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A B S T R A C T   

Permeability of fibrous microstructures is a key material property for predicting the mold fill times and resin flow 
path during composite manufacturing. In this work, we report an efficient approach to predict the permeability 
of 3D microstructures from deep learning based permeability predictions of 2D cross-sections combined via a 
circuit analogy. After validating the network’s predictions in 2D and extending it to 3D, we investigate its ca-
pabilities for handling images of various sizes obtained from virtual and real microstructures. More than 90% of 
2D predictions is within ± 30% of their counterparts obtained via flow simulations, similarly for 3D transverse 
permeability predictions, while in 3D case computational time is reduced from several thousands of seconds to 
less than 10 s. This work provides a robust and efficient framework for characterizing the permeability of fibrous 
microstructures and paves the way for extending this capability to estimate the permeability of fabric 
mesostructures.   

1. Introduction 

Typical reinforcements used for manufacturing fiber reinforced 
polymer composites (FRPC) are made of woven, braided or knitted yarns 
that contain thousands of individual fibers or filaments [1]. Fabric 
construction, yarn geometry and filament count have implications for 
the manufacturability [2,3] as well as the mechanical performance of 
FRPCs [4–6]. Permeability, or the hydraulic conductivity, of the pore 
network is a 3D tensor defined by the pore structure within the fabrics 
and is a key set of input parameters to flow simulations carried out 
during mold design in Liquid Composite Molding (LCM) processes to 
predict mold-filling times and to optimize the injection strategies [7–9]. 

Historically, permeability has been characterized experimentally 
[10–14] and many variants are reported for both in-plane and out-of- 
plane permeability characterization with different boundary condi-
tions, relying on (un)steady flow conditions, or involving one, two or 
three dimensional flow [10,11,13,15]. Owing to the development of 
numerical techniques to represent the fabric structures and to simulate 
the flow within those, interest is growing to replace the laborious and 

delicate permeability characterization experiments by physics-based 
numerical simulation [16–19]. However, this approach lacks the rep-
resentation of the inherent variability such as yarn deformation, nesting 
etc., as well as the random distribution of fibers within yarns [20,21]. To 
overcome this limitation, an alternative route emerged based on col-
lecting the micro- and meso-structural 3D geometric information via X- 
ray computed microtomography scans and performing flow simulations 
within those domains [22–26]. Despite the aforementioned advances, 
these simulations still require access to high computational power as 
they typically require hours even in highly parallelized systems [27]. On 
the other hand, analytical models provide straightforward solutions to 
estimate the permeability of textile reinforcements. These models range 
from simple models based on porosity of isotropic porous media, 
[28–32], to models that also take into account the flow direction with 
respect to the fiber orientation, either across or along the fibers as well as 
the tortuosity [33–38], with some of these being only applicable to 
transverse flow [39–42]. However these solutions remain typically 
limited in terms of dealing with ordered/disordered fibrous structures, 
as well as local variability in the microstructures, such as abruptly 
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changing fiber volume fraction due to highly compacted areas or resin 
rich zones. 

Artificial neural networks (ANNs) provide powerful alternatives for 
prediction of permeability, among many other predictive capabilities, as 
they can consider local fiber distribution patterns and relate these to 
bulk permeability in a generalizable manner. ANNs are made of pro-
cessing units which can discover and learn complex and meaningful 
patterns in a dataset through a trial-and-error procedure - in the case of 
supervised learning. Deep learning is a subclass of these machine 
learning techniques, named from the presence of many processing units - 
also called layers - in series and in parallel in the artificial neural 
network [43]. In a broad sense, deep learning techniques have been 
exploited for many purposes such as speech recognition, language pro-
cessing, autonomous-driving, medical diagnosis as well as in materials 
science [44–48]. Convolutional neural networks (CNNs) are a type of 
deep learning algorithm that takes images as input and relates the fea-
tures of the image to a property of interest. In materials science, they 
have been used for predicting the thermal, mechanical and hydraulic 
properties, design and topology optimization of material systems 
[49–56]. In recent years, several studies explored CNNs suitability for 
predicting local flow fields and the permeability of porous media, 
mainly for isotropic porous media such as found in soil science [57–64]. 
To the best of our knowledge, these advanced techniques have not been 
applied to the study of oriented fibrous porous media and their partic-
ular highly anisotropic permeability. 

