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1
Introduction

The intricacies of modelling human behaviour in manually controlling a dynamic system have posed

significant challenges, despite extensive research and progress in the past decades. Traditional system

identification methods often fall short in accurately representing the human pilot. The human pilot is

recognized as a nonlinear adaptive system, continuously adjusting based on the system’s characteristics,

environmental conditions, and numerous unquantifiable human variables.

Creating a comprehensive mathematical model of the human pilot is inherently challenging due to the

complex, nonlinear, and adaptive nature of human behaviour. While qualitative and descriptive models,

such as the skills, rules, and knowledge model proposed by Rasmussen [14], offer valuable insights, they

are unable to provide the quantitative precision needed for a thorough understanding of the human-pilot

system in a control task. Pilot models based in control system theory are necessary to accurately predict

the human pilot’s input during a control task.

Accurate pilot control modelling is crucial for several reasons. It allows for the analysis of the complete

aircraft-pilot system, providing insights into aircraft pilot couplings (APCs) and pilot-induced oscillations

(PIOs). Such modelling is essential for developing better-tailored human-machine interfaces (HMIs),

including improved guidance systems that enhance overall flight safety and efficiency.

Historically, quasi-linear models have shown to be highly effective in identifying pilot characteristics.

The crossover model proposed by McRuer [15] is among the most prominent models and able to predict

the pilot’s dynamic response given a control task with sufficient accuracy for many applications. This

model approximates the neuromuscular system (NMS) and the manipulator using second-order dynamics

and an effective time delay, and gives some guidance on equalization in the overall pilot-vehicle system.

The precision model, meant to give further detail on the internals of this equalization and an estimation of

the internal dynamics, models feedback in only the visual channel. This model does not provide detailed

information on the internal mechanics of how and why this equalization occurs, and of relevance to this

report, it does not explicitly account for proprioception by the human pilot, which is known to impact control

behaviour [4]. There is no feedback path representing the force applied to the stick, nor the displacement

to the human brain, and the model suggests that the pilot fully relies on only their visual senses for

control. Such a model falls short in describing the human pilot dynamics taking into account the underlying

structure and physiology. Experiments by Magdaleno et al. [13] demonstrated that pilots perform better

with manipulators restrained by a spring, highlighting the potential impact of mechanical properties on pilot

performance.

Hess’s structural model was a significant attempt in this direction, incorporating elements of proprio-

ceptive feedback to propose an additional internal loop responsible for equalization, assuming a more

limited role for visual feedback [7]. This model has been reasonably successful in explaining human

control adaptation with physiology in mind. Bachelder suggested some improvements to the structural

model based on experimental data [9]. His experiments were limited, however, by both the limited sample

size (N=1) and the equipment utilised. He later suggested a more generalized model that accounts for

equalization to a much better capacity in both the visual and proprioceptive channels, using an optimization

algorithm for parameter estimation [11] [16].

3



4 Chapter 1. Introduction

The goal of this project is to investigate the potential contribution of proprioceptive feedback towards

equalization. Previous models, including the structural model and Bachelder’s modified model, will be

analysed to discover the most accurate model that can be used to simulate the pilot-aircraft system, keeping

human physiology in mind and getting results that match experimental data.

This report reviews the models for proprioception in the context of the human pilot performing a

manual control task that have been theorized and utilised, and aims to evaluate which models both

reflect an accurate pilot-aircraft control loop, as well as representing an informative physiological model of

proprioception in the human pilot.

To that goal, the research question of the thesis is presented.

Can Proprioceptive Feedback account for equalization in the human pilot model?

1. Can a proprioceptive inner loop equalization account for pilot control adaptation to the

degree established by the crossover model?
2. Is a model simulating equalization through proprioceptive feedback mathematically possible

and physiologically plausible?
3. Can such a model be validated by experimental data, and provide an explanation for

human control behaviours?

Research Question

This report, looking at possible models based in human physiology (Chapter 2) discusses the literature

available on various models used to model the human pilot in a manual control task, with a focus on

proprioception. This review establishes guidelines on how these questions can be answered, setting up

guidelines for the physiological characteristics of the operator already studied in the past, as well as past

observations from experiments (sub-questions 2 and 3).



2
Pilot Modelling Overview

Human operator modelling has grown into an extensive field with applications in numerous engineering

situations which involve designing systems interacting directly or indirectly with humans. In the context of

pilot modelling, the primary application is in enhancing aircraft design, improving flight safety, and refining

pilot training programs. Models are used to simulate pilot behaviour and interactions with the aircraft under

various conditions, providing insights into handling qualities and the effectiveness of control systems. An

understanding of human perception and cognition is necessary to understand our interaction with these

systems.

Rasmussen’s framework divides human control behaviour into three levels: skill-based behaviour,

rule-based behaviour, and knowledge-based behaviour [14]. While knowledge-based and rule-based

behaviour occur over larger time periods and involve decision making in novel and practised situations

respectively, skill-based behaviour occurs in a much smaller time frame and involves highly practised

actions in the control of an aircraft.

Manual control modelling focuses on the pilot’s direct interaction with the aircraft’s control systems.

This involves the neuromuscular responses to control inputs, the sensory feedback from the aircraft, and

the cognitive processes involved in decision-making. Figure 2.1 from a 2014 review of pilot models [1]

shows a block diagram depicting the complex interactions involved between the pilot and the aircraft during

control of the vehicle. The key components of the pilot model include:

1. Sensory models: Represent how pilots perceive visual, vestibular, and proprioceptive cues.

2. Biomechanical models: Simulate the physical movements and forces exerted by the pilot.

3. Control-theoretic models: Describe the pilot’s control actions in response to perceived aircraft states

This report is largely concerned with Rasmussen’s framework’s ’skill’ category wherein the pilot applies

direct control actuation to the aircraft through their neuromuscular system based on sensory input, focussing

on visual and proprioceptive cues. The first equalization model was proposed by Tustin in 1944 [17] using

servomechanism theory and later developed by McRuer et al. who proposed a quasi-linear model of

the human operator during a single target compensatory tracking task [15]. This laid the foundation for

most models today [18]. McRuer’s crossover theory model and precision model are further discussed in

Chapter 3.

What is equalization?

Equalization refers to the human pilot’s ability to adjust their dynamic response during manual control to

obtain the desired closed loop behaviour (tracking the target signal closely) in the pilot-vehicle system.

Depending on the controlled system (vehicle) characteristics, their sensory input and the target signals’

frequency, the pilot can adapt their dynamic response to maintain closed loop stability. This is explained

further in Chapter 3.

Role of Proprioception in Manual Control

Proprioception refers to the sense of self-movement and body position, crucial for pilots during manual

control of the aircraft. Proprioceptive feedback comes from senses in the muscles and joints, providing

information about limb position, movement and applied forces. In aviation, proprioception helps pilots feel

5
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Figure 2.1: Block diagram representing the pilot-vehicle system under manual control, Lone et al. 2014,

Fig. 1 [1]

the control forces and movements, contributing to their ability to maintain aircraft stability and execute

precise manoeuvres.

Using proprioception, the pilot can sense the position and velocity of their arms as well as the force

being applied as they use the stick to control the aircraft. This opens up a potential additional source of

information, that can be used to improve manual control performance. Pilots may rely on proprioceptive

cues for more precise control and reduce noise in their control inputs.



3
Established Manual Control Models

There has been extensive research in the modelling of the human ope rator in the context of the pilot-aircraft

system. Through frequency domain analysis, pilot behaviour during manual control has been analysed

using control systems theory and some successful mathematical models proposed.

In general as well as in the context of this report, quasi-linear models of the human operator have been

extremely useful in modelling the pilot-vehicle system with minimal complexity and sufficient accuracy for

most applications, and can be understood with classical control theory.

3.1. Crossover Model for Understanding Pilot Control Behaviour
McRuer et al proposed the crossover model [15] which was based on studies [19][20] that had observed

that pilot control behaviour in the loop could be fitted well using a quasi-linear equalization model. This

gave a method of understanding and predicting pilot manual control behaviour, especially in compensatory

tracking systems. The model was based on pilots tasked with tracking a quasi-random signal, with different

controlled element dynamics.

The crossover model assumes a linear equalization approximation of the human pilot, and is based on

empirical evidence through signal tracking tasks. Although a human pilot is non-linear and adaptive, it was

observed that pilot behaviour does not change significantly as long as the controlled element dynamics

remain the same, for similar bandwidth quasi-random tracking tasks.

YOL(jω) = Yp(jω)Yc(jω) =
ωc

jω
e−jωτe (3.1)

The crossover frequency of the model is defined by the frequency at which the open loop gain crosses

over unit gain (0dB). The crossover model predicts the pilot model near the crossover frequency, such

that the open loop dynamics exhibit a −20dB/decade slope in that region, i.e., integrator dynamics.

This means that for different controlled system dynamics, the pilot adapts to obtain the net open loop

response as close as possible to that shown in Equation 3.1 in the crossover region.

• For proportional controlled system dynamics (position control): YC ≈ KC , the pilot adapts towards

dynamics such that YP (jω) ≈ (KP /jω)e
−jωτe

• For integrator dynamics (velocity control) YC(jω) = KC/jω, YP (jω) ≈ KP e
−jωτe

• For double integrator dynamics (acceleration control) YC(jω) ≈ KC/(jω)
2, YP (jω) ≈ KP (jω)e

−jωτe

The crossover model does not explain how these dynamics are created by the pilot, and based on

what input, rather it gives an overall picture of the pilot-vehicle dynamics. The precision model gives

further detail to the structure of the pilot dynamics, splitting these into the central nervous system (CNS),

responsible for equalization, and the neuromuscular system (NMS) component.

To explain pilot equalization in further detail, other pilot models have been proposed in previous literature.

This report is concerned with models that put emphasis on proprioception, and these are further discussed

in Chapter 6 and Chapter 7. Since the crossover model is well established and has been repeatedly

validated in studies over the past half a century, any models proposed during this project will be compared

7
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to the general dynamics established by the crossover model. This has been incorporated through the first

part of the research question of this project.

This means that any equalization model with realistic physiological parameters should be capable

of providing integral parameters in the crossover region and high open loop gain in the low frequency

region. Additionally the high frequency dynamics established by the precision model corresponding to the

neuromuscular dynamics provide a benchmark as well, since it has proven to be a successful predictive

model over several decades. Finally a plausible model must be robust to changes in system dynamics

and forcing function bandwidth, to the same degree established by the crossover model [15].

3.2. Precision Model
A model of the human operator proposed by McRuer and Magdaleno based on empirical data [20] is called

the precision model (PM) and is shown in Equation 3.2.

YP (jω) =

Central Nervous System︷ ︸︸ ︷
KP︸︷︷︸
Gain

τLjω + 1

τIjω + 1︸ ︷︷ ︸
Equalization

exp(−jωτ)︸ ︷︷ ︸
CNS Pure Delay

Neuromuscular System︷ ︸︸ ︷
TKjω + 1

T ′
Kjω + 1︸ ︷︷ ︸

Low Frequency lag- lead

1

(TN1
jω + 1)︸ ︷︷ ︸

NMS Lag

[(
jω

ωN
)2 +

2ζN jω

ωN
+ 1]︸ ︷︷ ︸

Second Order Dynamics

(3.2)

In this model, a complex representation of the pilot was used in order to yield an adequate fit of empirical

results. An approximate model form was proposed based on the approximations in Equation 3.3 and

Equation 3.4. The high frequency terms have been approximated in the simplified precision model from

third order to first order terms.

TKjω + 1

T ′
Kjω + 1

≈ exp(−jα/ω) where,α
.
=

1

T ′
K

± 1

TK
(3.3)

1

(TN1
jω + 1)(( jω

ωN
)2 + 2ζNs

ωN
+ 1)

≈ 1

1 + TN jω
or exp(−jωTN ) where,TN

.
= TN1 +

2ζN
ωN

(3.4)

The simplified precision model is thus shown in Equation 3.5, with τe being the effective time delay
incorporating NMS lag (τe = τ + TN1 when second order NMS dynamics are preserved in the open loop).

The low frequency phase lag correction, given by the term exp(−jα/ω), can be omitted when low frequency

dynamics are not relevant.

YP (s) = KP
τLs+ 1

τIs+ 1
exp(−j[ωτe + α/ω]) where, τe = τ + TN (3.5)

The lead and lag time constants, τL and τI , are important to equalization, and are adjusted by the pilot
to obtain integrator-like dynamics in the open loop near the crossover frequency. The gain is adjusted to

set the crossover frequency. Based on empirical results, McRuer et al. proposed verbal adjustment rules

that can be used to compute the parameter values [15].

In its simplest application, this model can be applied to a pilot doing a single-axis manual control task

using a compensatory display. The model can be used to determine the output to the stick given by the

pilot through the neuromuscular system, using the formulation in Equation 3.2. The compensatory display

only shows the pilot the error signal obtained by comparing the desired output with the measured output of

the controlled element. A compensatory display was used by McRuer et al. to obtain the crossover model

and the verbal adjustment rules, and later expanded to multiple outputs as well as different display types.
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An assumption that the display is the only element through which the pilot is observing the output is

inaccurate, as the vestibular and the neuromuscular systems amongst other systems also give the pilot

information. In an experimental setting vestibular input can be absent when the setup does not provide

motion cues, however, neuromuscular or proprioceptive feedback can still be present. The assumption in

the use of the simplified precision model is that the pilot does not make use of this signal. The neuromuscular

system and proprioception mechanisms are discussed further in Chapter 4.





4
Neuromuscular System Overview

The neuro-musculoskeletal system, usually called the neuromuscular system (NMS) is responsible for

generating movement in our body to interact with the world around us. It is adaptable, and able to adjust

reflexive responses and stiffness based on commands from the central nervous system. It acts as both an

output system (for motion and force application) and a sensory system (perceiving force and displacement

of the body) [21]. While the skeleton and joints give structure to the system, the muscles are responsible

for generating forces to produce motion. The nervous system is responsible for carrying information back

and forth between the muscles and the brain.

4.1. Signal Processing and Transmission
All signal processing and transmission in the system is done through neurons. These consist of a cell

body, dendrites that receive signals, and an axon that sends signals to other neurons, muscles, or glands.

Neurons communicate through electrical impulses and chemical signals across synapses, enabling complex

processes.[21]

The central nervous system (CNS) processes incoming information (afferent signals) by receiving

sensory inputs through specialized neurons that relay data to the brain or spinal cord. These signals are

integrated and interpreted to produce a response. Outgoing information (efferent signals) is transmitted to

the muscle-skeletal system through motor neurons after CNS processing, leading to actions like muscle

contractions or glandular outputs. The speed of signal transmission depends on the distance and type of

neurons involved, with delays ranging from milliseconds to a few seconds, especially in complex reflex

arcs or higher cognitive processes [21].

The motor neurons carry signals as electrical impulses along their axons, which are insulated by myelin

sheaths to increase transmission speed. This can increase the signal transmission speed by up to ten

times as compared to non-insulated neurons. When the signal reaches the neuromuscular junction, it

triggers the release of neurotransmitters, causing muscle fibres to contract. Signal transmission speed is

about 10–100 meters per second, meaning responses can occur in milliseconds depending on the distance

from the CNS to the muscle [21] .

The timings of neurons firing is considered less important in clinical research and the focus is usually

on measuring the firing rate of neurons [21].

4.2. Muscle Actuation
Muscles are made up ofmotor units, each consisting of a motor neuron and the muscle fibres it innervates.

These units process information by converting neural signals into muscle contractions, a process initiated

by the firing of the motor neuron and the resulting depolarization of muscle fibres. Smaller motor units,

which have fewer fibres and slower responses, are more precise and efficient for sustained, low-force

tasks, such as posture maintenance. Larger motor units, with more fibres and faster responses, are more

powerful but less precise, and are recruited for high-force, rapid movements.

Electromyography (EMG) is a technique used to measure the electrical activity generated by muscles

during contraction. It detects the electrical signals produced when motor neurons activate muscle fibres.

EMG can be performed using surface electrodes placed on the skin above the muscle, or intramuscular

11
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Figure 4.1: Functional Diagram of the agonist-antagonist NMS elements involved in tracking (Magdaleno

et al., 1971, Fig. 5) [2]

electrodes inserted directly into the muscle. The former is used most often for research applications. The

electrical signals are recorded and analysed, providing information about the timing, intensity, and pattern

of muscle activation. This method is commonly used to study muscle function, diagnose neuromuscular

disorders, and assess muscle response during various physical activities.

Muscle co-contraction or co-activation occurs when two opposing muscle groups (agonists and

antagonists) contract simultaneously around a joint. This phenomenon helps stabilize the joint and control

movements, especially during tasks requiring precision or when the body needs extra stability. Magdaleno

and McRuer incorporated the agonist-antagonist pairing and co-contraction into their model of the NMS

and consequently implicitly into the precision model [4] [2] (Figure 4.1).

In a study to identify the feedback component in the NMS during a pitch control task, Damveld et al.

discovered unexpectedly high levels of co-contraction during the pitch control task as compared to the

position control task [22].

In a study in 2020 Saliba et al. found that a strategy utilizing co-contraction significantly improved

performance during a perturbation tracking task requiring only elbow flexion/extension. They reported

significant improvements in performance even at low levels of co-contraction [23].

In Bachelder’s experiment, muscle co-contraction is explained as a mechanism to improve stability

and accuracy in challenging motor tasks. By increasing muscle stiffness, co-contraction enables near-

instantaneous corrections to perturbations, thereby enhancing tracking performance [9].

Hess incorporates muscle co-contraction implicitly within his structural model of the adaptive human
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pilot. He discusses the co-activation of agonist and antagonist muscle pairs, specifically through the

concept of alpha-gamma linkage. This linkage is highlighted as necessary for the coordinated function of

intrafusal and extrafusal muscle fibres, contributing to muscle stiffness and damping, which are vital for

stabilizing the manipulator during control tasks. Co-contraction was proposed as a possible reason for the

presence of washout characteristics in the proprioceptive feedback loop in Hess’ structural model [7].

4.3. Proprioceptive Feedback organs
Proprioception refers to the body’s ability to sense its position, movement, and the forces acting on its

muscles and joints, providing awareness of the internal state. This information is crucial for coordinated

movement and balance. Golgi tendon organs (GTOs) are sensory receptors located at the junction

between muscles and tendons. They sense muscle tension and help prevent damage from excessive

force by signalling the CNS to inhibit muscle contraction when tension is too high. Muscle spindles are

located within the muscles and sense muscle stretch (type II) and the rate of stretch (type Ia, which

has a higher transmission speed). Muscle spindles help regulate muscle length and movement speed.

These spindles relay information about muscle length and velocity to the CNS, enabling fine control and

adjustment of muscle contractions. The GTOs thus provide sensory feedback of force control, and muscle

spindles relay muscle length and velocity feedback.

α-motorneurons are present in the spinal cord and responsible for innervating the contractile muscles

based on signals from the brain (via upper motorneurons). γ-motorneurons are responsible for innervating

the contractile fibres within the muscle spindles themselves.

As described in the neuromuscular system model by McRuer et al. (Figure 4.3), alpha-gamma linkage

is the interaction between alpha motor neurons and gamma motor neurons within the muscle control

system. It is essential for coordinated muscle movement, especially in activities requiring fine motor control

and adaptive responses[4]. This mechanism utilizes proprioception to give internal feedback and is further

discussed in Section 4.3 and McRuer’s physiological model is discussed in Section 4.4.

Hess’ structural model assumes alpha-gamma linkage, where both intrafusal (spindle) and extrafusal

fibres co-activate, contributing to co-contraction. This mechanism enhances muscle stiffness and damping,

which are critical for fine control during manual tasks [7].

Houk and Henneman, through experimentation on actively stimulated muscle, proposed a model

for the GTOs suggesting that they ”constantly transmit to the spinal cord a filtered sample of the active

forces being produced in the muscle. The dynamic properties of the filter are approximated by a linear

mathematical model” - Houk and Henneman, 1967, p. 480 [24]. The filtering process favours rapid

changes in active force over slower changes, due to the receptor’s dynamic properties. Hess’ quasilinear

models of proprioceptive feedback equalization also include washout characteristics, suggesting similar

reasoning [6] [7].

Recent research at TU Delft suggests that the neuromuscular system is more sensitive to force changes

than to position changes [25]. This was likewise observed by Bachelder [9] and Boogaard [3], with zero

stiffness manipulators causing poorer tracking performance by a human operator.

In addition, there exist local feedback loops that help with muscle control through reflex actions. Muscle

spindle feedback can directly excite alpha motor neurons to counteract muscle stretch (e.g., knee-jerk

reflex). Moreover signals from Golgi tendon organs inhibit motor neurons through interneurons to prevent

excessive force generation, which could damage muscles. Since interneurons also receive signals from

the brain, which can translate to adaptable gains within these feedback loops. The brain can also generate

an internal model based on an internal representation of the neuromuscular system and the environment.

By generating expected sensory feedback (from muscle spindles and Golgi tendon organs), the system

can pre-emptively adjust muscle activation. This combination of feed-forward and feedback control allows

faster and more precise control [21].

4.4. Modelling the Neuromuscular and Proprioceptive Systems
Hill was the first to propose a mechanical muscle model able to present a simplified representation of muscle

behaviour. The Hill-type model simplifies muscle behaviour using three components: the Contractile

Element, which generates force based on activation and contraction velocity, following a force-velocity
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Figure 4.2: Block diagram of the Human Operator (HO) and Control Device (CD) in a pursuit tracking task

with the assumption that only the error signal is perceived from the visual display (Boogaard 2021, Fig. 9

[3])

relationship; the Series Elastic Element, representing tendon elasticity with a non-linear stretch-force

relationship; and the Parallel Elastic Element, modelling passive muscle stiffness. Additionally, the

force-length relationship describes how muscles produce optimal force at intermediate lengths due to

maximal filament overlap, while force diminishes at extreme lengths when muscles are overstretched or

fully contracted [26]. This is a non-linear model, however for manual control tasks, muscle dynamics are

often linearized to simplify analysis. The contractile element is approximated by a linear force generator

with damping properties. The series elastic element and passive elasticity are represented as linear

springs. This linearization is task-dependent and depends on muscle base force and the activation level of

motorneurons, and system gains can be controlled by the CNS to a certain degree, showing the adaptive

nature of the NMS. Depending on its applications, models based on Hill’s can often seem too simple or too

complex.

For general applications, a second order model of the combined NMS and stick dynamics as depicted

in Section 3.2 is often sufficient.

In his structural model (Figure 6.2) Hess represented the neuromuscular system and manipulator

dynamics as a second order system with the addition of the muscle spindle dynamics responsible for

proprioceptive feedback and equalization [7].

Another more complex model developed in TU Delft incorporates local muscle feedback loops as well

and is shown in Figure 4.2 [3]. The components of the model and their mathematical properties are shown

in Table 4.1. An interesting property of this model is the lack of a lag term in the spindle feedback and no

equalization terms for GTO feedback. This was a property suggested by van Paasen et al., as results

from fitting tracking data to a model suggested that the neuromuscular feedback loop does not exhibit

integrating open loop behaviour. The model could thus be simplified by limiting it to proportional and

derivative control [27]. A lag equalization term has been presented in the structural model (Section 6.2),

which would have to thus be processed through the CNS, with an additional inner loop signifying the

internal neuromuscular feedback loop containing only low frequency washout characteristics (Section 6.2).

Table 4.1: Mathematical Properties of the TU Delft NMS Model in Figure 4.2 [3]

Description Mathematical model

Grip dynamics H1 = Bgjω +Kg

Arm dynamics H2 = 1
Iarm(jω)2

Intrinsic muscle dynamics H3 = Bijω +Ki

MS response H4 = e−τdjω(Kvjω +Kp)

GTO response H5 = e−τdjωKf

Neuromuscular activation H6 =
ω2

nm

(jω)2+2ζnmωnmjω+ω2
nm

Manipulator HCD = 1
ICD(jω)2+BCDjω+KCD
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Figure 4.3: McRuer Neuromuscular Model [4]

McRuer et al. Physiological Model
McRuer et al. developed and validated a neuromuscular actuation system model and gave a detailed

analysis of the physiological processes involved in actuation. They gave an explanation for the adaptive

nature of the NMS, showing the CNS to be capable of modifying the system parameters and operating

point through α motorneurons, and the muscle spindle acting as an equalization element, with adaptable

parameters depending on the task [4]. Their precision model (Section 3.2) abstracts away from the detailed

physiological components and mechanisms in order to present a less complex mathematical representation

of the dynamics of the human operator as a system that fits the data obtained from compensatory tracking

tasks.

