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Augmented Computational Design

Introduction

The core of the performance-driven computational design is to trace the sensitivity of varia-
tions of some performance indicators to the differences between design alternatives. 
Therefore, any argument about the utility of artificial intelligence (AI) for performance-
based design must necessarily discuss the representation of such differences, as explicitly as 
possible. The existing data models and data representations in the field of architecture, 
engineering, and construction (AEC), such as computer aided design (CAD) and building 
information modelling (BIM), are primarily focused on geometrical representations of build-
ing elements and facilitating the process of construction management. Unfortunately, the 
field of AEC does not currently have a structured discourse based on an explicit representa-
tion of decision variables and desired outcomes. Specifically, the notion of design representa-
tion and the idea of data modeling for representing “what needs to be attained from 
buildings” is rather absent in the existing literature.

This treatise proposes a systematic view of the differences between design alternatives in 
terms of decision variables, be they spatial and nonspatial. Based on such an explicit 
formulation of decision variables, we set forth a framework for building and utilizing AI in 
(architectural) generative design processes for associating decision variables and outcomes 
of interest as performance indicators in a reciprocal relationship. This reciprocity is explained 
in terms of the duality between two quintessential problems to be addressed in generative 
design: the evaluation of design alternatives (mapping) and the derivation of design alterna-
tives (navigation).

Starting with an explicit representation of a design space as an ordered pair of two vectors, 
one denoting decision variables and the other performance indicators, we put forth a math-
ematical framework for structuring data-driven approaches to generative design in the field 
of AEC. This framework highlights two major types of applications for AI in performance-
driven design and their fusion: those capable of augmenting design evaluation procedures 
and those capable of augmenting design derivation procedures. Moreover, we introduce the 
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1  Augmented Computational Design2

reciprocity between “flows” and “manifolds” as an intermediary notion for going beyond the 
so-called form-function dichotomy. Discussing these notions necessitates the introduction 
of a mathematical foundation for the framework rooted in multivariate calculus.

The main advantage of this explicit formulation is to enhance the explainability of AI 
when utilized in generative design by introducing meaningful and interpretable latent 
spaces based on the reciprocal relationship between manifolds and flows. The balance of 
predictive/deterministic power and interpretability/explainability is discussed in the con-
crete context of an illustrative example.

This chapter will introduce a chain of key concepts, starting with the notion of decision-
making in design, the nature of design variables, the specifics of spatial decision variables, 
the notion of design space, and the two dual actions in the exploration of design spaces: 
mapping and navigating.

While the introduced framework is quite general, a particular class of Probabilistic 
Graphical Models (PGM), Bayesian Belief Networks (BBN), is introduced to provide a con-
crete illustrative example of the utility of AI in AEC. For a deeper insight into this particular 
approach to data-driven design, the readers are referred to two classical books on PGM: Pearl 
(1988) & Koller and Friedman (2009). The illustrative example is a BBN trained to make a 
data-driven replica of the building energy model used by the Dutch government in order to 
obtain a rough meta-model to be used in mass-scale policy analysis, such as advising the 
government on the relative utility of energy transition subsidies and planning measures. 
This example is chosen not because the BBNs are the most advanced models or the most 
accurate models for approximating such large functions. Instead, the choice is rather prag-
matic in that this model has proven to be promising from the stance of predictive power 
while retaining a basic level of theoretical interpretability and intuitive appeal.

The chapter is structured as follows: we first present a historical context to establish the 
necessity of such a data-driven generative design framework; continue with conceptualizing 
and mathematically formulating the structure of the framework, dubbed as Augmented 
Computational Design (ACD); present an illustrative example demonstrating the utility of 
the framework; and conclude with a discussion on its outlook, open questions, and avenues 
for further research.

Background

Here, we revisit the utility of AI for data-driven generative design by highlighting some key 
gaps of knowledge in the field of AEC and briefly mentioning overarching frameworks in 
computational design and AI that can address these gaps.

Relevance of AI in AEC

The earliest attempts to enhance accountability and predictive power in computational 
design can be traced back to the notions of Scientific Architecture (Friedman 1975) and The 
Sciences of the Artificial (Simon 2019). Both of these seminal books explicitly discuss the 
necessity of forming some kind of a specific spatial and configurative form of design knowl-
edge, the core of which boils down to being able to explicitly represent the main subject 
matter of spatial design as “spatial configurations.” One of the first phenomenological and 
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systemic descriptions of design processes explicitly referring to the notion of performance is 
the “Function, Behaviour, Structure” framework of Gero and Kannengiesser (2004), in 
which the overused notions of form and function are elaborated in terms of expected and 
required behavior/functionality from a system (dubbed as the function), its design as a form 
or configuration (dubbed as structure), and its performance (dubbed as behavior). The 
framework explicitly discusses the idea of design as a process of generating the representa-
tion of a spatial structure, and the difference between desired behavior and the actual 
behavior of the structure is discussed as the performance drive for the process. What can be 
observed in this phenomenological framework, predating most recent advancements in 
computational design, is the fundamental belief about the innate necessity of creativity 
in terms of the cognitive capability of designers for proposing structures capable of working 
as desired, based on some kind of tacit knowledge. Congruently, an anthropological descrip-
tion of design processes refers to the age-old duality between the form (structure) and func-
tion (purpose) of designed artifacts, and the fact that [in the absence of explicit knowledge 
and representation schemes], as Kroes (2010) has put it, designers are traditionally trained to 
produce solutions (draw them) through a “logical leap” often without even understanding or 
paying any attention to the design requirements or supposed levels of quality attainment. 
Suppose, we wanted to evaluate (compare) two different alternative designs for a hospital 
(Jia et al. 2023), or a home, the question is: How do we want to represent the designs digitally 
for a computer to evaluate them? Let us discuss an analogous example: if we wanted to com-
pare two pieces of music in terms of their beauty, it would be very straightforward to digitize 
their notations and feed them to a machine, because the musical notation is already discre-
tized (digitized), regardless if it is written on paper or etched on the cylinder of an old-
fashioned winding music box (Zeng et al. 2021). However, doing the same, such as comparing 
two buildings, would be a much more difficult challenge, especially because there is cur-
rently no (discrete/textual) notation for spatial design that can capture the features of spatial 
configurations.

Instead of the extensive emphasis on the product of architecture as the shapes of build-
ings, we turn our attention to the processes of design and put a lens of “design as [discrete] 
decision-making” on the debate to avoid the common reduction of design to the production 
of design drawings. This view forms the basis of the generative design paradigm, as exten-
sively articulated by Nourian, Azadi, and Oval (2023) and Veloso and Krishnamurti (2021). 
Similarly, the challenges, opportunities, and promising ways of utilization of AI, particularly 
deep-learning and generative models, for goal-oriented design explorations have been dis-
cussed extensively in Regenwetter, Nobari, and Ahmed (2022) and Regenwetter and 
Ahmed (2022).