In-line with the aforementioned works and to speed up the “learning 
phase”, the aim of this work is to propose a microstructure-guided 
upscaling procedure which combines (i) CNNs and (ii) analytical 
upscaling technique as a fast and accurate method to predict the 
permeability along the principal directions of fibrous 3D structures. The 
established route for this task involves providing the CNN with real 3D 
images of microstructures whose permeability is known, training the 
network for it to optimize its filters, and using the trained network to 
predict the permeability of previously unseen 3D microstructures. 
However, this would require extensive prior work to obtain the 
permeability and microstructure of hundreds to thousands of unique 
fiber arrangements. An alternative route involves the computer gener-
ation of 3D images, followed by fiber scale flow simulations to estimate 
the permeability, then training a 3D neural network on this set of 
generated images. Yet, this is still highly computationally intensive. To 
further increase the computational efficiency in case of highly oriented 
fibrous media exhibiting transverse isotropy, we propose to test the 
possibility of using a CNN that predicts the permeability values of 2D 
slices along the fiber direction of artificially generated 3D structures, 
and then to use an electric circuit analogy as a simple upscaling tech-
nique (which is well suited to the considered fibrous media only) to 
estimate the permeability of 3D structures based on individual slices’ 
permeability predicted by the neural network. This allows reducing the 
computational time from several thousands of seconds required for 
running 3D flow simulations to estimate the permeability to less than 10 
s without sacrificing the permeability estimation quality, as will be 
discussed in the following sections. After validating the 2D and 3D 
permeability prediction accuracy of this highly efficient approach, we 
investigate image pre-processing strategies to demonstrate the suit-
ability of our methodology in images that have a different size than what 
the neural network expects as input (i.e., images with pixel dimensions 
different from 400 × 400 pixels as will be introduced in the following 
sections) or images with very large or very small fibers; or in other 
words, our approach is to use synthetic data to train a CNN with the aim 
to transfer learning to real microstructures where the image size as well 
as the fiber diameter can vary. 

2. Methods 

2.1. Elementary volume generation 

Training and testing the suitability of a CNN for predicting the 
permeability requires generating many elementary volumes (EVs) that 
will form a large dataset with good coverage in terms of vf , fiber radius r, 
fiber orientation and spatial distribution patterns. As discussed by 
Rimmel et al. [65], images containing on the order of hundreds of fibers 
where each fiber’s r is represented by approximately 10 pixels result in 
acceptable permeability values when the permeability of these images is 
estimated via solvers working directly on the images (i.e., solvers that 
avoid using mesh based solvers thus bypassing a meshing procedure), as 
is our case. More specifically, the authors compared three cases with 
262, 484 and 799 fibers and concluded that the case with lowest fiber 
count was more prone to probability of individual images whose 
permeability is estimated to be 0 due to locally blocked structures. As the 
computational cost of EV generation increases as the number of fibers 
increases; using larger images as input to CNNs implies larger down-
stream layers, further increases the computational cost. 

Based on these considerations, we procedurally generated images of 
practically aligned fibers, with dimensions of 400 × 400 pixels where 
each pixel corresponds to area of 1 µm2 and where the fibers had one of 
the following number of pixels as their radii, r: 6, 8, 10, 12, or 14 pixels 
and where the fiber content vf varied between 0.25 and 0.70, by in-
crements of 0.05. This resulted in microstructures whose number of fi-
bers varied between 65 (r = 14 pixel, vf = 0.25) and 990 (r = 6 pixel, vf 

= 0.70), see Supporting Table 1 for the number of fibers in all the studied 
cases. We used a Monte-Carlo procedure similar to that summarized by 
Chen and Papathanasiou [66,67], which starts from an arbitrary packing 
of fibers with desired r and vf and attempts to move fibers one by one in 
randomly selected directions at a random extent (see Supporting Fig. 1 
for additional information). Despite the suitability of this approach to 
generate 2D microstructures, the sudden jumps of fibers result in an 
undesired short-range tortuosity as depicted in Fig. 1a. To overcome this 
limitation, we defined an initial direction for each fiber which is slowly 
and randomly changed at each new slice as visually depicted in Sup-
porting Fig. 2. This allowed us to generate microstructures as shown in 
Fig. 1b which was made up of fibers which had a long-range tortuosity 
while avoiding sudden jumps between successive slices. 

2.2. Flow simulations 

When considering at the pore scale the Stokes flow of an incom-
pressible Newtonian fluid, the macroscale flow through porous media is 
described by Darcy’s law: 

u = −
1
μ K⋅∇P (1) 

where u is the volume averaged flow velocity, K is the permeability 
tensor, μ is the resin viscosity and ∇P is the pressure gradient driving the 
resin impregnation through the pores. K is a positive definite symmetric 
tensor which can be reduced to its diagonal form represented by Kx, Ky 

and Kz terms corresponding to permeability along the x-, y-, and z-di-
rections when these directions are the principal directions of K as it is 
the case in the simulations shown hereafter. 

After generating the EVs, we performed flow simulations to extract 
the transverse and axial permeability values. We performed simulations 
on EVs with a depth (in y-direction) of one (i.e., on 2D slices) to train the 
CNN as well as on full EVs (which consisted of 800 slices) to validate our 
approach based on combining both the circuit analogy as an upscaling 
technique which is well suited for the considered fibrous media and CNN 
predictions. 