The block diagram in Figure 4.3 shows the simplified neuromuscular system closed loop dynamics.

According to the model, the muscle spindle provides:

1. Sensory feedback of the limb position

2. Lead/lag series equalization, parameters for which are provided by CNS via the gamma system

3. It’s the source of part of the command to the system for actuation

4. A means for adjusting the steady state bias signal, adjusting the feedback gain and muscle tension

In the simplified model GTO force feedback is not visible, although the more detailed functional diagram

in Figure 4.1 includes the feedback pathways involved for force feedback as well.

The model presents an equivalent single-loop feedback system composed of muscle, limb, and

manipulator elements connected through sensory and equalization components. The dynamics are

influenced by factors such as muscle tension and spindle feedback [4]. The authors asserted that such a

simplified quasilinear model explained small perturbation behaviour of the NMS.

An experimental study by Magdaleno and McRuer in 1971 used single axis compensatory task data in

order to study the neuromuscular dynamics. A mathematical model shown in Figure 4.4 was proposed for

a controlled element exhibiting rate dynamics, with the retinal and central equalization changing for other

controlled element dynamics based on the crossover model[2].

The model works as follows:

• The muscle/manipulator dynamics are modelled, based on experimental results, as a third order

system with a gain and pure delay.

• The alpha motor neuron command αc is sent by the CNS to the spinal cord.
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Figure 4.4: Neuromuscular subsystems mathematical model for rate control (Yc = Kc/s), Magdaleno and

McRuer 1971, p. 60 Fig. 27 [2]

• The gamma bias signal (γb in Figure 4.3 helps set up spindle feedback operating point equalization.
The spindle equalization block is also meant to include golgi tendon feedback.

• The system includes joint sensor feedback, which acts as a gain and time delay filter for specific

frequency ranges and ensures precise controlled movements. This is also sent to the CNS for bias

adjustments, indicating in Figure 4.4, through the dotted feedback line, that it is used to adjust the

delay parameter τc.

This same mechanism is also used to explain co-contraction and has been shown in Figure 4.1 with an

agonist and antagonist muscle pair being sent signals separately from the central nervous system.

Another neuromuscular-manipulator model separates the feel system manipulator response in order to

make distinct force and displacement feedback and was used to explain the differences between force

and displacement sensoring inceptors, as well as explaining the roll ratchet phenomena [28]. Hess added

this modification when using his structural model to understand aircraft handling qualities and adverse

aircraft-pilot coupling (APC), and the revised structural model has been shown in Figure 7.1.



5
Smith’s Adaptive Inner Loop Equalization

Model

An inner loop model (Figure 5.1) was proposed by Smith that suggested an additional feedback from

estimating the rate of change of the display signal. Although his study was not dedicated to modelling

the pilot dynamics, but instead to establish a theory for predicting pilot opinion rating (POR), adding an

additional inner loop for equalization accounting for human physiology provided a more realistic pathway

to a measure for POR [5]. This model was credited by both Hess [6] and Bachelder and Aponso [11] to

have first introduced the concept of an inner loop for equalization in the high frequency region.

The structure of the system for equalization remains essentially similar, however the model assumes

that rate feedback for the inner loop is processed from the visual sensory input, i.e., visual rate sensing,

without the need for an internal model of the controlled element dynamics. This suggests that (for a

compensatory display) the rate feedback in Smith’s model would be of the error in the vehicle output (ėd in
Figure 6.1) vs the dual loop model assuming an estimate of the actual output feedback ( ˆ̇m) rather than the

error [6]. However, to obtain mathematical equivalence with the precision model (referred to as the servo

model) when approximating, Smith suggests the target rate signal ’qc’ to be negligible compared to the
actual output rate of the controlled element ’q’ (shown in Figure 5.2). Using the symbols in Figure 6.1 this
means assuming ṁ ≈ ė.

Although this makes the models mathematically equivalent and therefore similarly applicable to empirical

data, Hess argues that Smith’s model is limited due to this necessary assumption, which implies assuming

a limited bandwidth in the time rate of the target (forcing function) and disturbance signals [6]. Bachelder

and Aponso similarly pointed out that visual rate feedback is also affected by a greater disturbance as

compared to the system output and proprioceptive feedback, and an assumption of small disturbance is

necessary to apply Smith’s model [11].

Figure 5.1: Inner Loop model based on rate feedback (Smith 1976, p. 555 Fig. 1 [5])

17
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Figure 5.2: Linearized approximation of the inner loop model (Figure 5.1)compared with the precision

model (Smith, 1976, p. 555 Fig. 2 [5])

Additionally according to Hess, when the displayed error is presented to the operator through an

aural or tactile display, Smith’s model could not be applied directly while a PF based inner loop model could.



6
Hess’ Models utilizing proprioceptive

equalization

Hess published his dual loop model in 1978 that attempted to explain in further depth how the human pilot

equalization occurred that was hypothesized by previous models. He clarified that “It is not the author’s

contention that the single-loop human controller models now in use are in any way incorrect, but rather that

they contain an implicit but important internal loop closure which, if explicitly considered, can account for a

good deal of the adaptive nature of the human controller in a systematic manner.” (Hess, 1978, p. 254 [6])

The key change in the equalization was through an additional inner loop that incorporated an internal

model of the controlled element estimated by the pilot. This method was motivated by Smith’s adaptive

inner loop model.

A key feature of Hess’ first dual loop and later developed structural model is the proprioceptive feedback

and its usage in adaptive manual control. According to Hess single loop models like the precision model

make the internal loop implicit, but studying the inner loop can shed some light on how the pilot adapts

to different control situations, as the parameters would reflect to some degree how the pilot attempted

equalization.

6.1. Dual Loop Model
The dual loop model was proposed in 1978 to study the adaptive nature of the pilot [6]. A block diagram

showing the initial dual loop model is shown in Figure 6.1. The sensory feedback is through visual and

proprioceptive channels.

The model assumes a compensatory tracking task, i.e., the display shows the relative error between

the target signal and the output of the controlled system. In Figure 6.1 the error signal ’e’ is obtained from
the difference between the target signal (not shown in the figure), and the controlled system’s output ’m’

after including the disturbance signal ’d’. The display dynamics are assumed by Hess to be negligible,

Figure 6.1: Dual Loop Model (Hess, 1978 [6], p. 254)
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Table 6.1: Dual Loop Model description as shown in Figure 6.1 [6]

Block and dynamics Description and Parameters Comment

Yd Display dynamics Assumed negligible

Yδ Manipulator dynamics Assumed negligible

Ype
= Ke(τLs+ 1)e−τes Visual (outer loop) gain (Ke),

equalization time constant (τL)
and effective delay (τe)

τL = 0 in all cases where propri-
oception is considered sufficient

for equalization

Ypṁ
=

Kpf [(Tṁ/|Tṁ|)s]k

(Tṁs+ 1)k
Proprioceptive (inner loop) gain

(Kṁ) and rate equalization

k=0,±1,±2 ... dictates washout
characteristics and is fixed be-

fore fitting data

ŶδYc = Kss
n Estimated manipulator-

controlled element dynamics,

Ks=K̂δKc (estimated gain) and

n (estimated dynamics)

Both are considered adaptive

parameters, however assumed

known and not involved during

identification

Ypn
=

1

( jωωn
)2 + 2ζnjω

ωn
+ 1

Neuromuscular Dynamics, ωn

and ζn, are the NMS second or-

der frequency and damping pa-

rameters

NMS delay is not included

Yp =
uδ

ed
=

Ype
Ypn

1 + Ypn ŶδYcYpṁs

Equivalent single loop controller

dynamics

Table 6.2: Parameters of the Dual Loop model estimated using experimental data (Hess, 1978 [6], p. 256)

YδYc ŶδYc Ke τL, s Kpf , s Tṁ, s τe, s ζn ωn, rad/s

1.0 1.0 2.5 0 0.5 1.0 0.1 0.1 20

1/s 1/s 18.0 0 6.0 2.0 0.13 0.3 15

1/s2 1/s2 26.5 0 32.3 3.33 0.16 0.7 15

2.82/s(s− 1)a 2.82/s2 5.5 0.33 10.0 5.0 0.15 0.1 15

145/∆b 10/s2 1.4 0 1.0 1.25 0.19 0.7 15

2/s− 2 2/s 18.0 0 7.0 3.33 0.11 - -

a Higher order controller model used (k = 3), b∆ = s3 + 12.3s2 + 11.6s.
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and the displayed error signal is represented as ed. After accounting for the remnant ’ne’, this signal is

used for visual equalization in the block Ype
, and accounts for the outer feedback loop in the model. This

error feedback through the visual channel is identical to the precision model. In this report focussing on

dynamics involved in target tracking, disturbance rejection and remnant has not been addressed.

However, the precision model does not incorporate the additional inner loop feedback. This inner loop

is based on the hypothesis that the pilot gets force feedback from the muscle input to the manipulator/stick

(uδ), which is sensed as rate feedback through the GTOs. Based on this rate feedback and an internal

model that the pilot develops of the system (ŶδYC) they thus have an internal estimate of the rate of change
of the vehicle output, ˆ̇m.

Equalization in the inner loop is acting on rate sensed kinesthetic input (u̇δ) passed through an

internal model to get an estimate of the rate of change of the controlled element output ( ˆ̇m). This model

assumes that the pilot is directly able to sense the force they apply on the stick and is able to accurately

estimate the rate of change of this force u̇δ to use for equalization. In addition, it is also assumed that the

pilot is able to get a reasonably accurate internal ’idea’ of what the controlled element dynamics are.

Hess suggests that this internal model is able to approximate the manipulator and controlled element

dynamics as ŶδYc = Kss
n in the region beyond the crossover frequency, and maintains a similar idea

when he proposes the structural model in 1980 [7], however excluding the manipulator dynamics as

the manipulator position is also sensed via spindle feedback (see Section 6.2). Based on these model

dynamics the pilot is able to anticipate how the model would react to the input, i.e. they have an estimate

of (1) the order of the dynamics, and (2) an estimation of the gain for ṁ/uδ as shown in Figure 6.1. This

internal model is used for equalization in the inner loop.

Equalization on proprioceptive input occurs in the block Ypṁ
in Figure 6.1, explained further in Table 6.1.

Of note is that this equalization only involves a lag term and no lead term. Mathematically since the

input to the block is the rate sensed (estimated) output from the controlled element it introduces the

differential element necessary to make up for the lack of a lead, making rate sensing in the inner loop

mathematically equivalent to a lag in the single loop model.

In the table, the value of k being 1 implies a lag term in the input, however larger values of k are

introduced to include washout characteristics (high pass filter) to explain performance data in more difficult

tasks. k = 3 is used when YδYc = Kc/s(s− 1) in Table 6.2.

Visual feedback processing in the CNS is represented in block Ype
. Any equalization within this

block only occurs if the proprioceptive feedback loop is unable to provide the necessary lead equalization,

in which case Ype = Ke(τLs+ 1)e−τes. In all other cases τL = 0.

Adaptive behaviour by the pilot occurs by changing the parameters Ke (outer loop/visual feedback

gain), Kṁ (inner loop/proprioceptive feedback gain) and Tṁ (inner loop lag time constant) along with the

internal model ŶδYC . If the inner loop is insufficient for equalization (e.g. when proprioceptive feedback is

weak), only then an outer loop (visual) lead with time constant τL is employed.

The quality of the sensory inputs dictate the relative loop utilization of the outer and inner loop, quantified

by the respective gains Ke and Kṁ. When the inner loop is utilized more, the lag time constant Tṁ is

larger.

The pilot adapts such that the order of ˆ̇m/uδ = sŶδYc is given by sKss
n, n ∈ Z, where Ks (estimate of

controlled element gain) and n ( are determined by the behaviour of the system beyond the open-loop

crossover. This means that

1. for proportional control, Yc = Kc, the pilot uses the differential element in the inner loop for equalization

(Uṁ(s)/Uδ(s) = sKc
Kpf [(Tṁ/|Tṁ|)s]

(Tṁs+1) ),

2. for integral control, an equivalent gain with washout dynamics (Uṁ(s)/Uδ(s) = sKc

s
Kpf [(Tṁ/|Tṁ|)s]

(Tṁs+1) ),

3. and for double integrator control an integrator in the model estimation is necessary to create a lag

term in the inner loop (Uṁ(s)/Uδ(s) = sKc

s2
Kpf [(Tṁ/|Tṁ|)s]

(Tṁs+1) ).

The neuromuscular system is approximated using second order dynamics with the natural frequency

ωn and damping ζn, similar to the precision model. The neuromuscular delay, which was incorporated into
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an effective delay in the precision model, cannot be seen the same way here as the inner loop does not

include a delay beyond the lag component in the equalization block Ypṁ
.

6.1.1. Validation and Results
This model was fitted to experimental data with four different model dynamics, YC = K, K/s, K/s2,
K/s(s− 1), with increasing pilot workload.

For the first three cases the data used is the same as that obtained by Kleinman et al. in their study

proposing and validating the optimal control model in 1970 [29]. The experiment involved a single axis

compensatory tracking task, with an error display only. The sum-of-sines forcing function was introduced

through a disturbance, amplitudes dictated by noise spectra with 1st order dynamics introduced as a

velocity disturbance for both K/s and K/s2 dynamics, and 2nd order for position disturbance in the case
of proportional dynamics (K), with a break frequency of 2 rad/s. Kleinman et al. published more details

about the experiment in a separate study [30] which mentions experiments were performed with three

subjects who were trained pilots, after thorough training in the task. It was stated that the error due to

the large remnant and disturbances made high frequency (beyond 2 rad/sec) describing function data

less accurate. The spectra however were considered accurate up to roughly 36 rad/sec. The input to the

manipulator was measured and the describing functions obtained were averaged over the three subjects.

Data for the fourth controlled system dynamics (K/s(s−1)) was taken from a study by Elkind et al. who

used the same data for parameter calibration before a different task was conducted [31]. This experiment

also involved a compensatory display with the subjects being four trained pilots, extensively trained in the

task beforehand.

In all cases the pilots were asked to minimize the means square tracking error.

Hess mentioned the manipulator to be an isometric force device, leading to the assumption that

manipulator dynamics are negligible. Data fitting of the model was done with this assumption. Moreover

it was assumed that k = 1 for the first three control tasks (Yc = Kc,Kc/s,Kc/s
2 and k = 3 for the fourth

(Yc = Kc/s(s − 1)). The parameters used for data fitting were therefore as mentioned in Table 6.1.

Identification results are as mentioned in Table 6.2. The fitting was not rigorous, however the parameters

obtained when substituted provided a satisfactory approximate fit of the data.

According to Hess this model provides approximately similar describing functions to those measured in

the experimental tracking tasks, with the parameters being within reasonable constraints (Table 6.2).

For the first three cases, equalization is done purely through proprioceptive feedback (τL = 0). For the
fourth system, however, a lead similar to the simplified precision model is present in the visual compensation

block Ype
which contributes towards equalization, with a lead time constant τL = 0.33s.

6.1.2. Verification of Pilot Internal Estimation Model

To check the hypothesis of the pilot approximately estimating controlled element dynamics as ŶδYc = Kss
n,

Hess fitted two other controlled element dynamics datasets as well.

The first dataset for Yc = Kc/s
3 + 12.3s2 + 11.6s was borrowed from Levison et al., 1976 [32]. The

second for Yc = Kc/(s− 2) was borrowed from Jex and Allen, 1970 [33].

Table 6.2 shows the assumed approximations of the controlled element dynamics by the pilot, along

with the parameters obtained after fitting the dual loop model. The estimated and exact dynamics for the

first model show approximately identical gain for frequencies at and beyond crossover (ωc = 1.8rad/s),
however significant difference in phase. Due to rate sensing and the high pass filter, this is also the

frequency domain where the inner loop feedback is likely to be concentrated.

For the first case, the model was fitted with a similar method to the systems before, however for the

second case, a model with no second order NMS dynamics was used (Ypn
= 1 in Figure 6.1 and Table 6.1)

due to no data being available in the high frequency (>10 rad/sec) band. The DL model was able to

approximately match experimental data with the parameters shown in Table 6.2.

A more detailed analysis of the results, along with results from the structural model, is presented in

Section 6.2.
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Figure 6.2: Structural Model, Hess 1980, p. 417 Fig. 1 [7]

6.2. Structural Model
Hess later updated the DL model, proposing the structural model (SM) [7]. The goal of the model was to

develop further the understanding obtained from the dual loop model of the mechanism of pilot equalization

and adaptation. The SM attempts to clarify further the nature of the internal model of controlled element

dynamics sensed by the pilot, and better explain adaptive behaviour. It also includes an element to better

explain non-linear pilot behaviour (pulsive control for more difficult tasks).

In a study in 1984 Hess showed time delays in the vehicle dynamics leading to a significant lead

generation by the pilot and causing regression in pilot-vehicle crossover frequencies. This was hypothesized

to be a major factor in increasing pilot workload and causing pilot induced oscillations (PIOs) [34]. He also

provided an analytical analysis of PIOs using the optimal control and crossover models [35]. In his revised

structural model in 1990, Hess incorporated cockpit inceptor force-feel system dynamics in order to help

design better inceptors to mitigate pilot-induced oscillations [8] [36]. The revised model also included an

extension to the SM first proposed in 1990 to include vestibular motion cues [37].

6.2.1. The Main Elements of the Structural Model
In the SM (Figure 6.2) the controlled element, Yc, is being controlled by the pilot in a single axis compensatory

display control task. The SM was also extended to a pursuit tracking task in 1981 [38]. Hess offers a clear

demarcation showing the control dynamics implemented by the CNS and the NMS dynamics. Of note,

equalization based on proprioception seems to occur through the CNS, however the delay associated with

signal transfer and processing (pure delay, included in the block labelled e−τos in figure) is not incorporated

into the PF inner loop, suggesting that although the inner loop equalization is capable of adaptive behaviour

controlled by the CNS, the information processing and equalization itself occurs locally in the NMS.

The controlled element dynamics Yc and the display dynamics Yde
are the same as the dual loop model

(Yc and Yd in Figure 6.1), with the display dynamics assumed as negligible during data fitting. Also similar

to the dual loop model, this model has two loops aimed for equalization, an external loop based on visual

compensatory feedback and an internal loop based on proprioceptive feedback.

A departure from the dual loop model was the removal of manipulator dynamics as a separate

structure. The dual loop model hypothesized that the operator received force feedback and internally

modelled the manipulator and controlled system models as a combined element, in this new model it

is assumed to be implicit within the controlled element dynamics. Practically, since the DL model was

validated only with an isometric controller assumption and no manipulator dynamics, the results do not

differ. Although force feedback is the assumed information source for proprioceptive equalization,

verification of this assumption was not within the scope of this experiment. Although force feedback was

hypothesized, this study did not confirm it, and Hess addressed this in further detail in a later study (see
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Section 7.2). Later studies citing this model have often mistakenly attributed uδ to be the manipulator

deflection feedback, although this does not make a difference in the mathematical model due to the

isometric manipulator assumtion.

The remnant is hypothesized to arise from non-linearities and time variations in the pilot model, due to,

for example, incorrect parametrization. The remnant is therefore injected into the pilot output as a pure

process noise.

Visual feedback from the display (Yde ) is processed either through a direct equalization gain (gain Ke)

or through a visual rate sensing region with a delay (gain Kė and delay τ1), the latter meant for higher
workload tasks.

Hess introduced a visual rate sensing component in the visual sensory model, and in a unique approach

included a switch component rather than adding weighted attitude vs rate perception directly. Rate sensing

had an additional delay associated (τ1) in addition to the visual processing and signal delay τ0. τ1 depends
on what kind of feedback was available to the pilot. Hess noted that in the case of aural or tactile displays,

rate would have to be derived internally and the time delay would be larger, while for direct rate perception

the sampling delay would be negligible. During data fitting, a conservative sampling delay of τ1 = 0.2s
and a central processing delay of τ0 = 0.14s were estimated with the assumption that rate was perceived
via the central (foveal) vision. Later experiments have shown rate perception to take significantly greater

delay when through central vision as opposed to peripheral vision [39].

McRuer’s differential displacement model in 1967, a model describing lead generation through visual

rate perception, was used [40], to select a rough delay of τ1 = 0.2 seconds.

A similar switching approach was also used by Hess in his revised structural model in 1997 [36], while

adding a noise signal to visual rate perception as well, however excluding the time delay τ1 in this model.
In this publication a central processing delay of τ0 = 0.2s as an estimate of the crossover model’s effective
time delay τe. This can be seen in Figure 7.1.

Hess maintained that choosing some parameters such as the effective time delay and NMS dynamics

as invariable before applying estimation techniques on the other parameters that exhibited higher variability

and adaptiveness allowed consistently accurate results despite the analytical simplification. In the revised

model, also included in the visual perception dynamics was a low frequency integral compensation to

exhibit the pilot’s trimming behaviour. It was considered a minor compensation at a low frequency and

assumed negligible for the purposes of this study (ε ≡ 0).

The switch between proportional and rate sensed visual feedback is parametrized by a probability term

for the system being in either control mode, introducing some flexibility and adaptability not present in the

dual-loop model. The probability term P1 varies depending on the nature of the task and the difficulty of

control. Hess provides specific values for different controlled-element dynamics:

• Simple control tasks (Kc and Kc/s dynamics): P1 ≈ 0.05, meaning almost no error rate control is
used.

• More complex control tasks (Kc/s² andKc/s(s−1) dynamics): P1 increases to around 0.2, indicating

increased reliance on error rate feedback.

• Highly complex control tasks (Kc/s(s²+ 1.414s+ 1)): P1 is set at 0.25, meaning error rate feedback

plays a significant role.

When it comes to proprioceptive equalization, the SM makes the proprioceptive equalization dynamics

more explicit and the internal model implicit, with Ym taking a different form depending on the estimated

controlled element dynamics and representing the adaptive behaviour of the pilot based on sensed

controlled element behaviour. While Ym is the equalization block, Yf represents the muscle spindle

feedback and acts as both a differentiator at low frequencies (as in the dual loop model) as well as

providing washout characteristics. This helps smooth out long-term changes in system behaviour and

focus the control response on more immediate, higher-frequency inputs.

The neuromuscular dynamics are once again modelled as a second order system, with the addition

of spindle feedback characteristics incorporated in an additional local feedback loop. Although not as

significant as a series lag term or a pure delay element at higher frequencies, this does introduce a delay

at lower frequencies upon loop closure. There is no other explicit delay element present.
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An additional new element of the model is the block for pulsing logic, YPI
. This block is useful for

explaining the pulsing behaviour of the pilot in high workload tasks, as Hess explained in a separate

publication[41]. For easier tasks YPI
= 1.

6.2.2. Equalization

The structural model utilizes the same equalization pathway as the dual loop model, with Ypf ≈ sKpf Ŷc.

This structure in the inner loop enables an equivalent open loop expression corresponding to the crossover

model, excluding delays. The mechanism assumes an internal derivative followed by an estimation of the

order of the controlled element dynamics. However the internal model estimation is written in a different

formulation.

The model assumes that the pilot perceives the controlled element dynamics similarly to the dual loop

model (see Table 6.1). When sensing a proportional control task, the pilot uses a lead in the inner loop

(Ym = K2(s + 1/T2)). For integral control, Ym is a pure gain, and for a controlled element with double

integrator dynamics, a lag is used (Ym =
K2

s+ 1/T2
).

While Ym is responsible for dynamic equalization based on the internal model of the controlled element,

Yf represents the feedback provided by the muscle spindle and incorporates a differentiator for low

frequency signals. The format for these dynamics were not directly addressed, with Yf being generally

attributed to GTO and MS dynamics, with the force vs position feedback using either organ not directly

addressed.

Hess observed that the parameter T2 was necessary (in place of having pure sk dynamics to replicate the
controlled element) in order to match the model with experimental data. This suggests that equalization in

the inner loop is only applied to a certain frequency region, suggesting that low-frequency sensory input

from the muscle spindles/GTOs is not processed for dynamic equalization. An assumption of T1 ≈ T2 was

used to fit the model to experimental data, implying that the time constant is dependent on the (adaptive)

behaviour of the muscle spindles.

