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a b s t r a c t 

A novel immersed boundary method based on a domain decomposition approach is proposed in the 

context of a finite element discretisation method. It is applicable to incompressible flows past rigid, de- 

forming, or moving bodies. In this method, unlike most immersed boundary methods, strong boundary 

conditions are imposed in the regions of the computational domain that are occupied by the structure. In 

order to achieve this, the proposed formulation decomposes the computational domain by splitting the 

finite element test functions into solid and fluid parts. In the continuous Galerkin formulation, this pro- 

duces a smeared representation of the fluid-structure interface. The absence of an immersed boundary 

forcing term implies that the method itself has no influence on the CFL stability criterion. Furthermore, 

the stiffness matrix in the momentum equation is sparser than compared with other forcing immersed 

boundary methods, and symmetry and positive-definiteness of the Laplacian operator in the pressure 

equation is preserved. As shown in this paper, stability and accurate imposition of boundary conditions 

make the method promising for high Reynolds number flows. The method is applied to the simulations 

of two-dimensional laminar flow over stationary and moving cylinders, as well as a moderately high 

Reynolds number flow past an aerofoil. Good results are obtained when compared with those from pre- 

vious experimental and numerical studies. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Fluid-structure interactions (FSI) are encountered in many en-

ineering applications, such as the flow past large wind turbine

lades, the deployment of spacecraft parachutes, or blood flows

hrough arteries. Immersed boundary methods are attractive to nu-

erically simulate these problems, especially when the geometry

f the structure is complex and arbitrarily deforming [1–3] . These

ethods immerse the structure in a fluid domain and mimic its

ffect on the fluid dynamics. This contrasts with body-conforming

ethods, in which the fluid domain excludes the structure and

he governing equations of the flow field are solved only in re-

ions surrounding the structure. The original immersed boundary

ethod was introduced by Peskin [4] to simulate cardiac flows.

ince then, several variations of this approach have been proposed,

s detailed hereafter. 

Based on how the fluid-structure interface is represented

n the discrete mesh, immersed boundary methods can be

lassified as sharp-interface and diffused-interface methods. In

iffused-interface methods, the discrete representation of the fluid-

tructure interface spreads over one or more grid cells. Therefore,
∗ Corresponding author. 
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e  

t  

i  

i  

ttps://doi.org/10.1016/j.compfluid.2020.104500 

045-7930/© 2020 Elsevier Ltd. All rights reserved. 
he interface is smeared and differs from the actual surface bound-

ry of the structure. Methods mimicking the effect of the struc-

ure through an additional forcing term in the fluid’s equations of

otion often fall under this category. The simplest of the forcing

ethods are the penalty methods [5–7] . In that case, the force

erm that is added to the right-hand-side of the fluid’s momen-

um equation is proportional to the difference between fluid and

tructure velocities with a certain penalty factor. The latter, which

s difficult to interpret physically, can change the strength at which

he penalty condition is enforced. Such penalised forcing meth-

ds are also popular in the context of finite element methods [8–

1] . The penalty force is always masked by a stepping function to

imit the region in which it acts. The stepping function can be a

irac function across the interface element [6,8] , weighted func-

ions spread across multiple elements to avoid numerical oscilla-

ions [7] or a conservatively projected solid concentration field that

arks the presence of the body [11] . A slightly modified version of

he penalty method is the feedback control method [12] . In this

ethod, in addition to the damping term, the forcing term also

as a stiffness term. From a physical point of view, the bound-

ry condition is then imposed as a damped oscillator [1] . A differ-

nce between the penalty forcing method and the feedback con-

rol method lies in the way the boundary condition is satisfied:

t is always lagging behind in the penalty forcing method, while

t is oscillatory in the feedback control method. Another common

https://doi.org/10.1016/j.compfluid.2020.104500
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2020.104500&domain=pdf
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Fig. 1. Schematic representation of the computational domain ( �), and solid ( �s ) 

and fluid ( �f ) sub-domains. ∂� is the boundary of the computational domain. ∂�f 

and ∂�s are the boundaries of the fluid and solid sub-domains. The blue curve is 

the immersed boundary that is shared between the solid and fluid sub-domains. 

(For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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forcing method is the direct forcing method, in which the addi-

tional forcing term balances out the convective, viscous, and pres-

sure gradient terms in the Navier–Stokes equations [13,14] . In this

class of immersed boundary methods, the physical interpretation

of the forcing term is clearer than in the penalty method. A draw-

back, however, is that the implicit evaluation of the forcing term

leads to a denser stiffness matrix in the discrete system of equa-

tions. In order to solve this, variations of the original direct forcing

method have been proposed and evaluate the forcing term at dif-

ferent time levels. For example, a semi-implicit staggered approach

was proposed and computed an intermediate velocity field with-

out the forcing term, then calculated the forcing term using the

intermediate velocity field, and eventually made a velocity correc-

tion using the forcing term [15,16] . Implicit approaches are usually

preferred in terms of accuracy, since the boundary conditions are

imposed while solving the momentum equations. However, in all

their variants, the no-slip condition at the interface could be vi-

olated in the staggered step to project velocity onto a solenoidal

field. Also, solution to the Poisson’s system that has to be solved

for the projection is affected by the quality of the grid, both in-

side and outside the immersed boundary. This can be particularly

challenging for problems involving thin membranes. 

