
and LT matrices

Number of GPUs/node 1

Vectors 2 4 8 16 32 64

Configuration (2,1,1) (2,1,2) (2,2,2) (2,4,2) (4,4,2) (4,4,4)

Iterations 878 878 875 771 756 552

Global setup 73.8 21.93 6.469 2.882 1.146 0.433

Local setup 0.243 0.122 0.068 0.063 0.128 0.08

CG 16.779 8.879 4.849 2.739 1.818 0.877

spmv(Ax) 7.086 3.831 2.099 1.315 0.785 0.375

precon 0.931 0.473 0.243 0.113 0.0622 0.027

Dot-daxpy-copy 4.866 2.529 1.351 0.679 0.416 0.216

deflation 3.83 1.989 1.085 0.563 0.413 0.201

Comm-mpi-glbl 0.0864 0.116 0.166 0.194 0.4359 0.13

Comm-mpi-NN 0.435 0.316 0.254 0.17 0.113 0.058

Comm-h2dd2h 2.02 1.109 0.597 0.509 0.268 0.108

Table 5.13: Diagonal preconditioning based DPCG. Multi-GPU implementa-
tions. Storage of matrices in DIA format. 1 GPU/node

5.5. Experiments and results 97

Number of GPUs/node 2

Vectors 2 4 8 16 32 64 128

Arrangement (2,1,1) (2,1,2) (2,2,2) (2,4,2) (4,4,2) (4,4,4) (4,4,8)

Iterations 878 878 875 771 756 552 556

Global setup 73.79 21.91 6.46 2.88 1.145 0.401 0.208

Local setup 0.223 0.111 0.067 0.0607 0.104 0.458 0.04

CG 16.92 8.97 4.943 2.74 1.73 0.883 0.52

spmv(Ax) 7.298 3.932 2.12 1.34 0.823 0.377 0.218

precon(scaling) 0.93 0.472 0.242 0.112 0.061 0.026 0.012

Dot-daxpy-copy 4.85 2.522 1.346 0.673 0.409 0.21 0.118

deflation 3.8 2 1.09 0.565 0.379 0.215 0.12

Comm-mpi-glbl 0.065 0.115 0.158 0.178 0.268 0.32 0.11

Comm-mpi-NN 1.08 0.647 0.472 0.285 0.199 0.084 0.037

Comm-h2dd2h 1.59 0.892 0.496 0.433 0.229 0.093 0.064

Table 5.14: Diagonal preconditioning based DPCG. Multi-GPU implementa-
tions. Storage of matrices in DIA format. 2 GPUs/node

Number of GPUs/node 1

Vectors 2 4 8 16 32 64

Configuration (2,1,1) (2,1,2) (2,2,2) (2,4,2) (4,4,2) (4,4,4)

Iterations 377 377 375 331 323 251

Global setup 74.79 22.44 6.72 3.01 1.21 0.434

Local setup 0.398 0.2 0.18 0.08 0.09 0.12

CG 15.78 8.64 4.85 3.01 1.814 0.954

spmv(Ax) 3.07 1.69 0.93 0.573 0.33 0.17

precon(scaling) 8.908 4.92 2.81 1.86 1.09 0.557

Dot-daxpy-copy 2.09 1.11 0.597 0.299 0.18 0.099

deflation 1.66 0.88 0.486 0.249 0.164 0.093

Comm-mpi-glbl 0.048 0.1 0.105 0.12 0.139 0.18

Comm-mpi-NN 0.653 0.487 0.432 0.302 0.188 0.102

Comm-h2dd2h 4.43 2.44 1.29 1.089 0.562 0.237

Table 5.15: TNS-based preconditioning based DPCG. Multi-GPU implemen-
tations. Storage of matrices in DIA format. 1 GPU/node

98 Chapter 5. Extending DPCG to multiple GPUs and CPUs

Number of GPUs/node 2

Vectors 2 4 8 16 32 64 128

Arrangement (2,1,1) (2,1,2) (2,2,2) (2,4,2) (4,4,2) (4,4,4) (4,4,8)

Iterations 377 377 375 331 323 252 251

Global setup 74.74 22.4 6.7 3 1.206 0.431 0.2079

Local setup 0.3 0.103 0.07 0.08 0.11 0.19 0.051

CG 15.72 8.448 4.81 2.986 1.8 0.951 0.791

spmv(Ax) 3.17 1.718 0.955 0.583 0.356 0.176 0.136

precon 8.75 4.76 2.76 1.827 1.05 0.542 0.454

Dot-daxpy-copy 2.09 1.084 0.581 0.291 0.176 0.096 0.075

deflation 1.65 0.876 0.478 0.252 0.169 0.096 0.078

Comm-mpi-glbl 0.04 0.08 0.087 0.16 0.13 0.254 0.131

Comm-mpi-NN 1.5 0.9 0.7 0.469 0.27 0.1409 0.083

Comm-h2dd2h 3.53 1.95 1.07 0.925 0.48 0.205 0.196

Table 5.16: TNS-based Preconditioning based DPCG. Multi-GPU implemen-
tations. Storage of matrices in DIA format. 2 GPUs/node

Figure 5.12: Total times across GPU and CPU implementations

5.5. Experiments and results 99

Figure 5.13: Communication times as a percentage of total time.

cores of the CPUs versus using two GPUs per node then the GPU versions
of the code for diagonal preconditioning can be up to 3 times faster than the
CPU code. This is because of the higher setup times the CPU takes (because
of increased number of vectors and corresponding larger size of E). However
for the iteration times on the CPU versus those on the fastest version of GPU
implementation (diagonal preconditioning with 2 GPUs/node Table 5.14) the
GPU and CPU times are almost equal (Table 5.12). These results have been
summarized in Figure 5.12. This figure only considers the results when matri-
ces are stored in DIA format across CPU and GPU for both preconditioning
techniques (DIA and TNS). Total time is the sum of the time under the head-
ings CG, local setup and global setup. This can be verified from the Tables
5.11 and 5.14.

For the TNS based preconditioning however the CPU can be (for execution
times) 33% faster than the multi-GPU version with similar preconditioning
scheme (e.g. for the 64 node case on GPU and CPU implementations). In
fact the GPU version (with 2 GPUs per node) with diagonal preconditioning
that uses 64 nodes takes the least amount of time to converge across all multi-
GPU/CPU implementations for this problem. This is evident in Tables 5.11
to 5.16.

In Table 5.16 we notice how communication can become up to 40% of
the total time for the case when 2 GPUs are used per node for a case when
128 GPUs are used across 64 nodes. This is 50% longer than the numbers
in Table 5.14 where the total communication across 64 nodes is 27%. These

100 Chapter 5. Extending DPCG to multiple GPUs and CPUs

observations have been summarized in Figure 5.13. Total time is the time
mentioned under the heading CG plus the Global and Local setup times in the
tables referred and the communication time is the sum of the communication
time mentioned as comm-mpi-glbl, comm-mpi-NN and comm-h2dd2h.

In the case of TNS-based preconditioning we see that the time spent in
communication climbs up (Tables 5.15 and 5.16 and the plot in Figure 5.13).
When 128 GPUs are used across 64 nodes the time that communication con-
sumes is 45% for the two GPU per node case and 35% for the one GPU per
node case. This is in contrast to when diagonal preconditioning is used in the
same experiments. The maximum time taken up by communication is less.

An observation that can be made by examining the results for the TNS-
based preconditioner is that it reduces the number of iterations thereby effec-
tively reducing the percentage of global communications also. At the same
time since it requires nearest neighbor communication the percentage of time
spent in nearest neighbor communication increases. With this observation
in mind one can think of a higher degree of the polynomial (greater than 3
that we use) in the approximation of the inverse of (I − LD−1)−1 could be
beneficial (since it is a better approximation) if communication costs become
predominant in the time it takes to converge for a particular problem.

5.6 Conclusions

We have evaluated a variety of multi-GPU and multi-core CPU implementa-
tions in this chapter. Through our experiences we conclude that block-based
data divisions scale much better than row-based division of data. For the
block-based data division one has to be aware of the configurations (the num-
ber of deflation vectors (and consequently number of CUs, since we use one
vector/sub-domain per CU) that are used in each direction to divide the do-
main) in case the geometry is like the one we used in our experiments.

We have also shown that it is possible to have a strong scaling both on
CPU and GPU for our method of preconditioned CG. Combinations of highly
parallel simple preconditioners along with simple variants of deflation vectors
can already benefit both implementations. Sparse-matrix vector multiplica-
tion takes the longest amount of time when the preconditioning scheme is
as simple as diagonal preconditioning. If TNS-based preconditioning is used
then preconditioning takes the most amount of time, however a higher degree
of polynomial in the TNS-based approximation of the preconditioner can be
beneficial for communication time dominant problems.

CHAPTER 6

Comparing DPCG on GPUs and
CPUs for different problems

6.1 Introduction

In the preceding chapters we have seen how deflation can be adapted to the
GPU and its performance can be improved using better deflation vectors. We
have shown in the previous chapter how deflated PCG can be implemented on
multiple GPUs and CPUs.

In this chapter we show how deflated PCG can be used for different prob-
lems and compare variation in performance of the DPCG method when differ-
ent first level preconditioning techniques are used. We investigate the linear
system arising from bubbly flow and porous media flow. Specifically, the lin-
ear system (1.1) that results after discretizations of either (1.5) or (1.6). It is
solved using the DPCG method (Algorithm 3).

The solution approach for bubbly flow is the Mass-Conserving Level-Set
(MCLS) method [68]. This approach has been used in the software that was

The work presented in this chapter also appears in:

R. Gupta, D. Lukarski, M. B. van Gijzen, and C. Vuik. Evaluation of the deflated
preconditioned CG method to solve bubbly and porous media flow problems on GPU
and CPU. International Journal for Numerical Methods in Fluids, 2015.

101

102
Chapter 6. Comparing DPCG on GPUs and CPUs for different

problems

used to generate results in chapters 3, 4 and 5 (row-based division). For the
porous media flow problem we follow the solution approach described in [76].

The ill-conditioning of both linear systems (arising from bubbly and porous
media flow) arises from small eigenvalues in the spectrum of the coefficient
matrix which can be removed using deflation.

In this chapter we want to examine how deflation coupled with a suitable
preconditioner on the first level can be used to accelerate the convergence
of the DPCG method for these problems. In addition, we also provide a
comparison with an optimized CPU implementation and show that GPUs can
be advantageous.

We consider a variety of first-level preconditioning techniques [49] along
with deflation [31] for a two-level Preconditioned Conjugate Gradient (PCG)
implementation.

In this chapter we use the DPCG method implemented within the PAR-
ALUTION library (refer [48]). PARALUTION provides an Application Pro-
gramming Interface (API) for various sparse iterative solvers and precondition-
ers (including DPCG). It includes several preconditioners based on incomplete
LU-type decomposition (and other preconditioning schemes) which we have
used in the set of experiments presented in this chapter.

6.2 First-level preconditioning techniques

In this section we describe the first level preconditioning techniques we use to
accelerate convergence of CG. They exhibit fine-grain parallelism and hence
can be executed efficiently on a GPU. We briefly explain the preconditioners
based on classical incomplete LU-based factorizations followed by approximate
inverse-based preconditioners. We also refer to the Truncated Neumann Series
(TNS)-based preconditioners which we use, and refer to an earlier chapter
(chapter 3, section 3.2.2) for description. The coefficient matrix A for both
problems (bubbly and porous media flow) is symmetric positive definite (SPD).

In PARALUTION instead of Cholesky factorizations, ILU factorizations
are used because

• The memory footprint is the same as we need to store (in all cases) the
U part (in Cholesky U = LT). This is because calculating transposes
for different storage formats is computationally expensive. This is a
design choice in PARALUTION and is true for all situations where the
transpose is needed.

• The incomplete Cholesky factorization requires positive diagonal ele-
ments. The classical incomplete Cholesky factorization does not always
exist for all sparse SPD matrices (refer [77]). To solve that problem,

6.2. First-level preconditioning techniques 103

there are non-symmetric permutations which are incompatible with the
multi-colored techniques.

In the case when incomplete Cholesky factorization is not SPD then
it must be combined with Krylov methods for non-symmetric matrices
(like GMRES etc.).

6.2.1 Black-box ILU-type preconditioners

Incomplete LU factorization generates sparse matrices L and U such that
A ≈ LU , where L is lower triangular and U is an upper triangular matrix.
The sparsity pattern after factorization depends on the factorization procedure
– the L and U matrices can have the same non-zero structure as the original
matrix A (without fill-in) or additional entries can be added based on level or
threshold techniques [58]. The classical way for solving the forward and the
backward substitution in LU-type preconditioners is to perform the sweeps
sequentially. In the following subsections we describe various techniques for
parallelizing LU-type preconditioners. In the following methods we make both
the L and U components. We store both of them since the transpose operation
is not very fast when considering multiple storage formats like ELL, DIA etc.

Level-scheduling method

Due to the sparsity structure of L and U , the forward and backward sweeps
can be performed partly in parallel after analyzing the matrix graphs. This
technique is called level-scheduling [58]. To determine the levels, this tech-
nique requires an additional pre-processing step which calculates the element
dependency.

ILU(p,q)

Typically, the inter-connectivity of the matrix graphs of L and U is high and
thus, we cannot extract much parallelism in the LU-sweeps. To provide addi-
tional parallelism, we can permute the original matrix A with a permutation
P based on the matrix structure of |A|q, where |A| = |ai,j |. This is called the
power(q)-pattern method and the factorization ILU(p,q) describes the level
of fill-in p and the matrix power q. Using a multi-colored decomposition we
can define sub-blocks of the factorization. Specifically, for q = p + 1 it has
been shown [49], that the diagonal sub-blocks have only diagonal entries – the
fill-in elements do not appear in the diagonal blocks. Thus, the performance
of the forward and backward substitutions can be improved in the block form.
Details can be found in [49].

104
Chapter 6. Comparing DPCG on GPUs and CPUs for different

problems

For finite element methods (also for finite difference and volumes), the un-
derlying matrix graph of the discretized problem depends on the basis (linear,
quadratic, etc) of the elements and on the mesh topology. The degree of par-
allelism (the number of independent parallel tasks, which are calculated by
dividing the problem size by number of colors used) for solving the forward
and backward substitutions does not depend only on the discretization size
(number of unknowns in the system).

Multi-elimination ILU

We had introduced Multi-Elimination ILU earlier in section 2.3.5. In this
section we present the ideas used in PARALUTION to expose parallelism in
this preconditioning technique.

As an alternative to the usual LU-decomposition we can factorize the sys-
tem matrix A in the block form

A =

[
T F
E C

]
=

[
I 0

ET−1 I

]
×
[
T F

0 Â

]
, (6.1)

where Â = C − ET−1F . This is an exact factorization and if we solve the
sub-problem T and Â we can obtain the solution of the problem in one itera-
tion. To make the inversion of the T matrix easier – we perform a symmetric
permutation of the original matrix PAP−1, which is based on maximal in-
dependent set. After the permutation, the new block structure will contain
a new block T with only diagonal elements. Thus, the forward substitution
can be performed block-wise in parallel. For the backward step, first we need
to build the Â which involves a sparse matrix-matrix multiplication and an
addition. The matrix Â is denser in comparison to the matrix C due to the
additional fill-ins coming from the matrix-matrix multiplication. We can re-
cursively apply this decomposition till we come to the last step when we have
to provide a solution. The last block of the preconditioner can be solved with
Jacobi, symmetric Gauss-Seidel (SGS) or ILU(p,q) preconditioner. Therefore
we have three flavors of Multi-Elimination LU-based method which in our
results are abbreviated as ME-ILU-J, ME-ILU-SGS and ME-ILU-ILU(0, 1).

6.2.2 Multi-colored symmetric Gauss-Seidel

We parallelize the symmetric Gauss-Seidel (SGS) preconditioner using a multi-
coloring decomposition of the original matrix A. The multi-coloring exposes
additional parallelism in the forward and backward substitution. This gives
a block structure in the preconditioner M := (D + L)D−1(D + LT), where
L is the strict lower triangular part of A, the coefficient matrix and D is
the diagonal of A. For details see [49]. In our results this preconditioner is
abbreviated as MCSGS.