Historical Context

In this section, we first give a very brief history of the most important and relevant develop-
ments in AI. Then, we lay the foundation for a formulation of architectural design as a matter 
of decision-making. We discuss the mathematical implications of this paradigmatic frame 
for generative design, elaborate on the notion of decision-making and the duality of deriva-
tion and evaluation problems, and discuss two statistical approaches to design: a possibilistic 
approach utilizing Fuzzy Logic or Markovian Design Machines and a probabilistic approach 
utilizing BBNs or Diffusion Models.
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1  Augmented Computational Design4

We are currently witnessing an era of exponential success in the field of AI that has been 
evolving for more than 50 years (See Figure 1.1). Meanwhile, it is common knowledge that 
progress is slow in terms of innovation and scientific knowledge development in the 
field of AEC.

As extensively argued by Simon (1973) and Azadi and Nourian (2021), once an unambigu-
ous language is adopted for discussing the classification of problems, we can see that many 
of the problems in AEC can be adequately (and possibly painstakingly) dealt with through 
conventional mathematics, physics, and computer science. In other words, the utility or the 
necessity of employing AI for dealing with problems that can be dealt with through conven-
tional mathematical or computational procedures is not only pointless from a resource-
efficiency stance but also questionable from the point of view of interpretability, transparency, 
and explainability. To assess the potential applications of AI in AEC regarding these ques-
tions, we highlight the history of AI (see Figure 1.1) and refocus on its scope (see Figure 1.2), 
at least as it could possibly pertain to AEC.

Once a problem is adequately formulated, two major determinants can be considered as to 
whether it would be sensible to apply AI or not: whether the data schemata of the problem 

Figure 1.1  Highlights in the history of Artificial Intelligence.
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are structured (vectorized) or unstructured (textual/visual), and whether the underlying 
associations between the inputs and outputs can be modeled through first principles (gov-
erning laws of physics, typically stated in differential equations), stochastic processes, or 
agent-based models. If the problem data are unstructured or the conventional modeling 
approaches do not have the capability of capturing the complex associations between the 
inputs and the outputs of interest, especially when interpretability can be sacrificed over 
the necessity of predictability, utilizing AI is quite sensible. The example that we discuss in 
this chapter may seem somewhat questionable according to these points; however, on the 
other hand, it is too overwhelmingly large and complex that no conventional approach can 
deal with it at the aimed level of abstraction. In this case, the ambition of the project is on 
such a high level of abstraction in policy analysis that the inaccuracies and ambiguities of 
the purely data-driven approach can be justified because of the insights that can be gained 
from the meta-statistical model.

Design as Decision-Making

The commonly overstated notions of difficulty or the ill-defined nature of design problems, 
as explained by Simon (1973), can be attributed to the fact that most design tasks are expected 
to produce a very concrete geometric description of an object to be built (the form), given 
only a very abstract description of what the object is supposed to be used for, how it should 

Figure 1.2  A Euler diagram of the scope of Artificial Intelligence.
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1  Augmented Computational Design6

work, and what would be desirable for it to achieve, all of which are often described quite 
vaguely (the function), by Kroes and Meijers (2006).

Hillier was one of the few shrewd theorists who understood that, at least after the separation 
of structural design from architecture in the 19th century (Giedion 2009), what distinguishes 
building buildings from architecture is the art and science of configuring spaces, as stated in 
“Space is the Machine,” (Hillier 2007). Once one realizes that the so-called architectural form 
is not only a single shape of an iconic object but also a set that includes the shapes of spaces 
and, eventually, the constituent segments of a building, we can distinguish the superior impor-
tance of spatial configurations. As obvious as it may sound, it seems to be necessary to empha-
size that architectural design is not merely about sculpting a shape but configuring spaces to 
accommodate some human activities. This involves some puzzling tasks, such as packing, 
zoning, and routing spaces of various functions, which we hereinafter refer to as the task of 
configuring buildings (Azadi and Nourian 2021). For problems of shape and configuration to 
be transformed into decision problems, they need to be rigorously discretized. In short, we can 
call a massing problem a shape problem and a zoning problem a configuration problem.

The mainstay of the generative design paradigm is a rigorous reformulation of a design 
problem as a discrete topological decision problem rather than a geometrical problem 
(Nourian, Azadi, and Oval 2023). Therefore, discretization is the process of breaking down 
the integrated design problem into multiple smaller yet interdependent decision problems. 
An example of such discretization can be a voxel grid that provides a non-biased and homo-
geneous representation of spatial units, each of which poses a decision problem of function 
allocation (Nourian et al. 2016; Soman, Azadi, and Nourian 2022).

Moreover, to ensure the correspondence of these discrete decisions, we need to include the 
topological information about their neighborhood to represent their spatial interdependen-
cies, similar to topology optimization (O’Shaughnessy, Masoero, and Gosling 2021). At the 
limit, such discretization can also be used to model a continuum of solutions and provide a 
frequency-based or spectral representation system, similar to the study by Marin et al. (2021), 
for spatial design, much like the musical notation that is based on notes.

Additionally, it is important to note that design decisions have a strong spatial dimension; 
however, they can include the social dimension to represent the preference of stakeholders 
and enable consensus-building (Bai et al. 2020). Given a view of design as a matter of decision- 
making, we can readily see two important types of practical questions that will shed light on 
the relevance of AI for decision-making:

1.	 How to map/learn the associations of hundreds or thousands of constituent choices of a 
compound design decision (function approximation and dimensionality reduction for ex-
ante assessment of the impact of decisions)?

2.	 How to navigate a gigantic decision space with thousands of choices and their astronomi-
cally large combinations with a few important consequences in the picture?

The proposed notion of design as decision-making makes a point of departure for the rest 
of the chapter in that it highlights two equally essential problems of significance that can be 
tackled by AI and their duality: First, evaluation problems can be portrayed as mapping 
problems in Machine Learning (ML) and Deep Learning, where the approximation power of 
Artificial Neural Networks (ANN) can be exploited in regression and classification settings. 
Second, derivation problems can be portrayed as navigation problems in generative models, 
concerned with navigating from a low-dimensional representation of performance indica-
tors toward disaggregated design decisions.
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Encapsulating the complex and often nonlinear associations of many design decisions 
with a few outcomes of interest or performance indicators is here dubbed as a mapping prob-
lem. Inverting this map, as an approximated function (e.g. in the form of an ANN), can thus 
be viewed as an enhanced or augmented form of design, where the designer is navigated 
toward many small decisions just by pointing toward certain data points within a 
low-dimensional performance space (see Figure 1.3). It must be apparent that a navigation 
problem in this sense is much harder to solve, almost always impossible in the absolute 
sense, due to an arbitrarily large increase in information content and thus a combinatorial 
explosion of possibilities.

AI for Generative Design

Given the formulation of main generative design tasks as mapping and navigating, we focus 
on a particular set of AI methods that are distinguished for their relevance for these tasks in 
high-dimensional design decision spaces. More specifically, within the spectrum of genera-
tive design methods (Nourian, Azadi, and Oval 2023), we focus on data-driven mapping and 
navigating strategies. As shown in Figure 1.4, for brevity, we will only focus on the data-driven 
approaches to design on the right-hand side of the spectrum. Despite the other possible 
applications of (different kinds of) AI in this generative design spectrum, such as 
Reinforcement Learning in Policy-Driven design (playing design games), approximation of 
evaluation functions in topology or shape optimization, and Expert Systems in grammatical 
design, our framework here is focused on the statistical AI paradigm. So we only discuss the 
purely data-driven approaches to generative design.

