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ABSTRACT
Software testing is an important yet time consuming task in the
software development life cycle. Artificial Intelligence (AI) algo-
rithms have been used to automate this task and have proven to be
proficient at it. This research focuses on the automated testing of
JavaScript programs, and builds upon the existing SynTest frame-
work that is the current state of the art, with the Dynamic Many
Objective Sorting Algorithm (DynaMOSA) being the best perform-
ing AI algorithm for test case generation. DynaMOSA uses the
Non-Dominated Sorting Algorithm - II (NSGA-II) as its base algo-
rithm, and adds modifications to it. This paper investigates whether
the use of the Pareto Envelope Based Search Algorithm - II (PESA-II)
as the base algorithm results in improved performance. The con-
tributions of this research includes a modified PESA-II integrated
into the SynTest framework, using inspiration from DynaMOSA.
Moreover, we answer the question "How does the modified PESA-
II perform compared to DynaMOSA in generating test cases for
JavaScript programs?" The performance of the algorithms is mea-
sured based on the (branch and method) coverage of the test cases
generated for a suite of JavaScript classes. The results show that the
modified version of PESA-II outperforms the base version. However,
neither manage to outperform DynaMOSA.

1 INTRODUCTION
Software testing is an essential part of the software development
process. Developers spend a significant amount of time in writing
test cases for their code. To streamline this process, numerous strate-
gies such as symbolic execution, model-based test case generation
and search-based testing have been devised to automate test case
generation [1]. Search-based testing with Artificial Intelligence (AI)
algorithms not only automate test case generation but also enhance
code coverage and bug detection capabilities [9].

This thesis focuses on the automated testing of JavaScript pro-
grams using search-based testing techniques. SynTest-JavaScript
[11] is a software tool that generates unit tests for JavaScript pro-
grams. It uses many-objective evolutionary algorithms (MaOEA) to
navigate the search space in order to generate the test cases. The Dy-
namic Many Objective Sorting Algorithm (DynaMOSA) [9] is one
such evolutionary algorithm that has proven to be very effective in
generating optimal test cases. We will explore other adaptations of
evolutionary algorithms using inspiration from DynaMOSA which
could potentially yield better results and improve the current state
of this field.

None of the generic many-objective algorithms can scale to
the number of objectives typically found in coverage testing [9].
DynaMOSA uses the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [5] as its base algorithm and modifies it to make it better
suited to the test case generation problem. We will find out whether
the choice of NSGA-II as the base algorithm was the right one, or if
there is a better alternative.

The aim of this research is to explore the Pareto Envelope-based
Evolutionary Algorithm - II (PESA - II) [4] as the base algorithm
in generating test cases for JavaScript programs. The key feature
of PESA-II is region based selection which aims to create diversity

on the estimated Pareto front. This is done to generate a diverse
population in the hopes of creating a more accurate estimation of
the actual Pareto Front. However, PESA-II is known to perform well
with only a small number of objectives. In the test case generation
problem, we are dealing with 100s of objectives and PESA-II does
not scale well with so many objectives. This is why we have aug-
mented the features from DynaMOSA to improve performance in
generating test cases.

The main question we seek to answer is: How does PESA-II aug-
mented with DynaMOSA features perform in generating test cases
for JavaScript programs compared to DynaMOSA? To make PESA-
II better suited for the problem of test case generation, we have
augmented features from DynaMOSA such as:

• Selection with the use of the Preference Criterion mentioned
in [9].

• Dynamic Selection of the optimization targets, also men-
tioned in [9].

To compare the performance of the algorithms, we will use
the SynTest-Benchmark [11] tool. It consists of a diverse set of
JavaScript classes that the algorithms will generate test cases on.
We will measure the quality of the test cases generated based on
branch and method coverage.

The contributions of this research include:

• An implementation of the PESA-II algorithm adapted to the
problem of test case generation. .

• An implementation of PESA-II augmented with DynaMOSA
features - DynaPESA-II.

• A replication package that contain the results and statistical
analysis scripts.

The implementations are integrated into the SynTest framework so
that they can be used to generate test cases for JavaScript programs.