6.2. First-level preconditioning techniques 105

6.2.3 Truncated Neumann series (TNS)-based precondition-
ing

We can define another factorization based preconditioner continuing on the
idea of the decomposition used for the SGS type preconditioner. In this case,
we also approximate the inverse of the factors. The preconditioner can be
written as,

M = (I + LD−1)D(I +D−1LT), (6.2)

where I is the identity matrix and L andD follow from the SGS preconditioner.
This preconditioner has been used in previous chapters and has been explained
in section 3.2.2. The preconditoner we use in our results that is based on the
trucated neumann series appears under the abbreviation TNS and is given by

M−1TNS = (I −D−1LT + (D−1LT)
2
)D−1(I − LD−1 + (LD−1)

2
). (6.3)

6.2.4 Factorized Sparse Approximate Inverse (FSAI)-based pre-
conditioners

An efficient algorithm for construction of a sparse approximate inverse [25]
with respect to the complexity of the building phase is the Factorized Sparse
Approximate Inverse (FSAI) method [43]. This algorithm preserves the sym-
metry of the preconditioner if the initial matrix is SPD. FSAI builds an ap-
proximation to the Cholesky factorization of A, A = LAL

T
A. Thus, we need

to find an approximation GL ≈ L−1A . Reformulating, the approximate inverse
preconditioned equation GA with G := GT

LGL reads

GLAG
T
L ≈ I.

The approximation GL is a lower-triangular matrix. After some transforma-
tions, this leads to the following system

(GLA)i,j = 0 for i 6= j,

(GLA)i,j = (LA)i,j for i = j.

The FSAI method does not need to use the diagonal entries of the Cholesky
decomposition, see [43]. Thus, to construct the approximate inverse matrix
we need to solve only small SPD systems which correspond to each row of
the original matrix. The FSAI method is different from the AINV method
proposed in [10]. AINV approximates the matrix A−1 by a bi-conjugation
process applied to a linearly independent set of vectors.

106
Chapter 6. Comparing DPCG on GPUs and CPUs for different

problems

6.3 Second-level preconditioning

For the second level preconditioning we use Deflation. This technique has been
explained previously in section 2.4. For effective deflation one has to have a
good approximation of the deflation subspace. This is achieved by approxi-
mating eigenvectors corresponding to the small eigenvalues in spectrum of A
that delay convergence. These approximate eigenvectors are the columns of
the matrix Z. We have enumerated some of the choices to the approximations
of eigenvectors in question in sections 2.4.2, 4.3, 4.3.1 and 4.3.1. In this section
we describe one of the variants of these approximations that we use for the
experiments in this chapter for the porous media flow problems.

6.3.1 Physics based deflation vectors

Porous media flow problem

Sub-domain vectors with weighted overlapping - Deflation vectors we
use for porous media flow are similar in construction to the sub-domain de-
flation vectors used for bubbly flow. They use additional knowledge of the
permeability constants in the different layers of the domain and use a weighted
average of these constants in the region where there is an interface. The cells
with a certain value of permeability are initialized with ones and for the other
medium they have all zeros. We make these vectors according to the structure
of the layers. This way they capture the physics of the problem well. For
details we refer the interested reader to [76].

6.4 Implementation details

All solvers and preconditioners are implemented in the PARALUTION library
(version 0.7.0) [48]. The methods can be executed on different back-ends such
as OpenMP, CUDA or OpenCL.

6.4.1 Sparse matrix storage

In Table 6.1 we outline the storage formats (refer [6] for information on for-
mats) we use on the GPU. We keep the matrix A in the DIA format on the
GPU for the bubbly flow problem. Keeping it in this format is instrumental
in achieving high-throughput for SpMVs using A. In Table 6.1 we outline
the formats we have used for storing various matrices that we make for the
DPCG method. Our choices for storage of matrices in the formats chosen (as
described and also mentioned in later sections) gives up to 20% improvements
in wall-clock times over using the CSR format on the GPU. On the CPU we
keep the CSR format for all matrices.

6.4. Implementation details 107

A Preconditioners

DIA
TNS FSAI MCSGS Others
DIA HYB CSR

Table 6.1: Sparse Storage Formats on GPU.

Using the DIA format for the storage A, L and LT (for TNS-based pre-
conditioner) for this problem size does not give a significant improvement in
performance for this problem size on the CPU.

6.4.2 Speedup and stopping criteria

We measure it as the total time (build and solve) on the CPU divided by the
total time on the GPU, which includes the transfer time as well.

We define our stopping criteria for a given tolerance ε as

‖ ri ‖2≤‖ b ‖2 ε (6.4)

where ri is the residual at the ith iteration and b is the right-hand side.

6.4.3 LU-type preconditioners

The LU-traversing for the level-scheduling technique is performed via the CUS-
PARSE library in CUDA 5.5. In the building phase, the graph structure is
analyzed and then parsed for each traversing step.

For higher degree of parallelism in the ILU(p,q) and symmetric Gauss-
Seidel (SGS) preconditioners, a multi-coloring analysis is performed. This
algorithm is inherently sequential and is therefore performed on the CPU –
this requires an additional copy of the matrix to and from the GPU. The
same procedure follows in the multi-elimination ILU preconditioner where the
maximal independent set algorithm is performed sequentially on the CPU.

For the ILU(p,q), SGS and multi-elimination ILU, all sub-blocks obtained
after the permutation are extracted as single matrices. This is to say that the
L, U and D are stored in one matrix even though they can be interpreted as
separate block matrices. In this way the forward and backward substitutions
(for solving Mz = r) are performed in the following block way

xi := D−1(ri −
i−1∑
j=1

Li,jxj)

zi := xi −
B−i∑
j=1

Ui,jzi+j

(6.5)

for the preconditioner LDUz = r, where matrices are divided into B sub-
blocks and the indices describe the corresponding blocks. In Equation (6.5) D

108
Chapter 6. Comparing DPCG on GPUs and CPUs for different

problems

is the main diagonal and I is the identity matrix. The first equation is solved
forward i = 1...B and the second is solved backward i = B...1. The inversion
of D matrix is trivial. Note that the usage of an extra vector x is not actually
necessary and it is not used in the code.

In the multi-elimination ILU preconditioner the computation of Â (see
(6.1)) is done on the GPU via the CUSPARSE library. After the solution of
this matrix we apply a preconditioner - Jacobi, multi-colored SGS or ILU(0,1).

The permutation of the preconditioner is not applied to the original matrix
A. Thus, during the solution of the preconditioning equation Mz = r, the
input vector r is permuted and after the computation of the solution, the
vector z is permuted back to correspond to the original matrix.

6.4.4 Factorized sparse approximate inverse-based precondi-
tioners

The construction of the FSAI preconditioner is performed entirely on the CPU.
The building phase consists of three steps – extracting the lower-triangular
pattern of A, computing the inverse elements by a LU decomposition and
constructing the new matrix. All operations in the setup phase are performed
with the CSR format.

6.4.5 Truncated Neumann series (TNS)-based precondition-
ing

For the TNS-based Preconditioning we store LD−1 and D−1LT in the DIA
format. This is because their structure closely resembles that of the matrix
A and hence SpMVs involving them are computed faster. D−1LT is stored
explicitly in order to use the library functions which do not expose the internals
of the L matrix to the user. This storage space can be avoided if custom kernels
are used for DIA SpMV operation.

TNS-based preconditioning is applied in steps. We use three terms of
the Neumann series for approximating (I + LD−1)−1. Four matrix-vector
products (2 with LD−1 and 2 with D−1LT) are required in the variant we use.
Furthermore, some vector updates and point-wise-vector multiplications are
also used in this preconditioning scheme. PARALUTION provides routines
for all these matrix/vector operations.

6.4.6 Deflation

For the deflation algorithm listed in Section 2.4 we can categorize the opera-
tions into sparse matrix - dense vector multiplications (for Ax, AZv), sparse
matrix - matrix products (for calculating AZ) and dense matrix - vector prod-
ucts (for calculating E−1v). Where x is a N ×1 column vector and v is a d×1

6.5. Numerical experiments 109

vector. N is the problem size and d is the number of deflation vectors in
matrix Z. Specifically we store AZ in the ELL format and Z in the CSR
format. For most of these operations PARALUTION already contains the
requisite functions in the linear solver class. However, we have made a special
class named DPCG which is derived from the linear solver class and is used to
launch an object for running the DPCG solver class. This class also has special
functions for setting up the deflation subspace matrix Z, which is computed
on the CPU. The inner system is solved using the explicit inverse of E.

Building and solving phase for DPCG

After obtaining the matrix A, right-hand side b and x, the building phase
begins. A is stored in the CSR format initially. For the bubbly flow problem
the storage format is converted after this step to DIA format on the GPU.
The matrices Z and ZT are first constructed on the CPU in the CSR format.
Storing ZT follows the same reasoning as was mentioned in section 6.4.5 for
storing D−1LT . The matrices AZ and E are then constructed using matrix
multiplication routines in PARALUTION. Due to the very small size of E to
minimize the time, we perform the calculation of E−1 on the CPU. At this
point conversion of the matrices into ELL format is done. The preconditioner
is made at this step and the resulting matrix or matrices is/are stored in an
efficient format. In case of the CPU solver the CG algorithm begins after this
step. For GPU there is an additional step where all the required vectors and
matrices are moved to the GPU.

The solving phase can be performed entirely on the CPU or GPU depend-
ing on the selected platform.

6.5 Numerical experiments

The experiments are performed on an NVIDIA K20 GPU with 6 GB memory
and ECC on. The host system is Intel Xeon (E5620) dual quad-core CPU
running at 2.4 GHz with 24 GB memory. We use CUDA 5.5 and gcc 4.7.4
compilers. The machines run CentOS Linux.

In the results that follow we present a comparison of two level precondi-
tioned schemes using different preconditioners for the first level and deflation
for the second. In this chapter we present results for level-set sub-domain
(LSSD) deflation vectors discussed in section 4.3.1 for the bubbly flow prob-
lem. For porous media flow problem we use the weighted overlapping based
deflation vector previously mentioned in Section 6.3.1.

The setup time is defined as the time needed to build the solver. This in-
cludes memory allocation and transfers to the device, constructing the precon-
ditioner and matrix conversions. The solution time only includes the solving

110
Chapter 6. Comparing DPCG on GPUs and CPUs for different

problems

phase of the preconditioned CG method. The 3D grids we consider in both
problems are numbered lexicographically with the most varying index being
the x-direction followed by y and then z.

6.5.1 Bubbly flow problem

For the computational domain we use a 3D cube with dimensions 128× 128×
128. This cube (Figure 4.1 Section 4.2) has nine bubbles whose density is
different from the rest of the cube. The density contrast between outside
and inside the bubble is 103. The domain is discretized using finite-difference
discretization. This results in a septa-diagonal matrix for the 3D problem we
have considered. For the iterative method, we use a relative stopping criterion
of 10−6.

For the DPCG solver we have kept four blocks/sub-domains in each direc-
tion of the 3D domain. So in total there are 64 sub-domains. To this more
vectors are added due to the fact that some sub-domains intersect the bubbles
(refer section 4.3.1). All these vectors make the matrix Z which is then used
for LSSD deflation.

In interest of the space constraints, in Table 6.4 to 6.3 we use some abbre-
viations for the preconditioning schemes. We provide their complete names
before presenting the results.

1. MCSGS stands for multi-colored symmetric Gauss-Seidel preconditioner.

2. FSAI stands for factorized sparse approximate inverse preconditioner.

3. ILU(0) stands for ILU preconditioner without fill-in.

4. ME-ILU-J stands for multi-elimination ILU where Jacobi preconditioner
is used for last block.

5. ME-ILU-SGS stands for multi-elimination ILU where symmetric Gauss-
Seidel preconditioner is used for last block.

6. ME-ILU-ILU(0,1) stands for multi-elimination ILU where ILU precon-
ditioner with matrix power 1 and level of fill-in zero is used for last
block.

7. ILU(0,1) stands for ILU preconditioner with matrix power 1 and level
of fill-in zero.

8. DIAGONAL refers to Jacobi or diagonal preconditioning. The precon-
ditioner is the inverse of the main diagonal of the coefficient matrix.

9. TNS stands for truncated Neumann series-based preconditioner.

6.5. Numerical experiments 111

We first present the results for the PCG method (Tables 6.2 and 6.3) and
then for the DPCG method (Tables 6.4 and 6.5). We combine different precon-
ditioners available in the PARALUTION library with deflation and compare
their performance. In Tables 6.2 and 6.3 we see that the PCG method can be
up to 5 times fast on the GPU compared to the CPU. Diagonal preconditioning
emerges as the fastest preconditioning technique.

Preconditioner Iterations Setup time Solve time Total time

MCSGS 660 0.8 28 28.8

FSAI 563 4.79 64.44 69.23

ILU(0) 465 0.37 52.1 52.47

ME-ILU-J 682 1.47 23.63 25.1

ME-ILU-SGS 442 2.81 22.89 25.7

ME-ILU-ILU(0,1) 401 3.64 20.1 23.74

ILU(0,1) 682 0.94 22.93 23.87

DIAGONAL 1318 0.13 26.14 26.27

TNS 585 0.54 26.7 27.24

Table 6.2: Comparison of PCG schemes on the CPU. Bubbly flow problem.

Preconditioner Iterations Setup time Solve time Total time

MCSGS 660 0.45 4.7 5.15

FSAI 563 4.54 5.25 9.79

ILU(0) 465 0.44 12.97 13.41

ME-ILU-J 682 1.59 4.16 5.75

ME-ILU-SGS 442 1.11 6.14 7.25

ME-ILU-ILU(0,1) 401 1.26 5.42 6.68

ILU(0,1) 682 0.54 4.16 4.7

DIAGONAL 1318 0.116 4.2 4.316

TNS 585 1.29 3.93 5.22

Table 6.3: Comparison of PCG schemes on the GPU. Bubbly flow problem.

For the DPCG method the best speedup (2.5x) is close to half as compared
to best speedup (5x) of the PCG schemes as observed in Tables 6.2 and 6.3.
However, if we only consider iteration times then for the GPU version of
deflated PCG method we still have up to four times speedup. The ME-ILU-
ILU(0,1) preconditioner achieves fastest convergence (in number of iterations)
followed by ILU(0) (for the DPCG method) but in terms of wall-clock times
ME-ILU-SGS preconditioner based DPCG is fastest.

Comparing the results in Table 6.2 and 6.3 with those in Table 6.4 and 6.5

112
Chapter 6. Comparing DPCG on GPUs and CPUs for different

problems

Preconditioner Iterations Setup time Solve time Total time

MCSGS 158 2.21 8.13 10.34

FSAI 127 6.34 6.95 13.29

ILU(0) 108 1.97 13.28 15.25

ME-ILU-J 163 2.79 7.04 9.83

ME-ILU-SGS 158 2.26 7.33 9.59

ME-ILU-ILU(0,1) 87 5.19 5.32 10.51

ILU(0,1) 163 3.68 7.18 10.86

DIAGONAL 316 1.72 9.05 10.77

TNS 136 1.91 7.37 9.28

Table 6.4: Comparing deflated PCG for different preconditioners on CPU.
Bubbly flow problem.

Preconditioner Iterations Setup time Solve time Total time

MCSGS 158 3.124 1.48 4.604

FSAI 127 6.37 1.7 8.07

ILU(0) 108 2.27 3.27 5.54

ME-ILU-J 163 2.3 1.39 3.69

ME-ILU-SGS 158 2.2 1.45 3.65

ME-ILU-ILU(0,1) 87 3.04 1.39 4.43

ILU(0,1) 163 3.5 1.39 4.89

DIAGONAL 316 1.89 1.79 3.68

TNS 136 2.87 1.26 4.13

Table 6.5: Comparing deflated PCG for different preconditioners on GPU.
Bubbly flow problem.

we see that deflation helps accelerate convergence in terms of number of iter-
ations and wall-clock times. ME-ILU-ILU(0, 1) is a superior preconditioning
scheme in itself as it performs better in comparison to other preconditioning
techniques. With the addition of deflation it is further accelerated in terms
of convergence. It still lacks in wall-clock time compared to DPCG with ME-
ILU-SGS/J or diagonal preconditioner. Diagonal preconditioning is a very
simple and highly parallel scheme and that is why it performs very well on
the GPU. At the same time it must be noted that the number of iterations for
DPCG with ME-ILU-SGS or diagonal preconditioners are two to four times
more than DPCG with ME-ILU-ILU(0, 1).