We opted for the Geodict software (Math2Market® GmbH) and its 
FlowDict module to perform our fiber scale simulations, as it can 
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perform the simulations directly on the binarized images thus elimi-
nating the need for mesh generation and as it can be automated via 
Python scripting to repeat the simulations on thousands of 2D binary 
images. We used an Explicit Jump-Stokes solver to solve the governing 
Stokes flow equations (i.e., at negligible or zero-valued Reynolds num-
ber) as reported in earlier work for permeability characterization 
[22,65,68] with boundary conditions visually outlined in Fig. 3. More 
specifically, we defined periodic boundary conditions with implicit inlet 
and outlet along the flow direction (as shown in Fig. 3a for the x-di-
rection) and defined periodic boundary conditions in the tangential di-
rections as our EVs already had periodic boundaries as well as to 
minimize computational time without sacrificing the accuracy, as re-
ported in [65] for similar simulations performed with the same soft-
ware/module to extract transverse permeability of 2D microstructures. 
To run the simulations, the EVs were subjected to a macroscopic pres-
sure difference of 0.02 Pa and the fluid viscosity was arbitrarily set to 1 
mPa s. 

2.3. CNN architecture 

We implemented a modified version of AlexNet [69] architecture 
that is derived from LeNet network and paved the way for the most 
recent architectures which are based on the similar filter features. It 
provides fairly good results in both complex classification and regression 
tasks [70,71] and is available in Matlab’s Deep Learning toolbox. The 
design of the CNN is outlined in Fig. 4a. CNN takes a matrix with a size of 
400 × 400 (i.e., an image with 400 × 400 pixels) and outputs the 
permeability, thus the network is set up for a regression task where the 
input is an image and the output is a numeric value. As mentioned 
before, we studied both axial and transverse permeability values and we 
used the same network architecture after training it with the desired 
data type. Each convolutional block shown in Fig. 4 consists of a con-
volutional layer followed by a rectified linear unit (ReLU) as the acti-
vation function which is then followed by batch normalization and max 

pooling layers. The last convolutional block is followed by a dropout 
layer with a drop probability of 0.2 and by a fully connected layer to 
adapt the network to a regression task. The use of batch normalization 
and the dropout layer are common practice to avoid overfitting; batch 
normalization also accelerates the training process [72–74]. The filters 
(or kernels) in convolution layers have a size of 7 × 7, 5 × 5, and 3 × 3 
respectively. All three convolutional layers’ filters have a stride of 1 and 
paddings of 3, 2, and 1 and number of filters is 16, 32 and 64 respec-
tively. Similarly, max pooling layers’ size and stride vary with the first 
two of them having a size of 4 × 4 and a stride of 4 while the last one has 
a size of 2 × 2 and a stride of 1. 

In total there are 50 unique microstructure types (5 different pixels 
per r and 10 different fiber content vf ), each with 1000 unique slices 
along the fiber direction. Out of these images, 1280 of them are selected 
randomly and used in the CNN training. As a 2D microstructure’s 
permeability is identical when it is flipped upside down or left to right, 
we augmented the image input by flipping the images and used them 
during CNN training with a split of 3:1 between training and validation 
images. 

On the neural network output side, we used the logarithm of 
permeability and mapped it between − 1 and 1 using the minimum and 
maximum values. This approach outperformed other options during our 
early trials such as directly using the permeability or mapping with the 
mean and standard deviation of the logarithm of permeability. After 
defining the CNN architecture, pre-processing the input and the output 
data, we trained the CNN for 500 epochs using the ADAM optimizer via 
Matlab Deep Learning Toolbox (see Supporting Table 2 for the hyper-
parameters used in training) on an Nvidia Quadro RTX6000 with 24 GB 
memory; the training lasted approximately 14 h. Fig. 4b shows the 
evolution of root mean square error (RMSE) for training and validation 
data over 500 epochs. Stable value of RMSE for validation data indicates 
the absence of overfitting, a desired feature for any neural network 
training and fluctuation in the training curve is expected due to the use 
of a dropout layer [75]. 

Fig. 1. a) EV generated by the original Monte-Carlo approach, b) EV generated without the short-range behavior. In both cases, r = 10 pixel, vf = 0.6.  

Fig. 2. Some examples of generated 3D architectures. a) r = 6 pixel, vf = 0.3, b) r = 10 pixel, vf = 0.5, c) r = 14 pixel, vf = 0.7.  
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Fig. 3. Boundary conditions and corresponding flow fields in x- and y-directions (velocity magnitude), respectively. (a&c) Boundary conditions highlighting the 
implicit inlet/outlet voxels in orange and periodic tangential boundaries in blue. (b&d) velocity magnitude fields for the microstructure and boundary conditions 
shown in a&c. 

Fig. 4. a) CNN architecture used in this study. Each convolution block corresponds to a convolution layer followed by ReLU, batch normalization and max pooling 
layers. b) Evolution of root mean square error (RMSE) for training and validation parts of data. 
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3. Results and discussion 

