

BSc-project IN3405

Albumprinter file
format
Find an open file format to replace the current proprietary format

Students
1169327 An Ngo
1048031 Xinan Zhu

August 6, 2008

Supervisors
Klaas Waslander
Sander Nagtegaal

Albumprinter B.V., Amsterdam

Supervisors
ir. Charles van der Mast
ir. Matthijs Sepers

The Faculty of EEMCS
Delft University of Technology

i

I. PREFACE

In order to complete the Bachelor’s degree, students at the Delft University of Technology majoring in Computer
Science need to do a BSc. Project. This project means for the students that they will perform an external internship
in a group. The goal of this project is for the student to gain practical experience working in an actual development
environment outside the university.

This thesis paper is written as result of such a BSc. Project carried out by An Ngo and Xinan Zhu at courtesy of
Albumprinter Solutions, Amsterdam. This has been a project of three months starting from the 7th of April till the
7th of July, that seemed to have flown by.

During this period the “colleagues” at Albumprinter Solutions has been nothing but helpful, our thanks goes out to
all of them. Especially we would like to express our gratitude to the X-editor team, without whose help we
wouldn’t be able to do anything at all.

Furthermore we need to mention our supervisor Klaas Waslander and Sander Nagtegaal who have been key in
starting this project and providing us with their help and time.

An Ngo and Xinan Zhu

ii

II. SUMMARY

At Albumprinter Solutions an internal file format is used at in the current process of creating a photo album. There
are several issues with the fact that it’s a self developed proprietary format:

• Maintenance of the format

• No third party development possible

• No printing industry support

The decision is made to address this problem in a project, alongside the improvement of the newly developed X-
editor for consumers. There are several candidate file formats on the horizon, such as Adobe Mars-project, PPML,
Microsoft XPS etc.

Research into the different file formats has lead to the decision to do a prototype with MS XPS. XPS (XML Paper
Specification) is a XML based zip container describing the content and layout of a document, as was Adobe Mars.
However due to uncertainties in sustaining and further development of Adobe Mars and the printing industry’s
support for XPS, the choice has been made favorable toward XPS.

A prototype is developed in the Adobe Flex® for demonstrating the possibility of creating a photo book in the X-
editor and formatting it to XPS for printing. First of all a XPS-AP (Albumprinter XPS) is designed to be used to
represent the photo album. Secondly the prototype application is designed and implemented.

iii

III. TABLE OF CONTENTS

I. Preface ... i

II. Summary ... ii

1 Introduction .. 1

1.1 Problem statement .. 1

1.2 Approach .. 2

2 Research .. 3

2.1 Important file format aspects .. 3

2.1.1 Main aspects .. 3

2.1.2 Secondary aspects ... 3

2.2 File formats candidates .. 3

2.3 Comparison table ... 4

2.4 Selecting prototype format .. 4

3 Design ... 6

3.1 Microsoft XPS ... 6

3.2 XPS-AP .. 8

3.3 Software prototype .. 9

3.3.1 Design Goal .. 9

3.3.2 Object model ... 9

3.3.3 Graphical User Interface .. 9

3.3.4 Controller ... 9

3.3.5 Diagrams .. 10

4 Implementation .. 11

4.1 XPS-AP .. 11

4.1.1 Building XPS-AP structure .. 11

4.1.2 Creation of Pages ... 13

4.1.3 Adding images.. 14

iv

4.1.4 Adding text ... 15

4.1.5 Zipping ... 16

4.2 Prototype application ... 16

4.2.1 Environment .. 16

4.2.2 Object Model ... 16

4.2.3 XPS Control .. 17

4.2.4 Graphical User Interface .. 17

4.2.5 Integration with X-editor ... 18

5 Conclusions ... 19

5.1 XPS structure .. 19

5.2 Image .. 19

5.3 Text... 20

5.4 Conclusion .. 20

6 Recommendations .. 21

A. Bibliography .. 22

B. Table of figures .. 23

C. Appendix ... 24

C1. Research thesis .. 25

C2. Plan of Action ... 30

C3. Test results ... 39

C4. Comparison Table .. 40

C5. Diagrams .. 43

1

1 INTRODUCTION

Due to the growth that Albumprinter Solutions have been made in the last years and the growth that it foresees
for the near future it has been looking at a replacement for their in-house standard of for the representation of
their product.

There are several benefits to this action:

• By replacing the private proprietary standard by an open standard file format Albumprinter hopes to
attract 3rd party developers as well as getting the in-house developers a more easy start.

• A cost benefit occurs when using an open file format, there is less need for maintenance on the format.
E.g. readers and documentation.

• By choosing a new standard backed by the printing industry it could be that processes can be simplified
and leading to a more efficient work process.

These benefits have triggered the start of a project to find and prototype a new file format that could possibly
replace the current proprietary standard. At the same time as a new editor called the X-editor has been recently
developed, this is forms a window of opportunity to try out a new format for storage of the album information
within the application.

This paper discusses this process of prototyping a new file format for Albumprinter. First of all this paper will start
out by explaining what kind of choices need to be made on deciding the new file format. It continues by
highlighting the possible candidates and the final choice for the proof of concept. The final chapters will show what
has been done in order to show the proof of concept and the paper closes with issues still left open at the end of
the project and future recommendations on whether to use the chosen format or not.

Models and other examples can be found in the appendices.

1.1 PROBLEM STATEMENT

From the following task: “Find an open file format to replace the current proprietary format used within
Albumprinter”, we derived to the following problem statement:

“Is there an open file format that can replace the current proprietary format without loss of quality of the
product and extensibility for expansion?”

This paper will be using this problem statement as its core and form the leading thread.

From the problem statement there are several goals to be extracted and redefined into tasks.

Main goal: Finding a replacement file format.

Win conditions:
• Open standard
• Implementable in the X – editor
• Provide better flow: Digital photo album  Physical photo album
• New format contains enough information to print the album as represented in the editor

2

Complimentary conditions:
• Able to open in the X - editor
• New format is expandable for new features in the editor
• Compatibility with MS-Office
• Allows custom fonts
• Original picture can be kept for reuse

The current situation:

Figure 1: Current situation

The current situation of the file format transitions at Albumprinter is shown in figure 1. The proprietary file used at
Albumprinter is called .ALB, and is used at the application level of the Albumprinter software to store album
properties. Afterwards the ALB is converted to a PDF, and this PDF is sent to the RIP station to prepare the file for
printing. At the printing stage the file is a JLYT, a file which is readable by printers. The main goal of this project is
to find a format to replace the ALB in the first step by a more open format. The ideal situation would be to find a
format that also replace the PDF in the second step as well.

1.2 APPROACH

The approach of the project is described in the Plan of Action, which can be found in Appendix C2. In the Plan of
Action the approach is described in detail and also included a timetable of the project.

3

2 RESEARCH

The research into finding a possible solution to the problem consists of 4 parts, first of all by using the win and
complimentary conditions a list is created that contains the features of the candidate file formats must support
[2.1]. Secondly a look at the current printing market and software industry provides us with a list of possible
candidate file formats [2.2]. Thirdly a comparison table is created from step one and two [2.3]. Finally we combine
step one, two and three to choose a candidate for prototyping. This chapter describes the research process step by
step before a design for the new file format and its prototype software can be constructed.

2.1 IMPORTANT FILE FORMAT ASPECTS

The first step in the research phase is to create a list of aspects that the candidates file formats must support.
There are different types of aspects. A distinction is made between main aspects and secondary aspects.

2.1.1 MAIN ASPECTS
• Document fidelity (WYSIWYG)

“What You See Is What You Get”; what you see on the screen, will be exactly printed on paper. This is
clearly a crucial aspect, as Albumprinter provides services to create photo books on the computer, which
will be printed to physical photo books. The final product has to be same as the product which is made
with the photo book software application.