To understand the effect of preconditioning and deflation on the spectrum
of the matrix A we approximated the spectrum of A using Ritzvalues (refer [58]
and [70]). For this experiment we reduced the grid size to 323 while keeping the

6.5. Numerical experiments 113

number of bubbles the same. In Figure 6.1 we compare two different DPCG
implementations with their PCG counterparts.

The spectrum of A has 8 small eigenvalues that correspond to the 9 bubbles
in the system. We see in Figure 6.1 that ME-ILU-ILU(0, 1) preconditioner does
a slightly better job than TNS. With DPCG using either of these two schemes,
all small eigenvalues are removed. Although, the number of iterations required
for TNS is more than ME-ILU-ILU(0, 1) which can be verified in Table 6.2 to
Table 6.5.

Figure 6.1: Comparison of Ritz values for DPCG and PCG. Preconditioners
used are TNS-based and ME-ILU-ILU(0, 1).

6.5.2 Porous Media Flows

For porous media flow we consider two problems. One that is defined on a
regular domain and one with an irregular geometry. For both problems we use
finite-element discretization using parallelepiped elements. It must be noted
that for a regular problem defined on a cuboidal domain these elements are
cuboids.

The deflation vectors we use for this problem have been briefly described in
Section 6.3.1. They are piece-wise constant but with additional factors added
near the interface.

Problem defined on a regular geometry

The first problem we consider is defined on a regular geometry. This problem
has 15 layers with contrast distribution as given in Figure 6.2. These 15 layers
are arranged in slabs with dimensions 63×64×64. Therefore the total number

114
Chapter 6. Comparing DPCG on GPUs and CPUs for different

problems

of unknowns is 15 × 63 × 64 × 64. The top most layer has a permeability of
10−4 followed by alternating layers of permeabilities 10−6 and 1. The problem
is defined on a unit cube.

Figure 6.2: Layered problem. 15 layers with variable contrasts

In Tables 6.6 and 6.7 we see that the GPU implementations of PCG method
for this problem can be between 3 to 4 times as fast as compared to their CPU
implementations.

In Tables 6.8 and 6.9 we notice that the speedup for the DPCG method
is only 1.5 times or lower. The setup times for DPCG are much larger on
the GPU as compared to the CPU. This is the reason why the speedup is
small. The setup times are larger due to the fact that sparse matrix-matrix
multiplication required to make AZ from A and Z and E from ZT and AZ
is 50% of the total time (95% of the setup time). It is optimized since it uses
CSR storage format for all the matrices involved and uses latest versions of the
CUSPARSE library. The reason why we use this method of general storage for
the AZ matrix is because we use Z that is derived from the approximation of
the eigenvectors of the problem. Such a Z may or may not have a structure in
terms of distribution of non-zeros. However, if the non-zero pattern is known
apriori (e.g. for sub-domain deflation vectors, Section 4.3), then it is possible to
construct an AZ matrix with much less operations (and consequently also less

6.5. Numerical experiments 115

Preconditioner Iterations Setup time Solve time Total time

MCSGS 2184 1.27 147.38 148.65

FSAI 1823 8.5 224.54 233.04

ILU(0) 1461 0.48 315.49 315.97

ME-ILU-J 2222 2.47 135.04 137.51

ME-ILU-SGS 1251 4.88 116.69 121.57

ME-ILU-ILU(0,1) 1199 6.21 109.38 115.59

ILU(0,1) 2196 1.43 130.31 131.74

DIAGONAL 4288 0.05 144.94 144.99

TNS 1902 0.6 153.75 154.35

Table 6.6: Comparison of PCG schemes on the CPU. Layered problem.

Preconditioner Iterations Setup time Solve time Total time

MCSGS 2146 0.8 30.74 31.54

FSAI 1799 7.72 32.54 40.26

ILU(0) 1427 0.78 84.25 85.03

ME-ILU-J 2194 1.99 27.99 29.98

ME-ILU-SGS 1225 1.92 31.42 62.84

ME-ILU-ILU(0,1) 1177 2.15 29.49 31.64

ILU(0,1) 2177 0.92 28.66 29.58

DIAGONAL 4372 0.14 32.22 32.36

TNS 1868 1.35 34.84 36.19

Table 6.7: Comparison of PCG schemes on the GPU. Layered problem.

operations for AZ×x) and therefore save on this setup time (and consequently
solve time). Such an implementation has been studied in the appendices of
the thesis work presented in [62].

The DPCG solver with TNS-based preconditioner emerges as the fastest
DPCG method, whereas for MCSGS based PCG is the best choice on the
GPU in terms of wall-clock time. It must be noted here that the setup times
on the GPU for the DPCG implementation are very high. This is because of
the time it takes for doing two sparse matrix-matrix multiplications (A × Z
and ZT × AZ) which are most time-consuming. However, even though on
first sight this might seem to limit the usability of this method, one must
pay attention to the iteration times which are 65% of the CPU times. In the
problems where setup is done only once, e.g. problems coming from the study
of seismic processes in the earths’ interior the coefficient matrix and the other
associated matrices are made only once, the GPU implementations can give a
significant saving in execution time.

116
Chapter 6. Comparing DPCG on GPUs and CPUs for different

problems

Preconditioner Iterations Setup time Solve time Total time

MCSGS 251 1.67 23.04 24.71

FSAI 220 8.77 20.21 28.98

ILU(0) 178 0.86 38.11 38.97

ME-ILU-J 254 2.37 17.77 20.14

ME-ILU-SGS 251 1.42 19.09 20.51

ME-ILU-ILU(0,1) 139 6.5 14.14 20.64

ILU(0,1) 271 1.77 19.16 20.93

DIAGONAL 497 0.36 22.28 22.64

TNS 214 0.96 20.19 21.15

Table 6.8: Comparing deflated PCG for different preconditioners on CPU.
Layered problem.

Preconditioner Iterations Setup time Solve time Total time

MCSGS 265 7.41 6.69 14.1

FSAI 221 14.32 6.41 20.73

ILU(0) 178 7.24 12.49 19.73

ME-ILU-J 254 7.37 6.06 13.43

ME-ILU-SGS 252 7.22 6.28 13.5

ME-ILU-ILU(0,1) 139 8.67 5.03 13.7

ILU(0,1) 256 7.41 6.12 13.53

DIAGONAL 528 6.61 9.75 16.36

TNS 213 6.8 6.3 13.1

Table 6.9: Comparing deflated PCG for different preconditioners on GPU.
Layered problem.

Problem from the oil industry with irregular geometry

In this section we present results for a problem of porous media flows that has
its origins in the oil industry (see Figure 6.3 and refer [76] for details). The
total number of unknowns in this problem are 146520. It contains 9 layers
with varying contrasts. The topmost layer has permeability 10−4 followed by
layers with permeabilities alternating between 10−7 and 1. It is defined on an
irregular geometry. We only present results for ILU(0) based preconditioner
in this section as for all other preconditioners the DPCG or the PCG method
do not converge.

In Tables 6.10 and 6.11 we see that for this problem deflation provides an
advantage in total times and also in the number of iterations. The improve-
ment is almost twice. The setup times on the GPU for DPCG implementation
are quite high (due to sparse matrix-matrix multiplications) in comparison to

6.5. Numerical experiments 117

(a) Geometry (b) Legend

Figure 6.3: Unstructured problem from oil industry

Platform Iterations Setup time Solve time Total time

CPU 231 0.04 2.76 2.8

GPU 232 0.1 2.29 2.39

Table 6.10: PCG (with ILU(0) preconditioner) on CPU and GPU. Problem
from the oil industry.

the CPU version and also compared to both versions of PCG implementation
in Table 6.10.

Ordering of elements in matrices and their favorability for ILU(0)
preconditioner For the problem from the oil industry only (D)PCG with
ILU(0) preconditioner converges. The matrix for this problem uses a num-
bering scheme that favors ILU(0). Specifically, the elements are stored in the
matrix layer by layer. The application of the ILU(0) preconditioner does not
involve any pre-processing (coloring and re-numbering) to extract parallelism.
However, for the other first-level preconditioners a reordering is done, which
leads to a worse performance and even stagnation of the convergence.

To validate this information we conducted an experiment. We changed
the ordering of the coefficient matrix. We used maximal independent set
(MIS) ordering (available in PARALUTION) for the coefficient matrix and
then used CG with ILU(0) preconditioning to solve the system. The result
was that the convergence of the PCG method was as delayed as it was for other
preconditioners with the same coefficient matrix. This led us to conclude that
the ordering of the layers based on the physical description of the problem is of
much importance for the application of PCG (or DPCG) method with ILU(0).

118
Chapter 6. Comparing DPCG on GPUs and CPUs for different

problems

Platform Iterations Setup time Solve time Total time

CPU 104 0.06 1.29 1.35

GPU 100 0.55 1.08 1.63

Table 6.11: deflated PCG (with ILU(0) preconditioner) on CPU and GPU.
Problem from the oil industry.

We also concluded that other preconditioners use sophisticated techniques to
extract parallelization also comes in the way of convergence.

6.6 Experiments with varying grid sizes and density
ratios

For the layered problem introduced in Section 6.5.2 Figure 6.2 we conducted
additional experiments.

In Figures 6.4 and 6.5 we consider two different scenarios. In Figure 6.4
we observe how changing the contrasts in the layers of the problem affects
the iteration count. In Figure 6.5 we show how the iterations required for
convergence change with increasing number of unknowns.

The individual bars in Figures 6.4 and 6.5 show the number of iterations
it takes for the DPCG method (implemented within PARALUTION) with a
certain kind of first-level preconditioner (as available in the legend). These
experiments have been performed on the CPU.

Figure 6.4: Layered Problem. 15 layers. The contrasts vary as 10−4, [1, 10−k]
[]repeats 6 more times where k = 3, 4, 5, 6.

As the contrast for the layers changes from 10−3 to 10−6 the iteration
count reduces by about 10% for most versions of DPCG method. The grid

6.6. Experiments with varying grid sizes and density ratios 119

dimensions we have used (in Figure 6.4) are 32× 33× 33× 15. The first layer
has a contrast of 10−4 followed by six alternating sets of layers with contrasts
1 and 10−k where k varies between 3 and 6. We conclude that DPCG is
insensitive to the contrasts in layers.

Figure 6.5: Layered Problem. 15 layers. The contrasts vary as 10−4, [1, 10−6]
[]repeats 6 more times. Three grid sizes are considered.

In Figure 6.5 we observe that ILU-type preconditioners require twice the
number of iterations if grid sizes are increased by a factor two.

6.6.1 Using CG with Algebraic Multigrid (AMG) precondi-
tioner for the layered problem and the problem from oil
industry

Layered Problem

Corresponding to Figures 6.4 and 6.5 we also have results (Tables 6.12 and
6.13) for the implementation of Conjugate Gradient Method within PARA-
LUTION along with Algebraic Multigrid(AMG) as a preconditioner.

Contrasts

10−6 10−5 10−4 10−3

Iterations 23 23 23 28

Table 6.12: CG-AMG results. Layered Problem. 15 layers. The contrasts
vary as 10−4, [1, 10−k] []repeats 6 more times where k = 3, 4, 5, 6.

As can be seen in Tables 6.12 and 6.13 the number of iterations for AMG
is almost constant when contrasts are varied and for increasing grid sizes the
iterations become constant for larger grid sizes.

120
Chapter 6. Comparing DPCG on GPUs and CPUs for different

problems

Grid sizes

16× 17× 17× 15 32× 33× 33× 15 63× 64× 64× 15

Iterations 10 23 21

CPU

Setup time 0.171 0.86 7.27

Solve time 1.06 1.63 9.09

Total time 1.231 2.49 16.37

GPU

Setup time 0.171 1.07 9.64

Solve time 8.43 0.87 10.57

Total time 8.61 1.94 20.21

Table 6.13: CG-AMG results. Layered Problem. 15 layers. The contrasts
vary as 10−4, [1, 10−6] []repeats 6 more times. Three grid sizes are considered.

The CG-AMG method provides 20% improvement in time for the layered
problem with grid size 63× 64× 64× 15 when compared to the fastest DPCG
method on the CPU for the same problem (refer Table 6.8). On the other
hand on the GPU (Table 6.13) the advantage of the DPCG method can be
clearly observed. For the grid size 63×64×64×15 the fastest DPCG method
(refer Table 6.9) is 1.5× better as compared to CG with AMG preconditioner.

Problem from oil industry

For this problem we also did experiments with the CG-AMG variant intro-
duced for the previous problem which has a regular geometry (Table 6.14).
The CG-AMG method converges for this problem. However, it takes a lot of
iterations and takes much longer to converge. It provides no advantage over
the DPCG method with ILU(0) preconditioning (refer Table 6.10). So, for
this problem the DPCG method with ILU(0) is the best option.

Platform Iterations Setup time Solve time Total time

CPU 1994 0.349 43.2 43.549

GPU 1994 0.347 60.05 60.397

Table 6.14: CG with AMG preconditioner on CPU and GPU. Problem from
the Oil Industry.

6.7. Conclusion 121

6.7 Conclusion

In this chapter we have surveyed various preconditioning techniques one can
use in the DPCG method to solve ill-conditioned linear systems arising from
two different flow problems. We have compared different methods for con-
structing and applying the preconditioner on GPU devices. We have consid-
ered several LU-type, sparse approximate inverse type and TNS-based precon-
ditioning type preconditioners in conjunction with deflation for these problems.

Through our results we have shown that the combination of a simple pre-
conditioner (like diagonal preconditioning for some problems) with deflation
can prove to be a computationally efficient choice in order to accelerate the
convergence of an ill-conditioned problem.

Moreover, the reduced iteration times on the GPU could be very useful in
situations where multiple right hand sides must be solved with a given matrix.
This is also true for a stationary problem (e.g. from the domain of seismic
processes) where setup is essentially done once. Such problems can benefit
from our implementations.

CHAPTER 7

Conclusions

7.1 Introduction

In this thesis we have studied the implementation and optimization of the
two-level preconditioned Conjugate Gradient method on the GPU. We have
seen how it can accelerate convergence for different problems when effective
deflation vectors are used. The two-level preconditioned method has also
shown scalability in a parallel setup where the problem is broken down into
many parts and the compute units co-operate to find a solution. In this chapter
we highlight the important observations made from this research and provide
ideas for future research on this topic.

7.2 Suitability

The Deflated Preconditioned Conjugate Gradient (DPCG) method can be effi-
ciently mapped to the GPU. Specifically, the deflation operator can be broken
down to individual steps (refer (2.34)) in order to achieve faster execution.
In our implementation we have chosen to solve the inner system using the
explicit inverse of the coarse system matrix E. This approach has proven to
be very effective at bringing down the time it takes to do this operation in
comparison to, e.g., solving the coarse system with an iterative method. At
the same time, we have seen that this method has its pitfalls for deflation vec-
tors that are bad approximations of the eigenvectors (row-based vectors, refer
Chapter 3) corresponding to the small eigenvalues which delay convergence.
Using vectors based on block sub-domains (refer Chapter 4) improves the re-
liability (since it is possible to solve for a much higher accuracy) of the choice

123

124 Chapter 7. Conclusions

to solve the coarse system using the explicit inverse of E. Moreover, if we
choose additional information from the problem, e.g. the level-set information
then it is possible to construct vectors which are better approximations to the
eigenvectors corresponding to the eigenvalues which we wish to deflate from
the spectrum of the coefficient matrix A.

