
The Performance of Total Variation Regularizer for User Collaborative Filtering

Karolis Mariunas
Supervisor(s): Elvin Isufi, Maosheng Yang, Bishwadeep Das

EEMCS, Delft University of Technology, The Netherlands
22-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

Abstract
Recommender systems (RS) assist users in making
decisions by filtering content that the user would
likely find relevant. Standard techniques like col-
laborative filtering exploit user similarities to find
the recommendations assuming that similar users
are likely to be interested in the same items. On
the other hand, graph RS borrow techniques from
the field of graph signal processing to predict rat-
ings for items that the users have not seen and uti-
lize a graph representation of user similarities and
their corresponding ratings. Recent studies indi-
cated that simple RS could outperform the state-
of-the-art RS. Therefore our paper contributes by
analyzing the performance of a novel approach to
RS - collaborative filtering that uses a total vari-
ation graph regularizer. We show that total vari-
ation can outperform its predecessor collaborative
filtering by reducing the root mean squared error
by 4.68%. However, further experiments with top-
n recommendations indicated that traditional col-
laborative filtering could recommend more relevant
content than the total variation, which is supported
by a 2.20% increase in precision. The results in-
dicate that total variation alone does not add more
information to the RS to show noteworthy improve-
ments to existing traditional baselines. However,
building on discoveries that even some of the state-
of-the-art RS cannot outperform well-defined base-
lines, a 4.68% increase in accuracy reveals the po-
tential of RS supported by graph regularization.

1 Introduction
The rising popularity and success of applications such as Net-
flix, YouTube, Amazon and Spotify can be explained by their
ability to help users find the content they want, despite having
countless options to choose from. Behind the curtains of user-
centred applications, we find recommender systems [1] as one
of the core functionalities that assist consumers in making
choices. Without these systems, users would find it difficult,
if not impossible, to explore the vast number of options and
content these applications provide.

There are various recommender systems employed in the
industry, however, one of the most popular approaches is so-
called collaborative filtering (CF) [2]. User-based CF models
exploit the similarities between users and how they interact
with the items (by giving ratings to the items they like or
dislike) to predict the ratings for items that the user has not
seen [1, 3]. The underlying assumption of this process is that
if some user group has similar tastes and interests, their rat-
ings would likely be similar too. Nearest neighbour methods
for CF systems encapsulate these assumptions by selecting
only the most similar users for rating predictions [3].

The user similarity can be represented as a graph where the
most similar users are connected by an edge. Consequently,
the nodes of the graph - users, would contain information
about their ratings for items as scalar values, usually ratings

from 1 to 5 [3, 4]. Then the problem of predicting missing
ratings becomes that of interpolation - using already known
ratings and user graph connectivity to infer the values for un-
seen items. Simultaneously, the field of signal processing on
graphs uses simple yet effective techniques called graph fil-
ters to interpolate missing values over a graph [5, 6]. One
particular approach in this field is to use graph regularizers
such as total variation [6] for signal regularization, denoising
and other problems.

The rising popularity of recommender systems has led to
novel solutions to the problem, such as neural network ap-
plications [7–9]. These complex approaches showed promis-
ing results compared to traditional solutions, such as collab-
orative filtering, which are standard baselines in the recom-
mender system research. However, it has been shown that
usually, simple approaches in recommender systems can per-
form just as good if not better than the state of the art that we
have nowadays, putting the results of these new techniques in
question [10–12]. On the other hand, using graph-based reg-
ularizers introduces new perspectives to existing simple rec-
ommender systems and has already shown some promising
results [4, 13].

This study combines graph-based regularizers explored in
graph signal processing [5, 6, 14] with the k-nearest neigh-
bours collaborative filtering recommender system. Our main
contribution is to measure and answer ”How does the total
variation regularizer perform for user k-nearest neighbours
collaborative filtering?”. Specifically, the analysis is done by
considering different design choices and their effects on the
overall behaviour and performance of the system. In addition,
the performance of our model is compared to the collabora-
tive filtering recommender system.

This paper is organized as follows. Section 2 discusses the
general design, components and processes of the graph rec-
ommender system pipeline. Section 3 describes the imple-
mentation of the total variation regularizer for collaborative
filtering, followed by a description of metrics used to evaluate
the performance. Section 4 analyses the performance of total
variation compared to different baselines. In Section 5, we
describe measures taken to ensure research integrity. In Sec-
tion 6 we discuss the significance of our findings, compare
results to other graph recommender systems, and discuss the
similarity graph. Finally, in Section 7 we conclude the find-
ings of this study.

2 Methodology
This section provides an overview of the methodology and
design choices made. Furthermore, we introduce repro-
ducibility and transparency to the process of the graph rec-
ommender pipeline to promote further research and in-depth
discussions about the combination of graph-regularizers and
recommender systems. Finally, we constructed a graph rec-
ommender pipeline to measure the performance of user CF
combined with a total variation regularizer, as shown in Fig-
ure 1.