The model assumes that the CNS adjusts its control behaviour through constant gains applied to

the error and error rate signals. These gains are represented as Ke (for the error) and Kė (for the error

rate). By adjusting these gains, the CNS is effectively equalizing the control system response to match the

desired behaviour.

The operator can switch between error-based control and error-rate-based control, with equalization applied

differently in each mode. The switch is controlled by a probability parameter P1, which determines how

often the system relies on error rate rather than error. This probabilistic switching provides flexibility in how

the operator equalizes the system [7].

In his study modelling pilot induced oscillations (PIO), Hess suggested that during such an event the

pilot regressed to using only error rate control without proprioceptive feedback for equalization, leading to

the undesirable behaviour [36].

6.2.3. Validation
In validation of the dual loop model, Hess neglected the manipulator dynamics, hence the DL model does

not directly say much about force vs position feedback. The SM also assumes negligible control stick

dynamics, leaving the question of force vs position feedback open.

Data used for the first three cases (Yc = Kc,Kc/s,Kc/s
2) is the same as that used for the DL model

(Table 6.2).

For the case of Yc = Kc/s(s − 1) and K/s|peripheral, a study in 1971 by Levison et al. provided the
data [42]. And for Yc = Kc/s(s

2 + 1.414s+ 1) data from another study by Levison in the same year was

used [43].

Only the parameters Ke,Kė,K2,T1
and P1 were adjusted fit the measured frequency response. Other

parameters were assumed to be known beforehand being a non-adaptable property of the physiology, or

based on the known controlled element dynamics in the case of k. The introduction of the switch between
the two visual pathways made the process of model fitting much more complicated.
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Table 6.3: Pilot model parameter values for the Structural model [7]

Model Parameters

Controlled-element dynamics k Ke Kė K2 P1 T1 K1 τ0 τ1 ζn ωn ρ

K 0 11.1 2.13 2.0 0.05 5.0 1.0 0.14 0.2 0.707 10.0 0.38

K/s 1 22.2 3.42 2.0 0.05 5.0 1.0 0.14 0.2 0.707 10.0 0.38

K/s2 2 26.2 10.5 10.0 0.20 2.5 1.0 0.14 0.2 0.707 10.0 0.38

K/s(s− 1) 2 89.6 28.6 30.0 0.20 1.0 1.0 0.14 0.2 0.707 10.0 0.38

K/s(s2 + 1.414s+ 1) 3 116.0 13.0 35.0 0.20 0.85 1.0 0.14 0.2 0.707 10.0 0.38

K/s|peripheral 1 12.6 2.52 0.75 0.25 5.0 1.0 0.14 0.2 0.707 10.0 0.38

Fitting was a complicated process mainly due to the switching behaviour for which a mathematical

approximation had to be used. A non-rigorous parameter estimation methodology similar to the already

mentioned dual loop model fitting was used to obtain the parameter values.

The parameter values obtained via fitting the data are shown in Table 6.3.

6.2.4. Later Development and Applications
The Task-Pilot-Vehicle (TPV) model, a computer-based simulation model that helps in designing and

testing aircraft flight models, was used to simulate the pilot vehicle multi-axis control model of a rotorcraft

based on Hess’ structural model in 2010 [44].

Modifications to the structural model by Efremov et al. improved agreement with calculated error

variance, as well as evaluating the influence of newer task variables (control element gain coefficient and

the acceptable accuracy range) on pilot-vehicle interactions. It was successfully applied to predictive

display design (for spacecraft docking with the ISS) and to developing a lateral flying qualities prediction

criterion that incorporated motion cue effects [45].
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To understand how proprioceptive feedback can be modelled, the distinction between the pilot sensing

force feedback vs position feedback from the stick is crucial. Some experiments have been conducted to

analyse this by modifying the stick dynamics between a free-moving stick and a stick having various spring

constraints. In a 1966 study analysing manipulator restraints and their effect on the pilot’s performance,

Magdaleno and McRuer found that in tasks with more difficult dynamic s (double integrator control), pilot

performance was best at an intermediate spring stiffness. With no spring however, increasing stick inertia

caused performance to degrade significantly for proportional and double integrator control dynamics. This

experiment had only one subject due to limitations on the number of runs they could conduct [13]. In

another study in 1971, Magdaleno and McRuer obtained results suggesting a central processing delay

constant of 66ms and 82ms when fitting their NMS model to tracking tasks conducted with isometric

and isotonic inceptors respectively, suggesting force feedback improved performance, however could

not confirm statistical significance due to limited data and only two subjects present. They also noted a

greater average tension in agonist-antagonist muscle pairs reduced response delay when using

higher quality muscle tension data from a foot rudder inceptor based manual tracking task, with describing

function data being nearly identical to a hand manipulator inceptor [2].

In another 2017 study, Fu et al. performed an experiment analysing pilot’s discrimination strategy by

analysing the just noticeable difference (JND) in human haptic perception, and found that results validated

a model suggesting force differences being the deciding factor [25].

Recent experiments at TU Delft suggest a correlation between the availability of force feedback, the

theoretical activity occurring in the golgi tendons, and the tracking performance of the pilot, however

statistical significance is still limited [3].

Finally, Bachelder and Aponso also published a study in 2021 comparing stiff and free joysticks, and

concluded force feedback to be the prioritized feedback source, as well as proposing further additions to

Hess’ inner loop equalization models [9] [16]. However the single subject limitation amongst other issues

limits the applicability of the experiment itself.

There is indication that research so far leads to a likely inference of force feedback being more accurate,

and employed to a greater degree by the pilot for control, as compared with position feedback, though

further studies and more experimental data is necessary to draw conclusions.

7.1. McRuer and Magdaleno’s study
McRuer and Magdaleno conducted an experiment in 1966 studying the effects of different manipulator

dynamics on the pilot’s dynamics [12]. A single trained pilot with experience in similar tracking tasks was

involved in the experiment. Their previous publication extensively studying pilot dynamics in compensatory

systems ([20]) was cited to have established this pilot as representative of a population of pilots, and

he was also the single subject in another study on compensatory and pursuit displays due to the same

limitations [46].

The setup involved a compensatory display and two different forcing functions to compare results with

different forcing function bandwidth, the first being a 6-4 input with the first 6 sine waves having a greater

amplitude and a bandwidth roughly 2 rad/sec, and the second forcing function the same amplitude for all

27
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10 waves, and frequency ranging from 0.314 rad/sec to 14.03 rad/sec. Three controlled element dynamics,
proportional, integrator and double integrator (Yc = Kc,Kc/s,Kc/s

2) were studied.

The tracking task was performed with different manipulators. The first was a pressure manipulator,

which measured the pilot’s force input using a strain gauge, with the stick itself remaining immobile. The

second manipulator was a spring restrained manipulator with minimal inertia, damping and nonlinearities.

The final manipulator employed a knob on an unrestrained and nearly frictionless wheel, with the intention

to approximate a free moving controller. The experiment was performed with [12].

The model McRuer used to analyse the results was the approximate precision model (Equation 3.5), with

α used to parametrize low frequency lead-lag and TN (Equation 3.4) used to parametrize high frequency

delay of the neuromuscular system. In terms of these parameters the results indicated:

1. The pressure control manipulator consistently showed lower RMS error, as has been confirmed by

multiple studies before and since then.

2. For every controlled element Yc the free-moving manipulator had greater high frequency phase lag,

suggesting a greater neuromuscular delay (TN ) compared to the pressure manipulator.

3. Low frequency amplitude ratio and phase lag remained the same for Yc = Kc/s
2 and with the low

bandwidth FF for Yc = Kc, suggesting that α did not change between the free moving and pressure

manipulators for these control tasks. For Yc = Kc/s and with high bandwidth FF for Yc = Kc however,

there was a greater low frequency phase lag for pressure control as compared with the free moving

controller, suggesting a larger value for α for the pressure controller.

Overall they found that the phase curve in the open loop frequency response shifted towards higher

frequencies when going from free-moving to pressure sensing manipulators [12].

Magdaleno and McRuer also published a parallel study analysing the effects of manipulator restraints

with a focus on the pilot’s describing function and performance rather than dynamics. In general a spring

manipulator was found to be better for pilot performance, with pilot performance remaining largely invariant

to changes in the spring rates for easier tasks, and being optimal at an intermediate spring rate for harder

tasks. An interesting result obtained was that for a purely inertial (no spring) manipulator, increasing

the manipulator inertia over the pilot’s limb inertia degraded performance considerably. Pressure control

manipulators were found to be nearly as effective for control as spring restrained manipulators. Additionally

the pilot’s performance did not show significant difference between optimal pressure and spring restrained

control conditions [13].

They also discovered that, specifically for a proportional control task Yc = Kc, the operator’s performance

did not degrade significantly with the free moving manipulator with high inertia as compared with a pressure

manipulator. This suggested that the force-displacement dynamics of the manipulator were largely

compensated through position feedback in such a task [13].

Gordon-Smith also conducted a study in 1970, during which the effect of the manipulator on manual

control was also studied. This study observed a slight decrease in the natural frequency (15 rad/sec for

the free moving manipulator vs 18-20 rad/sec for the pressure manipulator) of the neuromuscular system

observed, and a very significant increase in the phase lag over a wide frequency region when switching to

a free moving manipulator.

While only a single controlled element (integral) was used, the experiment had 8 subjects and the results

were recorded for three different forcing function bandwidths (ωi = 1.5rad/sec, 2.5rad/sec, 4rad/sec). The
changes in the neuromuscular system natural frequency were more significant as bandwidth increased,

with a very large decrease in natural frequency as well as damping observed for the largest forcing function

bandwidth. The differences in phase lag in the high frequency region remained consistent throughout,

however there was also a noticeable change in the low frequency region for the higher bandwidth of 4

rad/sec, corresponding to McRuer and Magdaleno’s observations of the ’phase umbrella’ [10].

7.2. Hess’ Revised Model
In 1990 Hess published a study analyzing manipulator and feel system effects in manual control [8]. In

this study he proposed a revised version of the structural model (Figure 7.1) which included feel system

dynamics (with the previous structural model assuming isometric manipulator with direct proportional
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Table 7.1: Model Parameters in the Revised Structural Model, Hess 1990, Table II, p. 925 [8]

Neuromuscular Sys-

tem

Manipulator-Feel Sys-

tem

Sens-

ing

Vehicle (Yc) G1 G2 Ke τ0
(sec)

e−0.05s

(s/20)2 + 2(0.7)s/20 + 1
1/s2 Position 1/s 10.0 0 28.0 0.05

e−0.05s

(s/20)2 + 2(0.7)s/20 + 1
1/s Force 1/s 10.0 0 5.89 0.05

(s+ 1)e−0.05s

(s/20)2 + 2(0.7)s/20 + 1
1/s2 Position 1/s2 5.0

50

10s+ 1
11.27 0.05

e−0.05s

(s/20)2 + 2(0.7)s/20 + 1

1

(s/14)2 + 2(0.7)s/14 + 1
Position

1

[s(0.15s+ 1)]
1.0 0 6.25 0.05

e−0.05s

(s/20)2 + 2(0.7)s/20 + 1

1

(s/14)2 + 2(0.7)s/14 + 1
Force

1

[s(0.15s+ 1)]
1.0 0 6.25 0.05

dynamics included into the controlled element). Besides other goals of the study related to vestibular

control and biodynamic feedback, models for various manipulator/feel system dynamics were proposed,

and Hess attempted to qualitatively match the model dynamics to data from previous studies analyzing

different manipulator dynamics and their effects on pilot control. This included McRuer and Magdaleno’s

study [12], a study by Gordon Smith in 1969 [10], and a study by Aponso and Jonhnston in 1988 [47].

This model was fitted only to integrator and double integrator controlled element dynamics, as well as

Yc = 1/[s(0.15s+ 1)] dynamics which is meant to simulate roll subsidence mode of an aircraft in forward
flight, with the goal to study the roll ratchet phenomena.

When modelling the feel system, Hess used similar manipulator dynamics for pressure, spring or free

moving manipulators, while also including force as well as displacement sensing control for the spring

manipulator. While displacement sensing remains the same, force sensing has the switch S3 in Figure 7.1

in the ’up’ position, with force rather than stick displacement acting as input to the controlled element. This

was only applied to data from Aponso and Johnston’s study with Yc = 1/[s(0.15s+ 1)].

When adapting to the changing manipulator dynamics, the pilot is able to adjust through proprioceptive

compensation blocks and inserting a lead ’TLn
’ in the open loop neuromuscular dynamics, which is present

in the case of the free moving manipulator [8].

For the former two cases, although the model was able to qualitatively show the changes in high

frequency phase lag observed by both McRuer and Magdaleno [12], and Gordon-Smith’s [10] studies, it

should be noted that the model’s frequency response does not show a slope of -20 dB per decade in the

crossover region, as can be seen in the experimental data.

In their study in 1988, Aponso and Johnston found that force sensing improved the pilot’s high frequency

performance by reducing the lag in open loop [47]. This was with the controlled element dynamics

corresponding to Yc = 1/[s(0.15s+ 1)]. The model was able to show this behaviour when comparing force

and position sensing as well.
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Figure 7.1: Revised Structural Model, Hess 1990, p. 924 Fig. 1 [8]

7.3. Bachelder and Aponso’s Results
Bachelder and Aponso published a study of the neuromuscular-feel system interdependence, modelled

using Magdaleno and McRuer’s mechanical model of the neuromuscular system [4]. They proposed a

model that included a generalized version of the proprioceptive equalization in the structural model [9].

The model used by Bachelder for the neuromuscular system, derived from the mechanical model

proposed by Magdaleno and McRuer [13] [2] is shown in Equation 7.1.

GNMFS =
δ

β
=

kIkT
∆

, (7.1)

Here:

∆ =
[(
mLs

2 + kT + kI
)
(bms+ km + kT )− k2T

]
·
(
mF s

2 + bF s+ kF + kI
)

− k2I (bms+ km + kT )

mF , bF and kF represent the inertia, damping and spring stiffness of the feel system respectively. kI
represents the interface dynamics, kT represents muscle-tendon stiffness/compliance, mL, bm, km are

parameters representing the limb inertia and muscle dynamics. Under the approximation of the feel system

inertia mF and damping bF being negligible, this effectively resolves into third order dynamics. Force

feedback through the golgi tendons occurs from within this block rather than the output.

Through this linked model of the neuromuscular-feel system, a more reliable proprioceptive feedback

signal expression is established and the impact of proprioceptive feedback can be studied. The transfer

function described by this system, GNMFS is used along with the known manipulator dynamics GFS The

open loop neuromuscular system dynamics are obtained through this model and the known manipulator

dynamics. The proprioceptive force/displacement feedback loop is closed around this model (Figure 7.2).

This model was manually fitted to data from Gordon Smith’s study in 1970 [10] and a similar NMS

peaking and high frequency lag with free moving feel system dynamics and displacement feedback could

be observed when compared with position feedback and spring manipulator [9].

A rough experiment was also conducted in the same study, using a Microsoft sidewinder joystick,

comparing the pilot dynamics with spring centering and free moving manipulator dynamics. Similar trends

to previous studies were observed in regards to rms error and pilot performance [9].
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Figure 7.2: Neuromuscular System Model feedback structure (see Equation 7.1), Bachelder and Aponso

2021 [9]

Figure 7.3: Fitting the neuromuscular system model to data from Gordon-Smith’s study in 1970 [10], free

moving manipulator and integral control task, Bachelder and Aponso 2021, Figure 19 [9]
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Figure 7.4: Modeled closed loop NMS dynamics indicating equalization, Bachelder and Aponso 2021,

Figure 26 [9]

The improvement in tracking error was significant for double integrator control, smaller for single

integrator control, and a slightly larger tracking error was observed with a spring centered manipulator

during proportional control.

They also observed that the PSD of the stick deflection showed peaks not only at the forcing function

peak frequencies but there were also additional peaks visible at frequencies close to 7 rad/sec, which

is lower than the typically observed 10 rad/sec, and hypothesized it to be due to joystick characteristics

employing less tension, similar to what would be expected with thumb/forefinger control on a gamepad

controller.

This experiment, however, was also unreliable due to forcing function frequencies not fitting into the run

length (the forcing function SOS frequency ranged from 0.048 to 4.65 rad/sec, but the length of each run

was 60 seconds, too short to accurately identify lower frequencies [9]) and a single subject involved in the

experiment with a manipulator not intended for precision tasks. Although the observed describing function

was not printed in the published study, the crossover frequency and phase margin for each control task

and both manipulators were printed. Interestingly for integral dynamics, the crossover frequency appeared

to be much lower for the free moving manipulator in a range that would be expected when controlling a

double integrator system. The slightly worse crossover frequency for the free moving compared with the

spring manipulator during double integrator control seems more expected, however does not line up with

observations by McRuer and Magdaleno who observed that the pilot was able to adapt to the manipulator

to maintain the same crossover, with some differences only beyond the crossover frequency. Keeping this

in mind, results from the frequency analysis of this experiment’s data can be erroneous.

The model in Figure 7.2 was used in conjunction with the 7 rad/sec open loop NMS natural frequency

and a damping ratio of 0.7 to obtain the dynamics of the closed loop neuromuscular system. The closed

loop NMS dynamics, including proprioceptive equalization, proposed by Bachelder and Aponso can be

seen in Figure 7.4.

Muscular co-contraction (COC): As discussed in Chapter 4, during manual control tasks, it is expected

that the agonist-antagonist muscle pair being used for manipulation would be simultaneously under tension

to improve precise movement. For harder tasks/greater precision requirements, a greater average tension

in the muscle pair is present. Studies have shown that introduction of muscular co-contraction improves

performance and reduces pilot error [23] [2].
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Figure 7.5: A Generalized Equalization Model assuming force feedback, Bachelder and Aponso 2022,

Figure 8, [11]

This study also observed a high correlation between stick RMS in the high frequency NM region (supra

active control and the low frequency active control region, with both showing a linear increase with the

crossover frequency. It was proposed that this along with past neurophysiological research suggested:

• ωc and COC are directly related, both being higher for a ’high-gain’ pilot.

• The stick displacement power in the active control region for a given crossover frequency is propor-

tional to the force power driven by the feel system characteristics.

It can also be noted that McRuer and Magdaleno also observed the ’phase umbrella’ shifting with

changes in manipulator dynamics. An absence of force feedback in a free manipulator lead to both an

increase in high frequency time delay and a decrease in high frequency time delay in the low frequency

region in some cases (as discussed in Section 7.1). Low frequency data is of course highly erroneous,

and cannot be a reliable indication.

When it comes to proprioceptive equalization, Bachelder and Aponso concluded that force feedback

based equalization was the preferred method for the inner loop feedback control proposed by Hess, i.e.

the feel system is outside the inner loop. While Hess assumed neuromuscular system parameters to be

fixed while proprioceptive feedback and pilot gain parameters were adaptive, their conclusions indicated

an adaptive open loop NMS natural frequency. This study concluded feel system dynamics and pilot

performance to be significantly interdependent.

The closed loop NMS frequency imposed a limit on the lead/lag terms in the proprioceptive feedback

equalization dynamics, with the open loop pilot dynamics (and thus the closed inner loop of the NMS)

known to have a peak in the high frequency region.

In rate command systems, equalization through the NM system happens more effectively due to the

proportional nature of force feedback. However, for acceleration commands, higher-level cognition is

required for integral control, meaning equalization becomes more challenging and often relies on a pulsive

control strategy rather than continuous adjustment [41].
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Conclusions

In regards to modelling the neuromuscular system, significant studies have already been conducted and an

accurate mechanical model of the neuromuscular dynamics discounting proprioceptive feedback loops are

well known. Proprioception is known to occur via force feedback through GTOs, as well as limb position

and velocity feedback through muscle spindles.

Quasi-linear models of a pilot during manual control have been established and give an accurate

approximation and prediction of the pilot’s control response in the feedback loop. The crossover model

gives an accurate prediction of the overall pilot response, including equalization and delay, especially in

the region of open loop crossover. The precision model gives a more accurate mathematical model, and

includes neuromuscular limitations, fitting well to experimental data. These models do not necessarily

say that all equalization occurs through visual feedback, the degree to which other sensory cues such as

proprioception and motion cues are used for this equalization are less well known.

The structural model suggests an alternative formulation for equalization through proprioceptive feed-

back. Although it fits experimental data, it is not a predictive model, and instead meant to provide insight

into the adaptive behaviour of the pilot. It has been employed to understand pilot limitations through study

of pilot performance measures, as well as model undesirable behaviours such as pilot induced oscillations

and the roll ratchet phenomena.

Whether equalization truly occurs only through proprioception cannot be confirmed directly with ease,

but the impact of manipulator dynamics on the pilot’s control behaviour can provide some insight into

the degree to which manipulator dynamics are used during control. Multiple studies comparing pressure

and/or spring centering manipulators to free moving manipulators have shown that when the free moving

manipulator is used pilot performance worsens (the mean square tracking error increases), suggesting

force feedback to be integral to the control behaviour. For a free moving manipulator when compared with

a pressure or spring centering manipulator:

1. Phase lag for a very wide band in the high frequency region is larger for all controlled system dynamics,

suggesting a larger equivalent NMS delay Tn.

2. The natural frequency as well as damping of the NMS dynamics decreases, with the difference

becoming more significant for higher bandwidth forcing functions.

3. Phase lag in the low frequency region is observed to be smaller, with the decrease becoming more

significant for an integrator or proportional control task, as well as becoming more significant for a

higher bandwidth forcing function. (Error margins are higher in this region)

Considering the increase in the high frequency delay, an increase in the neuromuscular lag in the

formulation of the precision model is suggested but cannot be explained. The structural model attempts to

explain this behaviour, however significant approximations and assumptions regarding the dynamics of

the NMS are made that are not explained through a mechanical model.

Bachelder and Aponso also attempt to explain this behaviour and suggest a model of the pilot describing

function that includes both proprioceptive and visual equalization occurring in different frequency bands.

A rough experimental setup was used to confirm the impact of the manipulator dynamics on the pilot’s

describing function, and this mixed equalization model used to explain this behaviour. The neuromuscular

35
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dynamics natural frequency can be used to estimate the equalization parameters in the proprioceptive loop,

suggesting that the impact of the changes in proprioceptive feedback can be observed through changes in

the neuromuscular peak in the pilot’s describing function. Their study proposed muscular co-contraction, a

phenomena known to improve human motor control accuracy, to be key to the pilot’s adaptive behaviour

as well and impacting the change in the natural frequency of the open loop NMS dynamics. They propose

a method of identifying the equalization parameters through comparison of the closed loop NMS poles

with the observed high frequency peak in the pilot’s frequency response function.

Although these experiments suggest that force rather than position feedback seems to be of greater

importance for control, their experiment also seemed to suggest that position feedback was slightly better

when the control task was for proportional control (Yc = Kc). This improvement in the tracking error,

although also observed in McRuer’s study, is much less than the improvement in integral/double integrator

control tasks with a spring inceptor.
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Next Steps

The research questions posed in Chapter 1 are repeated below for convenience.

Can Proprioceptive Feedback account for equalization in the human pilot model?

1. Can a proprioceptive inner loop equalization account for pilot control adaptation to the

degree established by the crossover model?
2. Is a model simulating equalization through proprioceptive feedback mathematically possible

and physiologically plausible?
3. Can such a model be validated by experimental data, and provide an explanation for

human control behaviours?

Research Question

Based on gathered literature, a preliminary analysis can be conducted studying the impact of an inner

equalization loop on simpler mathematical models (Question 1)

1. A short mathematical analysis of inner loop feedback based equalization can be conducted in the

frequency domain, and results compared with expected pilot equalization characteristics based on

the crossover model.

2. A similar analysis with a model comparable to the (revised) structural model can be conducted by

including the presence of second order neuromuscular system dynamics and delay, and studying

the differences from the (simplified) precision model.

In an approach matching the mixed equalization model presented in Section 7.3, a full mechanical

model of the neuromuscular system utilizing recent findings will be included to study the affects of inner loop

equalization better. Proprioceptive equalization will be used to attempt replication of experimental trends

observed for human operators in different control tasks and with different manipulators. The mathematical

and physiological limitations of such a model can thus be analysed based on established empirical results

(Questions 2 and 3).

