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ABSTRACT 
In a world where renewable energy sources are becoming more relevant, wind energy takes an 

important position in the current and future energy market. In order to become a bigger player 

in this market it is first important to provide a solid reliable product. To this extent, it is 

important to consider classical flutter for a wind turbine, as here flap and torsion vibration of 

the blade couple with each other resulting in a potential catastrophic failure of the wind turbine. 

Classical flutter is considered a dynamic instability boundary problem, which means that there is 

a specific rotational speed boundary beyond which the fluid-structure interaction becomes 

unstable. For classical flutter this boundary is the flutter speed. Due to the wind turbine blades 

getting larger, the possibility of the blades approaching the flutter speed is increased. Therefore 

the purpose of this thesis is to find a clear and efficient procedure to analyze the flutter speed. 

 

To fulfill this purpose, simulations are performed with the programs BLADEMODE V.2.0 and 

PHATAS, based on the ART5 reference wind turbine model. BLADEMODE V.2.0 is primarily used 

as a stand-alone program, while PHATAS is employed in the user friendly environment of the 

shell-program FOCUS 6. This is because the release version of the stand-alone version of 

BLADEMODE V.2.0 is more recent than the one incorporated in FOCUS 6. 

 

There are three simulations performed with BLADEMODE V.2.0 in order to deduce if classical 

flutter occurs. For each simulation BLADEMODE V.2.0 generates an output file containing the 

necessary data to construct 2D plots of the mode shapes and a Campbell plot. Constructing the 

2D plots, with the deformation data generated, makes it possible to determine the dominant 

mode shapes. These mode shapes are viewed in the Campbell plot from which it can be deduced 

if classical flutter occurs or not. This is done by noticing if a flap-wise mode approaches a 

torsional mode, which is expected for classical flutter, as the rotor speed increases.  

 

With the built-in loadcase generator LCPREP in FOCUS 6, the overspeed loadcase is generated 

for PHATAS. This loadcase is used for the classical flutter analysis. The simulation produces the 

time history behavior of output parameters relevant to classical flutter. The most important 

output parameters chosen are the flap-wise displacement and torsional deformation. These two 

parameters are linked to a flap-wise and torsional mode respectively, which are essential for 

classical flutter. Combined with the generated rotor speed curve, a four step method is 

established to determine if classical flutter occurs and how the flutter speed can be determined. 

This is done by considering the vibrations in the flap-wise and torsional deformation curves, by 

appropriately zooming in on the graphs. Once the method is established, it is analyzed how the 

flutter limit may be increased by performing simulations for changing pitch angle values or 

altering the torsional stiffness values of the blade. Following this, it is desired to know how the 

natural frequency at which classical flutter occurs can be determined. Therefore, the built-in 

post-processor in FOCUS 6 is used to transforms the signals of the output parameters from the 

time domain to the frequency domain, via a Fast Fourier Transform (FFT). This is done for the 

relevant output parameters and as a result a power spectral density (PSD) plot is generated. The 

analysis of the natural frequency is based on the fact that this PSD describes how the power of a 

signal or time series is distributed over the different frequencies. The natural frequency at which 

classical flutter occurs can be recognized in the PSD as it is represented by a ‘spike’ or narrow 

peak. Here a small amount of an input force can cause a very large response. This is what would 

be expected  for classical flutter. Furthermore the PSD for the flap-wise displacement should 

contain this peak at a similar frequency as the peak of the PSD for the torsional deformation. 

Because when classical flutter occurs these frequencies have approached each other.  

 

The analysis with BLADEMODE V.2.0 shows that it is not possible to detect classical flutter with 

this program, while with PHATAS the four step method is determined to be the tool for an 

efficient procedure to analyze the flutter speed. 
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Chapter 1 INTRODUCTION 
Appearances are deceptive. This is common knowledge, yet many perceive wind turbines as 

steady rotating energy converters. However, upon closer look it becomes evident not all is as 

calm as it seems. As wind turbines get larger, so do their blades. As a consequence aeroelastic 

phenomena such as classical flutter, where flap and torsion vibration of the blade couple with 

each other resulting in an increase in amplitude, may become relevant. These phenomena are 

related to the mutual interaction between the structure and the aerodynamic forces. Each is a 

function of the other. To be more precise, aeroelasticity focuses on the interaction between 

inertial, elastic and aerodynamic forces. This is depicted in the Collar Triangle, shown in Figure 

1.1. 

 

 
Figure 1.1: Collar's Triangle [1]. 

Classical flutter is considered a dynamic instability boundary problem, which means that there is 

a specific rotational speed boundary beyond which the fluid-structure interaction becomes 

unstable. For classical flutter this boundary is the flutter speed. Due to the wind turbine blades 

getting larger, the possibility of the blades approaching the flutter speed is increased. Upon 

surpassing this boundary, the consequences can be catastrophic leading to failure of the wind 

turbine. Therefore it is essential to find this boundary. To analyze classical flutter ECN has 

several aeroelastic tools at its disposal, such as BLADEMODE V.2.0 and PHATAS which are used 

in this project. Both tools can be used in the shell-program FOCUS 6 but BLADEMODE V.2.0 can 

also be used in the stand-alone version. Developed for the verification of the eigenmodes of a 

single rotating rotor blade, BLADEMODE V.2.0 was developed at ECN Wind Energy. 

Subsequently it was altered to make it possible to make a prediction of the aeroelastic stability. 

The rotor blade used in the analysis follows engineering bending theory of beams and the 

structural mechanical properties of the blade are a function of the span-wise coordinate only. 

The analysis of this program is frequency based and providing the required input data of a wind 

turbine model, this makes it possible to find the natural frequencies for increasing wind or rotor 

speeds and consequently produce a Campbell diagram. BLADEMODE v2.0 omits the relative 

phase between the deformation components, hence there is no coupling possible between the 

flap-wise and torsional modes and this is not visible in the diagram. However there is a 

possibility that the frequencies of these two modes approach one another as the rotor speed 

increases. Therefore it may still be possible to find a flutter limit, especially when using the 

results from PHATAS for the same wind turbine model to compare against. This possibility is 

founded on the argument that with increasing rotor speed, the flap-wise  natural frequencies 

will increase as a result of the centrifugal stiffening. Contrary to this, the theory of BLADEMODE 

v2.0 predicts that the torsional natural frequencies will decrease with increasing rotor speed. 

Therefore, it is expected that the flap-wise and torsional natural frequencies should approach 

one another in a Campbell diagram. 
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Whether or not BLADEMODE V.2.0 can be used to predict classical flutter depends on the results 

from the analysis done with PHATAS, which provides comparison data for the same wind 

turbine model. The main difference with BLADEMODE V.2.0 is that PHATAS is a non-linear time 

domain simulation, while BLADEMODE V.2.0 performs a frequency based analysis. Another 

difference is that PHATAS analyses the dynamic behavior and the corresponding loads in the 

main components of a wind turbine such as the rotor blades, the rotor shaft and the tower. 

Based on the non-linear beam approach, most of the bending and torsion flexibilities of the 

blades and the tower are described in the structural model of the wind turbine in PHATAS. Both 

BLADEMODE V.2.0 and PHATAS are not only relevant with regard to determining if classical 

flutter occurs and compare their respective results, but especially regarding how this limit can 

be deduced in a precise manner. Considering the catastrophic effect this phenomena has on a 

wind turbine, it is essential to find this limit. As such, the purpose of this thesis to find a clear and 
efficient procedure to analyze the flutter speed.  
 

The limitations of BLADEMODE V.2.0 and PHATAS and validity of the operating conditions are 

considered. Having obtained the results, a comparison between the results of both programs is 

performed and the validity of the approach and possible differences are explained. 
 

This thesis consists of seven chapters starting with the introduction in Chapter 1. The second 

chapter provides a solid base for the theoretical understanding of the classical flutter 

phenomena. Chapter 3 provides a description of BLADEMODE V.2.0 which is used in the 

analysis. Also, the simulations performed are described. The structure of Chapter 4 is similar, the 

only difference being that now PHATAS is considered as this is also used for the analysis. 

Subsequently Chapter 5 and 6 provide the results following from both BLADEMODE V.2.0 and 

PHATAS, respectively. Finally Chapter 7 contains the conclusions and recommendations. 

  



3 

 

Chapter 2 CLASSICAL FLUTTER THEORY 
In this section the theoretical background for classical flutter will be provided. It will be 

explained how classical flutter may be detected when considering the modes of vibration for 

wind turbine blades via a Campbell diagram, or when looking at the time history behavior of a 

specific parameter relevant for classical flutter. These tools are applied to an actual wind turbine 

blade to analyze the if classical flutter occurs, which is discussed in Chapter 5 and Chapter 6.  

 

Before one can use the aforementioned tools, it is necessary to provide an explanation how these 

tools are obtained and used in the classical flutter analysis. To this extent, the first section 

discusses modes of vibration and mode shapes, while the second section gives an illustration of 

and elaboration on the terminology used when describing the directions in which a blade may 

deform. The third section deals with the definition of classical flutter. A deeper analysis of 

classical flutter is provided in the fourth section by elaborating on the instability mechanism 

behind the phenomenon. Criteria related to the occurrence of classical flutter are presented in 

the fifth section. The sixth section provides the tools used to analyze the occurrence of classical 

flutter, which are a Campbell diagram as well as the time history behavior of a specific 

parameter relevant for classical flutter. 

 

2.1 MODES OF VIBRATION AND MODE SHAPES 
The modes of vibration are inherent properties of a structure which only change when physical 

properties, such as mass or stiffness, or the boundary conditions change [2][3]. As such, the 

aerodynamic forces influence the mode of vibration as they can add stiffness and damping. This 

is elaborated on in sections 2.3 and 2.4. Furthermore centrifugal stiffening will add stiffness 

depending on the rotational speed of the wind turbine rotor blades. A mode of vibration consists 

of a mode shape with a corresponding modal frequency and damping coefficient [4]. The mode 

shape is defined as the pattern of motion or behavior of the structure of a mode of vibration at a 

specific frequency and is unique as far as the shape is concerned [5][6]. Examples of modes of 

vibration for a wind turbine blade are the edge-wise and flap-wise bending modes, as well as the 

torsional blade modes. Each mode of vibration has a first and higher order blade mode, each 

with its own modal frequency and damping. Considering the flap-wise bending mode, this can be 

illustrated with Figure 2.1. Here the first three flap-wise modes are shown. It should be noted 

that in reality a turbine mode is a combination of two or more modes of vibration.  

 

 

 
Figure 2.1: Mode shapes for 1st, 2nd, 3rd and 4th flap-wise bending modes [7]. Top view with blade clamped at 

hub. 
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The same can be done again for the mode shapes, but this time visualized for a wind turbine 

blade, as shown in Figure 2.2 and Figure 2.3. It must be noted that this only provides a graphic 

illustration of the mode shapes and the blade is not drawn to scale nor does it represent an 

actual wind turbine blade. Furthermore for clarity reasons the structural blade twist is omitted. 

 

                
Figure 2.2: Isometric views of the undeformed wind turbine blade (left) and same wind turbine blade with the 

2nd flap-wise bending moment (right). 

 

                 
Figure 2.3: Isometric views of the wind turbine blade with the 2nd edge-wise bending moment (left) and with 

the 2nd torsional blade mode (right). 

It is chosen to present the 2nd order modes of vibration for wind turbine blades, in order to 

provide the reader with an illustration of a higher order mode. Also, by choosing the 2nd order 

modes the clarity of the illustrations is deemed to remain sufficient, with respect to providing a 

better understanding of blade bending modes. To give a better perspective of the 2nd order 

modes of vibration for wind turbine blades, Figure 2.4 and Figure 2.5 are provided.  
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Figure 2.4: Front view of the undeformed wind turbine blade (top) and of the wind turbine blade undergoing 

the 2nd flap-wise bending moment (bottom). 

 

 
Figure 2.5: Top view of the undeformed wind turbine blade (top), the wind turbine blade undergoing the 2nd 

edge-wise bending moment (middle) and with the 2nd torsional blade mode (bottom). 

The red dotted line present in both figures represents an orientation line such that the 

deformations are clear. Comparing to Figure 2.2 (left plot), one can see in the bottom plot of 

Figure 2.5 that the leading edge goes up first above the red line, after which it decreases below 

the red dotted line. Vice versa for the trailing edge. Referring to Figure 2.1, this is then 

recognized as the 2nd torsional mode.  

 

2.2 TERMINOLOGY FOR BLADE DEFORMATIONS 
Now that a basic explanation of the modes of vibration is given, the next step is to provide the 

terminology and sign convention used for blade movements or deformations [8]. 

 

The movement associated with the edge-wise bending mode concerns movement along the 

direction of the local chord c and is defined positive in the rotational direction. Movement 

perpendicular to the local chord is related to the flat-wise bending mode and positive in the 

downwind direction. Furthermore, movement parallel or perpendicular to the plane of rotation 

is associated to the lag- or flap-wise bending modes respectively. In this case movement 

downwind is determined to be positive and movement in the rotational direction is considered 

to be negative. It is worth noting that the deformations related to the edge- and flat-wise modes 

are defined in the local blade reference frame, while deformations related to the lag- and flap-
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wise modes are defined in the blade root reference system [9]. The difference between both 

reference frames is the structural blade pitch angle θb, which usually is relatively small [10]. 

Therefore flat-wise deformations ≈ flap-wise deformations. Both reference systems are 

presented in Figure 2.6 for a clockwise rotating wind turbine, as seen from the front. 

Furthermore there is an uniform wind velocity of U0(1-aind) and a velocity due to the rotation of 

the blade Ωr(1-a’) present in the figure. Here U0 is the free-stream wind velocity, r is the radial 

position along the blade span, Ω is the rotational velocity, aind is the axial induction factor and a’ 

is the tangential induction factor. 

 

 
Figure 2.6: Blade root reference system (red capitals) and local blade reference system (black lowercase), 

with z-axis running from blade root to tip. 

In Figure 2.6 the axes indicated with red capital letters are for the blade root reference system, 

while the axes for the local blade reference system are indicated with lowercase black letters. It 

is worth noting that regardless of the reference system the blade z-axis is the same in Figure 2.6. 

This is because here the undeformed blade is considered. The blade z-axis runs through the 

elastic axis, so when deformation occurs the z-axis in the blade root reference system differs 

from the one in the local blade reference system.   

 

The terminology and sign convention for the relevant modes of vibration, which will appear in 

this report, are presented in Figure 2.7 for clarity reasons. In Figure 2.7 also the torsional 

deformation or rotation θ is illustrated, related to the torsional mode. This deformation is 
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positive according to the right-hand rule.  So if the torsional mode increases θ it is considered 

positive.   

 
Figure 2.7: Terminology and sign convention for the displacements and rotations. 

 

2.3 DEFINITION CLASSICAL FLUTTER  
Classical flutter is defined as a violent instability where a torsional blade mode couples to a flap-

wise bending mode via aerodynamic forces, resulting in a rapid growth of the amplitude of the 

flap-wise and torsional motions due to the flap-wise and torsional modes enhancing each other 

under influence of the aerodynamic coupling [11][12]. This phenomenon occurs above a critical 

limit defined as the flutter speed. Below this limit the oscillations will not be sustained, but be 

damped out. Vice versa for a velocity above this limit, where the damping becomes negative and 

unstable self-enhancing oscillations can occur. The enhancing takes place if there is attached 

flow and when the torsional deformation is present, which increases the angle of attack and thus 

the lift force. As a result of this, the flap-wise deformation increases acting as a stimulus for 

further torsional deformation. This is evident from Figure 2.8. In this figure it can be seen that 

increasing lift creates an additional moment about the elastic axis EA. 
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Figure 2.8: Blade section with two degrees of freedom: flap-wise or plunging translation h(t) perpendicular to 

the inflow and rotation �(t) about the elastic axis. Plunging translation and torsional rotation of the airfoil are 

not illustrated. 

In Figure 2.8 a symmetric airfoil is considered and subsequently the camber is neglected, as here 

only a qualitative analysis is provided. In this figure W0 is the steady-state relative speed of the 

inflow. The aerodynamic lift is represented with L and acts at the aerodynamic center AC which 

is at a distance caAC in front of the elastic axis and at a quarter chord behind the leading edge. 

Since a symmetric airfoil is considered, the aerodynamic lift is only present in case of non-zero 

angle of attack α. Furthermore the elastic axis is at a distance caCG in front of the center of gravity 

on the chord CG. Also, in this figure a collocation point CP is defined at 3c/4. Considering that W0 

is parallel to the chord, the angle of attack is zero. This value does not remain zero when the 

plunging (or flap-wise translation) and torsional rotation of the airfoil, h and � respectively, are 

included. These motions cause the collocation point to move with the velocity components 

indicated with the term ℎ� + �(
�� − 1 2⁄ )�� . The airfoil however will experience an air flow 

velocity in the opposite direction, which will change the angle of attack. To determine which 

location should be used to capture the effects of the torsional velocity ��  on α, it is important to 

consider the “1/4 – 3/4” rule [13][14][15].  Although not a theoretical law, due to proven 

sufficient accuracy in practice this rule is widely used. When using a horseshoe vortex to replace 

a lifting surface such as the airfoil in Figure 2.8, the location of both the vortex and the so-called 

collocation point is important. This collocation point is where the boundary condition of zero 

normal flow to the surface must be satisfied and it is found to be at the three-quarter chord [16]. 

The reason to determine the angle of attack at this collocation point is because the induced 

velocity has a different value at each chord-wise locations of a section. The angle at three-

quarter chord can be considered a representative sectional effective angle of attack [17]. 

Another important aspect for this location of the collocation point is with regard to the 

computation of the relative inflow speed. Computing it at this location for small values of the 

reduced frequency � = �����, makes certain that the equations of Theodorsen for unsteady 

aerodynamics match those of the Blade Element method [18].  

 

For an asymmetric (cambered) airfoil the lift acts in the center of pressure COP. However, the 

location of the COP is not fixed but alters with changing angle of attack which makes the analysis 

complicated. This problem can be solved by translating the lift to the aerodynamic center 

together with an accompanying pitch moment, accounting for the moment the lift force creates 

about the aerodynamic center when applied at the center of pressure. The aerodynamic center is 

assumed to be at the quarter-chord location from the leading edge, which is its approximate 
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location for symmetric airfoils. This translation makes analysis easier,  as for most low speed 

airfoils the magnitude of the pitching moment about the aerodynamic center remains nearly 

constant with changing angle of attack [19]. When computing the moment about the elastic axis 

one must thus also include this pitching moment, next to the moment the lift force creates about 

this axis. So the total moment due to the lift force about the elastic axis is a sum of both 

components. However, using a symmetric (non-cambered) airfoil means that the pitching 

moment about the aerodynamic center is equal to zero. Thus omitting this pitch moment only 

simplifies the understanding of classical flutter without changing the principle behind the 

phenomenon.  

 

The derivation of the term ℎ� + �(
�� − 1 2⁄ )��  is based on the location of the collocation point 

and applying the flap-wise translation and torsional rotation about the elastic axis, as depicted in 

Figure 2.9. 

 

 
Figure 2.9: Motion of the symmetric airfoil due to the flap-wise translation and torsional rotation. 

In Figure 2.9 the flap-wise translation and torsional rotation are applied compared to Figure 2.8, 

causing Wo to be inclined with an angle � with respect to the chord. The bottom airfoil is the case 

of no translation and rotation. It must be noted that the line connecting the two collocation 

points, indicated with δ, is not perpendicular to the chord at both points. This is because there is 

also the torsional deformation. Furthermore, in Figure 2.9 the angle of this line as well as the 

flap-wise translation and torsional deformation is exaggerated for clarity reasons. Assuming 

small (initial) torsional deformations, the distance δ between the two collocation points can be 

deduced. First the distance between the collocation point and the elastic axis is determined. This 

distance is equal to �(1 2⁄ − 
��), and it rotates with an angle �. Now multiplying this distance 

with the torsional rotation � yields �(1 2⁄ − 
��)�, which is the translation of the collocation 

point in the direction of h. However, this translation is in the negative h-direction. Combined 

with the positive flap-wise translation h, the total translation in the flap-wise direction becomes � = ℎ + �(
�� − 1 2⁄ )�. Taking the time derivative of δ, yields the velocity of the collocation 

point in the flap-wise direction as indicated in Figure 2.8.  