2.1 Data
The first step of our pipeline is to collect data on users and
their corresponding ratings for some items. This project uses

Figure 1: Graph Recommender System Pipeline. The data is firstly
preprocessed and sampled into Train, Test and Validation data sets
(1,2,3). Afterwards, the Train set is used to construct a User Simi-
larity Graph (4), which is then used to predict unknown ratings (5).
Finally, the performance of the predicted ratings is measured (6),
and the best-performing model is selected for final measures and re-
sult comparison (7).

a benchmark data set MovieLens, containing 100,000 rat-
ings (1-5) from 943 users on 1682 movies [15]. This data
set ensures that our recommender system deals with the spar-
sity problem of rating data, having only 6% of the potential
number of ratings while maintaining a relatively small scale
compared to other data sets that MovieLens provides (e.g.
1,000,000 ratings). In addition, a smaller data set allows us to
run more experiments and get a better performance overview.

The data set is split into random mutually exclusive Train,
Validation and Test sets with a ratio of 75/5/20. This is done
to ensure that we have enough data to predict the ratings and
test whether the algorithm generalises well when predicting
the missing ratings found in the validation and test sets.
Bellow, we provide a more extensive description of these
data sets.

Train Set. The training set is used to calculate user
similarities and build their corresponding graph that is
needed to predict the ratings for unseen movies. We take
75% of the original data set by sampling random user-item
ratings. Furthermore, it ensures that each user has at least 10
ratings, compared to 20 in the original data set.

Validation Set. The validation set is used to measure
and compare unbiased results of different configurations
of our recommender system. It allows us to select the
best performing configuration after model hyper-parameter
tuning. This data set contains five randomly sampled ratings
per user and corresponds to 5% of the original data set.

Test Set. The test set is used to gather unbiased per-
formance measurements of the final model fitted on the
train-validation sets. We use these measurements to compare
the results of our model to baselines and other graph-based
models [16–18]. The Test set corresponds to 20% of the
original data.

2.2 Rating Predictions
After preparing the data, a graph recommender system
pipeline is constructed to predict ratings. The pipeline con-
sists of building a user similarity graph, which is further pro-
cessed into a k-nearest neighbours graph, and finally, predict-
ing ratings.

(a) Fully connected similarity graph.

(b) Filtered k-nearest neighbours directed similarity graph.

Figure 2: Examples of fully connected and filtered similarity graphs.
The ratings users give for some item can be visualized as graph sig-
nals, indicated by the blue line comming out of the user nodes. Each
user in the fully connected graph (a) is connected to everyone else.
The simnilarities between these users are respresented as scalar val-
ues on the edges. Then, the graph is filtered to contain only k most
similar users as seen in (b) where k is 2. The direction of the arrows
indicates the direction of the similarity, for example, in graph (b)
user u1 is connected to user u2, but not the other way around.

We construct a user similarity graph using the user rat-
ings in the train set to calculate the similarity. All the users
are connected with a weighted edge, where the weight cor-
responds to the similarity of the connected users. However,
we do not connect users to themselves. An example of the
similarity graph is displayed in Figure 2 (a).

Since graph regularization is combined with the k-nearest
neighbours (KNN) collaborative filtering, the graph is fur-
ther processed into a KNN graph, where only the top k most
similar neighbours are connected. KNN graphs can be ei-
ther directed or undirected [14]. Directed graphs allow for
directed relationships between two neighbour users, meaning
that user u can be a neighbour of user v, but not the other way
around, as shown in Figure 2 (b). On the other hand, undi-
rected graphs have bidirectional relationships, meaning that
if user u is a neighbour of user v, user v is also a neighbour
of user u. In this study, we experiment with both directed and
undirected KNN graphs. More information about similarity
measures used in this study can be found in Section 3.4.

Finally, the KNN graph and user ratings are used to cal-
culate the predictions. The predictions are then used to re-
construct the user-item prediction matrix, where the missing
ratings are filled in with the predicted ratings. This matrix is
then used to measure the performance of our method.

2.3 Performance Measurements and Comparisons
Once the rating predictions are gathered, we measure the per-
formance of our graph recommender system configuration us-
ing the metrics in Section 3.6. Here, the predicted ratings
are compared against actual ratings found in the validation

and test sets. Predictions are further used to construct top-n
recommendation lists for each user that contain movies with
the highest predicted ratings. Finally, the performance mea-
surements assess to what extent the recommender system can
predict unseen ratings and whether the recommendations pro-
vided contain movies rated highly by the user.

We then repeat the measurements for different configura-
tions of our recommender system (e.g. number of neighbours,
directed/undirected graphs) and select our top-performing
configuration for comparison with other recommender sys-
tems. Finally, our best-performing recommender system is
evaluated using the test set’s ratings to measure the overall
performance and generalization capabilities. More informa-
tion about the evaluation procedure can be found in Section
4.

To better understand the results, we want to put them in
a broader context. Therefore, we compare the results of our
final models with other graph-based models [16–18] and our
baselines which are further discussed in Section 4. In our ex-
periments with graph-based recommender systems, we try to
align our data, pipelines and processes as closely as possible
to ensure that the comparisons and the results are objective
and reveal the true nature of the methods [16–18]. It is im-
portant to note, however, that although the metrics and data
are aligned, the process of measuring the performance might
differ.

3 Collaborative Filtering with Total Variation
Since the collaborative filtering problem can be represented
as an interpolation of missing ratings over a graph, it allows
us to combine it with total variation, a regularization method
from the field of graph signal processing [5, 6, 14]. In this
study, we use user k-nearest neighbours collaborative filter-
ing. However, it has to be modified before we can integrate
total variation. Therefore, we start by explaining total vari-
ation, followed by its integration into collaborative filtering.
Finally, we end by explaining all of the integral processes and
modules of the system.