3.1. 2D transverse and axial permeability 

We trained the CNN with the architecture shown in Fig. 4a for two 
different cases: (i) to predict the permeability along the x-direction, Kx, 
and (ii) to predict the permeability along the longitudinal y-direction, Ky 

respectively. It is also worth noting that the transverse directions (i.e., x- 
and z-directions) can be tackled using a single network as the input 2D 
images can be transposed such that the neural network trained for Kx 
prediction can also be used for predicting Kz, as will be demonstrated 
below. Fig. 5a and b show, for x- and y-directions respectively, the 
neural network predictions and the corresponding simulation results for 
3000 randomly selected images from the test data (see also Supporting 
Figs. 3 and 4 for the histograms of permeability results obtained via 
simulations and via the neural network predictions). In general, the 
predictions seem to be well-aligned with the simulation results for both 
directions. Even though the scatter is quite limited for the y-direction, 
predictions for x-direction deviate from the simulation results at low 
permeability values (roughly for permeability values lower than 1 10-13 

m2 typically obtained when vf was equal to or higher than 0.65). 
Coincidentally, Geodict tends to return 0 for transverse permeability of 
high vf images and we excluded these data points from the training and 
testing of the neural network. This practice obviously results in an 
imbalance within the dataset. The so-called class imbalance is a common 
issue, and refers to the high representation of one of the classes in the 
data and the resulting bias in the learning process in favor of the 
dominant class [76,77]. We note that improving the balance would 
require more simulation results with very high vf images. However, 
accounting for those cases would require switching to a mesh-based 
simulation approach where local mesh refinement between the 
narrowly spaced fibers would be necessary. For practical reasons, we 
opted to avoid switching to a mesh-based solver and used the dataset as 
is. This imbalance in the dataset might have contributed to the scatter in 
Fig. 5a that is more pronounced in the low permeability regime. 

Considering the predictions in both directions, the deviation from 
the Geodict results seems to be rather low for all the images except those 
where fiber radius is 14 pixels, as will be quantified in the following 
paragraph. Considering that the 14 pixel radius case is less prone to 
discretization (or rasterization) based representation errors, that are 
prominent at low pixel per radius situations, we suspect that the rela-
tively low performance for the 14 pixel radius case could be improved by 
altering the padding as well as the filter sizes. However, we note that a 
sensitivity study of the aforementioned parameters will not be carried 

out in this first paper as each modification requires subsequent changes 
in the downstream layers of the network to maintain the output sizes; 
this will be investigated in a follow-up work. 

To quantify the deviation of the CNN predictions from the simulation 
results, Fig. 6 reports the cumulative distribution of deviation in relative 
terms |GD − NN|/GD where GD and NN correspond to Geodict results and 
neural network predictions, respectively (see also Supporting Fig. 5 for 
corresponding histograms). Dashed gray lines correspond to 30% devi-
ation between the simulation results and the network predictions. The 
choice of 30% deviation might seem arbitrary at first glance. However, it 
corresponds to the deviation range found experimentally under strictly 
controlled characterization settings [11,12]. In general, the deviation is 
lower along the y-direction predictions in comparison to those along the 
x-direction; only the 14 pixel radius case stands out from the rest of the 
results with a slightly higher difference between simulation results and 
the neural network predictions. As mentioned above, this is suspected to 
originate from the mismatch between the characteristic feature size 
(boundaries of fibers which happen to have 14 pixels radius) and the 
filter sizes and padding settings as also reported in [63,78] and will be 
investigated in a future work. We also note that the relatively low fiber 
count in the images with 14 pixel radius fibers might have reduced the 
predictive capability of the neural network. With the same logic, the 
relatively low deviation for the 6 pixel radius case in Fig. 6 originates 
from the relationship between the pixel per radius and the filter sizes. 
The relatively higher scatter along the x-direction predictions manifests 
itself as ~ 97% of predictions (upper dashed gray line in Fig. 6a) having 
less than 30% deviation from the simulated results in the best case with 
6 pixel radius. However, we note that even in the worst case, ~90% of 
the predictions (lower dashed gray line in Fig. 6a) are within the 30% 
deviation range, and the scattered points in Fig. 5a result in an extended 
upper tail for the 14 pixel case in Fig. 6a. 

3.2. 3D permeability 

3.2.1. Circuit analogy based on 2D predictions 
In this section, we investigate the suitability of combining 2D 

permeability predictions via circuit analogy to estimate the 3D perme-
ability of fibrous microstructures. To that end, we generated 15 new 
microstructures each consisting of 800 slices along the fiber direction 
with slices having a dimension of 400 × 400 pixels. Table 1 shows the 
fiber radii, r, and fiber content, vf , of the studied microstructures and the 
runtimes of the Geodict flow simulations in all three directions. 

For x- and z- directions, the equivalent permeability is calculated by 
the circuit analogy of 800 resistances (1/Kx) in parallel using the 

Fig. 5. Neural network predictions vs. Geodict results. Results along the x-direction (a) and the y-direction (b).  
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arithmetic mean of individual slices’ permeability or in other words, a 
Voigt bound of the flow resistivity whereas along the y-direction case, 
the equivalent permeability is based on the circuit analogy of 800 re-
sistances (1/Ky) in series using the harmonic mean of individual slices’ 
permeability or, in other words, a Reuss bound of the flow resistivity. 

Fig. 7 shows the runtimes of the CNN based permeability prediction 
algorithm and for 800 images the total duration is 8.56 s (including the 
time spent for loading the network, loading the images and subsequent 
calculations for circuit analogy, see also Supporting Table 3 for a list of 
the computational times presented in Fig. 7). Compared to the simula-
tion runtimes listed in Table 1 that are on the order of thousands of 
seconds, the merit of this approach in terms of reducing the computa-
tional intensity is clear and its prediction accuracy will be investigated 
in the following subsections. 