 

Considering that the angle of attack is calculated at the collocation point, the velocity 

components due to the flap-wise translation and torsional rotation can be determined. Due to 

positive the flap-wise translation, the airfoil experiences a velocity component in the opposite 

direction of h. Thus the velocity component of the airflow due to the flap-wise motion at the 

collocation point remains ℎ� , but now in the negative h-direction. For the torsional rotation the 

collocation point had a flap-wise velocity component equal to �(
�� − 1 2⁄ )��  in the negative h-

direction. The airfoil experiences this same velocity component, but only in the positive h-

direction.  
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Based on this definition and description it is indeed evident for the case of classical flutter, how a 

torsional rotation can increase the angle of attack, subsequently the lift force and as a result of 

this the flap-wise deformation which then acts as a stimulus for further torsional rotation. 

 

Another way of looking at this enhancement is by considering that work is done on the structure 

when the lift and vertical speed (or speed in the flap-wise direction) of the blade section have 

the same sign. The vertical speed for a typical airfoil section is graphically depicted in Figure 

2.10, as well as the torsional velocity ��  of the airfoil. It must be noted that in Figure 2.10 the 

vertical speed is represented by �� instead of ℎ� , because this figure is based on aircraft analysis 

and not on wind turbines. Nevertheless, the same principle holds for wind turbines and 

therefore the conclusions that can be drawn based on Figure 2.10 are equally valid for the wind 

turbine case.  

 

 
Figure 2.10: Timing of the vertical motion and aerodynamic lift force [1]. 

Figure 2.10 shows that the regions where energy is added to the structure are considered 

positive and are indicated with a ‘+’ sign. Vice versa for damping of the structure. For classical 

flutter the key lies in the fact that the timing of the motion in θ and h over one cycle results in ��(�) ��(�)�� � 0 [1]. Simply put, there are more positive regions than negative regions. When 

this is the case, the level of vibration increases resulting in a self-exciting oscillation [20]. With 

regard to this, the location of the center of gravity from the blade elastic shear center is an 

essential coupling factor [11]. 

 

Focusing on the timing of the torsion and flap-wise motion, it can be stated that there must be a 

substantial phase difference between the two motions. This is because this phase difference 

makes it possible for the structure to extract energy from the passing airflow at the flutter speed 

in such a manner that flutter occurs [21][22]. To quantify this phase difference, consider Figure 

2.11.  

 

 
Figure 2.11: Coupling of bending and torsional oscillations and its destabilizing effect [23]. Blade positions 1-

3 show the first half of the cycle. 
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From Figure 2.11 it can be deduced that in case of flap-torsion coupling, there is a 90o phase 

difference because the maximum torsional deformation occurs at the line of zero bending. The 

opposite is also true. This phase difference has also been found to be different from 90o in some 

practical cases [23]. Again it must be stated that Figure 2.11 is based on aircraft analysis but the 

principle behind and conclusions from the figure are equally valid for the wind turbine case. 

Next to this, when torsion lags the flap-wise plunging or displacement, it signals flutter [24]. This 

phase difference will be considered in Chapter 5 and Chapter 6, using BLADEMODE V.2.0 and 

PHATAS respectively, to check if classic flutter occurs in the analysis. 

 

2.4 INSTABILITY MECHANISM CLASSICAL FLUTTER 
Now that the definition of classical flutter has been provided and elaborated on, a deeper 

analysis of the instability mechanism behind classical flutter is provided in this section based on 

Hansen [13] and Hulshoff [1]. Based on the linear equations of motion for the airfoil section, the 

flutter limit is derived. The analysis provided in this section serves to provide a qualitative 

analysis based on quasi-steady aerodynamics and without apparent mass terms, which is 

sufficient to understand the instability mechanism [1]. When considering unsteady 

aerodynamics, oscillations of the airfoil cause vortices to be shed at the trailing edge of the 

airfoil. The time history of this vortex sheet influences the angle of attack and thus the 

aerodynamic forces. In quasi-steady aerodynamics this effect is neglected, which is allowed in 

this qualitative analysis. For a deeper understanding on vortices the reader is referred to 

Anderson [25].  

 

In order to deduce the linear equations of motion for the plunging and pitching motion of the 

airfoil section, the Lagrange’s equation should be solved. In order to set up the Lagrangian LLA, a 

structural model for the airfoil presented in Figure 2.8 and Figure 2.9 is constructed. 

 

 
Figure 2.12: Structural model for flap-wise translation h and torsional rotation � used to set up the 

Lagrangian. 
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In Figure 2.12 x represents the distance between the mass element dm and the elastic axis. 

Furthermore the two springs are indicated with kf and kt, which stand for the flap-wise and 

torsional stiffness. Based on this structural model with 2 degrees of freedom the Lagrangian can 

be set up. 

 � � = ! − "          (2.1) 

 

In this equation V  is the potential energy of the airfoil section. Next to this, T is the total kinetic 

energy of the airfoil section and it can be deduced based on the kinetic energy of the mass 

element, as a result of the flap-wise ℎ�  and torsional velocity ��  [26]. 
 �! = #��$%ℎ� + &��'�        (2.2) 

 

Now the total kinetic energy for the airfoil section can be determined. 

 ! = #�$%ℎ� � + 2&ℎ� �� + &����' = #�$ℎ� � +$&ℎ� �� + #�$&����   (2.3) 

 

In equation (2.3) the static and mass moment of inertia about the elastic axis, Sθ and Iθ 

respectively, can be recognized [27].  

 ! = #�$ℎ� � + ()ℎ� �� + #� *)���       (2.4) 

 

Now that the total kinetic energy for the airfoil section is determined, the potential energy will 

be analyzed. This consists of the energy stored in the springs. It is the flap-wise and torsional 

stiffness, kf and kt respectively.  It must be noted that the gravity can be neglected with respect to 

these two stiffness components, as there are only small changes in the position of the airfoil 

based on small angle approximations. The position of the CG does not alter enough for it to 

create the necessity to be included in the potential energy term. 

 " = #� �+ℎ� + #� �)��        (2.5) 

 

Having determined the potential energy, the Lagrangian can be constructed. 

 � � = ! − " = #�$ℎ� � + ()ℎ� �� + #� *)��� − #� �+ℎ� − #��)��   (2.6) 

 

Using equation (2.6) one can solve Lagrange’s equation. 

 ,,- ./ 01/2� 3 − / 01/2 = 4        (2.7) 

 

In this equation q is the vector containing the flap-wise translation h and torsional rotation θ, 2 = 5ℎ	�78. Also, Q is the vector containing the external forces and moments about the elastic 

axis, L and MEA respectively. Substituting the derived quantities, equation (2.7) can be solved. 

         ,,- %$ℎ� + ()�� + ()ℎ� + *)��' − %−�+ℎ − �)�' = 4    (2.8) $ℎ� + ()�� + ()ℎ� + *)�� + �+ℎ + �)� = 4     (2.9) 

 

Now x is placed at the CG, where a point mass can be located, such that Sθ becomes the static 

moment of inertia of the CG about the elastic axis. Referring to Figure 2.8, () = $�
�9 . The 

definition of the mass moment of interia about the elastic axis, using the parallel axis theorem, is 

provided in equation (2.10) [28][29].  
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*) = *�9 +$��                  (2.10) 

 

In equation (2.10) ICG is the mass moment of inertia about the axis through the CG and d 

represents the perpendicular distance between an axis through the CG and the parallel axis. Now 

applying this equation to case illustrated in Figure 2.8: 

 *�9 = $:;,�9�                   (2.11) $�� = $(�
�9)� = $��
�9�                 (2.12) 

 

In equation (2.11) Rg,CG is the radius of gyration about the CG. Normalizing Rg,CG with the chord c 

yields Rg,CG =crCG, resulting in equation (2.13). 

 *�9 = $:;,�9� = $��=�9�                 (2.13) 

 

Combining equations (2.10)-(2.13) yields: 

 *) = *�9 +$�� = 	$��(=�9� + 
�9� )                         (2.14) 

 

Having determined the expressions for Sθ and Iθ, the sign convention needs to be considered. 

Forces in the positive h-direction, as indicated in Figure 2.8, are considered positive. Similar for 

moments about the elastic axis, which are considered positive when creating a pitch-up motion. 

Having found the necessary expressions and determined the sign convention, equation (2.9) can 

be solved further. 

 

 $ℎ� − $�
�9�� − $�
�9ℎ� + $��(=�9� + 
�9� )	�� + �+ℎ + �)� = 4   (2.15) 

 

Rewriting this solution to obtain linear equations of motion for both the forces in the flap-wise  

direction and moments about the elastic axis, results in equations (2.16) and (2.17). 

 >?=�@A:														$ℎ� − $�
�9�� + �+ℎ = �     (2.16) C?$@D�A:				 − $�
�9ℎ� + $��(=�9� + 
�9� )�� + �-� = �
���     (2.17) 

 

In both equations the external force vector Q has been substituted with L and MEA=caACL, where 

the latter expression is the moment about the elastic axis due to the lift force which acts at the 

aerodynamic center. 

 

Continuing with finding the flutter limit, an expression for the quasi-steady aerodynamic lift 

force per unit length on the airfoil is desired, in order to solve the equations of motion. This 

definition is provided in equation (2.18). 

 � = #�EF2�G (H)        (2.18) 

 

In this expression ρ is the air density and CL is the lift coefficient, which is a function of the angle 

of attack. Also, W is the relative speed and it is defined below together with the angle of attack. 

 

F = IFJ� + ℎ� �        (2.19) 

 

Here W0 is practically parallel to the chord, at small angle of attack values. This small angle of 

attack is due to the small value of θ. The last term in equation (2.18) is the angle of attack, which 

is provided in equation (2.20). 
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H = 
=��
D K��LMN)OP� O�.QROS1T3)����UL) V      (2.20) 

In this equation the term between brackets is deduced based on Figure 2.13, which is a result of 

what has been depicted and analyzed in Figure 2.8 and Figure 2.9.  

 

 
Figure 2.13: Velocity vectors at the collocation point including the flap-wise and torsional velocity used to 

determine the angle of attack. 

 

It should be noted that in Figure 2.13 the velocity vectors are not drawn to scale but serve to 

clarify the derivation of the angle of attack. Adding the velocity vectors in the flap-wise direction 

yields FJAWD� − ℎ� − � .#�− 
��3 �� , while the velocity vectors added in the direction parallel to 

the chord add up to FJ�?A�. Dividing the two terms does indeed yield the same result as in 

equation (2.20). 

 

Now assuming small values for �, ℎ�  and ��  leads to the expression for the linear lift.  

 � ≈ �J + #� �EFJ�G Y .� − P��0
− .1

2
− 
��3 �)��0

3     (2.21) 

 

Recognizing the fact that camber was neglected, the value for steady-state lift L0 equals zero. 

Next to this, CL
’ is the gradient of the lift curve evaluated at α0=0, which implies that equation 

(2.21) is only valid for moderate angles of attack. For high values of α, approaching the stall 

region, this linear relationship between CL
’ and α is lost.  

 

Now that the formulation of the linear lift force is determined, the focus is put again on the linear 

equations of motion presented in equations (2.16) and (2.17). These equations can be rewritten 

into a matrix format, using the vector Z = [ℎ �\ , �]8. To obtain the matrices, the following 

derivation is performed. First equation (2.16) is divided by mc. 

 P�� − 
�9�� + ^_̀ P� = a��R�0b)�` − a���0bP��` − �a���0b)�c` + S1T�a���0b)��`    (2.22) 

 

Useful relations in the further derivation of the EOM are provided right below: 

 d+ = e�+ $⁄          (2.23) f = a
2`F0

2G ′          (2.24) 
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Here d+ stands for the natural frequency of the flap-wise mode. Furthermore kf stands for the 

flap-wise bending stiffness. Equation (2.24) provides an expression for the aerodynamic 

stiffness κ, which amongst others is dependent on the air-section mass ratio ρ/m.  

 

Applying equations (2.23) and (2.24) to equation (2.22): 

 P�� − 
�9�� + d+� P� + �a���0b)�c` − S1T�a���0b)��` − a��R�0b)�` + a���0bP��` = 0   (2.25) P�� − 
�9�� + d+� P� + �h��� �� − �hS1T�� �� − f� + �h��
P�� = 0    (2.26) 

P�� − 
�9�� + �h�� .#�− 
��3 �� − f� + �h��
P�� +d+� P� = 0    (2.27) 

 

Now focusing on equation (2.17), the following derivation is performed. A useful relation with 

respect to this EOM is the expression for the natural frequency of the torsional mode ωt, which is 

provided in equation (2.28). ) Here there is no inertia coupling, which means that aCG=0. 

 

d- = I�- ($��=�9� )⁄         (2.28) 

 

In equation (2.28) kt stands for the torsional stiffness. 

 

Using equations (2.24), (2.28) and dividing the EOM in equation (2.17) with mc2: 

 −
�9 P�� + (=�9� + 
�9� )�� + ^i`�R � = aS1T��R�0b)�` − aS1T���0bP��` − a�S1T���0b)�c` + aS1TR ����0b)��`   

 (2.29) −
�9 P�� + (=�9� + 
�9� )�� + =�9� d-�� = − �h��� 
���� + S1TR �h�� �� + 
��f� − S1T�h��
P��   (2.30) 

−
�9 P�� + (=�9� + 
�9� )�� + �h�� .S1T� − 
��� 3 �� − 
��f� + S1T�h��
P�� + =�9� d-�� = 0  (2.31) 

 

Finally considering the derivatives of x: 

 

Z� = jℎ� �\ , �� k
8

         (2.32) 

Z� = jℎ� �\ , �� k
8

         (2.33) 

 

Having performed the derivation, the matrices can be constructed as shown in equation (2.34). 

 

l 1 −
�9−
�9 =�9� + 
�9� m lℎ��� m + �h�� j 1 #�− 
��
�� 
�� .#�− 
��3k lℎ��� m + nd+� −f0 =�9� d-� − f
��o [ℎ�] = p    (2.34) 

 

Starting with the matrix on the most left-hand side and continuing to the right, equation (2.34) 

contains the structural mass, aerodynamic damping and aeroelastic stiffness matrices 

respectively. The shorter matrix notation of equation (2.34) is presented in equation (2.35). 

 qZ� + rZ� + sZ = 0        (2.35) 
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The aerodynamic damping matrix may be neglected due to the elements of C being an order of 

magnitude smaller than the elements of K, which describe the change in lift as a result of a 

torsional rotation θ. The cause for the neglecting of C is based on the fact that for wind turbines 

the value for W0 is relatively large, while the section vibrations have moderate frequencies ω. 

Considering the definition  of the reduced frequency,  C can be expressed in terms of this factor, 

it is evident that neglecting the elements of C is allowed for the mentioned conditions [30]. 

Another reason is, that this section provides a qualitative analysis of the classical flutter 

mechanism and the small dissipative forces of C are relevant in a quantitative analysis.  

 

Now inserting the solution Z = t@u- into equation (2.35) yields the eigenvalue problem given in 

equation (2.36). 

 (v�q+s)t = 0        (2.36) 

 

In order to find the non-trivial solutions the determinant of v�q+s must be zero. The 

derivation from this determinant to the characteristic equation is presented in equations (2.37)-

(2.39) 

 

�@� nv� +d+� −v�
�9 − f−v�
�9 v�=�9� + v�
�9� + =�9� d-� − f
��o = 0    (2.37) 

 %vc=�9� + vc
�9� + v�=�9� d-� − v�f
�� + v�d+�=�9� +v�
�9� d+� + =�9� d+�d-� − fd+�
��' −(vc
�9� − v�f
�9) = 0                        (2.38) 

 vc=�9� + v�w(=�9� + 
�9� )d+� + =�9� d-� − f(
�� + 
�9)x + d+�(=�9� d-� − f
��) = 0 (2.39) 

 

To have a stable solution, the real part of the solution of the characteristic equation must be 

negative. Based on the Routh-Hurwitz criteria, which states that the real part of the solutions are 

negative when the coefficients of the polynomial are positive, the following can be deduced from 

(2.39) [31][32]: 

 (=�9� + 
�9� )d+� + =�9� d-� − f(
�� + 
�9) � 0					
D�					=�9� d-� − f
�� � 0 (2.40) 

 

The coefficient of vc is always positive and does not need to be considered in equation (2.40). 

Considering the limit for the first criterion in this equation, while satisfying the second criterion, 

equation (2.39) can be solved: 

 vc=�9� +d+�(=�9� d-� − f
��) = 0       (2.41) 

 vc = −�_R%yTzR �iROhS1T'yTzR = −{�       (2.42) 

 v� = W{          (2.43) 

 v#,� = ±eW{ = ±√W√{ = ± √�� (1 + W)√{     (2.44) 

 

Equation (2.44) proves that there is one complex eigenvalue with a positive real part. Next to 

this, the presence of its non-zero imaginary part means that the instability is oscillatory. 

Therefore the first criterion in equation (2.40) provides the flutter limit of the section:  

 a�`FJ�G Y < d+� yTzR �STzRS1T�STz +d-� yTzRS1T�STz 					�?=					
�� + 
�9 ≥ 0    (2.45) 
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Here the aerodynamic stiffness has been inserted. If the left-hand side (LHS) of equation (2.45) 

is larger than the right-hand side (RHS), the risk of flutter is substantial. It is also worth noting 

that this equation is for quasi-steady aerodynamics.  

 

2.5 FLUTTER CRITERIA 
After determining the flutter limit of the section, it is important to consider the main criteria 

related to classical flutter. Then it is possible to compare them with equation (2.45) and see if 

they indeed lead to an increased risk of flutter. Based on the extensive studies of aircraft wing 

flutter, it is assumed that a wind turbine runs the risk of experiencing flutter if the following 

main criteria are met [33][34]: 

 

1. There must be attached flow. If this is not the case, positive blade torsion will not lead to        

    increased lift. 

 

2. There must be high tip speeds. This means that the value for W0 must be sufficiently high, 

resulting in higher energy in the aerodynamic forces which ‘feed’ the flutter mode. 

 

3. There must be low flap and torsion stiffness. Consequently the values of ωf and ωt are 

sufficiently low, such that they can couple in a flutter mode. 

 

4. The location of the CG on the outboard part of the blade must be aft of the aerodynamic 

center, which will ensure the correct phasing between the flap-wise and torsional 

components of the flutter.  

 

Considering the first criterion and comparing with equation (2.45), it is clear that the LHS can 
only be larger than the RHS if there is attached flow. This means that G Y � 0. For the second 

criterion a similar statement can be made. Only in this case it is the steady-state relative speed of 

the inflow which must be sufficiently high. Turning the attention to the third criterion, the flutter 

limit can only be exceeded when ωf and ωt are adequately low such that LHS>RHS. Finally the 

location of the CG must always be aft of the location of the aerodynamic center. If this is not the 

case, 
�� + 
�9 < 0 and the flutter limit inequality in equation (2.45) must be turned, resulting 

in the fact that new inequality can never be exceeded for attached flow. This new inequality will 

always be true, and thus the new flutter limit can never be reached. 

 

Next to the 4 main criteria, there are less essential parameters. The first is the air-blade mass 

ration ρ/m where a low as possible value is desired to reduce the risk of flutter. This is clear 

based on consulting equation (2.45). Next to this are the blade aspect ratio b/c (where b is the 

span), material damping and positions of the elastic and shear center which influence structural 

bending-torsion couplings. 

 

Having determined how to find the flutter limit and the main flutter criteria, it is possible to 

construct a stability plot where the relation between these criteria and the flutter limit can be 

illustrated. In order to provide a better understanding of the flutter limit and how it is influenced 

by the main flutter criteria, a simplified numerical example is provided in Appendix A. Here it 

should be noted that the values used to create the stability plot do not belong to an actual wind 

turbine blade. The result of this example can be compared with the analysis done using 

BLADEMODE V.2.0 and PHATAS for the effect of varying torsional stiffness values on the 

occurrence of classical flutter. These results are presented in Chapter 5 and Chapter 6, provided 

that classical flutter indeed occurs in the analysis and thus can be detected. 