3.1 Total Variation
Total variation graph regularizer is concerned with measuring
the variation of a node signal and its neighbour signals con-
nected to it [5]. The graph G = (V,A) can be represented
as a set of nodes V and a weighted adjacency matrix A that
defines the connections between the nodes. Then the graph
signal xi is a vector that maps some node i to their corre-
sponding signal data. Finally, the total variation of a signal
xi is defined in [5, eq. (18)]:

TV (xi) = ∥xi −Anormxi∥1 . (1)

where the adjacency matrix is normalized by dividing it with
its largest eigenvalue as seen in [5, eq. (6)]:

Anorm =
1

|λmax|
A. (2)

Total variation in Equation (1) outputs a scalar value corre-
sponding to the 1-norm - the sum of absolute values of the

signal variation vector. It can be interpreted as the smooth-
ness of the graph. Low total variation means that the signals
of the neighbouring vertices are similar to the signals on the
nodes themselves. In contrast, high total variation indicates
that the signal is more uneven with more considerable differ-
ences between the connected nodes.

3.2 Graph Collaborative Filtering
Traditional user neighbourhood-based collaborative filtering
algorithms predict unknown ratings for some target user by
taking into account the ratings of their nearest neighbouring
users [1, 3]. The neighbourhood of the target user is spec-
ified by their similarity to other users in the system, where
the most similar users are thought to be neighbours. How-
ever, users tend to rate items differently, and some might be
hesitant to assign a high rating to the item they like. There-
fore, we have to normalise users’ ratings before calculating
the similarity. Thus, the components of collaborative filtering
are rating normalisation, similarity computation, and neigh-
bourhood selection [3].

Graph collaborative filtering also has these components,
however, their representation differs. For example, in a graph
G = (V,A), users are a set of nodes V that are connected
to their neighbours by a weighted adjacency matrix A, where
a value at a position (i, j) corresponds to the similarity of
users i and j (0 if the users are not connected). Furthermore,
the graph nodes have a signal vector xi that contains the rat-
ings that users assign to the movie i, 0 if the rating is un-
known. Once these essential components are defined, there
are multiple ways to interpolate missing values of the graph
signals [1, 3–5, 14].

Our approach to predicting the unknown rating matrix X,
where entry Xui is the rating user u gave to item i, uses graph
regularization, commonly utilised to retrieve the true graph
signal from noisy measurements [14]. In the case of recom-
mender systems, the observed rating matrix Y is sparse - con-
tains a lot of missing values, which in this context is noise
since we are trying to find the true ratings (signal) that the
users would assign to all of the movies. Under the assump-
tion that the observed ratings yi for some movie i contain
noise, we can model yi as in [14, eq. (2.15)]:

yi = Cxi + n. (3)

where C is a binary selection matrix which masks the un-
known values, n is noise and xi is the true signal for some
movie i. Following Equation (3), we can estimate the ratings
xi for some movie i as done in [14, eq. (2.16)]:

x̂i = min
xi∈RU

∥yi −Cxi∥22 + µf(xi;A). (4)

The first term in Equation (4) ∥yi −Cxi∥22 measures the dif-
ference between our predicted observed rating values Cxi

and the observed ratings yi. The second term - regulariza-
tion, f(xi;A), models our assumed prior knowledge about
xi and the neighborhood of our graph A, and penalizes the
predictions which do not follow the assumptions. The trade-
off factor µ > 0 controls the importance of our assumptions
for the predictions.

This study is concerned with testing the total variation reg-
ularizer. We assume that for some movie i, users and their
most similar neighbours would have similar ratings. Since
total variation measures how smooth the signals are over the
graph, we can substitute the regularization term of the Equa-
tion (4) f(xi;A) with total variation in Equation (1), to en-
force that the predicted ratings x̂ follow this assumption:

x̂i = min
xi∈RU

∥yi −Cxi∥22 + µ ∥xi −Anormxi∥1 . (5)

Equation (5) displays how collaborative filtering interacts
with total variation. We use precomputed user-user similari-
ties Anorm as seen in Equation (2), to measure the variation
of our predicted ratings xi. Since we are looking for predic-
tions which minimize Equation (5), we can control how im-
portant user-neighbour rating similarities are with the help of
µ. For more information on how we find the predicted ratings
that minimize Equation (5), consult Section 3.5.

3.3 Data Preprocessing
Since users might use the same ratings to indicate differ-
ent preferences (4 might seem like a high score to one
and mediocre to another), they have to be normalized. We
use mean-centering to obtain a more objective insight into
whether the ratings are positive or negative [3]. Mean-
centering works by subtracting the average rating of some
user from all of their observed ratings. Thus, if a rating was
below the mean, it would now be negative, indicating that the
user did not enjoy the movie.

3.4 Similarity Graph
To construct the adjacency matrix A, we need to calculate the
similarity of each user pair. The similarity is crucial since it
allows us to indicate how significant are the ratings of some
neighbouring users based on their similarity [3]. Further-
more, we can filter the adjacency matrix to contain only the
most similar neighbours of each user, which corresponds to
the nearest neighbour methods used for collaborative filter-
ing [1, 3].