Two subtle issues must be noted here: first, instead of discussing the utility of the won-
drous application of generative models for the entertainment industry, we shall reflect on 
how the generative processes based on diffusion or dimensionality reduction can be 
controlled for attaining high-performance designs in an explainable manner. Second, model-
driven approaches to performance-based generative design (topology optimization in par-
ticular) based on first principles, are already utilizing something important from the realm 
of nature-inspired computing called Hebbian Learning, which is already in the scope of 
(statistical) AI. This point, although important, generally interesting, and relatively 
unknown, falls outside the scope of this chapter.

Figure 1.3  The duality of evaluation and derivation problems in generative design.
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Framework

The emphasis on the decision-making approach to design entails that design tasks can be 
formulated as a set of (typically unstructured) questions about the form and materialization/
construction of an object (a building) to be answered. In this chapter, we focus on the ques-
tions that pertain to form.

We propose a mathematical framework for generative design that relates multiple strands 
of work together. We use design space for referring to an ordered pair of two vector spaces: a 
decision space containing vectors or data points representing design configurations in the 
form of x ∈ (0, 1]n and a performance/quality space containing vectors or data points repre-
senting combinations of outcomes of interest in the form of o ∈ [0, 1]q.

The mathematical lens that we shall put on the issue is to redefine both of these notions to 
provide a much more specific and workable idea for discussing the utility or futility of apply-
ing AI to design problem-solving. It is hopefully easy for the reader to accept that a regular 
discretization of so-called design space (which is an unfortunately common misnomer, but 
here somewhat pragmatically useful) provides a straightforward and simple discretization of 
design decisions as vectors in the form of x : = [xi]n × 1 ∈ (0, 1]n or x ∈ {0, 1}n, where n is the 
number of discrete cells in the design space, in which virtually any conceivable shape can be 
constructed at a certain level of resolution. Without loss of generality, the decision variables 
are not necessarily spatial and can be assumed to be relativized float variables within the 
range of minimum and maximum admissible parameter values of the functions that together 
result in the shape and configuration of a building. Even if a multicolor (multi-label, multi-
functional) space is the subject of the design problem, then multiple categories/colors of 
such vectors can be seen together as a matrix of decision variables, in which rows of the 
matrix have to add up to 1 (see Figure 1.5).

Once this terminology is established, it is easy to observe that, in ML terms, the problem 
of performance-based design can be seen as two problems that are dual to one another: a 
multivariate regression problem for figuring out an approximation function that can map 
a few outputs to many inputs (referred here as mapping or the evaluation problem), and a 
pseudo-inversion problem for finding the combination of inputs that could result in desired 
output data points (referred to here as navigation or the derivation problem), as shown in 
Figure 1.3.

When approached as a data-driven problem-solving task, both problems are somewhat 
hard and impossible to solve in the absolute sense of the word, unless we think about them 
as loss minimization or approximation problems. The navigation/design problem is much 
harder than the mapping/evaluation problem. The main idea here is to advocate for training 
(fitting) meta-models (neural networks), to sets of sampled pairs of inputs and outputs, to 
first approximate a complex design space as a map between decision data points and perfor-
mance data points, and then find the pseudo-inverse of this map or navigate it in the reverse 
direction to identify designs (decision data points) that perform in a desired way. In other 
words, mathematically, we look at the performance-based design process as a pairing 
between a decision space and a performance space, where a map is conceptualized as a 
function f : (0, 1]n ↦ [0, 1]q) such that o =  f(x). The pseudo-inverse map is thus dubbed as 
f −1 : [0, 1]q ↦ (0, 1]n, such that x = f −1(o).

For brevity and generalizability to nonspatial design problems, we will focus on massing 
problems, and exclude colored configuration problems out of the picture momentarily (see 
Figure 1.5 for the distinction).
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Furthermore, by considering two abstract and high-level descriptions of a design task 
in our proposed regular discretization frameworks, we can formulate two mathemati-
cal tasks:

●● Mapping Design Spaces: Approximating the function that models the associations between 
the many input design variables and a few outcomes of interest.

●● Navigating Design Spaces: Approximating the inverse function that guides the generation 
of valid configurations in the decision space given desired data points in the perfor-
mance space.

Design Space Exploration

Here, we explain the mathematical meaning of the two dual problems that, together, can be 
called design space exploration tasks: mapping and navigation.

Mapping
The problem of mapping associations between a large set of independent input decision 
variables and dependent output performance indicators is key to performance-driven design. 
Any explainable and accountable design methodology should have the capacity to guarantee 
the attainment of some quality or performance indicators. From a mathematical and statisti-
cal point of view, we might prefer to have an explainable and interpretable model of such 
relations that can be fitted into our data, or ideally, a simulation model to predict outputs 
from input data. However, in some cases, especially where a multitude of diverse quality/
performance indicators are involved, and when one does not have an established basis for 
simulation modeling, statistical (data-driven) modeling seems to be the only option. And so, 
when the complexity of the model passes a certain threshold of nonlinearity and a multitude 
of inputs and outputs, we might prefer to trade interpretability for predictive power. That is 
exactly where ANNs as families of adjustable nonlinear functions stand out as viable func-
tion approximators. Training a network is practically a matter of minimizing a loss/error 
function by adjusting the parameters of a family of functions that are set out by the so-called 
architecture/structure of the ANN.

Even though this approximation is inherently nonlinear and global, it is illuminating to 
think of an alternative (locally) linear approximation based on the Jacobian Matrix. Suppose 
that o = f(x) : = [fk(x)]q × 1 = [fk([xi]n × 1)]q × 1 is a vector of multiple scalar functions of vector 
input variables. Then a basic idea of approximation is to approximate this function locally 
around an input data point by its Jacobian. This matrix operator gives the basis for a hyper-
plane equation that provides the n-dimensional Euclidean tangent space of the underlying 
function, similar to a multivariate regression hyperplane, although the latter would be fitted 
to the entire dataset.

Note that the ML task here would be a multivariate regression task in this case, that is, 
predicting the dependent given the independent variables. To understand the difficulty of 

the mapping, consider that the Jacobian matrix J : ,J f
x

fk i q n
k

i q n

T
q q 1

 would 

just provide the best local linear approximation of an otherwise globally nonlinear map from 
ℝn to ℝq, that is, n decision variables to q quality criteria or performance indicators.

The Jacobian approximation is numerically computable provided the underlying function 
is smooth and differentiable. For brevity, as commonly done, we have omitted the fact that 
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1  Augmented Computational Design12

the Jacobian can be evaluated at a certain input data point and that it is expected to be the 
best linear approximation of the function in question in the vicinity of that point. If we 
abbreviate the notation for the Jacobian as such a functional, then we can denote the approx-
imate linear function at any given data point as follows, using the first-order Taylor Series 
expansion: o x J x x x0 0x xo

 , or simply put, as o ≃ Jx, if we assume x to represent the 

vector of differences between the input data point with the center of the neighborhood.
The Jacobian approximation is also illuminating for another important reason: it allows us 

to approximate the Jacobian in a different sense, that is, in the sense of dimensionality/rank 
reduction using the Singular Value Decomposition (SVD) to see a clearer picture of the main 
factors playing the most significant roles in attaining the outcomes of interest; in other 
words, identifying the input variables to which the outcomes of interest are most sensitive. 
Even though we do not explicitly perform this operation in our demonstrative example using 
the SVD, it is still illuminating to see what SVD can do for this insightful approximation and 
dimensionality reduction for two reasons:

1. The SVD approximation of the Jacobian allows us to make a cognitive and interpretable
map of the most important causes of the effects of interest.