Finally, if a proprioceptive equalization based model is able to replicate these empirical trends, such a

model will also be compared with a model implementing purely visual equalization and restricted to only

reflexive proprioceptive feedback, in order to analyse potential advantages of one over the other.
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Proprioceptive Equalization in Pilot Manual Control Modeling

Savneek Bhatia∗, Prof.dr.ir.Max Mulder† and Dr.ir.M.M.van Paassen‡

Control and Simulations Department, Faculty of Aerospace Engineering,
Delft University of Technology, Delft, The Netherlands

Pilot manual control behavior has traditionally been modeled using purely visually driven
quasi-linear frameworks. The role of proprioception and manipulator feedback (force and
position) in shaping pilot dynamics for equalization has been theorized in literature, however
well-grounded models that check all boxes remain elusive. This project investigated the feasibility
of proprioceptive equalization utilizing a mechanical model of the neuromuscular system (NMS)
originally developed at TU Delft (van Paassen et al., 2004 [1]). Frequency domain analysis and
root locus methods reveal that muscle spindle and tendon feedback may affect characteristics
near the region of crossover, but cannot independently achieve the integrator-like open-loop
characteristics required for effective equalization. A mixed equalization strategy based on
combining force feedback with visual compensation is shown to be physiologically plausible
and theoretically effective in reducing pilot effort. Qualitative comparison against experimental
trends supports the conclusion that proprioception contributes to neuromuscular stabilization
and performance enhancement; however, it could not conclusively prove the possibility of
equalization.

I. Nomenclature

𝛿 = Manipulator Deflection
𝜔𝑐 = Crossover Frequency
𝜔𝑛 = Natural Frequency (of the NMS)
𝜏 = Visual Channel Time delay
CE = Controlled Element
𝐶𝐿 = Closed Loop
𝐹𝑆 = Feel System
𝐺𝑇𝑂 = Golgi Tendon Organs
𝐼 (subscript) = Lag
𝐿 (subscript) = Lead
𝑀𝑆 = Muscle Spindles
𝑁𝑀𝑆 = Neuromuscular System
𝑂𝐿 = Open Loop
𝑃𝐹 = Proprioceptive Feedback

II. Introduction
Manual control tasks, particularly in aerospace applications, rely heavily on the pilot’s ability to adapt and compensate

for system dynamics to maintain stable and precise performance. Traditional models, such as McRuer’s crossover
model [2], have provided critical insights into this adaptive behavior, illustrating how pilots shape open-loop dynamics
to achieve integrator-like behavior near the crossover frequency. Such mathematical models primarily attribute pilot
equalization to visual feedback pathways, effectively modeling pilot behavior during compensatory tracking tasks under
specific conditions.

However, other models have suggested that visual feedback alone may not fully capture the complexities of human
manual control. Physiologically motivated models, such as Hess’s structural model, propose that proprioceptive
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feedback—information from muscle spindles and Golgi tendon organs—plays a critical role in forming an internal
feedback loop that aids in achieving the desired crossover dynamics. Such models have often been used successfully
to analyze subjective handling qualities [3], pilot induced oscillations (PIOs) [4], the roll ratchet phenomena [5],
aircraft pilot coupling (APC) events [3], and pulsive control behaviour in double integrator control tasks [6] [7]. Other
applications of the structural model by Hess and its modifications have included predictive display design, development
of flying qualities criteria, and flight simulator fidelity of rotorcraft [8].

While promising, these proprioceptive models show deficiencies in predictive accuracy and physiological plausibility,
particularly concerning limitations of such an equalization approach. In particular, such a model is referred to
as a descriptive model, providing insight after fitting parameters to available data.’Unification’ attempting to use
proprioceptive feedback models as predictive models for equalization have been attempted, however not without
limitations [9].

Experimental results have also indicated that force feedback is extremely important during manual control tasks, with
pilots being sensitive to force feedback [10] [11]. Given the limitations of purely visual or proprioceptive models, recent
research has suggested the potential for mixed equalization strategies [12], leveraging both visual and proprioceptive
feedback. Understanding how pilots integrate these sensory pathways is crucial for advancing pilot models, especially as
manipulator dynamics, such as stiffness, are known to significantly influence pilot performance and subjective handling
qualities [13] [14].

This study investigates the potential role of proprioceptive feedback in pilot manual control equalization, building
upon previous structural models to develop a more nuanced understanding of how manipulator characteristics interact
with neuromuscular dynamics. A simplified mathematical framework is introduced to explore the feasibility and
limitations of proprioceptive equalization. This is followed by utilizing a detailed mechanical model of the neuromuscular
system to capture the interaction between muscle forces, manipulator feedback, and sensory pathways. The focus lies in
understanding the mathematical characteristics of different control strategies in the frequency domain. Through root
locus analysis, frequency response studies the mathematical feasibility of different control strategies is established,
and qualitative fitting to experimental trends is attempted to verify that the model is an accurate representation of the
physical characteristics of the pilot’s response function.

Since a proprioceptively equalized control model depends significantly on the feedback from the manipulator, the
impact of changing manipulator characteristics on the pilot’s describing function is likely to shed more light on such a
model. Proprioceptive feedback can be through the force being exerted, sensed by golgi tendon organs (GTOs), or
through the displacement, assumed to be sensed by the muscle spindles (MS). For a pressure manipulator, no position
feedback is available as the manipulator is fixed in place, and for a free moving manipulator no force feedback is
available as force exertions required for displacement are negligible (assuming small mass and damping). Attempts at
using the (revised) structural model to explain pilot behavior when using different manipulators have been unable to
establish the model in a motivated way [5] as the model is not able to achieve integrator dynamics near crossover during
an acceleration control task, and no attempt being made for a proportional control tasks, something that is shown to also
be unsatisfactory in Section IV.

Many studies have shown a manipulator with force feedback available (i.e. a pressure manipulator or a manipulator
with a stiff spring) to be integral in achieving the best performance from the pilot, with spring as well as pressure
manipulators repeatedly showing better performance (smaller tracking errors) and smaller phase lags when compared
with free moving manipulators [13] [15] [16] [11]. Fu et al. observed force feedback to be the deciding factor in human
haptic perception [10]. Houk and Henneman, through experimentation on actively stimulated muscle, proposed a model
for the GTOs suggesting that they "constantly transmit to the spinal cord a filtered sample of the active forces being
produced in the muscle. The dynamic properties of the filter are approximated by a linear mathematical model" - Houk
and Henneman, 1967, p. 480 [17].

Experimental studies on the effects of manipulator dynamics can thus provide valuable information on studying
proprioceptive feedback.

Ultimately, this work aims to clarify whether proprioceptive feedback can meaningfully contribute to pilot
equalization strategies in the region of crossover and under what conditions it becomes a significant factor, providing
insights that could inform both pilot modeling efforts and the design of future manual control systems.

III. Literature Background - Equalization
McRuer’ crossover model, a quasi-linear model of pilot control behavior in the frequency domain, is one of the most

prevalent and useful models in predicting pilot behavior during a manual control task. Through empirical analysis it
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was observed that the pilot implemented their effort to obtain integrator-like dynamics in the open loop in the region of
crossover, 𝜔𝑐, with the open loop characteristics thus appearing in the form of 𝐻𝑝 ( 𝑗𝜔)𝑌𝑐 ( 𝑗𝜔) ≈ (𝜔𝑐/𝑠)𝑒−𝜏𝑒𝑠. The
non-linear and adaptive pilot behavior can be approximated as a linear model during a compensatory tracking task, with
the frequency response obtained using quasi-random sum of sine forcing functions that the pilot is tasked to follow. This
result was obtained under specific conditions: compensatory control with continuous (sum of sines) input signals in
controlled environments and with trained pilots as subjects [2].

The model includes the concept of equalization. Human operators adjust their control strategies to compensate for
controlled element (CE) dynamics, shaping the system to achieve integrator-like behavior around the region of gain
crossover. This equalization is assumed to be achieved through central nervous system processing and is a consistent
feature across various tasks.

The precision model, by the same authors, proposed an expression for pilot dynamics that included equalization
through visual feedback (from the display). The simplified precision model (Equation 1) shows a visual lead (𝜏𝐿) and/or
lag (𝜏𝐼 ) term being used for equalization, with the effective time delay (𝜏𝑒) also including neuromuscular limitations
(𝑇𝑁 ) along with visual processing delays, 𝜏. When more complexity is required in the model, the (extended) precision
model is often used, and second order neuromuscular dynamics, observed to occur at a frequency much higher than
crossover, are included in the open loop [18].

𝑌𝑃 (𝑠) = 𝐾𝑃

𝜏𝐿𝑠 + 1
𝜏𝐼 𝑠 + 1

exp(− 𝑗𝜔𝜏𝑒) where, 𝜏𝑒 = 𝜏 + 𝑇𝑁 (1)

Although an extremely successful model, it relies on visual feedback based compensation to be the primary pathway
for equalization used by the pilot. Lead and lag estimation is done on the error signal based on visual feedback. Taking
an alternative approach, the dual loop and later the structural model proposed by Hess suggests that proprioceptive
feedback is the primary pathway for equalization. This is an inner loop model, building upon a previous model by Smith
in 1976 [19] which had proposed visual rate estimation to be the pathway for generation of a similar inner loop used
for equalization. The structural model, on the other hand, proposed that proprioceptive feedback of the input control
force (sensed through golgi tendon organs, GTO) and stick displacement (sensed by muscle spindles, MS) is used in
conjunction with an internal estimate of the controlled element dynamics by the pilot to generate an inner loop, leading
to the expected open loop crossover dynamics [20] [21].

This means that to achieve the same dynamics as the precision model in the open loop, lag or lead is utilized in an
internal loop based on manipulator force and position feedback from proprioceptive organs. An inner loop lead leads to
a lag term in the open loop and vice versa.

The structural model is not a predictive model, and is instead called a descriptive model. Although such an inner
loop was able to exhibit the necessary crossover dynamics, it was largely validated with assumptions of isometric
manipulator and force feedback, and is able to replicate but not predict pilot response characteristics. Additionally, Hess
used physiologically implausible parameter values, such as a proprioceptive lag of 2.5 seconds for double integrator
control and lead of 5 seconds for proportional control [21].

A deeper analysis on the mathematics of proprioceptive equalization can help better understand the two different
approaches to explaining equalization.

Work by Bachelder and Aponso. proposed a mixed feedback model of the pilot with both proprioceptive and visual
feedback being used for equalization [12]. It was applied to estimation of pilot handling qualities and undesirable
oscillatory behaviors [14] [22]. They discovered force feedback to be the preferred pathway to contribute towards
equalization, while stick displacement feedback is used when force feedback is unavailable (e.g. for a light and free
moving manipulator). Although a promising model, validation has been extremely limited. A more detailed version
of the mixed equalization model was fitted to past data from Gordon-Smith in 1970 [16], for integrator controlled
element dynamics [23], based on which along with their own rough experiment approximations were made a generalized
equalization model was proposed (Part I, Section 7.3).

IV. Simplified Mathematical Analysis
To understand the potential for proprioceptive equalization in current quasi-linear models, a simple model structure

shown in Figure 1 is considered. 𝑢𝛿 can be either the force (with manipulator dynamics included in the CE, 𝑌𝑐), or it can
be deflection (with manipulator dynamics included in 𝐺𝑁𝑀𝑆). Hess’ structural model assumed the former, and during
verification assumed that the manipulator was isometric (with a stiff spring and comparatively negligible inertia and
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Fig. 1 A simplified form of a proprioceptive feedback equalization model

damping, ensuring that the feel system dynamics are constant, 𝐺𝐹𝑆 = 𝐾). This also means that while force feedback
was hypothesized, the model itself was not verified with this in mind, and either could have been present [21]. A later
study by Hess attempted to fit a revised version of the structural model, with different feel system dynamics considered,
however was not satisfactorily able to do so as proportional control tasks were not considered, an assumption of a
lead in the NMS dynamics for the case of free manipulators was proposed with little reasoning, and the case of free
manipulator and double integrator CE dynamics could not exhibit integrator dynamics in the crossover region [5]. In
this section, differentiating force vs deflection feedback is not relevant as the goal is only to study the mathematical
properties of inner loop equalization.

For 𝑘 = 0, 1, 2, the controlled element exhibits proportional, integrator and double integrator dynamics respectively.
The structural model suggests that based on the pilot’s estimate of these dynamics, an internal model is created. While
his previous dual loop model explicitly used this internal estimate of the plant dynamics [20], the structural model
makes it implicit and suggests the proprioceptive equalization dynamics change based on the pilot’s estimate of the
order of the controlled element dynamics as well as gain as shown in the figure [21].

A. A Mathematical understanding of inner loop equalization
The NMS and FS dynamics are neglected (𝐺𝑁𝑀𝑆 = 1) to study the mathematics of inner loop blocks and the effect

on the outer loop, and the open loop expressions are shown in Table 1. Such an approach is not new and a similar
analysis was also conducted by Hess in 1984 [9], however his study assumed a pure derivative term in the proprioceptive
feedback block along with the estimated plant dynamics, which overly simplifies the dynamics and neglects limitations
involved in introducing lead or lag. Here it is assumed that equalization takes on a lead or lag term with a time constant
of 𝜏𝑃𝐹 , corresponding with the latest revised structural model [3], and the generalized equalization model [12].

Table 1 shows the main results (see Appendix A for the complete analysis) showing that:
• For 𝑌𝑐 = 𝐾𝑐 a lead in the inner loop, acting on the proprioceptive feedback, is transformed into a lag in the pilot’s

response characteristics (from error 𝑒 to control input 𝑢𝛿 to the CE), however with a time constant that is smaller
than the lead time in the inner/proprioceptive loop. This means that a slightly larger proprioceptive lead time
constant is necessary (compared with the visual lag time constant) to achieve the same open loop equalization.

• for 𝑌𝑐 = 𝐾𝑐/𝑠2, although a lag in the inner loop is transformed into an equivalent open loop lead, it also adds an
open loop lag term that limits the compensation that can be provided.

The limitation for 𝑌𝑐 = 𝐾𝑐 dynamics could be compensated for by simply assuming a larger lead time constant is being
produced in the inner loop. Additionally in both CE dynamics cases a large proprioceptive feedback gain 𝐾𝑃𝐹 would
minimize these limitations, which would in turn also lead to a proportional increase in the pilot’s open loop gain 𝐾𝑝 on
the visual feedback to achieve the same open loop dynamics.

These terms highlight essential limitations in inner loop equalization. Lag production in the pilot’s response requires
larger lead time in the inner loop, and a lead in the pilot’s open loop response cannot be obtained purely through inner
loop equalization without an additional lag term being introduced, especially considering realistically smaller values of
𝐾𝑃𝐹 .

The second limitation is an intrinsic mathematical limitation in proprioceptive feedback equalization, it shows up
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Table 1 Summary of the open loop responses (from error 𝑒 to output 𝑦𝑐) comparing visual and proprioceptive
inner loop equalization models while neglecting NMS and FS dynamics (Figure 1)

Plant Dynamics Visual Equalization Proprioceptive Equalization

𝑌𝑐 = 𝐾𝑐 𝑌𝑂𝐿 = 𝐾𝑝𝐾𝑐

1
1 + 𝜏𝐼 𝑗𝜔

𝑒− 𝑗𝜔𝜏𝑒 𝑌𝑂𝐿 =

(
𝐾𝑝𝐾𝑐

1 + 𝐾𝑃𝐹

)
1

1 +
(
𝐾𝑃𝐹

1 + 𝐾𝑃𝐹

)
𝜏𝐿𝑃𝐹

𝑗𝜔

𝑒− 𝑗𝜔𝜏𝑒

𝑌𝑐 = 𝐾𝑐/𝑠 𝑌𝑂𝐿 = 𝐾𝑝𝐾𝑐

1
𝑗𝜔
𝑒− 𝑗𝜔𝜏𝑒 𝑌𝑂𝐿 =

(
𝐾𝑝𝐾𝑐

1 + 𝐾𝑃𝐹

)
1
𝑗𝜔
𝑒− 𝑗𝜔𝜏𝑒

𝑌𝑐 = 𝐾𝑐/𝑠2 𝑌𝑂𝐿 = 𝐾𝑝𝐾𝑐

1 + 𝜏𝐿 𝑗𝜔
( 𝑗𝜔)2 𝑒− 𝑗𝜔𝜏𝑒 𝑌𝑂𝐿 =

(
𝐾𝑝𝐾𝑐

1 + 𝐾𝑃𝐹

)
1 + 𝜏𝐼𝑃𝐹

𝑗𝜔

( 𝑗𝜔)2
(
1 +

(
𝜏𝐼𝑃𝐹

1 + 𝐾𝑃𝐹

)
𝑗𝜔

) 𝑒− 𝑗𝜔𝜏𝑒

in the parameters used by Hess to validate his structural model, with proprioceptive gain increasing from 𝐾𝑃𝐹 = 2.0
for proportional and integral control to 𝐾𝑃𝐹 = 10.0 for double integrator control to compensate for this unintended
lag term. This is still insufficient, however, and a visual rate estimation algorithm was also introduced by Hess in his
structural model which likely corrected for this [21].

Equalization for the integrator dynamics are trivial for both cases and do not offer new insights besides showing the
larger visual gain term that would be necessary to compensate for the inner loop gain.

B. Simplified Model with second order neuromuscular system dynamics
As mathematical limitations of purely proprioceptive equalization have been highlighted in the previous section,

a major result is that producing a lead in the pilot’s response, needed for 𝑌𝑐 = 𝐾𝑐/𝑠2 dynamics, purely through
proprioception and a visual gain is actually impossible even with idealized neuromuscular dynamics. However due to
the nature of the loop closure of the proprioceptive inner loop, it stands to reason that neuromuscular dynamics would
significantly affect the impact of the proprioceptive feedback, likely creating further limitations. Second order dynamics
in the open loop often describe a good approximation of neuromuscular limitations of the pilot, with a natural frequency
of the order of 10 rad/sec. When considering these dynamics for the neuromuscular system, the effects of the inner loop
closure were analyzed (see Appendix B). The root locus plots in Figure 2 show effect of closing the inner loop with
different proprioceptive equalization dynamics, around a second order NMS block (Equation 2), corresponding with
different CE dynamics, and are able to effectively summarize the main results of this analysis.

𝐺𝑁𝑀𝑆 ( 𝑗𝜔) =
𝜔2
𝑛

(1 + 𝑗𝜔𝑇𝑁1 ) [( 𝑗𝜔)2 + 2(𝜁𝑛𝜔𝑛) 𝑗𝜔 + 𝜔2
𝑛]

; 𝑇𝑁1 = 0.025𝑠𝑒𝑐, 𝜔𝑛 = 10𝑟𝑎𝑑/𝑠𝑒𝑐, 𝜁𝑛 = 0.6; (2)

1. Proportional Control
For the proportional control task,𝑌𝑐 = 𝐾𝑐, the inner loop is closed with a proprioceptive feedback lead (𝜏𝐿𝑃𝐹

= 0.6𝑠𝑒𝑐)
and the resulting root locus plot is shown in (Figure 2a). This control task has the most jarring effects, with a small
proprioceptive lead significantly shifting the second order NMS poles. While this results in the open loop lag necessary
for equalization, it also causes the NMS dynamics to disappear. This would imply a significantly reduced time delay
when position feedback is available, which does not happen. This suggests that this model might be a poor approximation
to study spindle feedback.

2. Integrator Control
For the integrator control task, 𝑌𝑐 = 𝐾𝑐/𝑠, inner loop closure with a pure gain (Figure 2b) causes the NMS dynamics’

natural frequency to be pushed away, thereby improving the pilot response. A side effect is the reduction of damping,
although it is not significant enough to counteract the advantages of increasing natural frequency,𝜔𝑐. This proprioceptive
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(a) Proportional Dynamics, 𝑌𝑐 = 𝐾𝑐 , PF lead (b) Integrator Dynamics, 𝑌𝑐 = 𝐾𝑐/𝑠, PF gain

(c) Double Integrator Dynamics, 𝑌𝑐 = 𝐾𝑐/𝑠2, PF lag

Fig. 2 Root Locus plots showing the effect of the inner loop closure around second order neuromuscular
dynamics
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feedback gain thus helps stabilize high frequency control behavior and reduces the phase lags in the crossover region,
and is not significantly limited by the neuromuscular system poles for small enough values of gain. For larger values of
gain, the poles become increasingly undamped and finally enter the right half plane and the system becomes unstable.
Instability does not occur when 𝑇𝑁1 = 0, and the system becomes unstable more quickly for larger values of 𝑇𝑁1 .

3. Double Integrator Control
For the double integrator control task, 𝑌𝑐 = 𝐾𝑐/𝑠2, loop closure around second order dynamics with a lag term

(𝜏𝐼𝑃𝐹
= 3𝑠𝑒𝑐, corresponding with the desired open loop lead in the visual response) in the proprioceptive feedback loop

has worse effects. Figure 2c highlights
• the same limitation observed with idealized NMS dynamics, i.e., there is a lag term introduced in the pilot’s

response as an unintended consequence, which can only be removed with unrealistically high values of 𝐾𝑃𝐹 .
• an additional limitation introduced by the presence of 2nd order dynamics, which is the fact that introduction of

proprioceptive feedback causes these poles’ natural frequency and damping to reduce, leading to larger phase
lag in the crossover regions. Since this is an undesirable behavior, if proprioceptive feedback (force or position)
shows these dynamics, then this method of equalization would not be preferred.

• The lag time constant is too large to be physiologically possible, once again showing that purely proprioceptive
equalization for 𝑌𝑐 = 𝐾𝑐/𝑠2 CE dynamics is not possible.

For further details, see Appendix B.

4. Conclusions
An inner loop lead for equalization in proportional control tasks is unrealistic due to the second order NMS dynamics

disappearing as a result of the inner loop feedback, likely due to a poor approximation of the NMS dynamics for such an
application. While the NMS dynamics in the pilot’s response are well represented by second order dynamics when
considering visual equalization in the precision model, it is likely a poor approximation when considering proprioceptive
feedback as well.

An inner loop lag contributing to acceleration control tasks is also unlikely due to it appearing to be a bad control
strategy for these dynamics of the 𝐺𝑁𝑀𝑆 , making the second order poles less stable. Additionally it is also impossible
in the absence of any visual lead as shown in the previous section.

Under an assumption of negligible FS dynamics (isometric manipulator) force and displacement sensing are
equivalent, but with the spindles sensing muscle stretch and velocity, and the Golgi tendon organs (GTOs) sensing stress
in the tendons rather than the actual force on the manipulator, a significant portion of the approximated NMS dynamics
become relevant. It is likely that force and position sensing by these organs also has some unknown sensory dynamics
by nature. A better understanding of the NMS is thus necessary.

V. Mechanical Model of the Neuromuscular System
Bachelder and Aponso initially used a mechanical model of the NMS [23]. After showing the validity of such a

model, later publications switched to a generalized model, while specifying that the second order NMS dynamics are
directly dependent on the manipulator and can change for different feel system dynamics. Such an approach takes into
account that the force being sensed by the pilot is also acting as an input to the stick.

A similar approach of utilizing a mechanical model of the neuromuscular system is attempted here. The model
shown in Figure 3 was developed in TU Delft in 2004 [1] and is an actuation model with 5 independent state variables:
the muscle stretch (𝑥𝑚), the position and velocity of the limb (𝑥𝑙 , ¤𝑥𝑙) and the position and velocity of the manipulator
(𝛿, ¤𝛿), all considered in terms of angular deflection. The input to the mechanical system, 𝑞𝑚 is the muscle activation, in
this case the angular moment produced by the muscle. There is a parallel damping element 𝑏𝑚 to this input, a series
elastic component 𝑘𝑆𝐸𝐶 , which can be considered as the tendon connecting the muscle to the limb/bone. An additional
parallel elastic component 𝑘𝑃𝐸𝐶 is also present in the model, resisting limb displacement. The limb has an inertia 𝐼𝑎𝑟𝑚 .