Fig. 8 shows the construction of the circuit analogies and the reader 
is referred to our previous work for a detailed description of circuit 
analogy for permeability estimation purposes [2,79]. Fig. 9 shows the 
permeability values obtained via 3D simulations (GD-3D), the mean and 
the standard deviation of 2D permeability values obtained via Geodict 
(GD-2D) and the neural network (NN-2D) as well as the resulting circuit 
analogy results, namely GD-circuit and NN-circuit. Fig. 9a, b, and c 
report the results for r  = 10 pixel cases for x-, y-, and z-directions, 
respectively, and the same results for r = 6 and 14 pixel cases are re-
ported in Supporting Fig. 6. Results show a characteristic difference 
between the trends for x- and z-directions on one side, with most of the 
results falling in a small range. On the other side, along the y-direction, 
there seems to be an order of magnitude difference between 2D results 
and 3D results, both for the simulation and the circuit analogy. 

Along the x- and z-directions, the circuit analogies (GD-circuit and 
NN-circuit) and 2D permeability results (GD-2D and NN-2D) exhibit a 
small scatter except for very high vf cases where the high standard de-
viation of GD-2D results is due to simulation returning 0 for the 
permeability in these cases as reported in previous subsections. Fig. 9a 
and c show that the circuit analogy of neural network predictions (NN- 
circuit) approximates well the permeability obtained via the flow 
simulation on the full 3D geometry. Fig. 10a, b, c shows the ratio, 
KNN− circuit/KGD− 3D, for the three studied radius value (6, 10, and 14 pixels 
per radius); the ratio fluctuates between ~ 0.6 and ~ 1.1 for the results 
along the x- and z-directions, with a general tendency of neural network 
circuit underestimating the permeability around a ratio of ~ 0.8 (see 
also Supporting Fig. 7 for KGD− circuit/KGD− 3D results). However, given the 
fact the 3D simulations take hours to run and there is an entry barrier to 
the use of any software, the value of the neural network circuit analogy 
lies in its accuracy as well the fact that one can obtain these results 
within a fraction of a second. Another interesting behavior is the de-
parture of both GD-3D and NN-circuit from Gebart’s permeability pre-
dictions (see ref. [33] or supplementary document for Gebart 
permeability models’ equations for both longitudinal and transverse 
cases) at high vf regime, a phenomenon also observed in Refs. [80,81] 

Fig. 6. Cumulative number of predictions as a function of the predictions’ deviation from simulation results. Results along the x-direction (a) and the y-direction (b).  

Table 1 
Runtimes (in seconds) of 3D flow simulations in Geodict for the investigated 
microstructures with different vf and pixel per radius and dimensions of 400 ×
800 × 400 pixels.   

vf 

0.3 0.4 0.5 0.6 0.7 

Fiber radius r [pixels] 6  X 3536 5234 7738 5943 5010 
Y 2653 2914 3291 3343 3661 
Z 2436 4653 4214 6000 8021 

10 X 1907 3140 4225 4932 5140 
Y 2191 2636 3201 3553 4096 
Z 2286 2736 4052 5602 5109 

14 X 1675 2500 2960 3858 4558 
Y 2066 2548 2126 2639 4921 
Z 1766 2336 2483 6978 8118  

Fig. 7. Computational time required for permeability prediction using 
the CNN. 
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further validating our simulated and predicted transverse permeability 
results. 

Implementing a slightly modified neural network that makes use of 
3D images instead of 2D ones could be a route for increasing the 

accuracy of the permeability predictions of 3D images. However, this 
would require hundreds if not thousands of unique 3D images and to 
perform the simulations on each 3D image so that they can be used for 
training, validating, and testing the neural network. It is not hard to 

Fig. 8. Circuit analogy configuration used for estimating the principal permeability values of the considered 3D fibrous structures.  

Fig. 9. Permeability results obtained via 2D, 3D simulations and circuit analogy of the neural network predictions, on images with r = 10 pixel. a, b, and c show the 
results along the x-, y-, and z-directions, respectively. 
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imagine that this task would require several months of computation, 
thus reiterates the value of our approach as it only relies on simulations 
on 2D images which take much shorter time to generate as well as to 
perform the flow simulations on these. We note that another approach to 
improve the accuracy in prediction of the 3D permeability tensor is to 
make use of more complex relations, such as an upscaling approach 
based on the tortuosity and specific surface area definition as pursued by 
Saxena et al. [82]. However, as demonstrated in that paper as well, the 
use of tortuosity and specific surface area usually implies lower 
permeability as one goes from 2D to 3D while 3D permeability is higher 
in our case. This inversed relationship might result from the simulation 
setup that we used (boundary conditions etc.), as also manifested along 
the y-direction results shown in Fig. 9b. 