2. The SVD approximation of the Jacobian allows us to conceptualize a pseudo-inverse func-
tion to navigate the design space from the side of performance data points.

The SVD (low-rank) approximation of the Jacobian matrix can be denoted as below:

J U V: T

where, Uq × q ≔ [uk]1 × q and Vn × n ≔ [vi]1 × n are orthogonal matrices (i.e. UUT  =  Iq × q and 
VVT = In × n), and Σ is a matrix of size q × n with only p =  min {q, n} nonzero diagonal entries 
denoted as σc and called singular values, which are the square roots of the eigenvalues of 
both JTJ and JJT, sorted in descending order, see Martin and Porter 2012.

J u v

c r0,
c c c

T

where r ≤ p. It must be noted that the sum is not meant to be exhaustive; instead, the sum of 
the first significant terms achieves the purpose of dimensionality reduction of the decision 
space by showing a low-dimensional picture of the correlations between decision variables 
and their performance consequences. So, instead of decomposing the Jacobian up to p, we 
can choose to have a lower-dimensional approximation up to some arbitrary smaller 
number r.

Navigation
Navigating a high-dimensional design space from the side of the performance space toward 
the decision space for deriving design decisions (see Figure 1.3) is a very challenging task, 
almost always impossible in the absolute sense of solving the equation Jx = o, if the decision 
variables x are the unknowns.

It is easy to see that the Moore-Penrose pseudo-inverse of the approximated Jacobian 
matrix can be computed as a matrix of size n × q by easily using the SVD factorized matrix:

J V U† †: T
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where, Σ† is simply formed as a diagonal matrix of size n × q with the reciprocals of the singu-
lar values. Similarly, the approximate pseudo-inverse of the Jacobian can be computed as:

J v u†


c r
c c c

T

0

1

,

However, in the same way, a minimal-loss approximate solution exists for such equations 
when the matrix is rectilinear, J†o is expected to be the least-square solution to the linearized 
Jacobian approximation of a navigation problem. Even though the system might theoreti-
cally have a solution, the odds of finding a unique solution are practically very skewed 
toward having an indeterminate system with many more inputs than outputs, and thus the 
system will have many approximate solutions rather than a unique exact solution.

This is of course in line with the intuition of most human beings about the inherent diffi-
culty of design problems for which there is no unique solution. Note that in all these theo-
retical treatments, we implicitly assumed that all data points within the decision space 
correspond to valid designs, whereas, in reality, it might be more difficult to ensure finding 
valid solutions (feasible in the sense of complying with constraints), rather than good solu-
tions. In other words, constraint solving tends to be more difficult than optimization within 
a feasible region of the decision space.

Spatial Design Variables

If the question of the design problem directly pertains to the shape of the configuration of an 
object, we can still construct decision variables to be handled within the proposed frame-
work for mapping and navigating design spaces.

The idea of bringing spatial decision variables in a generative design process is to consider 
first the nature of the objects being designed as manifolds, that is, locally similar spaces 
(homeomorphic) to Euclidean spaces of low dimensions (2D planes or 3D hyperplanes), but 
globally more complex, possibly having holes, handles, and cavities (shells). Three types of 
these manifolds are of special interest for generative design, such as those that conduct walk 
flows (explicit or implicit pedestrian corridors in buildings and cities), light flows (rays of 
sunlight, sky-view, or other visibility targets), and force flows in structures. Our conceptual 
framework proposes that these flows are conducted within spatial manifolds, as below:

1.	Walkable Space Manifolds (2D): Conduct walks (accessibility questions)
2.	Air Space Manifolds (3D): Conduct light rays (visibility questions)
3.	Material Space Manifolds (3D): Conduct forces (stability questions)

This consideration allows us to see that the way this object is supposed to function is largely 
determined by how this manifold is configured in that the way the manifold in question 
conducts the flows of walks in a walkable floor space, flows of light rays in a visible air space, 
or flows of forces in a reliable material space. Thus, we can highlight the specific concept of 
flow in a network representation, which is dual to the discrete representation of a manifold, 
as an unambiguous alternative intermediary instead of any vague notion of function to study 
and measure.

Apart from mathematical elegance, this approach also provides multiple computational 
advantages that are very much in line with the recent advancements in the field of genera-
tive models in AI. In a nutshell, the discrete representation of the so-called design space 
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1  Augmented Computational Design14

provides a workable representation of not only all possible forms but also some inherent 
functional properties of the represented manifold that should logically determine how it 
could function as a building or a structure. The manifold representation can be mathemati-
cally denoted as a polygon mesh of vertices, edges, and faces  V E F, ,  (for a two-

manifold), or a polyhedral mesh of vertices, edges, faces, and cells  V E F C, , ,  that can 
have a dual graph representation in the form of Γ = (N, Λ).

This description should principally sound natural if we articulate the purpose of a design 
task as follows: finding the ideal form (configuration and shape) of a manifold to conduct 
some flows in a desirable pattern. In this way, we are diverting our attention from the con-
tainers of space (the building) into what it contains (i.e. the space and its spatial configura-
tion). This change of focus allows us to see the direct correspondence between the so-called 
form and function of a design or, better put, the form (i.e. configuration and shape) and the 
expected quality/performance of a spatial configuration.

In what follows, we will go much beyond the vector data inputs consisting of only numeri-
cal variables, especially in the context of our illustrative example. In fact, without loss of 
generality, the ideas of mapping and navigating design spaces in an approximate sense go 
beyond decision variables pertaining to continuous decision variables and those pertaining 
to the spatial configuration and geometric shape of spatial manifolds. The same ideas can be 
applied to design problems that are about decision-making in a much more general sense, as 
discussed above. Note that the illustrative example that we have demonstrated at the end of 
the chapter has a heterogeneous mix of spatial and mostly nonspatial decision variables as 
well as a mix of categorical and numerical decision variables.

Statistical Approaches to Design

Among the statistical approaches to design, we can distinguish the possibilistic approaches 
from the probabilistic ones.

●● Probabilistic approaches: BBN, Variational Auto-Encoders (VAE), and Diffusion Models
●● Possibilistic approaches: Markovian Design Machines and Fuzzy Design (see MAGMA below)

Possibilistic Approach
The essence of the possibilistic approach to design using a multivalued or nonbinary logic 
framework for making design decisions, typically in the sense of making discrete choices 
about discrete segments of space; for example, the Markovian Design Machines of Batty 
(1974), the Spatial Agents Academy of Veloso and Krishnamurti (2020), and Multi-Attribute 
Gradient-Driven Mass Aggregation (MAGMA) through Fuzzy Logic, as introduced briefly in 
Nourian (2016) and Soman, Azadi, and Nourian (2021). Both of these methodologies apply 
nonbinary logic from a possibilistic point of view, in the sense that they take design inputs 
that are valued in the range of [0, 1] but treat them as possibility measures rather than prob-
ability measures. The two big ideas behind these two methods are the utilization of Markov 
Chains, Markov Decision-Processes, and Fuzzy T-Norms for coping with uncertainty and 
human-like reasoning in simulated negotiations between spatial agents.