 

Similar to this, Chapter 5 and Chapter 6 will also elaborate on the effect of a changing pitch angle 

on the occurrence of classical flutter. 
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2.6 ANALYSIS TOOLS FOR CLASSICAL FLUTTER 
Having discussed the modes of vibration, mode shapes, the definition of classical flutter 

including its instability mechanism and criteria, this section discusses the tools used to analyze 

the occurrence of classical flutter. These tools are a Campbell diagram and the time history 

behavior of a specific parameter relevant for classical flutter. However, before it is possible to 

construct and understand a Campbell diagram, it is first necessary to further examine blade 

vibrations and their transformation from the local blade frame to the ground-fixed frame.   

 

When a blade vibrates with a modal frequency ωv in the local blade frame, the motion of the 

mass can be described using d’Alembert’s Principle as a force. Here a trick is used to reduce the 

dynamic system to a static equilibrium problem. In effect d’Alembert’s Principle states that if the 

blade is moving or harmonically vibrating in a specific direction, it gives rise to a harmonic 

inertia force Fi acting with the same magnitude in the opposite direction [35]. 

 ∑> −$
 = 0         (2.46) 

 

Equation (2.46) is the mathematical description of the static equilibrium problem for a vibrating 

blade. The inertia force has magnitude ma. It must be noted that this does not mean that a 

dynamic problem can be solved via statics. What has been done is that the resulting differential 

equations can now be deduced using statics.  

 

Now that the definition of the inertia force has been provided, the transformation to the non-

rotating (ground-fixed) reference frame can be performed by for example considering (pure) 

edge wise bending modes. There are two fundamental edge-wise bending modes, because of the 

different tilt and yaw stiffness, but once rotating the difference between the two frequencies 

found for these bending modes is no longer noticeable [36]. The frequency related to these 

bending modes is indicated by ωv,e. The two fundamental edge-wise mode shapes are depicted in 

Figure 2.14. 

 

 
Figure 2.14: First and second fundamental edge-wise mode shapes depicted on the LHS and RHS respectively. The 

rotating rotor reference frame is indicated by Y
R
-Z

R
, while the amplitudes for the first and second fundamental edge-wise 

mode shapes are indicated by A1 and A2 respectively. The black arrows show the direction of vibration. 
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In this figure the rotor reference frame, indicated by YR and ZR, is fixed at the hub and rotates 

with Ω along with the blades. The first fundamental edge-wise mode shape has blade 2 and 3 

vibrating in counter-phase and with equal amplitude A1. As a result it can be deduced that there 

is only an in-plane force component of the inertia force in the ZR-direction. Contrary to this, the 

second fundamental edge-wise mode shape has blade 2 and 3 vibrating in-phase with each other 

and with identical amplitude A2. Blade 1 is vibrating in counter-phase with blades 2 and 3. Also, 

the amplitude of blade 1 is 2A2. It can now be deduced that there is only an in-plane force 

component of the inertia force in the YR-direction. Combining the in-plane force components for 

both mode shapes, yields a force in both the YR- and ZR-direction. Both these components can be 

expressed as a sine function, since the inertia force is harmonic. Plotting the two sine functions 

against each other yields an ellipsoid shape, as depicted in Figure 2.15, since both fundamental 

edge-wise mode shapes have a different phase. 

 

 
Figure 2.15: In-plane inertia force for the two fundamental pure edge-wise bending modes (with different 

phase) in rotor coordinates for a three-bladed wind turbine [36]. 

For a more thorough elaboration, including the mathematical derivation of the inertia force in 

the rotating rotor coordinate frame, the reader is referred to Petersen, Thomsen & Madsen [36]. 

In Figure 2.15 the non-filled arrows indicate the direction of rotation of the inertia force, which 

is indicated with the black arrow and rotates with frequency ωv,e. Furthermore this plot is 

constructed for the two fundamental pure edgewise vibrations and the superscript of the forces 

indicates that the inertia force is depicted in the rotating rotor reference frame.  

 

Having transformed the inertia force from the local blade frame to the rotating rotor reference 

frame, it can now be transformed to the non-rotating reference frame. Since many reference 

frames have been mentioned in this chapter, for clarity reasons the reference frames mentioned 

up to this point have been illustrated in Appendix B. It should be noted that the inertia force 

shown in Figure 2.15 can be decomposed in two counter-rotating circular components. The 

force component rotating along with Ω is the progressive or forward whirling (FW) force Fp and 

the other force component is the retrograde or backward whirling (BW) force Fr. These forces 

are constant in size and depending on the relative size of these two inertia force components, the 

rotation is deemed FW or BW. Transforming from the rotor coordinate reference frame to the 

ground-fixed reference frame, results in a frequency splitting of ±Ω around the center frequency 

ωv,e. The frequency of the FW inertia force is increased with Ω, while the frequency of the BW 
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inertia force is decreased with Ω. These frequencies are associated with the FW and BW modal 

components of a blade vibration mode. These FW and BW components can be deduced based on 

Figure 2.16. 

 

 
Figure 2.16: Reaction force at the hub for a two-bladed wind turbine due to the inertia force created by the blade 

vibrations in the edge-wise direction. This force can be considered in the fixed (non-rotating) or rotor (rotating) reference 

frame, indicated by Y
F
-Z

F
 and Y

R
-Z

R
 respectively. On the right-hand side the reaction force at the hub has been indicated 

in red for clarity reasons. 

In this figure a two-bladed wind turbine is depicted with the reaction force at the hub, as a result 

of the inertia force created by the blade vibrations. Furthermore, the rotating and non-rotating 

reference frames are depicted, where the latter is indicated by YF-ZF. The reason for using a two-

bladed wind turbine, instead of the three-bladed wind turbine used so far, is based on the fact 

that in the rotating rotor reference frame no elliptical shape for the inertia force can be 

constructed, contrary to what was illustrated in Figure 2.15 for the three-bladed wind turbine. 

Therefore it is less evident how the FW and BW modal components are present, since it is not 

possible to deduce two counter-rotating circular components of the inertia force in the rotating 

reference frame. The reason for there not being an elliptical shape of the inertia force can be 

understood when deducing the components of the reaction force at the hub, or in the non-

rotating reference frame. 

 

Based on the assumption of a harmonic blade vibration, the reaction force at the hub can be 

deduced in its y- and z-components [37]. It should be noted that in Figure 2.16 at t=0 the 

rotating and non-rotating reference frames coincide. First the reaction force at t=0 is provided in 

the rotating reference frame in its YR- and ZR-components.  

 >�� = �	AWD%d�,��'        (2.47)	>�� = 0          (2.48) 

 

In equation (2.47) A stands for the amplitude of the vibration. The reason that FZ
R equals zero in 

equation (2.48) is due to the fact that a two-bladed wind turbine is considered and a vibration in 

the edge-wise direction is perpendicular to the ZR-axis, hence there is no force component in the 

ZR-direction. This in contrast to Figure 2.14 and Figure 2.15, where a three-bladed wind turbine 

was considered. Considering equations (2.47) and (2.48) there are not two sine equations which 

can be plotted against each other to form an ellipsoid, as was the case for the three-bladed wind 

turbine depicted in Figure 2.14. Hence, for the two-bladed wind turbine case Figure 2.15 would 

reduce to a straight line as only FY
R is present. 
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Now considering that for t>0 the rotating rotor reference frame will have rotated over an angle 

Ωt, with respect to the non-rotating reference frame, the reaction force can be decomposed in its 

YF- and ZF-components.  

 >�� = >���?A(Ω�) = �	AWD%d�,��'	�?A(Ω�)     (2.49) >�� = >��AWD(Ω�) = �	AWD%d�,��'	AWD(Ω�)     (2.50) 

 

These equations can be rewritten, which is done in equations (2.51) and (2.52). 

 >�� = �	AWD%d�,��'	�?A(Ω�) = #�� sin .%d�,� −Ω'�3 + #��	AWD .%d�,� + Ω'�3 (2.51) >�� = �	AWD%d�,��'	AWD(Ω�) = #�� cos .%d�,� − Ω'�3 − #��	�?A .%d�,� + Ω'�3  (2.52) 

 

Equations (2.51) and (2.52) show the FW and BW components of the reaction force at the hub, 

including the frequency splitting of ±Ω, when translating the inertia force to the non-rotating 

reference frame. Using these equations the components of the reaction force at the hub can be 

determined, which allows the determination of how the rotor c.g. will move during a rotor 

revolution with respect to Ω. An example of rotor c.g. movement during a rotor revolution is 

provided in Figure 2.17 for a four-bladed wind turbine. 

 

 
Figure 2.17: Progressive (left) and retrograde (right) 1st edge-wise mode for a four-bladed wind turbine, 

during a three-quarter period of the oscillation. Red dot represents rotor CG location [38]. 

Considering the progressive edge-wise mode in this picture, it can be seen that one pair of the  

blades leads the other pair by a phase of 90 degrees. As a result of this, the CG location of the 

rotor is not located at the center of the hub. It has an offset which is indicated in Figure 2.17 with 

a red dot. Furthermore, the rotor CG generally follows an elliptical anti-clockwise rotation and it 

rotates about the hub center [38]. For the retrograde mode it can be deduced that the pair of 

blades deformed at time=0 lag the other pair of blades. Hence the rotor CG follows an elliptical 

clockwise rotation about the hub center.  

 

Now that the transformation of the inertia force to the ground-fixed frame and associated 

frequency shifts, as well as the rotor c.g. movement have been explained, the emphasis is put on 

the natural frequencies of the modal components of a (blade) vibration mode in a Campbell 

diagram. Up to this point an edge-wise bending mode was considered. However, regardless of 

the (blade) vibration mode, there are almost always three modal components present. The first 

is the symmetric modal component, where the blades deflect simultaneously in the considered 

deflection shape with no phase difference and the same amplitude [13]. The frequency of this 

component is equal to the natural frequency of the mode considered ωv. The other two modal 

components are the FW and BW mode, which are asymmetrical meaning that per blade both the 

phase and amplitude are different at a given moment in time.  

 

Although the FW and BW modes split around ωv, the symmetric and asymmetric modes do not 

have the same standstill natural frequency. The standstill frequency of the asymmetric modes is 

lower due to the different flexibilities of the remaining support structure [36]. Furthermore, the 
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same is valid when comparing the standstill frequencies of both asymmetric modes. Again, each 

asymmetric mode is related to a different flexibility, resulting in (slight) differences in the 

standstill frequencies. These aspects can be illustrated in a Campbell diagram such as in Figure 

2.18, where the natural frequencies of the modal components of a (blade) vibration mode are 

plotted against the rotor speed. 

 
Figure 2.18: Campbell diagram illustrating the modal frequencies of a vibration mode versus the rotor speed 

[39]. 

In Figure 2.18, abbreviations ‘E’, ‘F’, ‘T’ and ‘DRV’ stand for the edge-wise, flap-wise, tower and 

drive train or collective edge mode of vibration. Furthermore ‘LO’, ‘LA’ and ‘S’ stand for 

longitudinal, lateral and symmetric respectively. Also, the frequencies have been normalized 

with the lowest frequency. From this figure it is evident that for a specific vibration mode there 

is a difference between the standstill frequencies symmetric and asymmetric modes. 

Furthermore the splitting of the asymmetric modes is also clear. For increasing Ω, the frequency 

of the FW modes increases, while the frequency of the BW modes decreases corresponding to 

the definition of their frequencies. An interesting phenomenon occurs when, for a specific 

vibration mode, the frequencies of the symmetric and asymmetric modes approach each other. 

The closer the two gets, the more they attain a modal component of the other. For example, the 

first FW and symmetric flap-wise mode approach each other at approximately 6,5 RPM. They 

now both attain a component of the other mode.  This can be seen in Figure 2.18 as both lines 

slightly deflect. What happens is that the lines do not cross, but deflect from each other. 

Therefore, the line labeled with ‘1 F S’ in Figure 2.18, is actually the line of the first FW flap-wise 

mode beyond 6,5 RPM [39]. It is however assigned with the mentioned label, because 

considering all rotor speeds for this line, the symmetric component is dominant in the mode. 

The same is true for the line labeled ‘1 F FW’. As far as two different mode shapes are concerned, 

such as an asymmetric flap- and edge-wise mode, these do not switch at the crossing point. The 

reason for this is simply that these mode shapes are too different from each other. 

 

To improve the understanding of symmetric and asymmetric modal components, graphical 

illustrations are provided in Figure 2.19-Figure 2.24 which are relevant for classical flutter. 

These figures make it easier to understand and visualize the difference between symmetric and 

asymmetric modal components for a full wind turbine. It should be noted that the tower 

movements and hub displacements are neglected as it does not serve the purpose. The black 

lines in the figures serve to create a better perspective of the blade deformations. An elaboration 

is proved after the last figure.  
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Figure 2.19: isometric (left plot) and side view of the 2nd symmetric flap-wise mode. 

 
Figure 2.20: Isometric (left plot) and side view of the 2nd flap-wise BW mode. 
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Figure 2.21: isometric (left plot) and side view of the 2nd flap-wise FW mode. 

 

 
Figure 2.22: isometric (left plot) and front view of the 2nd collective edge-wise mode. 
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Figure 2.23: Left plot shows the 2nd edge-wise BW mode and the right plot shows the 2nd edge-wise FW mode. 

 

 
Figure 2.24: Isometric (left plot) and side view of the 2nd symmetric torsion mode. 
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Considering Figure 2.19, 2.22 and 2.24 it is shown that the blades deform in the same deflection 

shape, as is expected for the symmetric and collective mode shapes. Figure 2.20 shows the wind 

turbine with the top blade practically at rest, while the other two blades vibrate in counter-

phase with each other. This is especially clear when considering the side view. Now shifting the 

focus to Figure 2.21, it is clear that the top blade now vibrates in counter-phase with the 

remaining two blades. These two blades vibrate in the same deflection shape and in-phase. 

Finally there is Figure 2.23, where the left plot shows the 2nd edge-wise BW mode. Here the top 

blade is again practically at rest, while the other two blades vibrate in counter-phase with the 

same amplitude. Contrary to this, Figure 2.24 shows that for the 2nd edge-wise FW mode the top 

blade vibrates with twice the amplitude of the other two blades. Furthermore the vibration of 

the top blade in is counter-phase with the in-phase vibration of the other two blades. 

 

Having transformed the inertia force from to the ground-fixed reference frame, considered rotor 

c.g. movement and explained the modal components of a (blade) vibration mode, the focus can 

be put on how the coupling of the flap-wise and torsional modes looks like and can be 

recognized in a Campbell diagram. To this extent, a Campbell diagram based on both a single 

blade analysis and full turbine analysis is presented in Figure 2.25.  

 

 
Figure 2.25: The top plots show the natural frequencies, while the bottom plots contain the damping. The flap-

wise modes are represented by ‘o’, while the torsional modes are denoted by ‘•’. Left plots are for single blade 

analysis, right plots are full turbine analysis. The conditions of operation are no wind, zero blade pitch and 

undeformed steady state [40]. 

The top left plot in Figure 2.25, contains the analysis for one blade. Care should be taken not to 

confuse the first flap-wise mode as the mode which couples with the first torsional mode, when 

consulting the top left plot. Although, the first flap-wise mode crosses the line of the torsional 

mode first, it does not couple into a flutter mode. This is also evident when consulting the 

bottom left plot, which contains the damping percentage of the blade modes. Here it is clear that 
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the damping of a flap-wise mode becomes increasingly negative beyond approximately 25 RPM. 

This indicates a flutter mode. Consulting the top left plot at this rotor speed, it is evident that a 

coupling occurs between a flap-wise and torsional mode as two lines have approached each 

other and seem to deflect. This is similar to what happened in Figure 2.18. Counting the number 

of lines which are indicated with and ‘o’ and •, it is clear that the third flap-wise mode couples 

with the first torsional mode. 

 

Similarly, for the full turbine analysis, top right plot, the same coupling occurs at the stated RPM 

value. Therefore the single blade analysis complies with the full turbine analysis. It should be 

noted that for the full turbine analysis there are three flutter mode pairs, contrary to the single 

flutter mode pair of the single blade analysis. Here the third FW flap-wise mode couples with the 

first FW torsional mode in the full turbine analysis. The same is true for the BW and symmetric 

modes. This is because the two FW modes are more similar to each other in motion. This can 

also be stated for the both BW modes and the symmetric modes.  

 

Having analyzed how a Campbell diagram is created, it should be noted that this tool is used in 

Chapter 5 to see if classical flutter occurs for the ART5 reference turbine which is considered in 

this report. The output of the BLADEMODE V.2.0 program is organized such that the Campbell 

diagram can be made for a set of specific conditions. The program PHATAS however, does not 

use the Campbell diagram to perform a similar analysis. The output of this program provides the 

time history behavior of user-determined parameters. An example of such an output is provided 

in Figure 2.26. Here it is clear that at a time instance slightly above 100s, the torsional blade 

moment increases substantially within a short time span. Further analysis of the time history 

behavior of parameters beside the torsional blade moment is needed to determine if classical 

flutter is indeed occurring. Also, using output plots such as in Figure 2.26 and zooming in on the 

flutter region, it can be deduced if there is indeed a phase difference present between the flap-

wise and torsional deformation as theoretically indicated in section 2.3. This analysis is done in 

Chapter 6. 

 

 
Figure 2.26: Torsional blade moment [Nm] versus time [s]. Expansion starting from 100 seconds onwards 

hints at an instability such as classical flutter. The plot can be used to determine if flutter occurs and what the 

flutter limit is. 
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Chapter 3 BLADEMODE V.2.0 THEORY 
In this chapter the program BLADEMODE V.2.0 will be discussed [8]. The first section will give a 

general description of the program and how it is used in this thesis, as well as a short 

elaboration on the wind turbine used. The second section specifies the simulation input 

parameters used to yield the results necessary to perform the classical flutter analysis. The 

results for the simulations are presented in Chapter 5.  

 

3.1 GENERAL DESCRIPTION BLADEMODE V.2.0 
BLADEMODE V.2.0 was developed at ECN Wind Energy for the verification of eigenmodes of a 

single rotating rotor blade and later for the prediction of the aeroelastic stability. It is a program 

which performs a frequency based analysis. This makes it possible to find the natural 

frequencies for increasing wind or rotor speeds and consequently produce a Campbell diagram. 

The rotor blade used in the analysis follows engineering bending theory of beams and the 

structural mechanical properties of the blade are a function of the span-wise coordinate only. 

Furthermore, as far as bending and torsion dynamics of the blade is concerned, BLADEMODE 

V.2.0 includes the torsional deformation and transverse shear flexibility next to several 

aerodynamic and structural dynamic coupling terms. Some blade properties modeled in 

BLADEMODE V.2.0 are: 

 

• Centrifugal effects (in lead-lag different than in flap direction). 

• Transverse shear deformation of a cross section. 

• Cross-sectional moments of inertia. 

• ‘Slender-beam’ properties such as the distribution of sectional mass and bending 

stiffnesses (flat, edge and coupling). 

 

There are also several edge constraints at the root and tip of the blade. As such the equations of 

motion for bending and torsion of the rotor blade are solved as a two-point boundary value 

problem. Examples of these constraints are the flexibility of the pitch mechanism about the 

blade axis and the flapping flexibility of a hinge. Since BLADEMODE V.2.0 considers small 

vibrations around an equilibrium state, the equations of motion are linearized and the 

eigenmodes and frequencies are found by solving these equations. Having discussed how the 

blade is modeled in BLADEMODE V.2.0 and how the program deduces the eigenmodes and 

associated natural frequencies, it is necessary to consider which tasks the program performs. 

BLADEMODE V.2.0 has three tasks which can be performed independent of each other.  

