
 
 

Delft University of Technology

Generalized fractional operators do not preserve periodicity

Garrappa, Roberto; Górska, Katarzyna; Kaslik, Eva; Marynets, Kateryna

DOI
10.1007/s13540-025-00427-z
Publication date
2025
Document Version
Final published version
Published in
Fractional Calculus and Applied Analysis

Citation (APA)
Garrappa, R., Górska, K., Kaslik, E., & Marynets, K. (2025). Generalized fractional operators do not
preserve periodicity. Fractional Calculus and Applied Analysis, 28(4), 1681-1705.
https://doi.org/10.1007/s13540-025-00427-z

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s13540-025-00427-z
https://doi.org/10.1007/s13540-025-00427-z


Fractional Calculus and Applied Analysis
https://doi.org/10.1007/s13540-025-00427-z

ORIG INAL PAPER

Generalized fractional operators do not preserve periodicity

Roberto Garrappa1 · Katarzyna Górska2 · Eva Kaslik3 · Kateryna Marynets4

Received: 7 December 2024 / Revised: 29 April 2025 / Accepted: 21 May 2025
© The Author(s) 2025

Abstract
This work allows proving that the action of fractional derivatives and fractional inte-
grals on periodic functions does not preserve the periodicity of any period. This result
is proved not only for one type of fractional operator but also for the wide class of
generalized fractional operators based on the Sonine condition, a class that encom-
passes the majority of the fractional operators commonly used. Moreover, for several
specific fractional operators, we provide explicit representations of the derivatives and
integrals of the sine function, showing that they are composed of a local periodic term
and a non-local term, which is the cause of the loss of periodicity.
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1 Introduction

Fractional derivatives are nowadays used in themodeling ofmany physical phenomena
related, for example, to diffusion [18, 40], viscoelasticity and relaxation [12, 15,
31], wave behavior [23, 29], frequency change [36, 37], and so on. The description
of processes showing some kind of persistent memory, non-locality, or anomalous
behavior is one of the main reasons for introducing fractional derivatives in a variety
of models.

A peculiar characteristic of fractional-order operators is that most of the properties
of classical integer-order operators no longer hold.

One such property is the preservation of periodicity. Periodicity is well-known to
play an important role in the Fourier transform and in various contexts where wave
behavior is observed. For instance, this includes applications in medicine, such as
ultrasonography [39], and navigation systems such as the Global Positioning System
(GPS) [42], among others. Periodic boundary conditions are often employed to solve
integro-differential equations using methods such as integral transforms [9, 10, 33] or
Green’s functions [6, 32, 35], which are widely applied in both classical and quantum
mechanics.

Some years ago, Tavazoei [43] showed that fractional derivatives of periodic
functions with a given period cannot be periodic functions with the same period. Sub-
sequently, the non-existence of periodic solutions to fractional differential equations
was proved by Kaslik and Sivasundaram [19]. Similar results have also been obtained
by different approaches in subsequent studies [4, 46]. These findings are concerned
with the Caputo, Riemann-Liouville, and Grünwald-Letnikov definitions of fractional
derivatives, which were among the few definitions widely used in practice at the time
these papers were published.

In recent years, with the aim of describing specific phenomena with greater
accuracy, a variety of different fractional-order operators have been introduced. Con-
sequently, and in light of the introduction of some questionable operators [8], several
authors have made efforts to develop a general theory to properly characterize new
operators.

A general theory of fractional derivatives and fractional integrals was established
in the seminal paper by Kochubei [21] and has been further developed by Hanyga,
Kochubei, Luchko, and others [17, 22, 25–27, 30]. This theory provides the basis
for defining a broad class of fractional derivatives and integrals based on convolution
integrals with Sonine kernels, namely, pairs of kernels satisfying the Sonine condition.

It is natural to go beyond the analysis in [19, 43] and face the question of whether
the loss of periodicity is common to all fractional derivatives and integrals, defined
within the framework of this more general theory. The aim of this work is therefore
to further explore operators built on Sonine pairs and, in particular, to show that their
action on periodic functions always leads to non-periodic results.

Therefore, after reviewing the main information about general fractional integrals
and derivatives in section 2, we provide in Section 3 the main results concerning the
non-periodicity, of any period, of the general fractional integral and derivative of a
periodic function. Hence, to provide some explanatory examples, for some general-
ized pairs of operators (namely, Caputo derivative with Riemann-Liouville integral,
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Generalized fractional operators do not…

Prabhakar derivative and integral, distributed-order derivative and integral) in Section
4 we study in detail the action on the sine function (the analysis can be easily extended
to other periodic functions) and we provide a representation in terms of a local and
periodic term plus a non-local term which is the source for the lack of periodicity.
Some concluding remarks, together with a discussion about future investigations, are
given in Section 5. An Appendix at the end of the paper collects definitions and results
about some special functions which are used throughout the paper.

2 General fractional integrals and derivatives: a brief review

Before introducing the main results of this work it is useful to briefly review the theory
of general fractional integrals and derivatives. Throughout this section, we will refer
to [21, 22, 24–28, 30] as main references, without further mentioning them.

Definition 1 Two functions h, k ∈ L1(0,+∞) are said to be Sonine kernels, and they
form a Sonine pair, if they satisfy the Sonine condition

∫ t

0
h(t − ξ)k(ξ) dξ =

∫ t

0
h(ξ)k(t − ξ) dξ = 1, ∀t > 0. (2.1)

Well-known examples of Sonine pairs satisfying (2.1) are power kernels defining
the usual Riemann-Liouville integral and the Caputo derivative of order 0 < α < 1
(their characterization as Sonine kernels will be presented later).

