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Abstract & Preface

This report presents the development of a real-time object detection algorithm as part of a larger vision-
based tracking system for falling objects. The complete system consists of a Raspberry Pi 5 equipped
with a High Quality Pi Camera mounted on a Pimoroni PIM183 pan–tilt actuator. Its purpose is to detect,
track, and visually follow a fast-moving target during free fall. The tracking system is divided into two
main components: a tracking subsystem and a motion control subsystem.
This report focuses on the visual detection and tracking subsystem, which is responsible for processing
a live video stream to determine the vertical position of the falling object in real time. The core algo-
rithm extracts positional data and forwards it to the motion control subsystem, which is implemented by
a parallel project group. For validation and testing, a colored cloth ball is used as a proxy for a water
droplet, as it offers greater visibility and more consistent shape characteristics.
A key objective of the system is to capture high-quality frames of the object in mid-air, enabling further
image-based research by third parties. These frames, centered and stabilized via real-time feedback,
are intended for use in subsequent analysis of droplet dynamics, behavior modeling, and related appli-
cations in industrial or agricultural research.
This report discusses the design choices and trade-offs involved in building a robust and responsive
detection algorithm suitable for integration in a time-critical closed-loop control system.

M.E. Kaya
T.A. Haas

N. El Khatibi
Delft, July 2025
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1
Introduction

1.1. Background and Motivation
Many industries rely more on computer-systems with embedded object-tracking functionalities. It is
important in various fields in these industries to understand and be able to simulate the object which
is tracked. In high-speed inkjet-printing machines for example the droplet formation needs to be fully
understood in order to prevent misprints [1], in fertilizing spray machines a proper droplet size and
density need to be ensured for effective crop treatment [2].
This report addresses the problem of tracking individual falling droplets in real time. Accurately de-
termining a droplet’s position during free fall is a critical challenge in systems where precise droplet
behavior affects overall performance. However, due to the complexity and variability of real droplet
dynamics, such as transparency, size variation, and background interference, a direct study can be
difficult to carry out.
Therefore, a proxy problem is introduced: a solid spherical cloth ball is used to represent a falling
droplet. The proxy object is easier to control and observe, especially against a plain white background,
allowing the development and evaluation of the object-tracking system under simplified but represen-
tative conditions. This approach serves as a proof of principle for the underlying method and allows for
clearer validation of the system’s tracking and image-capturing performance.
The objective of the proposed method is to vertically track the real-time location of the proxy object on
a 2D image plane and capture high-quality images as it falls. The real-time position of the falling proxy
can then be fed forward to a tilting motion control system, which aims to center the object in mid-air
and thereby maximize the number of frames captured during its descent.

1.2. Problem Definition
The central challenge addressed in this work is reliably capturing high-quality images of a free-falling
object during its descent. This task becomes particularly demanding when tracking droplets, as their
transparency, high reflectance, and lack of color contrast against typical backgrounds make them ex-
ceptionally difficult to image clearly [3]. Conventional imaging systems struggle to maintain consistent
focus and framing on such objects throughout their rapid descent.

To enable controlled development of the imaging system while preserving the essential tracking chal-
lenges, we employ a proxy object approach using a solid spherical cloth ball. This simplification main-
tains the key dynamics of a falling object while providing more consistent visual properties that facilitate
algorithm development and system validation. The proxy object serves three critical purposes:

1. Providing a consistent visual target that maintains the essential tracking challenges of a falling
droplet

2. Enabling quantitative evaluation of image capture quality under controlled conditions
3. Allowing isolation of tracking performance from the additional complexities of droplet physics

1



1.3. System Overview 2

1.3. System Overview
The complete tracking system is designed to maintain a vertically falling object centered within the
camera’s field of view during free fall. This system is partitioned into two interdependent subsystems
whose specifications derive directly from the overall system requirements defined in Chapter 2.

• Visual Detection Subsystem
To meet the functional requirement of tracking at 50 frames per second, this subsystem captures
images using a Raspberry Pi HQ Camera at 50 FPS and greater, providing timely and accurate
2D vertical position measurements of the object. The detection algorithm is tailored to the known
object characteristics (a 5 cm diameter colored ball) and operates reliably under the controlled
laboratory lighting. Accuracy requirements for object localization ensure the motion control sub-
system receives precise data for maintaining the object’s position.

• Motion Control Subsystem
The control subsystem uses the positional data to compute actuator commands within the me-
chanical limits of the Pimoroni PIM183 pan–tilt unit, ensuring the camera’s tilt remains within
−90∘ to +90∘. The control loop is designed to complete within 20ms (∼ 50FPS) mandated by
the real-time operation requirement, thus ensuring responsiveness and stable tracking. All con-
trol computations run exclusively on the Raspberry Pi 5, simplifying hardware dependencies and
adhering to system constraints.

The subsystems work in tandem within a closed-loop architecture where the Visual Detection Subsys-
tem continuously supplies theMotion Control Subsystemwith positional feedback at 50 FPS. This frame
rate matches the mechanical and computational limits of the hardware, balancing detection fidelity and
control responsiveness.

The proxy object (a colored cloth ball of approximately 5 cm diameter) was selected to enable robust
detection with known color and size properties, as required by the environment and detection reliability
specifications.

The overall system is designed to fulfill the mandatory and trade-off requirements by combining real-
time image acquisition, accurate object localization, and fast, bounded actuation to maintain the object
centered vertically in the frame despite the high-speed fall.

Figure 1.1 illustrates the high-level data flow between these subsystems, demonstrating how they are
connected.

Camera Object Detection Actuator Control
frame position

Figure 1.1: High-level system overview showing image acquisition, detection, and control

1.4. State-of-the-Art Methods
Building upon the high-level system overview presented above, the object detector can be implemented
using a range of image-processing methods. Over the past decades, both traditional algorithms and
AI-based techniques have been developed for object detection and motion tracking, each with distinct
strengths and limitations. The following section reviews a selection of these state-of-the-art methods
that are relevant for detecting and tracking objects in motion.

Frame Differencing
Frame differencing is a simple and computationally cheap technique for motion detection that func-
tions by comparing consecutive frames in an image sequence. The method calculates the absolute
difference between pixel intensities of two successive gray-scaled frames, and significant differences
between each pixel indicate motion. Example of such indications for motion are seen in Figure 1.2.
While computationally efficient and suitable for real-time applications, it struggles with detecting objects
using a tilting-camera and is sensitive to various changes in the background such as dynamic illumina-
tion and shadows.
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This method’s implementation and performance are further discussed in Chapter 4 and Chapter 5 re-
spectively.

(a) Frame 1
Ball at n=169

(b) Frame 2
Ball at n=170

(c) Processed difference

Figure 1.2: Visualization of the frame differencing algorithm: (a) previous frame, (b) current frame, and (c) processed absolute
difference between Frame 1’s and Frame 2’s respective gray-scaled representations.

Edge Detection
A classic approach to detect objects in images is edge detection. There are a number of well-known
and understood edge detection algorithms. As discussed by [4], some popular options are Sobel,
Roberts, Canny and Laplacian. These operations detect the change in image intensity, which is then
classified as an edge. They accomplish this by taking the derivative of the image intensity, where the
first derivative or the rate of change of the pixel value uses a gradient operator. The second derivative
can also be used instead with a Laplacian operator.
In the gradient-based detection algorithms like Roberts, Canny and Sobel, the gradient of 𝑥 and 𝑦 are
separately computed by using a kernel or mask. This kernel can be seen as a matrix that then gets
convolved with the original image. Combined with an adjustable threshold for the magnitude of the
gradient, the edges in an image can be detected. Some starting points for the thresholds for these
algorithms are discussed in [5], in which the author advised a threshold of 0.35 to 0.45 for Canny, while
for Roberts and Sobel the thresholds 0.1 to 0.45 were best.

MOSSE
The Minimum Output Sum of Squared Error (MOSSE) filter is an algorithm in the family of correlation-
based trackers [6]. The core principle of these kind of trackers is to learn a correlation filter which
represents the object of interest to track. This filter is then used to find the object in subsequent frames.
It is renowned for its exceptional processing speed, often achieving several hundred frames per second.
Although MOSSE is extremely fast, its primary limitation is its simplicity. The algorithm in itself also
requires manual selection of the object of interest, which is not ideal for object tracking as this calls
for a separate algorithm to perform object detection. The OpenCV library provides a direct and highly
optimized implementation of this, making it easily accessible for real-time applications.