Probabilistic Approach
The probabilistic models briefly mentioned here are all related to the concept of conditional 
probability, the Bayes’ theorem, and (generalized) stochastic processes that resemble Markov 
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Chains (Weng 2021; Nourian 2016). In a nutshell, the core of these models is about updating 
some posterior probabilities, indicating beliefs about the truth of some statements by prior 
probabilities multiplied by the likelihood of compelling evidence, scaled by the probability 
of the existence of the evidence. When probabilistic neuron-like nodes in PGM are com-
bined, these new posterior probabilities or probability distributions can be fed into other 
layers of a network to create ANN architectures. A basic idea here is to gradually reduce the 
dimensionality of input data into an abstract low-dimensional representation (encoding, or 
mapping, albeit into a typically unintuitive and interpretable latent space), and then gradu-
ally use the inverse of the forward diffusion-like processes to denoise a vector in the 
low-dimensional hidden space. The latter process is called denoising or decoding, and it 
matches our description of navigation processes, albeit without direct control of the mean-
ing of the latent space vectors. A breakthrough in this domain can come from enhancing the 
explainability of the latent space low-dimensional representations. This idea, however inter-
esting, falls way outside the scope of this short treatise. Therefore, here we only provide a 
theoretical minimum for understanding the demonstrative example (i.e. a shallow BBN).

Demonstration

In this section, we will present a demonstration of the utility of the proposed framework to 
indicate how a discrete decision-making approach can facilitate generative design processes. 
As a disclaimer, it must be noted that this example is not chosen for technical reasons related 
to AI but rather due to its real, societal, and environmental importance for policy analysis 
concerning energy transition planning actions at the country level and sustainability strate-
gies at the building level.

Case Study

Understanding the energy performance of architectural designs is crucial in ensuring a sus-
tainable future. Building Energy Modeling (BEM) is a multipurpose approach used by 
designers and policymakers for checking building code compliance, certifying energy per-
formance, subsidy policymaking, and building management. The Dutch government has 
recently introduced the NTA 8800 calculation model for quantitatively determining the 
energy performance and code compliance of buildings (“NTA 8800” 2022). The NTA 8800 
aims to provide a transparent, verifiable, and enforceable building energy performance 
model, based on the European Energy Performance of Buildings Directive (EPBD), the 
European Committee of Standardization (CEN), and the Dutch Normalization Institute 
(NEN) published standards (“Nen 7120+C2:2012/A1:2017 NL” 2017). These regulations 
describe methods to calculate the energy performance of buildings, set energy requirements 
for new buildings, and make agreements about energy label obligations in existing buildings. 
The NTA 8800 only concerns building-related measures, as expressed in the EPBD, Annex A 
(Union 2021).

The NTA 8800 document has been implemented as an MS Excel tool by the Dutch govern-
ment (commissioned by Nieman B.V. consultants). This calculation model translates the 
public European standard document into a calculation tool. The calculation tool is not pub-
licly available, and it is not documented. Since we were given temporary and bounded access 
to this model, we chose to approximate it and construct a meta-model. The model consists of 
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1  Augmented Computational Design16

269 unique input parameters about the spatial and technical building design configurations, 
based on which the model returns three scalar response values about the energy perfor-
mance of the building design: BENG 1 (maximum permissible energy demand in kWh/m2y), 
BENG 2 (maximum permissible primary energy consumption in kWh/m2y), and BENG 3 
(minimum permissible share of renewable energy use as a percentage). The acronym BENG 
refers to national performance indicators for Nearly Zero-Energy Buildings (Bijna Energie 
Neutrale Gebouwen in Dutch).

The NTA 8800  model has three main limitations: (1) it can only process and compute 
information about a single specific scenario at a time; (2) it returns scalar values about the 
energy performance that is untraceable to input parameters; and (3) missing input values 
could result in errors or nonrealistic response values. These three limitations make the 
model impractical for designers and policy analysts, particularly in the early stages of design. 
This impracticality is because, in conceptual design and policy analysis, designers need to 
(1) explore and iterate various options simultaneously; (2) need feedback on the degree of 
influence of each design decision; and (3) cannot provide detailed information yet about 
later-stage design choices, such as the technical systems.

The framework of ACD is particularly useful here as it allows us to relate the aggregated 
performance changes of the few NTA 8800 outputs of interest to the changes in the many 
design decision parameters of its input. In this particular case, we adopt a probabilistic meta-
modeling (function approximation) approach based on the methodology suggested by Conti 
and Kaijima (2021).

Methodology

Meta-Modeling
Meta models are models that describe the structure, behaviors, or other characteristics of 
related models, providing a higher-level abstraction for constructing and interpreting com-
plex numerical models that approximate more sophisticated models often based on simu-
lations. A meta-model serves as a simplified, computationally efficient model of the model 
(Conti and Kaijima 2021), also referred to as a surrogate model (Kleijnen 1975). The pro-
cess of creating a meta-model is referred to as meta-modeling (Gigch 1991). Some alterna-
tive meta-modeling techniques include interpolation methods, such as spline models 
(Barton 1998), polynomial regression (Kleijnen, n.d.), or Kriging (Ankenman, Nelson, and 
Staum 2010).

Within the ACD framework, such meta-models provide structured ways to perform the 
two most important tasks of the generative design: mapping and navigation.

In general, a standard meta-model can be described as: o  =  f(x) ≃ g(x), where o is the 
aggregated simulation response, f denotes a computational simulation-based model concep-
tualized as a vector function, and g is the approximated model function (see Figure 1.3.) 
With this notation, the objective of meta-modeling is to build g in such a way that it produces 
reasonably close values of o. In the case of ACD, meta-modeling can be adopted as a meth-
odology of design mapping that provides a differentiable and ideally reversible g that can be 
used in the navigating process. In other words, the meta-modeling should structurally relate 
the choices and consequences in such a way that the choices can be derived from the desired 
consequences; hence, providing a data-driven basis for generative design. The next part dem-
onstrates a probabilistic meta-modeling approach to navigation tasks in high-dimensional 
design decision spaces, based on the methodology introduced by Conti and Kaijima (2021).
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Bayesian Belief Networks
A BBN is a kind of PGM that is effectively an ANN in the form of a Directed Acyclic Graph 
(DAG) with neuron-like nodes that can compute Joint Probability Distributions (JPDs) from 
input probability distributions or discrete Probability Density Functions (PDF), which is then 
attributed to an output probability distribution through a Conditional Probability Distribution 
(CPD) computing posterior probabilities/beliefs through the Bayes’ theorem, hence the name 
Bayesian. The set of edges in a BBN forms the model architecture or structure that represents 
the particular probabilistic dependencies between discrete probability distributions attributed 
to the starting and ending nodes (Figure 1.6). This structure is typically set by the modeler 
based on their knowledge of the process, while the CPDs (transition probability matrices) are 
learned from experimental data. BBNs can help us semiautomatically reason about uncertain 
knowledge or data (Peng, Zhang, And Pan 2010). This makes it possible to perform probabil-
istic inference, such as computing the JPDs of some outputs (effects) given some inputs 
(causes). The name of these ANN comes from the idea of updating beliefs or hypotheses 
posterior to observing evidence; more precisely, utilizing Bayes’ theorem for updating condi-
tional probabilities in network structures, in a fashion similar to modeling and evaluating 
Markov Chains, with the difference that Markov Chains operate as uni-partite networks, each 
neuron in a BBN is a bipartite network coupled with an outer product calculator.