Definition 2 Let h, k ∈ L1(0,+∞) be a Sonine pair. The general fractional integral
(GFI), and the corresponding general fractional derivative (GFD) regularized in the
Caputo-style, are defined respectively as

(
I(h) f )(t) =

∫ t

0
h(t − ξ) f (ξ) dξ (2.2)

(C
D(k) f

)
(t) =

∫ t

0
k(t − ξ)∂ξ f (ξ) dξ, (2.3)

where f (t) belongs to the domain of the corresponding operator.

Among Sonine kernels k(t), those that adhere to the following assumptions are of
particular interest in defining operators that can be interpreted as fractional derivatives:

H1: the LT K (s) of k(t) exists for any s > 0, i.e.

K (s) = L
(
k(t) ; s

)
=

∫ +∞

0
e−st k(t) dt, ∀s > 0;

H2: K (s) → 0 and sK (s) → +∞ as s → +∞;
H3: K (s) → +∞ and sK (s) → 0 as s → 0.
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A consequence of assumptions H1, H2 and H3 is that the kernel k(t) must be
a weakly singular function. Moreover, these assumptions ensure the existence of a
unique solution for Cauchy problemswith GFD [21], and thus we adopt them through-
out the paper.

Remark 1 In [21] a fourth assumptionwas also imposed, requiring K (s) to be aStieltjes
function. This assumption has physical importance and ensures that the function k(t)
is a (complete monotone) Sonine kernel and that there exists its associated Sonine
kernel h(t) that is also complete monotone.

Whenever h and k are Sonine pairs, the corresponding operators satisfy a kind of
generalized fundamental theorem of calculus

(C
D(k)

(
I(h) f

))
(t) = f (t),

(
I(h)

(C
D(k) f

))
(t) = f (t) − f (0),

that justifies naming C
D(k) as a derivative associated with the integral I(h).

Remark 2 Usually,GFDs are defined in terms of derivatives ofRiemann-Liouville type(
D(k) f

) = ∂t
∫ t
0 k(t − ξ) f (ξ) dξ and hence regularized according to

(
D(k) f

)
(t) −

k(t) f (0) which, under suitable assumptions for f , is equivalent to
(
C
D(k) f

)
(t). For

simplicity and in view of their major applications, we prefer to introduce regularized
derivatives directly in the form (2.3).

One of the main tasks to define GFIs and GFDs is to characterize Sonine kernels
h and k since finding functions satisfying (2.1) is not easy. From a practical point of
view this task is simplified in the Laplace transform (LT) domain where the Sonine
condition (2.1) becomes H(s)K (s) = 1/s, with H(s) and K (s), respectively, denoting
the LTs of h(t) and k(t).

The extension of generalized integrals and derivatives to higher orders requires a
Sonine condition more general than (2.1). To this end we must preliminarily introduce
the function spaces [28]

C−1(0,∞) := { f : f (t) = t p f1(t), t > 0, p > −1, f1 ∈ C[0, ∞)},
C−1,0(0,∞) := { f : f (t) = t p f1(t), t > 0, p ∈ (−1, 0), f1 ∈ C[0, ∞), f1(0) �= 0}.

Definition 3 Letm ∈ N. Two functions h, km : (0,∞) → R such that h ∈ C−1(0,∞)

and km ∈ C−1,0(0,∞) are said to be Sonine functions of order m, and they form a
Sonine pair of order m, if they satisfy the generalized Sonine condition

∫ t

0
h(t − ξ)km(ξ) dξ =

∫ t

0
h(ξ)km(t − ξ) dξ = tm−1

(m − 1)! , ∀t > 0. (2.4)

We must observe that the term “of order m” for Sonine functions and Sonine pairs
is not the same used in the literature where, instead, a specific space denoted as Lm is
introduced to characterize kernels [24].We have used a different terminology, together
with the notation h and km , in order to avoid a rigid formalism which is not strictly
necessary for this work.
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In the LT domain, the generalized Sonine condition (2.4) reads

H(s)Km(s) = 1

sm
. (2.5)

Based on Theorem 3 from [24], we may consider km = {1}m−1 ∗ k, where k is a
Sonine function in the sense of Definition 1. Here {1} is the function identically equal
to 1 for t ≥ 0, and {1}m−1 denotes its (m − 1)-fold convolution with itself, namely
{1}m−1(t) = tm−2/(m − 2)!, and due to the associativity of convolution, we have:

km(t) = ({1}m−1 ∗ k
)
(t) =

∫ t

0

∫ τ1

0
· · ·

∫ τm−2

0
k(τm−1) dτm−1 · · · dτ2 dτ1.

Additionally, it is important to note that the Sonine pair of order m of the function km
is, in fact, the Sonine pair of order 1 of the function k. Indeed, if h is the Sonine pair of
order 1 of k then k∗h = {1}, and hence km∗h = ({1}m−1∗k)∗h = {1}m−1∗{1} = {1}m ,
so h is the Sonine pair of order m of km .

Thanks to the generalized Sonine condition (2.4) it is now possible to introduce
generalized operators of arbitrary order.

Definition 4 Let h, km be a Sonine pair of order m. The GFI, and the corresponding
GFD regularized in the Caputo-style, are defined respectively as

(
I(h) f )(t) =

∫ t

0
h(t − ξ) f (ξ) dξ (2.6)

(C
D
m
(k) f

)
(t) =

∫ t

0
km(t − ξ)∂

(m)
ξ f (ξ) dξ, (2.7)

where f (t) belongs to the domain of the corresponding operator.

We prefer to explicitly mention the order m in the notation C
D
m
(k) of the derivative

since the m-th order derivative of the function is involved. The same is not necessary
for the notation I(h) of the integral.

In addition, generalized operators (2.6) and (2.7) allow the realization of a gener-
alized fundamental theorem of calculus in the form

(C
D
m
(k)

(
I(h) f

))
(t) = f (t),

(
I(h)

(C
D
m
(k) f

))
(t) = f (t) −

m−1∑
j=0

t j

j ! f
( j)(0).