KCF
Similarly to MOSSE, kernelized correlation filter(KCF) is part of the correlation based trackers. Previous
trackers, such as MOSSE use linear filters. KCF addressed the limitation of linear filters. Building
directly on the high speed framework established by MOSSE [7]. This led to KCF being viewed as the
state of the art tracking for several years. Just like MOSSE the KCF function is included in the widely
used OpenCV library. KCF also requires an initial object selection.



1.5. Report Outline 4

Background Subtraction
Background Subtraction is similar to frame differencing, a simple yet effective technique used to detect
moving objects in videos with a static background. This method is based on first building a background
model, which is a representation of the scene without any moving objects. This model can be as simple
as an average of the initial few frames or a more complex statistical representation, such as a Mixture
of Gaussians (MoG), which can adapt to gradual changes in lighting [8], [9]. Once this background
model is established, each incoming frame is compared to it by subtracting the current frame from the
background model pixel-by-pixel. The resulting difference image highlights regions where significant
changes have occurred. By applying a threshold to this difference image, a binary foreground mask
is generated that segments the moving objects from the static background. While conceptually simple
and computationally efficient, this method is highly sensitive to dynamic environments, such as sud-
den lighting changes or camera movement. The results and performance of this approach is further
discussed in Chapter 5.

Deep Learning models
Instead of relying on algorithms a different option would be deep learning models like Convolutional
Neural Networks (CNNs). One of the use cases of a CNN is image classification, which is accomplished
by feeding this model a labeled images and training it. An example model as described in [10] uses
such model with five layer neural networks and 60 million parameters.
More specific to this paper’s objective would be something like an edge detection model. In order to
train such models, large datasets are required. A classical data set would be something like the method
of Arbalez et al, described in [11].
A computionally expensive high performingmodel would be something like the work described by Zhong
et al in their model DETR with 304 million parameters [12]. The other end of the spectrum would be
something like Tiny and Efficient Edge Detector (TEED) by Soria X. et al [13] with only 58 thousand
parameters, which can be trained in only 30 minutes.

1.5. Report Outline
This report is structured as follows: Chapter 2 provides a review of the Program of Requirements, Chap-
ter 3 describes the overall physical system, Chapter 4 presents the implemented image processing
techniques, the results obtained by testing these implementations and their evaluation are discussed
in Chapter 5. Finally Chapter 6 concludes this report.



2
Program of Requirements

This chapter specifies the requirements for the complete tracking system, composed of a visual detec-
tion subsystem and a motion control subsystem. The aim is to track a falling object using a camera
mounted on a tilting platform, ensuring the object remains centered in the image during free fall.

2.1. Target Environment
The system operates in a controlled laboratory setting with consistent lighting and a fixed drop zone.
The falling object is a colored ball approximately 5 cm in diameter. The system uses a Raspberry Pi 5,
Raspberry Pi HQ Camera, and a Pimoroni PIM183 pan–tilt unit.

2.2. Mandatory Requirements
(Must be fully satisfied; non-compliance means failure.)

1. Functional Requirements

(a) The complete system must track a vertically falling object using tilt-only camera motion at
50 FPS, consistent with actuator and processing limitations.

(b) The control loop, comprising frame acquisition, object detection, and actuator command
computation, must execute within 20 ms to ensure real-time responsiveness.

(c) All computations, including image processing and control, must run locally on the Raspberry
Pi 5 without external processing support.

(d) The visual detection subsystem must detect the object’s vertical position in the image with
precision better than the ratio of the ball’s pixel height to the frame height, such that the
object may be centered within ±5% of the image height by the motion control system. This
ball is known to have a diameter of approximately 5 cm and a fall velocity around 5–7 m/s.

(e) The detection subsystem must output the object’s 2D image coordinates (vertical position)
per frame to the motion control subsystem.

2. Non-functional Requirements

(a) The object detection algorithm must be robust to minor lighting variations and leverage the
known color and spherical shape (approximately 5 cm diameter) for reliable segmentation.

(b) The image resolution and lens parameters must be chosen to ensure the object occupies a
sufficient number of pixels (e.g., ≥ 25 pixels in diameter) to permit reliable detection.

(c) The system must avoid exceeding actuator torque or PWM signal limits to prevent hardware
damage.

(d) The lens of the system should not need to be refocused during the fall of the object.

5
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2.3. Trade-off Requirements
(Optimize where possible; performance may vary.)

1. The system shouldmaintain detection robustness under small lighting variations such as shadows
or minor reflections.

2. The actuator response should minimize overshoot and oscillations to ensure stable tracking.
3. Motion blur should be minimized in captured frames to preserve detection accuracy.



3
System Overview

3.1. Overall System Architecture
The overall prototype can be split in two parts. The PIM183 Pan-Tilt actuator that controls the tilting of
the camera and the Raspberry pi 5 connected to the HQ camera that detect the falling object. This is
also how the two subgroups are divided. With this project report detailing the image processing and
detection of the overall project. The motion control subgroup handles the programming and control-
ling of the actuator. In figure 3.1 the complete prototype can be seen. On the left of the image is the
actuator, camera and lens. On a custommount. On the right is the Raspberry pi with some accessories.

Figure 3.1: Complete Prototype

3.1.1. Raspberry Pi 5
The Raspberry Pi 5 (referred to as Pi) serves as the central processor of the prototype. It houses the
complete pipeline: from image capturing to object detection and controlling the actuator. It uses several
accessories called Hardware Attached on Top (HAT) modules. It has a active cooler with an aluminum
heat sink and fan. This cooler makes sure that the Pi stays within its safe operation conditions with
regards to temperature; it will throttle its own performance when it gets above 80∘. Additionally, it has
a 512 GB SSD card in its SSD slot to store data. Figure 3.2 shows the Pi itself, the array of pins on the
upper right of the image are the GPIO pins. They connect the actuator to the Pi using jumper cables.

7
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Figure 3.2: Raspberry pi 5

3.1.2. Raspberry pi High Quality Camera
The camera used was the Raspberry Pi HQ camera which consists of the Sony IMX477R image sensor,
with a 12.3 megapixel sensor. This sensor allows for up to 120FPS, which meets requirment MR-1a
in the PoR. The minimum shutter speed of this camera of 0.5 ms also works to lower possible motion
blur [14], required by Trade-off requirement section 3. Additionally, this camera allows for adjustable
lenses, giving more freedom and flexibility.

3.1.3. Lens Selection
A few Pi lenses fit the program of requirements. The 8mm, 16mm, 25mm and 35mm. Each number
denotes the focal length both in terms of weight as well as the portion of image the ball would take up.
The vertical field of view of each of the lenses is shown in table 3.1. These are calculated using the
formula 3.1 from [15]. 𝐻𝑠𝑒𝑛𝑠𝑜𝑟 is the height of the sensor and 𝑓𝑙 the focal length, both in millimeters.
The vertical height for the HQ camera sensor is 4.712 mm [14]. This gives the various field of views for
each lens in table 3.1.

𝐹𝑂𝑉 = 2 ⋅ arctan(𝐻sensor
2𝑓𝑙 ) (3.1)

Focal Length Vertical FOV [∘]
8 mm 32.8
16 mm 16.8
25 mm 10.8
35 mm 7.7

Table 3.1: Vertical FOV for respective lenses

A simple diagram of the experiment setup can be seen in Figure 3.3. Where the Field of view of course
changes depending on the exact lens used. The falling object here being the stand-in of the proxy
problem, namely the 50mm cloth ball.
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Figure 3.3: Camera Setup

3.1.4. Actuator setup
Normally the PIM183 Pan-Tilt would function as a HAT and press on the GPIO pins of the Raspberry
Pi. However due to the active cooler and SSD HAT, there was now not enough room the connect the
pins directly, so a 40-pin male to female header cable was used to bridge the gap instead. The pan-tilt
hat experience a not insignificant amount of force when it tries to tilt the camera at full speed. In order
to stabilize the system during operation it it was mounted to a block of wood using long bolts. This was
not exactly an original Pi part, but worked to hold the actuator and camera down.
A final system setup problem that had to be solved was fitting the camera module to the PIM183. The
Pan-Tilt HAT was designed for older camera modules that have a smaller and slimmer PCBs. To con-
nect the PCB to a 3D printed backing plate was used that simply screwed into the already made holes
of the raspberry pi camera module. The other side has a block with a small overhanging ledge where
the original clips of the PIM183 interface attach to. The model and a zoomed in version of the proto-
type can be seen in figure 3.4. Here the orientation is similar of the model view as in the picture of the
prototype. The PCB of the sensor is screwed in and the block clips into the actuator.