To calculate the similarities, we use a standard approach
called Pearson correlation coefficient [1, 3]. Pearson corre-
lation takes the ratings of movies that both users have rated
and indicates how similar the users are on a scale from -1
to 1. However, it is relatively common for users to have
only a few rated movies in common, and if the ratings for
those movies are very close or even the same, their similarity
would be close to one. This is undesirable since it would in-
dicate that the users are highly similar, whereas, in reality, we
do not have enough information to conclude that. Therefore,
we set the number of minimum movie ratings in common to
four and say that for anything below that, the similarity is un-
known. After calculating the similarity of all user pairs, we
construct the weighted adjacency matrix A, where the value
at position (u, v) indicates how similar user u is to user v.

Finally, we process the weighted adjacency matrix to con-
tain only the top k neighbours for every user. For undirected
adjacency matrix, we ensure that it is symmetric, meaning
that values at positions (u, v) and (v, u) are identical for users

u and v. Since some of the user-pair similarities are unknown,
we only ensure that the number of connections for each user
is not above K. On the other hand, for directed graphs, we
connect each user to their top-k most similar users with no
restrictions. The similarities of users who are not connected
are set to 0. Finally, we normalize our filtered adjacency ma-
trix as seen in Equation (2).

3.5 Rating Interpolation
To get the rating predictions, we iteratively solve Equation (5)
for each movie. We use CVXPY, a tool for convex problem
optimization, to help us select ratings that minimize Equation
(5) [19]. For each movie i, we select the observed ratings yi

as our initial guess and find the predicted rating vector xi for
all of the users. However, it is impossible to predict meaning-
ful ratings without using any meta-data for movies that are
in the test set but not in the training set (strict cold starters).
In such cases, we use the train set to take an average rating
of each user as our predictions. Finally, once we have rating
vectors for all movies, we construct the user-movie rating ma-
trix X and add the user rating means to their corresponding
ratings.

3.6 Performance Evaluation
To measure how our algorithm performs on unseen ratings
hidden during data-splitting, we use root mean squared error
(RMSE) for accuracy and precision@n and recall@n to
measure our recommendations’ effectiveness [1].

RMSE measures how close the predicted ratings x̂ are
to the true ratings y found in the test set Yts:

RMSE =

√∑
(u,i)∈Yts

|yui − x̂ui|2

|Yts|
. (6)

where yui is a true rating given by user u for some movie i,
and x̂ui is the predicted rating.

Precision@n is concerned with the proportion of rec-
ommended items that are relevant in a recommendation list
of length n [20]. Since users rate differently, we say a movie
is relevant if its rating for some user is above their rounded
mean rating. Furthermore, for our prediction list, we select
the movies with the top-n highest predicted ratings that are
also in the test set.

Very similarly, Recall@n measures the fraction of relevant
items found out of all relevant items in a recommendation
list of length n [20]. The score indicates the proportion of all
movies retrieved that had positive feedback from some user.

4 Experimental Setup and Results
To assess the performance of our recommender system (RS),
we benchmark our model against a set of baselines and other
simultaneously implemented graphs RS [16–18]. The base-
line models are run in the same environment as the total vari-
ation model to ensure that the results are fair and objective.
As for other graph RS, the procedure of testing and validating

Figure 3: Evaluation Procedure. The full data set is split into training
and testing data with a ratio of 80/20. Training data is further split
into a validation set used to tune the parameters. Then, the model
is retrained on the full training set with the best-performing param-
eters. Finally, the performance of our model is evaluated using test
data.

might differ. However, we test our models on multiple 80/20
train-test data splits and compare the averaged-out results.
Baselines. We use two baselines as a benchmark to assess
whether our algorithm can outperform its predecessor or tech-
niques that abuse certain properties to get one of the metrics
down:
UserKNN: A traditional collaborative filtering algorithm

that uses user neighbour similarities to predict the un-
known ratings. As with our model, we use Pearson Cor-
relation to calculate similarities. The model only has
one parameter, k - the number of neighbours considered
when predicting [1, 3].

User Mean Predictions(UserMP): A simple algorithm that
outputs the mean rating of a user for all of their un-
seen movies. This method tries to artificially reduce the
RMSE score based on the assumption that the unseen
ratings are close to the mean rating.

4.1 Experimental Setup
We split the data set into 5 80/20 random train-test splits to
evaluate our model. For each of the five splits, we select the
best-performing set of parameters validated on the validation
set (for more information about the data splits, see Section
2.1). The model is then retrained with the best parameters on
the entire training set, and the performance is measured using
techniques discussed in Section 3.6. Finally, the performance
metrics of all the five folds are averaged out to get the overall
performance of our model. Figure 3 illustrates an overview
of the evaluation procedure.

Since the authors and creators of the MovieLens 100k
dataset cannot guarantee the correctness of the data [15], we
decided to measure the performance of our RS by taking the
average performance of 5 random 80/20 train-test splits over
other splitting techniques [21]. Moreover, to account for ir-
regularities in the distribution of data, we ensure that there is
no overlap between the test data sets.

For each of the five folds, we tune the parameters on a val-
idation set sampled from the training data. Firstly, the vali-
dation data set is used for all hyper-parameter combinations.