In the following,we recall a fewexamples related to someof themost used fractional
operators that can be framed in the above theory of GFIs and GFDs.

2.1 Riemann-Liouville integral and Caputo derivative

The most known (and maybe the most used) operators in fractional calculus are the
Riemann-Liouville integral and the Caputo derivative of order α > 0 [20] whose
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corresponding kernels are the power functions

h(t) = tα−1

�(α)
, km(t) = tm−α−1

�(m − α)
,

where m ∈ N such that α ∈ (m − 1,m). Their LTs are

H(s) = L
( tα−1

�(α)
; s

)
= 1

sα
, Km(s) = L

( tm−α−1

�(m − α)
; s

)
= 1

sm−α
,

which clearly satisfy the generalized Sonine condition (2.5). When referring to these
specific operators, we will use the more traditional notations

(
I α f

)
(t) = 1

�(α)

∫ t

0
(t − ξ)α−1 f (ξ) dξ,

(CDα f
)
(t) = 1

�(m − α)

∫ t

0
(t − ξ)m−α−1∂

(m)
ξ f (ξ) dξ.

To lighten the notation, here and in the remainder, we omit the initial point in the
symbols for the operators, and the initial point must always be intended placed at
t = 0.

2.2 Prabhakar integrals and derivatives

The next example concerns the so-called Prabhakar integral and derivative [13], a
couple of operators based on the Prabhakar function (A.6). Given α, γ, λ > 0, and
β ∈ (m − 1,m), withm ∈ N, operators of Prabhakar type are defined by means of the
following kernels

h(t) = tβ−1Eγ
α,β(−λtα), km(t) = tm−β−1E−γ

α,m−β(−λtα),

with corresponding LT

H(s) = sαγ−β

(sα + λ)γ
= 1

sβ

(
1 + λ

sα

)−γ

, Km(s) = s−αγ−m+β

(sα + λ)−γ
= 1

sm−β

(
1 + λ

sα

)γ

(note that when λ = 0 or γ = 0 these are the kernels of the classical Riemann-
Liouville integral and Caputo derivative of order β). Prabhakar integral and derivative
will be denoted in this paper respectively as

(CDβ
α,γ,λ f

)
(t) =

∫ t

0
(t − ξ)m−β−1E−γ

α,m−β(−λ(t − ξ)α) f (m)(ξ) dξ,

(Iβ
α,γ,λ f

)
(t) =

∫ t

0
(t − ξ)β−1Eγ

α,β(−λ(t − ξ)α) f (ξ) dξ
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2.3 Integrals and derivatives of distributed fractional order

The last example is given by the derivative of distributed order

(DDm
0 f

)
(t) =

∫ m

m−1

(CDα f
)
(t) dα =

∫ t

0
kD(t − ξ) f (m)(ξ) dξ

with the kernel kD given by

kD(t) =
∫ m

m−1

tm−α−1

�(m − α)
dα =

∫ 1

0

tβ−1

�(β)
dβ

and where, to obtain the last formulation of kD(t), we made the change of variable
β = m − α. The LT of kD(t) is hence

KD(s) = L
(
kD(t) ; s

)
= s − 1

s ln s
(2.8)

and hence one readily obtain the kernel for the corresponding integral

HD(s) = ln s

s − 1
and hD(t) = −etEi(−t).

3 Main results

In this section we present the main results of the paper showing that the GFD, as well
as the GFI, of a periodic function cannot preserve periodicity.

We first remind the following standard result together with a sketch of the proof.

Lemma 1 Let n ∈ N and T > 0. Suppose f : R → R is a non-constant T -periodic
function that belongs to Cn(R). Then for any j ∈ {0, 1, 2, . . . , n}, the j-th derivative
f ( j)(t) is also a non-constant T -periodic function.

Proof Starting from the fact that f is T -periodic and repeatedly differentiating both
sides of the equation f (t + T ) = f (t) with respect to t , relying on the chain rule,
we conclude that all derivatives up to order n are T -periodic. If one of the derivatives
were constant, the function would reduce to a polynomial, which would contradict the
periodicity assumption. Hence, all derivatives are non-constant. 	


In what follows, we present the main result of this section.

Theorem 1 Assume that k is a Sonine function (of order 1), whose Laplace transform
K satisfies conditionsH1-H3. Then, the convolution of k with a non-constant bounded
periodic function is not a periodic function.
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Proof We proceed by reductio ad absurdum. Let us assume that the non-constant
function f is T -periodic, with T > 0, and that the convolution g(t) := (k ∗ f )(t) is
a T ′-periodic function, with T ′ > 0. Applying the Laplace transform, we obtain:

G(s) = K (s)F(s) (3.1)

where G, K and F are respectively, the Laplace transforms of the functions g, k and
f .
As the function f and g are T -periodic and T ′-periodic, respectively, we have:

F(s) =
∫ T
0 e−st f (t) dt

1 − e−sT
and G(s) =

∫ T ′
0 e−st g(t) dt

1 − e−sT ′ ,

and therefore, equation (3.1) becomes:

L(s)
∫ T ′

0
e−st g(t) dt = K (s)

∫ T

0
e−st f (t) dt, (3.2)

where

L(s) = 1 − e−sT

1 − e−sT ′ → T

T ′ as s → 0+.

Let us consider the Sonine pair h of the kernel k, and denote by H its Laplace
transform. Hence, K (s)H(s) = s−1, and equality (3.2) becomes:

sH(s)L(s)
∫ T ′

0
e−st g(t) dt =

∫ T

0
e−st f (t) dt . (3.3)

Based on condition H3, we have

lim
s→0+

sH(s) = lim
s→0+

1

K (s)
= 0.