Contact dynamics between the hand and the stick are given by the spring constant 𝑘𝐶 and damping term 𝑏𝐶 .
In general a manipulator exhibits second order dynamics due to inertia, damping and a spring constant. Varying

these properties will change the dynamics of the combined neuromuscular and feel system (NMS-FS). The contact
force 𝐹𝐶 is applied on the manipulator/feel system, which has its own spring constant and damping, 𝑘𝐹 and 𝑏𝐹 , and
inertia 𝐼𝐹 , with respect to its own axis of rotation. A free moving manipulator has no spring attached and hence, when
damping is negligible, exhibits double integrator dynamics, which is used as the input to the controlled element (CE). A
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pressure manipulator, on the other hand, is clamped in place. Force applied on the manipulator is then used as the
input to the controlled element, generally through the use of a strain gauge on its surface.

All parameter values have been presented in Table 2. For a complete state space representation of the model used,
see Appendix C.

This model is quite similar to the model used by Bachelder and Aponso (from Magdaleno, 1971 [24]). Besides
the major difference of using angular coordinates, which would not change the dynamics expressions, this model also
includes a damping term in the skin contact/grip (𝑏𝑐) and has some differences in the positioning of the parallel elastic
component in the muscle. Both models abstract away from muscular co-contraction, with the entire muscle activation
input only represented by a single (angular) force input, 𝑞𝑚, which is a drawback when considering that changes in
the feel system dynamics will also affect muscular co-contraction. It can, however, be assumed that lower spring
constants/natural frequency of the manipulator increases co-contraction and can be approximated as an increase in the
stiffness of the parallel elastic component of the muscle (𝑘𝑃𝐸𝐶), along with a decrease in the sensitivity of the force
feedback by the golgi tendon organs (GTOs) which sense the tension in the series elastic component (𝑘𝑆𝐸𝐶) in this
model.

The structure of the model is shown in Figure 4, with the limb and the feel system/manipulator shown separately to
better see the effect of changing feel system dynamics on the overall system. This can be seen in Figure 3 where the top
view of the arm on the left represents the model 𝐺𝑁𝑀𝑆 , which is also dependent on the manipulator displacement,
𝛿 𝐿𝐹 , as a state variable. However the converse is not true, and the response from 𝐹𝑐 to 𝛿 is independent of the pilot’s
neuromuscular system dynamics. This structure is inspired by what was used by Bachelder and Aponso in 2021 [23],
however it differs from the later generalized model [12] due to the dependency on the feel system being included.

Another major difference is in the fact that proprioceptive feedback does not directly sense the control force and
stick displacement but instead assumptions are made, grounded in physiology, that the GTOs sense the force in the
tendons, here the series elastic component (𝐹𝑔𝑡𝑜 = 𝑘𝑆𝐸𝐶 (𝑥𝑙 − 𝑥𝑚)), and the spindles sense the stretch in the muscles
𝑥𝑚. This creates significant differences in the feedback dynamics and can shed further light on the limitations of the
feedback data from the force and position sensing organs.
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Fig. 3 Mechanical Model of the Neuromuscular and Feel System, with the top view of the pilot’s arm gripping
the manipulator (left) and a head on view of the manipulator (right), based on van Paassen et al. 2004 [25]

A. Effect of NMS dynamics in the frequency domain
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Fig. 4 Model Diagram of the Proprioceptive and Visual feedback Loops, and the NMS-FS hardware model
from Figure 3

Table 2 Neuromuscular System Parameters for (Figure 3

Parameters Notation Value

Parallel Elastic Component 𝑘𝑃𝐸𝐶 [𝑁 𝑚 𝑟𝑎𝑑−1] 9.14*
Series Elastic Component 𝑘𝑆𝐸𝐶 [𝑁 𝑚 𝑟𝑎𝑑−1] 30
Muscle damping 𝑏𝑚 [𝑁 𝑚 𝑠 𝑟𝑎𝑑−1] 0.538
Manipulator Length 𝐿𝐹 [𝑚] 0.1
Manipulator Inertia 𝐼𝐹 [𝑘𝑔 𝑚2 𝑟𝑎𝑑−1] 0.0065
Limb (Arm) Length 𝐿𝑎𝑟𝑚 [𝑚] 0.36
Limb Inertia 𝐼𝐿 [𝑘𝑔 𝑚2 𝑟𝑎𝑑−1] 0.0417
Contact spring rate 𝑘𝐶 [𝑁 𝑚 𝑟𝑎𝑑−1] 300
Contact Damping 𝑏𝐶 [𝑁 𝑚 𝑠 𝑟𝑎𝑑−1] 7.01
Manipulator Spring Rate 𝑘𝐹 [𝑁 𝑚 𝑠 𝑟𝑎𝑑−1] 1.48**
Manipulator Damping 𝑏𝐹 [𝑁 𝑚 𝑠 𝑟𝑎𝑑−1] 0.01

* For a free moving manipulator 𝑘𝑃𝐸𝐶 = 18.28𝑁𝑚/𝑟𝑎𝑑 due to co-contraction
** For (stiffer) manipulators with different spring constants, 𝑘1 = 1.48𝑁𝑚𝑠/𝑟𝑎𝑑, 𝑘𝐹 = 𝑘1, 5𝑘1, 25𝑘1
** For free and fixed (pressure sensing) manipulators, 𝑘𝐹 = 0 and 𝑘𝐹 = 73𝑘1 respectively (non-ideal clamp)

In order to compare the dynamics of the mechanical model with the previous approximations, a brief analysis of the
dynamics of the neuromuscular system is shown, and pole positions of the NMS response are depicted in Figure 5.

The system is analyzed by varying the manipulator natural frequency, with 𝑘𝐹 = 𝑘1 corresponding to a manipulator
natural frequency of 15 rad/sec. For successively stiffer springs, 𝑘𝐹 is increased and shown as a multiple of 𝑘1, which
corresponds with a feel system natural frequency of

√︁
𝑘1/𝐼𝐹 ≈ 15𝑟𝑎𝑑/𝑠𝑒𝑐. The manipulator characteristics vary from a

freely moving manipulator (𝑘𝐹 = 0), to a clamped (pressure control) manipulator (𝑘𝐹 = 73𝑘1, as the clamped stick still
has some leeway), for which 𝐹𝑐 is considered the input to the controlled element rather than 𝛿 due to pressure sensing
control.

1. Pole-Zero Analysis of the NMS
A key observation arises from the pole-zero map of the dominant poles of the neuromuscular and feel system,

presented for the open-loop system from 𝑞𝑚 to 𝛿 (Figure 5).
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Fig. 5 Dominant poles of the NMS-FS model (𝑞𝑚 to 𝛿) with the added pole-zero cancellations corresponding to
the feel system poles

The pole-zero plot shows that the neuromuscular-feel system has dominant second order poles, with lag terms present
at higher frequencies. This means that a second order approximation with a small lag is quite accurate when considering
the output to be the stick deflection, 𝛿. However, when considering force feedback, the expression 𝐺𝑁𝑀𝑆 = 𝐹𝑐/𝑞𝑚 is
separate and consists of the same dominant poles as well as zeros that cancel out with the feel system poles. This pole
zero cancellation has been intentionally shown in the pole-zero plot.

These cancellations reveal a limitation in the second order approximation when considering force feedback, and
also imply the same limitation in the general model used by Bachelder. In the open inner-loop, there are zeros as well
as poles in the transfer function from 𝑞𝑚 to 𝐹𝑐, which are likely to significantly affect the open-loop dynamics if an
inner-loop closure is made using force feedback 𝐹𝑐. These zeros are present in the mechanical model initially used by
the same authors [23] as well. For the slightly different model used there, the negligible damping in the feel system and
assumed zero damping in the contact force result in the same zeros lying on the imaginary axis. The presence of these
zeros within the inner loop can fundamentally change what happens when force feedback is used.

2. Comparing actual 𝐹𝑐 and 𝛿 with the sensed 𝐹𝑔𝑡𝑜 and 𝑥𝑚
After establishing these dynamics, the dynamics from 𝑞𝑚 to the muscle stretch, 𝑥𝑚, (assumed to be sensed by muscle

spindles) and the force in the tendon/series elastic component,𝐹𝑔𝑡𝑜 = 𝑘𝑆𝐸𝐶 (𝑥𝑙 − 𝑥𝑚) (assumed to be sensed by GTOs),
are studied.

Figure 6 shows the frequency response functions of the system, comparing the actual outputs of the stick position
and force with the sensed muscle spindle and Golgi tendon organ (GTO) outputs, for various manipulator stiffness
characteristics.

A reduction in the feel system’s natural frequency (i.e., a reduction in the manipulator spring rate) causes significant
lag in the neuromuscular system output when no proprioceptive correction is assumed. In contrast, increasing the spring
constant raises the natural frequency of the dominant neuromuscular poles, reducing the phase lag.

The effect of co-contraction for the free moving manipulator by increasing 𝑘𝑃𝐸𝐶 can be clearly observed as a
decrease in the static gain of the frequency response function of stick deflection. Figure 6a. Additionally, small changes
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Fig. 6 Bode Plots showing the frequency response of the open inner-loop NMS dynamics from 𝑞𝑚 to stick
displacement and force, compared with sensed muscle stretch (𝑞𝑚 to 𝑥𝑚) and sensed tendon force (𝑞𝑚 to 𝐹𝑐)
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in the system’s natural frequency occur, pushing it to a higher frequency and reducing phase lag in the high-frequency
region. The observed improvements from increasing the stiffness of the PEC through co-contraction are particularly
beneficial for lighter manipulators, while being unnecessary for heavier manipulators. For the latter, the lower mean
force in the muscles will increase the force feedback sensitivity, assumed to be the difference between agonist and
antagonist muscles pairs, facilitating easier force sensing by the Golgi tendons.

For scenarios where the feel system natural frequency 𝜔𝑛 is much larger than the neuromuscular system’s natural
frequency, the force sensed by the Golgi tendons and the stick displacement show nearly identical dynamics. For the
manipulator with the least stiffness, 𝑘𝐹 = 𝑘1, the force sensed by the GTOs lags slightly behind the actual contact force
on the manipulator.

When 𝑘𝐹 = 0 (free moving manipulator), force sensing through the GTOs is not possible. For other manipulator
restraints, the phase curves from 𝑞𝑚 to 𝐹𝑐, and to 𝐹𝑔𝑡𝑜 are quite similar regions that are most relevant (𝜔 < 20𝑟𝑎𝑑/𝑠𝑒𝑐).
Specifically, for 𝑘/𝑘1 = 0, 1, 5, a notable attenuation in the high-frequency region is observed. This attenuation arises
due to the poles and zeros in the transfer function being closer, forming the ’trough’ in the frequency response. This
shows that the presence of the zeros in the NMS frequency response function is an important factor, especially for a
𝑘𝐹 = 𝑘1, at these frequencies, which are also likely to affect the phase lag in the pilot response function.

In these systems with lower spring stiffness, spindle feedback would then be a much more effective control strategy
since neuromuscular and feel system dynamics do not interfere with force and position feedback.

The findings highlight key characteristics of the neuromuscular and feel system’s behavior (in the absence of
proprioceptive feedback), particularly the effects of system stiffness and natural frequency on phase lag and force
sensing. Reducing the feel system’s natural frequency leads to greater time lag, while increasing the spring constant
reduces this lag. This has been one of the most significant observations in studies that compared effects of changing
manipulator dynamics. This suggests that the improvement in performance with the increase in spring stiffness can be
more confidently attributed to the mechanical properties of the system rather than the availability of force feedback for
control. These observations also explain observed improvements in performance when co-contraction is employed for
systems where phase lag due to the manipulator’s characteristics is significant.

This model does suggest that assumptions of the sensed GTO force and muscle stretch being approximately equal to
the force on the stick and its deflection are valid mostly when manipulators with higher natural frequency are used. For
manipulators with lower stiffness, an additional phase lag term in contact force feedback to the pilot can provide a good
approximation to what is sensed by the GTOs.

An interesting effect of there being only two dominant poles in this model of the neuromuscular system is that
approximations can give identical results in the frequency region of relevance. Unsurprisingly, the overall response
from 𝑞𝑚 to 𝛿 can be easily reduced to second order dynamics and a small lag term. However, in addition to this, another
good approximation is the for the block 𝐺𝑁𝑀𝑆 shown in Equation 3. Since 𝐺𝐹𝑆 has second order dynamics which can
be measured relatively easily, including these without adding additional unknown parameters to pilot models is possible.
This introduces a significant change in force feedback loops closed with 𝐹𝑐 as compared to the approximate second
order dynamics used previously by Hess and others. This also suggests that the generalized model shown in ?? is only a
good approximation when the feel system dynamics can be safely approximated as a gain with isometric manipulator
assumptions. See Appendix C for more information about the second order approximations that can be made for this
model.

𝐺𝑁𝑀𝑆 ( 𝑗𝜔) =
𝐹𝑐 ( 𝑗𝜔)
𝑞𝑚 ( 𝑗𝜔)

=
𝜔2
𝑛

(1 + 𝑗𝜔𝑇𝑁1 )
(
( 𝑗𝜔)2 + 2𝜁𝑛𝜔𝑛 𝑗𝜔 + 1

) 1
𝐺𝐹𝑆 ( 𝑗𝜔)

(3)

VI. Analyzing GTO and MS Feedback
As the mechanical model of the NMS is established, it is necessary to understand the effect of force and position

feedback on the pilot’s response. In this section, the potential changes in open-loop behavior that arise when equalization
feedback is introduced through either Golgi Tendon Organ (GTO) or Muscle Spindle (MS) feedback pathways, are
explored. The response 𝑞𝑣 to 𝛿 when the inner PF loop is closed is considered in the presence of various proprioceptive
feedback scenarios depending on different control tasks, and for different manipulator spring dynamics. This inner
loop closure incorporates a neuromuscular activation lag of 0.01 second (in the block 𝐺𝑎𝑐𝑡 ) and a proprioceptive
compensation delay of 0.025 seconds.

𝐺𝑎𝑐𝑡 ( 𝑗𝜔) = 𝐾𝑎𝑐𝑡/(1 + 𝑗𝜔𝑇𝑎𝑐𝑡 );𝐾𝑎𝑐𝑡 = 0.3 𝑁𝑚,𝑇𝑎𝑐𝑡 = 0.01 𝑠 (4)
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(b) Dominant Poles (zoomed in)

Fig. 7 Root Locus Plot, closing the inner loop with a GTO lead, (from 𝑞𝑣 to 𝛿), 𝑘𝐹 = 𝑘1

𝐻𝑔𝑡𝑜 = 𝐾𝑔𝑡𝑜

1 + 𝑗𝜔𝑇𝐿𝑔𝑡𝑜

1 + 𝑗𝜔𝑇𝐼𝑔𝑡𝑜
𝑒− 𝑗𝜔 𝜏𝑑 ; 𝜏𝑑 = 0.025 𝑠 (5)

𝐻𝑚𝑠 = 𝐾𝑚𝑠

1 + 𝑗𝜔𝑇𝐿𝑚𝑠

1 + 𝑗𝜔𝑇𝐿𝑚𝑠

𝑒− 𝑗𝜔 𝜏𝑑 ; 𝜏𝑑 = 0.025 𝑠 (6)

The key plots, showing the effect of the inner loop closure on the pilot’s response characteristics (from 𝑞𝑚 to 𝛿) that
are representative of the results are shown here. For all plots and analysis of the proprioceptive feedback loops, see
Appendix D.

A. Golgi Tendon Organ (GTO) Force Feedback
The effects of introducing GTO lead (meant to introduce an open loop lag in the pilot’s response for proportional

CE dynamics), and of GTO lag (meant to introduce an open loop lead in the pilot’s response for double integrator CE
dynamics) are considered through root locus plots in Figures 7 and 8, and Bode plots (as in Figure 11).

The response of the neuromuscular system with a force feedback through the GTOs was analyzed. The presence of a
pair of zeros in the open-loop response from 𝑞𝑐 to 𝐹𝑔𝑡𝑜 significantly alters the pilot response characteristics when the
loop is closed via force feedback, as compared to when the zeros were absent, resulting in similar results as discussed in
section IV.

1. Proportional Control Dynamics, 𝑌𝑐 = 𝐾𝑐: GTO Lead
In the root locus plot (Figure 7) it can be seen that introducing a GTO lead has a destabilizing effect on the dominant

poles of the NMS. The second order poles become less damped and move towards the right half plane, before the model
becomes unstable. The necessary lag in the pilot response, required for proportional equalization, is not achieved within
stability bounds.

Incorporating a lead element within the GTO feedback block implies the estimation of jerk for equalization—an
approach that is physiologically implausible. From a mathematical standpoint, when GTO feedback is employed
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Fig. 8 Root Locus Plot, closing the inner loop with a GTO lag, (from 𝑞𝑣 to 𝛿), 𝑘𝐹 = 𝑘1
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(b) Dominant Poles (zoomed in)

Fig. 9 Root Locus Plot, closing the inner loop with a MS lead, (from 𝑞𝑣 to 𝛿), 𝑘𝐹 = 𝑘1
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Fig. 10 Root Locus Plot, closing the inner loop with a MS lag, (from 𝑞𝑣 to 𝛿), 𝑘𝐹 = 𝑘1
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(b) 𝑘𝐹 = 𝑘1

Fig. 11 FRF from 𝑞𝑣 to 𝛿 with a GTO lag, with 𝑇𝐼𝑔𝑡𝑜 = 0.3𝑠
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for equalization of the feel system, the resulting closed-loop neuromuscular system response (from 𝑞𝑣 to 𝛿) exhibits
instability over a broad range of gain values. Frequency response plots (Appendix D) confirm that force feedback gain
does not yield either a lead or a lag in the pilot’s open-loop response. Furthermore, for small gain values where the
system remains stable, significant phase lags are produced due to non dominant poles moving towards the right. All this
shows that a GTO force feedback lead is unlikely to contribute effectively to crossover equalization.

2. Double Integrator Control Dynamics, 𝑌𝑐 = 𝐾𝑐/𝑠2: GTO Lag
Introducing a lag into the force feedback channel, meant for double integrator CE dynamics equalization, however,

avoids large instabilities and does not cause undesirable peaking in the open-loop response. Figure 8 shows that the
effect of small GTO gain on the NMS poles is stabilizing up to a certain range, increasing the damping of the poles.
However, the pole corresponding with the lag term cannot be removed entirely, and is still significant for this range of
gain values. This corresponds with the results obtained in section IV.

For stiffer springs however, such as 𝑘𝐹/𝑘1 = 5 (Figure 11), the natural frequency of the dominant pole also increases.
The frequency response functions in Figure 11 show that a small lag, on the order of 0.2 to 0.3 seconds, is sufficient to
generate a limited open-loop lead in the pilot response characteristics. It is also evident that lag-based force feedback
may serve to reduce phase lag. Therefore, if force feedback is available, and if the introduction of a small delay is
physiologically plausible, it is likely that trained pilots may utilize this mechanism for equalization. The presence of a
lag term, at a larger frequency, however also impacts the dynamics near the crossover region and once again ensures that
pure proprioceptive equalization for a double integrator control task through a GTO lag is not possible, but it can be a
significant contributor towards equalization in conjunction with a visual lead term.

This means that without a visual lead also present, it would still be impossible to equalize purely through
proprioceptive feedback as the system would be unstable when controlling double integrator controlled element
dynamics (𝑌𝑐 = 𝐾𝑐/𝑠2). A mixed equalization with a significant contribution through a proprioceptive lag is however
plausible, and can be a significant contributor to equalization.

Key Results:
• Lag in the GTO feedback pathway appears capable of producing an open-loop lead near the region of crossover,

which would contribute towards equalization in harder tasks such as double integrator control, however some
contribution from a visual lead would still be necessary to ensure stability as the GTO by itself also introduces a
slightly higher frequency lag term.

• The NMS dynamics implement an upper limit to how high the GTO lag can be increased, which wasn’t present
when simplified NMS dynamics were being discussed. For weaker (lower spring stiffness) manipulators, a GTO
lag by itself appears to increase damping for very small gain, followed by reduced damping lower natural frequency
of the NMS dominant poles, with eventual instability. This puts an upper limit on the compensation that force
feedback can provide, with greater compensation being possible for stiffer manipulator characteristics.

• GTO lead causes instability and is not able to contribute towards equalization near the region of crossover.

B. Muscle Spindle (MS) Feedback

1. Proportional Control Dynamics, 𝑌𝑐 = 𝐾𝑐: MS Lead
Based on the root locus plots in Figure 9, a lead in the spindles has a stabilizing effect on the dominant NMS poles,

increasing the natural frequency. However, it is also clear that no condition within stability bounds is able to bring
about a lag term significant enough to affect equalization. Interestingly, a pure gain in the spindle appears to have the
worst affect on the system, reducing the damping in the dominant poles leading to instability. In contrast, a lead term
minimizes this decrease in damping, maintaining it somewhat at the same location for smaller lead times. This has an
overall beneficial stabilizing effect, showing the presence of spindle feedback to be valuable in improving performance,
even though it cannot not induce equalization.

FRF plots (Appendix D) suggest that a small lead on MS feedback remains stable over a wide range of gain values
and effectively damps the neuromuscular peak. However, this improvement comes at the cost of increased phase lag. An
MS lead beyond a lead time of 0.2 seconds does not remain stable. Moreover, MS-based leads are unable to produce any
substantial equalization lead in the crossover frequency region.
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(b) 𝑘𝐹 = 5𝑘1

Fig. 12 FRF from 𝑞𝑣 to 𝛿 with a MS lag, with 𝑇𝐼𝑚𝑠
= 0.3𝑠

2. Double Integrator Control Dynamics, 𝑌𝑐 = 𝐾𝑐/𝑠2: MS Lag
A lag term does not significantly affect stability and can induce minor changes in the crossover region only (Figures

Figure 10 and Figure 12). While this may be mathematically correct, studies have suggested that the role of MS lag is
very limited [1].

Additionally, based on the root locus plot, a small lag into the MS feedback channel accentuates the neuromuscular
peak, although not significantly. The FRF shows reduced time delay. As the lag time constant is increased, mid- and
low-frequency characteristics are affected more strongly. This results in some lead in the crossover region and a slight
reduction in low-frequency lag.

Overall, the mechanical model suggests that changes in spindle feedback dynamics lead to relatively minor alterations
in the crossover and open-loop behavior, which would likely be more helpful in suppressing NMS characteristics than
implementing crossover equalization. In contrast, variations in GTO gain and lag result in more significant system-wide
changes.

Prior modeling work from 2004 indicated that MS feedback could be approximated as containing no lag, only lead
elements [25].

Muscle Spindles are insufficient for effective equalization, but can play a significant role in smoothing the
neuromuscular response.

VII. Utilizing Proprioceptive Feedback for Equalization
In scenarios where equalization is primarily visual, proprioceptive feedback, whether from force or position, may be

utilized to flatten the neuromuscular system response near the crossover region and enhance gain margin. With the
precision model, Visual equalization provides an open loop lag in the pilot’s FRF for proportional control tasks, a pure
gain for integrator tasks, and an open loop lead in the pilot’s FRF for double integrator tasks.

For proprioceptive or mixed equalization, on the other hand, the design objective becomes to introduce appropriate
dynamic characteristics into the crossover region through the neuromuscular feedback loops, with visual compensation
compensating for any deficiencies.

In both cases, the main goal is to obtain integrator like dynamics in the region of crossover, a relatively high gain for
lower frequencies and minimize disturbance arising from the neuromuscular system’s poles at higher frequencies. In all
control scenarios, parameters are manually selected to satisfy these criteria, specifically for a system with a relatively
light, spring-restrained manipulator where

√︁
𝑘𝐹/𝐼𝐹 ≈ 15 rad/s.

Based on the results from Section VI, proprioceptive feedback appears to be limited to the following effects:
• MS feedback alone does not substantially modify open-loop behavior without risking instability. Similarly, a

GTO-based lead does not significantly alter system dynamics, and may in fact induce instability.
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• Adjusting GTO gain values can meaningfully affect the open-loop response but may reduce the damping of the
dominant neuromuscular poles.

• Including a lag in GTO feedback—interpreted as the pilot estimating stick velocity from applied forces—can
substantially improve open-loop delay and provide the necessary lead associated with double-integrator-type
control.

A. Integrator Control Dynamics, 𝑌𝑐 = 𝐾𝑐/𝑠
Such a system is considered trivial for equalization, as the necessary integrator dynamics near crossover are provided

by the CE, and the pilot must tweak their necessary gains only to get the best performance. As proprioceptive feedback
gains are used to improve performance even in the case of visual equalization, two separate scenarios are not necessary.