(a) Zoomed in Prototype (b) 3D Model

Figure 3.4: Model and installed adapter side by side



4
Detailed Design

4.1. Frame Capturing
A typical free fall in the setup lasts approximately 0.5 seconds. Given the system’s operational frame
rate of 50 frames per second (FPS), this corresponds to capturing around 25 frames during the entire
drop:

Number of frames = fall duration × frame rate = 0.5 s × 50FPS = 25 frames

Buffering enables smooth and reliable processing under varying number of input frames. By maintain-
ing a small, efficiently managed buffer of incoming camera frames, the system improves robustness
against processing delays and prevents frame drops, such that the latency is kept within strict timing
constraints (e.g., 20ms per control cycle in this system).
The camera continuously streams frames into a buffer in shared memory, allowing the processing
thread to always access the latest data without waiting. This approach decouples the camera capture
mechanism from processing, ensuring that the control loop operates on the most recent available frame
while the buffer absorbs minor timing variations between the camera and the image processor.

4.2. Frame differencing
Frame differencing was very appealing due to its simplicity, which also makes it very cheap in terms of
computing costs. As long as the camera was static it could very accurately detect the moving object.
It also allowed the system to detect the object in the very first frame where the object appeared, even
if it wasn’t actually in frame in its entirety. For the higher magnification lenses like the 35mm, one or
two extra frames make a significant difference if the ball is only in frame for 10 to 11 frames.
The steps of the frame differencing are shown in the flowchart in Figure 4.1, in which the function takes
as input both the previous frame and current frame in grayscale. The difference value is found by taking
the absolute difference and is then turned into a binary image by comparing it to a threshold. In this
binary image, with purely black and white pixels, it is easier to do subsequent operations on.
This binary image is further cleaned using OpenCV’s closing and opening morphology functions [16].
Opening removes noise in the background and closing removes noise inside of the foreground object.
The actual results found using his method is discussed in Section 5.2.

Input previous
frame &

current frame

take absolute
difference

Apply threshold Morphological
operations

Figure 4.1: Frame Differencing Flowchart

10
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(a) Opening operation (b) Closing operation

Figure 4.2: Morphology operation from [16]

4.3. Implementation Moving Camera Setup
4.3.1. Background Subtraction
The background subtraction method tried was using the createBackgroundSubtractorMOG2 func-
tion from the OpenCV library [17]. This function makes a foreground mask by performing a subtraction
from a background model, or frame and new frames. This method is most commonly used in static
cameras with moving subjects. The most straight forward background was to use a solid color (like
white) to separate the falling object from the background, even if the background was also moving.
The core part of the background subtraction code is seen in the flowchart in Figure 4.3. In the process
frame box, the previous frame is compared to the current frame to make the background model. Then
the background subtraction function is used to find the object inside the image. The masking step is
turning this frame also into a binary image. Lastly, on this binary image the contours function from
OpenCV finds the contours inside the binary image.

process frame subtract
background mask contours

Figure 4.3: Background Subtraction Flowchart

4.3.2. Motion Compensation Attempt
The initial attempts with frame differencing and background subtraction highlighted a fundamental limi-
tation: their reliance on static cameras. Their are several techniques to overcome this limitation. The
approach that comes closest to the initial attempt of frame differencing and background subtraction is
motion compensation [18]. Once the camera starts moving, the whole background changes from frame
to frame, leading to false detections or complete failure. To address this, motion compensation was
explored. This technique is designed to estimate and negate global camera motion in order to preserve
only the relative motion of objects in the scene.
Typically for motion compensation the inter frame motion is estimated and a geometric transforma-
tion is applied to align the current frame with the previous one [19]. This typically begins by extract-
ing keypoints from both frames using a feature detector such as ORB (Oriented Fast and Rotated
Brief).Keypoints could be distinct trackable visual features such as corners or blobs. Once these key-
points are extracted in both frames, they are matched with each other, after which a geometric trans-
formation matrix can be estimated. The current frame is then transformed to match the perspective of
the previous frame, after which standard motion detection techniques, such as frame differencing and
background subtraction, can be applied. An overview of this process is presented in Figure 4.4. This
flowchart outlines the key steps of the motion compensation pipeline: capturing consecutive frames,
estimating optical flow, computing and compensating for global motion, followed by thresholding and
post-processing to identify true motion regions. If motion is detected, regions of interest are tracked
and a bounding box is generated.

Even though this approach initially appeared promising, it was ultimately not implemented due to limi-
tations specific to the experimental setup. The reliability of feature based motion estimation methods,
such as those relying on ORB, is extremely dependent on the presence of a sufficiently textured back-
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Start Processing

Capture current & previous frame

Estimate optical flow

Compute difference & compensate

Threshold / post-process

Motion detections?

Track / extract ROI

Bounding box

No

Figure 4.4: Motion Compensation Pipeline Flowchart

ground. However, in this system, a plain and uniform background is deemed ideal to avoid visual noise
which could lead to false detections. While this design decision benefits object segmentation, it also
leads to the background not containing distinctive features to match between two frames.

4.3.3. Final Implementation: Color Filtering
This final implementation uses a very different method based on color. Unlike frame differencing which
relies on change of motion, this technique locates the object by it’s color characteristics. Assuming the
droplet is captured with a unique hue with no motion-blur, it is possible to extract its location directly
from the frame regardless of how fast it is falling. This makes color filtering particularly appealing
in scenarios where the background remains in motion. The flowchart of the pipeline of the method
described here is presented in Figure 4.6. A general overview of this method and of a non-maximum
suppression implementation are given in Algorithm Overview 4.3.3.1 and Non-maximum Suppression
4.3.3.2 respectively. A training-based feature-extraction of the object’s color characteristics method is
described in HSV Parameter Optimization via Error Minimization 4.3.3.3.
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4.3.3.1. Algorithm Overview
This method begins by converting the input color frame from its standard BGR format into HSV. Next,
a binary mask is created by thresholding the HSV image. Only pixels with a hue value within a certain
range around a predefined target hue, and with sufficient saturation and brightness, are kept. All others
are rejected. This results in a binary image with black and white values, where a black pixel indicates
that the pixel is rejected and a white value indicates that it’s pixel is within the provided target range.
As with frame differencing, the resulting binary image is often noisy. Part of that noise is due to reality
rarely being a single color but instead some small amount of other colors being present. So morpholog-
ical operations are applied to clean it up. Here, opening followed by closing is used. The opening step
eliminates small isolated dots, typically background noise, while closing fills small holes inside detected
foreground objects.
Contours are then extracted from this cleaned binary mask. These contours represent all the continu-
ous blobs of pixels matching the selected hue. Each is turned into a bounding rectangle and filtered
based on size, their area must exceed a minimum threshold to be considered valid. This removes small
false positives.

4.3.3.2. Non-maximum Suppression
In cases where multiple overlapping regions are detected, a further step is needed. These overlaps
typically arise because the object is approximated using several disjoint sets of pixels, which are each
enclosed in separate rectangular bounding boxes. As rectangles are not shape-adaptive, their bound-
aries often overlap when the underlying pixel regions are spatially close. To address this, the bounding
boxes are passed through a Non-maximum Suppression (NMS) method, which suppresses redundant
overlapping boxes in favor of the one with the highest confidence, here defined by area. This step
ensures that a single, best-fitting detection is selected. The flowchart of this method is presented in
Figure 4.5.
Only if exactly one bounding box remains after this suppression step is the detection considered valid.
As shown in the flowchart in Figure 4.5, the NMS process begins by collecting all candidate bounding
boxes and sorting them by area, assuming larger area implies higher confidence. Then, as long as
boxes remain in the list, the box with the largest area is selected. All other boxes that have a high over-
lap with it (measured by Intersection over Union (IoU) exceeding a threshold 𝜃) are removed. This loop
continues until no more boxes are left to evaluate. At the end of the suppression, a check is performed:
if exactly one bounding box remains, it is accepted as the final detection. A red box is then drawn on
the original frame, and the vertical center position 𝑦center is returned. If instead zero or more than one
box remain after suppression, the function returns nil and no detection is recorded for that frame. This
strict selection criterion reduces false positives but may lead to dropped frames when multiple similar
detections exist, which slightly lowers the real-time detection rate.