Secondly, we use grid search to select the parameter combi-
nation with the smallest RMSE or precision on the validation
set. We use the following parameter sets for grid search:

– trade-off factor µ: [0, 0.25, 0.5, 0.75, 1]

– number of neighbours K: [5, 10, 15, 20, 25, 30, 35, 40]

Finally, we retrain our model using the best-performing pa-
rameters on the whole training data set and measure the per-
formance. This procedure is done individually for every data
split. Therefore, the parameters might differ for every fold
since they are specifically tuned for that data split. The per-
formance of our algorithm is measured by calculating RMSE
as well as precision and recall. For top-n recommendations,
we constructed recommendation lists of lengths 5, 10 and 20
to measure how well the methods perform for a low and large
number of recommendations. The results retrieved from each
fold are averaged and compared to the baselines, and other
graph regularization techniques [16–18].

4.2 Results
Accuracy Performance
The results of total variation with collaborative filtering tuned
for RMSE (UserTVRMSE

undir and UserTVRMSE
dir for undirected

and directed graphs) are compared against the baselines in
Table 1. The results indicate that UserTVRMSE does not act
like UserMP and can beat UserMP on all of the given metrics.
Therefore, we only compare the results of UserTVRMSE to a
UserKNNRMSE baseline.

Table 1 shows that the total variation method with both
directed and undirected graphs improves the traditional user
collaborative filtering algorithm by 4.68% on the RMSE met-
ric and 1.37% on recall@5. However, it shows no signifi-
cant improvements for other top-n recommendation metrics.
Moreover, all algorithms show stable and consistent results
across all five folds, indicated by the low RMSE standard
deviation (std). Finally, since both methods were tuned on
RMSE, a 4.68% improvement indicates that total variation
performs better on RMSE than the traditional algorithms on
a relatively small data set with high sparsity.

Furthermore, directed graphs show no substantial increase
in any metrics compared to undirected graphs. Although di-
rected graphs contain more connections between users, the
additional connections do not add more meaningful informa-
tion to our predictions resulting in almost identical results.
This suggests that undirected graphs can capture all the nec-
essary similarity information while maintaining symmetric-
ity.

To further analyse the performance of total variation, we
analyse the performance of different parameters on the val-
idation set. As shown in Figure 4, the RMSE value drops
significantly when µ value is 0.25. However, further increas-
ing µ results in minimal changes in RMSE, which smoothly
converges to 0.99 when approaching µ = 1. It seems that
the total variation value (the second term in Equation (5) is
significantly larger than the error-fit (first term in Equation
(5)) when µ >= 0.25, which outweighs the error-fit rate and
therefore causes the algorithm to focus on minimizing total
variation. Consequently, this leads to convergence since no

RMSE PREC@5 REC@5 PREC@10 REC@10 PREC@20 REC@20 RMSE std PREC@5 std

UserMP 1.042 0.542 0.445 0.542 0.649 0.541 0.815 0.005 0.011
UserKNNRMSE 1.005 0.679 0.511 0.631 0.709 0.590 0.860 0.005 0.010
UserKNNPREC 1.018 0.698 0.522 0.643 0.718 0.595 0.865 0.005 0.010

UserTVRMSE
undir 0.960 0.683 0.518 0.634 0.713 0.591 0.862 0.007 0.010

UserTVRMSE
dir 0.958 0.681 0.516 0.633 0.713 0.591 0.862 0.007 0.010

UserTVPREC
undir 0.961 0.683 0.518 0.634 0.713 0.591 0.862 0.008 0.010

UserTVPREC
dir 0.960 0.681 0.517 0.632 0.712 0.590 0.862 0.006 0.011

Table 1: Total variation user collaborative filtering (UserTV) average result comparison against baselines (user collaborative filtering
UserKNN and user mean predictions UserMP) on the MovieLens 100k data set. Hyperparameters are optimized for Root Mean Squared
Error RMSE (UserTVRMSE) and precision@5 (UserTVPREC). Results for undirected (UserTVundir) and directed graphs (UserTVdir) are
also displayed. Results within 1% difference of the best performance for each metric are marked in bold.

Figure 4: Average RMSE of different number of neighbours K and
trade-off factor µ combinations during validation. Y-axis displays
RMSE and x-axis µ that is used in Equation (5). The color of the
lines indicate the K value, as displayed in the legend.

new information is added, and the total variation score is am-
plified with µ > 0.25.

We also see a notable performance gain if the number
of neighbours k is increased to 10. However, similarly to
µ, further adding neighbours seems to converge to 0.99.
Moreover, all k values follow the same trend, suggesting that
the total variation method is stable, further supported by a
low RMSE standard deviation (std).

Top-n Recommendation Performance
We applied the same tests to our models, which were
tuned for top-n recommendations. Both directed and undi-
rected graph models were explicitly tuned for precision
(UserTVPREC), which measures the proportion of recom-
mended items that are relevant. The results can be seen in
Table 1.