The remainder of this paper is structured as follows: Section 2
provides background knowledge about the problem of test case
generation, the use of Evolutionary Algorithms for this problem,
and an overview of the theory behind DynaMOSA and PESA-II.
Section 3 details the base PESA-II implementation and the modifi-
cations made to the algorithm, enabling it to generate optimal test
cases. Sections 4 and 5 present the method of evaluation and the
results obtained. Sections 6 and 7 discuss any potential gaps in our
research that could invalidate it and the ethical implications of this
research, respectively. Finally, Section 8 concludes the research and
provides insight into the possible future work.

2 BACKGROUND
The section will begin by providing an explanation of the concepts
behind Evolutionary Algorithms and their application in the do-
main of search-based test case generation. Subsequently, we will
delve into the theory of DynaMOSA, emphasizing its suitability
for addressing the challenges associated with test case generation.
Furthermore, we will explain the working of PESA-II.



2.1 Many-Objective Evolutionary Algorithms
A many-objective problem is formulated as:

minimize 𝐹 (x) = (𝑓1 (x), 𝑓2 (x), . . . , 𝑓𝑚 (x)) (1)
subject to x ∈ 𝑆, (2)

where x = (𝑥1, 𝑥2, . . . , 𝑥𝑚) is a solution in the search space S and
m is the number of objectives [7]. This problem can be optimized
by approximating the Pareto Front which is defined as follows:

Definition 2.1 (Pareto Front). Let 𝐹 (x) = (𝑓1 (x), 𝑓2 (x), . . . , 𝑓𝑚 (x))
be a vector of𝑚 objective functions to be minimized, where x ∈ 𝑆

is a decision vector from the feasible region 𝑆 . The Pareto front,
denoted 𝑃𝐹 , is the set of all non-dominated solutions in the objective
space, defined as

𝑃𝐹 = {y ∈ R𝑚 | y = 𝐹 (x)
and there does not exist x′ ∈ 𝑆

such that 𝐹 (x′) ⪯ 𝐹 (x)
and 𝐹 (x′) ≠ 𝐹 (x)}.

Here, y = 𝐹 (x) represents a point in the objective space, and
𝐹 (x′) ⪯ 𝐹 (x) means that 𝐹 (x′) is objective-wise less than or equal
to 𝐹 (x). [12]

Evolutionary Algorithms (EAs) have gained prominence as pow-
erful tools for tackling Many-Objective optimization problems,
wherein the task involves optimizing more than three objectives
simultaneously. As discussed in [2], EAs are inspired by the prin-
ciples of natural selection and genetics. They are characterized as
population-based stochastic algorithms that efficiently navigate
through high-dimensional search spaces. In EAs, a set of candidate
solutions, referred to as individuals, constitute a population. Each
individual represents a feasible solution to the optimization prob-
lem. The aptitude or suitability of these solutions is measured using
a fitness function, which quantifies the quality of each solution.

The typical workflow of EAs, depicted in Figure 1, involves sev-
eral iterative steps. Initially, the algorithm starts with a randomly
generated population of a fixed number of solutions. The individuals
in this population undergo a selection process, where the probabil-
ity of being selected is positively correlated with their fitness. The
selected individuals are then subjected to genetic operators such
as crossover (recombination) and mutation to generate offspring.
These operators mimic natural genetic processes and introduce
diversity and novelty into the population. The newly created off-
spring and the previous population are evaluated, and individuals
are chosen for the next generation based on their fitness levels.
This iterative process, often referred to as generations or iterations,
continues until a predetermined termination criterion, such as a
maximum number of generations or a satisfactory fitness level, is
achieved.

2.2 MaOEAs in Search Based Testing
Search Based Software Testing (SBST) employs search algorithms
and optimization techniques to automate the generation of test
cases. It formulates testing as an optimization problem [6]. The
adaptation of many-objective problems to test case generation has
been covered in previous research. An overview of themodifications
made to generic evolutionary algorithms are given below.

Figure 1: The Evolutionary Cycle [2]

The solutions in the population are represented as encodings
which are the inputs to the methods under test. The objectives to
be optimized are the individual distances from all the test targets in
the class. The test targets are the branches and the objective values
for the test targets are represented as the sum of the approach level
(the number of control dependencies between the closest executed
branch and the target branch) and the normalized branch distance.
Each 𝑓 (𝑥) in equation 1 is reformulated as: 𝑓 (𝑡, 𝑥) = 𝐴(𝑡, 𝑥)+𝑑 (𝑡, 𝑥)
where 𝐴 represents the approach level, 𝑑 represents the branch
distance and 𝑡 is the target branch [9].