4.3.3.3. HSV Parameter Optimization via Error Minimization
To ensure reliable color-based detection in a given fixed setup, it is critical to select appropriate thresh-
old ranges—referred to as target intervals—for hue, saturation, and value (HSV) in the color space.
These intervals define which pixel values are considered a valid match for the object’s color. Rather
than selecting them manually, the system uses a per-scene training procedure to automatically deter-
mine suitable HSV bounds. It is important that the scene used for training (e.g., background, illumina-
tion, and object appearance) remains unchanged when applying the detection method with the trained
parameters.

Training Methodology This training process aims to find optimal lower and upper bounds for the
HSV parameters that yield the best detection accuracy for a target object across a sequence of video
frames. A key aspect of this approach is the choice of the center of the proxy objects as the basis for
detection, serving as a consistent spatial reference point. The central idea is to minimize the average
squared error between the detected vertical position ̂𝑦 and the actual position 𝑦 across frames with
known labeled data. The module for labeling data is listed in Appendix B.1.
Given a labeled dataset, where the object’s known position per frame is provided, a cost function is
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defined based on the MMSE [20] principle:

𝐽(𝜃) = 1
𝑁

𝑁
∑
𝑖=1

( ̂𝑦𝑖(𝜃) − 𝑦𝑖)
2

Here, 𝜃 represents the HSV filter parameters: the target hue 𝐻, the tolerance Δ𝐻, and the lower and
upper bounds for saturation and brightness [𝑆min, 𝑆max], [𝑉min, 𝑉max]. The number of valid samples 𝑁 is
fixed by the dataset and not part of the optimization process. The goal is to find the parameter set 𝜃∗

that minimizes the error 𝐽(𝜃).
If the cost function 𝐽(𝜃) is computed over the same set of 𝑁 valid samples and assuming the detector’s
output is an approximately unbiased [20] estimator of the true 𝑦𝑖, then the standard error 𝑆𝐸 becomes:

𝑆𝐸 = √𝐽(𝜃)

The standard error is used extensively as a performance metric in Chapter 5 Performance Evaluation.

Grid Search The optimization is performed via a brute-force grid search over a pre-defined range of
HSV threshold parameters. The ranges are selected based on prior knowledge of the object’s color
characteristics and practical considerations for computational efficiency:

𝐻 = {6𝑘 ∣ 𝑘 ∈ ℕ, 6𝑘 < 180} (Hue center values from 0 to 174)
Δ𝐻 = {2 + 4𝑘 ∣ 𝑘 ∈ ℕ, 2 + 4𝑘 < 20} (Hue window widths from 2 to 18)
𝑆min = {30 + 30𝑘 ∣ 𝑘 ∈ ℕ, 30 + 30𝑘 < 120} (Minimum saturation threshold)
𝑆max = {150 + 50𝑘 ∣ 𝑘 ∈ ℕ, 150 + 50𝑘 < 256} (Maximum saturation threshold)
𝑉min = {30 + 30𝑘 ∣ 𝑘 ∈ ℕ, 30 + 30𝑘 < 120} (Minimum value/brightness threshold)
𝑉max = {150 + 50𝑘 ∣ 𝑘 ∈ ℕ, 150 + 50𝑘 < 256} (Maximum value threshold)

(4.1)

These parameter ranges were chosen to cover a broad spectrum of possible HSV thresholds while
avoiding extremes that are unlikely to be useful for typical object colors (e.g., very low brightness or
saturation). The step sizes balance the trade-off between search resolution and computation time.
Each configuration is evaluated over a labeled image sequence. The color filtering pipeline is executed
using the candidate thresholds, and the vertical object position is estimated per frame. A penalty is
added during parameter estimation when a frame yields no valid detection to discourage configurations
that frequently miss the object. However, this penalty is not included in the computation of the standard
error, as it would bias the evaluation of the detected y-coordinates.
The implementation modules for labeling the image sequences and training the HSV parameters are
listed in Listing B.1 and Listing B.2, respectively.

4.4. Conclusion
This chapter described the implementation of several detection methods for tracking a falling object.
Frame differencing and background subtraction were effective only with a static camera. Motion com-
pensation was investigated for moving-camera setups but not adopted due to insufficient background
texture. The final method, HSV-based color filtering, was selected for its robustness to motion and opti-
mized via grid search. This implementation forms the basis for the evaluation presented in the following
chapter.
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5
Performance Evaluation

This chapter evaluates the performance of the image processing subsystem. The evaluation is limited
strictly to this subsystem; no assessment of the complete system is performed.
Two detection and tracking methods are considered: frame differencing and color filtering. The evalu-
ation focuses on detection accuracy and vertical (y-axis) tracking precision.
To measure tracking performance, the predicted object positions are compared against ground truth
positions. These ground truth positions are known from manually labeled sequences created specifi-
cally for this purpose. The comparison enables computation of standard error in the vertical position
estimates.
Detection accuracy is assessed qualitatively by inspecting whether the detected bounding box tightly
encloses the object and a detection-to-object size ratio is estimated as an additional measure of accu-
racy.

5.1. Process
To evaluate the performance of both frame differencing and color filtering methods, experiments were
conducted under distinct conditions for each approach.
For the frame differencing evaluation, static camera setups were used where images were captured
from a fixed position with a frame height of 2000 px. Sequences were repeated for three lens configu-
rations (8mm, 16 mm, and 25mm) to assess focal length effects.
For the color filtering evaluation, dynamic camera setups were employed with sequences captured with
a frame height of 640 px while tilting the camera. All images used in these moving-camera experiments
were manually labeled with ground truth y-positions of the target object’s center point. These labels
enabled both optimization of HSV parameters during training and subsequent error quantification dur-
ing testing. These labels were also used to optimize HSV parameters through the process described
in Section 4.3.3.3.

5.2. Frame Differencing
To evaluate the performance of the frame differencing method, a series of experiments was conducted
using labeled image sequences captured with a static camera. For the three different lenses, the exper-
iments are repeated several times to ensure a better estimate of the accuracy. Each setup consists of
consecutive video frames and the corresponding known vertical positions of the target object. The goal
of the evaluation is to measure how accurately the frame differencing method can detect and localize
the target object using the different selection of lenses available.
All image sequences used for the evaluation have their three example frames listed in Appendix D.1.
All static-images have a height of 2000 px, and their respective sequences are referred to by their di-
rectory names (/lens/index). The height of the target object in all frame differencing setups is close to
195 px, as indicated in Figure 5.1

17
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Figure 5.1: ball height in frame differencing setup 8 mm lens

5.2.1. Results
For each of the lenses, the experiments are repeated several times. After each experiment the standard
error is determined and plotted for each separate lens in Figure 5.2. The average standard error in all
frames for each of the experiments can be seen in Figure 5.2. A clear trend emerges: the tracking
accuracy tends to decrease with increasing focal length. The eight mm lens consistently achieved
the lowest standard error, with an average standard error across the three experiments of 26 px. In
contrast, the 25 mm lens resulted in a significantly higher average of 87 px. Note that this average
is heavily influenced by the last sequence for this focal length. As can be seen in Figure 5.2 the last
sequence has a significant peak of 139 px. This significant peak is most likely the result of the quality
of the images. As with higher focal lengths the field of view becomes significanlty smaller. This means
that a small motion by the object results in a larger shift in pixels in the image, which leads to more
motion blur. These errors should be put into perspective with the frame height. From the requirements
it follows that the estimated object location must not deviate from the true location by more than one
object height in the image plane. In Table 5.1 the different focal lengths with their corresponding object
heights are shown. With the different object heights and the same framehieght across the different
focal lengths a threshold can be determined for which object tracking is possible according to the set
requirement.

Focal Length (mm) Object Height (px)
8 mm 100 px
16 mm 200 px
25 mm 350 px

Table 5.1: Object height in pixels for different focal lengths

This object tracking threshold (OTB) can be determined with the following formula:

object height
frame height

× 100%

In Figure 5.3 the normalized standard error for each focal length is plotted against the corresponding
OTB. This normalized standard error is determined by dividing the average of the standard error for a
focal length by the frame height. From the plot it follows that the demonstrated results for the standard
error remained well below the threshold derived from the object’s apparent height. This indicates that
the predicted object location consistently remained within a range that can be considered acceptable
in relation to the object’s size in the frame for the static case.
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Figure 5.2: Standard error of the y-coordinate per sequence for each lens type.