With the neuromuscular system as defined previously, and the controlled element dynamics such that 𝑌𝑐 (𝑠) = 𝐾𝑐/𝑠,
𝐾𝑐 = 24.3 𝑐𝑚/𝑟𝑎𝑑. I.e. stick deflection of 6 degrees causes the target on the display to move at roughly 2.5 cm (or 1
inch) per second.

Using the mechanical model and manually estimating the pilot’s control parameters to obtain crossover dynamics
dictated by McRuer’s verbal adjustment rules [2], the resulting parameters necessary are shown in Table 3, with the
open loop response in Figure 15. For the case of integral dynamics, additional cases of manipulator dynamics are also
considered and analyzed in section VIII.

Equalization for integral dynamics highlighted that spindle feedback was a significant contributor to reducing
undesirable high frequency dynamics, while also performing fine adjustments of slope near crossover. GTO gain was
also helpful in the crossover region, however not necessary.

B. Proportional Control Dynamics, 𝑌𝑐 = 𝐾𝑐

For this system it is necessary to produce an open loop lag in order to achieve integrator crossover dynamics.
This can be done by directly introducing a lag on visual feedback. For equalization through proprioceptive feedback,
the structural model proposes an inner loop derivative or lead term. Experimental evidence has suggested that pilot
performance in proportional feedback does not deteriorate, and in fact improves, when force feedback is not available
(for free moving manipulators) [15]. This suggests that if proprioceptive equalization is used, it would be through a lead
on position feedback. As has already been observed, it was not possible for muscle spindles to equalize alone, and no
stable system could be achieved without a visual lag term.

The same control sensitivity is used, 𝐾𝑐 = 24.3 𝑐𝑚/𝑟𝑎𝑑, such that a stick deflection of 6 degrees causes the target
to move 2.5 cm.

When attempting equalization through only visual feedback, a visual delay of 𝜏 = 0.16 𝑠 was used along with a
visual equalization term:

𝐻𝑣 =
𝐾𝑝

1 + 𝑗𝜔𝜏𝐼𝑣𝑖𝑠
;𝐾𝑝 = 1.64, 𝜏𝐼𝑣𝑖𝑠 = 0.6𝑠 (7)

When attempting proprioceptive equalization, with no visual compensation, the model could not be stabilized with
required higher PF lead time constants. In Figure 13, with the same visual delay of 𝜏 = 0.16 𝑠:

𝐻𝑣 = 𝐾𝑝 = 1.57 (8)
𝐻𝑀𝑆 = 𝐾𝑚𝑠 (1 + 𝑗𝜔𝜏𝐿𝑚𝑠)𝑒− 𝑗𝜔 𝜏𝑑 ;𝐾𝑚𝑠 = 5, 𝜏𝐿𝑚𝑠

= 3 𝑠; 𝜏𝑑 = 0.025 𝑠 (9)

When attempting mixed equalization however, it was possible to achieve better phase lags in the crossover region
and beyond while also reducing the need for visual compensation as can be seen in Figure 13. The blocks used in this
case, with the same visual delay 𝜏 = 0.16 𝑠:

𝐻𝑣 =
𝐾𝑝

1 + 𝑗𝜔𝜏𝐼𝑣𝑖𝑠
;𝐾𝑝 = 1.48, 𝜏𝐼𝑣𝑖𝑠 = 0.4𝑠 (10)

𝐻𝑚𝑠 = 𝐾𝑚𝑠 (1 + 𝑗𝜔𝜏𝐿𝑚𝑠
) 𝑒− 𝑗𝜔 𝜏𝑑 ;𝐾𝑚𝑠 = 4, 𝜏𝐿𝑚𝑠

= 0.5 𝑠; 𝜏𝑑 = 0.025 𝑠 (11)

It is interesting to note that it was possible to reduce, but not eliminate, visual equalization with the use of MS lead.
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Fig. 13 Proportional Equalization through visual and mixed feedback
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Fig. 14 Double Integrator Control through visual and mixed feedback
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C. Double Integrator Dynamics, 𝑌𝑐 = 𝐾𝑐/𝑠2
For this system it is necessary to produce an open loop lead in the pilot’s FRF in order to achieve integrator like

crossover dynamics. This can be implemented as a lag on force feedback in the inner loop to achieve similar results.
The structural model used a lag time as high as 2 seconds, which is physiologically implausible in the short time frames
at which the neuromuscular cues are processed. Nevertheless, a mixed equalization method is still attempted here, and
results can be seen in Figure 14.

The controlled element sensitivity was set to 𝐾𝑐 = 29.2 𝑐𝑚/𝑟𝑎𝑑. To minimize variables while also ensuring a
realistic response, the spindle characteristics were fixed according to Equation 12

𝐻𝑚𝑠 = 𝐾𝑚𝑠 (1 + 𝑗𝜔𝜏𝐿𝑚𝑠
)𝑒− 𝑗𝜔 𝜏𝑑 ;𝐾𝑚𝑠 = 10, 𝜏𝐿𝑚𝑠

= 0.3 𝑠; 𝜏𝑑 = 0.025 𝑠 (12)

When equalizing with purely visual compensation, it was possible to achieve the required crossover characteristics
with parameters shown in in Equation 13

𝐻𝑣 = 𝐾𝑝 (1 + 𝑗𝜔𝜏𝐿𝑣𝑖𝑠
);𝐾𝑝 = 0.96, 𝜏𝐿𝑣𝑖𝑠

= 2 𝑠, 𝜏 = 0.25 𝑠 (13)

Purely proprioceptive compensation was not possible as even though a GTO lag was able to produce the required
slope, it was not able to maintain stability for higher gain and lag terms. This was likely due to an additional lag
appearing in the open loop as was shown in section IV to occur even when NMS dynamics were idealized.

Mixed equalization was achieved with a surprisingly low value of visual lead shown in Equation 16, combined with
a small force feedback lag shown in Equation 17

𝐻𝑣 = 𝐾𝑝 (1 + 𝑗𝜔𝜏𝐿𝑣𝑖𝑠
);𝐾𝑝 = 3.34, 𝜏𝐿𝑣𝑖𝑠

= 0.5 𝑠, 𝜏 = 0.23 𝑠 (14)

𝐻𝑔𝑡𝑜 =
𝐾𝑔𝑡𝑜

1 + 𝑗𝜔𝜏𝐼𝑔𝑡𝑜
𝑒− 𝑗𝜔 𝜏𝑑 ;𝐾𝑔𝑡𝑜 = 3, 𝜏𝐼𝑔𝑡𝑜 = 0.3𝑠 𝜏𝑑 = 0.025𝑠 (15)

This came with the drawback of increased phase lags in the low frequency region. A slightly smaller visual delay is
also noted to achieve similar phase margins, however can be justified by the significantly lower lead time. Although
phase lags measured experimentally in the low frequency region tend to have large error margins, McRuer in his study
comparing pilot dynamics with various manipulators [15], observed increased phase lags when moving from free
moving to pressure manipulators, referred to as "shifting the phase umbrella to the right".

As MS lag did not inherently destabilize the model, a mixed feedback of visual lead and MS lag was also attempted.

𝐻𝑣 = 𝐾𝑝 (1 + 𝑗𝜔𝜏𝐿𝑣𝑖𝑠
);𝐾𝑝 = 3.34, 𝜏𝐿𝑣𝑖𝑠

= 0.5 𝑠, 𝜏 = 0.23 𝑠 (16)

𝐻𝑚𝑠 =
𝐾𝑚𝑠 (1 + 𝑗𝜔𝜏𝐿𝑚𝑠

)
1 + 𝑗𝜔𝜏𝐼𝑚𝑠

𝑒− 𝑗𝜔 𝜏𝑑 ;𝐾𝑚𝑠 = 20, 𝜏𝐼𝑚𝑠
= 0.5 𝑠, 𝜏𝐿𝑚𝑠

= 0.3𝑠 𝜏𝑑 = 0.025𝑠 (17)

Although seemingly just as effective in achieving integrator dynamics near crossover, there was a significant
instability in the dominant NMS poles due to the large MS gain.

VIII. Effect of changing Feel System Dynamics on Equalization
This section explores the influence of various feel system dynamics on the process of equalization, focusing on

their compatibility with known crossover characteristics and the physiological plausibility of achieving these dynamics.
Multiple studies have been conducted, comparing pilot dynamics and performance when different stick dynamics are
considered. Generally, this includes a free moving manipulator, one that has no spring restraints and only an inertia,
hence exhibiting double integrator dynamics from force input to stick displacement, a spring restrained manipulator
which includes a spring constraint and exhibits second order dynamics, and finally a pressure manipulator which uses
a strain gauge on a manipulator fixed/clamped in place to measure the force applied on it, used directly as the input
to the controlled element. Considering varying manipulator characteristics is important as changes in manipulator
characteristics directly affects the availability of the proprioceptive feedback.

This suggests that when force feedback is unavailable or weak in the case of a free manipulator or one with a weak
spring, experimental results showing a deterioration in equalization and performance would indicate force feedback
being used for the same. On the other hand when displacement feedback is unavailable in the case of stiff or pressure
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manipulators, changes in equalization characteristics would indicate how position feedback is being used by the pilot. A
similar approach was used by Bachelder and Aponso, who conducted their own experiment with and without the spring
being present in a joystick during a control task [23]. They conducted an analysis of both the equalization characteristics
as well as the power spectral density of the stick displacement characteristics, and concluded that force feedback when
available contributed to equalization. They further went on to propose a parameter estimation method for the generalized
model shown in ?? by optimization of a cost function that includes both optimizing the crossover characteristics, as
well as minimizing high frequency response characteristics [12]. Although promising, due to the poor quality of the
experiment, the model cannot be verified as such. Although a proprioceptive equalization model was also fitted to
more thorough experimental results by Gordon-Smith [16], this model also included a full mechanical model of the
neuromuscular system.

A similar approach, inspired by Bachelder and Aponso’s results, is used here. Results from studies by McRuer
and Magdaleno [15] [13], and a study by Gordon-Smith [16], provide a thorough analysis of the effects of manipulator
dynamics on the pilot response function. For each controlled element dynamic, trends observed in prior empirical
studies are examined and, based on properties of the neuromuscular system (NMS) model discussed in section VI and
section VII, hypotheses regarding possible mechanisms involving proprioceptive equalization are proposed. Due to the
absence of clearly defined trends and the risk of overfitting from a large number of free parameters, qualitative fitting
was only pursued in the case of integrator control.

For a detailed report on the experimental results used from literature, see Appendix E.

A. Integral Control
For integrator control tasks, the objectives for proprioceptive parameter selection are generally consistent, irrespective

of whether proprioceptive pathways are utilized directly for equalization.
An initial attempt at fitting was performed manually by adjusting model parameters to optimize the pilot’s open-loop

frequency response. The goal was to improve response characteristics near the crossover region while minimizing
high-frequency neuromuscular peaking, without altering the crossover frequency or visual lag.

Table 3 Pilot adjustment parameters for various manipulators and Integral control dynamics (𝑌𝑐 = 𝐾𝑐/𝑠)
(Figure 15

Parameters Free Manipulator Spring Manipulator Pressure Manipulator

𝑘𝐹 = 0 𝑘𝐹 = 𝑘1 𝑘𝐹 = 5𝑘1 𝑘𝐹 = 25𝑘1 𝑘𝐹 = 73𝑘1; 𝐾𝑐 = 16.4 𝑐𝑚/𝑁𝑚

𝑘𝐺𝑇𝑂 [𝑁𝑚]−1 0 1 -1 4 4
𝑇𝐺𝑇𝑂 [𝑠] 0 0 0 0 0
𝑘𝑀𝑆 [𝑟𝑎𝑑]−1 5 4 1 1 0
𝑇𝐿𝑀𝑆

[𝑠] 0.5 0.5 0.7 1 0
𝐾𝑝 [𝑠−1] 3.85 3.63 4.81 55.98 2.11

𝑇𝐿𝐺𝑇𝑂
= 0, 𝑇𝐼𝐺𝑇𝑂

= 0, 𝑇𝐼𝑀𝑆
= 0, 𝜏 = 0.19𝑠 for all cases

1. Attempting Qualitative Fitting
To assess the model’s consistency with experimental trends, manual tuning of 𝐻𝐺𝑇𝑂 and 𝐻𝑀𝑆 parameters was

performed to emulate integrator-like behavior near the crossover region while minimizing neuromuscular system
limitations. The visual loop time delay 𝜏 was fixed at 0.19 seconds to ensure that the manipulator with 𝑘𝐹/𝑘1 = 1
achieved a crossover frequency and phase margin consistent with McRuer’s verbal adjustment guidelines [2]. The
proportional gain 𝐾𝑝 was kept constant across all manipulator configurations to facilitate comparison. The fitting
reflects expected feedback availability: GTO feedback is easily available in stiff spring scenarios, while MS feedback is
more suitable for free and weak spring manipulators. These preferences are found to be inherently enforced by the
model structure, as the use of opposite pathways is not mathematically.

The resulting Bode plots, when attempting manual parametrization of the model in Figure 4 to different spring
characteristics, optimized for crossover characteristics, while minimizing high frequency peaking, are shown in Figure 15.

22



Frequency (rad/s)

10-1

100

M
a

g
n

it
u

d
e

 (
a

b
s
o

lu
te

)

100 101
-360

-270

-180

-90

0

P
h

a
s
e

 (
d

e
g

)

c
=4.6 rad/sec

Crossover Model, _e=0.26 sec _m= 21.4742
o

dkf = 0; Kp = 3.8488

dkf = 1; Kp = 3.6254

dkf = 5; Kp = 4.8097

dkf = 25; Kp = 55.9846

dkf = 73; Kp = 2.1123

Fig. 15 Pilot Open Loop FRF from 𝑒 to 𝑦𝑐 for Integrator control task and parameters in Table 3

23



The parameters used for these characteristics are in Table 3.

2. Experimental Trends
After attempting optimal parameters for this model, the resulting response functions are compared to experimental

trends. Key trends from Gordon-Smith (1970) [16] and McRuer and Magdaleno (1966) [15] include:
• Spring manipulators produced reduced phase lag and elevated crossover frequencies
• Pressure manipulators exhibited greater phase lag than free manipulators, particularly at low and mid frequencies,

although variability was high
Gordon-Smith’s findings revealed that pressure manipulators yielded greater phase margin, higher crossover

frequencies, and increased natural frequency and damping in dominant NMS poles. These effects were more noticeable
with wider forcing function bandwidths. Model results suggest that such phase lag trends can be explained purely
through the mechanical open-loop neuromuscular response (Figure 6a), without necessitating proprioceptive feedback.

Additionally, high-frequency data from Gordon-Smith suggest that pressure manipulators result in increased
damping, contrary to the model fitting shown in Figure 15, which exhibited reduced damping in free manipulators. This
discrepancy likely stems from parameter overuse—particularly increased PEC stiffness due to presumed co-contraction
and elevated GTO gains for stiffer manipulators—leading to overfitting.

Although positive GTO gain might reduce phase lag in stiff manipulator scenarios, it remains uncertain whether
this mechanism significantly contributes to observed experimental trends, or if the mechanical system properties
alone are responsible.

While the model qualitatively shows similar trends to that shown by experimental results, due to the lack of
equalization terms necessary for an integral control strategy, no comments can be made on proprioceptive equalization.

B. Proportional Control
This section reviews experimental observations from Magdaleno and McRuer (1966) [13], and offers interpretations

through the framework of proprioceptive equalization.
Their experiments found that increases in spring stiffness had minimal impact on relative RMS error, while both

free and pressure manipulators exhibited higher RMS errors compared to spring manipulators. The highest crossover
frequency was observed for 𝑘𝐹 = 𝑘1 (6 rad/s), while free-moving and pressure manipulators exhibited slightly lower
values (5 rad/s).

Based on the relatively invariant crossover frequency and phase lag, the authors inferred the presence of a tight
position feedback loop. This conclusion was supported by the observation that 𝐾𝑝 remained nearly constant across
different manipulator configurations.

When control sensitivity was reduced in proportion to increases in spring stiffness, performance declined and control
excursions became smaller. This suggested that the absence of effective position feedback was responsible for the
deterioration, as the performance remained stable when force demands were proportionally increased while excursion
magnitudes remained unchanged.

These trends align with the model’s behavior. Specifically, the inclusion of spindle-based position feedback enhances
performance by reducing NMS-induced disturbances and marginally improving the slope of the crossover region.
However, it is clear from the simulations that the contribution of spindle feedback is limited—it cannot fully replace
the visual feedback loop required for equalization, serving instead as a supplementary mechanism, and a visual lag is
necessary to generate equalization characteristics.

C. Double Integrator Control
Experimental results indicate that increasing spring stiffness generally leads to a reduction in effective time delay.
According to Magdaleno and McRuer (1966) [13], crossover frequency remains relatively constant for most spring

conditions, with only a slight decrease observed at the highest stiffness level. However, effective time delay was found to
decrease as spring stiffness increased, likely due to neuromuscular system (NMS) dynamics shifting to higher frequency
ranges.

Optimal performance was achieved using an intermediate control sensitivity combined with a moderately stiff spring.
This suggests that both position and force feedback contribute to improved control behavior.

However although performance with a free moving manipulator is worse, the crossover characteristics are still
achieved to a similar degree when the frequency response characteristics are studied. Changes in dynamics are not
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significant beyond an increase in phase lag that can be easily attributed to lower NMS natural frequency due to the free
manipulator. This is despite there being a near absence of force feedback.

While the mechanical model shows that a force feedback lag, if physiologically possible, can be extremely helpful
in contributing towards equalization during harder ’acceleration control tasks’, rather than completely relying on a
visual lead, this experimental evidence is unable to confirm it, as changes in the pilot’s dynamics are not significant in
the absence of force feedback. This shows that visual feedback alone is capable of achieving the necessary crossover
characteristics, and though the absence of force feedback leads to greater rms error due to larger phase lags, this can
easily be attributed to smaller NMS natural frequency in the case of free moving and weak spring manipulators in these
experiments, rather than the absence of force feedback worse equalization.

IX. Results and Discussion
It was shown through simple mathematical analysis that attempting inner loop equalization through proprioceptive

feedback has inherent limitations beyond those exerted by the NMS dynamics. Specifically, even in an ideal case, it was
not possible to induce the open loop lead in the pilot FRF, necessary for double integrator control, purely through inner
loop equalization. Additionally, it was noted that inducing the open loop lag would require a larger lead time constant in
the inner loop acting on proprioceptive feedback than the lead time constant on visual feedback.

Introduction of 2nd order NMS dynamics showed that such a simplified model of the NMS was insufficient in
analyzing proprioceptive equalization, as the resulting model was physically implausible for proportional control
dynamics. However, another limitation in attempting double integrator control was introduced due to the destabilization
of the NMS poles when proprioceptive equalization was considered.

Through use of the mechanical model it is clear that although a lead on the spindle feedback, for proportional CE
dynamics, could induce a small lag in the pilot FRF, it was not enough for equalization. However the effectiveness of
MS lead in improving NMS characteristics is significant and also confirmed through the experimental observations
by Magdaleno and McRuer [13]. This confirmed the experimental observations for proportional control without
considering proprioceptive equalization. It can however be noted that this model used muscle stretch 𝑥𝑚 as the feedback
signal from the spindles. Hess and Bachelder’s models however have used the stick position 𝛿, attributed to muscle
spindles. Since the mechanical model’s transfer function, from 𝑞𝑚 to 𝛿, was shown to be approximately equal to the
standard second order approximation with a small NMS lag term, the same conditions as obtained in section IV would
hold. I.e., an assumption that the pilot is able to directly process and utilize stick position to induce a lead would imply
that the NMS second order dynamics can be easily countered through this feedback loop. This also shows how the
structural and dual loop models could be validated using experimental data in the region of crossover.

Neither GTO nor MS lead were able to introduce equalization while keeping the model stable.
A GTO lag showed promising results in contributing towards equalization for second order dynamics while also

slightly improving NMS dynamics. Additionally, considering the root locus plot, it is possible to show that for an
intermediate value of GTO gain based on this model, it would be possible for a skilled pilot to reduce visual compensation
effort significantly. When considering such an approach, it would be possible to consider an approximate model as in
Equation 3. This could possibly be even further approximated such that the open loop response function of the pilot
becomes:

𝐻𝑝 = 𝐾𝑝 (1 + 𝑗𝜔𝜏𝐿𝑣𝑖𝑠
)𝑒− 𝑗𝜔𝜏 [(1 + 𝑗𝜔𝜏𝑃𝐹)𝐺𝑁𝑀𝑆] (18)

Such a format suggests that a combined lead from visual and force feedback is utilized by the pilot for equalization,
with 𝐺𝑁𝑀𝑆 consisting of a standard second order NMS formulation with a lag. A similar expression for equalization
with two lead terms has been found to fit better the pilot dynamics observed during control of the pitch dynamics of a jet
aircraft [26].

Equalization through a GTO lag, however, cannot be easily verified through experimental data, especially as it would
involve separate measurements of command signals from visual (𝑞𝑣) and proprioceptive (𝑞𝑃𝐹 ) pathways, which is not
possible.

A. Limitations
There is a lack of consideration for disturbance or remnant, which have relevance especially due to disturbance

reduction being a major component of the pilot’s optimization goals when considering response at higher frequency.
Although all analysis was limited to studying the response to the forcing function, which is uncorrelated to the remnant
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input by definition, minimization of white noise is likely to be a major goal in adaptation and parameter selection, which
was not considered. Only minimization of the NMS characteristics was considered.

Due to a large number of parameters, variability in most could not be considered. Especially different proprioceptive
feedback time delays, for which Gordon-Smith [16] identified force feedback time delay to be half of position feedback
and Hess identified to be a significant factor in performance in his structural model [27].

This model may not accurately represent the actual proprioceptive feedback sensed by the organs, which may or may
not be used for equalization. The model has not been validate to confirm that 𝐹𝑔𝑡𝑜 in the model accurately reflects the
actual forces sensed by the Golgi tendons. Similarly, it is unknown whether 𝑥𝑚 in the model accurately represents the
feedback that could be potentially used for equalization, or if stick position would be more relevant for equalization.
This is especially relevant as muscular co-contraction significantly alters the proprioceptively sensed and acted upon
forces, whereas mechanical model used here abstracts the individual muscle groups into a single spring damper system
with effects of co-contraction only assumed through changes in stiffness.

X. Conclusions
This study investigated the effect of manipulator dynamics on pilot control behavior under different control structures,

with a focus on the role of proprioceptive equalization through muscle spindle and Golgi tendon organ (GTO) pathways.
For proportional control, experimental results and modeling suggest that while muscle spindle feedback contributes

to improved tracking and reduced neuromuscular disturbance, it cannot fully replace visual feedback mechanisms.
Although in ideal cases a lead applied to the manipulator position feedback should provide the necessary open loop
lag, such feedback shows unrealistic effects when second order NMS dynamics are used. When muscle stretch and
velocity feedback theorized to be sensed by muscle spindles, rather than manipulator deflection feedback, are used,
the model shows that even though this feedback is extremely useful in reducing the effects of the NMS dynamics and
compensating for undesirable feel system dynamics, this is not enough for equalization.

In experimental studies comparing dynamics with different manipulator characteristics, the relatively invariant
crossover frequency and phase lag across different manipulators in experimental data support the presence of an
underlying position feedback loop that compensates for the neuromuscular dynamics, the mechanical model
implemented is in agreement with these observations; however it shows that the influence of position feedback appears
limited to improving the neuromuscular system characteristics (when changing feel system dynamics makes them worse)
and cannot significantly affect crossover equalization.

In double integrator control, mathematical analysis showed that an inner loop lag will always be limited in
producing the lead term required in the open loop due to an additional lag term being introduced. This effect was observed
both with second order NMS dynamics and with the full mechanical model, showing that purely proprioceptive
equalization is impossible. However, attempting mixed equalization showed that utilizing force feedback lag from the
GTOs can significantly reduce pilot effort as a much smaller visual lead time is necessary to achieve equalization. A
secondary limitation caused by the neuromuscular system dynamics introduces an upper limit to the force feedback
gain and consequently GTO feedback that can be introduced, with larger 𝐾𝑔𝑡𝑜 and therefore more compensation being
possible when stiffer manipulators are present, as shown by the root locus plots. The model also suggests that a second
order approximation of the neuromuscular system, as in Equation 3, can provide an excellent approximation to study the
force being applied on the manipulator during manual control.