The number of objectives usually exceeds that of typical prob-
lems that MaOEAs are used for. MaOEAs do not scale well with
so many objectives since the number of solutions on the Pareto
Front increase rapidly with an increase in the number of objectives.
This is why DynaMOSA introduces certain features that tackle this
issue.

2.3 DynaMOSA
To explain DynaMOSA, we will first explain the base algorithm
NSGA-II, followed by the features implemented by MOSA and
DynaMOSA.

2.3.1 NSGA-II [5]. NSGA-II employs a non-dominated sorting ap-
proach to classify the set of solutions into different fronts. The
solutions that do not dominate each other constitute the first front
(or Pareto Front), the next set of solutions which are only domi-
nated by the individuals of the first front form the second front,
and so on. During the environmental selection process, individuals
are added to the next generations based on their rank (individuals
from the first front are added, followed by the second, ...) until the
limit for the next generation is reached. This mechanism allows
the algorithm to identify and preserve Pareto-optimal solutions
effectively.

NSGA-II introduces another novel component of the algorithm:
the crowding distance assignment. For each solution, the crowd-
ing distance is a measure of how close its neighbors are in the
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objective space. A larger crowding distance means that the solu-
tion is surrounded by fewer neighbors. This is important because
maintaining diversity prevents the algorithm from converging to
a single solution, and instead helps in exploring various regions
of the Pareto front. During the mating selection process, NSGA-II
prefers individuals that have a lower rank and are less crowded.

2.3.2 Many Objective Sorting Algorithm (MOSA) [8]. The Many
Objective Sorting Algorithm (MOSA) was designed with the specific
objective of enhancing automated test case generation. It targets
all uncovered branches at once by considering them as different
objectives to be optimized in parallel. While NSGA-II is a more
general-purpose multi-objective optimization algorithm, MOSA
introduces certain mechanisms that make it particularly suited for
test case generation.

As discussed earlier, MaOEAs (including NSGA-II) do not scale
well with the number of objectives being used in test case gener-
ation. That is why MOSA replaces the traditional non-dominated
sorting method with a new ranking algorithm based on the Prefer-
ence Criterion defined in [8]. This method finds the solutions with
the lowest fitness score for each of the objectives, and assigns them
with the rank 0 (giving them a higher chance of survival for the next
generation). The rest of the solutions are then ranked according to
the regular non-dominated sorting method. It also uses an archive
to store all test cases satisfying the previously uncovered branches.
Once a branch is covered, it is ignored and removed from the set of
objectives being optimized.

2.3.3 Dynamic Selection of Optimisation Targets. Suppose there is
a target t1 that has not been covered by any solutions in the current
population. Let us also imagine that there are two additional targets,
t2 and t3, which have a structural dependency on t1. This means
they cannot be properly addressed until t1 is dealt with first. Refer
to figure 2 for a clear understanding of the Control Flow Graph
example.

The Preference Criterion comes into play here. It would pri-
oritize two solutions with the lowest fitness values for t2 and t3.
However, these solutions offer no real benefit in terms of covering
their respective test targets, t2 and t3, since these targets cannot be
reached until t1 is covered [9].

To efficiently manage this situation, DynaMOSA uses a dynamic
selection process for test targets. It excludes targets that are cur-
rently unreachable due to structural dependencies from the evalua-
tion of the current population. In other words, it prioritizes dealing
with the root issue, t1 in this case, before moving onto issues that
are dependent on it. This dynamic selection approach ensures that
resources are not wasted on "redundant solutions" or test cases
that cannot be resolved until another issue is addressed first. This
allows DynaMOSA to converge to optimal solutions faster than the
alternatives.

2.4 PESA-II [4]
PESA-II is a multi-objective evolutionary algorithm that has shown
to performwell at optimizing problems with 2-3 objectives. It differs
from other evolutionary algorithms mainly in its selection process.
A crucial component of PESA-II is the maintenance of an archive of
non-dominated solutions, which serves as a current estimation of

Figure 2: Example Control Flow Graph

the Pareto Front. This archive plays a vital role in the algorithm’s
operation, functioning as the source of solutions for selection and
recombination.