The neurons in a BBN consist of two layers. The first layer can be dubbed as a presynaptic 
layer that combines input discrete probability distributions (through an outer product) and 
forms a JPD and then flattens the JPD to form a vector-shaped probability distribution. The 
second, that is, the synaptic layer is a CPD, practically a rectangular probability transition 
matrix that maps this flattened JPD to the output probability distribution. A BBN then con-
sists of such neurons connected in a DAG. Training a BBN means finding the entries of the 
CPD in such a way as to minimize the loss in the recovery of the output probability distribu-
tion from the input distributions. The appeal of BBNs is twofold: first, they allow the inclu-
sion of expert knowledge and intuition into the network’s architecture, and second, training 
of the network makes the network adapted to the objective data. In this case, we limit the 
architecture of the network to a single layer of neurons to keep the network invertible.

Workflow
Research by Conti and Kaijima (2018) illustrates the four process steps involved in develop-
ing a BBN meta-model. In this use case, we alter this methodology as creating a BBN with all 

Figure 1.6  An illustrative example of a Bayesian Belief Network, eliciting the nature of nodes and 
the network architecture, an example inspired by Beaumont et al. (2021).
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269  input parameters is infeasible. We add an intermediary step of sensitivity analysis to 
identify the most influential input parameters before constructing the BBN. Thus, we follow 
these steps in order (see Figure 1.7): (1) sample the input parameter space, (2) run simula-
tions to generate the output values, (3) sensitivity analysis and selection of influential input 
parameters, (4) train the BBN, and finally, (5) evaluate the model’s robustness. As high-
lighted by Conti and Kaijima (2021), it is important to model a shallow BBN as a complete 
bipartite graph connecting all input nodes to all output nodes, effectively limiting the topol-
ogy to two layers. This would allow us to make a reversible approximation that can be used 
to derive the necessary input configuration for any desired performance output. Additionally, 
the fixed values can also include some of the input variables turning them into design 
constraints.

Step 1: Sampling the Parameter Space
We need to set up a Design of Experiment (DoE), to generate simulation data to study the 
relationships between various input variables and output variables (Hicks 1964). This experi-
ment involves running several simulations at randomized input configurations (Sacks 
et  al.  1989). Before running the simulation, it is important to carefully select a sampling 
method, to determine these input configurations, since the chosen strategy influences the 
quality of the meta-model (Fang, Li, and Sudjianto 2005). Since it is assumed that the deci-
sion space is unknown, the intention is to be as inclusive of all regions of the decision space 
as possible. The sampling algorithm should generate a well-varied response dataset that cap-
tures all the information about the relationships between the input parameters and responses. 
In this study, 20,000 quasi-random input samples were generated based on Sobol’s sequences 
(Sobol’ 1990) to ensure sample homogeneity.

Step 2: Run NTA 8800 Simulation Model
Vectorization is an important part of the ACD; we represent decision variables and outputs of 
interests as vectors (See Section Framework) Each sample point can be interpreted as a vector 
of scalar input values, x. Each batch of such vectors is fed into the NTA 8800 model to generate 
the vector of corresponding building performance outputs, o. After running the primary simu-
lation model for the sampled input data points, the response data is collated and linked to the 
input samples to form an input–output dataset for regression modeling (as in ML).

Step 3: Sensitivity Analysis
The creation of a meta-model from 269 parameters, each with scalar input values, requires a 
simulation of all possible combinations (the number of options to the power of 269). Even 
limiting the number of options for each parameter to two, results in an immense number of 
possible combinations, calculated at 5.39 × 1080. To contextualize the magnitude of this num-
ber, it is more than the estimated number of atoms in the observable universe.

The sheer magnitude of this number makes storage and training of BBNs infeasible. 
Therefore, in this study, we use global sensitivity analysis to apportion the uncertainty in 
outputs to the uncertainty in each input factor over their entire range. This allows us to 
remove the parameters with the lowest influence on energy performance. The sensitivity 
analysis method is implemented in the workflow based on the SALib library (Herman and 
Usher 2017).

This results in a meta-model with 15 parameters instead of 269, making it feasible to store 
and train the BBN; however, reducing the accuracy and scope of the model. However, the 
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1  Augmented Computational Design20

most influential 15 parameters are responsible for 90.45% to 92.30% of the final energy per-
formance score. Hence, we decided on the inclusion of the 15 specific parameters to con-
struct the BBN meta-model.

Step 4: Build a BBN Meta-model
Building a BBN meta-model is a process of associating the probabilistic relationships of 
inputs and outputs. These relationships may be characterized by a high degree of nonlinear-
ity and possibly multiple interactions and correlations between model parameters. 
Consequently, there are two main steps in this process: (1) learning the network topology as 
a DAG structure and (2) estimating the CPD attributed to the neuron-like nodes of the 
network.

In this demonstration, we adhere to a particular network topology to ensure the reversibil-
ity of the trained model (Conti and Kaijima 2021). Accordingly, this BBN has only two layers: 
one corresponding to the input and one corresponding to the output. However, effectively, 
only a single layer of neurons operates in the middle of these two layers. In this case, the 
selected parameters from the sensitivity analysis results are represented by the input nodes, 
and the BENG 1, BENG 2, and BENG 3 parameters are the output nodes (see Figure 1.8). 
Therefore, we skip the topology learning step in the conventional BBN modeling because the 
topology of this particular network is assumed to be a complete bipartite DAG. In particular, 
we use the pgmpy Python package to model the network topology (Ankan and Panda 2015).

The next step is to estimate the CPDs for the nodes from the input–output dataset. The 
CPDs for the nodes can be directly learned from the input–output simulation data generated 
in steps 1 and 2, using the Maximum Likelihood algorithm. Additionally, we discretize each 
variable range into a fixed number of intervals. All numerical input distributions generated 
using a space-filling approach, such as Sobol’s sequence or Latin Hypercube, are sampled 
based on continuous ranges, and should therefore be discretized. Discretization is done by 
dividing the parameter interval over a fixed number of ranges between the minimum and 
maximum values.

Figure 1.8  The single layer BBN: Right: BENG 1, BENG 2, and BENG 3 parameters are the output 
nodes; Left: Most sensitive input parameters as input nodes.
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Step 5: Validating the Meta-Model
To assess how our trained BBN approximates the original NTA 8800 model, we use a cross-
validation approach in combination with Normalized Root Mean Square Error (NRMSE) 
and Mean Absolute Percentage Error (MAPE) (James et al. 2013). The cross-validation splits 
the generated input–output dataset (step 2) into a training set and testing set before building 
the BBN (step 3). The BBN is trained on the training set and assessed based on the testing set. 
However, to obtain a more reliable estimate of the model’s performance, the dataset is split 
into several subsets or folds, with each fold used as both a training set and a testing set. This 
research adopts a k-fold cross-validation technique, where k refers to the number of groups 
that the data set is split into. We set k = 10 based on experimentation to ensure a low bias and 
a modest variance. The model is then trained on k − 1 of the folds, and the remaining fold is 
used for testing. This process is repeated k times, with each fold used for testing once. The 
model’s performance is then evaluated by averaging the performance across all k runs.