• Open specification
The format should be an open format. This will support the usage of 3rd party software and it would
provide less maintenance of the own proprietary format.

• Original resources can be retrieved
Data that are stored in the format should be retrievable for reuse and editing. For Albumprinter it has
advantages to retrieve original resources as images and text for editing at a later stage.

• Portable / Multiplatform
The format should be portable and multiplatform. It should support the usage on different platforms.
Albumprinter provides applications which are multiplatform.

• Sustainability
The support by the organization of the format is guaranteed for the coming years.

• Support by the printing industry
The printing industry should support the format.

2.1.2 SECONDARY ASPECTS
• PDF conversion

In the transition stage it is important to convert the new file format to the PDF.
• License agreement (Royalty-free)

Free usage of the format.

2.2 FILE FORMATS CANDIDATES

As a second step several possible file format candidates of the printing markets and software industry are selected
for further research whether they are a realistic candidate for the prototype. After a research the following
formats are possible candidates for prototyping as a new Albumprinter file format:

• Microsoft XPS (Microsoft, Microsoft XPS, 2003)

4

An open fixed-document format based on XML. It has similarities with PDF and PostScript.
• Adobe Mars (Adobe, 2006)

Mars is an open XML-based format as a next generation of PDF.
• PODi PPML (PODi, 2008)

PPML is an XML-based industry standard printer language.
• Sun/OASIS ODF (OASIS, 2003)

An XML-base extensible language for office documents. ODF is the format of the OpenOffice package.
• Microsoft OOXML (Ecma, 2006)

An XML-base extensible language for office documents. OOXML is the format in the Office 2007 package
of Microsoft.

2.3 COMPARISON TABLE

For a comparison of the candidates a comparison table is created with the information collected during step one
and two. The comparison table gives a better overview and will be useful for the next step in the research phase, in
where the file format is selected as the prototype for the new Albumprinter format.

Table 1 shows only a section of the comparison table containing the main aspects. For a complete comparison
table, see Appendix C4.

General File Format Mars XPS PPML ODF OOXML

Ensure document fidelity (WYSIWYG) ● ● ●

Open specification ● ● ● ● ●

Original resources can be retrieved ● ● ● ●

Portable / Multiplatform ● ● ● ●

Sustainability □ ● ● ● ●

Supported by printing industry ? ● ●

PDF conversion ● ● ● ● ●

License agreement (Royalty-free) ? ● ● ● ●

● = supported, □ = partly supported, ? = unknown

Table 1: Comparison table

2.4 SELECTING PROTOTYPE FORMAT

In the last stage of the research a consideration has to made which format is the best candidate for prototype as
the new Albumprinter format. The format for the prototype will be extracted from the previous steps and
especially from step three, the comparison table.

As seen in the comparison table, not all formats support the main aspects. It is clear that ODF and OOXML can be
turn down as candidates. Both formats doesn’t support the WYSIWYG aspect, whilst this is necessary for the
Albumprinter format. ODF and OOXML are also not supported by the printing industry.

5

As we look at PPML, it is clear that one aspect is not supported. PPML is not a portable format. Hereby PPML can
also removed from the list.

There are two formats remaining; XPS and Mars. Both are comparable and look promising to use as the new
Albumprinter format. XPS and Mars are XML-based document format and are similar to PDF. MARS was explicitly
designed to be an XML representation of PDF itself. XPS was designed with the same goal in mind as the original
PDF standard - a printable format- and as such a direct competitor for PDF and MARS. Albumprinter uses PDF as a
format to feed the RIP stations for printing. The advantage of XPS and Mars over PDF is that they are both an open
format with a better structural file hierarchy, which means that XPS and Mars are formats that are easier to
develop and to expand.

If a closer look is taken a distinction can be made between XPS and Mars. A clear distinction is that XPS is in a
further development than Mars. XPS has many resources available for developers, while Mars has little or almost
no resources for development. The community of Mars is inactive, while the community of XPS is growing. Another
important aspect is that XPS is officially released as an official format, whilst Mars is uncertain whether it will be
released in the near future. Adobe has not make any intentions to make announcement whether Mars will go into
a next phase of development. This uncertainty makes Mars less ideal for the Albumprinter format. XPS also has
another advantage over Mars. The printing industry and the graphic market are more and more accepting XPS as a
printing format. Hewlett Packard, the printer supplier of Albumprinter, already have printers that support XPS.
Mars has due its uncertainty for now no support of the printing industry. As conclusion, XPS is for now the best
candidate as the new Albumprinter format and therefore the best format to go to the prototype phase.

6

3 DESIGN

The design chapter covers two different designs:

• XPS File Format for Albumprinter

• Software prototype

The first paragraph will discuss the XPS file that will be used for the prototype. It will show how the XPS works and
how this attributes to its use within Albumprinter. The paragraphs afterwards will be about the prototype software
to create the XPS file in cohesion with the X-editor. First the design goal is made clear. Then certain design issues
are described. The object model that is used for creating the XPS is presented thereafter. A full specification of the
prototype can be found in the appendix.

Issue:

• XPS only describes the image only for printing without editing the image itself. Therefore it is possible to
keep the original picture at all times, with for example transparency, cropping and resizing done within
the XML description of the image.

• Integration X-editor means that the XPS module must be able to run from the X-editor environment. Due
to the refactoring taking place while the prototype module is being created, the decision is made to use
the legacy XML used by the X-editor before refactoring as the information provider of the XPS module.
This means that an own model of the photo book needs to be created for use for the XPS module only.
This is only for the proof of concept of using XPS as a photo book representation, while in the end there
should be a common object model for the X-editor itself and the integrated XPS module.

3.1 MICROSOFT XPS

XPS stands for XML Paper Specification. This is a format developed by Microsoft as an answer in the market to
Adobe’s PDF as the new generation paper specification/file format. Its target is to become the digital paper of the
future. Therefore Microsoft has been pushing this format in the printing industry, getting support from established
printers like Hewlett-Packard and Fuji-Xerox.

XPS is a XML based paper specification as stated in the name. The choice to make a new paper specification XML
based is not a surprise. XML has developed into a general markup language as it is human readable and therefore
easy to edit and manipulate, while maintaining structure in the information it contains. The XPS-file is a
compressed zip-file containing XML descriptions and resources like images and fonts. It consists out of several XML
documents; together it describes the structure of the XPS. The XML files are spread throughout the file and it is
structured in the way that the document specification file specifies what pages are attached, whilst the page
specification file specifies the images and texts locations. These files are laid out in a structure recommended in
the XPS document specification, but are not obligatory (Microsoft, XPS Specification and Reference Guide, 2006).

7

Figure 2: XPS file structure

Although most specifications are made within the XML, documents in the XPS-file there are a few files compulsory
in a XPS document. For example there is a XML document describing all the file-types that are used within the XPS-
file.

Also photos and fonts that are used in the document must be embedded in the file. This is due to the fact that XPS
is by design a paper format, like PDF from Adobe, so all the information that are needed for printing must be
contained within the file. Only this way the guarantee can be given that the printed document is equal to the
screen presented version, this is what is known as the “What You See Is What You Get (WYSIWYG)” feature.
Inherently for the same reason it is also an invalid XPS file when there are no fonts attached while text exists, as
font information is crucial for any text representation.

Furthermore XPS is designed to separate content with presentation as much as possible. The images within the
XPS are therefore unchanged while you can still add properties to the representation of these images within the
XPS-document. XPS offers a wide range of properties for image processing on top of the image by description in
XML in order to maintain the image unchanged. Features such as cropping, clipping and creating opacity are made
possible in the XPS-document. By keeping the image to its original, storage space can be saved in contrary to the
alternative method of modifying the image for each time that it is needed and only put the changed image in its
place in the lay out, and therefore storing each image separately (Microsoft, XPS Specification and Reference
Guide, 2006).