Therefore, taking the limit as s → 0+ in (3.3), it follows that

∫ T

0
f (t) dt = 0,

and hence, equation (3.3) can be rewritten as

sH(s)L(s)
∫ T ′

0
e−st g(t) dt =

∫ T

0
(e−st −1) f (t) dt .
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Again, using K (s)H(s) = s−1, it follows that

L(s)
∫ T ′

0
e−st g(t) dt = sK (s)

∫ T

0

e−st −1

s
f (t) dt,

and taking the limit as s → 0+ we get

∫ T ′

0
g(t) dt = 0.

We will now prove by mathematical induction that for any n ∈ Z
+, we have

∫ T

0
tn f (t) dt = 0 and

∫ T ′

0
tng(t) dt = 0. (3.4)

Indeed, (3.4) is true for n = 0, as seen above. Now let us consider n ∈ Z
+, and let

us assume that (3.4) is true for any p ≤ n. Let us denote by Pn(x) = ∑n
p=0

x p

p! the
n-th order Taylor polynomial of ex centered at 0. Therefore, based on the induction
hypothesis, we can see that

∫ T ′

0
e−st g(t) dt =

∫ T ′

0

(
e−st −Pn(−st)

)
g(t) dt,

and a similar equality holds for f as well. Hence, we can write (3.3) as

sH(s)L(s)
∫ T ′

0

(
e−st −Pn(−st)

)
g(t) dt =

∫ T

0

(
e−st −Pn(−st)

)
f (t) dt

and dividing by sn+1, we obtain:

sH(s)L(s)
∫ T ′

0

e−st −Pn(−st)

sn+1 g(t) dt =
∫ T

0

e−st −Pn(−st)

sn+1 f (t) dt . (3.5)

Since sH(s) → 0 as s → 0+ and

lim
s→0+

e−st −Pn(−st)

sn+1 = (−1)n+1

(n + 1)! t
n+1,

taking the limit as s → 0+ in (3.5) leads to

∫ T

0
tn+1 f (t) dt = 0.
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This means that, making use of K (s)H(s) = s−1, we can rewrite equation (3.5) as

L(s)
∫ T ′

0

e−st −Pn(−st)

sn+1 g(t) dt = sK (s)
∫ T

0

e−st −Pn+1(−st)

sn+2 f (t) dt,

and yet again, taking the limit at s → 0+, we finally obtain

∫ T ′

0
tn+1g(t) dt = 0.

Therefore, (3.4) is true for any n ∈ Z
+, and hence f = g = 0, which contradicts

the hypothesis of the theorem. This completes the proof. 	

Corollary 1 Assume that k is a Sonine function of order 1, whose Laplace transform
satisfies conditionsH1-H3. Then, the convolution of the Sonine pair h of the function
k with a non-constant bounded periodic function is not a periodic function.

Proof It is easy to see that if the Laplace transform of the Sonine function k satisfies
conditions H1-H3, so does the Laplace transform of its Sonine pair h. Hence, the
proof follows as a direct consequence of Theorem 1. 	

Corollary 2 Assume that km = {1}m−1 ∗ k, where k is a Sonine function (of order 1),
satisfying conditionsH1-H3. Then, the convolution of km with a non-constant bounded
periodic function is not a periodic function.

Proof Let us assume that f is a non-constant bounded periodic function such that
gm = km ∗ f is periodic. It can be easily seen that

gm = km ∗ f = ({1}m−1 ∗ k) ∗ f = {1}m−1 ∗ (k ∗ f ),

and hence,

(k ∗ f )(t) = (δ(m−1) ∗ gm)(t) = g(m−1)
m (t).

As k is a Sonine function of order 1 satisfying the hypotheses of Theorem 1, it is clear
that k ∗ f cannot be periodic, and hence, we have reached a contradiction. 	

Corollary 3 Consider the Sonine kernel km = {1}m−1 ∗k, where k is a Sonine function
of order 1, which satisfies conditions H1-H3. Let h be its Sonine pair.

(a) The action of the GFD with Sonine kernel km, on a non-constant periodic function
f (t) with a bounded derivative of order m, is not a periodic function.

(b) The action of the GFI with Sonine kernel h, on a non-constant bounded periodic
function is not a periodic function.

It is useful to mention that Corollary 3 holds for Caputo, Riemann-Liouville and
Grünwald-Letnikov definitions which are just specific cases. With respect to the one
presented in [19, 43], the outcome of Corollary 3 is more general not only because
it applies to a wider range operators, but also because it excludes periodicity of any
period of derivatives of periodic functions.
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4 Some examples with the sin function

As illustrative examples we study in more detail the action of different fractional
derivatives, all of which are particular cases of the generalized fractional derivative
(2.7), on the sine function. A similar reasoning can be applied for the cosine function
or any other combination of these and other periodic functions.

We start by observing that, for any integer order m = 0, 1, . . . , derivatives of sin t
can be represented as

dm

dtm
sin t = sin

(mπ

2
+ t

)
=

(
cos

mπ

2

)
sin t +

(
sin

mπ

2

)
cos t, (4.1)

and the corresponding LTs are

L
(
dm

dtm
sin t ; s

)
=

(
cos

mπ

2

) 1

s2 + 1
+

(
sin

mπ

2

) s

s2 + 1
. (4.2)

The action on this function of a GFD (2.7) with kernel km(t), namely

(C
D
m
(k)sin

)
(t) =

∫ t

0
km(t − ξ)

dm

dξm
sin ξ dξ

=
(
cos

mπ

2

) ∫ t

0
km(t − ξ) sin ξ dξ +

(
sin

mπ

2

) ∫ t

0
km(t − ξ) cos ξ dξ,

can be therefore more conveniently represented in the LT domain

L
((C

D
m
(k) sin

)
(t) ; s

)
=

(
cos

mπ

2

) Km(s)

s2 + 1
+

(
sin

mπ

2

) sKm(s)

s2 + 1
, (4.3)

and, after inversion of the LT, one obtains

(C
D
m
(k) sin

)
(t) = cos

mπ

2
L−1

(
Km(s)

s2 + 1
; t

)
+ sin

mπ

2
L−1

(
sKm(s)

s2 + 1
; t

)
. (4.4)

To simplify the above representation, wewill employ the following formulas, which
hold for any integer m

sin
mπ

2
=

{
0 m even

(−1)
m−1
2 m odd

, cos
mπ

2
=

{
(−1)

m
2 m even

0 m odd
. (4.5)

The same reasoning allows us to describe the action of the GFI (2.6) as

(
I(h) sin

)
(t) = L−1

(
H(s)

s2 + 1
; t

)
.