Following the approach suggested by Conti and Kaijima (2021), we computed the mean 
difference of the predicted and actual output values and normalized the RMSE values by 
dividing standard deviation to achieve NRMSE.

To calculate the accuracy of the meta-model, it is recommended to use multiple metrics to get 
a comprehensive evaluation of the model’s accuracy. Hence, NRMSE is combined with the 
MAPE metric. MAPE measures the average absolute percentage difference between predicted 
and actual values. It is a measure of the magnitude of the errors in the model’s predictions. Lower 
NRMSE and MAPE values indicate better model performance. The larger the error between the 
two, the higher the NRMSE and MAPE values will become. Therefore, the NRMSE and MAPE 
results will indicate how dispersed the prediction data is compared to the actual model response.

Results

This section presents the numerical results obtained from the experiment of NTA 8800 
meta-model.

BBN Validation Results

Here, we elaborate on the results of the cross-validation technique in combination with 
NMSRE and MAPE based on the test dataset (s = 1100). The interpretation of what is consid-
ered an acceptable NRMSE and MAPE score depends on the specific problem and the con-
text in which the meta-model is being used. In general, it is recommended to compare the 
NRMSE and MAPE scores of the meta-model with the baseline models and state-of-the-art 
models in the field. This can provide a benchmark for what is considered acceptable perfor-
mance in the specific context of the problem.

In our case, the BBN does not compete with other models but rather competes with con-
sulting building energy specialists in estimating building energy performance in the early 
design stages. However, to assess the proficiency of our model in capturing the underlying 
relationships using solely the 15 selected parameters, we employ the following benchmarks: 
The NRMSE values should be in the range of (0.20 % , 0.60%) for the baseline, and in the 
range of (0.10 % , 0.30%) for state-of-the-art (Bui et al. 2021) models. The MAPE values should 
be in the range of (0.10, 0.30) for the baseline, and in the range of (0.05, 0.15) for state-of-the-
art models (Khan et al. 2021).
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The NRMSE for the trained BBN are 0.82%, 1.52%, and 0.47% for BENG 1, BENG 2, and 
BENG 3, respectively. This indicates that, except for the BENG 3 indicator, the model’s pre-
dictions are not accurate enough. The MAPE values for the trained BBN for BENG 1, BENG 
2, and BENG 3 are 0.35, 0.28, and 0.33, respectively. This indicates that the predictions of the 
model are on the upper threshold of being acceptable as baseline models. The absolute pre-
diction difference can be seen in Figure 1.9.

Toy Problem

Here, we present a test case that demonstrates the effectiveness of the BBN meta-model in 
building design. The study involves two toy problems that showcase the advantages and 
utilization of the meta-model. The toy problems address two common design challenges that 
cannot be solved using the currently available tools, such as the NTA 8800. The first problem 
involves predicting the BENG 1 energy performance of a typical Dutch dwelling during the 
early design stage. The spatial characteristics of the building are fed to the meta-model. As 
output, the meta-model returns a range and the confidence level of that range.

In this toy problem, the meta-model predicts the BENG 1 value to be within the range of 
(0 − 50) kWh/m2. y, with a 100% confidence level (see Figure 1.10). To validate this result, we 
cross-checked the predicted result with the final configuration of the dwelling using the 
original NTA 8800 model. The NTA 8800 model returns a value of 39.8 kWh/m2. y, confirm-
ing the prediction capability of the meta-model.

The second problem reverses the first problem and involves the ex-ante determination of 
the most probable design configuration that satisfies a specific energy performance goal. In 
this example, the BENG 3 value of a typical Dutch dwelling design (35%) does not satisfy the 
minimal requirements (50%). Since this problem arises in the final design stage, some input 
parameters can no longer be changed. In this case, architects and engineers are limited to 
modifying only the area (AreaPV) and power (PPV) of the PV panels. Since the minimum 
required performance goal for BENG 3 is 50%, we set the goal value to a range of 60 − 80%. 
Given the binning approach employed, it should be noted that the AreaPV value of 5 depicted 
in the figure corresponds to a range of [40,50]m2, while the PPV value of 5 corresponds to a 
PV Power range of [200,250] W/m2. Accordingly, the meta-model advises increasing the PV 
area to [40,50] m2, and the PV power to [200,250] W/m2 (See Figure 1.10).

This discretization allows a clearer representation of the recommended parameter values 
within the specified ranges, facilitating the interpretation and practical implementation of 
the BBN meta-model outputs. Since these ranges are the maximum of both scales: the meta-
models advise can be interpreted as maximizing the PV area and PV power to reach the goal 
BENG 3 value of 60% to 80%.

Discussion

In the end, to validate this result, we finish the loop by calculating the final configuration of 
the dwelling with the original NTA 8800 model. The NTA 8800 returns a value of 71%, con-
firming the reverse inference capability of the meta-model. These results, illustrated in a 
simple and digestible example, show how the BBN meta-model is capable of providing valu-
able insights and assisting architects and engineers in navigating the multidimensional deci-
sion space.
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By using the numerical DoE and Sensitivity Analysis, we are effectively conducting a 
dimensionality reduction task, similar to the low-rank SVD as introduced before. As men-
tioned earlier, the mention of this particular approach of ACD was to illustrate the utility of 
the framework with a concrete example in a societally relevant context where a ML approach 
to modeling can help make an otherwise very complicated simulation procedure to be 
approximately scaled up massively for policy analysis. Here, we discuss the potentials and 
shortcomings of the model and note the issues with this large-scale black-box approximation 
that require further investigation.

The existence of categorical variables in the inputs of the BBN limits the general applica-
bility of ACD as it affects the smoothness and differentiability of the underlying function 
that is being approximated. However, for pragmatic reasons, we have ignored this issue to 
demonstrate the idea in a large-scale case.

Validation results
Compared to the NTA 8800, the Bayesian meta-model is capable of capturing the most 
important relationships between inputs and outputs. However, the difference between the 
meta-model’s predictions and the NTA 8800 predictions can be rather high. This means that 
there is a large difference between the output of the meta-model and the NTA 8800. The 
NRMSEs of BENG 1 (0.82%) and BENG 2 (1.52%) show that the BBN is able to follow the 
NTA 8800 to some extent but is far from accurate, as NRMSE is greater than 0.5%. On the 
other hand, the model could predict BENG 3 (0.47) relatively accurately. This insufficient 
accuracy was expected as we have dictated a particular topology on the BBN while learning 
the network structure is an important step in constructing BBNs. This decision was made to 
enable the model to function in a bidirectional way: inference and reverse inference (i.e. 
evaluation and derivation in the terminology of our ACD framework).