 

1. Quasi-steady deformed and aerodynamic state. Both states are solved iteratively 

since they influence each other. A choice can be made between a BEM-based model and a 

vortex wake model for the rotor aerodynamics.  

 

2. Eigenmode solution. It should be noted that in this algorithm there is a changing  

coordinate system at each section, due to the curved blade axis, which is approximated 

with a single ‘kink’. 

 

3. Aerodynamic damping. The aerodynamic damping is calculated for each of the 

eigenmodes. It is possible to choose between the damping from the linearized 

aerodynamics and the damping from integration of energy dissipation for finite-

amplitude vibrations. 

 

Now that the functional structure of BLADEMODE V.2.0 has been provided, it will be discussed 

how the program is used in this thesis. BLADEMODE V.2.0 is used in the shell-program FOCUS 6, 

but primarily as a stand-alone version. The reason for this is that the stand-alone BLADEMODE 
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V.2.0 program is a newer version of the program, to be precise it is the June 2012 release. The 

version of BLADEMODE V.2.0 incorporated in FOCUS 6 is the August 2010 version. As the newer 

version is not yet incorporated in FOCUS 6, it was used as a stand-alone version. Using 

BLADEMODE V.2.0 frequencies for each mode shape can be generated. With these frequencies a 

Campbell plot can be made using the rotor speed values which can be generated by 

BLADEMODE V.2.0 itself or provided as a user input, depending on the type of simulation 

performed. Which mode shapes are actually generated are determined using an output file, 

produced by BLADEMODE V.2.0. This file shows the overall geometry of the vibrating rotor and 

this can be used to draw perspective views of the mode shapes. These views are static 2D plots, 

while with FOCUS 6 a vibrating 3D plot can be made where it is possible to rotate around the 

rotor in the picture. This gives better perspective of which mode shapes are actually found. After 

determining the mode shapes, which are designated with the numbers 0,1,…,9, it can be seen in 

the Campbell plot how these modes behave as the rotor speed increases. As such it is analyzed 

whether it is possible to use BLADEMODE V.2.0 to determine if classical flutter occurs and thus if 

a flutter speed or limit can be determined. Also, if this happens to be the case, it will be 

considered whether a method can be established concerning how this flutter limit can be 

determined. 

 

The wind turbine used for the analysis, both with BLADEMODE V.2.0 and PHATAS, is the ART5 

reference wind turbine. The parameters belonging to this wind turbine are presented in 

Appendices C and E for BLADEMODE V.2.0 and PHATAS respectively. The ART5 reference wind 

turbine is based on the DOWEC 6MW wind turbine model and the 5MW RWT model of the 

UpWind project, with the aim to provide an aerodynamic rotor design that is more 

representative for well-designed modern wind turbine rotors [41]. Depending on which 

program is used in the analysis, the specification of the parameters required vary.  

 

3.2 INPUT FILES FOR SIMULATIONS 
Three simulations are performed using BLADEMODE V.2.0, simulation 1, simulation 2 and 

simulation 3 respectively. All simulations are performed using a BEM-based model for the rotor 

aerodynamics. This is provided in the ART5 input file in Appendix C. Furthermore, the BEM-

based model is remarkably faster than using the vortex wake mode, which is the other option. 

Each of the three simulations are discussed in this section. In the subsequent sections 

BLADEMODE V.2.0 and PHATAS parameters will be given in italic.  

 

The reason for having three simulations can be explained by first considering the generator 
curve table, see Table C.1. This table contains the slow shaft generator torque, the loss of torque 

and the pitch angle for a range of rotor speeds. For non-zero values of the slow shaft generator 
torque, there is generator damping. This can be depicted in a figure.  
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Figure 3.1: Generator curve for the original generator curve table. 

 

The slope of the generator curve table in Figure 3.1 adds damping when the slope is positive and 

a decreasing slope has an opposite effect [42]. Based on this knowledge, a distinction is made to 

perform two simulations. The first simulation will include this generator damping effect on the 

modal frequencies in the classical flutter analysis, while the second simulation will not. 

Therefore, the second simulation will have zero entries in Table C.1 for all slow shaft generator 
torque and the loss of torque entries. The first simulation has the parameter solve speed set ON. 

The relevance of this statement is made clear in the next section. 

 

For the second simulation a division is made when considering the BLADEMODE V.2.0 

parameter solve speed. When this parameter is set ON, combined with the aerodynamics being 

set ON, the rotational speed is solved from the aerodynamic torque, the generator torque-speed 

relation and the corresponding pitch angle specified in the generator curve table. When 

aerodynamics is set ON, the quasi-steady aerodynamic loads are solved, the aerodynamic 

stiffness is included in the eigenmode solution, and the aerodynamic damping is calculated. For 

solve speed ON the value of rotational speed is the initial speed in searching the steady-state 

solution for each wind speed specified in wind series, which contains a range of non-zero 

increasing wind speeds. By setting solve speed OFF, but keeping aerodynamics ON, the generator 
curve table is no longer considered. The rotor speed is not calculated with these settings and it 

needs to be indicated manually. The range of rotor speeds is provided in the wind series, which 

has three columns when solve speed is set OFF.  The first column contains the wind speed values, 

the second column contains the rotor speed value, while the last column specifies the pitch angle. 

When solve speed is OFF, the value for the wind speed is constant for each entry in the wind series 

parameter. As such, for a specific constant wind speed the rotor speed varies and the frequencies 

are calculated for each of these rotor speeds. By performing a simulation with solve speed OFF, 

the effect on the calculated frequencies and thus potential classical flutter is captured, due to not 

letting BLADEMODE V.2.0 converge around a steady-state solution for the rotor speed and not 

interpolating the generator curve table for this rotor speed. This in contrast to when solve speed 
is ON. 

 

Performing a simulation with inclusion of the slow shaft generator torque and the loss of torque, 

as well as setting solve speed OFF is unnecessary. This is due to the fact that for solve speed OFF 

the generator curve table is not consulted. Hence this simulation would be similar to the case of 

no shaft generator torque and the loss of torque, with solve speed OFF.  

 

Having provided the reasoning behind performing these three simulations, the main differences 

between the three simulations are presented in Table 3.1 for clarity. 
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Table 3.1: Main differences between the three simulation. 

Simulation 1 Simulation 2 Simulation 3 

Solve speed ON, include slow 
shaft generator torque, the loss 
of torque. 

Solve speed ON, no slow shaft 
generator torque, the loss of 
torque. 

Solve speed OFF, no slow shaft 
generator torque, the loss of 
torque. 

 

Another important aspect of the three simulations is the setting for the static blade pitch angle, 

which is set equal to �L = 8U for all the simulations. This value is entered in either the generator 
curve table or wind series, depending on the simulation performed, for each entry where the 

pitch angle needs to be specified. The value of eight degrees is similar to the value of the pitch 
angle used in the overspeed loadcase for the PHATAS analysis. This is elaborated on in Chapter 

4. As such, not only a comparison between the BLADEMODE V.2.0 simulations is possible, but 

also a comparison between the results for the classical flutter analysis of BLADEMODE V.2.0 and 

PHATAS.  

 

3.2.1 PARAMETERS FOR SIMULATION 1 
The main settings defining the first simulation have been specified. But apart from the main 

simulation settings, there are other parameters which need to be specified correctly in order to 

be able to perform the simulation. Taking as a starting point the ART5 input file specified in 

Appendix C, the input data is altered accordingly. The parameters which are altered are shown 

in Table 3.2. 

 
Table 3.2: Changed parameters with respect to ART5 input file. 

Changed parameter Value Unit 

Aerodynamics ON - 

Blade torsion ON - 

Deformed state ON - 

Nr. of modes 9 - 

Solve speed ON - 

Wind series 1-60 [m/s] 

 

As far as the apparent mass is concerned, its inclusion in the eigenmode solution is independent 

of whether aerodynamics is set ON or OFF. Setting blade torsion ON results in the torsional 

deformation being included for the deformed equilibrium state and the eigenmodes. The 

deformed equilibrium state is solved iteratively together with the ’frozen wake state’ when the 

value is set ON. The number of eigenmodes setting indicates the number of eigenmodes that are 

to be solved. Higher order modes, of which the shape has several nodes, may be solved with 

some numerical error. This is elaborated on in Chapter 5. Also, the value for the maximum wind 

speed is chosen arbitrarily but such that it should capture the classical flutter phenomenon were 

it to occur. Therefore a large value is chosen, which might not be realistic for operating 

conditions.  

 

The order in which these parameters are altered is irrelevant. One can change the parameters in 

the sequence preferred, as long as the simulation is not yet run before all the required 

parameters are changed. The full BLADEMODE V.2.0 input file used for simulation 1 is provided 

in Appendix D. 
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3.2.2 PARAMETERS FOR SIMULATION 2 
Following a similar logic as explained in section 3.2.1, the ART5 input file from Appendix C is 

altered with the same parameters stated in Table 3.2. The only difference with simulation 1 is 

the zero values for the slow shaft generator torque and the loss of torque in the generator curve 
table, as explained earlier. 
 

3.2.3 PARAMETERS FOR SIMULATION 3 
For the third simulation, four parameters differ from the first simulation settings. These 

parameters are presented in Table 3.3. 

 
Table 3.3: Changed parameters with respect to ART5 input-file and first simulation. 

Changed parameter Value Unit 

Wind series (wind speed) 3; 8; 15; 60 [m/s] 

Wind series (rotor speed) 0-48 (48 steps) - 

Wind series (pitch angle) 8 [deg] 

Solve speed OFF - 

 

The wind speed in the wind series parameter contains four different values. The simulation is 

performed for each one of these wind speeds. The values are chosen such that an analysis can be 

made for realistic operating conditions and for an extreme case. Although four simulations are 

performed, there is only the single difference of the wind speed value. Hence all four simulations 

are mentioned in this section as ‘the third simulation’. In the remainder of the report it will 

always be indicated which wind speed was used if the third simulation is mentioned. 

 

The maximum value for the rotor speed is based on the results obtained for the first simulation, 

which will be presented in Chapter 5. The maximum rotor speed value calculated for the first 

simulation will prove to be around 48 RPM.  
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Chapter 4 PHATAS THEORY 
In this chapter the program PHATAS will be discussed [43]. The first section will give a general 

description of the program and how it is used in this thesis, as well as a short elaboration on the 

wind turbine used. The second section specifies the simulation input parameters used to yield 

the results necessary to perform the classical flutter analysis. The results for the simulations are 

presented in Chapter 6.  

 

4.1 GENERAL DESCRIPTION PHATAS 
The abbreviation PHATAS stands for Program for Horizontal Axis wind Turbine Analysis and 

Simulation. This program is used to analyze the dynamics and loads of a horizontal axis wind 

turbine. To this extent, PHATAS is incorporated in the user-friendly shell program FOCUS 6, 

which is a rotor blade design tool. Using PHATAS the time history behavior of the wind turbine 

dynamics can be analyzed, which can be post-processed to obtain the results in the frequency 

domain. The main difference with BLADEMODE V.2.0 is that PHATAS is a non-linear time 

domain simulation, while BLADEMODE V.2.0 performs a frequency based analysis. Another 

difference is that BLADEMODE V.2.0 is based on a single blade analysis, while PHATAS analyses 

the dynamic behavior and the corresponding loads in the main components of a wind turbine 

such as the rotor blades, the rotor shaft and the tower. Based on the non-linear beam approach, 

most of the bending and torsion flexibilities of the blades and the tower are described in the 

structural model of the wind turbine in PHATAS [44]. Furthermore, variables for the generator 

torque-speed characteristics, for the torsional deformation of the rotor shaft and gearbox 

support, for teetering and for passive blade pitch motion are included in the model of the drive 

train and rotor hub. As far as the aerodynamics is concerned, PHATAS has a BEM based 

aerodynamic model. This model contains the terms for instationary response of the rotor wake. 

Furthermore, there are two ways to calculate the blade loads. One is with the heuristic dynamic 

stall model of Snel (which will be used), while the other is based on stationary airfoil coefficients 

[45]. As far as control is concerned in PHATAS, a P-D algorithm for control of the generator 

power or of the rotor speed by means of pitch actions is included. Also, if desired by the user it is 

possible to use a user-reserved routine to link dedicated control algorithms to the code. Some 

other models used in PHATAS are listed below [46]. 

 

• Linearized support structure model, using the Craig-Bampton model reduction. 

• Drive train model consisting of gear ratio, shaft torsion and flexible mounting. 

• Full 3D turbulent wind field model. 

 

Having described the basic principles of simulations performed with PHATAS, as well as 

highlighting the structure of the PHATAS code, it is worth noting that the source code of PHATAS 

can be considered to have three origins. 

 

• The tool GENMENU is used to generate the main program and input structure. The latter 

not only contains the name of the default input file, but also the files with the input 

properties and the routines for reading the input files. 

• The part for the calculations on the wind turbine dynamics. 

• A part which can be replaced on a modular basis as it is developed separate from the 

PHATAS code. This part solves the mode shapes and natural frequencies of the tower, as 

well as calculating the dynamic response. 

 

Now that the general description of PHATAS is provided, the emphasis is put on how it is used in 

this thesis. The program PHATAS is used in this thesis inside the shell program FOCUS 6. Similar 

to what has been done with BLADEMODE V.2.0, simulations are performed to see if classical 

flutter occurs and thus a flutter speed or limit can be determined. Based on whether this is the 
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case or not, a method will be established on how to determine this flutter speed. With PHATAS 

the time history behavior of parameters deemed relevant for classical flutter are calculated. 

Considering the behavior of these parameters in time, it can be deduced if classical flutter occurs 

and a flutter speed can be established. An example of such a time history behavior was provided 

in Figure 2.26. The potential classical flutter phenomena may be detected in the time history 

behavior of the relevant parameters, if the correct settings are applied in PHATAS. To aid the 

user in this analysis, the shell program FOCUS 6 has a built-in pre-processor LCPREP. With this 

pre-processor an overspeed loadcase is generated. Using this loadcase, the desired output 

parameters are determined based on an increasing wind and rotor speed. This loadcase is 

adjusted only in one way, by setting the pitch angle equal to eight degrees for all three blades as 

was the case for the BLADEMODE V.2.0 analysis. The analysis is performed using the ART5 

reference turbine, similar to the analysis with BLADEMODE V.2.0. However, as PHATAS is a full 

turbine analysis program, the input parameters differ from those required for BLADEMODE 

V.2.0. Consequently, the ART5 reference wind turbine input parameters are provided in 

Appendix E.  

 

4.2 INPUT FILES FOR SIMULATION 
Taking the ART5 input file as a starting point, generating the overspeed loadcase and 

incorporating the changes to this loadcase, only the parameter output table needs to be altered. 

The required output table is provided in Table 4.1. 

 
Table 4.1: Adjusted output table used for the overspeed analysis in PHATAS. 

Output parameter Description Units 

2 Wind speed at the hub [m/s] 

12 Rotor speed [RPM] 

21 Bending moment in the tower about XF [Nm] 

22 Bending moment in the tower about YF [Nm] 

112 Aerodynamic angle of attack between the 

relative wind and blade chord 

[o] 

116 Value of the lift coefficient cl [-] 

147 Flap displacement of the blade 1 [m] 

148 Torsional blade deformation 1 [o] 

247 Flap displacement of the blade 2 [m] 

248 Torsional blade deformation 2  [o] 

347 Flap displacement of the blade 3 [m] 

348 Torsional blade deformation 3 [o] 

 

In this table output parameters 21 and 22 are related to the reference frame for tower loads 

indicated in Figure 4.1. In this same figure, also the deformed rotor plane reference system for 

blade loads is depicted. The description of the symbols is provided in the illustration. 
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Figure 4.1: Left picture shows the reference frame for the tower, while the right picture shows the deformed 

rotor plane reference system [43]. 

 

Consulting Figure 4.1, it should be noted that output parameter number 147 is not present in the 

illustration. The reason for this is simply because it is the same as indicated for number 137, 

only now with respect to the deformed blade axis.  

 

Output parameters 21 and 22 are considered as they are related to the tower side-to-side and 

fore-aft modes, respectively. The tower bending moments are determined at the bottom of the 

tower, where they are largest. Next to this, the time history behavior of the parameters related 

to the flap-wise and torsional modes will indicate whether classical flutter occurs or not. Also, 

these parameters are determined at the tip location, where their deformations are largest. 

Consequently output parameters 112 and 116 are also determined at the tip. These two 

parameters are used in the analysis to check whether the classical flutter phenomena has 

occurred. 

 

The output parameters mentioned in Table 4.1 are produced for both pitch angles of eight and 

ten degrees. Simulating for both cases makes a comparison possible to see the effect of the pitch 

angle on the possible occurrence of flutter. This simulation is done to substantiate what it 

implied in the second main flutter criterion in section 2.5. Based on this criterion it is expected 

that increasing the pitch angle will reduce W0 and hence delay the occurrence of classical flutter. 

Furthermore, the effect on classical flutter due to changing the torsion stiffness values in the 

torsion data table, see Table C.5, is considered. By doing this, the effect of the third main flutter 

criterion stated in section 2.5 is substantiated. After simulating both effects on the flutter limit, it 

is considered which parameter could best be changed to alter the flutter limit.  
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Chapter 5 BLADEMODE V.2.0 ANALYSIS 
In this section the results obtained with BLADEMODE V.2.0 are presented. The aim of this 

chapter is to provide an answer to whether it is possible to use BLADEMODE V.2.0 to determine 

an efficient method for finding the flutter speed at which classical flutter occurs. The manner in 

which the analysis is conducted is outlined in Chapter 3, as well as the input data for the 

simulations. To this extent the sections one, two and three deal with the results of the first, 

second and third simulation respectively. The fourth section provides the general conclusions 

with regard to determining the classical flutter limit using BLADEMODE V.2.0, based on the 

simulations outlined in Chapter 3. Finally the fifth section discusses some of the limitations of 

the program. 

 

5.1 SIMULATION 1 RESULTS 
This section deals with results of the first simulation. First the mode shapes found will be 

provided. After this the Campbell plot will be presented and analyzed. The mode shapes found 

for the first simulation are described in Table 5.1. These mode numbers will be used in all the 

Campbell plots. 

 
Table 5.1: Mode shapes for the first simulation. Solve speed ON, wind series: 1-60 [m/s], including slow shaft 

generator torque and loss of torque. 

Mode number Mode shape 

Mode 0 (M0) Unknown (should be 1P gravity load) 

Mode 1 (M1) Tower fore-aft 

Mode 2 (M2) 1st flap-wise 

Mode 3 (M3) 1st collective edge-wise 

Mode 4 (M4) 2nd flap-wise 

Mode 5 (M5) 2nd collective edge-wise 

Mode 6 (M6) 3rd flap-wise 

Mode 7 (M7) 3rd collective edge-wise 

Mode 8 (M8) 4th flap-wise 

Mode 9 (M9) 1st torsion 

  

These mode shapes are determined by considering the static 2D plots presented in Appendix F, 

to be precise Figures F.1 and F.2. Using FOCUS 6 and viewing the mode shape plots with this 

shell-program, a better perspective is obtained which allows for easier recognition of the mode 

shapes. These mode shapes and their associated plots are determined by considering what the 

dominant mode shape is for the entire wind speed or rotor speed range. In case of simulation 1 

the rotor speeds are solved by BLADEMODE V.2.0 for a wind speed range of 1-60 m/s. By 

dividing this range of wind speeds into smaller sections of 5 m/s and each time considering the 

mode shape plots for this section, the dominant mode shapes for the full wind speed range can be 

determined. In case of simulation 3, the solve speed is OFF. Hence, as explained in Chapter 3, the 

wind speed is kept constant while the rotor speed is given a range of values. For each of these 

rotor speed values the mode shapes can be depicted in a mode shape plot. Therefore the 

dominant mode shapes can be found by considering the mode shape plots for all the rotor 
speeds. Nevertheless, for simulation 1 the first mode shape could not be determined as it 

remained unclear in the plots. It is known however, that it should represent the 1P gravity load 

[8]. 
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Furthermore, in Table 5.1 a reference is made to the collective edge-wise mode shape. This is 

because the variable speed is set on in the ART5 input file, there are only collective edge-wise 

modes determined. The Campbell plot determined for the first simulation is presented in Figure 

5.1. 