Within this archive, PESA-II does not directly assign fitness
values to individuals. Instead, it segments the objective space into
discrete regions, referred to as ’hyper-boxes’. The fitness of each
hyper-box is derived from the density of individuals it contains —
the number of solutions from the archive that fall within it.

During the selection process, a hyper-box is chosen first, based on
its fitness, and then a random individual within that selected hyper-
box is picked. Hyper-boxes with a lower density of individuals
are more likely to be selected, favoring regions of the objective
space that are less crowded. This approach facilitates diversity in
the selection on the approximated Pareto front, as it increases the
probability of selecting individuals from less populated regions of
the objective space.

This method of selection is advantageous as it simultaneously
promotes convergence towards the Pareto front (by selecting hyper-
boxes containing non-dominated solutions) and diversity across
the Pareto front (by favoring less populated hyper-boxes). Con-
sequently, PESA-II enhances the chances of discovering the true
Pareto frontier. According to [4], this hyper-box-based approach
is more effective in selecting individuals from less crowded areas
compared to the conventional individual-based selection strategy
that the original PESA algorithm uses.

A downside to using PESA-II like any other MaOEA, is the fact
that it does not scale well with more number of objectives. This is
why our contribution includes a modified version of the PESA-II
algorithm that can deal with a large number of objectives.

3 APPROACH
To evaluate the performance of PESA-II and DynaPESA-II, we first
had to implement the algorithms. This section will firstly explain
our adaptation of the PESA-II algorithm for test case generation.
Furthermore, we will cover the additional features augmented re-
sulting in DynaPESA-II.

3.1 PESA-II Adaptation
The mutation and crossover operators remain the same in our
adaptation as in every abstract EA. Our main adaptation involved
modifying the selection process.
Environmental Selection: Instead of selecting the whole Pareto
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Front for survival into the next generation, we had to be a bit more
selective. As explained before, when we have too many objectives,
solutions will be less likely to dominate each other and adding the
whole front would not be beneficial. This is why we use the hyper-
box classification to help us select diverse solutions. Firstly, the
solutions in the Pareto Front are selected and added to a hyper-grid
structure. We then iterate over each hyper-box in the hyper-grid,
randomly selecting one solution from each hyper-box. The selected
solutions proceed to the next generation.
Mating Selection: We assign fitness values to the solutions based
on the density of the hyper-box that they belong to. Binary Tour-
nament selection is performed in order to choose the parents, with
the solutions from hyper-boxes of lower densities having a higher
chance of being selected.
The pseudo-code for this algorithm is given in Algorithm 1.

Algorithm 1: PESA-II
Input:𝑈 = {𝑈1, ...,𝑈𝑚}: the set of coverage targets of a

program.
Input: Population size𝑀
Result: A test suite 𝑇

1 𝑡 = 0 // current generation

2 𝑃𝑡 = RANDOM-POPULATION(𝑀)
3 while not search_budget_consumed do
4 𝑄𝑡 = GENERATE-OFFSPRING(𝑃𝑡 )
5 𝑅𝑡 = 𝑃𝑡 ∪𝑄𝑡

6 𝐹 = GET-PARETO-FRONT(𝑅𝑡 )
7 𝐻 = PESAII-SORTING(𝐹 ) // returns hyper-boxes

in ascending order of densities

8

9 𝑃𝑡+1 = ∅, 𝑑 = 0
10 while 𝑑 < |𝐻 | do
11 𝑃𝑡+1 = 𝑃𝑡+1 ∪ RANDOMLY-PICK-ONE(𝐻 [𝑑])
12 𝑑 = 𝑑 + 1
13 end
14 𝑡 = 𝑡 + 1
15 end
16 𝑇 = 𝑃𝑡

3.2 DynaPESA-II
DynaMOSA introduced features that improve the performance
of algorithms for test case generation. We augmented the same
features into PESA-II to improve its performance that we will go
over.