Forward Inference
The trained BBN is now capable of inferring the outputs of interest given certain input con-
figurations. This inference uses the learned CPDs to predict the most likely values for the 
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outputs. In this way, we can predict the energy performance of buildings, in a quick and 
intuitive way for ex-ante assessment based on a certain design configuration. In particular, 
this inference demonstrates the potential of a mapping described in Section 3.

Backward Inference
Since our BBN had only two layers in its network, it can be reversed. This means that, instead 
of presenting evidence to it, we can present the desired performance values and ask for the 
derivation of the particular configuration of inputs that will produce such an output. This 
can be done through the Variable Elimination module of the pgmpy (Ankan and Panda 2015). 
The same is also true for a combination of given inputs–outputs, meaning that evidence can 
be given for both inputs and outputs of the BBN. In such cases, the given inputs can also 
function as design constraints. The reverse inference demonstrates how we can utilize prob-
abilistic models to navigate a decision space as explained in Section 3.

Augmenting
The Bayesian meta-model is capable of representing the input–output relationships in a bidi-
rectional and probabilistic format, illustrating a complete example of mapping and navigat-
ing processes. However, the use of a subset of the most influential variables of the NTA 
8800 limits the navigation to decision space made of the selected variables. Nevertheless, this 
selection was necessary to manage the computationally resource-intensive task of learning. 
Therefore, BBN does not compete with, or mimic the NTA 8800 model; rather, it comple-
ments it by increasing its accessibility and providing navigation capabilities. The result is a 
model that can augment the designers’ intuition or experience and enhance the level of 
accuracy even in otherwise vague processes of policy formulation; for example, in assessing 
the potential efficacy of alternative subsidies and incentives for building renovation aimed at 
sustainable energy transition.

Outlook

The ACD framework and its constituent concepts can be best positioned within the context 
of performance-driven computational design and generative design. In particular, the idea 
of approximating complex and nonlinear functions for estimating measurable performance 
indicators from configurations of decision variables, even if referring to nonspatial decision 
variables, is generalizable to all areas of computer-aided design. However, such surrogate 
models are not to replace simulation models based on first principles, as they cannot match 
their transparency and explainability. Nevertheless, in cases where one needs to estimate the 
effects of design decisions on human factors, ergonomics, or combinations of many different 
types of governing equations, an estimation model trained from actual data can be of utility 
in that it provides a basis for comparisons in the absence of analytical knowledge. In other 
words, the utility of ANNs for mapping associations between decision data points and per-
formance data points is apparent.

The navigation problem, on the other hand, is much harder, philosophically, technically, 
and mathematically for being solved in any sense. The real advantage of an AI framework in 
dealing with a design space navigation problem can be attained if the latent space of the 
model reveals interpretable information or if it is at least coupled with a sensible low-
dimensional space. If the latent space of, for example, an Auto Encoder (Marin et al. 2021) is 
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understandable as a low-dimensional vector space (as an endpoint of the mapping and the 
start point of the navigating processes), it can be used not only to guide the navigation pro-
cess but also to gain insight into which design variables are more important in determining 
the attainment levels of outcomes of interest. In other words, even though it appears that in 
the mapping process, the information content of the decision data points is gradually reduc-
ing, one can think of this process as a distillation of an elixir from a large data point that 
makes the information richer from a human perspective.

In light of this, the major advantages of the proposed framework are twofold: First, it pro-
vides an elegant framework for applying AI in computational design in the presence of many 
complex quality criteria; and second, it provides an elegant framework for designing spatial 
manifolds very much like the methodology of electrical engineering in designing electronic 
circuits and systems for signal processing. The latter point requires much more space for 
discussing the theoretical minimum for such an approach to design from a signal processing 
standpoint. In short, however, we can briefly mention that the idea of defining a central 
representation of a configuration as a discrete manifold provides for directly modeling the 
functionality of the spatial manifold with respect to the flows of walks, light rays, or forces 
not only from the point of view of spatial movement but also much more elegantly and effi-
ciently in the frequency or spectral domain (which can be attained using Discrete Fourier 
Transform or Spectral Mesh Analysis). One fundamental idea of analog circuit design from 
a signal processing point of view is that of designing passive “filters,” whose properties can 
much better be understood in the so-called frequency domain analyses put forward by 
Fourier and Laplace transforms of the so-called transfer functions of the Resistor, Self-
Induction Loop, Capacitor (RLC) circuits. This approach to circuit design can be traced back 
to the ideas and propositions of Oliver Heaviside (1850–1925), a self-educated pioneer of 
electrical engineering. Arguably, this frequency-based outlook, relating to the spectrum of 
eigen frequencies of vibration of shapes (also identifiable as a spectral approach), has revo-
lutionized the formation of the field of electronics and thus contributed significantly to the 
development of AI as we know it today. Identifying spectral latent spaces and associating 
them with low-dimensional performance spaces and latent spaces of ANNs is a topic that 
calls for further theoretical research and computational experimentation.

Acronyms

Acronym Term

ACD Augmented Computational Design

AEC Architecture, Engineering, and Construction

AI Artificial Intelligence

ANN Artificial Neural Networks

BBN Bayesian Belief Networks

BEM Building Energy Modeling

BENG Bijna Energie Neutrale Gebouwen: Nearly Zero-Energy Buildings

BIM Building Information Model

CAD Computer-Aided Design
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Acronym Term

CEN Comité Européen de Normalisation: European Committee of 
Normalization

CPD Conditional Probability Distribution

DAG Directed Acyclic Graph

DoE Design of Experiment

EPBD European Energy Performance of Buildings Directive

JPD Joint Probability Distributions

MAPE Mean Absolute Percentage Error

MAGMA Multi-Attribute Gradient-Driven Mass Aggregation

ML Machine Learning

NEN Nederlandse Norm: Royal Dutch Standardization Institute

NRMSE Normalized Root Mean Square Error

NTA 8800 Nederlandse Technische Afspraak (Dutch Technical Agreement)

PDF Probability Density Functions

PGM Probabilistic Graphical Models

SVD Singular Value Decomposition

VAE Variational Auto-Encoders

Notations

Notation Name Definition

x Design/decision space x ∈ (0, 1]n; each xi corresponds to a single 
spatial decision variable

o Performance space o ∈ (0, 1]q; each ok corresponds to an 
objective or outcome of interest

o = f(x) ≔ [fk(x)]q × 1 Map from design to 
performance

f : (0, 1]n ↦ [0, 1]q; representing a meta-
model that approximately maps the 
decision space to the performance space

x = f −1(o) Map from performance to 
design

f −1 : [0, 1]q ↦ (0, 1]n; pseudo-inverse of a 
meta-model that approximately maps the 
performance space to the decision space

J ≔ [Jk,i]q × n Jacobian matrix of f
J f

x
fk i q n

k

i q n

T
q q, 1

Uq × q ≔ [uk]1 × q Matrix of left singular 
vectors

UUT = UTU = Iq × q; ordered by 
importance

Vn × n ≔ [vi]1 × n Matrix of right singular 
vectors

VVT = VTV = In × n; ordered by importance

Σq × n ≔ [uk]1 × q Matrix of singular values Σ is an q × n rectangular diagonal matrix 
with non-negative real numbers on the 
diagonal ordered by importance, i.e. 
singular values σc, c ∈ [0, min {q, n})
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