Figure 5.3: Normalized standard error for each focal length compared to object-height-based thresholds.

Since the result for the static situation satisfied the requirement of the precision, the next attempt was
to implement this same approach for a moving camera. In the attemps for the moving camera it can be
immediately noticed that this approach is not feasible for non static camera’s. As can be seen in Figure
5.4 with a moving camera, several false detections are made. This is due to the fact that with any
camera motion the entire frame is shifted, which results in large differences between the subsequent
frames. These differences are mistakenly interpreted as motion, leading to false detections throughout
the frame. Even attempts to only preserve the boxes with the biggest area are not trustworthy. In
figure 5.4 the largest box does not contain the moving target. This shows that the approach of frame
differencing is not sustainable for a moving camera.
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Figure 5.4: Example output of the frame differencing method with multiple detected bounding boxes. The target object (pink
ball) is correctly detected, but several false positives are also present due to background noise and camera motion.

5.2.2. Discussion Frame Differencing
The frame differencing method was initially evaluated under controlled conditions using static camera
setups. Across the tested focal lengths a clear relationship was observed between focal length and the
standard error. Shorter focal lengths resulted in lower standard errors, with the 8 mm lens achieving
an average SE of 26 pixels. In contrast to the 25 mm lens setup which resulted in a significantly higher
average SE of 87 pixels, a result likely caused by motion blur in one of the sequences.
To contextualize these errors, a threshold was defined based on the object’s apparent size in the image:
the maximum allowable deviation was constrained to remained within the objects own height in the im-
age frame. Once the standard errors were normalized with respect to the frame height, it was found
that all configurations remained well below their respective thresholds, thereby satisfying the precision
requirement for the static case.
Building further on that to a movable camera setup the method was found to be unsuitable for mov-
ing camera’s. As demonstrated in 5.4, camera motion introduced false positives. These findings un-
derscore a fundamental limitation of the frame differencing approach: its dependency on static back-
grounds and stationary camera positioning.

5.3. Color Filtering
To evaluate the performance of the HSV-based color filtering method just like in section 5.2.1, a series
of experiments were conducted using labeled image sequences. Each setup consists of a sequence of
video frames and corresponding known vertical positions of the target object. The goal of the evaluation
is to measure how well the trained HSV parameters generalize both to the data they were trained on
and to previously unseen labeled sequences in the same setup.
All image sequences used for the evaluation have their 3 example frames listed in Appendix C. All
images captured with the tilting camera have a height of 640 px and their respective sequences are
referred to by their directory name (/lens/index).
Note that the target object’s pixel height differs slightly between lenses due to varying optical properties.
Specifically, the object appears with a height of approximately 50 px in sequences recorded with the
25mm lens, and approximately 70 px in those recorded with the 35mm lens. This difference is visually
illustrated in Figure 5.5, where the two setups are shown side by side for comparison.
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(a) Ball captured with 25mm lens, showing a ball height of 50 px (b) Ball captured with 35mm lens, showing a ball height of 70 px

Figure 5.5: Comparison of the target object’s pixel height in different lens setups.

Some image samples could not be unambiguously labeled with an expected y-coordinate due to ex-
cessive motion-blur or due to the object being cut off at either the top or bottom frame edge. In this
case, the standard error 𝑆𝐸 of each image sequence evaluation was computed with only the residuals
whose expected and measured y-coordinates are known.

5.3.1. Results
For each setup, the HSV filter parameters 𝜃 = (𝐻, Δ𝐻, 𝑆min, 𝑆max, 𝑉min, 𝑉max) were optimized using
the method described in Section 4.3.3.3. The cost function minimized during training was the average
squared error between the detected and expected vertical positions, with a penalty of ten times the
frame-height added for missed detections. These optimized HSV parameters are listed by their image
sequence alongwith their calculated cost in Table 5.2. Note that the listed cost values are dimensionless
metrics representing this cost function, and so their numerical values alone do not carry direct physical
meaning but are useful for comparing optimization performance across setups.

Once the optimal HSV intervals were identified for a setup, these parameters were then evaluated on
the trained image sequence, and for some intervals also on a different image sequence with the same
falling object, captured in the same setup (background, illumination, target-object, etc. are all the same).
The latter effectively measures the performance of the color filter with the automatically generated HSV
target-intervals for constrained unseen data, called cross-validation.

The evaluation results of the former and latter are presented in Table 5.3 and Table 5.4 respectively,
where 𝑛valid signifies the number of samples where a labeled expected y-coordinate as well as a mea-
sured y-coordinate (non-nil) are known. 𝑛total signifies the total number of samples in the given test
setup. Finally, 𝑆𝐸 is the standard error in pixels.

Note also that in previous figures (e.g., Figure 5.2) the test setups included additional focal lengths
such as 8 mm and 16 mm, which are not shown here but were part of earlier experiments.
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Table 5.2: Estimated HSV parameters and associated cost per test image sequence

Test Setup 𝐶𝑜𝑠𝑡 𝐻 Δ𝐻 𝑆min 𝑆max 𝑉min 𝑉max

/35mm/1.1 612.57 162 6 90 250 30 250
/35mm/2.1 774.34 162 18 30 200 30 250
/35mm/2.2 2697.49 6 10 60 250 30 250
/25mm/1.1 1895.35 60 10 30 250 90 200
/25mm/1.2 1832.07 156 14 30 250 30 250
/25mm/1.3 1538.00 72 14 30 250 30 150
/25mm/2.1 2566.02 6 6 90 250 30 150
/25mm/2.2 595.64 54 18 30 250 30 150

𝐶𝑜𝑠𝑡 is the minimized cost function value. 𝐻 is the central hue value; Δ𝐻 is the hue tolerance range. 𝑆min, 𝑆max, 𝑉min, and
𝑉max define the saturation and value ranges for the HSV filter.

Table 5.3: Detection validity and standard error in test image sequences using their respective estimated parameter intervals

Test Setup 𝑛valid / 𝑛total 𝑆𝐸 [px] 𝑆𝐸%
/35mm/1.1 33 / 35 49.96 7.81%
/35mm/2.1 23 / 25 36.13 5.64%
/35mm/2.2 14 / 25 35.85 5.60%
/25mm/1.1 11 / 25 41.81 6.53%
/25mm/1.2 16 / 25 37.48 5.86%
/25mm/1.3 10 / 15 45.16 7.06%
/25mm/2.1 5 / 24 49.05 7.66%
/25mm/2.2 9 / 17 29.43 4.60%

𝑛valid/𝑛total is the count of valid detections versus total frames. 𝑆𝐸 is the standard error in pixels between detected and
expected vertical positions. 𝑆𝐸% is the relative standard error as a percentage of the frame height.

Table 5.4: Cross-validated performance testing using HSV parameters from their respective counterpart image sequences in
the same setup

Test Setup 𝑛valid / 𝑛total 𝑆𝐸 [px] 𝑆𝐸% Counterpart Setup 𝑛valid / 𝑛total 𝑆𝐸 [px] 𝑆𝐸%
/35mm/1.1 18 / 35 64.34 10.05% /35mm/2.1 23 / 25 36.44 5.69%
/25mm/1.3 10 / 15 46.32 7.24% /25mm/2.2 9 / 17 31.99 5.00%
/25mm/1.1 0 - - /25mm/1.3 8 / 15 50.29 7.86%
/25mm/1.1 13 / 25 49.26 7.70% /25mm/2.2 6 / 17 34.51 5.39%

5.3.2. Evaluation of Results
5.3.2.1. Optimized HSV Parameters
The estimated hue values 𝐻 presented in Table 5.2 correspond to the dominant color of each target
object. For visual reference, these colors and their associated parameters can be seen in Figures C.1–
C.8 in Appendix C, where each row displays the segmented object using the respective HSV intervals.

It is also notable that the 𝑉max parameter for setups /25mm/1.1 through /25mm/2.2 is consistently
lower than for the /35mm setups. This difference likely reflects variations in illumination intensity across
the experimental configurations, due to changes in lighting. Since the system is intended to operate
under controlled laboratory conditions (see Section 2, Target Environment), this variation is expected
to differ across different setups.
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5.3.2.2. Measured Object Position
The system was tested with two lens configurations producing different ball heights: 50 px (25mm lens)
and 70 px (35mm lens) against a constant frame height of 640 px.
Using the normalized evaluation metric, namely that the estimated object location must not deviate
from the true location by more than one object height in the image plane, we establish the following
benchmarks:

• For 25mm lens: 50 / 640 × 100% ≈ 7.81% threshold
• For 35mm lens: 70 / 640 × 100% ≈ 10.94% threshold

All measured relative standard errors (𝑆𝐸%) for both lens configurations in Table 5.3 satisfy this con-
straint. This demonstrates that the detection method maintains appropriate precision relative to the
object size in the image frame.