3.2.1 Preference Criterion: To make sure that test cases that opti-
mize a single test target survive, DynaPESA-II immediately adds
them to the next population by adding the Front 0 obtained using
the Preference Criterion (used in MOSA). Furthermore, we perform
a similar approach as that described in the previous algorithm on
front 1 (the rest of the Pareto Front) of the Preference Criterion
result.

3.2.2 Archive: DynaPESA-II incorporates the use of the archive in
the same way as MOSA does. It adds the test cases which satisfy
the previously uncovered branches, and removes those branches
from the current set of objectives.

3.2.3 Dynamic Selection of Optimization Targets: DynaPESA-II
dynamically adjusts the objectives depending on the structural
dependencies. It ignores objectives that are dependent on other
uncovered objectives. The pseudo-code for this algorithm is given
in Algorithm 2.

Algorithm 2: DynaPESA-II
Input:𝑈 = {𝑈1, ...,𝑈𝑚}: the set of coverage targets of a

program.
Input: Population size𝑀
Result: A test suite 𝑇

1 𝑡 = 0 // current generation

2 𝑃𝑡 = RANDOM-POPULATION(𝑀)
3 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 = UPDATE-ARCHIVE(𝑃𝑡 , ∅)
4 while not search_budget_consumed do
5 𝑄𝑡 = GENERATE-OFFSPRING(𝑃𝑡 )
6 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 = UPDATE-ARCHIVE(𝑄𝑡 , 𝑎𝑟𝑐ℎ𝑖𝑣𝑒)
7 𝑅𝑡 = 𝑃𝑡 ∪𝑄𝑡

8 𝐹 = PREFERENCE-SORTING(𝑅𝑡 )
9 𝑃𝑡+1 = 𝐹0 // first front is always added

10

11 𝐻 = PESA2-SORTING(𝐹1) // according to the

hyper-box densities

12 𝑑 = 0
13 while 𝑑 < |𝐻 | do
14 𝑃𝑡+1 = 𝑃𝑡+1 ∪ RANDOMLY-PICK-ONE(𝐻 [𝑑])
15 𝑑 = 𝑑 + 1
16 end
17 𝑡 = 𝑡 + 1
18 end
19 𝑇 = 𝑎𝑟𝑐ℎ𝑖𝑣𝑒

4 STUDY DESIGN
This section will provide the details of the experiment that is used
to evaluate our approach. Firstly, we precisely explain the research
questions that we aim to answer. Following that, we will discuss
the benchmark used for the evaluation. After that, we will give an
overview of the implementation of the algorithm (in the Syntest
framework) and cover the parameters used in the experiments along
with the chosen values. Furthermore, the experimental protocol
used to compare our approach with the previous algorithms will
be explained.

4.1 Research Questions
Firstly, we want to find out whether augmenting DynaMOSA fea-
tures to the base version of our algorithm results in an improvement
in the performance of the algorithm. Hence, we will answer the
following research question:
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RQ1: How does the base version of PESA-II perform in gener-
ating test cases for JavaScript programs compared toDynaPESA-
II on branch coverage?
Next, we will find out whether our approach outperforms the cur-
rent state of the art- DynaMOSA. Hence, we have formulated the
following research question:
RQ2:Howdoes DynaPESA-II perform in generating test cases
for JavaScript programs compared to DynaMOSA on branch
coverage?
These two research questions will be answered in Section 5 by
performing statistical analysis of the results of the experiments.

4.2 Benchmark
SynTest JavaScript Benchmark [11] is a tool created to test the
performance of the SynTest framework in generating test cases for
JavaScript programs. It consists of five JavaScript projects:

• Express1
• Commander.js2
• Moment.js3
• JavaScript Algorithms4
• Lodash5

The projects chosen for the study were picked for their popularity
among the JavaScript community, as indicated by GitHub stars,
and for showcasing varied JavaScript syntax and code styles. From
these, specific units (such as classes or functions) were selected if
they were exportable (testable) and had a Cyclomatic Complexity
of at least 2, aligning with established standards for evaluating test
case generation tools. The repository is provided by the URL in
[10].

We had to exclude the Moment project and the application.js
file from the Express project from the experiments since they were
causing errors while we ran the benchmark on them. Due to the
time constraints of this project, we could not try to fix these errors,
hence, we chose to exclude the files.