 

 
Figure 5.1: Unadjusted Campbell plot for simulation 1. Solve speed ON, wind series: 1-60 [m/s], including slow shaft 

generator torque and loss of torque. 

When simulating for a range of wind velocities from 1-60 m/s, there will be gaps in the 

frequency tables of the modes. This is because frequencies need to be sorted out for all the 

modes. When searching for the natural frequencies, the program sometimes mistakenly assigns 

the solution for mode 5 to mode 4 for example. The reason for this is that a solution is sought for 

the case where the characteristic equation equals zero. Sometimes a solution is missed or not 

found and the next solution is assigned to the location where the absent solutions should have 

been. This causes a shift in the assigning of the frequencies to a specific mode. It must be noted 

that the values of the frequencies themselves do not alter, there is only a mismatch occurring 

between the mode and its natural frequency. Furthermore sometimes when this phenomenon 

occurs, not only is a natural frequency assigned to the incorrect mode (the shift) but also this 

same frequency is still assigned to its associated mode. This causes the same frequency to 

appear twice and thus overlapping of frequencies in the Campbell plot is present.  This can be 

seen in Figure 5.1. Careful sorting out of the frequencies improves clarity of the graph, which 

results in Figure 5.2. 
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Figure 5.2: Adjusted Campbell plot for simulation 1. Solve speed ON, wind series: 1-60 [m/s], including slow 

shaft generator torque and loss of torque. 

Consulting Figure 5.2,  no clear relation seems to exist between any flap-wise and torsional 

mode, contrary to what would be expected if classical flutter were to occur. There is no 

approaching of any flap-wise and torsional mode visible in the figure.  Furthermore the torsional 

mode has increasing frequencies for increasing rotor speed values. This is the opposite of what 

would be expected based on Chapter 2.  

 

5.2 SIMULATION 2 RESULTS 
This section deals with results of the second simulation. First the mode shapes found will be 

provided. After this the Campbell plot will be presented and analyzed. It will be determined 

what the effect is on occurrence of classical flutter, by setting the slow shaft generator torque and 

the loss of torque equal to zero in the generator curve table. This can be done by comparing the 

results of simulation 2 with those from simulation 1.  

 

The mode shapes found for the second simulation are the same as found for simulation 1, which 

are shown in Table 5.1. Therefore it is deemed unnecessary to provide the 2D mode shape plots 

for simulation 2. The manner in which the mode shapes are determined was explained in the 

previous section. The Campbell plot determined for simulation 2 is provided in Figure 5.3. 
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Figure 5.3: Adjusted Campbell plot for simulation 2. Solve speed ON, wind series: 1-60 [m/s], excluding slow shaft 

generator torque and loss of torque. 

From this figure a similar conclusion to the one for the first simulation can be drawn. The flap-

wise modes and torsional mode do not approach each other. This is again in contrast to what 

would be expected. Furthermore, as classical flutter is not deemed to occur, the effect of the slow 
shaft generator torque and the loss of torque on classical flutter cannot be determined. However 

it is possible to consider the effect on the frequencies. This done by considering the torsional 

mode (M9) and plotting the frequencies in one figure, which is shown in Figure 5.4 
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Figure 5.4: Comparison between frequencies from simulation 1 (red) and simulation 2 (blue) for the torsional mode. 

From this figure it can be deduced that the frequencies for the torsional mode of simulation 2 

correspond good with those of simulation 1. It is however visible that setting the slow shaft 
generator torque and the loss of torque equal to zero in the generator curve table, does create a 

difference between the results of the two simulations. To be more precise, in simulation 1 the 

generator damping is included which results in slightly lower frequencies for the torsional mode 

compared to the second simulation. As a result of this it is visible in Figure 5.4 that the red line 

clearly lies below the blue line for some distinct part of the plot. From this result it can be 

deduced that if classical flutter could be detected with either simulation 1 or 2, the effect of 

setting the slow shaft generator torque and the loss of torque equal to zero should be considered. 

 

5.3 SIMULATION 3 RESULTS 
This section provides the results for all the four wind speed values of the third simulation. The 

reasoning for choosing these values was given in Chapter 3. Similar to the structure used in the 

previous two sections, the results for the third simulation are presented in this section. It will be 

considered what the effect is on the calculated frequencies and potential classical flutter, due to 

not letting BLADEMODE V.2.0 converge around a steady-state solution for the rotor speed and 

not interpolating the generator curve table for this rotor speed. This in contrast to the first two 

simulations. 

 

The mode shapes found for each of the wind speed values of simulation 3 are found to be the 

same as those for the previous two simulations, with the exception that M0 can now be 

determined in this simulation based on the 2D plot. Therefore the mode shapes for the third 

simulation are provided in Appendix F, to be precise Figures F.3 and F.4. The first mode shape 

(M0) is determined to be indeed the 1P gravity load, which one would expect as stated earlier. 

Also, the mode shape plots are provided for the wind speed value of 3 m/s as the other wind 
speeds yield the same result.   

 

The Campbell plots for each of the four simulations is provided in Figure 5.5-Figure 5.8 
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Figure 5.5: Adjusted Campbell plot for simulation 3 with wind speed 3 m/s. Solve speed OFF, excluding slow shaft 

generator torque and loss of torque. 

 
Figure 5.6: Adjusted Campbell plot for simulation 3 with wind speed 8 m/s. Solve speed OFF, excluding slow shaft 

generator torque and loss of torque. 
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Figure 5.7: Adjusted Campbell plot for simulation 3 with wind speed 15 m/s. Solve speed OFF, excluding slow shaft 

generator torque and loss of torque. 

 
Figure 5.8: Adjusted Campbell plot for simulation 3 with wind speed 60 m/s. Solve speed OFF, excluding slow shaft 

generator torque and loss of torque. 

From these figures it is evident that there is again no approaching or intersection visible of any 

of the flap-wise modes and torsional mode. Therefore it is deemed that classical flutter cannot be 

predicted for this simulation. It should be noted however that for an increasing value of the wind 
speed in this simulation, the torsional mode does appear to no longer keep increasing with the 

rotor speed. Even more, in Figure 5.8 it can be seen that it even decreases from around 20 RPM 

onwards. Nevertheless, there is no approaching of a flap-wise or torsional mode visible. 
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Comparing the four figures of simulation 3 with each other, the behavior of the mode shapes 

with increasing rotor speeds is similar. The only exception to this is Figure 5.8, where the best 

results for high rotor speed values are obtained. The number of gaps is relatively low for this 

simulation. Furthermore, comparing the Campbell plots from the three simulations with those 

from the first two simulations is irrelevant as classical flutter is not detected. 

 

5.4 GENERAL CONCLUSIONS 
From the figures of all three simulations it is evident that there is no approaching or intersection 

visible of any of the flap-wise modes and the torsional mode. Therefore there is no indication for 

the occurrence of classical flutter, regardless of the simulation considered. As such it not 

possible to determine the flutter speed and derive a method to find this limit using BLADEMODE 

V.2.0. A possible explanation could be that classical flutter cannot be predicted with 

BLADEMODE V.2.0, since it is an instability where the flap-wise and torsional vibration would 

not be in phase. Considering that the solutions provided with BLADEMODE V.2.0 are only for 

vibrations which are in phase [C.Lindenburg, ECN], classical flutter cannot be detected then. 

However, it would still be expected that the frequencies of the flap-wise and torsional mode 

would approach each other as the rotor speed increases. This is however not the case.  

 

Also as classical flutter cannot be detected, the influence of a changing pitch angle and/or 

changing torsional stiffness on the flutter speed, is not determined.  

 

5.5 LIMITATIONS OF THE PROGRAM 
One of the main limitations of the program is that the incorrectly assigned frequencies to the 

mode shapes need manual adjusting, such that the frequencies are assigned to the correct mode 

shapes. This is not only time-consuming but also error prone and may thus lead to incorrect 

conclusions being drawn based on the Campbell plot.  

 

Another limitation of the program is that no single output file is generated with the data 

necessary to create a Campbell plot. As such, the required data needs to be transferred manually 

into one file before the Campbell plot can be made with an external program. This seems 

inefficient and error prone.  

 

Also, when the analysis is performed using BLADEMODE V.2.0, a 2D plot can be made of the 

mode shapes. These are sometimes difficult to interpret as the perspective is not quite clear. 

 

Finally, to determine the dominant mode shapes, numerous extra simulations must be 

performed in order to find the dominant modes. Even though the simulations for the full range 

of either the wind speeds or rotor speeds are already performed, this is insufficient to determine 

the dominant mode shapes. This is again deemed inefficient.  

 

 

 

 

 

 

 

 

 

 



44 

 

Chapter 6 PHATAS ANALYSIS 
In this section the results obtained with PHATAS are presented. The aim of this chapter is to 

provide an answer to whether it is possible to use PHATAS to determine an efficient method for 

finding the flutter speed at which classical flutter occurs. The manner in which the analysis is 

conducted is outlined in Chapter 4. Also, as BLADEMODE V.2.0 is unable to detect classical 

flutter, the comparison with the results from PHATAS is omitted as this is not possible. 

 

The first section of this chapter provides the results for the simulation done for a pitch angle of 

eight degrees. Following this, the second section presents the method of how to determine the 

classical flutter limit based on the results presented in section 6.1. The third section contains the 

results for the influence of a changing pitch angle or torsional stiffness on the classical flutter 

limit. Consequently, section four contains the results of the analysis on how to generate the 

natural frequency at which classical flutter occurs. Section five contains the general conclusions 

with regard to determining the classical flutter limit using PHATAS. Finally the sixth section 

discusses some of the limitations of the program.    

 

6.1 SIMULATION RESULTS PITCH ANGLE 8 DEGREES 
This section presents the results obtained with the PHATAS program using the shell-program 

FOCUS 6, which are relevant in the classical flutter analysis and/or indicate the presence of an 

instability at a given moment in time during the simulation. Figure 6.1 shows the increasing 

wind speed used in the LCPREP analysis, followed by the rotor speed in Figure 6.2. The bending 

moment in the tower about the XF- and YF-axis is provided in Figure 6.3 and Figure 6.4 

respectively, while the flap-wise displacements of each individual blade are shown in Figure 6.5-

Figure 6.7. The torsional blade deformations of each individual blade are shown in Figure 6.8-

Figure 6.10. 

 

 
Figure 6.1: Increasing wind speed used in the LCPREP overspeed loadcase to analyze classical flutter. 
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Figure 6.2: Rotor speed as a result of the increasing wind speed in the LCPREP overspeed loadcase. 

 

 
Figure 6.3: Bending moment in the tower about the X

F
-axis as a result of the increasing wind speed in the LCPREP 

overspeed loadcase. 
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Figure 6.4: Bending moment in the tower about the Y

F
-axis as a result of the increasing wind speed in the LCPREP 

overspeed loadcase. 

 

 
Figure 6.5: Flap-wise displacement blade 1 as a result of the increasing wind speed in the LCPREP overspeed loadcase. 
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Figure 6.6: Flap-wise displacement blade 2 as a result of the increasing wind speed in the LCPREP overspeed loadcase. 

 

 
Figure 6.7: Flap-wise displacement blade 3 as a result of the increasing wind speed in the LCPREP overspeed loadcase. 
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Figure 6.8: Torsional deformation blade 1 as a result of the increasing wind speed in the LCPREP overspeed loadcase. 

 
Figure 6.9 Torsional deformation blade 2 as a result of the increasing wind speed in the LCPREP overspeed loadcase. 
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Figure 6.10: Torsional deformation blade 3 as a result of the increasing wind speed in the LCPREP overspeed loadcase. 

From these figures it is clear that all three blades display similar behavior in the time domain for 

the overspeed loadcase. Therefore, in the following section the results for blade 1 will be 

considered to determine whether classical flutter is deemed to occur or not.  

 

It should be noted that the heavy vibration seen in the figures does not increase exponentially as 

would be expected for classical flutter, due to the lift-curve having a limited range for attached 

flow [41]. As stated before the wind speed increases linearly for the overspeed loadcase analysis. 

Combined with a changing torsional deformation, this influences the angle of attack such that 

the position on the lift curve for this angle of attack is not always in the attached flow region. 

This was noted to be a main criterion for classical flutter in Chapter 2.  
 

6.2 METHOD TO DETERMINE THE FLUTTER SPEED  
In this section the method to determine the flutter speed is presented. The results for blade 1 

from the previous section are used in the analysis. The method will consist of various steps. The 

first three steps serve to prove if classical flutter is present or not as different aspects relevant to 

classical flutter are considered. Step four of the method explains how the flutter limit can be 

deduced once it is established in the previous steps that classical flutter occurs. At the end of this 

section the steps are summarized. It should be noted that since the flap-wise displacement and 

torsional deformation are pivotal for classical flutter, the subsequent analysis will mainly focus 

on these two deformations. 

6.2.1 STEP 1 
The first step is to consider if there are any indicators of unusual behavior in the curves which 

are the result of an instability. It can be seen from all figures, except Figure 6.1 which shows a 

linearly increasing wind speed, that at around 80 seconds an instability seems to occur. 

Consulting Figure 6.5 and Figure 6.8, it can be deduced that at around 80 seconds a considerable 

expansion of the curves takes place. This has the characteristics of classical flutter as the 

expansion occurs in a short time span. This time span is in the order of a few seconds. Consulting 

Figure 6.2, it can be seen that the rotor speed around the time of 80 seconds is equal to about 21 
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[RPM]. This would imply that one blade rotates with 
21

60
= 0,35 rotations per second. So for the 

rotor to complete one full revolution, it takes  
1

0.35
= 2,86	5A7. Considering the rapid expansion of 

the torsional deformation, depicted in Figure 6.8, it is possible for this deformation to experience 

this expansion within one or a couple of rotor revolutions. This is characteristic for classical 

flutter.  

 

Another indicator of an instability can be found when consulting Figure 6.2 and Figure 6.5. Here 

it can be seen that at 80 seconds a ‘kink’ is visible in the curves, after which the unusual behavior 

takes place. The term unusual is used here to indicate a clearly different behavior of the rotor 

speed and flap-wise deformation curves before and after 80 seconds.  

 

By plotting the flap-wise and torsional deformation into the same figure, it can be seen which of 

the two shows the first signs of unusual behavior. This is illustrated in Figure 6.11. In this figure 

also the wind an rotor speed are included. The wind speed is included as it is relevant to when 

the instability occurs. The rotor speed is also depicted in the figure as it also contains a ‘kink’, as 

such it can be compared with the torsional deformation as well.  

 

 
Figure 6.11: Torsional deformation (blue), flap-wise (red), rotor speed (green) and wind speed (purple) for blade 1 as a 

result of the increasing wind speed in the LCPREP overspeed loadcase. The vertical black line serves to clarify whether 

torsional expansion occurs prior to the ‘kink’ present in the flap-wise displacement and rotor speed.  

From this figure it is clear that just before the ‘kink’ of the flap-wise deformation, the torsional 

deformation shows signs of the expansion which would be expected for classical flutter. Having 

determined which indicator of the instability occurs first, it will be possible to determine the 

flutter speed in a subsequent step. 
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6.2.2 STEP 2 
The second step is to zoom in on the deformations in Figure 6.11, by considering the time before 

classical flutter is deemed to occur and while it develops. This is depicted in Figure 6.12 and 

Figure 6.13. The aim of the second step is to determine if a phase difference is present between 

the flap-wise and torsional deformation when classical flutter is deemed to occur, as was 

mentioned in Chapter 2.   

 

 
Figure 6.12: Zoom in on flap-wise displacement (red) and torsional deformation (blue) for blade 1, as a result of the 

increasing wind speed in the LCPREP overspeed loadcase, for the time period prior to classical flutter. Graph shows the 

results for the first 30 seconds of the simulation and checks whether a phase difference is present. 

 
Figure 6.13: Zoom in on flap-wise displacement (red) and torsional deformation (blue) for blade 1, as a result of the 

increasing wind speed in the LCPREP overspeed loadcase, for the time period including the flutter limit. Graph shows 

results for the time period of the simulation where the instability occurs. 

It should be noted that in Figure 6.12 a ‘mini-kink’ is present in the curve for the torsional 

deformation. This phenomena occurs when the flap-wise displacement reaches a minimum, 

which is about once every five seconds or equal to a frequency of 0,2 Hz. The reason for this 

behavior is due to the tower 1P frequency. Consulting Figure 6.2, it can be seen that for the first 

30 seconds of the simulation the rotor speed is equal to approximately 12 RPM. This means that 

the 1P frequency equals 12 60⁄ = 0,2 Hz. This correlates with Figure 6.12 and the frequency 

found for the ‘mini-kink’. 
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Considering both Figure 6.12 and Figure 6.13, it can be deduced that as the instability is 

approached, small vibrations become visible in the curves for both deformations. The deviations 

become evident from 70 seconds onwards for the torsional deformation. For the flap-wise 

deformation, the small deviations start to become evident from 74 seconds onwards. As the 

phase difference is desired to be found, it is necessary to zoom in further on the region where 

the deviations for both deformations are present. This is shown in Figure 6.14. 

 

 
Figure 6.14: Zoom in further for flap-wise displacement (red) and torsional deformation (blue) for blade 1, as a result of 

the increasing wind speed in the LCPREP overspeed loadcase, to determine existence of a phase difference. The flap-wise 

displacement values have been multiplied by four to stretch the curve and shifted with a constant, in order to make the 

phase difference visible. 

In this figure it can first of all be seen that the expansion of the torsional deformation occurs at 

around 69 seconds. This in contrast to the 70 seconds stated earlier. Zooming in has made this 

clear. Furthermore, it can be seen that there is indeed a phase difference present between the 

flap-wise and torsional deformations. This is depicted more clear in Figure 6.15 by drawing 

vertical green lines at certain time instances, which make it clear that when the flap-wise 

vibration is at a minimum the torsional vibration is not. Actually, based on the two green lines it 

can be deduced that the phase difference is around 1200. Referring to Chapter 2, this is not equal 

to the case of 90o, but it can still lead to classical flutter. This phase difference remains present, 

as is depicted in Figure 6.16. Here it can be seen that at times beyond the flutter limit, the phase 

difference is indeed still present. 
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Figure 6.15: Zoom in further for flap-wise displacement (red) and torsional deformation (blue) for blade 1, as a result of 

the increasing wind speed in the LCPREP overspeed loadcase, to determine existence of a phase difference. The flap-wise 

displacement values have been multiplied by 15 to stretch the curve and shifted with a constant, in order to make the 

phase difference visible. 

 
Figure 6.16: Zoom in on flap-wise (red) and torsional deformation (blue)peaks for blade 1, as a result of the increasing 

wind speed in the LCPREP overspeed loadcase, to show that the phase difference between the two remains present. The 

flap-wise displacement values have been multiplied by 15 to stretch the curve and shifted with a constant, in order to 

make the phase difference visible. 

6.2.3 STEP 3 
Now that the phase difference is established, the third step is to consider if the instability is a 

self-exciting instability. This is an essential aspect of the classical flutter phenomena, as stated in 

Chapter 2. To this extent, Figure 6.11 and Figure 6.13 are consulted. It was already established 

that there is a rapid expansion of in particular the torsional deformation. As this expansion 

occurs within one or a couple of rotor revolutions and no other reason was found present for 

this expansion, the only viable explanation is that of self-excitation. This is deemed a viable 

explanation because the conclusions of the two other steps are taken into account. Combining 

the phenomena discussed in the previous steps and their associated conclusions, self-excitation 

is viable as the criteria for classical flutter to occur are present. Indeed, based on Figure 6.14 it 

can be seen that beyond 69 seconds the self-enhancement mentioned in Chapter 2 is most clear. 