One of the undesirable features of diffused-interface methods is

that the discrete fluid-structure interface is smeared across several

mesh nodes. Cut-cell methods are a type of sharp-interface meth-

ods that eliminate this issue by locally reconstructing the mesh

to align it with the boundary [17–20] . However, this approach is

mostly applied to two-dimensional problems as the mesh recon-

struction in three-dimensional cases is inherently difficult. Even in

two-dimensional problems, it was shown that a major challenge is

to properly define and manage the topology of cut cells [3] . An-

other sharp-interface approach is the hybrid Cartesian immersed

boundary method, which uses a Cartesian grid and applies strong

boundary conditions at the nodes located in the structure [21] .

This method can be more accurate in applying the fluid-structure

interface conditions than the previous immersed boundary meth-

ods. However, the use of a Cartesian grid is inefficient to resolve

boundary layers near complex geometries, hence limiting the ap-

plicability of the method to flows past simple geometries. The

curvilinear immersed boundary method [22] is an extension of this

method and uses curvilinear grids. The latter are better than Carte-

sian grids to resolve boundary layers for relatively simple curved

geometries. 

Finally, a completely different approach, relevant for both sharp

and diffused interfaces, is based on the idea that the forcing term

can be viewed as a Lagrange multiplier that imposes a velocity

boundary condition in regions occupied by the immersed body

[23–25] . The role of the multiplier is then similar to the role of

the pressure field in an incompressible flow, where pressure is ef-

fectively used to satisfy the divergence-free condition. This method

presents several advantages as it is able to impose boundary con-

ditions accurately, while preserving the symmetry of the Pois-

son’s system. Also, the operators can be tweaked to impose sharp-

interface or diffused-interface conditions. 

In this paper, a novel method is proposed to accurately im-

pose the boundary condition at the fluid-structure interface, with-

out limitations to Cartesian grids and without requiring additional

equations to be solved. The method is developed in the context

of the finite-element discretisation and applies the no-slip condi-

tion at the interface as a strong boundary condition in the fluid’s

momentum equations. This is achieved by decomposing the com-

putational domain into two distinct regions, one for the fluid and

another one for the structure. The domain decomposition is per-

formed by splitting the finite element test functions into two parts.

The momentum equation is solved for across the whole compu-

tational domain with a strong imposition of the boundary condi-
ion inside the solid phase. The Poisson’s equation for pressure is

olved on the computational sub-domain that belongs to the fluid

hase. The paper is organised as follows. Section 2 outlines the ba-

ic principle of the method and presents the governing equations

n the solid and fluid sub-domains. Section 3 converts the con-

inuous equations into discrete forms. Section 4 demonstrates the

erformance of the method on several test cases. First, three lam-

nar cases are considered: Taylor-Couette flow, flow past a station-

ry two-dimensional cylinder, and flow past an oscillating cylin-

er. Second, flow past a NACA0012 aerofoil at a Reynolds num-

er of Re = 10 0 0 is simulated to evaluate the stability and accu-

acy of the proposed method at a moderately high Reynolds num-

er. Results are compared against analytical solutions, experimen-

al data and other numerical simulations. In both flow regimes, re-

ults show good convergence rates and excellent agreement with

xisting studies. 

. Continuous formulation 

.1. Strong form of the governing equations 

As stated above, the computational domain in immersed

oundary problems encompasses both fluid and solid regions. This

s illustrated by Fig. 1 , which shows how the computational do-

ain � is decomposed into two sub-domains: a fluid domain ( �f )

nd a solid domain ( �s ), with � = � f ∪ �s and � f ∩ �s = 0 . The

oundary of the computational domain is denoted by ∂�, while

oundaries of the fluid and solid sub-domains are ∂�f and ∂�s ,

espectively. Fig. 1 also shows that the immersed boundary of the

olid domain ( ∂�s shown by the blue curve) is a sub-set of the

oundary of the fluid domain, i.e. ∂ � f = ∂ � ∪ ∂�s . The boundary

� can be further decomposed into ∂ �D , ∂ �N , and ∂ �R to apply

irichlet, Neumann, and Robin boundary conditions, respectively. 

In the fluid domain, the advection-diffusion equation that gov-

rns the time evolution of a scalar field c is given in the conserva-

ive form by, 

 

� f 

(
∂c 

∂t 
+ ∇ · ( u c) − ∇ · ( ̄κ̄∇c) − F 

)
dV = 0 , (1)

n which u is the transport velocity vector, ¯̄κ is the diffusivity ten-

or, and F represents any forcing terms. The scalar field c is defined
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n the whole computational domain and can be, for example, one

f the velocity components, a species concentration, the tempera-

ure, the turbulent kinetic energy k , the turbulent frequency ω, or

he turbulent dissipation ε. The density ρ of the fluid is assumed

o be constant, so that the continuity equation for velocity is given

y, 
 

� f 

(∇ · u ) dV = 0 . (2) 

In the solid domain �s , the transport variable c is set to the

tructural value c s , which generally speaking is either prescribed or

btained from the resolution of the structural dynamics equations,

uch that 
 

�s 

∂c 

∂t 
d V = 

∫ 
�s 

∂ c s 

∂t 
d V. (3) 

n this paper, results will be shown for fixed structures or struc-

ures undergoing a prescribed motion. 