Amore detailed analysis can be provided only after characterizing the kernels km(t)
and h(t) and the corresponding operators.
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4.1 Caputo fractional derivative of the sin function

Since the LT of the kernel of the Caputo fractional derivative is Km(s) = sα−m , by
using (4.4) we obtain

(CDα sin
)
(t) =

(
cos

mπ

2

)
L−1

(
sα−m

s2 + 1
; t

)
+

(
sin

mπ

2

)
L−1

(
sα−m+1

s2 + 1
; t

)

=
(
cos

mπ

2

)
t1+m−αE2,2+m−α(−t2) +

(
sin

mπ

2

)
tm−αE2,1+m−α(−t2),

where we have exploited Eq. (A.2) for the LT of the ML function defined in (A.1). In
view of Proposition 1 we can represent these instances of the ML function thanks to
Eq. (A.3) to obtain (after using elementary trigonometric identities)

(CDα sin
)
(t) =

=
(
cos

mπ

2

)
cos

(
t + (α − m)

π

2
− π

2

)
+

(
sin

mπ

2

)
cos(t + (α − m)

π

2

)

+
(
cos

mπ

2

)
ϕ2,2+m−α(t) +

(
sin

mπ

2

)
ϕ2,1+m−α(t)

= sin
(
t + α

π

2

)
+

(
cos

mπ

2

)
ϕ2,2+m−α(t) +

(
sin

mπ

2

)
ϕ2,1+m−α(t)

where functions ϕ2,β(t) are defined by (A.4). Therefore, by using (4.5) we have

(CDα sin
)
(t) =

{
sin

(
t + απ

2

) + (−1)
m
2 ϕ2,2+m−α(t) m even

sin
(
t + απ

2

) + (−1)
m−1
2 ϕ2,1+m−α(t) m odd

. (4.6)

A similar reasoning allows to compute the RL integral of the sin function in the
form (

I α
0 sin

)
(t) = sin

(
t − απ

2

)
+ϕ2,2+α(t). (4.7)

The non-periodic character of (4.6) and (4.7) can be inferred from the nature of
the functions ϕ2,β . Indeed, from Eq. (A.4) we notice that ϕ2,β is the inverse LT of a
positive function and, in view of the Bernstein theorem [41, Theorem 1.4], it is com-
pletely monotone, and hence it is positive and monotonically decreases for t ≥ 0, thus
preventing

(
CDα sin

)
(t) and

(
I α
0 sin

)
(t) from being periodic. Moreover, from (A.4)

one immediately observes that, as expected, the terms ϕ2,2+m−α(t) and ϕ2,1+m−α(t)
in (4.6) vanish when α is an integer, namely when m = α.

Figures 1 and 2 show for α = 0.4 and α = 0.6, respectively, the comparison
between CDα sin(t) and sin(t). To better highlight non-periodicity of CDα sin(t), their
first zeros zk (evaluated numerically) are presented in the nearby tables, together with
distances between consecutive zeros. The nonuniformdistribution of its zeros confirms
the lack of periodicity of CDα sin(t).

Remark 3 The representations (4.6) and (4.7) for
(
CDα sin

)
(t) and

(
I α
0 sin

)
(t) are

also interesting for a different reason. They show that the fractional derivative and
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Fig. 1 Comparison between CDα sin(t) (red solid line) and sin(t) (gray dashed line) for α = 0.4 (m = 1)
and first few zeros of CDα sin(t) with their distance.
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-0.5

0

0.5

1

Fig. 2 Comparison between CDα sin(t) (red solid line) and sin(t) (gray dashed line) for α = 0.6 (m = 1)
and first few zeros of CDα sin(t) with their distance.

integral of sin t are made by a local term (which, in some sense, follows the same
rules of integer-order derivation and integration) plus an extra term which takes into
account the nonlocality of the operator. As we will see, this feature is common to other
operators.

4.2 Prabhakar derivative of the sin function

To evaluate the action of the Prabhakar derivative it is convenient to expand the LT of
the kernel by means of the binomial series

Km(s) = 1

sm−β

(
1 + λ

sα

)γ =
∞∑
r=0

(
γ

r

)
λr sβ−m−αr (4.8)
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where we assumed |sα| > λ. The substitution of Eq. (4.8) into Eq. (4.4) gives

(CDβ
α,γ,λ sin

)
(t) =

∞∑
r=0

(
γ

r

)
λr

(
cos

mπ

2

)
L−1

[
sβ−m−αr

1 + s2
; t

]

+
∞∑
r=0

(
γ

r

)
λr

(
sin

mπ

2

)
L−1

[
s1+β−m−αr

1 + s2
; t

]
,

and the inversion of the LTs, by means of Eq. (A.2), allows to represent the above
derivative in terms of ML functions (A.1) according to

(CDβ
α,γ,λ sin

)
(t) =

∞∑
r=0

(
γ

r

)
λr tm+αr−β+1

(
cos

mπ

2

)
E2,2+m+αr−β(−t2)

+
∞∑
r=0

(
γ

r

)
λr tm+αr−β

(
sin

mπ

2

)
E2,1+m+αr−β(−t2),

Applying Proposition 1, and after exploiting the relationship cos(x−π/2) = sin x ,
together with the standard rules for the angle additions of sin, we obtain