Other than deflation, using a preconditioning scheme that shows a higher
degree of parallelism and comparable convergence behavior we get a further
reduction in execution time. Compared to the implementation of well-known
preconditioning techniques like (block) incomplete Cholesky on the GPU, the
DPCG method using Truncated Neumann Series (TNS)-based preconditioner
utilizes GPU resources much better.

7.3 Scalability

Even though the DPCG method is bandwidth-bound we have seen that it
can demonstrate strong scalability. Through our experiments presented in
Chapter 6 we could observe how this scalability can be affected. Namely, two
important things must be taken care of to get better performance,

1. Choice of storage scheme for matrices A, L and LT ; and

2. Choice of preconditioning technique.

Choosing the storage format that maximizes the utilization of GPU mem-
ory bandwidth can give direct benefits in terms of reduced execution time
for the SpMV operation. The Sparse Matrix Vector (SpMV) product opera-
tion emerges as the most expensive step in our implementation of the DPCG
method. This is true because the preconditioning operation is implemented as
repeated sparse matrix-vector products owing to the similarity of operations
required to implement the preconditioner. The improvement in execution time
is visible both for the TNS preconditioner and the diagonal preconditioner
which we consider as first-level preconditioners in our experiments.

The choice of preconditioner can be decisive in the case when the number
of processors is very high. We have tested the implementation of the DPCG
method on the CPU for up to 1000 processors. For such a parallel code we ob-
serve that the communication time quickly becomes the most time-consuming
part of the entire execution. This is where the choice of preconditioning be-
comes more important. In our case for the bubbly flow problem this is es-
pecially true when truncated Neumann series based preconditioner is used in
the block-based data division scheme. Since the preconditioning operation
involves communication with nearest neighbors, communication cost is inher-
ent in this preconditioner. Not to mention the cost of global communication
required for dot products.

7.4. Usability 125

If, however, diagonal preconditioning is chosen, the number of global dot
products is almost twice that of the case when TNS preconditioner is used.
This directly translates to a larger communication time percentage in the total
time. However, in the case of TNS preconditioner as the first-level precondi-
tioner, nearest neighbor communication is required and less global dot prod-
ucts (since TNS preconditioner converges at a fraction of the time required
for DPCG with diagonal preconditioning) are needed. It is also possible to
improve the TNS preconditioner by adding more terms to the approximation
if global communication becomes prohibitive but at the same time the ris-
ing cost of nearest neighbor communication (and computation of additional
terms) must be kept in check. Our choice of having three terms for the TNS
preconditioner keeps the global communication much less than when diagonal
preconditioning is used for first-level preconditioning.

7.4 Usability

We have tested our method for problems from porous media flow and bubbly
flow within the framework of an open-source library (PARALUTION). Our
comparisons for difficult problems show that the DPCG method (with a simple
preconditioning scheme) has the potential to perform well both in terms of
rate of convergence and computational wall-clock time. This was verified in
Chapter 6 when we did comparative tests of the DPCG method using different
first-level preconditioners. The iteration times for our implementations on the
GPU are better in comparison to the CPU implementations and this extends
the applicability of the DPCG method to problems with multiple right-hand
sides. In such a situation the setup is done once and hence the cost of setup
will be very well hidden by the advantage that solving multiple systems quickly
can provide.

7.5 Suggestions for future research

7.5.1 Using newer programming paradigms

Through the course of this research we have tried different libraries for our
implementations. Each of them have certain benefits but we have chosen the
vendor specific libraries from NVIDIA since we have focused our code devel-
opment for NVIDIA GPUs. However, several new programming paradigms
have evolved during the span of this research. Most notably, OpenACC and
OpenCL which can be used to write accelerated code for a larger number of
parallel processing platforms. OpenACC can also be incorporated into our
software as it is relatively simple to add (directives like OpenMP exist for par-

126 Chapter 7. Conclusions

allel operations). OpenCL on the other hand will require much more coding
effort as it is very detailed and verbose (much more than CUDA).

It would be also interesting to explore the implementation of our work
onto FPGA (Field Programmable Gate Array) devices and benefit from their
specialized hardware for some aspects of our implementation (e.g. level-set
sub-domain deflation or a specific first-level preconditioning scheme).

7.5.2 Investigation of problems with irregular domains

In Chapter 6 we saw that for an irregular domain only ILU based first-level
preconditioning works well. It would be interesting to explore why and how
ILU based first level preconditioner performs well and a simple preconditioner
like TNS or diagonal does not converge at all. It would also be worthwhile to
explore how the irregularity of the domain could affect the choice of tolerance
to which a system can be solved with the DPCG method with a particular
choice of first-level preconditioning.

7.5.3 Improving scaling on multi-GPU

Through our results in the multi-GPU section we found out that commu-
nication could be the most time-consuming of all operations in the DPCG
implementation. In order to improve scaling and to keep communication costs
low it is possible to avoid communication by delaying it. One of the ways to
achieve this is to delay the updation of residual and continue with the com-
putation. The overall effect is of an improvement in execution time since the
computation is relatively fast. Such techniques (refer [23]) can be employed for
our DPCG implementation on large numbers of processors for better results.

7.5.4 Using better deflation vectors for multi-GPU implemen-
tations

In our multi-GPU and CPU implementations we have used a very simple
method to construct deflation vectors for bubbly flow problems. Each com-
pute unit was assigned one sub-domain so that construction of the interme-
diate matrices for deflation was simplified. However, we know from previous
experiments that utilization of the level-set information coupled with block
based sub-domains can accelerate convergence for such problems drastically.
The work presented in [45] can be used in a parallel processing setup to make
and track the level-set function across a time stepping simulation for better
deflation implementation.

7.5. Suggestions for future research 127

7.5.5 Applicability to other problems

Through out most of our research we have used a symmetric positive defi-
nite system that is based on a structured domain. A possible direction for
an extension to this research could be more challenging problems which are
non-symmetric and have irregular domains or use different schemes for dis-
cretization etc. An attempt in this direction is made in the appendices of this
dissertation.

APPENDIX A

IDR(s) implementation in NVIDIA
AmgX

A.1 Introduction

This Appendix describes the implementation of the IDR(s) method ([59] [72])
in the NVIDIA library AmgX1.

IDR(s) is a Krylov subspace method that approximates the solution of a
linear system by successively generating residuals in nested subspaces.

A.2 The IDR(s) method

The original IDR theorem (with a generalization to complex matrices) is stated
as follows.

Theorem 1 (Induced Dimension Reduction (IDR)). Let A ∈ CN×N , B ∈
CN×N be a preconditioning matrix, let Q ∈ CN×s be a fixed matrix of full
rank, and let G0 be any non–trivial invariant linear subspace of A. Define the
sequence of subspaces (Gj) recursively as

Gj+1 ≡ (I − ωj+1AB
−1)(Gj ∩Q⊥) for j = 0, 1, . . . , (A.1)

where (ωj) is a sequence in CN . If Q⊥ does not contain an eigenvector of
AB−1, then for all j ≥ 0

• Gj+1 ⊂ Gj;
1https://developer.nvidia.com/amgx

129

https://developer.nvidia.com/amgx

130 Appendix A

• dimGj+1 < dimGj unless Gj = {0}.

Proof. The proof for the IDR theorem is given in [59].

In the NVIDIA AmgX library we have implemented two variants of the
IDR Algorithm. Algorithm 5 is called IDR(s) and Algorithm 6 is named as
IDR-minsync(s).

In Algorithm 6 the IDR(s) algorithm as it appears in Algorithm 5 is re-
formulated to allow a reduction in communication. This is beneficial for im-
plementation of the IDR(s) algorithm on distributed computing systems as
it reduces the need for global communication. We use the so called IDR-
minsync(s) algorithm for our multi-GPU implementation in AmgX.

The main difference between the two IDR(s) implementations is the way
inner products are calculated. This is visible in the steps 14 to 19 of Algorithm
5 and in steps 15 to 18 of Algorithm 6. The IDR(s) Algorithm that appears
in [72] and Algorithm 5, is the basis of our implementation of the IDR(s)
Algorithm in AmgX. The IDR-minsync(s) Algorithm that appears in [16] and
is cited in this appendix as Algorithm 6 forms the basis of our implementation
in AmgX. For the IDR(s) Algorithm the steps 14 to 19 have a close resemblance
to the Classical Gram-Schmidt (CGS) technique of orthogonalization whereas
for the IDR-minsync(s) steps 15 to 18 are similar to the Modified Gram-
Schmidt (MGS) approach.

A.3 AmgX

The NVIDIA AmgX library provides a number of iterative linear solvers. It
is highly optimized for NVIDIA GPUs and aims to deliver up to an order of
magnitude speedup on these GPUs. It supports openMP and MPI. It has a
customizable structure so that many solvers can be combined with many differ-
ent preconditioners. It contains an implementation of the Algebraic Multigrid
method. The interface for this library is in C and C++.

A.3.1 Implementation of IDR(s) method in AmgX

The AmgX library already had the API for all of the BLAS routines (based on
CUBLAS and CUSPARSE) when we started implementing the IDR(s) method
within its framework. However, in the IDR(s) method it is often required to
e.g. do a gemv operation from a sub-matrix of a larger matrix or do a dot

operation over a certain range within a vector or within a column of a matrix.
For these operations we had to write new function prototypes using templates.

In addition to this, for the multi-GPU implementations it was required to
calculate partial dot products on different processors, combine them and then

A.3. AmgX 131

Algorithm 5 IDR(s)-biortho with bi–orthogonalization of intermediate resid-
uals

input: A ∈ CN×N ;x, b ∈ CN ;Q ∈ CN×s; preconditioner B ∈ CN×N ; param-
eter s; accuracy ε.

output: Approximate solution x such that ||b−Ax|| ≤ ε.
1: // Initialisation
2: Set G = U = 0 ∈ CN×s;M = [µi,j] = I ∈ Cs×s;ω = 1
3: Compute r = b−Ax
4: // Loop over nested Gj spaces, j = 0, 1, . . .
5: while ||r|| ≥ ε do
6: // Compute s linearly independent vectors gk in Gj
7: φ = QHr , φ = (φ1, . . . , φs)

T // s inner products (combined)
8: for k = 1 to s do
9: Solve Mγ = φ for γ, γ = (γk, . . . , γs)

T

10: v = r −
∑s

i=k γigi
11: ṽ = B−1v // Preconditioning step
12: uk =

∑s
i=k γiui + ωṽ

13: gk = Auk
14: // Make gk orthogonal to q1, . . . , qk−1
15: for i = 1 to k − 1 do

16: α = qHi gk/µi,i // k − 1 inner products (separate)
17: gk ← gk − αgi
18: uk ← uk − αui
19: end for
20: // Update column k of M

21: µi,k = qHi gk for i = k, . . . , s // s− k + 1 inner products (combined)

22: // Make the residual orthogonal to q1, . . . , qk
23: β = φk/µk,k
24: r ← r − βgk
25: x← x+ βuk
26: // Update φ = QHr
27: if k + 1 ≤ s then
28: φi = 0 for i = 1, . . . , k
29: φi = φi − βµi,k for i = k + 1, . . . , s
30: end if
31: end for

132 Appendix A

32: // Entering Gj+1, the dimension reduction step
33: ṽ = B−1r // Preconditioning step
34: t = Aṽ
35: ω = (tHr)/(tHt) // Two inner products (combined)
36: r ← r − ωt
37: x← x+ ωṽ
38: end while

redistribute them to different processors. Some wrappers for such operations
with templates were also added within the library.

A.4 Experiments

For the experiments we consider two cases. One is a set of matrices called
atmosmodX (where X = d, l, j,m). These matrices have been downloaded from
the Florida matrix collection [18]2 . The other matrix results from the dis-
cretization of the reaction-convection-diffusion equation. We present results
for two different kinds of preconditioning Multi-color-DILU (MDILU) and
Block-Jacobi (BJAC) preconditioning. We also present results for one and
four GPUs. In all our tables we report the number of matrix-vector mul-
tiplications performed by each method to achieve convergence followed by
the total time taken in brackets. We compare the IDR(s) implementation in
AmgX against Bi-CGSTAB and FGMRES implementations (in AmgX) for all
our experiments. The FGMRES method we have used has a restart value of
100.

A.4.1 Setup

We perform our experiments on the PSG cluster at the NVIDIA Corporation
headquarters in Santa Clara, California, USA. The machine we use has four
K40 GPUs and a CPU. We do our experiments using one or all four of the
GPUs.

A.4.2 Atmospheric problems - from Florida matrix collection

We choose four matrices from the Florida collection (Table A.1). These ma-
trices have at least one million degrees of freedom and are not symmetric.

In Tables A.2 and A.3 we show the results of the four matrices introduced
in Table A.1 for four different solution methods. In Table A.2 we present the

2http://www.cise.ufl.edu/research/sparse/matrices/

 http://www.cise.ufl.edu/research/sparse/matrices/

A.4. Experiments 133

Algorithm 6 IDR(s)-minsync with bi–orthogonalization of intermediate
residuals and with minimal number of synchronization points

input: A ∈ CN×N ;x, b ∈ CN ;Q ∈ CN×s; preconditioner B ∈ CN×N ; accu-
racy ε.

output: Approximate solution x such that ||b−Ax|| ≤ ε.
1: // Initialisation
2: G = U = 0 ∈ CN×s;Ml = I ∈ Cs×s,Mt = Mc = 0: ω = 1
3: Compute r = b−Ax
4: φ = QHr, φ = (φ1, . . . , φs)

T

5: // Loop over nested Gj spaces, j = 0, 1, . . .
6: while ||r|| > ε do
7: // Compute s linearly independent vectors gk in Gj // s inner products

(combined)
8: for k = 1 to s do
9: // Compute v ∈ Gj ∩Q⊥

10: Solve Mlγ(k:s) = φ(k:s)
11: v = r −

∑s
i=k γigi

12: ṽ = B−1v // Preconditioning step
13: ûk =

∑s
i=k γiui + ωṽ // Intermediate vector ûk

14: ĝk = Aûk // Intermediate vector ĝk

15: ψ = QH ĝk // s inner products (combined)
16: Solve Mtα(1:k−1) = ψ(1:k−1)
17: // Make ĝk orthogonal to q1, . . . , qk−1 and update ûk accordingly
18: gk = ĝk −

∑k−1
i=1 αigi, uk = ûk −

∑k−1
i=1 αiui

19: // Update column k of Ml

20: µli,k = ψi −
∑k−1

j=1 αjµ
c
i,j for i = k, . . . , s

21: // Make r orthogonal to q1, . . . , qk and update x accordingly
22: β = φk/µ

l
k,k

23: r ← r − βgk
24: x← x+ βuk
25: // Update φ ≡ QHr
26: if k + 1 ≤ s then
27: φi = 0 for i = 1, . . . , k
28: φi ← φi − βµli,k for i = k + 1, . . . , s
29: end if
30: end for

134 Appendix A

31: // Entering Gj+1. Note: r ⊥ Q
32: ṽ = B−1r // Preconditioning step
33: t = Aṽ
34: ω = (tHr)/(tHt);φ = −QHt // s+ 2 inner products (combined)
35: r ← r − ωt
36: x← x+ ωṽ
37: φ← ωφ
38: end while

Name Non-zeros dimensions

atmosmodd 8814880 1270432

atmosmodj 8814880 1270432

atmosmodl 10319760 1489752

atmosmodm 10319760 1489752

Table A.1: Matrix properties

results comparing Bi-CGSTAB, IDR(s) with subspace size one and eight and
FGMRES. In Table A.3 we present the results for the IDR-minsync(s) version
with same subspace sizes as IDR(s) method compared with Bi-CGSTAB and
FGMRES on four GPUs.

In the results presented in Tables A.2 and A.3 we can see that the IDR(s)
method is either comparable or better (in terms of required matvecs for conver-
gence) than the Bi-CGSTAB and FGMRES methods for almost all matrices
with or without preconditioning. However, the IDR(s) and IDR-minsync(s)
methods take more time in comparison to the fastest method (Bi-CGSTAB
with or without preconditioning).