Eqs. (1) –(3) are the governing equations of the problem with

he following boundary conditions in space and time. 

 ( ·, 0 ) = c 0 ( ·) in � f , (4a) 

 ( ·, 0 ) = c s 0 ( ·) in �s , (4b) 

 = 

˜ c in ∂�D , (4c) 

∇c · n = q in ∂�N , (4d) 

κ∇c · n = h ( c − c a ) in ∂�R , (4e) 

here, ˜ c is the fixed condition applied on ∂�D , q is the flux across

�N , h is the surface transfer coefficient on ∂�R , and c a is an am-

ient field value. 

.2. Weak form of the governing equations 

The weak form of Eq. (1) is obtained by multiplying its left-

and-side with a test function ψ 

f and using Green’s first identity

o integrate by parts over the domain �f , such that, 

∫ 
� f 

(
ψ 

f ∂c 

∂t 
− ∇ψ 

f · u c + ∇ψ 

f · ¯̄κ · ∇c − ψ 

f F 

)
dV 

+ 

∫ 
∂� f 

(
ψ 

f ( u c − ¯̄κ∇c) · n 

)
dS = 0 , (5) 

here n is the surface normal vector. Note that ∂�f includes both

he boundaries of the computational domain ( �) and the bound-

ry between the fluid domain ( �f ) and the solid domain ( �s ). Ad-

itionally, the integral over the parts of ∂�f that coincide with the

oundaries of the computational domain ( �) is often subdivided

nto various components depending on the boundary conditions

hat are applied. For simplicity it is assumed that the parts of ∂�f 

oinciding with the boundaries ∂� are closed (with u · n = 0 ) and

hat ∇c · n = 0 (Neumann condition). Furthermore, the test func-

ion ( ψ 

f ) is constructed such that its value is zero at the fluid-solid

nterface (blue curve in Fig. 1 ). Under these conditions, the bound-

ry integral in Eq. (5) cancels out, which yields 

 

� f 

(
ψ 

f ∂c 

∂t 
− ∇ψ 

f · u c + ∇ψ 

f · κ · ∇c − ψ 

f F 

)
dV = 0 . (6) 

q. (6) holds in the region �f covered by the fluid. In order to

rite the equations of motion of the transport variable c in the

hole computational domain � = � f ∪ �s , the weak forms of the

uid- and solid-governing equations need to be added together.
he weak form of Eq. (3) is obtained by testing it with a test func-

ion ψ 

s . Adding this to Eq. (6) yields 

∫ 
�

(
(ψ 

f + ψ 

s ) 
∂c 

∂t 
− ∇ψ 

f · u c + ∇ψ 

f · ¯̄κ · ∇c 

− ψ 

f F 

)
d V = 

∫ 
�

(
ψ 

s ∂ c 
s 

∂t 

)
d V. (7) 

The weak form of Eq. (2) is obtained by multiplying the equa-

ion with another test function ξ f , as, 
 

� f 

ξ f (∇ · u ) dV = 0 . (8) 

ote that Eq. (8) is not integrated by parts and continuity is only

valuated in �f . This choice will be reasoned in the following sec-

ion. Eqs. (8) and (7) form the weak formulation associated with

qs. (1) –(3) . 

. Discrete formulation 

.1. General formulation 

In this paper, continuous piecewise-linear finite element shape

unctions ( φi ) are used to approximate the continuous flow vari-

bles on the discretised domain, so that 

 ≈
N ∑ 

i =1 

c i φi , u ≈
N ∑ 

i =1 

u i φi , p ≈
N ∑ 

i =1 

p i φi , (9) 

n which N is the number of nodes in the discretised domain and

 is the fluid pressure. 

Several key points have to be noted before defining the test

unctions for the problem. First, although � f ∩ �s = 0 in a con-

inuous sense, in the present discrete formulation as indicated in

ig. 2 , in which the shaded interface element is part of both �f 

nd �s , �f ∩ �s � = 0. Because of this overlap, the test functions ψ 

f 

nd ψ 

s used in the transport equation have to be complements of

ach other to avoid doubling the common term, ∂ c / ∂ t . Second, the

ressure gradient operator will be tested using ψ 

f , and thus lim-

ted to �f only. Thus, to make the Laplacian operator symmetric,

valuation of continuity, and thereby ξ f , is also limited to �f . Fi-

ally, unlike ψ 

f , the function ξ f does not have a complementary

olid part. Thus, to fully evaluate continuity in �f , ξ f should not

e forced to zero at the solid end of the interface. For this reason,

q. (8) is not integrated by parts since the surface integral term

ould not vanish based on this definition of ξ f . 