Summary:
• XML based
• What You See Is What You Get
• Fonts are embedded
• Images are embedded
• Image processing on by description

8

3.2 XPS-AP

XPS-AP is the XPS document created for Albumprinter for
use with the prototype. It will be further referred to as
the XPS file. This XPS is a specification adapted to show
better semantics for use with a photo album. The actual
XPS can be changed back into the standard XPS
recommendation or other adaptations can be made to
better reflect products for Albumprinter solutions. As it
is shown in figure <XPS-design.jpg> there aren’t any
structural changes made to the file specification, actually
two names of directories have changed to reflect that
changes are possible, and to create a better
understanding of the structure and its representation.
Documents has been changed into Products, Images are
now called Photos. The resources are stored for each
Product so same resources can be shared throughout
different pages in a logical fashion. In such a structure
more albums or products can be stored in one XPS file.
This can be a handy fact when the printer’s RIP can
handle XPS files directly.

Images in the XPS are stored in the Photos directory. As
all the dimensions in XPS are given in points we have to
take not that XPS uses a 96 points per inch
representation. The reason for pointing this out explicitly
is that PDF and most other formats use 72 points per inch
representation. If this is not considered, the end result
could differ from what is intended. In the prototype not
all functions of XPS will be demonstrated, only the basic
functions for text and image processing needed to
represent a simple album will be demonstrated using the
prototype. More complex capabilities, such as mirroring,
masking, clipping and other view modifications of the
images are not demonstrated in the prototype. More
information is available in the XPS specification paper
found in the appendix.

Figure 3: XPS tree

9

3.3 SOFTWARE PROTOTYPE

3.3.1 DESIGN GOAL

In short the design goal of the prototype is to show that XPS is capable of being the file format to carry photo book
information. The prototype needs to show that within the XPS specification we are able to build software around it
in order to create a legit XPS file representing a physical photo album. It must be able to provide the proof of
concept or the fail in order to provide information needed on deciding the continuity of trying XPS as the new file
format.

The system to be constructed will be a separate module to be added to the Albumprinter X-editor. The
Albumprinter X-editor is being refactored as the XPS prototype is being made, hence the choice is made to use the
old XML generated by the X-editor before refactoring as the source of information of the book. This XML
document is an X-editor file that Albumprinter uses internally to contain the information of the photo album made
with the X-editor and is a part of the software. Therefore the use of this XML for our prototype to form a XPS
representation of a photo album is legitimized. As the XPS-prototype is being made, this is the best option to have
the most complete information about the photo album.

3.3.2 OBJECT MODEL

First of all objects are created to represent the photo album. The information is extracted from the XML file
located on the disc. This XML is generated by the X-editor when the user interface of the XPS prototype application
is loaded. All of the information will be made in to attributes and objects. This leads to the object model for an
album. However this is different than the object model the X-editor after refactoring will be using, this model is
developed independently of the refactoring. The case here is that purely for the XPS the object model doesn’t have
to contain as much information as the X-editor might need for the application, and as such for the XPS-prototype
application it is sufficient to use the simplified model.

3.3.3 GRAPHICAL USER INTERFACE

As a prototype the user needs to be able to control the loading of the XML source and check/adapt the values of
the model. The necessity is shown in the fact that this application is a prototype to test for the fact whether a XPS
can be successfully constructed to represent a book. In other words there are two things that are experimental
here, the construction of the object model out of the source-file and secondly the construction of a valid XPS
representing the object model. In order to provide flexible testing a GUI will be constructed to show all the values
loaded from the XML and made editable before creating a XPS document, while leaving the XML source-file
unchanged.

3.3.4 CONTROLLER

A separate controller class is constructed to handle the events coming in from the GUI. This controller is then able
to construct the object model from the XML source. This controller will then also be able to construct the XPS file
from this object model. Also any modification to the object model is done by the controller. In general the
controller is fed a XML source-file and then a XPS is generated.

10

3.3.5 DIAGRAMS

The UML diagrams and the sequence diagram of the design above can be found in Appendix C5.

11

4 IMPLEMENTATION

In this chapter the process of constructing the XPS-AP is described in the first section. It consists out of 3 steps
which are elaborated. Afterwards the implementation of the prototype application for constructing this XPS-AP is
given, including the issues that are uncovered. Where possible solutions for these issues will be provided.

4.1 XPS-AP

As the main focus of this project is on the function of XPS, this chapter starts with the explaining of the XPS-AP
implementation. The creation of an XPS-AP has the following steps: First the main structure of the XPS-AP is build
[4.1.1], following by the creation of the pages within the XPS-AP file [4.1.2] and embedded in the pages the
implementation of the images [4.1.3] and texts [4.1.4]. And the final step is zipping the XPS-AP as an XPS-file
[4.1.5].

4.1.1 BUILDING XPS-AP STRUCTURE
First, the main structure of the XPS-AP container is build. As designed in the section 3.3, all required folders and
files are created. These files and folders form the main structure within the XPS-file. These required files contains
references to files within the XPS-AP for building an valid XPS.
The following files are created during this step:

• required Document reference file: .rels

<?xml version="1.0" encoding="utf-8"?>
<Relationships xmlns="http://schemas.openxmlformats.org/package/2006/relationships">
 <Relationship Target="/DocumentSequence.fdseq" Id="R0"
 Type="http://schemas.microsoft.com/xps/2005/06/fixedrepresentation"/>
</Relationships>

Figure 4: example .rels

Figure 1 shows an example of the document reference file. This file has a reference to the document
sequence file. This is done by the <Relationship> property.

The reference to the document sequence has to be valid, otherwise this will lead to a corrupt XPS-file.

• required Fixed Document Sequence file: .fdseq

<?xml version="1.0" encoding="utf-8"?>
<FixedDocumentSequence xmlns="http://schemas.microsoft.com/xps/2005/06">
 <DocumentReference Source="/Products/1/1.fdoc"/>
</FixedDocumentSequence>

Figure 5: example .fdseq

12

Figure 2 shows an example of the fixed document sequence file. References are made to the fixed
documents in the XPS file by the <DocumentReference> tag.

This reference to the fixed document has to be valid, otherwise this will lead to a corrupt XPS-file.

• required Fixed Document file: .fdoc

<?xml version="1.0" encoding="utf-8"?>
<FixedDocument xmlns="http://schemas.microsoft.com/xps/2005/06">
 <PageContent Source="/Products/1/Pages/1.fpage"/>
 <PageContent Source="/Products/1/Pages/2.fpage"/>
 <PageContent Source="/Products/1/Pages/3.fpage"/>
</FixedDocument>

Figure 6: example .fdoc

Figure 3 shows an example of the fixed document file. References are made to the fixed page files in the
XPS file by the <PageContent> tag. Depending on how many pages, one or more references have to be
declared here.

If a reference to a page is missing, the page will not be shown in the final result.