4.3 Configurations
In order to assess our approach, we created implementations of the
algorithms (PESA-II and DynaPESA-II) integrated into the SynTest
framework, written in TypeScript. These implementations can be
used for unit-level test case generation of JavaScript programs and
produce a test suite for the programs under test.

In order to address our research questions, we ran the benchmark
using six different configurations for comparison purposes. These
configurations encompass both the base algorithms - specifically,
NSGA-II, MOSA, and DynaMOSA - as well as our own implemen-
tations, namely PESA-II, DynaPESA-II with the "uncovered" objec-
tive manager (which disregards the set of covered objectives), and
DynaPESA-II with the "structural-uncovered" objective manager
(which, in addition to the "uncovered" objective manager, excludes
objectives with structural dependencies on any other uncovered
objective).

1https://expressjs.com/
2https://tj.github.io/commander.js/
3https://momentjs.com/
4https://github.com/trekhleb/javascript-algorithms
5https://lodash.com/

4.4 Parameters
The important parameters are listed along with their values and
the reason we chose these values. These are the values used for all
configurations unless mentioned otherwise.
Population Size: We used the default value in SynTest - 50. PESA-
II does not clearly mention a fixed population size to be used which
is why we chose the SynTest default.
Hyper-grid Size: 3𝑛 where n is the number of objectives. The PESA-
II paper uses a 32𝑥32 grid size. We could not choose this value since
we would be dealing with more than 2 objectives. Another option
was to use 32𝑛 grid size but this would not make sense because it
would be very rare for multiple solutions to share the same hyper-
box. Our aim to create diversity would not be achieved in this case.
Crossover: The crossover probablity is set to 0.7. This is the default
value of the crossover operator in SynTest and the same value is
used in the generic PESA-II [4].
Mutation: We use the default mutation operator of SynTest where
the mutation rate is set to 1/𝑠𝑖𝑧𝑒 where size is the "number of
statements in the test case to mutate" [9]
Search Time: 60 seconds (per run).
Some of the parameters used could have been optimized, however
due to the time constraints of this project and the time taken for a
single run of the benchmark (approx. 45 minutes) it was not feasible
to optimize the parameters.

4.5 Experimental Protocol
To obtain the results for the performance of the aforementioned
configurations, we need to run the benchmark on each of the config-
urations. Since the time taken to converge to the optimal solution
impacts the performance, all the algorithms must be run in the
same environment. The details of the system used for running the
configurations are summarized in table 1.

Component Specifications
Processor Model AMD EPYC 7H12
Number of Processors 2
Cores per Processor 64
Total Cores 128
Total Threads 256
Clock Speed 3293.082 MHz
Memory 512GB

Table 1: Summary of Computer System Specifications

The algorithms that are being tested are stochastic in nature.
This means that different runs can lead to different results due
randomness. To address this issue, the benchmark was run 10 times
for each configuration. To measure the final coverage and coverage
over time, we took the average of the runs. In order to assess the
relative performance of different approaches, we utilized the un-
paired Wilcoxon signed-rank test [3] with a significance level of
0.05. This statistical test, which does not rely on assumptions about
the data distribution, allows us to determine whether two sets of
data are significantly distinct. Moreover, we employed the Vargha-
Delaney 𝐴12 statistic [13] to measure the effect size of the findings,
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providing insight into the magnitude of the disparity between the
two data distributions.

5 RESULTS
This section will present and analyse the results of the experi-
ments conducted with the aim of answering the research questions
formulated in Section 4. Tables 2 and 3 summarize the results cor-
responding to research questions 1 and 2 respectively. The first
column shows the class under test, while the rest of the columns
display the branch coverage of each algorithm, followed by the
statistical tests on the coverage data. The algorithm that obtains a
higher branch coverage is highlighted in green for each class.

Some of the files have been excluded from the tables because
they had 0% branch coverage for every algorithm. These results
would not be beneficial in comparing the performance of the al-
gorithms. The files that have been excluded for this reason are:
articulationPoints.js, bellmanFord.js, bfTravellingSalesman.js, depth-
FirstSearch.js, detectDirectedCycle.js, detectUndirectedCycle.js, eule-
rianPath.js, floydWarshall.js, hamiltonianCycle.js and stronglyCon-
nectedComponents.js.