The test functions ( ψ i , ξ i ) are chosen from a function space

hat is appropriate for the problem [26] . For a continuous Galerkin

pproach this coincides with the function space from which the

hape functions are derived. We define ψ 

f 
i 
, ψ 

s 
i 
, and ξ f 

i 
as, 

 

f 
i 

= φi (1 − αn +1 
i 

) , ψ 

s 
i = φi α

n +1 
i 

, (10a) 

 x ∈ αn +1 
e : x < 1 ⇒ ξ f 

k 
= φk . (10b) 

Here, α (blue line in Fig. 2 ) is a solid concentration field that

epresents the position of the structure on the fluid mesh, and the

uperscript n + 1 denotes that the solid position from the forth-

oming time step is considered. It is obtained by a consistent in-

erpolation or a bounded conservative projection of a unitary field

rom the solid mesh onto the fluid mesh [27,28] . Furthermore, the

ndices e and k in Eq. (10b) iterate over the total number of el-

ments and the local node number in the element, respectively.

n this method, the test functions ψ 

f 
i 

are the nodal shape func-

ions of the fluid nodes ( •, Fig. 2 ). They have a non-zero value in

he shaded region in Fig. 3 b. Similarly, the test functions ψ 

s 
i 

are

he nodal shape functions of the solid nodes ( �, Fig. 2 ) and have
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Fig. 2. Schematic representation of the solid ( ψ 

s ), and fluid ( ψ 

f , ξ f ) linear test functions in a one-dimensional case. The shaded element represents the interface region 

between the fluid and solid domains. The blue line on top represents the variation of α across the one-dimensional computational domain. ψ 

s and ψ 

f are used in the 

transport equations in the solid and fluid domains, respectively. ξ f is used to enforce the continuity constraint in the fluid domain. Note that ξ f is discontinuous at the solid 

end of the interface ( i + 3 ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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a non-zero value in the shaded region in Fig. 3 c. Unlike ψ 

f 
i 

and

ψ 

s 
i 

which are defined on the global node basis, the functions ξ f 
i 

in

Eq. (10b) are defined on the local node basis. It is essentially ψ 

f 
i 
,

without the requirement that its value is zero at the fluid-solid in-

terface. As explained before, the function ξ f is discontinuous at the

solid end of the domain ( Fig. 2 , node i + 3 ). 

Eqs. (8) and (7) can be written in discrete acceleration form

as, 

(M + θ
t(A − D )) 
c n +1 − c n 


t 
= −(A − D ) c n + f + f s , (11a)

C̄ 

T 
u 

n +1 = 0 . (11b)

In Eq. (11), M is the mass matrix, A is the advection matrix,

and D is the diffusion matrix. Additionally, C̄ 

T 
is the discrete diver-

gence operator (superscript T denotes the transpose). The variable


t denotes the time step that can vary in the course of the simula-

tion to satisfy a certain CFL value, and θ is a time differencing pa-

rameter to choose between different temporal integration schemes

( θ = 0 for an explicit scheme, θ = 0 . 5 for the semi-implicit Crank-
icolson scheme, and θ = 1 for a fully implicit discretisation). Fi-

ally, f s is the immersed body forcing term and f represents other

orcing terms (e.g. gravity force). More specifically, the discrete op-

rators and the forcing terms in the discrete equations are given

y, 

 i j = 

∫ 
�
(ψ 

f 
i 

+ ψ 

s 
i ) φ j dV, (12a)

 i j = −
∫ 
�

∇ψ 

f 
i 

· u 

n φ j dV, (12b)

 i j = 

∫ 
�

∇ψ 

f 
i 

· ¯̄κ · ∇φ j dV, (12c)

¯
 

T 

i j = 

∫ 
�

ξ f 
i 
∇φ j dV, (12d)

f i = 

∫ 
�

ψ 

f 
i 
φ j F 

n 
j dV, (12e)

f s i = 

∫ 
ψ 

s 
i φ j 

c s (n +1) 
j 

− c n 
j 


t 
dV. (12f)
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Fig. 3. Schematic representation of the solid (a) and fluid (b, c, d) domains. Figure (a) shows the solid grid ( �s ). Figures (b, c, d) show the fluid grid ( �f ), with circular 

markers ( ◦) representing fluid nodes ( αn +1 = 0 ) and square markers ( �) representing solid nodes ( αn +1 > 0 ), where strong velocity boundary conditions are imposed. Shaded 

elements represent: (b) the domain in which the fluid operators act, (c) the domain in which the solid operator acts, and (d) the interface region between the solid and fluid 

domains. 
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Fig. 3 b and c show the decomposed domains in which these

perators act. The operator M acts on the whole domain, whilst

, D, C 

T 
, and f acts in the shaded fluid domain in Fig. 3 b. The im-

ersed body forcing term, f s , acts in the shaded solid domain in

ig. 3 c. 

.2. Application to the Navier–Stokes equations 

The discrete Navier–Stokes momentum equations are obtained

rom Eq. (11a) by treating velocity as a transport variable and

dding C p n + θ to the right-hand-side, as 

( M + θ
t ( A − D ) ) 
u 

∗ − u 

n 

= −( A − D ) u 

n + C p n + θ + f + f s , (13) 


t 
here, 

 i j = −
∫ 
�

ψ 

f 
i 
∇ξ f 

j 
dV, C 

T 
i j = 

∫ 
�

ξ f 
i 
∇ψ 

f 
j 
dV. (14) 

old letters denote that the matrices ( M , A , D , f , and f 
s 
) are now

n block matrix form and u 

∗ is the predicted velocity. The matrix

C is the discrete pressure gradient operator. Note that we used
f as pressure basis functions. This is because, just like continuity,

ressure is also defined only in �f . 