• required Fixed Document file: [Content_Types].xml

<?xml version="1.0" encoding="utf-8"?>
<Types xmlns="http://schemas.openxmlformats.org/package/2006/content-types">

 <!-- REQUIRED -->
 <Default Extension="rels" ContentType="application/vnd.openxmlformats-package.relationships+xml" />
 <Default Extension="fdseq" ContentType="application/vnd.ms-package.xps-
 fixeddocumentsequence+xml" />
 <Default Extension="fdoc" ContentType="application/vnd.ms-package.xps-fixeddocument+xml" />
 <Default Extension="fpage" ContentType="application/vnd.ms-package.xps-fixedpage+xml" />

 <!-- FONTS -->
 <Default Extension="odttf" ContentType="application/vnd.ms-package.obfuscated-opentype" />
 <Default Extension="ttf" ContentType="application/vnd.ms-opentype" />

 <!-- IMAGES -->
 <Default Extension="png" ContentType="image/png" />
 <Default Extension="jpg" ContentType="image/jpeg" />

</Types>

Figure 7: example [Content_Types].xml

Figure 2 shows an example of a content type file. The filename has to be [Content_Type].xml and it should
located in the root-folder. This file contains all file-type declarations, which are used in the XPS file.
Different file-types as schemas, fonts and images can be declared in this file. Declarations are done by the
<Default> tag.

13

Missing declaration leads to a corrupt XPS-file. It’s important to declare all file-types that are used in the
XPS-file.

During the implementation of this part, it was clear that the declarations needs to be implemented according
to the XPS specification. An incorrect reference will lead to an invalid XPS-file. In Appendix C some samples
can be found of these XPS errors.

4.1.2 CREATION OF PAGES
After the main structure of the XPS-file has been build, pages are created and added to the XPS container. In XPS
this is described by a marked-up language in the fixed page files; .fpage

For every newly created page, references has to be updated in the fixed document file, as described in the
previous section [4.1.1].

• required fixed page file: .fpage

<FixedPage xmlns="http://schemas.microsoft.com/xps/2005/06" xml:lang="en-us" Width="816.37"
Height="1058.26">

 <-- empty page -->

</FixedPage>

Figure 8: example .fdoc

Figure 3 shows an example of an empty page. A page is described as a fixed page with the <FixedPage>
tag and is saved as an .fpage file in the XPS container. Required attributes for this tag is the Width and
Height of a page, and the defined attribute of the XPS-schema.

Nested in the <FixedPage> tag images, text and other graphical representation of a page can be described.
These description used the properties of the defined schema of XPS. For a full list of properties see the
XPS Reference Guide (Microsoft, XPS Specification and Reference Guide, 2006).

• required fixed page reference file: .fpage.rels

Every fixed page file has a reference file. This file is required and contains references to the resources, as
images and fonts, that are used for that specific fixed page file. The following figure shows an example of
this page reference file.

<?xml version="1.0" encoding="utf-8"?>
<Relationships xmlns="http://schemas.openxmlformats.org/package/2006/relationships">
 <Relationship Target="/Products/1/Resources/Photos/9244.JPG" Id="P0"
 Type="http://schemas.microsoft.com/xps/2005/06/required-resource"/>
 <Relationship Target="/Products/1/Resources/Fonts/Arial.ttf" Id="F0"
 Type="http://schemas.microsoft.com/xps/2005/06/required-resource"/>
</Relationships>

14

Figure 9: example .fpage.rels file with references to resources within the XPS file

4.1.3 ADDING IMAGES
Images are described in the fixed page file within the XPS container. For the prototype the following features are
thoroughly explored:
- Placement of images
- Rotation of images
- Opacity of images
- Image operations: scaling, rotation
These features of XPS is shown in the demonstration files of the XPS package, and can be downloaded from the
Microsoft website (Microsoft, XPS sample documents, 2007).

Image description are embedded in the page files. Figure 2 shows an example of an image description in the fixed
page file.

<Path Data="M -11.3376,-11.3376 L 827.7216,-11.3376 L 827.7216,568.7136 L -11.3376,568.7136 Z">
 <Path.Fill>
 <ImageBrush ImageSource="/Products/1/Resources/Photos/9244.JPG"
 Viewbox="0,0,734.4,491.52"
 ViewboxUnits="Absolute"
 Viewport="-26.8512,-11.3376,870.0768,580.0512"
 ViewportUnits="Absolute"
 TileMode="None"
 Opacity="1"/>
 </Path.Fill>
</Path>

Figure 10: Image representation example

In XPS the images are placed in a certain area called a Path. Paths can then be filled with a ImageBrush element in
which we identify the image source location in absolute or relative to the page file within the XPS. Then a Viewbox
is created, this viewbox is that part of the image that you want to show in the file. This could be a small part of the
image or the photo in its whole. The dimensions are given in XPS points. Now the Viewport is defined. The
viewport will show the image we mapped from the viewbox. This viewport can be set in anyway, but remember
that the path will overrule the viewport when the viewport is bigger than the path dimensions. Opacity is valued at
1 to show no transparency. The value of opacity is ranged between 0 and 1.

In the prototype is shown that images can be implemented successfully while meeting certain conditions. For
example when images contain the so-called EXIF information it can get a bit tricky, when pointing to the Viewbox
this has to be considered due to the fact that the ImageBrush works with height and width in point defined in the
image by using the dimension in pixels information and the resolution in dpi information within the EXIF
information. If not however, XPS will take use the default 96 pixels per inch when reading the image. For the
prototype we have chosen to use only images containing EXIF information and the dpi valued at 300.

Also not every element of ImageBrush or any other Brushes that exist in the XPS are used in the prototype. For
instance, we have decided not to use the z-index of the images for queuing the images from top to bottom. At the

15

moment we just take the images from the XML from in a FIFO manner, the first image that is listed is first placed in
the XPS.

More of information on these options can be found in the specification. For showing the photo book defined in the
XML in a XPS, it was sufficient to use the basic XPS elements.

4.1.4 ADDING TEXT
Text are described with properties and attributes defined by the XML-based XPS schema. The description of a text
is embedded in the fixed page file within the XPS. The following figure shows an example of a text description in a
fixed page file.

<FixedPage xmlns="http://schemas.microsoft.com/xps/2005/06" xml:lang="en-us" Width="816.374399" Height="1058.2656">

 <Canvas RenderTransform="1,0,0,1,274.8576,724.4352">
 <Glyphs OriginX="155.66719999999998"
 OriginY="18.666666666666664"
 FontRenderingEmSize="15.118079999999999"
 FontUri="/Products/1/Resources/Fonts/Arial.ttf"
 StyleSimulations="None"
 Fill="#000000"
 UnicodeString="example text">
 </Glyphs>
 </Canvas>

<FixedPage>

Figure 11: example text representation

A decision is made to use a Canvas, wherein the text will be placed. The canvas functions as a text field, which will
support matrix transformations, like rotation and other rendering transformations. The description of the text is
described within a <Glyphs>-tag. In this tag several attributes can be defined for the representation of a text. The
following attributes in the <Glyphs>-tag are the basic elements to describe a simple text:

- OriginX and OriginY: the starting coordinates of the text in the canvas.
- FontRenderingEmSize: the size of the text
- FontUri: reference to the font that is used for the text
- StyleSimulations: styles applied to the text. For example bold and italic.
- Fill: the color of the text
- UnicodeString: a Unicode string of the text.

This is only a small subset of attributes for representing a text in XPS, for a complete list of properties and
attributes, see the Reference Guide of XPS.

By design of XPS, fonts should be placed in the XPS container, the attribute FontUri should point correctly to the
font-file within the XPS. It’s also important to update the reference file of the page, which was discussed in 4.1.2.
If one of these references is incorrect, the XPS will be corrupt.

16

During the implementation the following problems arise for representing texts:

1. Basic styles like bold, italic are available in XPS, while underlining is not a style attribute in XPS.
Although in XPS it’s possible to represent underlining. XPS also have graphical operations, like drawing
lines, circles and other graphical operations. So, it’s possible to implement an algorithm with the graphic
operations to visualize underlining for text.

2. Aligning text is not a basic operation in XPS. As XPS is a fixed page description, text should be defined
precisely according the coordinate system of XPS. Therefore aligning cannot be seen as a basic operation
in XPS.

If possible, solutions for the problems above will be given in the next chapter.