This performance, combined with the system’s higher valid detection rate (compared to alternatives like
frame differencing), suggests an effective balance between detection consistency and precision. The
stable positional estimates prove particularly beneficial for the downstream motion control subsystem,
which prioritizes reliable, frequent updates of the object’s position.

5.3.2.3. Cross-validated Color Filtering Method
Table 5.4 shows the cross-validation results assessing HSV parameter transferability between se-
quences of similar setups.
The highest detection accuracy was observed for test sequence /25mm/2.2 when using HSV param-
eters derived from /25mm/1.3, achieving a relative standard error of 5.00% and 9 valid detections out
of 17 frames. This indicates that parameters calibrated within a specific setup generalize well to other
recordings under the same conditions.
Conversely, the reverse test (/25mm/1.3 using /25mm/2.2 parameters) resulted in a higher relative
standard error of 7.24%, showing some variation in parameter robustness, which may be attributed to
small differences in lighting or excessive motion-blur.
For the /35mm configuration, detection performance also remained within a reasonable margin, with
relative standard errors such as 5.69% and 10.05% and moderate detection rates. Although perfor-
mance varied between sequences, the overall trend indicates that HSV parameters can be effectively
reused across sequences of the same experimental setup, provided the target object is similar.

Given that training on the target object is part of the system workflow, such per-setup calibration is suf-
ficient for meeting the functional requirement of consistent local processing (see PoR, MR-1.c). While
adaptive thresholding could further improve robustness under changing illumination, static HSV inter-
vals remain a viable and practical solution in controlled environments.

5.3.3. Discussion of Final Implementation
The HSV color filtering approach was ultimately chosen as the final object detection method due to
its robustness in a moving-camera setup, as demonstrated by the experimental results. Compared to
frame differencing, color filtering delivered a significantly higher number of valid detections per image
sequence and proved more resilient against the visual disturbances introduced by camera motion.

Tables 5.3 and 5.4 provide quantitative insight into the performance and limitations of this method.
Comparing the relative standard errors (𝑆𝐸%) against the ball-height-proportional metric (SE% < ball
height / frame height × 100%), this color-filtering method demonstrates consistent compliance across
both lens configurations, with the majority of measurements satisfying these constraints. This perfor-
mance validates the method’s ability to maintain appropriate precision relative to the object’s size in
the image frame.
A key strength of the method is its ability to produce a high valid-detection rate. Most sequences yielded
over 50% valid detections (Table 5.3), a substantial improvement over the frame differencing method,
which suffered from false positives in the presence of background motion. This makes color filtering
particularly suitable for real-time tracking systems where detection dropout can disrupt downstream
control subsystems.
Cross-validation experiments further support the robustness of the method under similar test conditions.
Table 5.4 shows that HSV parameters trained on one sequence typically generalize well to another se-
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quence within the same setup and lighting conditions. For example, the parameters from /35mm/2.1
achieved low standard error and high validity when applied to /35mm/1.1, suggesting that in controlled
environments, retraining is not always required for each recording instance.
The consistency of the optimal parameters across such related sequences (Table 5.2) also indicates
that in stable laboratory setups, per-sequence calibration of HSV intervals can be an effective and low-
overhead strategy. While some variation in detection quality remains, especially when setups differ in
lighting or background, this is manageable given that training on a representative target object is part
of the system’s expected deployment workflow.

5.4. Conclusion
The evaluation of the frame differencing method demonstrated that, under static camera conditions, the
standard error remained within acceptable bounds relative to the object height across all tested focal
lengths. The method proved capable of maintaining adequate precision in detecting and localizing the
object when the background remained stationary. However, in dynamic scenarios involving camera
motion, the approach consistently produced false positives due to global frame shifts, rendering it un-
suitable for use in moving-camera systems. These limitations highlight the method’s dependency on
static environments and its lack of robustness under practical deployment conditions. Due to these
limitations, an alternative approach was considered namely HSV color filtering. This approach demon-
strates appropriate precision when evaluated through the ball-height-proportional metric while offering
superior robustness in dynamic conditions and a high valid detection rate. Its suitability for integra-
tion with a moving actuator-based camera system, combined with acceptable generalization within
constrained conditions, justifies its selection as the final implementation. Future improvements could
include adaptive thresholding or dynamic color modeling to reduce sensitivity to illumination variation
and setup-specific tuning.



6
Conclusion

This report investigates the development and evaluation of an image processing subsystem for real-
time tracking of a vertically falling object. The primary goal was to detect and localize the object accu-
rately across a variety of camera configurations and motion scenarios.
Two object detection approaches were implemented and assessed: frame differencing and HSV color
filtering. The evaluation focused on standard error in the vertical (y-axis) position of the object as a
metric for tracking precision and employed a proportional threshold based on the object’s height within
the frame.
Frame differencing demonstrated acceptable tracking accuracy under static conditions. For all tested
focal lengths (8 mm, 16 mm, and 25 mm), the normalized standard error remained below the object-
height-based threshold, indicating sufficient positional precision when the camera remained fixed. How-
ever, the method was shown to be highly sensitive to background motion and entirely unsuitable for
dynamic scenarios. Even minor camera movement resulted in extensive false detections due to global
frame shifts, thereby undermining the method’s reliability for real-time applications involving an actu-
ated camera.

To overcome these limitations, the HSV color filtering approach was adopted and subjected to equiva-
lent evaluation criteria. The experimental evaluation demonstrates that the HSV color filtering method
achieves reliable object detection under controlled conditions, meeting the specified accuracy require-
ments. The measured standard errors remain within the permissible margin relative to the object height
in the image plane, with relative errors consistently below their respective calculated thresholds. This
method outperforms frame differencing in robustness, particularly in dynamic camera scenarios, yield-
ing higher valid detection rates and greater resilience against motion-induced artifacts.
Cross-validation tests confirm that optimized HSV parameters generalize effectively across sequences
with similar setups, though performance varies slightly due to lighting differences or motion blur. The
method’s consistency supports its suitability for laboratory environments where conditions are stable
and per-setup calibration is feasible.
It can therefore be concluded that while frame differencing may serve as a baseline method under
constrained conditions, its practical applicability is limited. HSV color filtering, by contrast, meets both
the precision and robustness requirements necessary for real-time object tracking in dynamic environ-
ments. As such, it has been selected as the final implementation for the image processing subsystem.

It should be noted that real-time performance aspects, such as computational delays or scheduling
constraints, were not explicitly evaluated in this study. Additionally, the shutter speed of the camera
was automatically set at 8 ms or 1/120. By manually increasing the shutter speed to its maximum of
0.5 ms would have decreased motion blur. At the expense of having needed extra lighting. Future
work should include latency measurements and real-time system integration to assess temporal perfor-
mance. Further improvements could explore adaptive thresholding techniques to enhance robustness
under variable illumination.
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Listing A.1: Frame Differencing Module
1 """
2 MIT License
3

4 Copyright (c) 2025 Muhammed Enes Kaya, Naufal el Khatibi, Timo Haas
5 Copyright (c) 2022 Isaac Berrios
6

7 Permission is hereby granted, free of charge, to any person obtaining a copy
8 of this software and associated documentation files (the "Software"), to deal
9 in the Software without restriction, including without limitation the rights
10 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 copies of the Software, and to permit persons to whom the Software is
12 furnished to do so, subject to the following conditions:
13

14 The above copyright notice and this permission notice shall be included in all
15 copies or substantial portions of the Software.
16

17 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 SOFTWARE.
24 """
25 import cv2 as cv
26 import numpy as np
27

28

29 def process_frames(prev_gray, curr_gray, curr_color):
30 diff = cv.absdiff(curr_gray, prev_gray)
31 _, bw = cv.threshold(diff, 5, 255, cv.THRESH_BINARY)
32 kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (5, 5))
33 bw = cv.morphologyEx(bw, cv.MORPH_OPEN, kernel)
34 bw = cv.morphologyEx(bw, cv.MORPH_CLOSE, kernel)
35