When solving the Navier–Stokes equations, it is common to de-

ouple the solution procedures for velocity and pressure. Chorin’s

rojection method [29] is used here for fractional time stepping.

he procedure starts by solving the pressure Poisson’s equation to

ompute an initial pressure field. The Poisson’s equation for pres-
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Fig. 4. Decomposed solid and fluid domains of a moving body on a finite ele- 

ment grid at time level n + 1 . Circular markers ( ◦) represent fluid nodes ( αn +1 = 0 ). 

Square markers ( �) represent solid nodes ( αn +1 = 1 ), where strong velocity bound- 

ary conditions are imposed. Shaded elements represent the domain in which regu- 

lar fluid operators act. 
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c  
sure is obtained by taking the divergence of Eq. (13) and applying

the incompressibility condition ( Eq. (11b) ) on the predicted veloc-

ity, i.e. 

L̄ p θ = −C̄ 

T 

(
M 

−1 RHS + 

u 

0 


t 

)
+ 

�
��C̄ 

T 
u 

∗


t 
. (15)

Here, RHS contains all the terms on the right hand side of

Eq. (13) except the pressure gradient term ( C p n + θ ), and L̄ is a dis-

crete Laplacian expressed as L̄ = C̄ 

T 
M 

−1 C . However, L̄ is not sym-

metric. A symmetric Poisson’s system of equations can be obtained

by reformulating the continuity equation for velocity using C 

T 
, as 

C 

T u 

∗ = −C 

T (s ) u 

∗ ≡ −C 

T (s ) u 

s (n +1) , (16a)

L p θ = −C 

T 

(
M 

−1 RHS + 

u 

0 


t 

)
− C 

T (s ) u 

s (1) 


t 
. (16b)

Here, 

C 

T (s ) 
i j 

= 

∫ 
�

ξ f 
i 
∇ψ 

s 
j dV ≡

∫ 
�

ξ f 
i 
∇(φ j − ψ 

f 
j 
) dV 

≡ C̄ 

T 

i j − C 

T 
i j , (17a)

L = C 

T M 

−1 C . (17b)

An intermediate velocity field ( u 

∗) is then obtained by solving

the momentum equation ( Eq. (13) ). In general, the predicted ve-

locity field is not divergence-free and will not satisfy Eq. (16a) .

The projection method tackles this issue by defining an irrotational

pressure correction, determined by solving the following Poisson

equation, 

L 
p n + θ = 

−( C 

T + C 

T (s ) )(θu 

∗ + (1 − θ ) u 

n ) 


t 

≡ −C̄ 

T 
(θu 

∗ + (1 − θ ) u 

n ) 


t 
, (18)

and correcting the velocity field as, 

u 

n +1 = u 

∗ + 
t M 

−1 C 
p n + θ . (19)

It can be seen from Eqs. (16b) and (18) that, at the interface, a

smeared zero gradient ( ∂ p 
∂n 

= 0 ) boundary condition is applied on

the pressure field. The boundary condition is smeared in the sense

that the gradient gradually decreases across the interface and be-

comes zero at the end of the fluid domain. Finally, the Laplacian

operator is defined only in �f . The rows and columns in the dis-

crete Laplacian, corresponding to the nodes in �s �∂�s , would be

filled with zeros. Hence, while solving Eqs. (16b) and (18) those

rows and columns have to be set inactive. This can be done in two

ways. The efficient method is to discard these rows and columns

from the solution procedure and solve a subsystem instead. In that

case, the condition number of the matrix remains unchanged and

the size of the linear system to be solved is reduced. The second

option is to add unity to the diagonal entries of those nodes and

solve the full system. However, depending on the number of nodes

inside the solid domain the condition number of the matrix will

be worsened. 

In this paper, Eqs. (11) , (13) , (16) , and (18) are solved using the

fluid dynamics model Fluidity, an open-source finite element nu-

merical tool that solves the Navier–Stokes equations on unstruc-

tured grids [30–32] . 

3.3. Treatment of moving interfaces 

In a deforming/moving body problem, elements and nodes

move across the fluid-structure interface. It is known that, for di-

rect forcing immersed boundary methods, this can cause numeri-

cal oscillations [33] . One source of these oscillations comes from
he difference in the order of the error between the fluid and solid

omains. In the present method, both the solid and fluid domains

re spatially discretised using the same shape functions. Hence, the

umerical errors associated with both domains are of the same or-

er of magnitude. However, the temporal discontinuity in the pro-

ection step ( Eq. (18) ) is amplified by a factor of 1/ 
t . This is il-

ustrated by Fig. 4 . The continuous circle highlights the position of

he body at time level n + 1 , while the dashed circle outlines its

osition at time level n . At this time level, the node that is marked

ith a dark square ( �) is internal to the solid domain. Pressure has

o defined value inside the solid and is set to zero. However, when

he body moves, this node becomes part of the fluid-solid interface

nd starts interacting with the fluid equations via the pressure gra-

ient term. Since velocity has defined values inside the solid, oper-

tors that act on the velocity field are unaffected. However, errors

re introduced in the evaluation of the pressure gradient and will

ropagate onto the velocity field. To remedy this, the pressure gra-

ient term has to be moved entirely to the projection step. The

odified iteration scheme is then 

( M + θ
t ( A − D ) ) 
u 

∗ − u 

n 


t 
= −( A − D ) u 

n + f + f s , (20)

 p n + θ = 

−C̄ 

T 
(θu 

∗ + (1 − θ ) u 

n ) 


t 
, (21)

 

n +1 = u 

∗ + 
t M 

−1 C p n + θ . (22)

In that case, the Poisson’s system solves the full pressure field

 p ) and not a correction for pressure ( 
p ). 