5.1 Results for RQ-1:
Table 2 gives a summary of the comparison between PESA-II and
DynaPESA-II. Overall, DynaPESA-II achieves superior branch cov-
erage results. It outperforms PESA-II in terms of branch coverage for
15 classes. Both achieve the same results for 10 classes, and PESA-II
performs better for 1 class. The 𝐴12 statistic shows a significant
difference (large) for the classes where DynaPESA-II outperforms
PESA-II. This gives us conclusive evidence that DynaPESA-II is the
superior algorithm.

5.2 Results for RQ-2:
Table 3 gives a summary of the comparison between DynaMOSA
and DynaPESA-II. Overall, both algorithms achieve similar results,
however, DynaMOSA performs slightly better in certain instances.
It achieves a higher branch coverage in 6 classes and a lower branch
coverage in only 1 class (although the difference is negligible).
In the rest of the 20 classes, both algorithms achieve the same
branch coverage. Only 3 classes show a large difference in favor of
DynaMOSA according to the 𝐴12 estimate. This leads us to believe
that DynaMOSA performs slightly better than DynaPESA-II.

6 THREATS TO VALIDITY
External Validity: One potential threat to the validity of our study
is the generalizability of our findings. We selected five open-source
projects based on their popularity within the JavaScript community,
aiming to capture diversity in terms of size, application domain,
purpose, syntax, and code style. However, conducting further exper-
iments on a larger set of projects would enhance the confidence in
the generalizability of our study. Therefore, investigating a broader
range of projects is part of our future work.

Conclusion Validity: Threats to conclusion validity are associ-
ated with the randomized nature of DynaMOSA. To mitigate this
risk, we executed each configuration ten times. Following well-
established guidelines, we adhered to best practices for running
experiments with randomized algorithms. Moreover, we employed

the unpaired Wilcoxon signed-rank test and the Vargha-Delaney
𝐴12 effect size to assess the significance and magnitude of our
results. To ensure a controlled environment that facilitates fair eval-
uation, all experiments were conducted on the same system, with
minimal interference from other processes.

7 RESPONSIBLE RESEARCH
Responsible research is important to ensure the ethical and reliable
advancement of scientific knowledge. In this study, we adhere to
the principles of responsible research to maintain the integrity and
validity of our findings.

Firstly, we prioritize transparency and reproducibility by pro-
viding an open-access replication package6. This package contains
the necessary implementations of the PESA-II algorithm adapted
to test case generation and the augmented version, DynaPESA-II.
Alongside the implementations, we include the method of regener-
ating the results and the scripts for statistical analysis. By making
these resources openly available, other researchers can replicate
our experiments, validate our findings, and build upon our work.

Furthermore, we have incorporated appropriate evaluation met-
rics to assess the quality of the generated test cases. Specifically,
we measure branch and method coverage to gauge the effective-
ness of the algorithms. These metrics are widely recognized in the
software testing community and provide meaningful insights into
the thoroughness of the test suite. By employing established evalu-
ation measures, we ensure that our research aligns with standard
practices and facilitates comparisons with related studies.

Ethical considerations also play a crucial role in responsible re-
search. We have conducted our experiments within a controlled
environment to ensure fair evaluation. All experiments were per-
formed on the same system to maintain consistency. Addition-
ally, our research involves the analysis of open-source JavaScript
projects, which have been used for similar evaluations in previous
literature. Only one file belonging to the Express project was ex-
cluded from testing because it started a web server to generate test
cases which caused problems while running the benchmark.

8 CONCLUSION AND FUTUREWORK
In conclusion, this research aimed to adapt PESA-II for test case
generation and compare its performance to the current leading
algorithm, DynaMOSA. We introduced a base implementation of
PESA-II and an enhanced version, DynaPESA-II, incorporating Dy-
naMOSA features. Comparing the results of DynaPESA-II, PESA-
II, and DynaMOSA, we observed a significant improvement in
DynaPESA-II over PESA-II; however, DynaMOSA remained the
superior algorithm. Thus, DynaMOSA remains the preferred choice
for generating test cases for JavaScript programs.