36 contours, _ = cv.findContours(bw, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
37 output = curr_color.copy()
38 detections = []
39

40 for cnt in contours:
41 x, y, w, h = cv.boundingRect(cnt)
42 area = w * h
43

44 MIN_AREA_THRESH = 400
45 if area > MIN_AREA_THRESH:
46 detections.append([x, y, x + w, y + h, area])
47

48 boxes = [det[:4] for det in detections]
49 scores = [det[4] for det in detections]
50

51 keep = _non_max_suppression(np.array(boxes), np.array(scores), 0)
52

53 for box in keep:
54 x1, y1, x2, y2 = box
55 cv.rectangle(output, (x1, y1), (x2, y2), (0, 0, 255), 2)
56

57 if len(keep) > 1:
58 return None, output, bw
59

60 return (y1 + y2) / 2, output, bw
61

62

63 def _remove_contained_bboxes(boxes):
64 """
65 From: https://github.com/itberrios/CV_projects/blob/main/motion_detection/

detection_with_frame_differencing.ipynb
66 """
67 check_array = np.array([True, True, False, False])
68 keep = list(range(len(boxes)))
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69 for i in keep[:]:
70 for j in range(len(boxes)):
71 if i != j and np.all((np.array(boxes[j]) >= np.array(boxes[i])) == check_array):
72 try:
73 keep.remove(j)
74 except ValueError:
75 continue
76 return keep
77

78

79 def _non_max_suppression(boxes, scores, threshold):
80 """
81 From: https://github.com/itberrios/CV_projects/blob/main/motion_detection/

detection_with_frame_differencing.ipynb
82 """
83 boxes = boxes[np.argsort(scores)[::-1]]
84 order = _remove_contained_bboxes(boxes)
85 keep = []
86

87 while order:
88 i = order.pop(0)
89 keep.append(i)
90 new_order = []
91 for j in order:
92 xx1 = max(boxes[i][0], boxes[j][0])
93 yy1 = max(boxes[i][1], boxes[j][1])
94 xx2 = min(boxes[i][2], boxes[j][2])
95 yy2 = min(boxes[i][3], boxes[j][3])
96

97 inter_area = max(0, xx2 - xx1) * max(0, yy2 - yy1)
98 area_i = (boxes[i][2] - boxes[i][0]) * (boxes[i][3] - boxes[i][1])
99 area_j = (boxes[j][2] - boxes[j][0]) * (boxes[j][3] - boxes[j][1])
100 union = area_i + area_j - inter_area
101

102 iou = inter_area / union if union != 0 else 0
103

104 if iou <= threshold:
105 new_order.append(j)
106 order = new_order
107

108 return boxes[keep]

Listing A.2: Color Filtering Module
1 """
2 MIT License
3

4 Copyright (c) 2025 Muhammed Enes Kaya, Naufal el Khatibi, Timo Haas
5 Copyright (c) 2022 Isaac Berrios
6

7 Permission is hereby granted, free of charge, to any person obtaining a copy
8 of this software and associated documentation files (the "Software"), to deal
9 in the Software without restriction, including without limitation the rights
10 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 copies of the Software, and to permit persons to whom the Software is
12 furnished to do so, subject to the following conditions:
13

14 The above copyright notice and this permission notice shall be included in all
15 copies or substantial portions of the Software.
16

17 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 SOFTWARE.
24 """
25 import cv2 as cv
26 import numpy as np
27
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28

29 def process_frames(curr_color, target_hue, hue_tolerance, s_min=50, s_max=255, v_min=50,
v_max=255):

30 hsv = cv.cvtColor(curr_color, cv.COLOR_BGR2HSV)
31

32 h_low = max(target_hue - hue_tolerance, 0)
33 h_high = min(target_hue + hue_tolerance, 179)
34

35 lower_bound = np.array([h_low, s_min, v_min])
36 upper_bound = np.array([h_high, s_max, v_max])
37

38 mask = cv.inRange(hsv, lower_bound, upper_bound)
39

40 kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (5, 5))
41 mask = cv.morphologyEx(mask, cv.MORPH_OPEN, kernel)
42 mask = cv.morphologyEx(mask, cv.MORPH_CLOSE, kernel)
43

44 contours, _ = cv.findContours(mask, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
45 output = curr_color.copy()
46 detections = []
47

48 for cnt in contours:
49 x, y, w, h = cv.boundingRect(cnt)
50 area = w * h
51 if area > 10:
52 detections.append([x, y, x + w, y + h, area])
53

54 boxes = [det[:4] for det in detections]
55 scores = [det[4] for det in detections]
56 keep = _non_max_suppression(np.array(boxes), np.array(scores), 0)
57

58 if len(keep) != 1:
59 return None, output, mask
60

61 x1, y1, x2, y2 = keep[0]
62 y_measured = (y1 + y2) / 2
63 output = cv.rectangle(output, (x1, y1), (x2, y2), (0, 0, 255), 2)
64 return y_measured, output, mask
65

66

67 def _remove_contained_bboxes(boxes):
68 """
69 From: https://github.com/itberrios/CV_projects/blob/main/motion_detection/

detection_with_frame_differencing.ipynb
70 """
71 check_array = np.array([True, True, False, False])
72 keep = list(range(len(boxes)))
73 for i in keep[:]:
74 for j in range(len(boxes)):
75 if i != j and np.all((np.array(boxes[j]) >= np.array(boxes[i])) == check_array):
76 try:
77 keep.remove(j)
78 except ValueError:
79 continue
80 return keep
81

82

83 def _non_max_suppression(boxes, scores, threshold):
84 """
85 From: https://github.com/itberrios/CV_projects/blob/main/motion_detection/

detection_with_frame_differencing.ipynb
86 """
87 boxes = boxes[np.argsort(scores)[::-1]]
88 order = _remove_contained_bboxes(boxes)
89 keep = []
90

91 while order:
92 i = order.pop(0)
93 keep.append(i)
94 new_order = []
95 for j in order:
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96 xx1 = max(boxes[i][0], boxes[j][0])
97 yy1 = max(boxes[i][1], boxes[j][1])
98 xx2 = min(boxes[i][2], boxes[j][2])
99 yy2 = min(boxes[i][3], boxes[j][3])
100

101 inter_area = max(0, xx2 - xx1) * max(0, yy2 - yy1)
102 area_i = (boxes[i][2] - boxes[i][0]) * (boxes[i][3] - boxes[i][1])
103 area_j = (boxes[j][2] - boxes[j][0]) * (boxes[j][3] - boxes[j][1])
104 union = area_i + area_j - inter_area
105

106 iou = inter_area / union if union != 0 else 0
107

108 if iou <= threshold:
109 new_order.append(j)
110 order = new_order
111

112 return boxes[keep]
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Listing B.1: Labeling Module
1 """
2 MIT License
3

4 Copyright (c) 2025 Muhammed Enes Kaya
5

6 Permission is hereby granted, free of charge, to any person obtaining a copy
7 of this software and associated documentation files (the "Software"), to deal
8 in the Software without restriction, including without limitation the rights
9 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 copies of the Software, and to permit persons to whom the Software is
11 furnished to do so, subject to the following conditions:
12

13 The above copyright notice and this permission notice shall be included in all
14 copies or substantial portions of the Software.
15

16 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 SOFTWARE.
23 """
24 import os
25 import sys
26 import cv2
27 import time
28 import json
29

30 from algorithms.color_filter import process_frames
31 from util import load_frames, replace_last
32

33

34 def main():
35 images_dir = "./training-set/moving-camera/"
36

37 instance_reference_xys_map = {
38 "35mm/1.1": [],
39 "35mm/2.1": [],
40 "35mm/2.2": [],
41 "25mm/1.1": [],
42 "25mm/1.2": [],
43 "25mm/1.3": [],
44 "25mm/2.1": [],
45 "25mm/2.2": []
46 }
47

48 for inst_idx, (instance, xys) in enumerate(instance_reference_xys_map.items(), 1):
49 frames = load_frames(images_dir + instance)
50

51 for frame_idx, frame in enumerate(frames, 1):
52 display = frame.copy()
53 status = f"{inst_idx}/{len(instance_reference_xys_map)}␣{instance}␣{frame_idx}/{

len(frames)}"
54 cv2.putText(display, status, (10, 30),
55 cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0,255,255), 2)
56

57 cv2.imshow("Reference:␣click␣on␣the␣center␣of␣the␣ball", display)
58 cv2.setMouseCallback("Reference:␣click␣on␣the␣center␣of␣the␣ball",
59 on_click, (instance, instance_reference_xys_map, frame_idx))
60