. Results 

The method described in the previous section is applied to

ows past fixed and moving structures. All the cases considered in

his section are solved on two-dimensional unstructured grids with

riangular elements and a CFL number equal to 0.95. The Crank-

icolson method is used for temporal integration. 

.1. Taylor-Couette flow 

Taylor-Couette flow is the flow between two concentric hollow

ylinders [34] . The Reynolds number for this flow is defined based
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Fig. 5. Taylor-Couette flow results. (a) Projected solid concentration field on the fluid mesh, the domain shaded in red being the inner solid cylinder whilst the region of zero 

solid concentration (shaded in blue) being filled with fluid. (b) Computed velocity on the fluid mesh, where inside the solid domain, the velocity is equal to the projected 

solid velocity. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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n the relative angular velocity of the cylinders and the diame-

er of one of the cylinders. At low Reynolds numbers, the flow

s steady and purely azimuthal. The critical value of the Reynolds

umber corresponds to the point at which the flow becomes un-

table and three-dimensional. Below the critical point, an analytical

olution exists and is given by, in cylindrical coordinates, 

 θ = Ar + 

B 

r 
, u r = u z = 0 , 

 = �in 

μ − η2 

1 − η2 
, B = �in R 

2 
in 

1 − μ

1 − η2 

= 

�out 

�in 

, η = 

R out 

R in 

, (23) 

here R is the radius, � is the angular velocity, and subscripts in

nd out denote the cylinder to which the parameter belongs. The

xistence of an analytical solution makes Taylor-Couette flow an

deal case for grid convergence study. For the current test case,

ow parameters are chosen as follows: �in = 4 , �out = 0 , R in =
 . 5 , R out = 1 , and the kinematic viscosity ν = 1 . The Reynolds num-

er based on the diameter of the inner cylinder is Re in = 2 , which

s well below the known critical Reynolds number for this setup,

.e. Re critical 
in 

= 68 . 4 . 

To model this problem using the current immersed boundary

ethod, the hollow cylinders are replaced by solid discs. The mo-

ion of the inner cylinder is prescribed using an immersed solid,

hich rotates at an angular velocity of �in = 4 . The domain shaded

n red in Fig. 5 a represents the solid inner disc that is projected

nto the fluid mesh. Inside this solid domain, velocity is pre-

cribed and varies linearly along the radial direction, as shown by

ig. 5 b. The fixed outer cylinder is modelled using a regular body-

onforming wall. The fluid field is initialised as at rest and the im-

ersed body is impulsively set into motion. 

Results are plotted at steady-state. Fig. 6 a and b show the varia-

ion in tangential velocity in the radial direction. In Fig. 6 a, the red

ine shows the exact solution and the black lines show the com-

uted profiles at varying spatial resolutions. During the grid refine-

ent study, the element edge length is varied only at the interface

ocated at r = 0 . 5 , that is at the boundary of the inner cylinder.
y contrast, near the outer-wall, the edge length is kept at a con-

tant value of 
x = 2 × 10 −2 . The profile shows good agreement

ith the analytical solution and convergence is observed when the

esh density is increased. By focusing the increment in spatial res-

lution at the interface, it can be inferred from Fig. 6 a that the er-

or is a maximum at the interface ( r = 0 . 5 ). This is a consequence

f the conservative projection onto a non-matching grid. In the in-

et of Fig. 6 a, it can be seen that the point from which the solid

oncentration field (blue lines) starts to drop varies depending on

he mesh resolution. Because of the conservative projection, the ra-

ius of the projected cylinder is slightly smaller than the actual

olid body. Since, in this particular case, the velocity boundary con-

ition that has to be imposed at the fluid-structure interface is a

unction of the radius of the cylinder ( u θ ( r )), the imposed angu-

ar velocity at the interface is reduced. As shown in the figure, this

ffect disappears for sufficiently fine grids at the fluid-structure in-

erface. 

Fig. 6 b shows the L ∞ 

( ◦) and L 2 ( �) spatial velocity error

 ‖ u e ‖ ) norms plotted against the element edge length at the

uid-structure interface. The spatial error norms are evaluated at

teady-state by comparing the results with the analytical solution.

onvergence study shows an order of about 1.31 and 2.06 for the

 ∞ 

and L 2 error norms, respectively. 

.2. Flow past a stationary cylinder 

In this section, flow past a stationary circular cylinder is con-

idered as a test problem. As shown in Fig. 7 , the computational

omain has the dimensions 25 d × 20 d ( d being the cylinder di-

meter) and the cylinder is centred at a distance 5 d from the in-

et and 10 d from the sides. On the left boundary, that is marked

ith arrows pointing inwards, a uniform velocity profile is pre-

cribed as inlet boundary condition. Open boundary conditions are

pplied on all the other domain boundaries. Fig. 7 also shows

he characteristic dimensions of the wake structure as defined in

outanceau and Bouard [36] . Dimensions l, a , and b represent the

ength of the recirculation zone, distance to the vortex core, and

ap between the vortex cores, respectively. The separation angle
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Fig. 6. (a) Variation of tangential velocity in the radial direction in a Taylor-Couette flow. Red line shows the analytical solution [34] . Black lines show results using the 

current method at different grid resolutions close to the fluid-structure interface. Blue lines in the inset show the variation of the solid concentration field ( α). (b) The L ∞ : 
� and L 2 : � spatial velocity error ( ‖ u e ‖ ) norms plotted against the element edge length at the interface. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 7. Dimensions of the computational domain in terms of the cylinder diameter 

d and characteristic dimensions of the wake structure, as defined in [24] . 