In order to understand this behavior we profiled all the executions pre-
sented in Table A.2 and A.3.

In the following list we explain the abbreviations for the kernel names that
are reported in the Tables A.4, A.5.

1. csrMv - This is the kernel responsible for calculation of the sparse matrix
vector product between the coefficient matrix A and a vector.

2. gemv2N - This is a kernel that is called when a tall matrix is multiplied
with a vector.

3. axpy - This is the CUBLAS call for the BLAS routine axpy.

4. copy - This is the CUBLAS call for the BLAS routine copy.

5. dot - This is the CUBLAS call for the BLAS routine dot.

A.4. Experiments 135

Bi-CGSTAB IDR(1) IDR(8) FGMRES

No preconditioning

atmosmodd 560(1.19) 540(1.72) 493(3.26) 1072(5.37)

atmosmodj 634(1.35) 504(1.6) 493(3.26) 3005(15.07)

atmosmodl 354(0.889) 394(1.46) 332(2.7) 368(2.139)

atmosmodm 236(0.595) 248(0.919) 239(2.30) 247(1.434)

MDILU-preconditioning

atmosmodd 360(5.03) 376(5.75) 284(5.42) 451(7.62)

atmosmodj 398(5.56) 362(5.54) 299(5.69) 676(11.4)

atmosmodl 184(3.17) 182(3.39) 171(4.1) 203(4.18)

atmosmodm 152(2.61) 152(2.83) 126(3.1) 130(2.68)

BJAC-preconditioning

atmosmodd 538(2.15) 538(2.83) 493(4.31) 1072(7.38)

atmosmodj 554(2.22) 578(3.03) 491(4.27) 3005(20.6)

atmosmodl 354(1.65) 426(2.60) 332(3.5) 368(2.93)

atmosmodm 256(1.19) 240(1.47) 239(2.6) 247(1.97)

Table A.2: Single GPU results IDR(s) with and without preconditioning for
matrices from the Florida collection. Number of matvecs and time for execu-
tion in brackets.

Bi-CGSTAB IDR-minsync(1) IDR-minsync(8) FGMRES

No preconditioning

atmosmodd 604(0.728) 746(1.08) 494(1.34) 1072(2.41)

atmosmodj 582(0.659) 1008(1.46) 497(1.34) 3005(6.73)

atmosmodl 352(0.541) 432(0.82) 323(1.12) 368(1.03)

atmosmodm 234(0.361) 272(0.526) 230(0.81) 247(0.70)

MDILU-preconditioning

atmosmodd 352(1.72) 442(2.46) 279(1.94) 425(2.52)

atmosmodj 344(1.61) 582(3.24) 295(2.12) 664(3.88)

atmosmodl 186(1.14) 236(1.74) 185(1.74) 207(1.56)

atmosmodm 176(1.07) 196(1.44) 142(1.30) 147(1.12)

BJAC-preconditioning

atmosmodd 574(1.26) 808(2.62) 494(2.19) 1072(3.58)

atmosmodj 518(1.32) 780(2.49) 493(2.18) 3005(10.36)

atmosmodl 362(1.14) 444(1.99) 323(2.07) 368(1.67)

atmosmodm 246(0.84) 286(1.29) 230(1.39) 247(1.14)

Table A.3: Multi(4)-GPU results. IDR-minsync(s) with and without precon-
ditioning for matrices from the Florida collection. Number of matvecs and
time for execution in brackets.

136 Appendix A

6. scal - This is the CUBLAS call for the BLAS routine scal.

7. thrust calls - This is a set of kernels that are used by preconditioners
implemented within AmgX for calculating sum of a vector or the result
of a dot product.

8. misc - These are miscellaneous kernels that are called by the AmgX
library.

Profiling, using the NVVP (NVIDIA visual profiler), generates the percent-
ages of time spent in individual operations on the GPU. We have presented
profiles only for the atmosmodd matrix.

We notice that for the IDR(s) method with block-Jacobi preconditioning
a chunk of the time is spent in doing the gemv operation when a tall matrix
(large number of rows and few columns) is multiplied with a vector. The axpy

and dot routines also consume a large amount of the time for the IDR(s)
implementations. This is not true for the multi-color-DILU preconditioning
as then the preconditioner takes up the majority of the execution time.

A.4.3 Reaction-Convection-Diffusion equation

The linear reaction-convection-diffusion equation can be represented by

∂u

∂t
= µ52 u+5.(uv) + au, (A.2)

where µ > 0 is the diffusivity of the temperature or concentration of some ma-
terial which is represented by u. v is the velocity field of the flow. a(x) is the re-

action rate. 52 is the Laplace operator and 5.(uv) = div(uv) =
∑n

i=1
∂(uvi)
∂xi

.
This matrix has more than four million unknowns. It is discretized on a 3D-
cartesian grid.

For the results presented in Table A.6 and Figure A.1 we notice how the
IDR-minsync(s) method can be beneficial against the Bi-CGSTAB and FGM-
RES methods. Increasing s also improves the performance both in terms of
wall-clock time and in convergence speed.

A.4.4 Variance in iterations between single and multi-GPU
implementations

In Table A.6 we notice that the number of iterations between single and mul-
tiple GPUs differs by a considerable margin. In order to understand this we
plotted the 2-norm of the residual for Bi-CGSTAB (refer Figure A.2) imple-
mentation with two different preconditioners on one and four GPUs. We saw
that the residual has a very erratic behavior locally but the overall tendency

A.4. Experiments 137

No preconditioning

Kernel Name Bi-CGSTAB IDR(1) IDR(8) FGMRES

csrMv 60.1 39.5 21.1 27.4

gemv2N 26.7 27.2

axpy 13 25.3 39.4

copy 5.4 7.1 5.2 2.3

dot 10.2 5.5 16 25.8

scal 2.4

thrust calls 21.5 7.6 4.3 1.9

misc 0.4 0.4 0.7 0.8

MDILU-preconditioning

Kernel Name Bi-CGSTAB IDR(1) IDR(8) FGMRES

DILU precon 74.1 67.5 63.1 71.9

csrMv 18 16.4 13.9 15.4

gemv2N 5.6 8.9

axpy 2.7 8.3 11.3

copy 2.2 2.3

dot 1.5 1.1 5.2 7.4

scal 0.7

thrust calls 6.3 4 3.5 2.8

misc 0.2

Block-Jacobi preconditioning

Kernel Name Bi-CGSTAB IDR(1) IDR(8) FGMRES

csrMv 67 49.6 32 39.8

gemv2N 16.9 20.7

axpy 8.2 19.2 29.3

copy 6.6 5.4

dot 5.7 3.5 12.2 19.1

scal 1.8

thrust calls 26.9 14.7 8.9 9.4

misc 0.2 0.2 0.6 0.6

Table A.4: Percentage times taken by individual kernels for the atmosmodd

matrix using different iterative methods.

138 Appendix A

No preconditioning

Kernel Name Bi-CGSTAB IDR-minsync(1) IDR-minsync(8) FGMRES

csrMv 55.1 37.4 17.9 25.3

gemv2N 25.1 46

axpy 12.6 7.2 37.2

copy 5.2 5.6 3.6 2.3

dot 10.6 5.9 15.5 26

scal 2.3

thrust calls 23.1 8.9 3.8 2.3

misc 4.4 2.8 4.5 4.2

MDILU-preconditioning

Kernel Name Bi-CGSTAB IDR-minsync(1) IDR-minsync(8) FGMRES

DILU precon 69.7 63.1 50.7 57.2

csrMv 18.9 17.1 13.7 15.9

gemv2N 5.8 17.7

axpy 2.9 2.8 11.9

copy 2.1 2

dot 1.3 6 8.5

scal 0.7

thrust calls 7 4.1 3.5 2.8

misc 1.1 0.9 0.7 1.6

Block-Jacobi preconditioning

Kernel Name Bi-CGSTAB IDR-minsync(1) IDR-minsync(8) FGMRES

csrMv 61.9 46.5 27.7 36.5

gemv2N 15.7 35.7

axpy 7.8 5.6 27.9

copy 5.6 4

dot 5.9 3.6 12.1 19.6

scal 1.7

thrust calls 27.3 16.4 9.1 6.1

misc 4.1 3.1 3.9 3.8

Table A.5: Percentage times taken by individual kernels for the atmosmodd

matrix using different iterative methods on 4 GPUs.

A.4. Experiments 139

1 GPU

Bi-CGSTAB IDR(1) IDR(8)

No preconditioning

2322 1434 584

MDILU-preconditioning

380 370 126

BJAC-preconditioning

2282 1814 650

4 GPUs

Bi-CGSTAB IDR-minsync(1) IDR-minsync(8)

No preconditioning

2610 2612 698

MDILU-preconditioning

486 188 126

BJAC-preconditioning

2692 2640 441

Table A.6: Number of matvecs for IDR(s) (on 1 GPU) and IDR-minsync(s)
(on 4 GPUs) results with and without preconditioning. The red colored results
indicate no convergence due to breakdown. FGMRES does not converge for
any of the cases.

(a) 1 GPU (b) 4 GPUs

Figure A.1: Execution times for convection-diffusion reaction equation
using different iterative methods on 1 and 4 GPUs.

140 Appendix A

Percentage Time

No preconditioning

Kernel Name Bi-CGSTAB IDR-minsync(1) IDR-minsync(8)

csrMv 59.4 39.9 19

gemv 2N 26.9 49

axpy 13.2 7.3

copy 5.3 5.5 3.3

dot 10.1 5.6 15.3

thrust calls 23.3 7.7 3.7

misc 0.5 0.5 1.6

MDILU-preconditioning

Kernel Name Bi-CGSTAB IDR-minsync(1) IDR-minsync(8)

DILU precon 73.9 67.3 54.5

csrMv 17.4 15.8 12.9

gemv2N 5.4 16.8

axpy 2.6 2.5

copy 1.8 1.7

dot 1.5 1.1 5.2

thrust calls 6.2 3.4 2.9

misc 0.4 0.5 0.7

Block-Jacobi preconditioning

Kernel Name Bi-CGSTAB IDR-minsync(1) IDR-minsync(8)

csrMv 66.3 49.6 29.3

gemv 2N 16.7 38

axpy 8.1 5.6

copy 5.6 3.9

dot 5.8 3.6 11.3

thrust calls 26.5 14.8 8.7

misc 1.3 1.1 1.5

Table A.7: Percentage times taken by individual kernels for the matrix based
on the discretization of the convection-diffusion reaction equation using
different iterative methods on 4 GPUs.

A.4. Experiments 141

is to converge. With a stronger preconditioning (DILU) the convergence is
achieved faster but the behavior still seems erratic. This has to do with the
parameters used in the construction used in the convection-diffusion-reaction
matrix. The matrix is highly non-diagonally dominant and is very badly con-
ditioned. This is the reason why we see the residual in Bi-CGSTAB method
oscillating. It is because of the, round-off errors in the local parts of dot
products and vector updates that are calculated in parts on multiple GPUs
combined with the sensitivity of the method and the tough problem, that we
see a difference in the number of iterations when number of GPUs are increased
from one to four.

0 500 1000 1500 2000 2500 3000
10

−10

10
−5

10
0

10
5

10
10

10
15

10
20

iterations

2
−

n
o
rm

 o
f
th

e
 r

e
s
id

u
a
l

1GPU_BJAC

1GPU_DILU

4GPU_BJAC

4GPU_DILU

Figure A.2: Difference in iterations for Bi-CGSTAB across 1 and 4 GPUs for
the convection-diffusion-reaction equation.

In Table A.6 the IDR method with subspace size 1 also seems to have
a difference in number of iterations when executed on one and four GPUs.
This is because for the single GPU case the IDR-(s) method without precon-
ditioning and with block-Jacobi preconditioning the method breaks down in
the Algorithm 5 at line 23 .

A.4.5 Profiling using NVVP

On profiling the execution on 4 GPUs (Table A.7) we found that for the matrix
derived from the discretization of the reaction-convection-diffusion equation
there is not much change in the profile compared to the 4 GPU profile for the
atmosmodd matrix. However, because for this matrix the IDR(s) method is
very well suited we see a reduction in execution times when we use four GPUs
instead of one and also the IDR(s) methods have a faster convergence.

142 Appendix A

A.5 Conclusions

The implementation of the IDR(s) and IDR-minsync(s) methods in the AmgX
library proves to be beneficial for matrices arising from non-trivial problems,
compared to known methods like Bi-CGSTAB and FGMRES. Moreover, they
show good scaling when multiple GPUs are used.

APPENDIX B

Using DPCG with matrices
originating from Discontinuous
Galerkin (DG) discretizations

In this chapter we present results of the DPCG method applied to matrices
corresponding to physical problems with strong discontinuities. These ma-
trices have been discretized using the Discontinuous Galerkin (DG) method.
This discretization scheme is different from the discretizations used earlier in
this thesis (finite-difference and finite element). We have restricted out test
problem to two dimensions.

B.1 Introduction

Discontinuous Galerkin methods can be used to discretize partial differential
equations. Mesh elements in DG methods are chosen as piece-wise polyno-
mials instead of piece-wise constants. The degree (p) of this polynomial can
be chosen for each mesh element. The polynomials can be discontinuous at
element boundaries.

By increasing the degree of the polynomial per mesh element DG methods
can achieve both a better accuracy and convergence compared to other meth-
ods for, e.g. Finite volume methods. The downside, however, is that with
increasing polynomial degrees the number of unknowns per mesh element in-
creases which results in a denser coefficient matrix. For problems having highly
varying coefficients, the process of finding the solution to a linear system, that
uses such a discretized matrix, becomes very challenging.

143

144 Appendix B

The coefficient matrix resulting from DG discretization has a block struc-
ture. Each block represents the discretization of a mesh element using a par-
ticular degree of a polynomial. If the polynomial degree is defined as p then
the size of the block m, is given by

m =
(p+ 1)(p+ 2)

2
. (B.1)

This structure of the coefficient matrix is different from the methods discussed
earlier in this thesis which have 7 (3D) or 5 non-zero diagonals because of the
finite difference discretization.

To solve the linear system attached to this coefficient matrix one can use
the method of Conjugate Gradients with deflation and preconditioning. For
the results presented in this chapter we use the DPCG method as discussed
in the work of [73] (Algorithm 7) which has minor differences with the DPCG
algorithm (Section 2.4 Algorithm 3) mentioned earlier in this thesis. The
first difference is the way the coarse space is generated. For the problems
presented in this Appendix and solved using the DPCG variant referenced
in this Appendix from [73] the coarse space is chosen to correspond to the
constant polynomial (zero-order). So the coarse system matrix A0 = RART .
R is a restriction operator and is an N ×N matrix where N is the number of
unknowns. R is defined as

R =


R11 R12 · · · R1N

R21 R22 · · · R2N
...

...
. . .

...
RN1 RN2 · · · RNN

 (B.2)

where the blocks have size 1×m:

Rii =
[
1 0 · · · 0

]
, Rij =

[
0 0 · · · 0

]
(B.3)

The second difference is the application of the deflation operator. Algo-
rithm 3 involves separate application of the deflation matrix and then the
preconditioning operation. In Algorithm 7, however, the deflation step Pr is
implemented as follows

y1 = ωM−1r pre-smoothing (B.4)

y = y1 +Q(r −Ay1) coarse correction (B.5)

where Q = RTA−10 R and ω = 1. Matrix R is never stored but instead the
operation involving the multiplication of a vector with R or RT is performed
using a selective copying of the source vector to a destination vector. This
copy operation could be time-consuming on the GPU as values are picked

B.2. Problem definition 145

Algorithm 7 Deflated Preconditioned Conjugate Gradient Algorithm used
in this chapter

1: Select x0. Compute r0 := b−Ax0 and r̂0 = Pr0, and set p0 := y0.
2: for i:=0,..., until convergence do
3: ŵi := Api
4: αi := (r̂i,yi)

(pi,ŵi)
5: x̂i+1 := x̂i + αipi
6: r̂i+1 := r̂i − αiŵi

7: Solve yi+1 = P r̂i+1

8: βi := (r̂i+1,yi+1)
(r̂i,yi)

9: pi+1 := yi+1 + βipi
10: end for
11: xit := Qb+ P Txi+1

from one vector with offsets into another vector sequentially or vice versa. We
will examine and comment about this operation in our results. Due to the
block structure of the coefficient matrix we use a block-Jacobi preconditioner,
M, also as it preserves the inherent structure of the matrix where each block
corresponds to a mesh element. This has been previously studied in [73].