For the y-direction results, i.e., along the main fiber orientation, there 
is almost an order of magnitude difference between 3D simulation re-
sults and the circuit analogy, as well as between 3D and 2D simulation 
results. Considering that the 3D simulation results are comparable with 
Gebart’s permeability predictions and slightly higher than those at high 
vf range as also reported by Endruweit et al. [80], and as the agreement 
between 2D simulation results and CNN predictions has been established 
in the previous section, the difference seems to be originating from the 
2D simulation results and their circuit analogy. The agreement between 

2D permeability predictions and 2D simulation results is already 
established in section 3.1, thus the issue originates from our 2D flow 
simulations as will be detailed in what follows. Upon closer inspection of 
the simulation settings, the implicit inlet/outlet definition stood out as a 
potential source of error. To investigate this, we took a random slice 
from every one of 15 studied configurations and extruded it to a depth of 
10, 100 and 1000 slices as visualized in Fig. 11a, repeated the simula-
tions and collected the permeability estimations. Fig. 11b shows the 
permeability predictions normalized with the permeability obtained 
with images of 1000 slice depth (Ki/K1000 where i = 1, 10, 100, or 1000) 
for r = 10 pixel case and in Supporting Fig. 8a and c for r = 6 and r = 14 
pixel cases. Supporting Table 4 presents the corresponding permeability 
values of these simulations. For the x- and z-directions, all the results fall 
in a narrow range with a slightly higher variability in the 6 pixel radius 
case. On the other hand, the y-direction results show that the perme-
ability obtained using a single slice (K1) is a fraction of K1000 and the 
ratio increases monotonically as the number of slices increases. How-
ever, repeating the same simulations without defining implicit inlet/ 
outlet resulted in elimination of the monotonic increase as seen in 
Fig. 11c for r = 10 pixel case (and in Supporting Fig. 8b and d for r = 6 
and r = 14 pixel cases) where the scatter of y-direction results was 
comparable with that of other two directions. This confirms that the 

Fig. 10. Ratio between the circuit analogy results and the 3D simulation results (KNN− circuit/KGD− 3D). a, b, and c show the results for the 6, 10, and 14 pixel per fiber 
radius cases respectively. 
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difference between the 2D and 3D results in Fig. 9b originates from the 
use of implicit inlet/outlet voxels or rather its unsuitability with 2D 
simulations along y-direction. Based on this conclusion, the further an-
alyses reported herein focus on the predictive capabilities of circuit 
analogy based extension of neural network predictions along the 
transverse directions x and z. 

3.2.2. Case studies 
Based on the previous subsection’s results, we analyze two case 

studies which focus on transverse permeability prediction (i.e., Kx and 
Kz) in the cases where the input image size differs from what the neural 
network takes as input, more precisely images with a resolution different 
from the 400 × 400 pixel dimensions. In the following subsections, we 

Fig. 11. Influence of 3D image depth on flow simulations. a) An arbitrary microstructure with extrusion depths of 1, 10, 100, and 1000 slices. b) Permeability results 
normalized with respect to the permeability of images with depth of 1000 (Ki/K1000 where i = 1, 10, 100, or 1000) for r = 10 pixel images when implicit inlet/outlet 
is used. c) Same results when implicit inlet/outlet is not used in the simulations. 

Fig. 12. A visual summary of permeability calculation of images with resolution other than 400 × 400 pixels. Pictures are not to be scaled.  
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first investigate the prediction accuracy of the neural network with 
square images that can have either smaller or larger edge length than 
400 pixels and then investigate the prediction accuracy on rectangular 
images of real microstructures where the fiber radius r as well as vf in 
individual slices is variable; for the latter purpose we make use of the 
dataset distributed within the framework of virtual permeability 
benchmark study, which consisted of a 3D binary image with di-
mensions of 1003 × 124 × 973 voxels. 

3.2.2.1. Input image with a different size. One limitation of the neural 
network architecture used in this study is its inflexibility to the input 
image size. As described in 2.3, our neural network expects a binary 
image with 400 × 400 pixel dimensions. However, in practice, one can 
collect images via different methods such as micrography that not 
necessarily lead to the aforementioned dimensions. A straightforward 
route is outlined in Fig. 12 for square images where one can resize the 
image to the input dimension expected by the network, estimate the 
permeability and multiply it with the square of the rescaling ratio as 
permeability is known to scale with r2, thus the square of the edge length 
since r scales with the edge length. In this case, the rescaling ratio equals 
to the ratio between the edge lengths of the original image and the 
resized image. 

When considering image scaling, a limitation arises from the statis-
tics of the training data, more specifically from the fact that the fibers in 
the images used in neural network training have a radius r between 6 
and 14 pixels. Rescaling operations may result in fiber radii that are 
either too small or too large, potentially lowering the prediction accu-
racy. To investigate whether this is the case, we generated 120 indi-
vidual images with 200 × 200 pixels where the r was 4, 7, 10 or 14 pixels 
and vf was 0.3, 0.5 or 0.7 (10 images per vf and pixel per radius com-
bination) and images with 800 × 800 pixels as will be discussed below. 
Upon scaling up to the desired dimension of 400 × 400 pixels these fiber 
radii double; with 10 and 14 pixels the radius becoming 20 and 28 
pixels, thus falling out of the radius range considered during neural 
network training. In such a case one would expect the 4 and 7 pixel 
radius cases to have comparable accuracy as that of the original test 
images whose results are reported in Fig. 5a. Fig. 13a shows that this is 
indeed the case and the permeability predictions for those two cases are 
scattered around the equality line and similarly for 10 pixel radius cases 
except for the high vf range, as also indicated by the purple arrow. Ac-
curacy is significantly lower for r = 14 pixel cases that manifests itself 
across the whole vf range and amplified at higher vf values as also 
indicated by the dashed green line. As speculated above, we suspect that 