Furthermore, as the overspeed loadcase is performed with a linearly increasing wind speed, this 

cannot be the reason for the sudden expansion as there is no step-input in the wind. Next to this 

the rotor speed is determined based on the wind speed, meaning that the instability can only 

considerably increase within the short time span if it is a self-exciting instability. 
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As an extra check, another simulation is performed where all parameters except the blade flap-
wise stiffness value are altered. These values have been given an exaggerated value of one million 

times the original input data. The reason for this is that it is desired to compare the time history 

behavior of the flap-wise displacement found with the original LCPREP simulation, with a 

simulation where the stiffness value has been changed. By comparing the two results it should 

be clear that the instability found for the simulation with the original data indeed hints at 

classical flutter. The results of this simulation is provided in Figure 6.17. 

 

 
Figure 6.17: Flap-wise displacement as a result of the increasing wind speed in the LCPREP overspeed loadcase. The graph 

shows the result for the original data (blue) and for the case with one million times higher torsional stiffness values of 

the blade (red).  

From this figure it is clear that increasing the flap-wise stiffness values results in the absence of 

the instability encountered in the simulation with the original data. This correlates with the 

theory in Chapter 2 that increasing the flap-wise stiffness will increase the flutter limit. In other 

words, the instability responds to the increase of the flap-wise stiffness values as one would 

expect classical flutter to do. Hence the result obtained substantiates the statement that the 

instability found indeed is classical flutter. 

 

6.2.4 STEP 4 
Considering the results and conclusions obtained so far, it can be stated that the instability 

present in the results of the simulation indeed is classical flutter. Based on this conclusion, step 4 

can be performed. This step aims to find the flutter speed. This is achieved by first consulting the 

rotor speed plot, Figure 6.2, by zooming in on the time period including the determined time 

instance beyond which self-enhancement is determined to occur. This figure is presented in 

Figure 6.18. Based on this figure and the results obtained thus far, a first estimation of the flutter 

speed is made. The value for the rotor speed is determined at 73 seconds and it is found to be 

20,12 RPM. This is indicated in Figure 6.18 with the red lines. The choice for this value is deemed 

appropriate as it is beyond the determined time instance where classical flutter is thought to 

occur. 
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Figure 6.18: Zoom in on the rotor speed, as a result of the increasing wind speed in the LCPREP overspeed loadcase, to 

determine the flutter speed. The time period considered includes the flutter limit. The two red lines are present to make 

to easier to read the flutter speed at the time of 69 seconds. 

What needs to be done next, is to perform several simulations with the LCPREP overspeed 

loadcase but now with a fixed wind and rotor speed. The first simulation is based on the rotor 
speed of 20,12 RPM. Based on the results obtained with this value it can be deduced whether 

classical flutter is present or not. If it is deemed to have occurred, the next simulation is 

performed with a rotor speed value 0,25 RPM less than the previous one. Vice versa in case 

classical flutter has not occurred. By doing this, the first rotor speed value at which the 

simulation shows the classical flutter instability is found. This is done because this yields a more 

accurate value of the flutter limit, compared to reading it from Figure 6.2 or Figure 6.18.  To this 

extent the table containing the simulation data is presented in Table 6.1. The value of 0,25 RPM 

is deemed sufficient in this case, with respect to the accuracy of the flutter speed. Furthermore, 

the associated wind speed values can be found in Figure 6.1.  

 
Table 6.1: Input data used in the LCPREP overspeed loadcase simulation to determine flutter limit. 

Time [s] Wind speed [m/s] Rotor speed [RPM] 

64,7 12,47 18,87 

70,0 12,97 19,62 

71,2 13,12 19,87 

73,0 13,30 20,12 

74,7 13,47 20,37 

76,6 13,66 20,62 

79,6 13,97 20,82 

 

Based on these simulations the results for the time instances indicated in green in Table 6.1 are 

presented since they prove to show when the instability occurs. Before presenting the results it 

is important to note some key aspects which are considered when analyzing the results of the 

simulations. To determine if classical flutter is present at a specific rotor speed value, the focus is 

put on the following aspects 
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• Check whether the time history behavior of especially the torsional deformation shows 

signs of an instability akin to classical flutter, similar to the expansion seen in Figure 6.8. 

• Check if the extreme values for the torsional deformation are comparable to those 

encountered in Figure 6.8 during the occurrence of the instability. 

• Check if the time history behavior for the aerodynamic angle of attack and lift coefficient 

show signs of an instability and both obtain extreme values comparable to the stall 

values  for the NACA63418 airfoil used at the blade tip. 

• Check whether the flap-wise displacement and torsional deformation have the same 

frequency and a phase difference is present, as would be expected in case of classical 

flutter. 

 

The results for the relevant simulations are presented in Figure 6.19-Figure 6.29. Only the first 

50 seconds of each simulation is shown in the graphs, both for clarity reasons and because the 

maximum values are obtained within these 50 seconds. 

 

 

 
Figure 6.19: Torsional deformation blade 1 as a result of the LCPREP overspeed loadcase with a fixed wind and rotor 

speed value of 13,12 [m/s] and 19,87 [RPM], respectively. 

From this figure it can be deduced that indeed both a sudden expansion and comparable 

extreme values are present as seen in Figure 6.8.  
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Figure 6.20: Aerodynamic angle of attack of blade 1 as a result of the LCPREP overspeed loadcase with a fixed wind and 

rotor speed value of 13,12 [m/s] and 19,87 [RPM], respectively. The red lines indicate the extreme values for the 

NACA63418 airfoil. 

 
Figure 6.21: Lift coefficient at the tip of blade 1 as a result of the LCPREP overspeed loadcase with a fixed wind and rotor 

speed value of 13,12 [m/s] and 19,87 [RPM], respectively. The red lines indicate the extreme values for the NACA63418 

airfoil. 

Considering Figure 6.20 and Figure 6.21, it is evident that for this simulation there is an 

indication of an instability present. Both curves show signs of a sudden increase in values, 

similar to the torsional deformation, and obtain extreme values similar to those of the 
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NACA63418 airfoil.   The latter is indicated by the red lines, where it is clear that not only is an 

extreme value approached, but also crossed. This crossing can be assigned to the dynamic stall 

effect, which would be expected in case of classical flutter. 

 

The last key aspect is related to the frequency of and phase difference between the flap-wise 

displacement and torsional deformation. 

 

 
Figure 6.22: One second time period of the torsional deformation of blade 1 as a result of the LCPREP overspeed loadcase 

with a fixed wind and rotor speed value of 13,12 [m/s] and 19,87 [RPM], respectively. 

 

 
Figure 6.23: One second time period of the flap-wise displacement of blade 1 as a result of the LCPREP overspeed 

loadcase with a fixed wind and rotor speed value of 13,12 [m/s] and 19,87 [RPM], respectively. 
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Counting the number peaks in both Figure 6.22 and Figure 6.23, for the same time period, yields 

a frequency of 6 Hz for the flap-wise displacement and torsional deformation. Next to this it is 

evident that a clear phase difference is present between the two. This can easily be deduced by 

consulting both figures at the time instance of 20 seconds. This would all be expected in case of 

classical flutter.  

 

Considering the results obtained for the simulation with a rotor speed of 19,87 RPM it can be 

stated that this value represents the flutter limit. This statement is substantiated because the 

four key aspects are met and lowering the rotor speed by 0,25 RPM yields results that do not 

meet all those key aspects. The results for the simulation with 19,62 RPM proves this. 

 

 
Figure 6.24: Torsional deformation blade 1 as a result of the LCPREP overspeed loadcase with a fixed wind and rotor 

speed value of 12,97 [m/s] and 19,62 [RPM], respectively. 

Compared to the results presented in Figure 6.19, the expansion of the torsional deformation is 

clearly more gradual now. Also, the extreme values are lower and less comparable to those seen 

in Figure 6.8..  
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Figure 6.25: Aerodynamic angle of attack of blade 1 as a result of the LCPREP overspeed loadcase with a fixed wind and 

rotor speed value of 12,97 [m/s] and 19,62 [RPM], respectively. The red lines indicate the extreme values for the 

NACA63418 airfoil. 

 
Figure 6.26: Lift coefficient at the tip of blade 1 as a result of the LCPREP overspeed loadcase with a fixed wind and rotor 

speed value of 12,97 [m/s] and 19,62 [RPM], respectively. The red lines indicate the extreme values for the NACA63418 

airfoil. 

Considering the above two figures, the same conclusion can be drawn as for the time history 

behavior of the torsional deformation. Furthermore, the red lines are no longer crossed, which 

would be expected if classical flutter occurred as the dynamic stall effect would be present. 
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Although the frequency of the flap-wise displacement and torsional deformation proves to be 

the same (6 Hz) and there is a phase difference present between the two, the rotor speed of 

19,62 is not deemed the flutter speed. This is because the key aspects are not met with the same 

conviction as was the case for the rotor speed of 19,87 RPM. 

 

Lowering the rotor speed further yields result which stray further and further away from the key 

aspects which are to be met. To prove this point with a clear result, the figures related to the 

simulation for the rotor speed of 18,87 RPM are presented. These figures show that one is 

moving away from the flutter speed because it is no longer possible to recognize an instability 

similar to classical flutter. The results are presented in Figure 6.27-Figure 6.29. 

 

 
Figure 6.27: Torsional deformation blade 1 as a result of the LCPREP overspeed loadcase with a fixed wind and rotor 

speed value of 12,47 [m/s] and 18,87 [RPM], respectively. 

In this figure there is no longer an instability such as classical flutter recognizable. Therefore the 

values for the torsional deformation in this figure are nothing like the result shown in Figure 6.8.  

 

Furthermore, Figure 6.28 and Figure 6.29 show that the key aspect of the angle of attack and lift 

coefficient are nowhere close to being met. 
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Figure 6.28: Aerodynamic angle of attack of blade 1 as a result of the LCPREP overspeed loadcase with a fixed wind and 

rotor speed value of 12,47 [m/s] and 18,87 [RPM], respectively. The red lines indicate the extreme values for the 

NACA63418 airfoil. 

 

 
Figure 6.29: Lift coefficient at the tip of blade 1 as a result of the LCPREP overspeed loadcase with a fixed wind and rotor 

speed value of 12,47 [m/s] and 18,87 [RPM], respectively. The red lines indicate the extreme values for the NACA63418 

airfoil. 

 

 



63 

 

6.2.5 SUMMARIZING THE STEPS 
To summarize, the method to determine if classical flutter occurs and how the flutter speed can 

be found using PHATAS, consists of four steps. The first step considers if there are any indicators 

of unusual behavior in the curves, such as the ‘kink’ in Figure 6.2 and Figure 6.5, which hint at 

occurrence of classical flutter. By plotting the flap-wise and torsional deformation into the same 

figure, it can be seen which of the two shows the first signs of unusual behavior. If there is a hint 

of classical flutter, one moves on to the second step. Step 2 aims to determine if a phase 

difference is present between the flap-wise and torsional deformation. This can be checked by 

appropriately zooming in on the curves of the flap-wise and torsional deformation. Once this 

phase difference is established, the third step is considered. Here it is checked if the instability is 

a self-excitation of the flap-wise and torsional vibration and occurs within the time span 

associated with classical flutter. At the end of step three it can be concluded if the instability 

indeed is classical flutter. Step four starts with determining a first rotor speed value at which 

classical flutter is deemed to occur. Subsequently the overspeed loadcase is simulated with this 

fixed rotor speed and its associated wind speed. The results are analyzed using some key aspects. 

If the first rotor speed does not result in classical flutter, the rotor speed is increased by 0,25 RPM 

until the flutter speed is found. Vice versa if the first chosen rotor speed already yields classical 

flutter. As such it can be deduced with better accuracy what the flutter limit is. For the results of 

the simulation presented in section 6.1, a flutter limit of 19,87 [RPM] was established. 

 

6.3 INFLUENCE OF CHANGING PITCH ANGLE AND TORSIONAL STIFFNESS ON THE 

FLUTTER LIMIT 
This section presents the results for the separate effect of a changing pitch angle and torsional 
stiffness on the flutter limit. First the results for the changing pitch angle will be presented, 

accompanied by an elaboration. Consequently, the results for changing torsional stiffness will be 

provided and discussed. The results presented are for blade 1 and for the flap-wise displacement 

and torsional deformation. These deformations were pivotal in determining if classical flutter 

indeed occurs.   

 

The pitch angle considered up to this point is equal to eight degrees. It is now altered to ten 

degrees, as such a comparison can be made between results of the two pitch angles. These 

results are presented in Figure 6.30 and Figure 6.31.  
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Figure 6.30: Flap-wise displacement for blade 1 as a result of the increasing wind speed in the LCPREP overspeed 

loadcase. The blue line is for a pitch angle equal to 8 degrees, while the red line is for a pitch angle equal to 10 degrees. 

This graph shows the effect of the increased pitch angle on the occurrence of the flutter limit associated with the ‘kink’. 

 
Figure 6.31: Torsional deformation for blade 1 as a result of the increasing wind speed in the LCPREP overspeed loadcase. 

The blue line is for a pitch angle equal to 8 degrees, while the red line is for a pitch angle equal to 10 degrees. This graph 

shows the effect of the increased pitch angle on the occurrence of the flutter limit associated with the rapid expansion. 

From these two figures it is evident that increasing the pitch angle shifts both curves to the right 

and delays the occurrence of classical flutter. This could be deduced by executing the four steps 

mentioned in section 6.2, or by simply noting that both the ‘kink’ and expansion of the flap-wise 

and torsional deformation, respectively, occur at a time greater than was determined in section 

6.2 for a pitch angle of eight degrees. To find the exact value of the flutter speed, the four steps of 

the method mention in the previous section should be followed.  
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Next the influence of the torsional stiffness  is considered. The relevant plot is presented in 

Figure 6.32. In order to generate this plot, the second column in the torsion data table, see Table 

C.5, is multiplied with factors of 1,1 and 1,2 respectively. This creates two simulations with 

greater torsional stiffness values than the original simulation. 

 

 

 
Figure 6.32: Torsional deformation, as a result of the increasing wind speed in the LCPREP overspeed loadcase, for 

changing torsional stiffness. Blue line is for unadjusted values, red is for multiplication of original torsional stiffness data 

with a factor of 1,1 and the green line is for multiplication with 1,2. The purple line indicates the rotor speed. 

From this plot it is evident that increasing the torsional stiffness values over the entire blade 

span, results in a delay of the occurrence of classical flutter. This is evident because the rapid 

expansion of the amplitude of the torsional deformation occurs at a greater time in the 

simulation. Furthermore, this correlates with the results of the numerical example provided in 

Appendix A. Increasing the torsional stiffness, apparently increases the natural frequencies of the 

torsional mode shapes, resulting in classical flutter occurring at a later stage. This also correlates 

with the third flutter criterion mentioned in section 2.5. It should be noted that the rotor speed 

is plotted as well, because it contains the ‘kink’ and shows that when all simulations have the 

same rotor speed values, increasing the torsional blade stiffness postpones the occurrence of 

classical flutter. 

 

Having performed both simulations, it is evident from Figure 6.30-Figure 6.32 that the best way 

to increase the flutter limit would be to increase the pitch angle. First of all, this is because the 

delay in the occurrence of classical flutter is larger for the changing pitch angle parameter. But 

another important aspect is, that it is also deemed the easiest option as changing the torsion 

data of the blade would mean redesigning the blade. However, it must be noted that the loss of 

generated power due to the increased pitch angle is not considered here.  
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6.4 DETERMINING THE NATURAL FREQUENCIES FOR CLASSICAL FLUTTER 
In this section the results are presented for the natural frequencies associated with the flap-wise 

and torsional deformation respectively. The simulation considered is the second simulation from 

Table 6.1 indicated in green, as this simulation provided the flutter limit. The pitch angle used is 

eight degrees, when generating these results and the original torsion data table from Appendix C 

is used. It will be explained how the natural frequencies can be deduced, by using the built-in 

post-processor from FOCUS 6. This post-processor transforms the output signal from the time 

domain to the frequency domain via the Fast Fourier Transform (FFT). Using this post-processor 

a power spectral density (PSD) plot can be made of the signal of the output parameter. This PSD 

describes how the power of a signal or time series is distributed over the different frequencies. A 

natural frequency can be recognized in the PSD as it is represented by a ‘spike’ or narrow peak. 

Here a small amount of an input force can cause a very large response. This will be considered in 

the results. To this extent, Figure 6.33 and Figure 6.34 are presented. 

 

 
Figure 6.33: PSD for the flap-wise displacement of blade 1 for the simulation with wind and rotor speed of 13,12 [m/s] 

and 19,87 [RPM] respectively. A logarithmic scale is used as it yields a better perspective of the frequencies. 
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Figure 6.34: PSD for the torsional deformation of blade 1 for the simulation with wind and rotor speed of 13,12 [m/s] and 

19,87 [RPM] respectively. A logarithmic scale is used as it yields a better perspective of the frequencies. 

Considering Figure 6.33, a clear peak is present at around 6 Hz. As far as Figure 6.34 is 

concerned, there is also a clear peak present at the same frequency of 6 Hz. Since these two 

peaks occur at the same frequency and have a relative large response, it can be concluded that 

this is the frequency at which classical flutter occurs. This conclusion is substantiated when 

counting the number of peaks, and thus determining the frequency, in Figure 6.16 or Figure 6.22 

and Figure 6.23 of either the flap-wise displacement or torsional deformation. This frequency is 

also approximately 6 Hz. For a classical flutter analysis, it thus are these frequencies of 6 Hz 

which are relevant in the PSD. This is in compliance with the theory from Chapter 2, where it 

was shown that when classical flutter occurs, the flap-wise and torsional natural frequencies 

approach each other. Hence the conclusion drawn from Figure 6.33 and Figure 6.34 is deemed 

viable. Such a PSD can be generated if one where interested in the frequency at which classical 

flutter occurs. Furthermore, it can be performed as an optional step after the fourth step of the 

method from section 6.2 is performed. 
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6.5 GENERAL CONCLUSIONS 
The main conclusion that can be drawn is that it is possible to use PHATAS in the shell-program 

FOCUS 6 to analyze the occurrence of classical flutter, as well as determining a method for 

finding the flutter speed or limit.  

 

The results for the analysis with the pitch angle of eight degrees hints at the occurrence of 

classical flutter. It is shown that this occurrence can be determined using a method comprising 

four steps. The first step of the method is to consider if there are any indicators of unusual 

behavior in the curves, such as the ‘kink’ in Figure 6.2 and Figure 6.5, which indicates the 

possible occurrence of classical flutter. Step 2 aims to determine if a phase difference is present 

between the flap-wise and torsional deformation. This is done by appropriately zooming in on 

the curves of the flap-wise and torsional deformation. The third step checks if the instability is a 

self-excitation of the flap-wise and torsional vibration and if it occurs within the time span 

associated with classical flutter. Consequently, step four consists of finding the flutter speed 

starting with a first estimation of the flutter limit based on the results obtained from the 

previous three steps. Performing the overspeed loadcase simulation with this fixed rotor speed 

value and its associated wind speed, shows whether the first estimation was correct or not. If the 

estimation proves to be too low the rotor speed is increased by 0,25 RPM. Vice versa if the first 

estimation is too high. This procedure is repeated until the flutter limit is found, which is 

established based on some key aspects. As such it can be deduced with better accuracy what the 

flutter limit is. 

 

Next to this, the analysis with changing pitch angles and torsional stiffness values shows that 

increasing either of the parameters delays the occurrence of classical flutter. It is determined, 

between the two parameters, that changing the pitch angle value is the best way to delay 

classical flutter. 

 

Finally, using the built-in post-processor in FOCUS 6 a FFT can be made of the signals of the 

output parameters, for the simulation at the time instance of the flutter limit, to produce the 

PSD. The PSD for the flap-wise displacement and torsional deformation shows a peak at the 

same frequency, which is determined to be the frequency at which classical flutter occurs. 

 

6.6 LIMITATIONS OF THE PROGRAM 
One of the limitations of the PHATAS program is that there is no direct output of a Campbell plot. 

As such, the behavior of the natural frequencies of the mode shapes, relevant to classical flutter, 

with increasing rotor speed cannot be viewed and analyzed directly.  