The matrix A0 is similar to the matrix that results from the finite-difference
discretization of the Poisson problem. It has 5 non-zero diagonals and is
symmetric positive-definite. To solve the coarse system A0 which results every
time Q matrix is applied to a vector we use the DPCG method as discussed
in Algorithm 3. We use truncated Neumann series based preconditioning for
the first level and sub-domain deflation vectors for this system. The coarse
system resulting from the deflation of the inner system associated with A0 is
solved explicitly using the inverse of the coarse matrix E (refer Section 2.34).

At a global level one can see this method as a nested deflation implementa-
tion since we use a variant of deflation (with the restriction and prolongation
operators R and RT) which results in a coarse system. This coarse system is
then further coarsened using sub-domain deflation.

B.2 Problem definition

The problems we have chosen to test within our software are

1. Poisson Problem on a 2D grid,

2. Bubbly Flow problem on a 2D grid.

3. Inverse Bubbly Flow problem on a 2D grid.

146 Appendix B

The difference between the bubbly and the inverse bubbly problem is that
the density contrast is inverted in between the bubbles and the surrounding
medium. In the inverse bubbly problem the bubbles have a density of 10−5

and the surrounding medium has a density of 1.

B.2.1 Brief description about the design of custom software

The results presented in Section B.3 have been generated using software writ-
ten for solving matrices (generated by DG discretization) using Algorithm 7.
It has been implemented for the CPU and the GPU. It has been written in
C++ and some parts use the API available in the PARALUTION library. The
outer matrix A is stored in the CSR format on the CPU and GPU. The inner
matrix A0 is stored in the DIA format on the CPU and GPU. To solve the
inner system we use the DPCG implementation within PARALUTION and
write some helper functions in the DPCG class to make the Z matrix (in 2D)
required for deflation.

The setup phase of the outer problem is executed entirely on the CPU (for
both CPU and GPU implementations) and for the inner problem this is done
on the CPU or GPU. Once the setup phase is over the entire algorithm listed
in Algorithm 7 is run on the GPU and the result is copied back to the CPU.

In our results we also consider the case where we re-order the matrix in
order to keep all the first rows of each block matrix (corresponding to each
mesh element, N in total) together. This is followed by all the second rows of
each block which are placed sequentially one after another. This is repeated
for the m rows in each block matrix. So at the end of this row re-ordering we
have a matrix with m blocks with N rows each from each mesh element. This
re-ordering is then repeated for the columns in order to keep the properties of
the matrix the same for the re-ordered case.

Doing this operation saves on the copies one has to do from a large vector
on the fine grid to a small vector on the coarse grid. With reordering the copy
operation involves only swapping pointers as the required parts of the vectors
on both (coarse and fine) grids are in the initial (length = N × 1) part of the
large vector.

B.3 Numerical experiments

The experiments reported in this section have been performed on a single
node of the DAS-4 cluster. Each node is equipped with a dual quad core
Xeon processor and a NVIDIA K20 GPU with 5GB of memory. For the CPU
version openMP is used and all 8 cores of the processor are used. The problem
sizes we choose are 1602, 3202 and 6402 but with different polynomial degrees
p. The block size m increases with increasing p which leads to a larger total

B.4. Results 147

number of unknowns = (number of grid points(N) × number of unknowns per
mesh element(m)).

With this in mind we would like to state that in our results we are not
showing the specific case when grid size is N = 6402 and p = 3 so m = 10.
This makes the total number of unknowns 4096000 and in this case the GPU
memory falls short of being able to accommodate all matrices required to run
the method on the GPU.

B.4 Results

In this section we show the results that were obtained with custom software for
the matrices discussed in Section B.1. In all the results that are presented in
this section the outer tolerance is kept to 10−6 and the inner tolerance is kept
to 10−3. The choice for a higher inner tolerance may seem non-intuitive at
first but it has been tested and was first reported in [73]. The inner system is
solved with deflated preconditioned Conjugate Gradient method (refer Section
2.4) with truncated Neumann series preconditioning (refer Section 3.2.2). The
deflation vectors used are of the sub-domain variety (refer Section 4.3).

We consider three problems in this set of results and for each kind of
problem we present results on two or three grid sizes across GPU and CPU.
For each result we show the setup and solve time and also the time taken by the
inner solver and the time to refine or coarsen the vector (for both unordered
and re-ordered problems). For the unordered case this involves copying from
a vector of size Nm× 1 into a vector of size N × 1. Only elements of a vector
which are multiples of m are chosen and put successively into the new vector.
The opposite operation involves copying from an N × 1 vector to Nm × 1
vector. For the re-ordered case this involves swapping the pointers of the
Nm × 1 vector with the N × 1 vector and doing the same for the copying in
the other direction. We also present results for the case when the matrix is
reordered.

B.4.1 Poisson problem

Examining the results in Tables B.1 to B.3 we see that the GPU implementa-
tion can be more than two times faster than the CPU implementation. The
setup times on the GPU dominate the total time. However, if more right hand
sides are to be solved this cost can be hidden by the advantage in the smaller
solve time. Inner solves on the GPU take only 50% of the time but on the
CPU they take up to 80% of the solve time. Contrary to our assumption the
application of R or RT to a vector does not take the bulk of the total time.
However, after re-ordering this time (to apply R or RT) is further reduced.

148 Appendix B

CPU

p=1 p=2 p=3

NO reorder reorder NO reorder reorder NO reorder reorder

Iters(outer) 24 24 20 20 22 22

Setup 0.1 0.12 0.26 0.34 0.66 0.86

Solve 0.47 0.48 0.7 0.7 1.44 1.54

multiplyR Rt 0.01 0.001 0.01 0.001 0.02 0.001

Inner solve 0.24 0.24 0.2 0.2 0.24 0.23

Total 0.57 0.6 0.96 1.04 2.1 2.4

GPU

Iters(outer) 24 24 20 20 22 22

Setup 0.1 0.14 0.3 0.38 0.73 0.92

Solve 0.34 0.34 0.31 0.31 0.39 0.41

multiplyR Rt 0.001 0.001 0.001 0.001 0.001 0.001

Inner solve 0.3 0.3 0.25 0.25 0.29 0.29

Total 0.44 0.48 0.6 0.69 1.12 1.33

Table B.1: Results for grid size 160× 160. Poisson problem. Deflation vectors
used are 63.

The maximum speedup on the GPU (compared to the CPU) in solve time for
the 640× 640 problem is around a factor of 5.

B.4.2 Bubbly problem

The results for the bubbly problem (Table B.4 to B.6) follow the pattern of
the Poisson problem with the maximum speedup of around 2.3. The bubbly
problem is simpler in comparison to the inverse bubbly case for which we show
the results in the next section.

This problem has the same number of iterations for convergence (for most
cases) as the Poisson problem.

B.4.3 Inverse bubbly problem

The number of iterations for the inverse bubbly problem is almost double that
of the bubbly flow problems. This also reflects in the solve times. Setup times
are higher for this case amongst all the three problems but solve times are
almost twice that of the Poisson problem. For the inverse bubbly problem the
speedup is close to three if the total time is considered but for solve time it is
around 6.

B.5. Observations 149

CPU

p=1 p=2 p=3

NO reorder reorder NO reorder reorder NO reorder reorder

Iters(outer) 25 25 21 21 20 20

Setup 0.37 0.44 1.05 1.35 2.6 3.42

Solve 2.17 2.22 3.15 3.19 5.53 6.18

multiplyR Rt 0.02 0.009 0.05 0.01 0.08 0.05

Inner solve 1.24 1.25 1.08 1.09 1.07 1.07

Total 2.54 2.66 4.2 4.54 8.13 9.6

GPU

Iters(outer) 25 25 21 21 20 20

Setup 0.4 0.47 1.15 1.44 2.85 3.68

Solve 1 1 0.95 0.96 1.09 1.15

multiplyR Rt 0.01 0.01 0.01 0.01 0.01 0.01

Inner solve 0.89 0.89 0.78 0.78 0.77 0.77

Total 1.4 1.47 2.1 2.4 3.94 4.83

Table B.2: Results for grid size 320× 320. Poisson problem. Deflation vectors
used are 99.

B.5 Observations

In the results presented in the previous section we see that for higher order
problems (with a higher value for p) on the CPU the solve time is no longer
dominated by the inner solves. This is because a majority of the time is spent
in the preconditioning and the sparse matrix vector product operations for
the coarse mesh. We have used a generic format for storage of these matrices
but a block storage format may prove to be beneficial for this kind of sparse
matrix. We also notice that although reordering does reduce the time spent
in multiplying with R and RT , it is not the most time-consuming operation.

Inner solves take a significant amount of the total time and with a better
choice of deflation vectors or by using a method like Multigrid it can be possible
to reduce the solve time. The high setup time noticeable in some of the results
can be hidden if many systems are solved with the same coefficient matrix.

150 Appendix B

CPU

p=1 p=2

NO reorder reorder NO reorder reorder

Iters(outer) 18 18 17 17

Setup 1.51 1.81 4.38 5.59

Solve 8.82 8.91 13.19 13.32

multiplyR Rt 0.09 0.02 0.17 0.06

Inner solve 5.93 5.92 6.14 6.09

Total 10.33 10.73 17.57 18.91

GPU

Iters(outer) 18 18 17 17

Setup 1.59 1.9 4.62 5.9

Solve 2.43 2.43 2.72 2.75

multiplyR Rt 0.02 0.16 0.02 0.01

Inner solve 2.19 2.19 2.23 2.23

Total 4.02 4.33 7.34 8.65

Table B.3: Results for grid size 640× 640. Poisson problem. Deflation vectors
used are 255.

CPU

p=1 p=2 p=3

NO reorder reorder NO reorder reorder NO reorder reorder

Iters(outer) 25 25 24 24 26 26

Setup 0.1 0.12 0.28 0.36 0.7 0.91

Solve 0.5 0.51 0.86 0.87 1.76 1.91

multiplyR Rt 0.01 0.008 0.01 0.009 0.0085 0.0078

Inner solve 0.26 0.26 0.25 0.25 0.27 0.27

Total 0.6 0.63 1.14 1.22 2.45 2.82

GPU

Iters(outer) 25 25 24 24 26 26

Setup 0.16 0.13 0.32 0.39 0.76 0.96

Solve 0.37 0.38 0.38 0.38 0.46 0.48

multiplyR Rt 0.01 0.0089 0.01 0.0086 0.0085 0.0093

Inner solve 0.33 0.31 0.31 0.31 0.33 0.34

Total 0.53 0.51 0.69 0.77 1.22 1.44

Table B.4: Results for grid size 160× 160. Bubbly problem. Deflation vectors
used are 63.

B.5. Observations 151

CPU

p=1 p=2 p=3

NO reorder reorder NO reorder reorder NO reorder reorder

Iters(outer) 21 21 22 22 22 22

Setup 0.38 0.45 1.11 1.4 2.74 3.58

Solve 1.86 1.89 3.4 3.46 6.21 7.05

multiplyR Rt 0.02 0.0076 0.05 0.01 0.08 0.03

Inner solve 1.07 1.07 1.17 1.18 1.18 1.18

Total 2.24 2.35 4.51 4.85 8.95 10.63

GPU

Iters(outer) 21 21 22 22 22 22

Setup 0.41 0.49 1.21 1.49 3.11 3.83

Solve 0.87 0.87 1.04 1.04 1.23 1.28

multiplyR Rt 0.01 0.01 0.01 0.01 0.01 0.01

Inner solve 0.78 0.77 0.85 0.85 0.85 0.85

Total 1.29 1.36 2.25 2.53 4.34 5.11

Table B.5: Results for grid size 320× 320. Bubbly problem. Deflation vectors
used are 99.

CPU

p=1 p=2

NO reorder reorder NO reorder reorder

Iters(outer) 18 18 17 17

Setup 1.49 1.78 4.46 5.61

Solve 9.17 9.23 13.27 13.54

multiplyR Rt 0.08 0.03 0.16 0.06

Inner solve 6.36 6.27 6.18 6.2

Total 10.66 11.01 17.73 19.15

GPU

Iters(outer) 18 18 17 17

Setup 1.6 1.86 5.24 6

Solve 2.59 2.57 2.81 2.83

multiplyR Rt 0.02 0.02 0.02 0.01

Inner solve 2.34 2.33 2.31 2.31

Total 4.19 4.43 8.05 8.83

Table B.6: Results for grid size 640× 640. Bubbly problem. Deflation vectors
used are 255.

152 Appendix B

CPU

p=1 p=2 p=3

NO reorder reorder NO reorder reorder NO reorder reorder

Iters(outer) 37 37 39 39 43 43

Setup 0.1 0.12 0.29 0.36 0.69 0.91

Solve 0.8 0.82 1.41 1.42 2.89 3.19

multiplyR Rt 0.01 0.0093 0.02 0.0079 0.03 0.01

Inner solve 0.46 0.46 0.42 0.42 0.47 0.49

Total 0.9 0.94 1.7 1.78 3.58 4.1

GPU

Iters(outer) 37 37 39 39 43 43

Setup 0.1 0.14 0.32 0.4 0.75 0.99

Solve 0.66 0.66 0.65 0.66 0.82 0.86

multiplyR Rt 0.01 0.01 0.01 0.01 0.0083 0.01

Inner solve 0.6 0.6 0.55 0.55 0.62 0.62

Total 0.76 0.8 0.97 1.05 1.57 1.85

Table B.7: Results for grid size 160× 160. Inverse bubbly problem. Deflation
vectors used are 63.

CPU

p=1 p=2 p=3

NO reorder reorder NO reorder reorder NO reorder reorder

Iters(outer) 36 36 39 39 43 43

Setup 0.37 0.46 1.15 1.45 2.71 3.62

Solve 3.07 3.12 5.77 5.86 11.82 13.57

multiplyR Rt 0.03 0.01 0.08 0.02 0.16 0.05

Inner solve 1.73 1.73 1.79 1.77 2 2

Total 3.44 3.58 6.91 7.31 14.53 17.19

GPU

Iters(outer) 36 36 39 39 43 43

Setup 0.49 0.5 1.2 1.55 4.99 4.09

Solve 1.44 1.45 1.63 1.65 2.29 2.19

multiplyR Rt 0.01 0.01 0.01 0.02 0.01 0.01

Inner solve 1.29 1.3 1.32 1.32 1.46 1.46

Total 1.93 1.95 2.83 3.2 7.28 6.28

Table B.8: Results for grid size 320× 320. Inverse bubbly problem. Deflation
vectors used are 99.