this behavior originates from the fiber radius (14 pixels × 2 = 28 pixels) 
being out of the range of the fiber radius in the training images (6 to 14 
pixels), thus the microstructure statistics not being considered during 
training. We verify this conclusion by exploiting the periodic boundaries 
of these images and generating 400 × 400 pixel images by stitching four 
identical copies of each 200 × 200 image as depicted in Fig. 14. By this 
practice, the fiber radii remain untouched; and in this case only the 4 
pixel radius falls out of the training range. As seen in Fig. 15, predictions 
of the 14 pixel images are scattered around the equality line indicating a 
much better accuracy in comparison to what is reported in Fig. 13a. 
Similarly, prediction accuracy for the 10 pixel radius images at high vf 

range is improved in comparison to their upscaled counterparts reported 
in Fig. 13a, but an overestimation similar to what is reported in Fig. 5a is 
still present, indicating that it most likely originates from the neural 
networks’ lower accuracy at permeability values below 10-13 m2. On the 
contrary, the 4 pixel radius results with high vf display a departure from 
the equality line, as indicated by the orange arrow in Fig. 15, in com-
parison to Fig. 13a and this re-emphasizes the limitation of the neural 
network when it comes to predicting the permeability of images that 
contain fibers whose radii are out of the range considered during the 
neural network training. However, we note that there are several ways 
around this limitation, be it rescaling or stitching or cropping (which 
would also provide a route for assessing the permeability of rectangular 
images) and there exists an ultimate solution that involves training the 
neural network with a larger dataset involving a larger radius range. 

Similar trends are present in the case of images with 800 × 800 pixel 
dimensions. In this case, we generated 120 individual images where the 
fiber radius was 8, 20, 40 or 50 pixels and vf was 0.3, 0.5 or 0.7. The fiber 
radii are halved upon downscaling the images to 400 × 400 pixel di-
mensions and the 20 pixel radius becomes 10 pixels which is in the range 
of fiber radii used in neural network training while the other three cases 
(8, 40 or 50 pixel radius) falls out of the training range. This reflects on 
the prediction accuracy of the neural network for this fiber radius as 
reported in Fig. 13b. The 50 pixel radius images (which become 25 
pixels upon downscaling to 400 × 400 pixels) exhibit the most deviation 
from the equality line as also indicated by the dashed green line. The 8 
and 40 pixel radius cases have relatively better prediction accuracy, 
despite them also falling out of the training range. This also indicates the 
robustness of the neural network to deal with microstructures that are 
not considered during the training. We also note that the 8 pixel results 
consist of only two separate clusters instead of three (similarly 4 pixel 
and 7 pixel cases in Fig. 13a). This originates from the simulation results 
that return 0 permeability at high vf . 

Fig. 13. Predictions for images with resolution other than 400 × 400 pixels. a) 200 × 200 pixels, b) 800 × 800 pixels.  
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3.2.2.2. Virtual permeability benchmark dataset. The ultimate test to 
assess the performance of our network is to subject it to real images (i) 
that have non-constant fiber radius r and fiber content vf along the fiber 
direction, (ii) non-periodic boundary conditions and (iii) that are rect-
angular in shape with an aspect ratio different from 1. For this purpose, 
we used the 3D image dataset used in the virtual permeability bench-
mark whose first results are reported in [83]. The provided binary image 
has dimensions of 1003 × 973 × 124 voxels and was obtained using X- 
ray computed microtomography with a carbon fiber yarn and with a 
spatial resolution of 0.52 µm/voxel. Each of the 973 slices along the fiber 
direction contains several hundreds of fibers whose radii vary between 
~ 6 and ~ 12 pixels. 

We followed the procedure outlined in Fig. 16 to prepare the images 
that can be input to the neural network. This consisted in mirroring the 
image along the z-direction twice to reach dimensions of 1003 × 973 ×
496. We then cropped a region from each slice’s center with dimensions 
of 800 × 400 and this resulted with a 3D image with dimensions of 800 
× 973 × 400. We then split this image into two images with the size of 
400 × 973 × 400 pixels. We predicted the transverse permeability 
values (Kx and Kz) of each slice of both parts, then obtained the 
permeability of each part via circuit analogy of resistances in parallel as 
also described in subsection 3.1. To estimate the Kx of the complete 
image (800 × 973 × 400), we treated the two parts as resistances in 
series whereas the Kz required treatment of the two image parts as 
parallel resistances. 