Experimental results indicate that increased spring stiffness was associated with reduced effective time delay, likely
due to NMS dynamics shifting to higher frequencies. An intermediate spring stiffness combined with appropriate control
sensitivity yielded the best performance, implying a complementary role for both GTO and spindle feedback. While
GTO feedback can assist in reducing the visual effort required for equalization, it also introduces the risk of instability
due to second-order amplification. A GTO pathway with physiological lag, if realizable, may offer significant benefits
for tasks requiring acceleration-based control. However this cannot be confirmed with the current experimental
evidence, and further experimental data, especially in the higher frequency region, might yield better results.

Overall, while proprioceptive pathways enhance performance and contribute to neuromuscular stabilization, they
cannot independently achieve full equalization. Their primary role appears to be in modulating pilot effort and
partially shaping the open-loop dynamics, particularly in more demanding control scenarios. This suggests that while
purely proprioceptive equalization is incompatible with current best known models, a mixed equalization method is
likely to be utilized if physiologically possible, especially with gain and lag on force feedback being responsible for
changes in dynamics near the region of crossover.
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A
Mathematical Analysis of Inner Loop

Equalization

A preliminary analysis was performed to evaluate the key differences between the simplified precision

model, which assumes visual feedback for equalization, and an inner loop equalization model based on

the dual loop model model by Hess [6], which uses proprioceptive feedback as the main pathway for

equalization. This is to directly address the first research question, analyzing whether equalization is

possible with an inner loop feedback method in ideal conditions. A simplified version of the structural model

is employed for a compensatory tracking task and its plausibility is evaluated using open loop dynamics.

Visual equalization based on the precision model [15], depicted in figure A.1a, shows the visual

equalization structure used to obtain integrator dynamics in the region of crossover. The equalization

model structure depends on the controlled element dynamics, i.e. the parameter k, turning into a lag with
time constant τvis for proportional dynamics (Yc = Kc, k = 0), and a lead with time constant τvis for double
integrator dynamics (Yc = Kc/s

2, k = 2). It models the pilot as a linear system with the displayed error

signal as the input, and the stick force/deflection as the output. Equalization occurs within this system

impacting the pilot response to the error (i.e. the visual open loop) directly.

In Hess’ structural model [7] equalization occurs instead in an inner loop through proprioception, and

the essential structure, dependent on controlled element dynamics, is shown in A.2a. In this case, the

response is inverted, with an inner loop lag being used to compensate for a double integrator control task

(Yc = Kc/s
2), and an inner loop lead for a proportional control task (Yc = Kc).

The actuator input provided by the pilot is a combination of a control signal based on the visual input and

proprioceptively sensed feedback. Since equalization occurs in the inner loop it does not impact the open

loop dynamics directly. The dual loop model by Hess [6] proposed that an internal model of the controlled

element dynamics by an experienced pilot was involved, and included in this inner loop. The structural and

revised structural model made this implicit and suggested that based on the dynamics of the controlled

element estimated by the pilot, an inner loop lead was present to compensate for proportional dynamics,

gain for integrator, and lag for double integrator controlled element dynamics. Only this equalization

behavior of an inner loop model is analyzed here.

The methodology is outlined as follows:

For the purpose of a preliminary theoretical analysis, disturbance signals as well as the dynamics of

the neuromuscular system and stick dynamics are ignored, simplifying the model. The only elements

present are the gain, equalization, and an effective time delay, which has been shown to capture crossover

dynamics successfully in the case of the simplified precision model [20]. While the simplified precision

model (Figure A.1b) is quite transparent in how each element would affect the pilot response dynamics,

Hess’ models behavior is not as apparent by looking at A.2b.

Different controlled system dynamics are considered as they would induce different equalization behavior

in the pilot. The following sections analyze the pilot behavior for each case considering the controlled

elements to be proportional (YC(s) = Kc), integral (YC(s) = Kc/s), and double integral (YC(s) = Kc/s
2).

Note that while the controlled element dynamics can be written as a transfer function in the Laplace domain,

the pilot describing function is defined as a quasi-linear model, with this linear approximation only valid
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(a) Precision Model of the Human Pilot showing equalization characteristics [15]
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(b) Simplified Precision model without disturbance and NMS dynamics for mathematical analysis

Figure A.1: Simplified Precision Model using visual equalization

when considering frequency response in the steady state. Hence the elements in the pilot’s describing

function will be written in the frequency rather than Laplace domain.

The open loop dynamics (from e to yc) of the simplified models are analyzed mathematically in the
frequency domain. The impact of each parameter in the open loop dynamics is analyzed with the goal of

answering the following questions:

• Does inner loop equalization give the same level of control as the single loop model?

• How does each parameter in the inner loop affect the crossover dynamics?

• Can a physiological interpretation be drawn based on these equalization characteristics?

A.1. Simplified Model - Proportional Control, Yc = Kc
First the controlled element is modeled as a gain, yielding a position control task. It can be observed in real

systems where the operator input proportionally relates to position control. In a single axis compensatory

task, the pilot can view the position error on the visual display and directly control it through the stick

deflection.

For such a control task, Hess’s physiological models suggest modeling the pilot central nervous

system and the proprioceptive feedback element separately. The dual loop model suggests that the

proprioceptive feedback element includes an explicit internal estimated model of the controlled element

utilizing the rate estimation of the input signal (force on the stick). Meanwhile the structural model makes

this internal model of the controlled element implicit and the proprioceptive feedback element is of the

form HPF (jω) = KPF /(1 + jωτPF )
(k−1) where k describes the behavior of the controlled element near

the crossover region. For the proportional control task k = 0 [48].

This controller can be used in the model described in Figure A.2 to observe the effectiveness of inner

loop feedback in equalization.
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(b) Simplified Inner Loop Model Utilizing Proprioceptive Feedback

Figure A.2: Model diagram of the structural model equalization, along with a simplified model used for

mathematical analysis
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Table A.1: Describing Functions and Parameter Values for both Simplified Models in a Proportional

Control Task, YC = KC = 1

Description Simplified Precision Inner Loop Model

Model

Pilot Model Transfer HP (jω) =
Kp

1+jωτI
exp(−jωτe) HP (jω) = Kp exp(−jωτe)

1
1+HPF (jω)

Function (U(jω)/E(jω)) HPF (jω) = KPF (1 + jωτIPF
)

OL Transfer Function YOL(jω) =
KpKc

1+jωτI
exp(−jωτe) YOL(jω) =

(Yc(jω)/E(jω))
KpKc

KPF+1
1

1+jω
KPF

KPF +1 τLPF

exp(−jωτe)

OL Gain KpKc
KpKc

KPF+1

OL Lag Time (seconds) τI
KPF

KPF+1τLPF

Theoretical Parameter Values

Visual Feedback gain Kp = 2.3 Kp = 6.9

Proprioception gain - KPF = 2

Equalization Lead - τLPF
= 0.6

Equalization Lag τI = 0.4 -

Model Effective Time De-

lay
τe = 0.25 τe = 0.25

Equalization Transfer

Function
5.75

2.5+jω e
−0.25jω 5.75

2.5+jω e
−0.25jω

With proprioceptive feedback absent, the simplified precision model shown by McRuer suggests that

the pilot can be modeled as Hp = Kp/(1 + jωτI)e
−jωτe , having taken into account the effective time delay

of the system (τe) and a lag (τI) which is responsible for equalization in the crossover region [15].

The parameters have been estimated using McRuer’s verbal adjustment rules. The same method

can be applied to estimate the PF element parameters to obtain best fit in the model. Since there is one

too many parameters though, the proprioceptive feedback gain has been fixed to the values that were

presented by Hess during validation of the structural model [7]. A comparison of the open loop describing

functions for the two equalization strategies is presented in Table A.1. Open loop characteristics are also

presented in Figure A.3.

A.1.1. Observations
It noted that in certain conditions (and for the parameter values chosen) the pilot’s open loop response

transfer functions of both models can be obtained to be exactly identical. The general equivalence condition

can be easily observed for both of the models and has also been shown in Table A.1.

• Both models are able to give identical pilot response characteristics that satisfy McRuer’s verbal

adjustment rules

• Lead in the inner (proprioceptive) loop introduces a lag in the pilot response dynamics

• The lead time necessary in the inner loop is always larger than the desired lag time in the pilot’s

response. However the difference decreases as proprioceptive feedback gain is increased, which

needs to also be compensated by a larger visual gain Kp
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Table A.2: Describing Functions and Parameter Values for both Simplified Models during an integral

control task, YC(s) = KC/s

Description Simplified Precision Model Inner Loop Model

Pilot Model Transfer HP (jω) = Kp exp(−jωτe) HP (jω) = Kp exp(−jωτe)
1

1+HPF (jω)

Function (U(jω)/E(jω)) HPF (jω) = KPF

OL Transfer Function

(Yc(jω)/E(jω))
YOL(jω) = KpKc

1
jω exp(−jωτe) YOL(jω) =

KpKc

1+KPF

1
jω exp(−jωτe)

OL Gain KpKc
KpKc

1 +KPF

Theoretical Parameter Values

Visual Feedback gain Kp = 4.63 Kp = 13.89

Proprioceptive Feedback

gain
- KPF = 2

Model Effective Time De-

lay
τe = 0.26 τe = 0.26

OL Transfer Function 4.63
jω e−0.26jω 4.63

jω e−0.26jω

It is clear that both models mathematically satisfy the control requirements to the same degree, in the

absence of any other additional elements, such as the neuromuscular system or the remnant.

Realistically speaking, the lag time introduced by a human in a control task cannot be very high,

which must be taken into account as a physiological limitation. The values used here align roughly with

experimental results reported by McRuer [15].

A.2. Simplified Model - Integrator Control, Yc = Kc/s
In this case, the controlled element is modeled as an integrator, i.e., Yc(s) = Kc/s, corresponding to a
velocity control task.

Within the single-loop framework, the pilot perceives an error in velocity on the display and adjusts

their input proportionally to minimize this error. The pilot is typically modeled as a gain with a time delay,

as the integrative nature of the system naturally introduces the required crossover dynamics. In McRuer’s

simplified model, the pilot model is simplified to YP (jω) = Kp exp(−jωτe), since equalization (typically
introduced by a lag or lead element) is not necessary for purely integrative systems in the crossover region.

In contrast, considering the simplified PF equalization model, proprioceptive feedback is once again

used to form an inner loop that aids in equalization. However, because the plant dynamics already introduce

integrator dynamics, a lead or lag term for equalization is not needed. The inner loop is effectively a static

gain, HPF (jω) = KPF , which does not introduce additional dynamics (lag or lead), but rather alters the

overall gain distribution in the system. The pilot’s visual feedback gain is increased proportionally to offset

the attenuation caused by the proprioceptive loop.

In both models, the open loop response (from error e to model output yc) becomes identical under the
condition that the gains are tuned to balance each other. When proposing theoretical values in Table A.2,

the PF gain is fixed at KPF = 2 corresponding with the value used by Hess [7].
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A.2.1. Observations
It noted that in certain conditions (and for the parameter values chosen) the open loop response dynamics

of the pilot for both models are exactly identical. The general equivalence condition can be easily observed

in Table A.2.

• Both models can give identical pilot response characteristics that satisfy McRuer’s verbal adjustment

rules

• Since equalization occurs through a pure gain, this represents a trivial case with clear equivalence

between the simplified precision model and inner loop model

• A larger proportional gain is applied to the visual feedback in the inner loop model to compensate for

the impact of the proprioceptive feedback

• The effective time delay applied for both models is equal

A.3. Simplified Model - Double Integrator Control, Yc = Kc/s
2

In the most challenging control task for the pilot, the controlled element is modeled as a double integrator,

i.e., Yc(s) = Kc/s
2. This form corresponds to an acceleration control task, where operator inputs are

proportional to system acceleration. The need for equalization becomes critical in this case, as the

plant’s dynamics inherently introduce two integrators, causing substantial phase delay near the crossover

frequency. The pilot must therefore introduce a net lead compensation in the open loop response to

achieve stable control with integrator dynamics in the region of crossover.

As shown in Table A.3, while the simplified precision model proposes a visual lead to obtain crossover

dynamics, the dual loop and structural models propose an inner loop lag term instead being the method for

equalization. In this case a higher PF gain, KPF = 10 has been used based on Hess’ estimate [7].

A.3.1. Observations
This is the only case where equivalent dynamics could not be obtained in the pilot’s open loop response

using PF rather than visual equalization.

• There is an additional lag term in the open loop induced by the presence of lead equalization in the

inner loop.

• To ensure that integrator dynamics at crossover are maintained, the induced lag frequency must be

much larger than the crossover frequency, which can only be done by making the proprioceptive

feedback gain larger, increased to 10 here based on the parameter value used by Hess [7].

KPF + 1

τIPF

>> ωc ⇒ KPF >> ωcτIPF
(A.1)

• To ensure that the phase lags obtained are realistic, the visual time delay had to be reduced

significantly. This is likely due to the presence of the additional lag term. Interestingly the effective

visual lag used to obtain the dynamics shown in Figure A.5 is even less than the lag used in the

integrator control task.

• To counteract the larger PF gain, the visual gain must also be increased. This suggests that a

limitation on gains KPF and Kp (limitations in proprioception) corresponds to a limitation in the pilot’s

ability to produce lead in the simplified precision model.

A.4. Results and Discussion
• The lead time constant in the PF inner loop corresponds exactly to a lag time constant in the visual

equalization model (for Yc = Kc).

• When considering a double integrator control task, although a lag term in the proprioceptive feedback

block introduces the required lead in the pilot’s open loop response characteristics, it also introduces

an additional limiting lag term. To reduce the limitation, the proprioceptive gain must be high.

• In general when both lead and lag are produced in the proprioceptive equalization block, a math-

ematically corresponding equalization term in the simplified precision model would be given as

shown.

HPF (jω) = KPF
1 + jωτLPF

1 + jωτIPF

⇒ Yp(jω) =
Kp

KPF + 1

1 + jωτIPF

1 + jω
τIPF

+KPF τLPF

KPF+1

(A.2)
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Figure A.4: Open Loop Characteristics (from error e to model output yc) in a single integrator control
task as in Table A.2
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Table A.3: Describing Functions and Parameter Values for both Simplified Models in an Acceleration

Control Task, YC = KC/s
2 = 1/s2

Description Simplified Precision Model Inner Loop Model

Pilot Model Transfer
HP (jω) =

Kp(1 + jωτL)exp(−jωτe)
HP (jω) = Kp exp(−jωτe)

1
1+HPF (jω)

Function (U(jω)/E(jω)) HPF (jω) =
KPF

1+jωτIPF

OL Transfer Function

(Yc(jω)/E(jω))
YOL(jω) = YOL(jω) =

KpKc(
1+jωτL
(jω)2 ) exp(−jωτe)

KpKc

KPF+1

1+jωτIPF(
1+jω

τIPF
KPF +1

)
(jω)2

exp(−jωτe)

OL Gain KPKC
KpKc

KPF+1

OL Lag Time (seconds) - 1
KPF+1τIPF

OL Lead Time (seconds) τL τIPF

Theoretical Parameter Values

Visual Feedback gain Kp = 1.05 Kp = 15.225

Proprioceptive Feedback

gain
- KPF = 10

Equalization Lead τL = 3s τLPF
= 0

Equalization Lag τI = 0 τIPF
= 3s

Model Effective Time

Delay
τe = 0.4 τe = 0.17

OL Transfer Function
3.15(0.333 + jω)

(jω)2
e−0.4jω 15.225(0.333 + jω)

(jω)2(3.667 + jω)
e−0.17jω
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task as in Table A.3
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• If both lead and lag terms are present in the proprioceptive feedback term, a net lag-lead is produced,

bounded by human limitations of realistic parameter values.

– To introduce a net lead in the pilot’s response characteristics (for Yc = Kc/s
2), a corresponding

lag in the inner loop is necessary. To minimize the resulting phase lag, it would be necessary to

have large PF gain as well as no proprioceptive lead.

– To introduce a net lag in the pilot’s response (for Yc = Kc/s
2), a PF lead with a larger time

constant is necessary.

It is clear that equalization in the inner loop is mathematically possible to similar effect as the simplified

precision model suggests, however with significant limitations, even without the neuromuscular system

limitations factoring in.

For proportional control, although inducing an open loop lag is mathematically possible for equalization,

it presents a limitation of a greater lag being applied on proprioceptive feedback as compared to what

would be necessary on visual feedback.

For double integrator control, inducing an open loop lead term in the pilot’s response characteristics

will always be limited as another lag term will be introduced.

A mixed equalization strategy might be possible with a much smaller visual lead making up for this

lag (and mathematically canceling out). This would also mean that the visual delay is not reduced to

unrealistically low values as the lag in the NMS is countered by a lead acting on visual feedback. The inner

loop equalization is not able to produce the effect of pure lead as seen in the simplified precision model,

additionally suggesting that purely proprioceptive equalization for a double integrator task is not possible.

This result is also confirmed by the structural model presented by Hess, which compensated for double

integrator CE dynamics by introducing a visual derivative block (with a non-linear switching behavior

rather than a linear addition). This was used by the pilot for equalization, becoming more significant in the

case of double integrator control [7]. For an in depth review of the structural model see Chapter 6.





B
Mathematical Analysis with 2nd Order

NMS Dynamics

While a purely simplified model is able to establish the possibility of proprioceptive feedback equalization in

very ideal conditions, neuromuscular dynamics may create limitations that make it impossible to equalize.

To make the system more realistic, a newer simplified model is considered, this time by adding second

order NMS dynamics, GNMS . The new model diagrams used for the simplified precision model and the

inner loop model respectively can be seen in Figure A.1 and Figure B.4.

Case 1: GNMS(jω) =
ω2
n

(jω)2 + (2ζnωn)jω + ω2
n

; ωn = 10rad/sec; ζn = 0.6; (B.1)

Case 2: GNMS(jω) =
ω2
n

(1 + jωTN1
)[(jω)2 + 2ζnωnjω + ω2

n]
; TN = 0.025sec; (B.2)

(B.3)

Additionally, a second case is also considered where an additional lag term is introduced within the

NMS. The angular frequency and damping ratio remain the same.

The crossover model, which does not use the 2nd order NMS dynamics and has pure integrator

dynamics, is provided for comparison along with the corresponding parameter values. It uses Kp = ωc,

τe ≈ τ + 2ζn/ωn and perfect integrator dynamics, corresponding to McRuer’s verbal adjustment rules. The

goal of the exercise is to check if these crossover dynamics can be matched with the structural model, and

how it compares with the precision model. For each case, the parameters in the visual and proprioceptive

equalization terms are manually adjusted to obtain the desired crossover dynamics.

The result of the proprioceptive feedback is analyzed through root locus plots and the open loop

dynamics (from error e to model output yc) are plotted along with the precision and crossover model

dynamics.

B.1. Proportional Control, Yc = Kc
Case 1: The effective time delay used by the crossover model is τe = 0.17, along with a crossover frequency
ωc = 5rad/sec. The parameters used in order to obtain similar crossover dynamics outlined by the verbal
adjustment rules, with the precision and the structural models (Figure B.5):

Precision Model: Kp = 2.17, τ = 0.13s; Equalization: τI = 0.4s; (B.4)

Structural Model: Kp = 7.3, τ = 0.25s; Equalization: KPF = 2, τLPF
= 0.6s; (B.5)

Case 2: A small lag is introduced in the NMS. The effective time delay for the crossover model the

same, and the time delay for the precision model is reduced to τ = 0.105sec to correct for the change.

For the proprioceptive equalization model however, the delay does not significantly affect the system

and all parameters are kept the same, with the resulting FRF plotted in B.5b.
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(a) 2nd order NMS with no lag (b) 2nd order NMS with lag

Figure B.1: Proportional Control Task, effect of closing PF loop on the poles of the pilot’s response

characteristics (response from error e to the pilot’s control output uδ (Figure B.4)

Root Locus plots representing the loop closure of the PF feedback loop are also plotted, with the same

PF lead present, τLPF
= 0.6s (Figure B.1). The FRF for each model, along with the crossover model (no

NMS dynamics), is shown in Figure B.5.

B.1.1. Observations
• Inner loop closure with proportional feedback significantly alters the NMS dynamics in the resulting

pilot response dynamics.

• A small proprioceptive gain causes the NMS poles to shift significantly in the root locus plot. The

effect of the 2nd order dynamics on the response becomes negligible.

• Its effect is also seen in the parameter selection, with the PF equalization model having a much

greater visual time delay to achieve the same crossover characteristics since the precision model

also has lags introduced due to the NMS dynamics.

• Based on the root locus plots, even a small proprioceptive feedback gain is able to entirely remove

the effects of the NMS 2nd order dynamics.

• Introduction of a small lag, TN1
, in the NMS dynamics does not significantly affect the result, with

the newly introduced pole also pushed to higher frequencies. This is the opposite of the precision

model which is directly affected by the NMS lag term and the visual delay has to be reduced to get

the same crossover characteristics.

Although it creates the intended pilot response in the crossover region, the disappearance of visible

NMS dynamics makes this control approach physiologically inconsistent. However, rather than discounting

proprioceptive feedback as an approach for equalization, this result indicates that the model used might be

unrealistic and a better model of the neuromuscular system is necessary. Previous research has already

established that spindle lead feedback is present, even if its use for equalization is not expected [27].

B.2. Integrator Control Yc = Kc/s
An identical approach is used for the case of integrator dynamics, however in this case there is no

equalization necessary and only the effect of a proprioceptive feedback gain on the neuromuscular

dynamics is studied. The crossover model uses ωc ≈ 4.64 rad/sec, and τe = 0.26s. To obtain similar

characteristics with both models (Figure B.6):
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(a) 2nd order NMS with no lag (b) 2nd order NMS with lag

Figure B.2: Integrator Control, effect of closing PF loop on the poles of the pilot’s response

characteristics (response from error e to the pilot’s control output uδ (Figure B.4)

Precision Model: Kp = 4.45, τ = 0.13s; (B.6)

Structural Model: Kp = 13.2, τ = 0.22s; KPF = 2; (B.7)

When a lag in the neuromuscular system of TN1
= 0.025 sec is introduced, the delay in the precision

model has to be reduced to τ = 0.105 sec in order to maintain the same response characteristics near
crossover. Changes in the PF equalization model caused by the NMS lag term are less significant, and

the parameter values remain unchanged. The effect of loop closure without and with the presence of the

lag term are also presented in the root locus plots in Figure B.2. The FRF for each model, along with the

crossover model (no NMS dynamics), is shown in Figure B.6.

B.2.1. Observations
• Loop closure with a pure gain shifts the NMS natural frequency outward, improving open-loop

behavior, however this effect is much less significant than in the case of proportional control.

• Damping of the neuromuscular characteristics is slightly reduced, and even more so if a lag is present

in the loop.

• The effects of the introduction of the high frequency lag can also be observed in the frequency

response functions, with the reduction in damping as well as increase in phase lag. The increase in

lag is however still much less than the actual lag term introduced, which had to be compensated

through a decrease in the visual time delay in the case of the precision model.

• Proprioceptive feedback gain stabilizes the high frequency control behavior and reduces the effective

time delay near the crossover frequency, which has been compensated by a larger visual time delay

to maintain the expected crossover dynamics.

The significantly higher visual delay, caused by the PF element significantly increasing the natural

frequency of the NMS dynamics, once again suggests that such a model does not work.
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(a) 2nd order NMS with no lag (b) 2nd order NMS with lag

Figure B.3: Double Integrator Control, effect of closing PF loop on the poles of the pilot’s response

characteristics (response from error e to the pilot’s control output uδ (Figure B.4)

B.3. Double Integrator Control
In the case of double integrator dynamics, a lead in the pilot response (from error e to output yc) is necessary
to compensate for the controlled element dynamics. While a visual lead is used in the precision model, a

proprioceptive lag is proposed in the structural model to achieve similar results. The expected crossover

characteristics are chosen corresponding with a crossover frequency ωc = 3.2 rad/sec, along with an

effective time delay of τe = 0.38 sec.