 

Another limitation is that the program has no 3D plots of the mode shapes, which can be used to 

recognize the dominant mode shapes. This in contrast to BLADEMODE V.2.0.  
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Chapter 7 CONCLUSIONS AND RECOMMENDATIONS 
This chapter concludes this report. First the conclusions are given followed by the 

recommendations. 

 

7.1 CONCLUSIONS 
The aim of this thesis is stated as: 

 

“Provide a clear and efficient procedure  
to analyze the flutter speed in case of classical flutter,  

using BLADEMODE V.2.0 or PHATAS” 
 
To meet this goal, three simulations are performed using BLADEMODE V.2.0. These simulations 

represent the possible variations for the type of classical flutter analysis with this program. The 

first simulation is executed such that it includes the generator damping effect on the modal 

frequencies in the classical flutter analysis, while for the second simulation this effect is omitted. 

Simulation three is executed such that the rotor speed is no longer solved from the aerodynamic 

torque, the generator torque-speed relation and the corresponding pitch angle but needs to be 

indicated manually. As each of these simulations has its own results, the classical flutter limit 

needs to be considered for each separate simulation. The focus is put on the approaching of the 

flap-wise and torsional natural frequencies as these are essential for classical flutter. This is 

because BLADEMODE V.2.0 inherently omits the relative phase between the deformation 

components and as such coupling between the flap-wise and torsional modes is not possible. 

Therefore attention is paid to the behavior of the relevant natural frequencies with increasing 

rotor speed. For each simulation a Campbell diagram is constructed which displays the natural 

frequencies of a vibration mode as a function of the rotor speed. All three simulations yield 

similar results. However, none of the Campbell diagrams, regardless of the simulation, shows 

behavior of the flap-wise and torsional natural frequencies which would be expected in case of 

classical flutter. Not only is there no coupling between the flap-wise and torsional modes, related 

to the an inherent property of BLADEMODE V.2.0, also there is no approaching visible between 

the natural frequencies of these two modes. This is not only in contrast to what is expected 

based on the theory of BLADEMODE V.2.0 and taking the centrifugal stiffening into account, but 

also with regard to the general classical flutter theory of how these natural frequencies should 

behave as a function of the rotor speed. Therefore it is concluded that in general BLADEMODE 

V.2.0 has an inherent inability to detect classical flutter and thus cannot be used to predict the 

flutter limit, or derive an efficient procedure to analyze this limit. This is substantiated by the 

mentioned fact that by performing the three simulations the possible variations for the type of 

classical flutter analysis are covered. Furthermore it is noted that although it is possible to 

differentiate between the absolute values of the relevant natural frequencies when comparing 

simulations, the impact of these differences on the flutter limit using BLADEMODE V.2.0 is 

inconclusive as it is not possible to determine this limit with the program. 

 

The second program used to meet the aim of this thesis is PHATAS. This program uses the same 

reference wind turbine as provided for the BLADEMODE V.2.0 simulations. It are the results 

obtained with PHATAS which further substantiate the inability of BLADEMODE V.2.0 to detect 

classical flutter. Using PHATAS, the simulations performed in the time domain with the 

overspeed loadcase lead to the conclusion that it is possible to use PHATAS in the shell-program 

FOCUS 6 to analyze the occurrence of classical flutter, as well as determining a method for 

finding the flutter speed or limit. Based on the figures depicting the time history behavior of the 

flap-wise displacement and torsional deformation, it can be concluded that classical flutter 

occurs. This conclusion is substantiated by appropriately zooming in on the flap-wise 

displacement and torsional deformation plots and the rotor speed curve. Resulting from the 
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analysis of these curves, it is concluded that a four step method can be constructed to determine 

if classical flutter indeed occurs and how the associated flutter speed can be found. The first step 

of the method is to consider if there are any indicators of unusual behavior in the curves, which 

indicate the possible occurrence of classical flutter. Step two aims to determine if a phase 

difference is present between the flap-wise displacement and torsional deformation. This is 

done by appropriately zooming in on the curves of both deformations. The third step checks if 

the instability is a self-excitation of the flap-wise and torsional vibration and occurs within the 

time span associated with classical flutter. Consequently, step four consists of finding the flutter 

limit using a first estimation of this limit based on the results obtained in the previous steps. The 

overspeed loadcase is simulated with this fixed rotor speed and its associated wind speed. Using 

some key aspects it is established if classical flutter occurs. If the first estimation proves to be 

too low, the value of the rotor speed is increased by 0,25 RPM. Vice versa if the estimation is too 

high. Repeating this process until the flutter limit is found, increases the accuracy of the value of 

this limit.  

 

The analysis with changing pitch angles and torsional stiffness values shows that increasing 

either of the parameters delays the occurrence of classical flutter. However, changing the pitch 

angle is considered the best way to do this. Furthermore, using the built-in post-processor in 

FOCUS 6 to produce a Fast Fourier Transform (FFT) of the flap-wise displacement and torsional 

deformation, for the simulation at the time instance of the flutter limit, a power spectral density 

(PSD) can be constructed. It is concluded that these PSD, one for the flap-wise and one for the 

torsional deformation, can be used to determine the natural frequency at which classical flutter 

occurs. This is substantiated by the fact that both the flap-wise and torsional deformation have 

relatively large peaks in their respective PSD at the same frequency. 

 

7.2 RECOMMENDATIONS 
With BLADEMODE V.2.0 the effect on the classical flutter limit, by changing the torsion stiffness 

values, is not analyzed as the torsion data is provided and classical flutter is not detected. 

Further investigation is needed here as significantly lowering the torsion stiffness values might 

yield better results, considering that this is one of the main flutter criteria. As such, it may be 

determined if the conclusion in this thesis that classical flutter cannot be detected with 

BLADEMODE V.2.0 remains valid under those conditions.  

 

Simulations should be performed with other wind turbine models in BLADEMODE V.2.0 to 

compare with the work done and conclusions drawn in this thesis. 

 

Validation of the results obtained with BLADEMODE V.2.0 should also be performed by 

executing the simulations in this thesis using the vortex wake model for the rotor aerodynamics.  

 

Further investigation is required, using PHATAS, into what would be the best way to delay 

classical flutter. The conclusion that changing the pitch angle is better than changing the torsion 
data does not include the effect of the loss of power due to an increased pitch angle. It should be 

analyzed in detail, in order to better substantiate how to best delay classical flutter for the ART5 

reference wind turbine used in this theses. To this extent, all flutter criteria should be 

considered. 

 

Comparison of the results of other wind turbine models with the results obtained with PHATAS 

in this thesis is necessary. This can be done by performing the time domain simulations for 

different wind turbine models. It should be checked if applying the four step method to 

determine the presence of classical flutter and the associated flutter speed, is indeed correct. 
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APPENDIX A NUMERICAL EXAMPLE TO FORM STABILITY PLOT 
In order to create the stability plot, it is necessary to assume some values for the airfoil section 

and the surrounding airflow. The assumed values are presented in Table A.1. It should be noted 

that this section serves to provide a better understanding of the flutter limit and how it is 

influenced by the main flutter criteria. The values used to create this plot do not belong to an 

actual wind turbine blade. 

 
Table A. 1: Wing and airflow properties used to construct stability plot. 

Property Description Value Unit 

ρ Air density 1,225 [kg/m3] 

m Mass per unit section 100 [kg/m] 

CL
’ Lift curve gradient 2π [rad] 

kf Flap-wise stiffness 1 [N/m/m] 

kt,1 Torsional stiffness 1000 [N ∙ m/m] 

acg Position of the CG relative to the EA -0,25-0,55 [-] 

aAC Position of the EA relative to the AC 0,2 [-] 

c Chord 1 [m] 

Iθ Mass moment of inertia about the EA 100 [kg ∙ m2/m] 

 

The values for ρ, m, kf, kt,1, aAC, c and Iθ are based on Hulshoff [47]. The values are however 

adjusted such that the value for the reduced frequency remains lower than 0,1 and the example 

remains as simple as possible. By ensuring this, not only is the assumption of quasi-steady 

aerodynamics maintained, but also the omitting of the aerodynamic damping matrix C in the 

derivation of the flutter limit is validated.  

 

The reason for the subscript used for the torsional stiffness will become clear in the subsequent 

analysis. Furthermore, the value of CL
’ is based on a thin symmetric airfoil. In order to create the 

stability plot using the values from Table A.1, equation (2.45) needs to be rewritten, on the limit 

of this criterion, to formulate an expression for the critical relative speed W0,n or flutter speed. 

 

FJ,N = ��`K�_R�TzR ��TzR�1T��Tz��i,�R �TzR�1T��TzVa�0b       (A.1) 

 

The reason for the subscript n is that, using the data in Table A.1, the natural torsional frequency 

ωt,1 is calculated. However, the stability plot will be made based on n frequencies, where n equals 

three, to be able to draw a conclusion regarding the effect of a changing natural torsional 

frequency and the flutter speed. As a result there will be three different W0-lines in the plot.  

 

The values for ωf and ωt,,1 are determined using equations (2.23) and (2.28) [1]. 

d+ = I^_̀ = I ##JJ = 0,1	5��7      (A.2) 

d-,# = I^i,Q�� = I#JJJ#JJ = 3,16	5��7     (A.3) 

 

Based on equation (A.3), the values for the other two natural torsional frequencies are chosen 

arbitrarily and kt,2 and kt,3 can then be calculated. 

 d-,� = d-,# + 0,5 = 3,66	5��7       (A.4) d-,� = d-,� + 0,5 = 4,16	5��7       (A.5) �-,� = d-,�� *) = 3,66� ∙ 100 = 1,3 ∙ 10c  [N m/m]    (A.6) 
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�-,� = d-,�� *) = 4,16� ∙ 100 = 1,7 ∙ 10c  [N m/m]    (A.7) 

 

It should be noted that in reality Iθ and thus rCG and ωt,1 are functions of aCG. For simplicity 

reasons they are assumed to be constant, although aCG is changing [48]. This was already 

mentioned in section 2.4, when presenting equation (2.28). Therefore there is an inaccuracy of 

the critical relative speed, but the interaction between the main flutter criteria can still be 

illustrated. Keeping this in mind, equation (A.3) is similar to equation (2.28). Rewriting the latter 

expression in terms of rCG, yields equation (A.8). 

 =�9 = I ^i,Q`�R�i,QR = I #JJJ#JJ∙#R∙�,#¢R = 1	5−7     (A.8) 

 

Note that in equation (A.8) rCG has no units as it represents the normalized radius of gyration. 

Furthermore, although the values for kt and ωt change, the ratio �-,N d-,N�⁄  in equation (A.8) 

remains the same for n=1, 2, 3. 

 

Now that the normalized radius of gyration has been determined, one can check whether the 

value chosen for Iθ in Table A.1 indeed equals $��=�9� , as indicated in equation (2.28).   

 *) = $��=�9� = 100 ∙ 1� ∙ 1� = 100	5kg	 ∙ ¥�¥ 7    (A.9) 

 

Finally, in the stability plot the location of the CG will be expressed with respect to the leading 

edge. The values for aCG indicated in Table A.1 are based on Figure 2.8. Since aCG is determined 

with respect to the elastic axis, which is located at 45% chord, the maximum value for aCG can 

only be 0,55. This is because that would place the CG at the trailing edge, or 100% chord 

location. If aCG is in front of the EA, it obtains a negative value. Hence, based on the condition 

stated in equation (2.45), the minimum value for aCG is at the AC  which is -0,2.  

 

Having determined all the relevant parameters, the stability plot in Figure A.1 can be created. 

 
Figure A.1: Stability plot showing the critical relative speed as a function of the chord-wise position of the CG, 

for indicated natural torsional frequencies. 

In the figure there is a vertical asymptote, indicated with the green line, at the 25% chord 

location, which is the AC location. As is clear from the figure, the values for the critical relative 

speed are indeed high, thereby complying with the second main flutter criterion. From Figure 
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A.1 it is also clear that for decreasing natural torsional stiffness, the flutter limit decreases. This 

complies with the third main flutter criterion stated at the beginning of this section. Next to this, 

as the location of the CG moves aft, the flutter speed decreases. This complies with the fourth 

main flutter criterion. The first main flutter criterion stated in Section 2.5, must always be met if 

classical flutter is to occur.  

 

Figure A.1 can also be used to consider whether the coefficient of the polynomial, stated in 

equation (2.40) indeed becomes negative at the flutter speed indicated in the plot and thus 

yields an unstable solution. Using the values from the stability plot associated with ωt,2, the value 

for the position of the CG is chosen to be at 0,7. This correlates with an aCG equal to 0,25. At the 

position of the CG of 0,7 a critical W0 of approximately 28 m/s is read from the graph. Now 

considering the limit of the flutter criterion stated in equation (2.45), which is similar to the one 

in equation (2.40), the speed at which the coefficient of the polynomial becomes negative can be 

deduced.  

 0 < d+� yTzR �STzRS1T�STz +d-,�� yTzRS1T�STz 	− a�`FJ�G Y 			     (A.10) 

 

Constructing a plot of the value of the coefficient on the RHS of equation (A.10) as function of the 

critical relative speed, it can be illustrated at which speed the coefficient switches sign and 

becomes negative. The values for ρ, m, CL
’, and aAC are indicated in Table A.1. The value for rCG is 

presented in equation (A.8), while ωf is given in equation (A.2). 

 

 
Figure A.2: Value of the coefficient of the flutter limit criterion. 

It can be seen in Figure A.2 that the critical relative speed at which the coefficient becomes 

negative is approximately 28 m/s, which corresponds to the value deduced from Figure A.1 for 

the line of ωt,2 and aCG=0,25. 

 

As a final check, the value of the reduced frequency is plotted against the critical relative speed 

to see if it is indeed below 0,1 for all three natural torsional frequencies. 
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Figure A.3: Value of the reduced frequency k calculated for each torsional frequency. 

The values are indeed well below 0,1. Therefore, based on Figure A.3, the assumptions and 

simplifications based on the condition that k<0,1 are justified. 
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APPENDIX B REFERENCE FRAMES 
In this appendix the reference frames mentioned in Chapter 2 are illustrated again for clarity 

reasons in Figure B1. Although the labeling of the axes might have different symbols, the x-y-z 

axes are in the same direction as in Chapter 2. Furthermore it should be noted that the only 

inertial reference frame in Figure B1 is the ground-fixed reference frame. 

 

 

 
Figure B.1: Reference frames used in the analysis [49]. The description of the axis is provided in the figures. 
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APPENDIX C ART5 INPUT FILE BLADEMODE V.2.0 
nr_modes           0      # Number of modes that are required. 

blade_torsion     OFF     # If 'ON' torsional deformation is included. 

deformed_state    OFF     # Solve the deformed state with aerodynamics. 

aerodynamics      OFF    # For aerodynamic stiffness and damping. 

vortex_wake       OFF    # Solve quasi-steady state with vortex-wake model. 

air_density         1.225 

# 

dynamic_stall      1        # Refers to the first-order dynamic stall model. 

amplitude        10.0    # Damping from the work for finite amplitude 

amplitude          0.0   # Damping from linearized aerodynamic expressions. 

ellipse_ratio      0.0    # Modifies motions from translations to loops. 

# 

wind_velocity      8.0 

# 

blade_span        62.7      # [m] Length of the blade. 

root_radius        1.5      # [m] Radius of hub. 

cone_angle        -2.5      # [deg] 

tilt_angle         5.0     # [deg] 

# 

pitch_angle        0.0      # [deg] 

rotational_speed  12.10     # [rpm] The nominal speed. 

rotational_speed  11.0      # [rpm] Below nominal speed. 

hinge_stiffness    2.E+30   # [Nm/rad] Large value indicates 'rigid'. 

pitch_stiffness    2.E+30   # [Nm/rad] Large value indicates 'rigid'. 

# 

flap_pre_bend     -2.05     # [m] Undeformed bending deformation at tip. 

lag_pre_bend       0.0 

pre_bend_begin    17.9      # [m] With conservation of the tip radius. 

pre_bend_end      53.7      # [m] With conservation of the tip radius. 

#  Following are properties of the turbine, which are only 

#  relevant for rotor shaft torsion and fore-aft tower bending. 

nr_blades          3        # number of rotor blades. 

# 

#  For drive-train dynamics. 

variable_speed     ON       # If 'ON', then collective lead-lag modes. 

hub_inertia    116000.0      # [kg*m^2] 

drive_inertia   5000.0E+3    # [kg*m^2] All components behind the shaft. 

shaft_stiffness    8.7E+8  # [Nm/rad] Stiffness of main shaft. 

#shaft_stiffness    2.E+30    # [Nm/rad] Large value indicates 'rigid' 

# 

#  Conversion losses were added with 'CalcLoss';  C. Lindenburg, Nov. 2004. 

Table C.1: Generator Curve Table 

Speed [rpm] Torque [Nm] Loss [Nm] Pitch [deg] 

5.4 0.0 0.0 1.5, 

5.87 0.77403E+6 21672.8 1.0, 

7.2 1,16E+10 32538.7 1.0, 

8.53 1,63E+11 45592.6 1.0, 

10.52 2,44E+11 68182 1.0, 

11.0 2,96E+12 82935 1.0, 

11.9 3,95E+12 110596 4.0, 

12.0 4,06E+11 113670 4.0, 

12.1 4,06E+11 113670 4.0, 

12.6 3,90E+12 109159 60.0, 

13.1 3,75E+11 104993 70.0, 

15.1 3,25E+12 91086.6 80.0 
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#  For fore-aft tower motion. 

hub_mass                 57000.0     # [kg] 

tower_top_mass  240000.0    # [kg] Nacelle mass. 

tower_top_stiffness    327607.0    # [N/m] Stiffness for the first fore-aft mode. 

tower_stiffness    940468.35   # [N/m] Stiffness for the first fore-aft mode. 

#tower_stiffness     2.E+30     # [N/m] Large value indicates 'rigid'. 

# 

3D_correction       ON 

# 

# 

twist_related       ON      # If ON the blade properties are w.r.t. twist. 