(CDβ
α,γ,λ sin

)
(t) =

∞∑
r=0

(
γ

r

)
λr

[
sin

(
t + (β − αr)

π

2

)
+ ψr (t)

]
, (4.9)

where for shortness we wrote

ψr (t) =
(
cos

mπ

2

)
ϕ2,2+m+αr−β(t) +

(
sin

mπ

2

)
ϕ2,1+m+αr−β(t)

(note thatψr (t) depends on α, β, γ , andm as well). We can use again the relationships
(4.5) to write

ψr (t) =
{

(−1)
m
2 ϕ2,2+m+αr−β(t) m even

(−1)
m−1
2 ϕ2,1+m+αr−β(t) m odd

and verify that ψr (t) is a positive and monotonically decreasing function.
The plot for a selection of parameters α, β, γ and λ is presented in Figure 3 where

the absence of periodicity can be easily verified. In this case, we also tabulated the first
few zeros of CDβ

α,γ,λ sin t , together with their distances, to provide further evidence

of nonperiodicity of CDβ
α,γ,λ sin t .

Following a similar reasoning, it is possible to evaluate the Prabhakar integral of
sin t as

(Iβ
α,γ,λ sin

)
(t) =

∞∑
r=0

(−γ

r

)
λr

[
t1+β+αr sin

(
t − (β + αr)

π

2

)
+ ϕ2,2+β+αr (t)

]
.
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Fig. 3 Comparison between CDβ
α,γ,λ sin t (red solid line) and sin t (gray dashed line) for α = 0.7, β = 0.5

(m = 1), γ = 0.4, λ = 0.3 and first few zeros of CDβ
α,γ,λ sin t with their distance.

4.3 Distributed order derivative of the sin function

Similarly to the previous example, we now consider the action on sin t of the
distributed-order derivative described in section 2.3

DDm f (t) =
∫ t

0
kD(t − ξ) f (m)(ξ) dξ, kD(t) =

∫ 1

0

tβ−1

�(β)
dβ.

By using in Eq. (4.4) the representation (2.8) of the LT of the kernel kD(t) we
readily obtain

L
[(DDm sin

)
(t); s

]
=

(
sin

mπ

2

) s − 1

s ln s

s

1 + s2
+

(
cos

mπ

2

) s − 1

s ln s

1

1 + s2

=
[(

sin
mπ

2

)( 1

s ln s
− 1

s2 ln s

)
+

(
cos

mπ

2

)( 1

s2 ln s
− 1

s3 ln s

)]
1

1 + 1
s2

.

Now, taking |s2| > 1 we can use the series form of (1 + 1/s2)−1 to rewrite the
above representation of the LT of (DDm sin

)
(t) in the form

L
[(DDm sin

)
(t); s

]
=

∞∑
r=0

(−1)r
{(

sin
mπ

2

) 1

s1+2r ln s
−

(
cos

mπ

2

) 1

s3+2r ln s

+
[(

cos
mπ

2

)
−

(
sin

mπ

2

)] 1

s2+2r ln s

}
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and, thanks to (A.8) it is possible to perform the inversion of the Laplace transform
as

(DDm sin
)
(t) =

(
sin

mπ

2

) ∞∑
r=0

(−1)rν(t, 2r) −
(
cos

mπ

2

) ∞∑
r=0

(−1)rν(t, 2 + 2r)

+
[(

cos
mπ

2

)
−

(
sin

mπ

2

)] ∞∑
r=0

(−1)rν(t, 1 + 2r)

where ν(t, α) is a Volterra function (see Subsection A.4). The above series can be
reformulated in terms of Volterra-Prabhakar functions ε

γ
α, p(λ; t) since, in view of Eq.

(A.10), it is
∞∑
r=0

(−1)rν(t, 2r + p) = ε12,p(1; t) =: ε2,p(t).

Hence, we are able to rewrite the distributed-order derivative of sin t as

(DDm sin
)
(t) = sin

mπ

2
ε2,0(t) +

[
cos

mπ

2
− sin

mπ

2

]
ε2,1(t) − cos

mπ

2
ε2,2(t).

A simpler formulation of ε2,p(t) can be provided thanks to Eq. (A.11). We note
the presence of an exponential term in ε2,p(t) which however does not depend on p
and hence disappears when multiplied by sinmπ/2 and cosmπ/2 and summed up in(
DD sin

)
(t). Elementary manipulations hence lead to

(DDm sin
)
(t) = 2

π

[
sin

(
t + mπ

2

)
− cos

(
t + mπ

2

)]
+

(
sin

mπ

2

)
φ2,0(t)+[(

cos
mπ

2

)
−

(
sin

mπ

2

)]
φ2,1(t) −

(
cos

mπ

2

)
φ2,2(t).

Moreover, we observe that

sin
(
t + mπ

2

)
=

{
(−1)

m
2 sin t m even

(−1)
m−1
2 cos t m odd

,

cos
(
t + mπ

2

)
=

{
(−1)

m
2 cos t m even

−(−1)
m−1
2 sin t m odd

and hence, after exploiting (4.5), we obtain

(DDm sin
)
(t) =

{
(−1)

m
2

[ 2
π
sin t − 2

π
cos t + (

φ2,1(t) − φ2,2(t)
)]

m even

(−1)
m−1
2

[ 2
π
cos t + 2

π
sin t − (

φ2,1(t) − φ2,0(t)
)]

m odd

In Figure 4we show the distributed order derivative
(
DDm sin

)
(t) form = 1 and the

location of its first zeros together with their distances; also in this case the distribution
of zeros is not uniform.
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Fig. 4 Comparison between DDm sin(t) (red solid line) and sin(t) (gray dashed line) for m = 1 and first
few zeros of DDm sin(t) with their distance.