In the first case when only second order NMS dynamics are introduced with no lag, the parameter

values used for both models to achieve crossover characteristics are:

Precision Model: Kp = 1.05, τ = 0.22s; Equalization: τL = 3s; (B.8)

Structural Model: Kp = 12, τ = 0.08s; Equalization: KPF = 10, τIPF
= 3s; (B.9)

The value of the proprioceptive gain is once again selected based on Hess’ structural model parameters

[7], since in order to achieve results as close as possible to crossover dynamics the proprioceptive gain

can theoretically be as high as possible, and a proportionally high visual gain to compensate, which is not

realistic. Other parameters were adjusted based on the verbal adjustment rules of the crossover model,

and the visual delay had to be reduced significantly.

In the second case, when a lag in the NMS is introduced, the time delay in the precision model has to

be reduced by the same value to τ = 0.195 sec. In the case of the proprioceptive feedback model as well
the visual time delay has to be reduced to τ = 0.05 sec in order to maintain close to expected crossover
dynamics.

For both cases, the effect of closing the proprioceptive feedback loop with a lag term is shown in root

locus plots in Figure B.3. The FRF for each model, along with the crossover model (no NMS dynamics), is

shown in Figure B.7.

B.3.1. Observations
The root locus plot suggests that a similar limitation to what was observed in the case of a simplified

model, i.e. an induced lag is present in the pilot’s response and limits what an inner loop lead can do for
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Figure B.4: Simplified inner loop (PF equalization) model with NMS dynamics

equalization, with unrealistically high values of KPF necessary to remove it to any significant degree.

With the addition of second order poles, these are also affected when PF lag is introduced. Loop

closure around second-order dynamics with a lag term leads to degraded performance:

• At low gains, a lag term and significant delay are introduced into the open-loop dynamics.

• The second-order poles’ natural frequency decreases near the crossover frequency at small gains.

• At higher gains, the natural frequency increases again, but damping becomes very low.

When a delay in the loop is introduced through an NMS lag term, the impact on the proprioceptive

feedback equalization is greater than on visual equalization, showing that it makes NMS dynamics even

worse and tends towards instability. The visual lead time that is obtained is unrealistically low in both cases,

however, suggesting that the system would in fact be unstable and a purely proprioceptive equalization

method is not possible if the inner loop is closed around the second order dynamics. Although this does

confirm that equalization based on stick displacement feedback in the case of double integrator control

is not possible, the same cannot be said about force feedback unless a perfect/isometric manipulator is

assumed (Fc = kF δ, with negligible manipulator mass and damping).

A mixed feedback approach could still be possible, however it might not be the preferred method as it

would still make the NMS dynamics worse if the loop is closed around 2nd order dynamics. If a visual lead

is also present, it would make the value of the visual delay, τ , become more realistic.

B.4. Conclusions
For proportional control, Yc = Kc, an inner loop lead with such an NMS model being used is unrealistic as

it almost completely eliminates the second order dynamics of the NMS. Introducing NMS delay in the form

of a lag term does not change this effect significantly.

For double integrator control, Yc = Kc/s
2, an inner loop lag destabilizes the NMS characteristics and

might be a poor control strategy for the pilot, even if it helps produce the required lead.
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Figure B.5: FRF from e to yc showing proportional equalization with different model structures and second
order NMS Dynamics



B.4. Conclusions 93

10-1 100 101

Frequency (rad/sec)

10-2

100

102

M
a
g
n
it
u
d
e
 (

|Y
(j

)|
)

Crossover Model, w
c
=4.64

Precision Model, w
c
=4.64

PF Equalization, w
c
= 4.64

10-1 100 101

frequency ( , rad/sec)

-600

-400

-200

0

P
h
a
s
e
 (

Y
(j

),
 d

e
g
)

Crossover Model, phi=21.04

Precision Model, phi=20.06

PF Equalization, frf, phi=20.26

(a) NMS 2nd Order dynamics without lag
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Figure B.6: FRF from e to yc showing integrator equalization with different model structures and second
order NMS Dynamics
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Figure B.7: FRF from e to yc showing double integrator equalization with different model structures and
second order NMS Dynamics



C
Mechanical Model of the Neuromuscular

System

C.1. State Space Model
The state-space representation of the neuromuscular system model, as in Fig. 3, is given in standard

notation:

ẋ(t) = Ax(t) +Bu(t) (C.1)

y(t) = Cx(t) +Du(t) (C.2)

The system matrices are defined as:

A =


0 1 0 0 0

−(kF + kC/Rd)/IF −(bF + bC/Rd)/IF kC/IF bC/IF 0

0 0 0 1 0

(kC/Rd)/IL (bC/Rd)/IL −(kSEC + kPEC + kC)/IL −bC/IL kSEC/IL

0 0 kSEC/bm 0 −kSEC/bm


(C.3a)

B =
[
0 0 0 0 1

bm

]T
(C.3b)

C =


0 0 −kSEC 0 kSEC

0 0 0 0 1

−(kC/Rd) −(bC/Rd) kC bC 0

1 0 0 0 0

 (C.3c)

D =
[
0 0 0 0

]T
(C.3d)

All parameters are as presented in Table II, with Rd=Larm/LF , which is a correction term to account

for different axes of rotation for the limb and the manipulator.

The state vector x(t) is given by:

x(t) =
[
δ(t) δ̇(t) xl(t) ẋl(t) xm(t)

]T
(C.4)

where:

• δ(t) and δ̇(t) are the manipulator’s angular displacement and velocity

• xl(t) and ẋl(t) are the limb/arm’s angular displacement and velocity.
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• xm(t) is the angular displacement of the muscle

Note that δ has a different axis of rotation than xl and xm.

The only input, u(t) = qm(t) represents the moment produced by the muscles on the limb in Nm.

The outputs are:

y(t) =
[
Fgto(t) xm(t) Fc(t) δ(t)

]
(C.5)

where:

• Fgto(t) is the moment sensed by the GTOs

• xm(t) is the muscle stretch

• Fc(t) is the contact force in Newtons on the manipulator

• δ(t) is the angular displacement of the manipulator

The state space model has 5 state variables and 5 eigenvalues.

C.2. Model Dynamics
The same model has been shown in the block diagram Fig. 4, with the blocks defined as:

Muscle Dynamics (from Qm(s) and Xl(s) to Xm(s))

(bms+ kSEC)Xm(s)− kSECXl(s) = Qm(s) (C.6)

Gmuscle(s) : Xm(s) =
Qm(s) + kSECXl(s)

bms+ kSEC
(C.7)

Limb Dynamics (from Xm(s) and Fc(s) to Xl(s))

(mLs
2 + kSEC + kPEC)Xl(s)− kSECXm(s) = Fc(s) (C.8)

Glimb(s) : Xl(s) =
kSECXm(s) + Fc(s)

mLs2 + kSEC + kPEC
(C.9)

Grip Dynamics (from Xl(s) and ∆(s) to Fc(s))

Ggrip(s) : Fc(s) = (bcs+ kc)

(
LF

Larm

∆(s)−Xl(s)

)
(C.10)

Manipulator Dynamics (from Fc(s) to ∆(s))

Fc(s) = (bF s+ kF )∆(s) (C.11)

GFS(s) : ∆(s) =
Fc(s)

IF s2 + bF s+ kF
(C.12)

For verification of the state space model, this block diagram was also reconstructed in MATLAB using

the ’connect’ function, to ensure that identical results were obtained.

C.3. Approximate Transfer Functions
For the parameter values shown in Table II (with kF = k1), the resulting system from qm to δ written in
Transfer function form consists only of two dominant poles and three high frequency poles all on the real
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axis (Equation C.13). This can be easily approximated as a system with second order dynamics and a

phase lag.

δ(jω)

qm(jω)
=

1.4421× 106(jω + 42.8)

(jω + 419.7)(jω + 54.02)(jω + 41.62)((jω)2 + 9.589jω + 265.7)

≈ 0.2461

(1 + 0.0216jω)
[
(jω)2

16.32 + 2 (0.294)
16.3 jω + 1

] (C.13)

Other transfer function approximations are also presented for reference.

Fgto(jω)

qm(jω)
≈

(
(jω)2

14.92 + 2 (0.185)
14.9 jω + 1

)
(1 + 0.0216jω)

(
(jω)2

16.32 + 2 (0.294)
16.3 jω + 1

) (C.14)

xm(jω)

qm(jω)
≈

(0.1029)
(

(jω)2

26.12 + 2 (0.0129)
26.1 jω + 1

)
(1 + 0.022jω)

(
(jω)2

16.32 + 2 (0.294)
16.3 jω + 1

) (C.15)

Fc(jω)

qm(jω)
≈

(0.3642)
(

(jω)2

15.12 + 2 (0.0510)
15.1 jω + 1

)
(1 + 0.0216jω)

(
(jω)2

16.32 + 2 (0.294)
16.3 jω + 1

) (C.16)

GFS(jω) =
δ(jω)

Fc(jω)
≈ 0.6757(

(jω)2

15.12 + 2 (0.0510)
15.1 jω + 1

) (C.17)

(C.18)

These same dominant poles have been shown in Fig. 6 of the Technical Report. These approximations

indicate that approximations for considering proprioceptive feedback are possible, however the 2nd order

zeros must also be considered. This means that the generalized model presented by Bachelder [11]

(Section 7.3) is flawed for the same reason. A more appropriate approximation, if considering Fc feedback,

would use Equation C.19. To use such a mathematical model, the feel system/manipulator characteristics

would have to be known for a given control task, and the neuromuscular system has three unknown

parameters (same as the precision model) ωn, ζn and TN .

GNMS(jω) =
Fc(jω)

qm(jω)
=

ω2
n

(1 + jωTN1
) ((jω)2 + 2ζnωn jω + 1)

1

GFS(jω)
(C.19)





D
Proprioceptive Feedback Analysis

A complete set of plots covering the results in Section VI are presented here. Proportional and Double

Integrator Equalization is considered, with an inner loop (PF) lead assumed for the former, and a lag for

the latter. Three different manipulator characteristics are also considered, with the assumption that stiffer

manipulators would provide greater force feedback information to the pilot. The three different manipulators

considered, kF = k1, 5k1, 25k1, are the same as used by Magdaleno [13]. kF = k1 corresponds with a
manipulator natural frequency (

√
kF /IF ) of 15 rad/sec.

This inner loop closure incorporates a neuromuscular activation lag of 0.01 second (in the block Gact)

and a proprioceptive compensation delay of 0.025 seconds.

Gact(jω) = Kact/(1 + jωTact);Kact = 0.3 Nm,Tact = 0.01 s (D.1)

Hgto = Kgto

1 + jωTLgto

1 + jωTIgto

e−jω τd ; τd = 0.025 s (D.2)

Hms = Kms
1 + jωTLms

1 + jωTLms

e−jω τd ; τd = 0.025 s (D.3)

Integral control with proprioceptive/visual gain only is included in the same plots when the corresponding

lead/lag time constant is zero.

For all root locus plots: Thicker markers correspond to unit increase in Kgto or Kms. The plots on

the right show the dominant NMS poles (zoomed in). Only stable configurations are shown, the abrupt

cutoff thus shows when any pole moves into the right half plane, and is thus not possible.

For all FRF plots: Only phase plots for stable configurations are visible. An approximate crossover

frequency of 5 rad/sec for proportional control and 3 rad/sec for double integrator control were also included

in the plots.

D.1. Proportional Control Task: PF lead compensation
Figure D.1 shows root locus plots corresponding to the inner loop closure, tracing the locus of poles of the

transfer function from qv to δ when a GTO or MS lead is introduced. Figure D.2 and Figure D.3 show the

same plots for stiffer manipulator configurations.

Figures D.7, D.8, and D.9 show the frequency response functions from qv to δ when a GTO lead is

introduced, with different lead time constant values, TLgto
.

Figures D.10, D.11, and D.12 show the frequency response function from qv to δ when a MS lead is

introduced, with different lead time constant values, TLms
.

D.1.1. Observations
The root locus plots for GTO lead show that the immediate effect of introducing the lead is a reduction in

damping and the dominant NMS poles becoming unstable.

Introduction of a lead through MS feedback appears to increase the natural frequency of the NMS

dynamics, however also reducing the damping of the dominant poles slightly. Overall, however, the Bode
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plots suggest that the effect of a smaller lead time has a positive effect on phase lags by pushing the

NMS response to higher frequencies, however for larger lead times the system becomes unstable, with

non-dominant poles moving into the right half plane.

This suggests that MS feedback lead is beneficial for suppressing NMS dynamics slightly, however

cannot be used for equalization.

D.2. Double Integrator Control Task: PF lag compensation
Figure D.4 shows root locus plots corresponding to the inner loop closure, tracing the locus of poles of the

transfer function from qv to δ when a GTO or MS lag is introduced. Figure D.5 and Figure D.6 show the

same plots for stiffer manipulator configurations.

Figures D.13, D.14, and D.15 show the frequency response functions from qv to δ when a GTO lag is

introduced, with different lag time constant values, TIgto .

Figures D.16, D.17, and D.18 show the frequency response function from qv to δ when a MS lag is

introduced, with different lag time constant values, TIms .

D.2.1. Observations
Based on root locus plots, an introduction of a GTO lag stabilizes the neuromuscular dynamics by increasing

damping for smaller values of PF gain. However further increase leads to damping reducing once again.

With a pure gain however, the damping consistently decreases. This also has the effect of reducing phase

lag as Kgto is increased.

A lag on GTO force feedback is thus able to produce the necessary lead in the pilot’s response

characteristics, while also reducing phase lag. Beyond a certain gain however, the dynamics become

worse again, reducing the damping.

A small lag through MS feedback, however, appears to reduce the damping of the NMS dominant

poles, which is also shown in the root locus plots with the dominant poles moving to the right. In the region

of crossover, the change in slope is much less pronounced when compared with the GTO feedback. This

suggests that a lag on the muscle stretch is not a significant contributor towards equalization, however may

be beneficial for smaller adjustments in the region of crossover such as adapting to changing manipulator

characteristics. This is in line with observations made by Magdaleno, that with sufficient position feedback

availability, changes in the manipulator characteristics have a less significant effect on the pilot’s response

[13].

D.3. Integrator Control Task
Even with an integrator control task when no equalization is necessary, a small lead on MS feedback

can result in better suppression of NMS dynamics and better crossover characteristics. Based on the

frequency response plots, increasing GTO gain can reduce phase lag in the region of crossover, however

also slightly reducing the damping of the NMS poles.

Based on root locus plots, a pure gain causes NMS 2nd order characteristics to become more unstable

without improving crossover characteristics. A negative gain appears to be able to induce a lead in the

pilot’s response characteristics, however at the expense of greater phase lag as well as much worse and

potentially unstable NMS characteristics.
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(b) GTO Lead, kF /k1 = 1, Dominant Poles (zoomed in)
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(d) MS Lead, kF /k1 = 1, Dominant Poles (zoomed in)

Figure D.1: Root Locus for PF inner loop closure, showing poles of the response from qv to δ, when GTO
or MS based lead is introduced (for Yc(s) = Kc CE dynamics), kF = k1
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(b) GTO Lead, kF /k1 = 5, Dominant Poles (zoomed in)
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(d) MS Lead, kF /k1 = 5, Dominant Poles (zoomed in)

Figure D.2: Root Locus for PF inner loop closure, showing poles of the response from qv to δ, when GTO
or MS based lead is introduced (for Yc(s) = Kc CE dynamics), kF = 5k1
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(b) GTO Lead, kF /k1 = 25, Dominant Poles (zoomed in)
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(d) MS Lead, kF /k1 = 25, Dominant Poles (zoomed in)

Figure D.3: Root Locus for PF inner loop closure, showing poles of the response from qv to δ, when GTO
or MS based lead is introduced (for Yc(s) = Kc CE dynamics), kF = 25k1
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(b) GTO Lag, kF /k1 = 1, Dominant Poles (zoomed in)
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Figure D.4: Root Locus for PF inner loop closure, showing poles of the response from qv to δ, when GTO
or MS based lag is introduced (for Yc(s) = Kc/s

2 CE dynamics), kF = k1
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Figure D.5: Root Locus for PF inner loop closure, showing poles of the response from qv to δ, when GTO
or MS based lag is introduced (for Yc(s) = Kc/s

2 CE dynamics), kF = 5k1
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(b) GTO Lag, kF /k1 = 25, Dominant Poles (zoomed in)
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(d) MS Lag, kF /k1 = 25, Dominant Poles (zoomed in)

Figure D.6: Root Locus for PF inner loop closure, showing poles of the response from qv to δ, when GTO
or MS based lag is introduced (for Yc(s) = Kc/s

2 CE dynamics), kF = 25k1
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Figure D.7: FRF from qv to δ, showing the effect of inner loop closure with a GTO lead (Yc(s) = Kc CE

dynamics), kF = k1
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Figure D.8: FRF from qv to δ, showing the effect of inner loop closure with a GTO lead (Yc(s) = Kc CE

dynamics), kF = 5k1
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Figure D.9: FRF from qv to δ, showing the effect of inner loop closure with a GTO lead (Yc(s) = Kc CE

dynamics), kF = 25k1
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Figure D.10: FRF from qv to δ, showing the effect of inner loop closure with a MS lead (Yc(s) = Kc CE

dynamics), kF = k1
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Figure D.11: FRF from qv to δ, showing the effect of inner loop closure with a MS lead (Yc(s) = Kc CE

dynamics), kF = 5k1
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Figure D.12: FRF from qv to δ, showing the effect of inner loop closure with a MS lead (Yc(s) = Kc CE

dynamics), kF = 25k1
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Figure D.13: FRF from qv to δ, showing the effect of inner loop closure with a GTO lag (Yc(s) = Kc/s
2 CE

dynamics), kF = k1
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Figure D.14: FRF from qv to δ, showing the effect of inner loop closure with a GTO lag (Yc(s) = Kc/s
2 CE

dynamics), kF = 5k1
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Figure D.15: FRF from qv to δ, showing the effect of inner loop closure with a GTO lag (Yc(s) = Kc/s
2 CE

dynamics), kF = 25k1
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Figure D.16: FRF from qv to δ, showing the effect of inner loop closure with a MS lag (Yc(s) = Kc/s
2 CE

dynamics), kF = k1
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Figure D.17: FRF from qv to δ, showing the effect of inner loop closure with a MS lag (Yc(s) = Kc/s
2 CE

dynamics), kF = 5k1
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Figure D.18: FRF from qv to δ, showing the effect of inner loop closure with a MS lag (Yc(s) = Kc/s
2 CE

dynamics), kF = 25k1



E
Experimental Data Trends

The experimental data used in Section VIII is presented here along with the main trends utilized for

qualitative comparison with the model.

E.1. Integrator Control
Figure E.1 shows the results obtained by Gordon-Smith [10] comparing the pilot response in an integrator

control task with a free moving an pressure manipulator at two different bandwidth values for the forcing

function. While only a single controlled element (integral) was used, the experiment had 8 subjects and the

results were recorded for three different forcing function bandwidths (ωi = 1.5rad/sec, 2.5rad/sec, 4rad/sec).
The changes in the neuromuscular system natural frequency were more significant as bandwidth increased,

with a very large decrease in natural frequency as well as damping observed for the largest forcing function

bandwidth. The differences in phase lag in the high frequency region remained consistent throughout,

however there was also a noticeable change in the low frequency region for the higher bandwidth of 4

rad/sec, corresponding to McRuer and Magdaleno’s observations of the ’phase umbrella’ [12].

Additionally, Gordon-Smith also observed a change in the high frequency neuromuscular peak char-

acteristics. The dominant poles of the neuromuscular system characteristics were pushed to higher

frequencies and also showed a larger damping constant.

Figure E.2 shows the results obtained by McRuer and Magdaleno comparing the pilot response in a

integrator control task with a free moving, a spring centering and a pressure manipulator, at two different

forcing function bandwidths. B5 in their experiment corresponds with an input bandwidth of approximately 2

radians per second, while R2.2 approximately 4 radians per second. A single trained pilot with experience

in similar tracking tasks was involved in the experiment, due to limitations on the number of runs that could

be recorded. Their previous publication extensively studying pilot dynamics in compensatory systems

([20]) was cited to have established this pilot as representative of a population of pilots, and he was also

the single subject in another study on compensatory and pursuit displays due to the same limitations [46].

They also observed lower RMS error and high frequency phase lags when using spring restrained

and pressure manipulators. Additionally, they also observed an increase in phase lag at low frequencies.

With a simplified extended crossover model, this meant an increase in the parameter ’α’ representing low
frequency dynamics in the precision model (Equation 3.5), and in general it was indicated that the phase

curve ’umbrella’ as a whole shifted to the right.

As low frequency data has high error rates and larger non-linear tendencies, while also being less

relevant, this information is largely ignored in Section VIII in favor of high frequency data which gives

clearer indication of what is happening in the neuromuscular system.

The figure also shows the crossover frequency increases with spring restrained and pressure manipu-

lators.

E.2. Proportional Control
Two parallel publications by McRuer and Magdaleno were used for the data in this scenario. Figure E.3

shows data from the same study by McRuer as discussed in the case of Integrator control. Frequency
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response functions in the case of a proportional task for two different input bandwidths are presented.

The same results are observed, with the change from free moving to spring centring manipulator being

less significant in this case. Low frequency changes are only observed in the case of the high bandwidth

forcing function.

Figure E.4 shows the results from a parallel study by Magdaleno and McRuer [13]. Manipulators with

varying spring sensitivities are compared along with free and pressure manipulators. In the first case,

the spring stiffness is increased without any changes in the controlled element sensitivity, meaning that

the excursions on the manipulator would remain the same to achieve stable control. In this case it is

observed that neither the RMS errors, nor the phase lags change significantly. In the second case, the

controlled element sensitivity is increased proportional to the spring stiffness so that the force exerted

remains approximately the same to maintain control, while stick excursions become smaller. In this case it

is observed that the manipulator with the moderate spring stiffness performs the best, with the highest

crossover frequency and static gain, suggesting that position feedback was the primary control pathway

for proportional control, with the authors concluding that a tight position feedback loop is present, enabling

the pilot to act as a ’position output device’.

E.3. Double Integrator Control
Data from the same two publications have been used. Figure E.5 shows data from the study by McRuer

and Magdaleno [12] comparing the same three manipulators in a double integrator control task, for two

different input bandwidths. There is a significant improvement in rms error and crossover frequency when

using the pressure and spring manipulator, and the phase lag reduces. The low frequency shift is not as

significant in this control scenario.

Figure E.6 shows data from the study by Magdaleno and McRuer [13], where manipulators with different

spring constants are compared similarly. In the first case, the spring restraint is increased without any

change in control sensitivity, so the same excursions with larger force are necessary to achieve similar

input. In this case, the error is least for an intermediate spring rate (kF = k5k1), only slightly less than the
pressure controller. Although the pressure controller has smaller low frequency gain, it has a significantly

lower phase lag near the crossover frequency. This is attributed by the authors to lower effective time

delays as the neuromuscular dynamics are pushed to higher frequencies due to the spring characteristics.

In the second case, when controlled element sensitivity is increased in proportion to the spring constant,

an intermediate value results in lower error and slightly higher crossover frequency. The author concluded

that larger spring rates help in increasing natural frequency of the NMS and improving phase lag, while

larger control sensitivity allows the pilot to use smaller stick motions for control. The pressure controller

with the highest sensitivity however appears to show significantly lower crossover frequency and larger

errors.
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Figure E.1: Integrator Controlled element Dynamics Pressure and Free Moving Manipulator,

Gordon-Smith 1970, Fig. 26-1 and 26-2 [10]
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Figure E.2: Integrator Controlled element Dynamics Pressure, spring restrained and Free Moving

Manipulator, McRuer and Magdaleno 1966, Fig. 13 and 15 [12]
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Figure E.3: Proportional Control with manipulators at two different input bandwidths, McRuer and

Magdaleno 1966, Fig. 9 and 11 [12]
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Figure E.4: Proportional Control with different manipulators without and with control sensitivity changes,

Magdaleno and McRuer 1966, Fig. 16 and 20 [13]
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Figure E.5: Double Integrator Control with different manipulators for two different input bandwidth,

McRuer and Magdaleno 1966, Fig. 17 and 19 [12]
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Figure E.6: Double Integrator Control with different manipulators without and with control sensitivity

changes, Magdaleno and McRuer 1966, Fig. 17 and 21 [13]
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