 

 

 

Fig. 9. Non-dimensionalised inline force acting on the cylinder in one cycle at 

Re = 100 and KC = 5. Black lines are results obtained using the immersed boundary 

method presented in this paper at varying grid resolutions near the interface. Black 

cross markers are from experimental data [40] . 

t

is denoted by θ . Two Reynolds numbers are considered: Re = 20

and Re = 40 . The steady-state results from the present immersed

boundary method are compared with several results from the lit-
Fig. 8. Time averaged coefficients of pressure and friction from flow past a cylinder at a Reynolds number of 200 with varying edge lengths near the interface and compared 

o DNS data from existing literature [39] . θ is measured clockwise from the stagnation point. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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Fig. 10. Comparison of non-dimensionalised velocity components at four cross-sections between present computation (lines) and experimental data [40] (markers) at three 

different phases within one cycle of oscillation: (a) 180 ◦ , (b) 210 ◦ , and (c) 330 ◦ . 
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Table 1 

Steady state non-dimensionalised wake dimensions and coefficient of drag from 

flow past a cylinder at Reynolds numbers of 20 and 40. 

l / d a / d b / d θ C D 

Re = 20 Dennis and Chang [35] 0.94 – – 43.7 ◦ 2.05 

Coutanceau and Bouard [36] 0.93 0.33 0.46 45.0 ◦ –

Tritton [37] – – – – 2.09 

Linnick and Fasel [38] 0.93 0.36 0.43 43.5 ◦ 2.06 

Taira and Colonius [24] 0.94 0.37 0.43 43.3 ◦ 2.06 

Present study 0.94 0.34 0.43 43.8 ◦ 2.05 

Re = 40 Dennis and Chang [35] 2.35 – – 53.8 ◦ 1.52 

Coutanceau and Bouard [36] 2.13 0.76 0.59 53.8 ◦ –

Tritton [37] – – – – 1.59 

Linnick and Fasel [38] 2.28 0.72 0.60 53.6 ◦ 1.54 

Taira and Colonius [24] 2.30 0.75 0.60 53.7 ◦ 1.54 

Present study 2.30 0.71 0.61 53.3 ◦ 1.55 
erature [24,35–38] . In particular, the characteristic lengths of the

flow (non-dimensionalised by the cylinder diameter d ) and the

drag coefficient are presented in Table 1 . It is shown that the flow

profiles and the force coefficient from the present method agree

well with those reported in the literature. 

Furthermore, an unsteady test case is considered at a Reynolds

number of 200. Fig. 8 shows time averaged pressure and fric-

tion coefficients along the periphery of the cylinder. Coefficients

are averaged using a simple mean and θ is measured from the

stagnation point. Results are plotted at three different grid edge

lengths near the boundary of the cylinder: l e = 0 . 01 d (dash-dot

line), l e = 0 . 0075 d (dash-dash line), and l e = 0 . 005 d (solid black

line). Results show grid covergence and agrees very well with data

available from a body-conforming DNS simulation (red line) [39] .

As with the steady cases, it can be noticed from the coefficient of

friction curves that the average point of separation is predicted ac-

curately. 
Fig. 11. Velocity field and streamlines at three different phases within one cycle of 

oscillation: (a) 180 ◦ , (b) 210 ◦ , and (c) 330 ◦ . 
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.3. Flow past an oscillating cylinder 

In this section, the vortices generated by an oscillating cylin-

er placed in still fluid are simulated and compared against exper-

mental data [40] . The cylinder is rigid and irrotational. The hori-

ontal oscillation of the cylinder is defined by, 

 (t) = −A sin (2 π f t ) , u (t ) = −2 π f A cos (2 π f t) , (24)

here, x ( t ) is the position of the centre of the cylinder and u ( t ) is

he velocity of the cylinder. The parameters A and f are the ampli-

ude and frequency of the prescribed oscillation. Reynolds number

nd Keulegan-Carpenter number ( KC ) are further defined as, 

e = 

u max d 

ν
, KC = 

u max 

f d 
. (25)

For the simulation, the cylinder with diameter d is placed at

he centre of a computational domain of size 55 d × 35 d . Reynolds

umber is set at 100 and Keulegan-Carpenter number is set at 5.

ime ( t ) and horizontal force ( F ) are non-dimensionalised as ˜ t = t f

nd 

˜ F = F /ρdu max , respectively. Fig. 9 shows the variation of non-

imensionalised inline force ( ̃  F ) against non-dimensionalised time

 ̃

 t ), for one period of oscillation, and at varying grid resolutions

ear the interface: l e = 0 . 05 d (dash-dot line), l e = 0 . 025 d (dash-

ash line), and l e = 0 . 0125 d (solid black line). The results have

ood agreement with the reference data [40] and shows grid con-

ergence. 