Given the limited resources available in this project (time and
computation), we utilized default parameters for the experiment.
Future investigations could explore the potential enhancements
achieved by parameter tuning. Additionally, our adaptation of PESA-
II for test case generation represents just one of several possible
approaches. Exploring alternative strategies could offer valuable
insights and yield different outcomes. These considerations should
be considered in future research endeavors within this domain.
6https://github.com/Abhishek-A-dev/CSE_3000_Replication
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Table 2: Statistics comparing DynaPESA-II and PESA-II on branch coverage

Classes PESA-II DynaPESA-II p_values a12 a12_estimate

help.js 32.6% 50.0% 1.09 × 10−4 1.00 large
option.js 44.4% 44.4% 0.32 0.63 small
suggestSimilar.js 65.6% 68.8% 0.05 0.76 large
query.js 33.3% 66.7% 1.59 × 10−5 1.00 large
request.js 23.9% 32.6% 4.88 × 10−5 1.00 large
response.js 16.3% 17.4% 3.87 × 10−3 0.88 large
utils.js 26.1% 43.5% 1.32 × 10−4 1.00 large
view.js 37.5% 37.5% NA 0.50 negligible
breadthFirstSearch.js 25.0% 12.5% 0.03 0.25 large
kruskal.js 20.0% 20.0% NA 0.50 negligible
prim.js 16.7% 16.7% NA 0.50 negligible
Knapsack.js 42.5% 57.5% 5.47 × 10−5 1.00 large
KnapsackItem.js 50.0% 50.0% NA 0.50 negligible
Matrix.js 7.9% 7.9% NA 0.50 negligible
CountingSort.js 57.1% 57.1% 0.58 0.55 negligible
RedBlackTree.js 29.4% 29.4% 0.37 0.55 negligible
equalArrays.js 72.9% 75.0% 0.44 0.61 small
hasPath.js 68.8% 100.0% 5.11 × 10−5 1.00 large
random.js 57.1% 100.0% 9.98 × 10−5 1.00 large
result.js 80.0% 80.0% 0.30 0.60 small
slice.js 90.0% 100.0% 1.99 × 10−4 0.95 large
split.js 87.5% 87.5% 0.03 0.70 medium
toNumber.js 50.0% 65.0% 2.15 × 10−4 0.95 large
transform.js 58.3% 75.0% 0.01 0.86 large
truncate.js 52.9% 55.9% 3.32 × 10−5 1.00 large
unzip.js 16.7% 100.0% 2.04 × 10−4 0.97 large
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Table 3: Statistics comparing DynaMOSA and DynaPESA-II on branch coverage

Classes DynaMOSA (%) DynaPESA-II (%) p_values a12 a12_estimate

help.js 50.00 50.00 0.17 0.40 small
option.js 50.00 44.44 0.03 0.23 large
suggestSimilar.js 71.88 68.75 0.06 0.28 medium
query.js 66.67 66.67 NA 0.50 negligible
request.js 32.61 32.61 0.37 0.55 negligible
response.js 19.57 17.39 0.00 0.08 large
utils.js 42.39 43.48 0.69 0.55 negligible
view.js 37.50 37.50 0.37 0.45 negligible
breadthFirstSearch.js 18.75 12.50 0.69 0.45 negligible
kruskal.js 20.00 20.00 NA 0.50 negligible
prim.js 16.67 16.67 NA 0.50 negligible
Knapsack.js 57.50 57.50 NA 0.50 negligible
KnapsackItem.js 50.00 50.00 NA 0.50 negligible
Matrix.js 7.89 7.89 NA 0.50 negligible
CountingSort.js 57.14 57.14 1.00 0.50 negligible
RedBlackTree.js 29.41 29.41 NA 0.50 negligible
equalArrays.js 83.33 75.00 0.01 0.19 large
hasPath.js 100.00 100.00 NA 0.50 negligible
random.js 100.00 100.00 0.17 0.40 small
result.js 80.00 80.00 0.17 0.40 small
slice.js 100.00 100.00 NA 0.50 negligible
split.js 87.50 87.50 NA 0.50 negligible
toNumber.js 65.00 65.00 NA 0.50 negligible
transform.js 91.67 75.00 0.09 0.29 medium
truncate.js 55.88 55.88 0.17 0.40 small
unzip.js 100.00 100.00 0.58 0.45 negligible
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