Table 1 indicates that UserKNNPREC outperforms
UserTVPREC

undir and UserTVPREC
dir on precision@5 and pre-

cision@10 by 2.20% and 1.42% respectively. However, as
the size of recommendation lists increases, both methods tend
to perform evenly, indicating that UserTV performance in-
creases when the recommendation lists get larger. This shows
that UserTV does not outperform the traditional baseline for
top-n recommendations. However, UserTVPREC shows a

Figure 5: Average precision of different number of neighbours K and
trade-off factor µ combinations during validation. Y-axis displays
precision and x-axis µ that is used in Equation (5). The colour of the
lines indicates the K value, as displayed in the legend.

better performance for RMSE, beating UserKNNPREC by
5.70%.

Interestingly, tuning the parameters on precision seems not
to affect the precision or any other metrics when compared
to UserTVRMSE models that were trained for RMSE. More-
over, directed graphs again show no increase in any metrics,
supporting the claim that directed graphs do not add addi-
tional meaningful information.

The same convergence patterns that are visible in Fig-
ure 4 are also present in Figure 5, where precision starts to
converge when µ > 0.25 and k > 10. Since higher µ
and k tend to increase precision, the parameters chosen for
measurements on the test are nearly identical (with slight
changes to µ) to those chosen during hyper-parameter tuning
for UserTVRMSE . Therefore, total variation performance in-
dicates a balance between accuracy and top-n recommenda-
tions, compared to the trade-off in RMSE for better precision
in collaborative filtering.

5 Responsible Research
This section discusses the efforts made to ensure that the
study is ethical, reproducible and follows the best practices
for research integrity [22].

To test and measure the performance of our recommender
system, we use the MovieLens data set [15]. The data col-
lection includes demographic data about the users who took
part in the study. However, our recommender only requires
user-movie ratings. Therefore we removed this information.

In a 2016 study about reproducibility, Baker reports that
over 70% of research across multiple science fields have
failed to be reproduced [23]. This reproducibility ’crisis’ is
present in the field of recommender systems as well. For ex-
ample, a 2019 study about state-of-the-art recommender sys-
tems found that only 39% of the work was reproducible [10].
As a result, we think it is our responsibility to give replicable
results on which future graph recommender system research
can be built.

As our project is part of computational science, we follow
some recommendations to provide the necessary tool for re-
production [23, 24]. Firstly, we describe the entire pipeline
of our model, introducing any design choices, decisions and
other processes that affect the results. Secondly, the source
code of this project and the data used is publicly available on
GitHub1 to allow for easy inspection and further work. Fi-
nally, the experimental setup and findings are detailed, as this
appeared to be one of the issues with recommender system
reproducibility [10].

We acknowledge negative results as equally crucial as pos-
itive when promoting understanding, research, and more ro-
bust progress [25]. To ensure that our results were objective
and realistic, we ran multiple experiments for our baselines
and total variation model in the same environment, ensuring
that each model was trained before evaluation. Although our
model could not show significant improvements to a simple
collaborative filtering baseline model, which might be viewed
as an unfavourable result, we view these findings as essential
to publish to promote research transparency and integrity.

We consider transparency and reproducibility essential to
scientific integrity and robust, meaningful research. There-
fore, we hope that by applying best practices, we can promote
further research into the field of graph recommender systems,
critical analysis of the methods used and improvements of al-
ready existing models through a deeper understanding of the
underlying methods.

6 Discussion
6.1 Result Significance
This study aimed to measure the performance of the total vari-
ation regularizer in a collaborative filtering recommender sys-
tem. A graph recommender system pipeline was constructed
to predict ratings for movies that the users did not see. The
overall performance of our model was measured by calculat-
ing the root mean square error (RMSE), precision and recall.

The results indicated that our model outperformed the tra-
ditional collaborative filtering recommender on RMSE by
4.68% when both models were tuned for this specific metric.
Although both collaborative filtering and total variation mod-
els perform well on more extensive recommendation lists,

1https://github.com/kmariunas/TURP total variation CF/tree/
user user recommender/user user recommender

collaborative filtering displayed better results for smaller lists,
showing a 2.20% and 1.42% increase in precision@5 and pre-
cision@10, respectively. Therefore, we concluded that to-
tal variation does not significantly improve the already estab-
lished baselines.

Recent findings reveal that well-defined baselines, such as
user collaborative filtering, outperform reproducible state-of-
the-art recommender systems on some metrics [10]. How-
ever, both models perform well for more extensive recom-
mendation lists, yet total variation can maintain a lower
RMSE. These findings motivate total variation as a more bal-
anced baseline for future research in recommender system
graph-regularisation.

However, recommender systems are driven by the context
in which they are applied. Our paper applied total variation
to a recommender system to measure its general capabilities
for accuracy and top-n recommendations. It serves as base
research that paves the way for research into more context-
driven uses of the total variation. Hopefully, RMSE improve-
ments motivate that total variation has the potential to beat
the state-of-the-art recommender systems in some application
contexts. Furthermore, more research is needed to establish
whether graph regularization is appropriate for other metrics.
One such metric is diversity, which assesses the novelty and
serendipity of the offered recommendations [1].

6.2 Related Work
This study was split into four projects, where each student
measured the performance of the following graph recom-
mender systems:

– Total variation regularizer with user k-nearest neigh-
bours collaborative filtering (UserTV).

– Total variation regularizer with item k-nearest neigh-
bours collaborative filtering (ItemTV) [16].

– Tikhonov regularizer with user k-nearest neighbours
collaborative filtering (UserTikhonov) [17].