4.1.5 ZIPPING

In order to finalize the creation of the XPS-AP, all files and folders have to be zipped in one single zip-container.
This zip-container has as extension .xps. The whole structure of the XPS with all its references and XML files are
compressed and save as an XPS file with the open-source library FZip (Wahlers & Herdenker, 2008). FZip is an
ActionScript 3 class library for editing, modifying and loading zip-archives. The created XPS file, can be viewed in an
XPS-viewer. And because it’s a zip-archive, it can also be opened in every regular zip software.

4.2 PROTOTYPE APPLICATION

In this second section of this chapter, the prototype application will be discussed. First the environment of the
application [4.2.1] is described, following by the implementation of the object model [4.2.2] and the XPS control
[4.2.3]. Afterwards the Graphical User Interface [4.2.4] is discussed and this section ends with the integration of
the prototype application with the X-editor [4.2.5].

4.2.1 ENVIRONMENT

The environment in which the prototype application will be working is the Adobe FLEX environment [ref]. The
prototype will be used as a component by the X-editor application.

Adobe FLEX is an open framework for building interactive web applications. The core language of Adobe FLEX is
ActionScript 3. By also using MXML, an XML-based markup language, FLEX offers an easy way to build and lay out
graphical user interfaces.

As none of us were familiar with FLEX it took some time to get use of this environment. After all it was a good and
interesting environment to work in.

4.2.2 OBJECT MODEL

First the object model is implemented in this phase. The object model is a representation of an album, as designed
in the previous chapter.

During the implementation of the object model the issue arise that the XML provided by the X-editor is complex
and not all data from the XML is needed for creating an XPS. It was a challenge to extract all the relevant data for

17

the object model during the implementation phase. The XML was full of undefined data, which was addressed to
the X-editor development team to take in consideration for their future work.

At the end the object model is implemented with all attributes of the XML. A decision was made not to make a
distinction during this phase, due it was unclear which data was exactly needed for the prototype.

4.2.3 XPS CONTROL
The next step in the implementation phase is to create a controller which will use the object model to build and
edit a XPS file. In this section only the main methods with relevance of the working of the XPS file will be discussed.

4.2.3.1 LOADXML(XML)

This method creates an object model from a XML file.

As in a early stage the XML module is not integrated with the X-editor yet, this method reads a local XML ,which is
essential for testing purposes. Till the prototype is integrated with the X-editor no real-time XML can be provided
by the X-editor therefore a local XML has to be used till that phase. The local XML file is a standard pre-created
XML file from the X-editor containing a valid description of an album with several photos and texts.

During the implementation of this method it was uncovered that the XML provided by the X-editor contains
massive data and the structure was very unclear. With support of the X-editor team relevant data was extracted
from the XML and whereby needed solutions was provided to improve the XML of the X-editor.

4.2.3.2 TOXPS()
This function creates an XPS file from the object model.

When an object model is available an XPS can be created. This function is the main focus of this project. And
therefore the functionality of this method is separately discussed elsewhere in this chapter. The construction of
this method was discussed in detail in section 4.1. Problems during the implementation of this method can also be
found in that section.

4.2.3.3 LOADXPS()

Loading a local XPS file into the object model.

This was an extra function to show that XPS can be used in the other direction as well. It was to find out whether
an XPS provided by a 3rd party could be loaded into an object model, which represent an album. After a quick
research it is plausible to read a 3rd party XPS, many conversion has to be made. And as references several other
software applications already provide these conversions. Due to time issues, and on agreement with the
supervisors, this functions is not implemented.

4.2.4 GRAPHICAL USER INTERFACE

The GUI of the prototype is designed with Adobe FLEX. This GUI is a visual representation of the object model and
has controls to call the functions of the XPS control. The following figure shows the interface.

18

Figure 12: Prototype interface

It was interesting to use the GUI and layout functionality of the FLEX framework. FLEX provides a wide range of
GUI/Layout components for building up GUIs from sketch. In combination with the ActionScript programming
language FLEX provides a complete tool for designing interactive GUIs.

4.2.5 INTEGRATION WITH X-EDITOR

As a final step in the implementation phase, the XPS software prototype is integrated with the X-Editor. The X-
editor application use the prototype application as a component. As the application is only for prototype purposes
the prototype screen is only shown in debug mode.

After completing the integration with the X-editor, an important functionality is then made available in the XPS
software prototype. The function to load an XML directly from the X-editor is then available. With this functionality
real-time data of a photo album can be derived from the X-editor for creating a representative album in XPS.

19

5 CONCLUSIONS

After the implementation there are several outcomes. The results are presented in this chapter and where
problems arise solutions will be given if possible.

5.1 XPS STRUCTURE

The XPS structure as designed in 3.3 is a good representation of an album at Albumprinter. Although this design is
working properly, the following points need to take in consideration at the time XPS will be use in the
Albumprinter applications:

- XPS specification has a fixed system of attaching pages in a package. A choice had to be made whether to
only insert one or more albums per XPS file.

- As following from section 4.1; A decision has to be made which non-relative album information is
necessary to store in the XPS.

Above all, the XPS structure is a good representation of an album for X-editor. Although, there are some final
decisions need to be made, the basis of XPS structure as designed in chapter 3 is good.

5.2 IMAGE

Certain issues arise when images are added to the XPS in the prototype. Most of the issues occurs due to the fact
that XPS uses a 96 points per inch setting while the standard is 72. Images themselves can contain or not contain
“resolution” information in dpi.

Conversions need to be made before an image can be loaded and mapped to the correct area.

Figure 13: conversion dpi code

In the end the prototype demonstrates that it is very plausible to use XPS for a photo album from the image point
of view. Because of the XML it is relatively easy to understand what happens to the image in the file and to apply
the WYSIWYG. There is a possibility to apply all kinds of effects within the XPS specification without changing the
original image, which indeed lead to storage efficiency and file safety (Image can always be restored to original).

20

5.3 TEXT

Representation text in XPS is relatively simple. XPS provides a XML-based language, which describe text in a
readable and understandable way. This language has a wide-range of functionality to represent text for a fixed
document file.

There are several problems, which has to be solved first:

1. Underlining of text
This problem can be solved with the use of the graphical operations in XPS. XPS provide graphical
operations to draw lines, circles and other graphical functionality. With these operations it’s possible to
create an algorithm to realize underlining for texts. Further research has to be taken to tackle this
problem. It’s clearly not impossible, as other software application already implement this functionality
with XPS.

2. Alignment of text
As XPS is a fixed page specification, it doesn’t support the basic functionality of alignment of text. An
algorithm has to be created for calculation the precise coordinates for the text input. This problem is not
unfamiliar at Albumprinter. In previous applications it already had tackled this problem. And since this
problem for XPS doesn’t differ from the current problem with the current file format, it’s definitely
possible to solve this problem.

Overall, text representation in XPS have no major issues, which are not solvable. Therefore the conclusion is that
XPS provides all functionality to visualize text for the Albumprinter file format.

5.4 CONCLUSION

Looking at the prototype results and our problem statement,

“Is there an open file format that can replace the current proprietary format without loss of quality of the
product and extensibility for expansion?”

Following from the results in this chapter the answer is: Yes, there is an alternative file format that can replace the
current file format used by Albumprinter. However this has only been preliminary and further tests are needed to
ensure the effective use of XPS as replacement for the current proprietary format.

21

6 RECOMMENDATIONS

There are still several things to consider when handling images in XPS. The way the Viewbox works on a photo
using the EXIF information may lead to the need of standardizing the image dpi output to a certain value to make
sure that no surprises occur in the XPS file. This means that the X-editor should either catch the possible error or
that it provides the XPS generator with the correct dpi value to use during generation.