From Eq. (A.12) it is easy to observe that

φ2,1(t) − φ2,2(t) =
∫ ∞

0

e−r t (1 + r)

r(r2 + 1)
[
log(r)2 + π2

] dr

and

φ2,1(t) − φ2,0(t) =
∫ ∞

0

e−r t (1 + r)

(r2 + 1)
[
log(r)2 + π2

] dr

and therefore by theBernstein theorem they are completelymonotone functions,which
explains the loss of the periodicity of DDm sin(t).

5 Conclusions and discussion

In this work we have shown that fractional derivatives and integrals do not preserve
periodicity, and this property is shared by a wide class of operators, namely by GFDs
and GFIs defined by means of Sonine kernels.

Moreover, we have derived an explicit representation of the action of some of these
operators on the sine function. We observed that the resulting function consists of a
periodic term plus a non-local term, which accounts for the loss of periodicity. Similar
results readily extend to the cosine function and, consequently, to any periodic function
expressed in terms of its Fourier series.

In light of the growing interest in GFDs and GFIs, a future study will aim to
investigate the conditions under which fractional differential equations, particularly
boundary value problems, may or may not admit periodic solutions.

We think that this investigationwill contribute to deepening the knowledge of awide
class of fractional operators and facilitating their use inmodeling different phenomena.
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A Appendix: Special functions

The action of different types of fractional derivatives on some elementary functions can
be expressed in terms of special functions. To facilitate the reading of this paper, in this
Appendix, we review the main information about some special functions employed
throughout this work.

All the special functions that we are going to introduce depend on one or more
parameters. Although, in general, complex values are allowed for the parameters, for
simplicity, we confine here just to real parameters, which are of major interest for our
analysis.

Moreover, since most of the analysis relies on complex-plane formulas for the
inversion of the LT, and the presence of real powers and other functions with complex
arguments generally leads to multi-valued functions, a branch-cut on the real negative
axis will always be considered to make them single-valued functions.

A.1 TheMittag-Leffler function

TheMittag-Leffler (ML) function is known to have a pivotal role in fractional calculus.
It is indeed the eigenfunction for fractional derivatives. This function is not only
involved in the analysis and solution of FDEs but it is also useful to represent fractional
derivatives of some elementary functions.

The two-parameter ML function is defined by its series expansion

Eα,β(z) =
∞∑
k=0

zk

�(αk + β)
, α > 0, β ∈ R, z ∈ C, (A.1)

and it is an entire function of order 1/α. We refer to the recent monograph [14] for a
review of the main properties of the ML function. The LT transform can be evaluated
for the special case of the ML function

L
(
tβ−1Eα,β(tαλ) ; s

)
= sα−β

sα − λ
, t > 0, λ ∈ C, |s| > |λ|1/α. (A.2)

Of special interest in this work (in particular to discuss examples of derivatives
of the sine function) is the ML function with first parameter α = 2 for which the
following result holds.

Proposition 1 Let β ∈ R and t > 0. Then

tβ−1E2,β(−t2) = cos
(
t + (1 − β)

π

2

)
+ ϕ2,β(t), (A.3)

where

ϕ2,β(t) = − sin((2 − β)π)

π

∫ ∞

0
e−r t r2−β

r2 + 1
dr . (A.4)
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Proof We start from the formula of the LT

L
(
tβ−1E2,β(−t2) ; s

)
= s2−β

s2 + 1

which allows to represent the function thanks to the formula for the inversion of its
LT

tβ−1E2,β(−t2) = 1

2π i

∫
C
est

s2−β

s2 + 1
ds,

with C a contour encompassing both poles s� = ±i. A residue subtraction allows to
obtain

tβ−1E2,β(−t2) = Res
(
est

s2−β

s2 + 1
,+i

)
+ Res

(
est

s2−β

s2 + 1
,−i

)
+ ϕ2,β(t),

where

ϕ2,β(t) = 1

2π i

∫
C̄
est

s2−β

s2 + 1
ds

and now C̄ is a contour crossing the real axis in any point on (0,+∞) and the imaginary
axis in any points on the intervals (0,+i) and (0,−i). Residues are easy to compute

Res
(
est

s2−β

s2 + 1
,±i

)
=

[ s2−β

2s

∣∣∣
s=±i

]
= 1

2
e±it (±i)1−β,

and hence

Res
(
est

s2−β

s2 + 1
, + i

)
+ Res

(
est

s2−β

s2 + 1
,−i

)
=

= 1

2
ei(t+(1−β) π

2 ) + 1

2
e−i(t+(1−β) π

2 ) = cos
(
t + (1 − β)

π

2

)
.

Since the contour defining ϕ2,β(t) does not include any pole of the integrand, the
application of the Titchmarsh inversion formula [44] leads to

ϕ2,α(t) =
∫ ∞

0
e−r t K2,α(r) dr , (A.5)

where

K2,α(r) = − 1

π
Im

[ s2−β

s2 + 1

∣∣∣
s=re+iπ

]
= − sin((2 − β)π)

π

r2−β

(r2 + 1)
,

and from which the proof immediately follows. 	
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A.2 The Prabhakar or three-parameter ML function

The Prabhakar function, introduced in [38], is an extension to three parameters of the
ML function. For α > 0, β, γ ∈ R and z ∈ C, it is defined according to

Eγ
α,β(z) =

∞∑
k=0

(γ )k zk

k!�(αk + β)
, (A.6)

where (γ )k = �(γ +k)/�(γ ) = γ (γ +1) . . . (γ +k−1) is the rising factorial, often
denoted as the Pochammer symbol.