Table 2 presents the permeability predictions for both parts of the 
image as well as the bulk permeability values along the x- and z-di-
rections. Ref [83] reported the Kx estimations of all participants of the 
virtual permeability benchmark to scatter between ~ 4 10-15 m2 and ~ 5 
10-13 m2 with a mean value of 1.06 10-13 m2. Considering the large 

scatter within the results obtained with the physics-based simulations 
performed by the participants and the fact that the permeability esti-
mation via our proposed procedure takes less than a minute (most of 
which is spent for image processing rather than neural network calcu-
lations), our estimation of 6.67 10-14 m2 can be considered as a very fast 
and accurate approach for permeability estimation. Another observation 
in [83] is that the Kz is higher than that in x-direction with a scatter 
between ~ 8 10-15 m2 and ~ 7 10-13 m2 and a mean value of 1.41 10-13 

m2. A similar trend is present in our estimations as the Kz is estimated to 
be 8.79 10-14 m2. More interestingly, Kz/Kx ratio in the benchmark re-
sults is 1.33 (1.41 10-13/1.06 10-13) while it is 1.32 (8.79 10-14/6.67 10- 

14) for our predictions. Even though our neural network predictions are 
only as good as the simulation results that are used for its training, the 
close match between Kz/Kx values indicates that the network can also be 
used as a tool to assess the extent of anisotropy in the microstructures. 

We note that the extension from 2D to 3D permeability can be further 
improved by considering the tortuosity induced effects or by altering the 
operations followed for obtaining the images that can be used as inputs 
to the neural network. The former can be integrated into the neural 
network’s prediction capability as demonstrated in [84] for simple 2D 
images. For the latter, we pursued a different strategy to crop and mirror 
the images as outlined in Supporting Fig. 9. Corresponding permeability 
predictions in Supporting Table 5 are slightly lower in this case and this 
is likely to have arisen from the relatively low vf in the boundaries of the 
original binary image due to difficulty of circle detection at the image 
boundaries which was used for obtaining the binary images from the 
grayscale outputs of microtomography scans. 

4. Conclusions 

We demonstrated the relevance of a mixed and fast numerical- 
analytical strategy to estimate the permeability of highly oriented 3D 
fibrous microstructures, by using permeability estimation of 2D slices 
with convolutional neural networks (CNNs) and by extending the ob-
tained predictions to full 3D flows via circuit analogy (i.e., simple Voigt 
and Reuss estimates which are relevant for the considered fibrous mi-
crostructures). Despite CNNs being capable of directly predicting the 
permeability of 3D microstructures, we opted for this mixed strategy to 
avoid generating and performing flow simulations on thousands of 3D 
geometries - an operation which would have costed months if not years 
of CPU time. 

We first validated the prediction accuracy of CNN based 2D perme-
ability estimation for transverse and axial permeability values with 400 
× 400 pixel images which contained fibers with radii ranging from 6 
pixels to 14 pixels and fiber volume fraction ranging from 0.3 to 0.7. The 
prediction accuracy was rather high throughout the fiber radius and 
fiber volume fraction range, with more than 90% of predictions being 
within ± 30% of the simulated results, and also exhibiting a slight 
decrease at the very low permeability range that might originate from 
the imbalance in the training data. We then extended the CNN based 
predictions to estimate the permeability of 3D microstructures by 
making use of the circuit analogy which called for parallel resistances 

Fig. 14. Permeability calculation of stitched images with 200 × 200 pixels resolution.  

Fig. 15. Predictions for stitched images with resolution of 200 × 200 pixels.  
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approach for transverse permeability values (Kx and Kz) and for serial 
resistances for the longitudinal permeability, Ky. Along the transverse 
directions, the estimations well fitted the permeability values obtained 
from fiber scale flow simulations performed with Geodict across the 
whole studied range. However, the axial permeability predictions were 
almost an order of magnitude lower than the reference values obtained 
from Geodict. An investigation of the source of this mismatch showed 
that the discrepancy originated from the selection of the boundary 
conditions in the simulations themselves. 

As this work’s focus was on the feasibility of using CNNs for 
permeability prediction, we then investigated cases where the image 
size was different from what the CNNs expected as the input, namely 
dimensions of 400 × 400 pixels. Through analyses of images that are 
both smaller and larger than this size, we could show that rescaling the 
images and feeding them to the CNNs yielded highly accurate 

predictions. The only issue arose when the fiber radius was significantly 
out of the range of what the CNNs have been trained with, more pre-
cisely the range between 6 pixels and 14 pixels. As the last case study, we 
estimated the permeability of a microtomography scan image that had 
rectangular shape, non-periodic boundary conditions and contained fi-
bers with moderate varying radii. For this purpose, we used the dataset 
provided within the framework of the virtual permeability benchmark 
and we showed that our approach presents a fast and accurate alterna-
tive to the flow simulations that were performed by the benchmark 
participants to collect permeability information. 

Further extension of the CNN prediction capabilities is possible, for 
instance to collect tortuosity information, as well as other structural 
descriptors, that can be used to enhance the permeability predictions or 
to account for the dual scale effects that can arise for some textile re-
inforcements. Extending the fiber radius range in the training data is 
another change that could extend the capabilities of the CNNs. However, 
it might be necessary to enlarge the image size in this case and that 
would also necessitate altering the networks parameters such as padding 
and filter sizes or adding a new convolutional block to the network. 
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