# In the following tables X is perpendicular to the chord 

# and Y is to the trailing edge. 

# 

# 

#   Following table contains the blade mass properties. 

 

Table C.2: Blade mass properties 

Span [m] 

Mass 

[kg/m] XCG [m] YCG [m] 

rdelXX 

[m^2] 

rdelYY 

[m^2] 

rdelXY 

[m^2] 

       0 698 0 0,0002 1,5 1,5 0 

1,2 798 0 -0,0245 1 1,5 0 

3,2 761 0 0,0442 0 1,48109 0 

5,2 468 0 0,0672 0 1,42206 0 

14,2 363 0 0,273 0 1,33703 0 

24,2 322 0 0,1969 0 0,992414 0 

34,2 246 0 0,1501 0 0,677988 0 

40,2 183 0 0,1818 0 0,551009 0 

48,2 133 0 0,2308 0 0,475962 0 

60,7 39 0 0,0545 0 0,096721 0 

62,6 2 0 0,0268 0 0,011772 0 

 

# 

# Following table contains the geometric blade data. 

 

Table C.3: Geometric data 

Span [m] Chord [m] Twist [deg] XAC [m] YAC [m] 

0 3,5 13,4 0 -0,875 

1 3,5 13,4 0 -0,875 

10,7 4,6085 13,4 0 -0,6095 

15 4,6694 8,346 0 -0,5791 

18,69 4,4883 7,393 0 -0,5554 

44 2,4635 -0,1 0 -0,3695 

50 2,1 -1,2 0 -0,3242 

55 1,86 -1,883 0 -0,287 

58 1,75 -1,5 0 -0,253 

59,6 1,7 -1 0 -0,202 

61 1,5 -0,3 0 -0,137 

62,7 0,35 0,5 0 -0,044 

 

# Following table contains the bending stiffness and related properties. 
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Table C.4: Bending data 

Span EIflat EIedge EIcross Sh_XX Sh_YY Sh_XY XEA YEA 

[m] [N*m^2] [N*m^2] [N*m^2] [1/N] [1/N] [1/N] [m] [m] 

0 1,76E+10 1,76E+10 -2,29E+03 0,00E+00 0,00E+00 0,00E+00 0 0 

3,2 1,45E+10 1,96E+10 9,49E+07 0,00E+00 0,00E+00 0,00E+00 0 0 

5,2 6,70E+09 1,00E+10 8,27E+07 0,00E+00 0,00E+00 0,00E+00 0 0 

14,2 2,37E+09 4,80E+09 6,87E+07 0,00E+00 0,00E+00 0,00E+00 0 0 

24,2 1,24E+09 3,58E+09 1,14E+08 0,00E+00 0,00E+00 0,00E+00 0 0 

34,2 3,82E+08 2,24E+09 9,11E+06 0,00E+00 0,00E+00 0,00E+00 0 0 

42,2 1,21E+08 1,12E+09 -1,32E+07 0,00E+00 0,00E+00 0,00E+00 0 0 

57,7 2,33E+07 2,52E+08 -3,02E+06 0,00E+00 0,00E+00 0,00E+00 0 0 

62,6 1,87E+06 5,06E+07 2,86E+03 0,00E+00 0,00E+00 0,00E+00 0 0 

# Following table contains the torsion related properties. The latter 3 columns contain the 'Karaolis' constants. 

 

Table C.5: Torsion data 

Span GJt Xshc Yshc H41 H42 H43 

[m] [N*m^2] [m] [m] [rad/N] [rad/Nm] [rad/Nm] 

0.200 7,21E+9 0.0 -0.2587 0.0 0.0 0.0, 

3.200 5,94E+9 0.0 -0.2082 0.0 0.0 0.0, 

5.200 3,27E+9 0.0 -0.1819 0.0 0.0 0.0, 

14.200 5,94E+8 0.0 -0.3685 0.0 0.0 0.0, 

24.200 3,05E+8 0.0 -0.3459 0.0 0.0 0.0, 

28.200 2,08E+8 0.0 -0.3289 0.0 0.0 0.0, 

30.200 1,37E+8 0.0 -0.2931 0.0 0.0 0.0, 

50.200 1,46E+7 0.0 -0.1154 0.0 0.0 0.0, 

57.700 7,70E+6 0.0 -0.0640 0.0 0.0 0.0, 

60.700 2,12E+6 0.0 -0.0335 0.0 0.0 0.0 
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APPENDIX D BLADEMODE V.2.0 INPUT FILE SIMULATION 1 
 
gravity               9.81 

nr_modes           9 

variable_speed        ON 

drive_inertia         5000.0E+03 

root_loss             OFF 

 

Table D.1: Generator curve table. 

0 0 0 8 , 

5.4 0 0 8 , 

5.87 7.74E+05 21672.8 8 , 

7.2 1.16E+06 32538.7 8 , 

8.53 1.63E+06 45592.6 8 , 

10.52 2.44E+06 68182 8 , 

11 2.96E+06 82935 8 , 

11.9 3.95E+06 110596 8 , 

12 4.06E+06 113670 8 , 

12.1 4.06E+06 113670 8 , 

12.6 3.90E+06 109159 8 , 

13.1 3.75E+06 104993 8 , 

15.1 3.25E+06 91086.6 8   

 

deformed_state      ON 

solve_speed         ON 

aerodynamics         ON 

blade_torsion        ON 

generator_damp    ON 

vortex_wake          OFF 

air_density          1.225 

dynamic_stall        1 

amplitude           0 

wind_velocity        8.0 

blade_span           62.7 

azimuth              90 

ellipse_ratio        0 

yaw_angle            0.0 

3D_correction        ON 

twist_related        ON 

 

Table D.2: Bending data. 

0 1,76E+10 1,76E+10 -2290 0.00E+00 0.00E+00 0.00E+00 0 0 

3.2 1,45E+10 1,96E+10 94900000 0.00E+00 0.00E+00 0.00E+00 0 0 

5.2 6,7E+09 1E+10 82700000 0.00E+00 0.00E+00 0.00E+00 0 0 

14.2 2,37E+09 4,8E+09 68700000 0.00E+00 0.00E+00 0.00E+00 0 0 

24.2 1,24E+09 3,58E+09 1,14E+08 0.00E+00 0.00E+00 0.00E+00 0 0 

34.2 3,82E+08 2,24E+09 9110000 0.00E+00 0.00E+00 0.00E+00 0 0 

42.2 1,21E+08 1,12E+09 -1,3E+07 0.00E+00 0.00E+00 0.00E+00 0 0 

57.7 23300000 2,52E+08 -3020000 0.00E+00 0.00E+00 0.00E+00 0 0 

62.6 1870000 50600000 2860 0.00E+00 0.00E+00 0.00E+00 0 0 
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Table D.3: Torsion data. 

0.200 7,21E+12 0.0 -0.2587 0.0 0.0 0.0, 

3.200 5,94E+12 0.0 -0.2082 0.0 0.0 0.0, 

5.200 3,27E+12 0.0 -0.1819 0.0 0.0 0.0, 

14.200 5,94E+11 0.0 -0.3685 0.0 0.0 0.0, 

24.200 3,05E+11 0.0 -0.3459 0.0 0.0 0.0, 

28.200 2,08E+11 0.0 -0.3289 0.0 0.0 0.0, 

30.200 1,37E+11 0.0 -0.2931 0.0 0.0 0.0, 

50.200 1,46E+10 0.0 -0.1154 0.0 0.0 0.0, 

57.700 7,70E+10 0.0 -0.0640 0.0 0.0 0.0, 

60.700 2,12E+10 0.0 -0.0335 0.0 0.0 0.0 

 

 

Table D.4: Mass data. 

0 698.00 0 0.0002 1.5 1.5 0 

1.2 798.00 0 -0.0245 1 1.5 0 

3.2 761.00 0 0.0442 0 148.109 0 

5.2 468.00 0 0.0672 0 142.206 0 

14.2 363.00 0 0.273 0 133.703 0 

24.2 322.00 0 0.1969 0 0.992414 0 

34.2 246.00 0 0.1501 0 0.677988 0 

40.2 183.00 0 0.1818 0 0.551009 0 

48.2 133.00 0 0.2308 0 0.475962 0 

60.7 39.00 0 0.0545 0 0.096721 0 

62.6 2.00 0 0.0268 0 0.0117722 0 

 

 

Table D.5: Geometric data. 

0 3.5 13.4 0 -0.875 , 

1 3.5 13.4 0 -0.875 , 

10.7 4,61E+04 13.4 0 -0.6095 , 

15 4,67E+04 8.346 0 -0.5791 , 

18.69 4,49E+04 7.393 0 -0.5554 , 

44 2,46E+04 -0.1 0 -0.3695 , 

50 2.1 -1.2 0 -0.3242 , 

55 1.86 -1.883 0 -0.287 , 

58 1.75 -1.5 0 -0.253 , 

59.6 1.7 -1 0 -0.202 , 

61 1.5 -0.3 0 -0.137 , 

62.7 0.35 0.5 0 -0.044   

 

wind_series 

1 ,  

2 , 

…. 

…. 

60 
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root_radius          1.5 

cone_angle           -2.5 

tilt_angle           5 

pitch_angle          8 

pitch_error          0 

pitch_inertia        0 

pitch_stiffness      2.E+30 

rotational_speed    12.1 

tip_mass             0 

tip_stat_moment    0 

tip_bend_inertia     0 

tip_tors_inertia     0 

hinge_stiffness      2e+30 

flap_pre_bend        -2.05 

lag_pre_bend         0.0 

pre_bend_begin     17.9 

pre_bend_end         53.7 

nr_blades            3 

shaft_stiffness     8.7E+8 

hub_mass             57000 

hub_inertia          116000 

tower_stiffness      940468.35 

tower_top_mass     240000 

 

Table D.6: Airfoil table. 

0 cylinder.prf , 

8.35 DU40_A17 , 

13.2 DU35_A17 , 

18.7 DU30_A17 , 

25 DU25_A17 , 

32.42 NACA63421 , 

40.67 NACA63418   
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APPENDIX E ART5 INPUT FILE PHATAS 

MENU menu_param 

Screen_option OFF 

< 

 
MENU job_param 

model_identif ART5_compact 

time_history_flag OFF 

message_file ART5_c.log 

model_file ART5_c.mdl 

output_file ART5_c.pht 

comment_mark ‘’ 

output_level 2 

time_increment 0,020000 

< 

 
SUBMENU time_history 

maximum_time 640,00 

skip_time 40,00 

  
table_increment 2 

datafile_flag OFF 

datafile_name Loadfiles\ART5_c.tbh 

data_increment 2 

 

Table E.1: Output table. 

2 0,0 

5 0,0 

7 0,0 

8 0,0 

12 0,0 

21 0,0 

21 107,5 

22 107,5 

24 107,5 

25 107,5 

  88 0,0 

89 0,0 

91 0,0 

104 0,0 

112 10,0 

112 20,0 

112 30,0 

112 40,0 

999 0,0 
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Table E.2: Pitch angle. 

Blade number [-] Pitch angle [deg] 

1 1,00 

2 0,70 

3 1,30 

 

rotor_speed 55,000 

rotor_azimuth 0,0000 

teeter_angle 0,0000 

teeter_velocity 0,0000 

yaw_angle 0,0000 

< 

 
SUBMENU turbine_coeff 

delta_lambda 0,5000 

lambda_min 70,000 

nr_lambda 6 

 

Table E.3: Pitch series [deg]. 

0,000 

0,500 

1,000 

1,500 

2,000 

3,000 

-180,000 

-180,000 

-180,000 

-180,000 

 

SUBMENU control 

brake_time 99000 

generator_cut_off 99000 

brake_overspeed 14,5 

brake_torque 0 

brake_delay_time 0,1 

brake_ramp_time 0,05 

brake_pitch_rate 3 

control_increment 0,02 

control_type 2 

controller_target 12,1 

fuzzy_pitch_rate 4 

fuzzy_control_limit 1,40E+01 

average_time 0,8 

proportional_gain 3,00E-01 

gain_scheduling 0,16 

differential_gain 2,00E+00 



86 

 

pitch_time_lag 0,1 

threshold_value 0,5 

control_pitch_rate 5 

max_pitch_acc 6 

pitch_error 0,3 

generator_emergency 16 

peak_shave_pitch 4,5 

peak_shave_begin 11 

peak_shave_end 11,8 

wait_time 30 

failure_type 0 

start_pitch_rate -1 

start_speed 6 

max_pitch_error 1,5 

pulses_per_rev 8192 

pulse_ring_eccentr 0,0005 

< 

 
MENU geometry 

tilt_angle 5 

rotor_distance 5,02 

hub_location 2,4 

rotor_eccentricity 0 

cone_angle -2,5 

blade_root_radius 1,5 

nr_blades 3 

blade_span 62,7 

blade_elements 23 

pitch_location 0 

feather_axis 0 

radial_motion 0 

hub_mass 57000 

hub_inertia 116000 

hub_static_moment 0 

nacelle_mass 240000 

static_moment_x 460000 

static_moment_z 420000 

rolling_inertia 1,00E+06 

tilting_inertia 2,90E+06 

yawing_inertia 2,60E+06 

cross_inertia 0,00E+00 

nacelle_side_drag 108 

nacelle_front_drag 36 

< 

 
MENU configuration 

tower_input tower108m.inp 

free_yawing OFF 
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gearbox_support OFF 

shaft_torsion OFF 

teeter_flag OFF 

hinge_flag OFF 

pitch_flag OFF 

lagging_flag ON 

flapping_flag ON 

blade_torsion ON 

< 

 
SUBMENU yaw_data 

yaw_start_time 99000 

yaw_rate 0,3 

yaw_ramp_time 10 

yaw_repeat_time 100 

yaw_friction 0,00E+00 

yaw_damping 0 

yawdrive_inertia 0,00E+00 

yaw_time_lag 3 

< 

 
SUBMENU generator_data 

generator_model 5 

rated_rotorspeed 12,1 

rated_power 5000000 

generator_slope 0,02 

maximum_torque 4,60E+04 

tau_gen 0 

 

Table E.4: Generator curve table. 

Rotor speed divided by nominal speed [-] Torque at fast shaft [Nm] Transmission loss w.r.t. fast shaft [Nm]  

0 0 0,0000 

0,4463 0 0,0000 

0,4851 7979,69 223,4313 

0,595 11980,38 335,4505 

0,705 16786,66 470,0265 

0,8694 25103,82 702,9070 

0,9917 41851,91 1171,8534 

1 41851,91 1171,8534 

1,0826 38657,11 1082,3989 

1,1653 35915,46 1005,6330 

1,3306 31453,92 880,7097 

0 0 0 

 

gear_ratio 97 

constant_loss 0 

proportional_loss 0,028 

slow_shaft_inertia 0,00E+00 
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fast_shaft_inertia 5,34E+02 

shaft_stiffness 8,68E+08 

gearbox_inertia 0,00E+00 

support_stiffness 9,00E+09 

support_damping 0 

< 

 
SUBMENU teeter_data 

delta_3_angle 0 

teeter_offset 0 

 

Table E.5: Teeter spring. 

Teeter angles [deg] Restoring teeter spring moments [Nm] 

1,0000 0,0000 

0,0000 0,0000 

 

teeter_friction 0 

teeter_viscosity 0 

< 

 
SUBMENU hinge_data 

min_flap_angle -90 

max_flap_angle 90 

hinge_stiffness 0 

bumper_stiffness 0 

hinge_damping 0 

< 

 
SUBMENU pitch_data 

coupled_pitch OFF 

min_pitch_angle 1 

max_pitch_angle 90 

pitch_stiffness 9E+09 

pre_stress_moment 0 

pitch_damping 0 

pitch_friction 0 

< 

 
MENU profiles 

3D_correction ON 

dynamic_stall 1 

hup1 0 

hup2 0 

hup3 0 

< 

 
MENU blade_data 

flap_pre_bend -2,05 

lag_pre_bend 0 

pre_bend_begin 17,9 

pre_bend_end 53,7 
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Table E.6: Blade geometry. 

Spanwise coordinate [m] Chord [m] y-coordinate [m] (lag-wise) of the 25% chord location 

0,0000 3,5000 -0,8750 

1,0000 3,5000 -0,8750 

10,7000 4,6085 -0,6095 

15,0000 4,6694 -0,5791 

18,6900 4,4883 -0,5554 

44,0000 2,4635 -0,3695 

50,0000 2,1000 -0,3242 

55,0000 1,8600 -0,2870 

58,0000 1,7500 -0,2530 

59,6000 1,7000 -0,2020 

61,0000 1,5000 -0,1370 

62,7000 0,3500 -0,0440 

 

Table E.7: Blade twist. 

Spanwise coordinate [m] Blade twist angle [deg] 

0,0000 13,4000 

1,0000 13,4000 

10,7000 13,4000 

15,0000 8,3460 

18,6900 7,3930 

44,0000 -0,1000 

50,0000 -1,2000 

55,0000 -1,8830 

58,0000 -1,5000 

59,6000 -1,0000 

61,0000 -0,5000 

62,7000 0,0000 

 

Table E.8: Blade mass distribution. 

Spanwise 

coordinate 

ymass [m] 

Blade 1 

ymass 

[kg/m] 

Blade 2 

ymass 

[kg/m] 

Blade 3 

ymass 

[kg/m] 

Spanwise 

coordinate 

xcg [m] 

Blade 1 x-

coordinate [m] 

(down-wind) of 

the mass centre 

line 

Blade 2 x-

coordinate 

[m] (down-

wind) of the 

mass centre 

line 

Blade 3 x-

coordinate [m] 

(down-wind) of 

the mass centre 

line 

0,0000 698,0000 700,9316 698,0000 0,0000 0,0002 0,0002 0,0002 

1,2000 798,0000 801,3516 798,0000 1,2000 -0,0245 -0,0245 -0,0245 

3,2000 761,0000 764,1962 761,0000 3,2000 0,0442 0,0442 0,0442 

5,2000 468,0000 469,9656 468,0000 5,2000 0,0672 0,0672 0,0672 

14,2000 363,0000 364,5246 363,0000 14,2000 0,2730 0,2730 0,2730 

24,2000 322,0000 323,3524 322,0000 24,2000 0,1969 0,1969 0,1969 

34,2000 246,0000 247,0332 246,0000 34,2000 0,1501 0,1501 0,1501 

40,2000 183,0000 183,7686 183,0000 40,2000 0,1818 0,1818 0,1818 
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48,2000 133,0000 133,5586 133,0000 48,2000 0,2308 0,2308 0,2308 

60,7000 39,0000 39,1638 39,0000 60,7000 0,0545 0,0545 0,0545 

62,6000 2,0000 2,0084 2,0000 62,6000 0,0268 0,0268 0,0268 

 

Table E.9: Radius of Gyration. 

Spanwise coordinate [m] Distribution of radius of gyration [m] 

0,0000 1,1971 

1,2000 1,1726 

3,2000 1,2170 

5,2000 1,1925 

14,2000 1,1563 

24,2000 0,9962 

34,2000 0,8234 

40,2000 0,7423 

48,2000 0,6899 

60,7000 0,3110 

62,6000 0,1085 

 

Table E.10: Blade stiffnesses. 

Coordinates for blade 

bending stiffnesses [m] 

Flatwise bending stiffness 

[Nm2] 

Edgewise bending stiffness 

[Nm2] 

Flat-edge cross stiffness 

[Nm2] 

0,0000 1,760000E+10 1,760000E+10 -2,290000E+03 

3,2000 1,450000E+10 1,960000E+10 9,490000E+07 

5,2000 6,700000E+09 1,000000E+10 8,270000E+07 

14,2000 2,370000E+09 4,800000E+09 6,870000E+07 

24,2000 1,240000E+09 3,580000E+09 1,140000E+08 

34,2000 3,820000E+08 2,240000E+09 9,110000E+06 

42,2000 1,210000E+08 1,120000E+09 -1,320000E+07 

57,7000 2,330000E+07 2,520000E+08 -3,020000E+06 

62,6000 1,870000E+06 5,060000E+07 2,860000E+03 

 

Table E.11: Torsion data. 

Spanwise coordinate [m] Torsional stiffness [Nm2/rad]  Chordwise location [m] of shear centre 

2,000000E-01 7,211200E+09 -2,587000E-01 

3,200000E+00 5,938600E+09 -2,082000E-01 

5,200000E+00 3,270800E+09 -1,819000E-01 

1,420000E+01 5,938600E+08 -3,685000E-01 

2,420000E+01 3,052100E+08 -3,459000E-01 

2,820000E+01 2,081400E+08 -3,289000E-01 

3,020000E+01 1,374000E+08 -2,931000E-01 

5,020000E+01 1,457200E+07 -1,154000E-01 

5,770000E+01 7,701700E+06 -6,400000E-02 

6,070000E+01 2,116400E+06 -3,350000E-02 

 

< 

 
flat_damping 0,0048 
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edge_damping 0,0048 

torsion_damping 0,0048 

< 

 
MENU wind 

load_case Vacuum 

wind_option 0 

air_density 1,225 

duration 1000 

amplitude 0 

hor_shear 0 

lower_shear 0 

shear_type 2 

shear_parameter 0,1429 

start_time 0 

time_period 1000 

upper_shear 0 

direction_change 0 

vert_shear_change 0 

hor_shear_change 0 

wind_datafile none 

wind_velocity 8 

wind_direction 0 

wind_elevation 0 

wind_twist 0 

< 

 
MENU waves 

wave_option 0 

water_density 1025 

water_depth 20 

wave_datafile none 

wave_direction 0 
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APPENDIX F MODE SHAPE PLOTS SIMULATIONS BLADEMODE 

V.2.0 
 
Simulation 1: 
 

 
Figure F.1: Mode shape plots for modes 0-7 of simulation 1. 

 
Figure F.2: Mode shape plots for mode 8 and 9 of simulation 1. 
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Simulation 2 Wind Speed 3 m/s: 

 
Figure F.3: Mode shape plots for modes 0-7 of simulation 3. 

 

 
Figure F.4: Mode shape plots for mode 8 and 9 of simulation 3. 

 