Background-images are also something that doesn’t exist in the XPS prototype yet. However this could be easily
resolved by thinking of the image as the lowest layer of image on a page. As XPS won’t handle it like objects, it
doesn’t matter for XPS whether it’s an background-image or just another photo.

Covers are special pages that need to be implemented in the XPS generator too. These will be pages that have odd
sizes relative to the normal page size.

Texts on the other hand still have some more complicated issue to consider. It mainly has to do with the fact that,
again, XPS is a paper specification tool and sees text as just a special picture. Things like lines do not exist in XPS,
therefore line spacing, text alignment and things like underlining are special text features that need to be
implemented and calculated before passing it to the XPS. E.g. XPS see text underlined as a piece of text with a
separate line drawn under it.

PDF conversion has been done during prototyping using Adobe Acrobat Professional 8.1 Trial Version. It shows that
it is possible to make the right conversion. Commercial tools, like NIXPS (NIXPS, 2008), exists also for command-
line conversion to PDF, if it is possible to create a PDF using the Adobe Acrobat command-line then this is where
the preference is.

22

A. BIBLIOGRAPHY

[1] Adobe. (2006). Retrieved july 15, 2008, from Adobe Mars Project:
http://labs.adobe.com/technologies/mars/

[2] Ecma. (2006, december). Retrieved july 15, 2008, from Ecma Office Open XML overview:
http://office.microsoft.com/en-us/products/HA102058151033.aspx

[3] Microsoft. (2003). Retrieved july 15, 2008, from Microsoft XPS:
http://www.microsoft.com/whdc/xps/default.mspx

[4] Microsoft. (2007, july). Retrieved july 2008, 15, from XPS sample documents:
http://www.microsoft.com/whdc/XPS/XpsSamples.mspx

[5] Microsoft. (2006). XPS Specification and Reference Guide. Microsoft.

[6] NIXPS. (2008). Retrieved july 15, 2008, from NIXPS: http://www.nixps.com/

[7] OASIS. (2003). Retrieved july 15, 2008, from OASIS Open Document Format for Office Applications:
www.oasis-open.org/committees/office/

[8] PODi. (2008). Retrieved july 15, 2008, from PPML: http://ppml.podi.org/

[9] Wahlers, C., & Herdenker, M. (2008, february). Retrieved july 2008, 15, from FZip:
http://codeazur.com.br/lab/fzip/

23

B. TABLE OF FIGURES

Figure 1: Current situation ... 2

Figure 2: XPS file structure ... 7

Figure 3: XPS tree ... 8

Figure 4: example .rels ... 11

Figure 5: example .fdseq ... 11

Figure 6: example .fdoc ... 12

Figure 7: example [Content_Types].xml .. 12

Figure 8: example .fdoc ... 13

Figure 9: example .fpage.rels file with references to resources within the XPS file ... 14

Figure 10: Image representation example ... 14

Figure 11: example text representation .. 15

Figure 12: Prototype interface ... 18

Figure 13: conversion dpi code .. 19

Figure 14: example XPS features ... 39

Figure 15: UML Diagram of the album Object Model .. 43

Figure 16: XPS controller diagram ... 44

Figure 17: Sequence diagram .. 45

24

C. APPENDIX

Appendix C1: Research Thesis

25

C1. RESEARCH THESIS

OPEN FORMAT SHIFTING TO XML

July 1 2008,
An Ngo, Xinan Zhu

ABSTRACT

In this thesis open file formats in the Graphics Arts market will be discussed in relation with the bachelor project at
Albumprinter. Recently more and more open file format standards are available. Open file format is a published
specification for storing digital data, which is maintained by a non-proprietary standards organization, and they are
free of use. The trend is that more and more companies will use open standard file formats for storage of the data
of their applications. And these formats tends to make use of XML description to provide a more open structured
usage of documents.

INTRODUCTION

The current situation with file formats for the Graphics Arts market is that these formats are not open in the way
that stored data as images and text are not retrievable for reuse or editing. Currently new formats are designed
with the usage of XML to solve this problem. The main research question in this thesis is “Why are open file
formats in the Graphics Arts market shifting to the usage of XML?”.

First this thesis start with a background section about the current situation at Albumprinter and why they
are looking for a new file format. Then it continues with a section about the current situation of the file formats in
the overall Graphics Arts market. Follows by a section about the upcoming of new file formats with XML and then
it will end with a conclusion, where the research question will be answered.

BACKGROUND

Albumprinter B.V. is a software company that provides services for creating personalized photo-products, mainly
books, calendars and organizers. For these customized products Albumprinter stores relevant digital data, such as
images and text.

In order to do this Albumprinter B.V. provides the next
branded software consumer packages: a Windows editor
and a cross-platform X-editor. As shown in figure 1,
Albumprinter B.V. provides a whole life-cycle; from client
software to production. It has a section where software
are developed and a production facility where the photo-
products are printed and shipped to the customers. It also
provides client services such as helpdesk and services for
resellers.

Since the digital photography has been introduced there
is a big market for photo books software as the ones

Appendix C1: Research Thesis

26

provided by Albumprinter B.V.. Due to the digital camera more photos are taken, but they are digital instead of the
old well-known photos on paper and pasted in photo books. Still, people are more attracted to the physical
products like real paper photo books. Albumprinter B.V. provides this service: shoot photos with your digital
camera, create and make your own photo book and it produces your personalized photo book. Last year a total of
1 million photo products have been produced and shipped to the customers.

THE CURRENT FILE FORMAT IS HARD TO SUSTAIN FOR ALBUMPRINTER

At Albumprinter currently digital photo-books and albums are stored in an own proprietary format during editing.
This is converted to PDF in order to print it. However once converted to PDF it is hard to do editing on the file. This
has lead to the development of the own .ALB file format in the first place. However having an own proprietary
format leads to several problems.

First of all by having an own format means that all the development and tools needs to be created and
maintained by Albumprinter. There are no 3rd party tools available and there will not be. Secondly the format itself
needs to be updated by Albumprinter too in order to be adequate in the support of their activities. Thirdly as
Albumprinter tries to open up the platform for resellers it is essential that it is easy accessible and the learning
curve should be short for developers to use the Albumprinter API. Right now with the .ALB format the problem of
not having a flood of documentation arises for the developers and 3rd parties, and this leads to extra unnecessary
costs and time could be saved by using a standard format.

The goal for Albumprinter is to find a new file format for their applications to replace the current .ALB format. This
is necessary to be able to provide an open and easy API for the reseller clients of the company, furthermore it will
save costs made on maintenance of the own proprietary format and shorten the learning curve for developers
using the file format. It is also the goal of the company to use this new format in their complete set of applications.

GRAPHICS ARTS MARKET

The graphics arts market, is the market which provides services of printing productions, from software products to
full service printing. This industry uses complex file formats. The file format in the graphics arts industry stores
different kind of data, such as data of images, text and graphics. Albumprinter belongs to this industry. Their
format needs to store image-, text- and graphics data.
 File formats that are used in this industry are Page Description Languages (PDL). PDL describes the data of
documents in a higher level than the lower level of the data-bit at printing [1]. This high level data are readable by
printers and RIP stations. PDF and PostScript are PDL’s, which are globally used in the printing industry [2].
 An advantage of PDF and PostScript is that they describe precisely the data on printed pages. In other
words “What You See Is What You Get”; what you see on the screen, will be exactly print on paper. This is a very
important aspect in the printing industry; there should be no difference between the data on the screen and on
the paper after printing.

A disadvantage of PDF and PostScript is that they are non-open file formats. The data are stored in such a
way that data of objects, such as images and text are hardly to retrieved. Reusing and editing data in these formats
are therefore not possible.