– Tikhonov regularizer with item k-nearest Neighbours
collaborative filtering (ItemTikhonov) [18].

Here we compare the performance of each of the graph rec-
ommender systems mentioned above to our method and base-
lines. To get an accurate indication of which method performs
the best, we decided to use Pearson Correlation with the same
parameters (see Section 3.4) together with the same metrics
(Section 3.6) and 5 80/20 random train-test splits. The best
results for all metrics are displayed in Table 2.

Table 2 indicates that UserTV performs better for RMSE
than any other algorithm. However, our baseline UserKNN
can beat or be relatively even with the other methods re-
garding the top-n recommendation performance. Further ob-
serving the results in Table 2, we can see that UserTV per-
forms very similarly to the ItemTikhonov method. However,
although precision and recall are similar, ItemTikhonov re-
moves all items with less than five neighbours after the ad-
jacency matrix construction, which artificially increases the
score for all metrics since bad cases are removed before the
performance evaluation. Finally, total variation for item simi-
larity (ItemTV) shows odd behaviour, unable to perform well
on any metrics compared to UserTV.

https://github.com/kmariunas/TURP_total_variation_CF/tree/user_user_recommender/user_user_recommender
https://github.com/kmariunas/TURP_total_variation_CF/tree/user_user_recommender/user_user_recommender

RMSE PREC@5 REC@5 PREC@10 REC@10 PREC@20 REC@20

UserKNN 1.005 0.698 0.522 0.643 0.718 0.595 0.865
ItemTV 1.025 0.582 0.468 0.580 0.676 0.561 0.832
UserTikhonov 1.020 0.682 0.516 0.636 0.711 0.593 0.861
ItemTikhonov 1.006 0.688 0.521 0.635 0.713 – –

UserTV 0.958 0.683 0.518 0.634 0.713 0.591 0.862

Table 2: User collaborative filtering with total variation (UserTV) comparison against other graph recommender systems (ItemTV, User-
Tikhonov, ItemTikhonov) and collaborative filtering UserKNN (MovieLens 100k data set). The results displayed are the best measurements
for each of the metrics. Results within 1% difference of the best performance for each metric are marked in bold.

6.3 Similarity Graph
The similarity graph construction is one possible explanation
for the total variation recommender system results. The simi-
larity graph is one of the critical aspects of this recommender
system since it is directly used in the prediction Equation (5).
We build the graph by first calculating the similarity of each
user pair, then connecting only the k most similar users and
finally normalizing the graphs’ adjacency matrix. We expect
significant changes in the performance if the process of con-
structing the graph is changed to represent the relations be-
tween users better.

In this study, we chose Pearson Correlation as our simi-
larity measure since it is one of the most common measures
in recommender systems. However, Pearson Correlation de-
pends on the ratings for items that both users have rated. In
this study, we say that if users have < 4 ratings in common,
their similarity is unknown. Since the user-item rating matrix
is sparse (6% density), it is expected that many users would
not have enough rated items in common.

There are multiple ways to solve this problem. First, we
could try using different similarity computation techniques
which calculate the similarity based on all of the user rat-
ings, e.g. Adjusted Cosine Similarity [3]. Another approach
would be to consider the significance of the similarity weight,
which reduces the similarity if users have only a few items in
common [3]. With these changes, we expect an increase in
performance since total variation is very much dependent on
the quality of the similarity graph.

Another critical aspect of the similarity graph is filtering,
where only the top k neighbours are connected in the adja-
cency matrix. Currently, we ensure that the users have at most
k connections for undirected adjacency matrices. However,
some users end up with less since we do not allow them to
be connected to users who already have k connections, and
other similarities are unknown. One possible solution could
be to ensure that users have at least k connections, allowing
for more if users are dependent on other users who already
have k connections. Furthermore, by allowing the connec-
tions to be more dynamic, the adjacency graph could contain
more meaningful information, which would lead to better re-
sults.

Finally, similarity graphs could be constructed for each
item by filtering the entire adjacency matrix to contain only
the most similar neighbours who have also rated some item
i [4,14]. Collaborative filtering uses the same principle of se-
lecting only the neighbours that have rated some item i when

making predictions for that item. Since collaborative filter-
ing produced significant results, beating total variation on the
top-n recommendation performance, adding additional item-
specific information to our similarity graphs is expected to
increase the performance.

7 Conclusion
This paper proposed a graph recommender system that uses
existing graph regularization approaches. Specifically, we
used total variation with user k-nearest neighbours collabo-
rative filtering to measure the effects on the performance of
graph regularization. Firstly, we defined the recommendation
problem as a graph interpolation problem. Then, in our pro-
posed recommender pipeline, we constructed a user similar-
ity graph, where only the k most similar users are connected.
This graph was then used to interpolate the missing user-
movie ratings over a graph. Finally, we used multiple metrics
to assess the overall performance of our recommender sys-
tem. RMSE for accuracy and precision and recall to measure
the performance in the context of top-n recommendations.