61 if cv2.waitKey(60000) in (ord('c'), 27):
62 continue
63

64 with open(f"{replace_last(instance,␣"/",␣"_")}.json", 'w') as f:
65 json.dump({instance: xys}, f)
66

67

68 def on_click(event, x, y, flags, param):
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69 global _user_input_lock
70 if event == cv2.EVENT_LBUTTONDOWN:
71 _user_input_lock = True
72

73 instance = param[0]
74 xys = param[1][param[0]]
75

76 clicked_point = (x, y)
77 xys.append((param[2], clicked_point))
78

79 print(f"Reference␣for␣{instance}␣at␣{param[2]}␣in␣JSON:␣{(param[2],␣xys[len(xys)␣-␣
1])}")

80

81

82 def load_frames(folder_path):
83 frame_files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(

folder_path, f))]
84

85 image_extensions = ['.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.tif']
86 frame_files = [f for f in frame_files if os.path.splitext(f)[1].lower() in

image_extensions]
87

88 frame_files.sort(key=lambda x: int(''.join(filter(str.isdigit, x))))
89

90 frames = []
91 for frame_file in frame_files:
92 frame_path = os.path.join(folder_path, frame_file)
93 frame = cv2.imread(frame_path)
94 if frame is not None:
95 frames.append(frame)
96 else:
97 print(f"Warning:␣Could␣not␣load␣image␣{frame_file}")
98

99 return frames
100

101

102 def replace_last(source_string, replace_what, replace_with):
103 head, _sep, tail = source_string.rpartition(replace_what)
104 return head + replace_with + tail
105

106

107 if __name__ == "__main__":
108 main()

Listing B.2: Training Module
1 """
2 MIT License
3

4 Copyright (c) 2025 Muhammed Enes Kaya
5

6 Permission is hereby granted, free of charge, to any person obtaining a copy
7 of this software and associated documentation files (the "Software"), to deal
8 in the Software without restriction, including without limitation the rights
9 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 copies of the Software, and to permit persons to whom the Software is
11 furnished to do so, subject to the following conditions:
12

13 The above copyright notice and this permission notice shall be included in all
14 copies or substantial portions of the Software.
15

16 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 SOFTWARE.
23 """
24 import json
25 import os
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26

27 import numpy as np
28 import cv2 as cv
29

30 from itertools import product
31 from algorithms.color_filter import process_frames
32 from util import load_frames, load_expected_positions
33

34

35 def compute_cost(expected_dict, frames_data,
36 h_range, h_tol_range,
37 s_min_range, s_max_range,
38 v_min_range, v_max_range):
39

40 best_params = None
41 min_cost = float("inf")
42

43 for h, htol, s_min, s_max, v_min, v_max in product(
44 h_range, h_tol_range, s_min_range, s_max_range, v_min_range, v_max_range
45 ):
46 if s_min >= s_max or v_min >= v_max:
47 continue # skip invalid intervals
48

49 cost = 0
50 total_frames = 0
51

52 for frame_idx, expected_pos in expected_dict.items():
53 frame = frames_data[frame_idx]
54 y_measured, _, _ = process_frames(
55 frame, h, htol, s_min, s_max, v_min, v_max
56 )
57

58 y_expected = expected_pos[1]
59 if y_measured is None:
60 # Penalize missed detections heavily
61 cost += 5000
62 else:
63 cost += (y_measured - y_expected) ** 2
64

65 total_frames += 1
66

67 avg_cost = cost / total_frames if total_frames > 0 else float("inf")
68

69 if avg_cost < min_cost:
70 min_cost = avg_cost
71 best_params = (h, htol, s_min, s_max, v_min, v_max)
72

73 return best_params, min_cost
74

75

76 instances = [
77 "35mm/1.1",
78 "35mm/2.1",
79 "35mm/2.2",
80

81 "25mm/1.1",
82 "25mm/1.2",
83 "25mm/1.3",
84 "25mm/2.1",
85 "25mm/2.2"
86 ]
87

88 for instance in instances:
89 images_path = "./training-set/moving-camera/" + instance
90 json_path = f"./training-set/Batch␣1/{instance}.json"
91

92 expected = load_expected_positions(json_path, instance)
93 frames_data = load_frames(images_path)
94 h_range = range(0, 180, 6)
95 h_tol_range = range(2, 20, 4)
96 s_min_range = range(30, 120, 30)



37

97 s_max_range = range(150, 256, 50)
98 v_min_range = range(30, 120, 30)
99 v_max_range = range(150, 256, 50)
100

101

102 best_out, best_cost = compute_cost(
103 expected, frames_data,
104 h_range, h_tol_range,
105 s_min_range, s_max_range, v_min_range, v_max_range
106 )
107

108 print(f"Final␣best␣Params␣for␣instance␣{instance}␣(hue,␣hue_tolerance):␣{best_out},␣with␣
cost:␣{best_cost}")

Listing B.3: Testing Module
1 """
2 MIT License
3

4 Copyright (c) 2025 Muhammed Enes Kaya
5

6 Permission is hereby granted, free of charge, to any person obtaining a copy
7 of this software and associated documentation files (the "Software"), to deal
8 in the Software without restriction, including without limitation the rights
9 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 copies of the Software, and to permit persons to whom the Software is
11 furnished to do so, subject to the following conditions:
12

13 The above copyright notice and this permission notice shall be included in all
14 copies or substantial portions of the Software.
15

16 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 SOFTWARE.
23 """
24 import os
25 import sys
26 import cv2
27 import time
28

29 from algorithms.color_filter import process_frames
30 from util import load_frames
31

32

33 test_instance_color_map = {
34 "/35mm/1.1": (162, 6 , 90, 250, 30, 250), # cost=612.5735294117648
35 "/35mm/2.1": (162, 18, 30, 200, 30, 250), # cost=774.3382352941177
36 "/35mm/2.2": (6 , 10, 60, 250, 30, 250), # cost=2697.4895833333335
37

38 "/25mm/1.1": (60 , 10, 30, 250, 90, 200), # cost=1895.35
39 "/25mm/1.2": (156, 14, 30, 250, 30, 250), # cost=1832.0714285714287
40 "/25mm/1.3": (72 , 14, 30, 250, 30, 150), # cost=1538.0
41 "/25mm/2.1": (6 , 6, 90, 250, 30, 150), # cost=2566.0208333333335
42 "/25mm/2.2": (54 , 18, 30, 250, 30, 150), # cost=595.6428571428571
43 }
44

45 recording_id = time.strftime('%y%m%d%H%M%S', time.gmtime())
46 dir_root = f"/Users/enoks/Downloads/{recording_id}/"
47 os.makedirs(dir_root, exist_ok=True)
48 for index, (test_key, test_val) in enumerate(sorted(list(test_instance_color_map.items()))):
49 folder_path = "./training-set/moving-camera" + test_key
50 frames_list = load_frames(folder_path)
51

52 for i in range(0, len(frames_list)):
53 frame = frames_list[i]
54

55 processor_output = process_frames(
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56 frame,
57 test_val[0],
58 test_val[1]
59 )
60

61 y, output_image, mask = processor_output
62

63 cv2.imshow(f"[{test_key}]␣Colored␣frame␣differencing", output_image)
64 cv2.imwrite(dir_root + f"frame_{index:06d}.jpg", frame)
65 cv2.waitKey(1000)
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Figure C.1: 35mm lens, setup 1.1

Figure C.2: 35mm lens, setup 2.1

Figure C.3: 35mm lens, setup 2.2

Figure C.4: 25mm lens, setup 1.1
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Figure C.5: 25mm lens, setup 1.2

Figure C.6: 25mm lens, setup 1.3

Figure C.7: 25mm lens, setup 2.1

Figure C.8: 25mm lens, setup 2.2
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D
Static Camera Sample Frames from

Each Test Setup

Figure D.1: 8mm lens, setup 1.1
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Figure D.2: 8mm lens, setup 1.2
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Figure D.3: 8mm lens, setup 1.3
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Figure D.4: 16mm lens, setup 1.1
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Figure D.5: 16mm lens, setup 1.2
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Figure D.6: 16mm lens, setup 1.3
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Figure D.7: 25mm lens, setup 1.1
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Figure D.8: 25mm lens, setup 1.2
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Figure D.9: 25mm lens, setup 1.3
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