Appendix C1: Research Thesis

27

NEW DPL’S WITH XML

PDL’s as PDF and PostScript have the disadvantage of non-retrievable data. New PDL’s are now available or in
developing without this disadvantage. PDF is shifting towards the use of extensible markup language (XML), which
will provide more structured data storage, without loss of specific graphical data [3].

In 2003 Microsoft announced to develop the file format XPS that will compete with PDF [4]. XPS is
currently available and has the same benefits as PDF and in advantage, data are retrievable for reuse. In 2006
Adobe launches the project Mars, as a file format successor of PDF [5]. XPS and Mars are both comparable and
they both have a promising future for the printing industry. Both file formats use XML for its data description and
has the same benefits as PDF [6], [7].

In table 1 Mars and XPS are compared
with PDF. The aspects used in the
following table is derived from the
requirement for the Albumprinter file
format. The WYSIWYG aspect is clearly
importance for a file format in the graphic
industry, which was discussed earlier in
this thesis. The second aspect that the
format should be open will provide usage
of 3rd party collaboration and it would
provide less maintenance of the own
proprietary format. The third aspect
follows from the second aspect. XML-
based is a rising language for open file
formats. The sustainability of the format is
also important, as the format should
retain for the coming years. Reusing of
content/layout is an aspect that would
provide easier development of the
software. And the last section is whether
the printing industry is supporting the file
format.

The main advantages of Mars and XPS
over PDF is the reuse of the data content.
Both new PDL’s are open formats in
contrast with PDF and they both use the
open format XML. The potential of XML is
to improve links with data and to allow
open source software to connect with open documents [8]. This last aspect is the big advantage over PDF; the
reuse of the data is hereby supported. Mars and XPS looks promising to be a good candidate for Albumprinter’s
new file format.

Format Specifications Mars XPS PDF

Document fidelity (WYSIWYG)   

Open specification   x

XML based   x

Sustainability x  

Reuse content / layout   x

Print / RIP support Mars XPS PDF

HP x  

Fuji Xerox x  

Océ x ? 

 Table 1: Comparison Mars, XPS and PDF

Appendix C1: Research Thesis

28

CONCLUSION

More and more Open File Formats in the Graphics Arts industry are shifting to the use of XML. The advantage of
the usage of XML, lies in the potential of XML to improve links with data and allow open software to use these
data. The new formats, as Mars and XPS have the same benefits as currently widely used PDF and PostScript in the
printing industry. XPS and Mars are good alternatives as the new format for Albumprinter. Both new formats have
a great potential to replace PDF and PostScript in the near future. This new trend of shifting file formats to use
XML is in an early developing stage. The Mars format is still in a very early phase of developing, while XPS is already
used by some organizations and (printing) companies, but it is not that far developed and not totally embraced by
the printing industry yet to replace the current formats PDF and PostScript.

Appendix C1: Research Thesis

29

References

[1] Nik Stanbridge, Page Description Language Document Coversion and Manipulationi, 2007

[2] Paul Collin, Analysis: XPS and the Graphics Arts Market, February 2007

[3] Thor Olavsrud, PDF format Shifting to XML, http://www.internetnews.com/dev-
news/article.php/2235261, July 13 2003

[4] Official XPS website, http://www.microsoft.com/whdc/xps/default.mspx, June 2008

[5] Official Mars website, http://labs.adobe.com/technologies/mars/, May 2008

[6] Mark Vruno, What’s the status: Microsoft XPS vs. Adobe
PDF?, http://www.graphicartsonline.com/blog/1840000384/post/1480013348.html, July 13 2007

[7] Dany Amiouny, White Paper: PDF or XPS: Choose the Right Document Format for your Applications, 2007

[8] William Pollard, Mars Opens PDF to XML
Connections, http://english.ohmynews.com/articleview/article_view.asp?article_class=4&no=372521&rel
_no=1, July 19 2007

http://www.internetnews.com/dev-news/article.php/2235261�
http://www.internetnews.com/dev-news/article.php/2235261�
http://www.microsoft.com/whdc/xps/default.mspx�
http://labs.adobe.com/technologies/mars/�
http://www.graphicartsonline.com/blog/1840000384/post/1480013348.html�
http://english.ohmynews.com/articleview/article_view.asp?article_class=4&no=372521&rel_no=1�
http://english.ohmynews.com/articleview/article_view.asp?article_class=4&no=372521&rel_no=1�

Appendix C2: Plan of Action

30

C2. PLAN OF ACTION

Plan of action

New albumprinter file format

Bsc-project TU Delft

An Ngo
Xinan Zhu

Amsterdam, 7 April 2008

Appendix C2: Plan of Action

31

Table of Contents

1 Introduction

2 Assignment Description

2.1 Introduction

2.2 The employer

2.3 Contact persons

2.4 Problem statement

2.5 Goal

2.6 Assignment

2.7 Deliverables

3 Approach

3.1 Introduction

3.2 Work

3.3 Schedule

Appendix

Appendix A: Gannt chart

Appendix C2: Plan of Action

32

1 INTRODUCTION

Before we start the project at Albumprinter we made this Plan of Action. This document will be a guideline
thorough our project.

Appendix C2: Plan of Action

33

2 ASSIGNMENT DESCRIPTION

2.1 INTRODUCTION

In this chapter we will describe the assignment. First we will describe the Employer, the contact persons. Then we
will describe the problem statement and the assignment description and the deliverables of this project.

2.2 THE EMPLOYER

Albumprinter B.V. is a software company that provides services for creating personalized photo-products, mainly
books, calendars and organizers.

In order to do this Albumprinter B.V. provides the next branded software consumer packages: a Windows editor
and a cross-platform X-editor.

As shown below Albumprinter B.V. Provides a whole life-cycle; from client software to production. It has a section
where software are developed and a production facility where the photo-products are printed and shipped to the
customers. It also provides client services such as helpdesk and services for resellers.

Appendix C2: Plan of Action

34

Since the digital photography has been introduced there is a big market for photo books software as the ones
provided by Albumprinter B.V.. Due the digital camera more photos are taken, but they are digital instead the old
well-known photos on paper and pasted in photo books. Still, people are more attracted to the physical products
like real paper photo books. Albumprinter B.V. has this service: shoots photos with your digital camera, create and
make your own photo book and it produces your personalized photo book. Last year a total of 1 million photo
products have been produced and shipped to the customers.

2.3 CONTACT PERSONS

TU Delft
Dr.ir. C.A.P.G. van der Mast
LS Mens-Machine Interactie
C.A.P.G.vanderMast@tudelft.nl
Elektrotechn., Wisk. & Inform.
Room : HB 10.120
Mekelweg 4
2628 CD Delft
Office: +31 (0)15 2782549

Albumprinter B.V.
Dhr. K. Waslander
CTO Albumprinter B.V.
klaas@albumprinter.com

Stationsplein 55
P.O. Box 14606
1001 LC Amsterdam
Office: +31 (0)20 5218950

Appendix C2: Plan of Action

35

2.4 PROBLEM STATEMENT

The current .ALB file format is hard to sustain for Albumprinter.

At Albumprinter currently digital photo-books and albums are stored in a own proprietary format during editing.
This is converted to PDF in order to print it. However once converted to PDF it is hard to do editing on the file. This
has lead to the development of the own .ALB file format in the first place. However having a own proprietary
format leads to several problems.

First of all by having a own format means that all the development and tools needs to be created by Albumprinter.
There are no 3rd party tools available and there will not be. Secondly the format itself needs to be updated by
Albumprinter too in order to be adequate in the support of their activities. Thirdly as Albumprinter tries to open up
the platform for resellers it is essential that it is easy accessible and the learning curve should be short for
developers to use the Albumprinter API. Right now with the .ALB format the problem of not having a flood of
documentation arises for the developers and 3rd parties, and this leads to extra unnecessary costs and time could
be saved by using a standard format.