A.3 TheVolterra function

Volterra functions were introduced by the Italian mathematician Vito Volterra to rep-
resent solutions of integral equations of convolution type with a logarithmic kernel
[45]. Following the notations introduced in [7], Volterra functions are defined in terms
of the definite integral (see also [1, 5])

μ(t, β, α) = 1

�(1 + β)

∫ ∞

0

tu+α uβ

�(u + α + 1)
du, β > −1, t > 0, (A.7)

and special notations are adopted to denote particular instances of parameters

α = β = 0 : ν(t) = μ(t, 0, 0),

α �= 0, β = 0 : ν(t, α) = μ(t, 0, α),

α = 0, β �= 0 : μ(t, β) = μ(t, β, 0).

The Laplace transform of the Volterra functions μ(t, β, α) is given by [5]

L
(
μ(t, β, α) ; s

)
= 1

sα+1 lnβ+1 s
, α > −1, β > −1, 
(s) > 1,

which in the special case β = 0 becomes

L
(
ν(t, α) ; s

)
= 1

sα+1 ln s
, α > −1, 
(s) > 1, (A.8)

and for more properties of this family of functions we refer to [2, 3, 5, 11, 34].

A.4 TheVolterra-Prabhakar function

The Volterra-Prabhakar function has been recently introduced in [16] in view of its
role in solution and analysis of FDEs of distributed order. It is defined by integration
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of one of the parameters of the Prabhakar function according to

ε
γ
α, p(λ; t) =

∫ ∞

0
tu+pEγ

α,u+p+1(−λtα) du, (A.9)

and one can easily check that when γ = 0 or λ = 0 this function corresponds to the
Volterra function ν(t, p). More generally, as shown in [16], εγ

α, p(λ; t) can be written
in terms of series of Volterra’s functions since

ε
γ
α, p(λ; t) =

∫ ∞

0

∞∑
r=0

(γ )r (−λ)r tαr+u+p

r !�(αr + u + p + 1)
du

=
∞∑
r=0

(−λ)r (γ )r

r !
∫ ∞

0

tαr+u+p

�(αr + u + p + 1)
du

and hence

ε
γ
α, p(λ; t) =

∞∑
r=0

(−λ)r (γ )r

r ! ν(t, αr + p), (A.10)

thus motivating the name Volterra-Prabhakar given to this function.
The Laplace transform of the Volterra-Prabhakar function has been evaluated in

[16] and it is given by

L
(
ε
γ
α, p(λ; t) ; s

)
= sαγ−p−1(

sα + λ
)γ ln s

.

Some special instances of the Volterra-Prabhakar function are of interest for this
work. This is the case when α = 2, γ = 1, λ = 1, since the function

ε2,p(t) := ε12,p(1; t).

is involved in the evaluation of the distributed derivative of the sine function (see
section 4.3). In this perspective, it is useful to consider the following result.

Proposition 2 Let p ∈ N and t ∈ R. Then

ε2,p(t) = (−1)p
2

π
sin

(
t + p

π

2

)
+ 1

2
et + φ2,p(t), (A.11)

where

φ2,p(t) = (−1)1−p
∫ ∞

0

e−r t r1−p

(r2 + 1)
[
log(r)2 + π2

] dr . (A.12)

Proof The LT of ε2,p(t) is

ε̂2,p(s) = L
(
ε2,p(t) ; s

)
= s1−p

(s2 + 1) ln s
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which, thanks to the formula for the inversion of the Laplace transform, allows to
represent the function as

ε2,p(t) = 1

2π i

∫
C
est

s1−p

(s2 + 1) ln s
ds,

where C is any contour encompassing all the poles of ε̂2,p(s) which are located at
s� = ±i and s� = 1. Therefore, by residue subtraction we can write

ε2,p(t) = Res
(
est ε̂2,p(s),+i

) + Res
(
est ε̂2,p(s),−i

) + Res
(
est ε̂2,p(s), 1

) + φ2,p(t)

where

φ2,p(t) = 1

2π i

∫
C̄
est

s1−p

(s2 + 1) ln s
ds

and C̄ is any complex contour crossing the real axis in any point in the interval (0, 1)
and the imaginary axis in any points on the intervals (0,+i) and (0,−i). It is simple
to compute

Res
(
est ε̂2,p(s),+i

) = i1−p

2i ln i
e+it , Res

(
est ε̂2,p(s),−i

) = (−i)1−p

(−2i) ln(−i)
e−it

and since ln(±i) = ±iπ/2 we can evaluate

Res
(
est ε̂2,p(s),+i

) = − i1−p

π
e+it , Res

(
est ε̂2,p(s),−i

) = − (−i)1−p

π
e−it .

Therefore, by means of elementary manipulations, one obtains

Res
(
est ε̂2,p(s),+i

) + Res
(
est ε̂2,p(s),−i

) = − i1−p

π
e+it − (−i)1−p

π
e−it

= − 1

π

[
ei

(
t+(1−p) π

2

)
+ e−i

(
t+(1−p) π

2

)]
= − 2

π
cos

(
t + (1 − p)

π

2

)

= (−1)p
2

π
sin

(
t + p

π

2

)

and, moreover, it is simple to evaluate

Res
(
est ε̂2,p(s), 1

) = 1

2
et .

Since the path C̄ does not include any pole of the integrand in φ2,p(t), we can
deform it in a Hankel path starting at−∞ along the lower negative real axis, encircling
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a sufficiently small circle |s| = ε in the positive sense and returning to +∞ along the
upper negative real axis. Thanks to Titchmarsh inversion formula (e.g., see [44]), it is

φ2,p(t) =
∫ ∞

0
e−r t K2,p(r)dr (A.13)

where

K2,p(r) = − 1

π
Im

[ s1−p

(s2 + 1) ln s

∣∣∣
s=re+iπ

]

and standard manipulations allows to show that

K2,p(r) = (−1)1−pr1−p

(r2 + 1)
[
log(r)2 + π2

]

from which the proof immediately follows. 	
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