Fig. 10 compares velocity components of the flow field at four

ross-sections along the line of oscillation with experimental data

40] . For the most part, the profiles agree very well. Where it dif-
ig. 12. Coefficient of pressure on the surface of the cylinder at a phase angle of 

70 ◦ with varying edge lengths near the interface and compared to DNS data from 

xisting literature [42] . θ is measured clockwise from the stagnation point. (For in- 

erpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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Fig. 13. Time evolution of the coefficients of lift (top) and drag (bottom) on a NACA0012 aerofoil at Re = 10 0 0 and an angle of attack 10 ◦ . Black lines are results obtained 

using the immersed boundary method presented in this paper at varying grid resolutions near the interface. Red line is a body-conforming simulation result using the solver 

Fluidity, and black cross markers are DNS results from existing literature [43] . (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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ers, the mismatch is only on one side of the symmetric plane

 y = 0 ) and is due to the asymmetry in the experimental data. In

ig. 11 , streamlines in the vicinity of the cylinder and the velocity

eld are plotted at different phases in the cycle. Streamline curves

re a good match, and can be compared against plots from the ref-

rence [40] at the same phase in the cycle. 

As an extension, we now add a high enough background ve-

ocity to the previously quiescent fluid such that the cylinder can

aturally shed vortices even when it is stationary. From here on,

e switch back to the flow velocity based definition for Reynolds

umber (instead of u max of the oscillation), and use Strouhal num-

er (instead of Keulegan-Carpenter number) to define our test case.

or our test case, we set the Reynolds number at 185, and this

ives us a Strouhal number of 0.193 [41] . Additionally, the am-

litude of oscillation ( A ) is set as 0.2 d , and the ratio of the fre-

uencies of excitation and natural vortex shedding ( f / f n ) is set to

.9. Fig. 12 plots the coefficient of pressure on the surface of the

ylinder at a phase angle of 270 ◦, (centre of the cylinder, x (t) = A )

or three different grid resolutions near the immersed interface:

 e = 0 . 01 d (dash-dot line), l e = 0 . 0075 d (dash-dash line), and l e =
 . 005 d (solid black line). The results match with the reference data

red line) [42] and shows grid convergence. 

.4. Flow past a NACA0012 aerofoil 

Flow past the NACA0012 aerofoil is considered to demonstrate

he capabilities of the method with moderately turbulent flows.

he chord-based Reynolds number is 10 0 0. The size of the com-

utational domain is the same as in Fig. 7 , except that dimensions

re here expressed in terms of the chord length ( c ). The bound-

ry conditions are also the same. Fig. 13 shows the time evolu-

ion of the lift and drag coefficients at an angle of attack 10 ◦ us-

ng the present immersed boundary method at three grid edge

engths near the aerofoil boundary: l e = 0 . 0025 c (dash-dot line),

 e = 0 . 00175 c (dash-dash line), and l e = 0 . 001 c (solid black line).

he results are further compared with a body-conforming DNS
vailable in the literature [43] (black cross markers) and a body-

onforming simulation using Fluidity and l e = 0 . 0025 c (red line). It

an be seen from the plots that there is a difference in amplitude

f the oscillations between the body conforming simulation from

luidity (red line) and the DNS data obtained from literature (black

ross markers). The relative difference in magnitude between the

ody-conforming results is maximum 4% for the drag coefficient

nd 1% for the lift coefficient. This could be explained by the use

f linear shape functions for both velocity and pressure fields in

he present simulations and the use of fully unstructured meshes.

he agreement between the present immersed boundary method

nd the body-conforming simulation using Fluidity is however very

ood. In particular, the lift coefficients from all the Fluidity simula-

ions almost match perfectly with one another. The drag coefficient

s more sensitive to the mesh resolution used near the aerofoil. The

rag coefficient given by the immersed boundary method deviates

y ~ 5% with the coarser mesh (dash-dot line) compared to the

ody-conforming case (red line), and this percentage decreases as

he mesh is refined, to ~ 3% for the intermediate mesh and ~ 1%

or the finest mesh. 

. Conclusions 

This paper presents a new formulation of the immersed bound-

ry method that is specific to finite-element discretisation meth-

ds. The proposed method modifies the test functions in such a

ay that the spaces occupied by the fluid and solid, respectively,

re decomposed into two sub-domains. Unlike many of the forc-

ng immersed boundary methods available in the literature, the

resent method satisfies both the divergence-free and no-slip con-

itions without introducing an additional forcing term in the mo-

entum equations of the fluid. The absence of a forcing term im-

lies that the overall CFL limit is not affected by the immersed

oundary implementation. Furthermore, the modified test func-

ions preserve symmetry and positive definiteness of the Laplacian
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operator, so that the Poisson’s system can be efficiently solved us-

ing existing numerical methods. 

It is shown that the method provides accurate results on a

series of test cases with both fixed and moving bodies, as well

as laminar and moderately turbulent flows. In particular, excel-

lent agreement was found between the present method and ex-

perimental data for low-Reynolds numbers flows. For flow past

an aerofoil at a higher Reynolds number, an accurate prediction

of the lift coefficient was obtained at the same grid size require-

ment of a body-conforming simulation. The present method how-

ever required a slightly finer mesh resolution compared to a body-

conforming method, in order to provide a drag coefficient of equal

accuracy. Future work will focus on extending the present method

to highly turbulent flows of interest for engineering applications. 
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