2.5 GOAL

Finding a new file format for the Albumprinter applications to replace the current .ALB format. This is necessary to
be able to provide a open and easy API for the reseller clients of the company, furthermore it will save costs made
on maintenance of the own proprietary format and shorten the learning curve for developers using the file format.
It is also the goal of the company to use this new format in their complete set of applications.

2.6 ASSIGNMENT

The assignment here is to build a prototype application that applies the newly chosen file format, which shows
that it can do exactly the same as the current file format. The new file format to be tested is chosen within the first
2 weeks of the assignment. Afterwards development of the application will commence. This application will show
that it is possible to open a file containing a page with multiple objects (photos), perform a simple edit (mirroring
some images and moving it to another location on the page and saving the file in the same file format, printing it
to the printer.

2.7 DELIVERABLES

The project will encompass:

1. Set of requirements for the format
2. Standard selection report
3. Prototype application
4. Documentation for application

Appendix C2: Plan of Action

36

3 APPROACH

3.1 INTRODUCTION

In this section we will describe the approach of this project. It also includes a schedule of the project and a Gannt
chart.

3.2 WORK

First we have to do a research on format files that are suitable to replace the current format file at Albumprinter.
Then we have to implement the format file, create an prototype application and integrate our prototype with the
current editors. And at the end the project we have to write a report and give a presentation of what we our
findings.

3.3 SCHEDULE

The schedule of the project from 7 April 2008 to 1 July 2008

Phase Date Duration

1. Research 7 April 18 April 2 weeks

Delivery of Plan of action 11 April

2. Implementation 21 April 30 May 7 weeks

2.1 File format + testing 21 April 2 May 2 weeks

2.2 Application + testing 5 May 16 May 2 weeks

2.3 Integration + testing 19 May 30 May 2 weeks

2.4 Finishing + testing 2 June 6 June 1 week

3. Report 9 June 1 July 3 weeks

Delivery of Report 1 July

Presentation T.B.D.

Appendix C2: Plan of Action

37

For this schedule we also made a Gannt chart. This can be found in the Appendix A.

The report phase is compared to the other phases very long. In this period we have exams that's why we have
planned more time for this phase than usual.

Exams
An:
18/06
20/06
23/06
27/06

Xinan:
 23/06
24/06
25/06

Appendix C2: Plan of Action

38

APPENDIX

APPENDIX A: GANNT CHART

Appendix C3: Test results

39

C3. TEST RESULTS

In the research phase, some basic features of XPS were explored. The following figure shows a test result of a basic
XPS, containing 5 small pages with basic features.

Figure 14: example XPS features

Page 1: a simple text
Page 2: rotation of text
Page 3: text behind image, image is transparent
Page 4: oval mask over an image
Page 5: unicode text, background image and transparent image in front.

Appendix C4: Comparison Table

40

C4. COMPARISON TABLE

A comparison of potential file formats for Albumprinter.
● = supported
□ = poorly supported
? = unknown

We did a research on 4 XML-based extensible format and 1 printer language / job description format (PPML):
- Adobe Mars
- Microsoft XPS
- Sun/OASIS ODF
- Microsoft OOXML
- PODi PPML

General File Format Mars XPS PPML ODF OOXML

XML based ● ● ● ● ●

Sustainability □ ● ● ● ●

Portable / Multiplatform ● ● ● ●

Support by printing industry ? ● ●

License agreement (Royalty-free) ? ● ● ● ●

PDF conversion ● ● ● ● ●

Graphics Capabilities Mars XPS PPML ODF OOXML

Support for transparency photos ● ● ●* ** **

Support for CMYK color space ● ● ●* ** **

Support for alpha channel (opacity) ● ●* ** **

Printing Mars XPS PPML ODF OOXML

Ensure document fidelity (WYSIWYG) ● ● ●

CMYK support for professional printing ● ● ●

Retains print job information deferred or remote
printing

 ●

Support for crop boxes and bleed boxes needed by
professional printers

● ●

Hewlett Packard RIP support ● ●

Fuji Xerox RIP support ● ●

Océ RIP support ? ●

Appendix C4: Comparison Table

41

Security Mars XPS PPML ODF OOXML

Password protection against unauthorized access ● ● * ●

Password protection against document
modification

□ *

Digital signature of full document ● ● *

Digital signature of specific parts of a document ● ● *

Image Support Mars XPS PPML ODF OOXML

JPEG (RGB and CMYK) ● ● ● ● ●

JPEG 2000 ●

JBIG2 for grayscale images ●

PNG images ● ● ● ●

CCITT for black and white images ● □

TIFF images (RGB and CMYK) ● ● ● ●

HD photo ●

SVG ● ●****

Color Space Support Mars XPS PPML ODF OOXML

RGB ● ● ● ● ●

CMYK ● ● ●

Gray ● ● ●

N-Channel ● ●

ICC Profiles ● ● ●

Named and Spot colors (e.g. Pantone) ● □

Font support Mars XPS PPML ODF OOXML

TrueType fonts ● ● * *** ***

Type1 (Postscript) fonts ● *

CFF (Compact Font Format or Type2) ● ● *

Vector fonts ● *

Support for multi-national character sets □
Unicode only

● * □
Unicode only

Full font embedding ● ● *

Partial font embedding ● ● *

Protecting an embedded font from being extracted
from the document

● □ *

Appendix C4: Comparison Table

42

Document Structure Mars XPS PPML ODF OOXML

Document bookmarks and outline ● ● * ● ●

Support for page thumbnails ● ● * ●

Support for editable form fields ● □ * ●

Support for annotations ● □ * ●

Editing Document Content Mars XPS PPML ODF OOXML

Original resources can be retrieved ● ● * ● ●

* n/a as PPML is a language not a file format (and does not embed files in a zip-container)
** n/a as ODF/OOXML are not page description / layout formats
*** Unspecified, depending on system (CSS2)
**** PPML allows SVG resources. It is possible to use SVG.

Appendix C5: diagrams

43

C5. DIAGRAMS

Figure 15: UML Diagram of the album Object Model

Appendix C5: diagrams

44

Figure 16: XPS controller diagram

Appendix C5: diagrams

45

Figure 17: Sequence diagram

	Preface
	Summary
	Introduction
	Problem statement
	Approach

	Research
	Important file format aspects
	Main aspects
	Secondary aspects

	File formats candidates
	Comparison table
	Selecting prototype format

	Design
	Microsoft XPS
	XPS-AP
	Software prototype
	Design Goal
	Object model
	Graphical User Interface
	Controller
	Diagrams

	Implementation
	XPS-AP
	Building XPS-AP structure
	Creation of Pages
	Adding images
	Adding text
	Zipping

	Prototype application
	Environment
	Object Model
	XPS Control
	loadXML(XML)
	toXPS()
	loadXPS()

	Graphical User Interface
	Integration with X-editor

	Conclusions
	XPS structure
	Image
	Text
	Conclusion

	Recommendations
	Bibliography
	Table of figures
	Appendix
	Research thesis

	Open format Shifting to XML
	ABSTRACT
	Introduction
	Background
	The current file format is hard to sustain for Albumprinter
	Graphics Arts Market
	new DPL’s with XML
	Conclusion
	References
	Plan of Action

	1 Introduction
	2 Assignment Description
	2.1 Introduction
	2.2 The employer
	2.3 Contact persons
	2.4 Problem statement
	2.5 Goal
	2.6 Assignment
	2.7 Deliverables

	3 Approach
	3.1 Introduction
	3.2 Work
	3.3 Schedule

	Appendix
	Appendix A: Gannt Chart
	Test results
	Comparison Table
	Diagrams