APPENDIX C

Multi-GPU results when matrices A,
L and LT are stored in COO format

No. of GPUs/node 1

Vectors 2 4 8 16 32 64

Arrangement (2,1,1) (2,1,2) (2,2,2) (2,4,2) (4,4,2) (4,4,4)

Iterations 878 878 875 771 756 552

Global Setup 78.87 23.15 6.75 3 1.18 0.409

Local Setup 1.186 0.598 0.305 0.21 0.232 0.19

CG 92.529 47.5 24.06 11.44 6.208 2.54

spmv(Ax) 82.836 42.5 21.3 9.975 5.229 2.026

precon(scaling) 0.006 0.005 0.005 0.005 0.005 0.0037

Dot-daxpy-copy 5.8 3.01 1.6 0.795 0.481 0.238

deflation 3.81 2.008 1.086 0.615 0.392 0.218

Comm-mpi-glbl 0.106 0.088 0.111 0.287 0.377 0.1

Comm-mpi-NN 0.405 0.4 0.216 0.151 0.098 0.06

Comm-h2dd2h 1.809 1.016 0.565 0.48 0.254 0.11

Table C.1: Diagonal preconditioning based DPCG. Multi-GPU implementa-
tions. Storage of matrices in COO format. 1 GPU/node

153

154 Appendix C

No. of GPUs/node 2

Vectors 2 4 8 16 32 64 128

Arrangement (2,1,1) (2,1,2) (2,2,2) (2,4,2) (4,4,2) (4,4,4) (4,4,8)

Iterations 878 878 875 771 756 552 556

Global Setup 78.24 23.1 6.75 2.99 1.18 0.408 0.197

Local Setup 1.13 0.571 0.295 0.148 0.108 0.149 0.13

CG 93.23 47.6 25.13 11.89 6.53 2.73 1.38

spmv(Ax) 83.58 42.5 21.948 10.479 5.55 2.2 1.03

precon(scaling) 0.005 0.005 0.005 0.005 0.0049 0.0034 0.0026

Dot-daxpy-copy 5.79 3 1.594 0.788 0.474 0.233 0.13

deflation 3.8 2.04 1.527 0.582 0.446 0.238 0.173

Comm-mpi-glbl 0.07 0.201 0.215 0.16 0.324 0.324 0.19

Comm-mpi-NN 1.055 0.608 0.502 0.292 0.166 0.096 0.054

Comm-h2dd2h 1.59 0.894 0.501 0.434 0.231 0.095 0.066

Table C.2: Diagonal preconditioning based DPCG. Multi-GPU implementa-
tions. Storage of matrices in COO format. 2 GPUs/node

No. of GPUs/node 1

Vectors 2 4 8 16 32 64

Arrangement (2,1,1) (2,1,2) (2,2,2) (2,4,2) (4,4,2) (4,4,4)

Iterations 377 377 375 331 323 251

Global Setup 74.8 22.44 6.781 3.01 1.21 0.452

Local Setup 0.581 0.309 0.164 0.227 0.164 0.219

CG 52.32 26.82 13.88 7.18 3.95 1.818

spmv(Ax) 36.02 18.19 9.17 4.31 2.23 0.924

precon(scaling) 12.48 6.62 3.62 2.249 1.31 0.65

Dot-daxpy-copy 2.1 1.09 0.586 0.297 0.182 0.1

deflation 1.65 0.873 0.48 0.284 0.19 0.1

Comm-mpi-glbl 0.07 0.06 0.0603 0.277 0.237 0.28

Comm-mpi-NN 1.09 0.585 0.472 0.326 0.198 0.11

Comm-h2dd2h 4.41 2.4 1.26 1.1 0.562 0.239

Table C.3: TNS-based preconditioning based DPCG. Multi-GPU implemen-
tations. Storage of matrices in COO format. 1 GPU/node

155

No. of GPUs/node 2

Vectors 2 4 8 16 32 64 128

Arrangement (2,1,1) (2,1,2) (2,2,2) (2,4,2) (4,4,2) (4,4,4) (4,4,8)

Iterations 377 377 375 331 323 252 251

Global Setup 74.81 22.39 6.71 3 1.2 0.431 0.208

Local Setup 0.533 0.318 0.206 0.074 0.236 0.169 0.146

CG 51.9 26.73 14.24 7.323 4.07 1.89 1.385

spmv(Ax) 36 18.24 9.48 4.5 2.38 1.02 0.633

precon 12.1 6.5 3.65 2.23 1.26 0.637 0.505

Dot-daxpy-copy 2.1 1.09 0.583 0.293 0.18 0.097 0.075

deflation 1.66 0.871 0.487 0.265 0.193 0.105 0.113

Comm-mpi-glbl 0.0879 0.066 0.149 0.0938 0.204 0.234 0.2

Comm-mpi-NN 1.1 0.703 0.887 0.497 0.257 0.157 0.089

Comm-h2dd2h 3.97 2.25 1.07 0.927 0.484 0.208 0.199

Table C.4: TNS-based preconditioning based DPCG. Multi-GPU implemen-
tations. Storage of matrices in COO format. 2 GPUs/node

Curriculum vitae

Rohit Gupta was born on December 2, 1981, in Kanpur, Uttar Pradesh, In-
dia. He received his secondary education at Modern Public School in Delhi,
1997-1999. He obtained his Bachelor of Technology degree at Guru Gobind
Singh Indraprastha University, Delhi in 2004. Immediately after completing
his bachelors he worked in a startup (VirtualWire Technologies Pvt. Ltd.,
New Delhi) in the area of Embedded software and hardware development.
After working, learning and saving for 4 years he applied for a Masters pro-
gram and got a partial (NXP) scholarship for his masters studies at TUDelft.
He obtained his Master of Science degree in Computer Engineering at Delft
University of Technology, The Netherlands in 2010.

During his Masters study he was bitten by the bug of parallel computing
and he found a kind mentor in the form of Prof. Kees Vuik who gave him
the opportunity to conduct research in this area. Not able to believe his luck
he jumped into the cause of research in the area of applied mathematics not
knowing it was going to be a bumpy ride. He eventually learned to handle
the responsibilities of a research candidate. Not to mention that for almost
all of the 4 years (2010-2014) of his research, he has been involved in burning
significant computing time. He was the member of the Numerical Analysis
group within the Delft Institute of Applied Mathematics. He was supervised
and course-corrected by Prof. Dr. Ir. C. Vuik and Dr. Ir. M.B. van Gijzen.

During his research he collaborated with Prof. Dr. Ir. Johan van de
Koppel from the Netherlands Institute of Ecology (NIOZ) (2010-2011). He
worked on accelerating ecological models which described growth of mussels
in the Oosterschelde. He also completed an internship at NVIDIA corporation
and contributed to the Computational Linear Algebra library AmgX released
by NVIDIA in 2013.

157

List of publications and
presentations

Journal Papers

• Gupta, R., van Gijzen, M. B., & Vuik, C. Evaluation of the Deflated
Preconditioned CG method to solve Bubbly and Porous Media Flow
Problems on GPU and CPU, International Journal of Numerical Meth-
ods in Fluids, 2015. Published online 24th September 2015.

• Johan van de Koppel, Rohit Gupta, Cornelis Vuik. Scaling-up spatially-
explicit ecological models using graphics processors, Ecological Mod-
elling, Volume 222, Issue 17, 10 September 2011, Pages 3011-3019.

• Quan-Xing Liu, Ellen J. Weerman, Rohit Gupta, Peter M. J. Herman,
Han Olff, Johan van de Koppel. Biogenic gradients in algal density
affect the emergent properties of spatially self-organized mussel beds, J.
R. Soc. Interface, Vol. 11, Number 96, Published 23 April 2014.

Book Chapter

• Gupta, R., van Gijzen, M. B., & Vuik, C. Efficient two-level precondi-
tioned conjugate gradient method on the GPU (pp. 36-49). Proceedings
of VECPAR 2012, Springer Berlin Heidelberg (2013). Editors: Michel
Daydé, Osni Marques and Kengo Nakajima.

159

160 Appendix C

Refereed proceedings at International Conferences

• Rohit Gupta, Martin B. van Gijzen, and Kees Vuik. Multi-GPU/CPU
deflated preconditioned Conjugate Gradient for bubbly flow solver. In
Proceedings of the High Performance Computing Symposium (HPC 2014).
Society for Computer Simulation International, San Diego, CA, USA,
April 13-16 2014. Article 14 , 8 pages.

• Gupta, R.; van Gijzen, M.B.; Vuik, C.. 3D Bubbly Flow Simulation
on the GPU - Iterative Solution of a Linear System Using Sub-domain
and Level-Set Deflation, 2013 21st Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP), Feb. 27
2013-March 1 2013, pp.359,366.

Talks at International Conferences

• Deflated Preconditioned Conjugate Gradient for Bubbly Flows: Multi-
GPU/CPU Implementations. February 18-21. SIAM Parallel Processing
Conference 2014, Portland, Oregon, United States.

• 3D bubbly flow simulation on the GPU - Iterative Solution of a linear
system using sub-domain and level-set deflation. February 27 - March
1. PDP 2013, Belfast, Northern Ireland, United Kingdom.

• Efficient Two-Level Preconditioned Conjugate Gradient Method on the
GPU. July 17-20. VECPAR 2012 Kobe, Japan.

• Robust Preconditioned Conjugate Gradient for the GPU and Parallel
Implementations. May 14-17. GTC 2012, San Jose, United States.

• Towards Efficient Two-Level Preconditioned Conjugate Gradient on the
GPU. September 28-30. Facing the Multi-Core Challenge II Conference
2011 Karlsruhe, Germany.

• Deflated Preconditioned Conjugate Gradient on the GPU. September
20-23. GTC 2010, San Jose, United States

Other Talks

• Two Phase Flow using two levels of preconditioning on the GPU. Burg-
ersdag 2011, TUDelft. 13th January 2011 in Delft, The Netherlands.

161

Poster Presentations at International Conferences

• Two Level Preconditioned CG Method on the GPU presented at Facing
th Multi-Core Challenge II Conference 2011. September 28-30. Karl-
sruhe, Germany

Other Poster Presentations

• Two Phase Flow using two levels of Preconditioning on the GPU - pre-
sented at BurgersDag January 13 2011.

• Towards Efficient Preconditioned CG Method on the GPU for bubbly
flow problem - presented at NWO-JSPS Joint Seminar April 10-13 2012.

BIBLIOGRAPHY

[1] Fernando Alvarado, Hasan Dag, O Alvarado Hasan Da, et al. Sparsified
and incomplete sparse factored inverse preconditioners. Matrix, 1:13,
1992.

[2] M. Ament, G. Knittel, D. Weiskopf, and W. Strasser. A parallel precondi-
tioned Conjugate Gradient solver for the Poisson problem on a multi-GPU
platform. In Proceedings of the 2010 18th Euromicro Conference on Par-
allel, Distributed and Network-based Processing, PDP ’10, pages 583–592,
Washington, DC, USA, 2010. IEEE Computer Society.

[3] Steven F. Ashby and Robert D. Falgout. A parallel multigrid precondi-
tioned Conjugate Gradient algorithm for groundwater flow simulations.
Nuclear Science and Engineering, 124(1):145–159, 1996.

[4] Jacques M. Bahi, Raphaël Couturier, and Lilia Ziane Khodja. Parallel
GMRES implementation for solving sparse linear systems on GPU clus-
ters. In Proceedings of the 19th High Performance Computing Symposia,
HPC ’11, pages 12–19, San Diego, CA, USA, 2011. Society for Computer
Simulation International.

[5] Muthu Manikandan Baskaran and Rajesh Bordawekar. Optimizing sparse
matrix-vector multiplication on GPUs using compile-time and run-time
strategies. IBM Reserach Report, RC24704 (W0812-047), 2008.

[6] N. Bell and M. Garland. Implementing sparse matrix-vector multiplica-
tion on throughput-oriented processors. In Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis, Su-
percomputing, pages 18:1–18:11, New York, NY, USA, 2009. ACM.

163

164 BIBLIOGRAPHY

[7] N. Bell and M. Garland. Implementing Sparse Matrix-vector Multiplica-
tion on Throughput-oriented Processors. In SC ’09: Proc. of the Conf.
on High Perf. Computing Networking, Storage and Analysis, pages 1–11.
ACM, 2009.

[8] M.W. Benson. Iterative solution of large scale linear systems. Master’s
thesis, Lakehead University, Thunder Bay, Canada, 1973.

[9] Michele Benzi. Preconditioning techniques for large linear systems: A
survey. J. Comput. Phys., 182(2):418–477, November 2002.

[10] Michele Benzi and Miroslav Tûma. A sparse approximate inverse pre-
conditioner for nonsymmetric linear systems. SIAM J. SCI. COMPUT,
19(3):1135–1149, 1998.

[11] Michele Benzi and Miroslav Tûma. A comparative study of sparse
approximate inverse preconditioners. Applied Numerical Mathematics,
30(2):305–340, 1999.

[12] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder. Sparse matrix solvers
on the GPU: Conjugate Gradients and multigrid. ACM Trans. Graph.,
22(3):917–924, July 2003.

[13] Luc Buatois, Guillaume Caumon, and Bruno Levy. Concurrent number
cruncher: A GPU implementation of a general sparse linear solver. Int.
J. Parallel Emerg. Distrib. Syst., 24(3):205–223, June 2009.

[14] Ali Cevahir, Akira Nukada, and Satoshi Matsuoka. High performance
Conjugate Gradient solver on multi-GPU clusters using hypergraph par-
titioning. Computer Science - Research and Development, 25(1-2):83–91,
2010.

[15] Jee W. Choi, Amik Singh, and Richard W. Vuduc. Model-driven au-
totuning of sparse matrix-vector multiply on GPUs. SIGPLAN Not.,
45(5):115–126, January 2010.

[16] Tijmen P. Collignon and Martin B. van Gijzen. Minimizing synchroniza-
tion in IDR (s). Numerical Linear Algebra with Applications, 18(5):805–
825, 2011.

[17] NVIDIA Corporation. CUDA programming guide.
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

[18] Timothy A. Davis and Yifan Hu. The university of Florida sparse matrix
collection. ACM Trans. Math. Softw., 38(1):1:1–1:25, December 2011.

BIBLIOGRAPHY 165

[19] Zdenäok Dostãl. Conjugate Gradient method with preconditioning by
projector. International Journal of Computer Mathematics, 23(3-4):315–
323, 1988.

[20] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Pe-
terson, and Jack Dongarra. From CUDA to OpenCL: Towards a
performance-portable solution for multi-platform GPU programming.
Parallel Computing, 38(8):391–407, 2012.

[21] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. A comprehensive
performance comparison of CUDA and OpenCL. In Parallel Processing
(ICPP), 2011 International Conference on, pages 216–225. IEEE, 2011.

[22] Zhuo Feng and Zhiyu Zeng. Parallel multigrid preconditioning on graph-
ics processing units (GPUs) for robust power grid analysis. In Design
Automation Conference (DAC), 2010 47th ACM/IEEE, pages 661–666,
June 2010.

[23] P. Ghysels, T. Ashby, K. Meerbergen, and W. Vanroose. Hiding global
communication latency in the GMRES algorithm on massively parallel
machines. SIAM journal on Scientific Computing, ExaScience Lab Tech-
nical Report 04.2012.1, 35:C48–C71. (24 pages), 2013.

[24] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd
Ed.). Johns Hopkins University Press, Baltimore, MD, USA, 1996.

[25] Marcus J. Grote and Thomas Huckle. Parallel preconditioning with sparse
approximate inverses. SIAM J. Sci. Comput., 18(3):838–853, May 1997.

[26] R. Gupta. Implementation of the Deflated Preconditioned Conjugate Gra-
dient Method for Bubbly Flow on the Graphical Processing Unit(GPU).
Master’s thesis, Delft University of Technology, Delft, The Netherlands,
2010.

[27] R. Gupta, D. Lukarski, M. B. van Gijzen, and C. Vuik. Evaluation of the
deflated preconditioned CG method to solve bubbly and porous media
flow problems on GPU and CPU. International Journal for Numerical
Methods in Fluids, 2015.

[28] R. Gupta, M. B. van Gijzen, and C. Vuik. Efficient Two-Level Precondi-
tioned Conjugate Gradient method on the GPU. Technical report, Delft
University of Technology, Delft, The Netherlands, 2011. DIAM Report
11-15.

166 BIBLIOGRAPHY

[29] R. Gupta, M. B. van Gijzen, and C. Vuik. 3D bubbly flow simulation
on the GPU - iterative solution of a linear system using sub-domain and
level-set deflation. In Proceedings of PDP 2013, pages 359–366. IEEE
CPS, 2013.

[30] Rohit Gupta, Martin B. van Gijzen, and Cornelis Vuik. Multi-GPU/CPU
deflated preconditioned conjugate gradient for bubbly flow solver. In Pro-
ceedings of the High Performance Computing Symposium, HPC ’14, pages
14:1–14:8, San Diego, CA, USA, 2014. Society for Computer Simulation
International.

[31] Rohit Gupta, Martin B. van Gijzen, and Kees Vuik. Efficient two-level
preconditioned Conjugate Gradient method on the GPU. In Michel Dayd,
Osni Marques, and Kengo Nakajima, editors, High Performance Com-
puting for Computational Science - VECPAR 2012, volume 7851 of Lec-
ture Notes in Computer Science, pages 36–49. Springer Berlin Heidelberg,
2013.

[32] A. Hart, R. Ansaloni, and A. Gray. Porting and scaling OpenACC ap-
plications on massively-parallel, GPU-accelerated supercomputers. The
European Physical Journal-Special Topics, 210(1):5–16, 2012.

[33] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 3 edition, 2003.

[34] M.R. Hestens and Stiefel E. Methods of Conjugate Gradients for solving
linear systems. J. Res. Nat. Bur. Stand., 49:409–436, 1952.

[35] Vincent Heuveline, Dimitar Lukarski, Nico Trost, and Jan-Philipp Weiss.
Parallel smoothers for matrix-based geometric multigrid methods on lo-
cally refined meshes using multicore CPUs and GPUs. In Rainer Keller,
David Kramer, and Jan-Philipp Weiss, editors, Facing the Multicore -
Challenge II, volume 7174 of Lecture Notes in Computer Science, pages
158–171. Springer Berlin Heidelberg, 2012.

[36] University of Tennessee Innovative Computing Laboratory. Magmablas
documentation. http://icl.cs.utk.edu/magma/docs/.

[37] Dana A. Jacobsen and Inanc Senocak. Multi-level parallelism for incom-
pressible flow computations on GPU clusters. Parallel Comput., 39(1):1–
20, January 2013.

[38] T. Jönsthövel, M. B. van Gijzen, S. P. MacLachlan, C. Vuik, and
A. Scarpas. Comparison of the Deflated Preconditioned Conjugate Gra-

http://icl.cs.utk.edu/magma/docs/

BIBLIOGRAPHY 167

dient method and Algebraic Multigrid for composite materials. Compu-
tational Mechanics, pages 1–13, 2011.

[39] A. A. Kamiabad and J. E. Tate. Polynomial preconditioning of power sys-
tem matrices with graphics processing units. In Siddhartha Kumar Khai-
tan and Anshul Gupta, editors, High Performance Computing in Power
and Energy Systems, Power Systems, pages 229–246. Springer Berlin Hei-
delberg, 2013.

[40] Kamran Karimi, Neil G Dickson, and Firas Hamze. A performance com-
parison of CUDA and OpenCL. arXiv preprint arXiv:1005.2581, 2010.

[41] H. Knibbe, C. W. Oosterlee, and C. Vuik. GPU implementation of a
Helmholtz Krylov solver preconditioned by a shifted Laplace multigrid
method. J. Comput. Appl. Math., 236(3):281–293, September 2011.

[42] H. Knibbe, C.W. Oosterlee, and C. Vuik. 3D Helmholtz Krylov solver
preconditioned by a shifted Laplace multigrid method on multi-GPUs. In
Andrea Cangiani, Ruslan L. Davidchack, Emmanuil Georgoulis, Alexan-
der N. Gorban, Jeremy Levesley, and Michael V. Tretyakov, editors, Nu-
merical Mathematics and Advanced Applications 2011, pages 653–661.
Springer Berlin Heidelberg, 2013.

[43] L. Yu. Kolotilina and A. Yu. Yeremin. Factorized Sparse Approximate
Inverse Preconditionings I: Theory. SIAM J. Matrix Anal. Appl., 14:45–
58, January 1993.

[44] Dilip Krishnan and Richard Szeliski. Multigrid and multilevel precondi-
tioners for computational photography. ACM Trans. Graph., 30(6):177:1–
177:10, December 2011.

[45] Marcel Kwakkel, Wim-Paul Breugem, and Bendiks Jan Boersma. An effi-
cient multiple marker front-capturing method for two-phase flows. Com-
puters and Fluids, 63(0):47 – 56, 2012.

[46] John M Levesque, Ramanan Sankaran, and Ray Grout. Hybridizing S3D
into an exascale application using OpenACC: an approach for moving to
multi-petaflops and beyond. In Proceedings of the International confer-
ence on high performance computing, networking, storage and analysis,
pages 15:1–15:11. IEEE Computer Society Press, 2012.

[47] Xing Liu, Mikhail Smelyanskiy, Edmond Chow, and Pradeep Dubey. Ef-
ficient sparse matrix-vector multiplication on x86-based many-core pro-
cessors. In Proceedings of the 27th International ACM Conference on In-
ternational Conference on Supercomputing, ICS ’13, pages 273–282, New
York, NY, USA, 2013. ACM.

168 BIBLIOGRAPHY

[48] Dimitar Lukarski. PARALUTION project. http://www.paralution.com/.

[49] Dimitar Lukarski. Parallel Sparse Linear Algebra for Multi-core and
Many-core Platforms – Parallel Solvers and Preconditioners. PhD thesis,
Karlsruhe Institute of Technology, January 2012. http://digbib.ubka.
uni-karlsruhe.de/volltexte/1000026568.

[50] M. Manikandan Baskaran and R. Bordawekar. Optimizing sparse matrix-
vector multiplication on GPUs. Technical report, IBM, 2009.

[51] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for
linear systems of which the coefficient matrix is a symmetric m-matrix.
Mathematics of Computation, 31(137):pp. 148–162, 1977.

[52] Alexander Monakov and Arutyun Avetisyan. Implementing blocked
sparse matrix-vector multiplication on nvidia GPUs. In Proceedings of
the 9th International Workshop on Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation, SAMOS ’09, pages 289–297, Berlin,
Heidelberg, 2009. Springer-Verlag.

[53] R. A. Nicolaides. Deflation of Conjugate Gradients with applications
to boundary value problems. SIAM Journal on Numerical Analysis,
24(2):pp. 355–365, 1987.

[54] C. Oosterlee and T. Washio. An evaluation of parallel multigrid as a solver
and a preconditioner for singularly perturbed problems. SIAM Journal
on Scientific Computing, 19(1):87–110, 1998.

[55] Fábio Henrique Pereira, Sérgio Lúıs Lopes Verardi, and Silvio Ikuyo
Nabeta. A fast algebraic multigrid preconditioned Conjugate Gradient
solver. Applied mathematics and computation, 179(1):344–351, 2006.

[56] M. Pernice and M.D. Tocci. A multigrid-preconditioned Newton-Krylov
method for the incompressible Navier–Stokes equations. SIAM Journal
on Scientific Computing, 23(2):398–418, 2001.

[57] H. Rudi and J. Koko. Parallel preconditioned Conjugate Gradient al-
gorithm on GPU. Journal of Computational and Applied Mathematics,
236(15):3584 – 3590, 2012.

[58] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA, 2003.

[59] P. Sonneveld and M.B. van Gijzen. IDR(s): A family of simple and fast
algorithms for solving large nonsymmetric systems of linear equations.
SIAM Journal on Scientific Computing, 31(2):1035–1062, 2009.

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000026568
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000026568

BIBLIOGRAPHY 169

[60] John E. Stone, David Gohara, and Guochun Shi. OpenCL: A parallel
programming standard for heterogeneous computing systems. Computing
in science & engineering, 12(3):66, 2010.

[61] J. M. Tang, S.P. MacLachlan, R. Nabben, and C. Vuik. A comparison of
two-level preconditioners based on multigrid and deflation. SIAM Journal
on Matrix Analysis and Applications, 31(4):1715–1739, 2010.

[62] J.M. Tang. Two-Level Preconditioned Conjugate Gradient Methods with
Applications to Bubbly Flow Problems. PhD thesis, Delft University of
Technology, Delft, The Netherlands, 2008.

[63] J.M. Tang and C. Vuik. Deflated ICCG method solving the singular
and discontinuous diffusion equation derived from 3-D multi-phase flows.
In ECCOMAS CFD 2006: Proceedings of the European Conference on
Computational Fluid Dynamics, 2006.

[64] J.M. Tang and C. Vuik. Efficient deflation methods applied to 3-D bubbly
flow problems. Electronic Transactions on Numerical Analysis, 26:330–
349, 2007.

[65] J.M. Tang and C. Vuik. New variants of Deflation techniques for pres-
sure correction in bubbly flow problems. Journal of Numerical Analysis,
Industrial and Applied Mathematics, 2:227–249, 2007.

[66] J.M. Tang and C. Vuik. On deflation and singular symmetric positive
semi-definite matrices. Journal of Computational and Applied Mathe-
matics, 206(2):603 – 614, 2007.

[67] Julien C. Thibault and Inanc Senocak. Accelerating incompressible flow
computations with a pthreads-CUDA implementation on small-footprint
multi-gpu platforms. J. Supercomput., 59(2):693–719, February 2012.

[68] S. P. van der Pijl, A. Segal, C. Vuik, and P. Wesseling. A mass-conserving
level-set method for modelling of multi-phase flows. International Journal
for Numerical Methods in Fluids, 47(4):339–361, 2005.

[69] S. P. van der Pijl, A. Segal, C. Vuik, and P. Wesseling. Computing three-
dimensional two-phase flows with a mass-conserving level set method.
Comput. Vis. Sci., 11(4-6):221–235, July 2008.

[70] H.A. van der Vorst. Iterative Krylov Methods for Large Linear systems.
Cambridge University Press, Cambridge, 2003.

[71] A. van Duin. Scalable parallel preconditioning with the sparse approxi-
mate inverse of triangular matrices. SIAM Journal on Matrix Analysis
and Applications, 20(4):987–1006, 1999.

170 BIBLIOGRAPHY

[72] Martin B. Van Gijzen and Peter Sonneveld. Algorithm 913: An elegant
IDR(s) variant that efficiently exploits biorthogonality properties. ACM
Trans. Math. Softw., 38(1):5:1–5:19, December 2011.

[73] P. van Slingerland and C. Vuik. Fast linear solver for diffusion problems
with applications to pressure computation in layered domains. Computa-
tional Geosciences, 18(3-4):343–356, 2014.

[74] Francisco Vaźquez, G. Ortega, José-Jesús Fernández, and Ester M.
Garzón. Improving the performance of the sparse matrix vector prod-
uct with GPUs. In Computer and Information Technology (CIT), 2010
IEEE 10th International Conference on, pages 1146–1151. IEEE, 2010.

[75] Mickeal Verschoor and Andrei C. Jalba. Analysis and performance es-
timation of the conjugate gradient method on multiple GPUs. Parallel
Comput., 38(10-11):552–575, October 2012.

[76] C. Vuik, A. Segal, J. A. Meijerink, and G. T. Wijma. The construction of
projection vectors for a deflated ICCG method applied to problems with
extreme contrasts in the coefficients. J. Comput. Phys, pages 426–450,
2001.

[77] Xiaoge Wang, Randall Bramley, and Kyle A. Gallivan. A necessary and
sufficient symbolic condition for the existence of incomplete cholesky fac-
torization. Technical report, Indiana University, 1995.

[78] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey.
Openacc - first experiences with real-world applications. In Christos Kak-
lamanis, Theodore Papatheodorou, and Paul G. Spirakis, editors, Euro-
Par 2012 Parallel Processing, volume 7484 of Lecture Notes in Computer
Science, pages 859–870. Springer Berlin Heidelberg, 2012.

[79] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine
Yelick, and James Demmel. Optimization of sparse matrix-vector mul-
tiplication on emerging multicore platforms. In Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, SC ’07, pages 38:1–38:12,
New York, NY, USA, 2007. ACM.

[80] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An
insightful visual performance model for multicore architectures. Commun.
ACM, 52(4):65–76, April 2009.

[81] P. Zaspel and M. Griebel. Solving incompressible two-phase flows on
multi-GPU clusters. Computers & Fluids, 80(0):356 – 364, 2013. Selected
contributions of the 23rd International Conference on Parallel Fluid Dy-
namics ParCFD2011, also available as INS Preprint no. 1113.

	Summary
	Samenvatting
	Acknowledgments
	Introduction
	Background
	Graphical Processing Unit (GPU) computing
	GPU architecture
	Compute Unified Device Architecture (CUDA)
	Performance pointers for Scientific Computing with GPUs

	Applications
	Bubbly flow
	Porous media flow
	Mechanical problems
	Scope of the thesis
	Outline of the thesis
	Iterative methods and GPU computing
	Basic iterative methods
	Krylov subspace methods
	Conjugate Gradient method
	First Level preconditioning
	Diagonal scaling
	Incomplete LU (ILU) preconditioning
	Incomplete Cholesky
	Block incomplete Cholesky
	Multi-elimination ILU
	Sparse approximate inverse (SPAI) preconditioner
	Multigrid based preconditioners
	IP preconditioning

	Second level preconditioning
	Motivation to use deflation for problems with strongly varying coefficients
	Choices of deflation vectors
	Cost and benefits of deflation
	Matrix storage formats and SpMV
	CSR - Compressed Sparse Row
	DIA - Diagonal
	COO - Co-ordinate
	ELL
	HYB - Hybrid

	A brief overview of GPU computing for preconditioned Conjugate Gradient (PCG)
	Linear algebra and GPU computing
	OpenCL and OpenACC
	PCG with GPUs
	Multi-GPU implementations

	Neumann preconditioning based DPCG
	Introduction
	Preconditioning
	IP preconditioning with scaling
	Truncated Neumann series based preconditioning

	Problem definition
	Comparison of preconditioning schemes and a case for deflation
	Implementation
	Storage of the matrix AZ
	Extension to real (bubble) problems and 3D

	Experiments and results
	Stripe-wise deflation vectors - Experiments with 2D test problem
	Stripe and plane-wise deflation vectors - Experiments with 3D problems

	Conclusions

	Improving deflation vectors
	Introduction
	Problem definition
	Block-wise sub-domains based deflation vectors
	Level-set deflation vectors

	Using the explicit inverse for the solution of the coarse system
	Experiments and results
	Notes on implementation
	Differences between CPU and GPU implementations
	Results

	Conclusions

	Extending DPCG to multiple GPUs and CPUs
	Introduction
	Problem definition
	Data divisions
	Division by rows
	Division by blocks
	Communication scaling

	Implementation
	Calling software and solver routine
	Communication outline in multi-compute unit implementation

	Experiments and results
	Results on the DAS-4 cluster
	Experiments on Cartesius cluster

	Conclusions

	Comparing DPCG on GPUs and CPUs for different problems
	Introduction
	First-level preconditioning techniques
	Black-box ILU-type preconditioners
	Multi-colored symmetric Gauss-Seidel
	Truncated Neumann series (TNS)-based preconditioning
	Factorized Sparse Approximate Inverse (FSAI)-based preconditioners

	Second-level preconditioning
	Physics based deflation vectors

	Implementation details
	Sparse matrix storage
	Speedup and stopping criteria
	LU-type preconditioners
	Factorized sparse approximate inverse-based preconditioners
	Truncated Neumann series (TNS)-based preconditioning
	Deflation

	Numerical experiments
	Bubbly flow problem
	Porous Media Flows

	Experiments with varying grid sizes and density ratios
	Using CG with Algebraic Multigrid (AMG) preconditioner for the layered problem and the problem from oil industry

	Conclusion

	Conclusions
	Introduction
	Suitability
	Scalability
	Usability
	Suggestions for future research
	Using newer programming paradigms
	Investigation of problems with irregular domains
	Improving scaling on multi-GPU
	Using better deflation vectors for multi-GPU implementations
	Applicability to other problems

	IDR(s) implementation in NVIDIA AmgX
	Introduction
	The IDR(s) method
	AmgX
	Implementation of IDR(s) method in AmgX
	Experiments
	Setup
	Atmospheric problems - from Florida matrix collection
	Reaction-Convection-Diffusion equation
	Variance in iterations between single and multi-GPU implementations
	Profiling using NVVP

	Conclusions
	Using DPCG with matrices originating from Discontinuous Galerkin (DG) discretizations
	Introduction
	Problem definition
	Brief description about the design of custom software
	Numerical experiments
	Results
	Poisson problem
	Bubbly problem
	Inverse bubbly problem
	Observations
	Multi-GPU results when matrices A, L and LT are stored in COO format
	Curriculum vitae
	List of publications and presentations