This project aimed to answer the research question ”How
does the total variation regularizer perform for user k-
nearest neighbours collaborative filtering?”. To accurately
assess the performance of our method, the recommender sys-
tem was trained and validated on five different random train-
test splits of a MovieLens dataset. The average performance
of these five experiments was then compared to two baselines,
a traditional user collaborative filtering (UserCF) algorithm
and a heuristic approach to minimize RMSE. The results
showed that total variation performs similarly to UserCF,
with RMSE improvements of 4.68% and a decrease in preci-
sion@5 and precision@10 by 2.20% and 1.42%, respectively.
In addition, we found that the total variation model can find a
balance between all metrics compared to trade-offs between
RMSE and precision seen in UserCF performance. There-
fore, we conclude that total variation performs as good as the
traditional UserCF baseline, with improvements in RMSE.

References
[1] C. C. Aggarwal, Recommender Systems, 1st ed.

Springer, 2016.
[2] S. Sivapalan, A. Sadeghian, H. Rahnama, and A. M.

Madni, “Recommender systems in e-commerce,” in
2014 World Automation Congress (WAC), 2014, pp.
179–184.

[3] A. N. Nikolakopoulos, X. Ning, C. Desrosiers, and
G. Karypis, Trust Your Neighbors: A Compre-
hensive Survey of Neighborhood-Based Methods for
Recommender Systems, F. Ricci, L. Rokach, and
B. Shapira, Eds. New York, NY: Springer US,
2022. [Online]. Available: https://doi.org/10.1007/
978-1-0716-2197-4 2

[4] W. Huang, A. G. Marques, and A. R. Ribeiro, “Rating
prediction via graph signal processing,” IEEE Transac-
tions on Signal Processing, vol. 66, no. 19, pp. 5066–
5081, 2018.

[5] A. Sandryhaila and J. M. F. Moura, “Discrete signal pro-
cessing on graphs: Frequency analysis,” IEEE Transac-
tions on Signal Processing, vol. 62, no. 12, pp. 3042–
3054, 2014.

[6] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega,
and P. Vandergheynst, “The emerging field of signal
processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains,” IEEE
signal processing magazine, vol. 30, no. 3, pp. 83–98,
2013.

[7] T. Ebesu, B. Shen, and Y. Fang, “Collaborative memory
network for recommendation systems,” in The 41st
international ACM SIGIR conference on research &
development in information retrieval, ser. SIGIR ’18.
New York, NY, USA: Association for Computing
Machinery, 2018, pp. 515–524. [Online]. Available:
https://doi.org/10.1145/3209978.3209991

[8] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S.
Chua, “Neural collaborative filtering,” in Proceedings
of the 26th international conference on world wide web,
ser. WWW ’17. Republic and Canton of Geneva, CHE:
International World Wide Web Conferences Steering
Committee, 2017, pp. 173–182. [Online]. Available:
https://doi.org/10.1145/3038912.3052569

[9] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk,
“Session-based recommendations with recurrent neural
networks,” arXiv preprint arXiv:1511.06939, 2015.
[Online]. Available: https://arxiv.org/abs/1511.06939

[10] M. Ferrari Dacrema, P. Cremonesi, and D. Jannach,
“Are we really making much progress? a worrying
analysis of recent neural recommendation approaches,”
in Proceedings of the 13th ACM Conference on
Recommender Systems, ser. RecSys ’19. New York,
NY, USA: Association for Computing Machinery,
2019, pp. 101–109. [Online]. Available: https:
//doi.org/10.1145/3298689.3347058

[11] J. Lin, “The neural hype and comparisons against
weak baselines,” SIGIR Forum, vol. 52, no. 2,
pp. 40–51, Jan. 2019. [Online]. Available: https:
//doi.org/10.1145/3308774.3308781

[12] M. Ludewig, N. Mauro, S. Latifi, and D. Jannach,
“Performance comparison of neural and non-neural
approaches to session-based recommendation,” ser.
RecSys ’19. New York, NY, USA: Association for

Computing Machinery, 2019, pp. 462–466. [Online].
Available: https://doi.org/10.1145/3298689.3347041

[13] K. Benzi, V. Kalofolias, X. Bresson, and P. Van-
dergheynst, “Song recommendation with non-negative
matrix factorization and graph total variation,” in 2016
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2016, pp.
2439–2443.

[14] E. Isufi, B. Das, A. Natali, M. Yang, and M. Sabbaqi,
“Graph filters for processing and learning from network
data,” Delft University of Technology, pp. 1–19, Sep.
2021.

[15] F. M. Harper and J. A. Konstan, “The movielens
datasets: History and context,” ACM Transactions
on Interactive Intelligent Systems, vol. 5, no. 4,
pp. 1–19, Dec. 2015. [Online]. Available: https:
//doi.org/10.1145/2827872

[16] L. van Blokland, “Total variation regularisation for item
knn collaborative filtering: Performance analysis,” un-
published.

[17] S. Monté, “Tikhonov and sobolev regularisers compared
to user-based knn collaborative filtering,” unpublished.

[18] M. Koper ook geschreven Jansen, “Item-item collabora-
tive filtering via graph regularization,” unpublished.

[19] S. Diamond and S. Boyd, “CVXPY: A Python-
embedded modeling language for convex optimization,”
Journal of Machine Learning Research, vol. 17, no. 83,
pp. 1–5, 2016.

[20] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T.
Riedl, “Evaluating collaborative filtering recommender
systems,” ACM Transactions on Information Systems,
vol. 22, no. 1, pp. 5–53, Jan. 2004. [Online]. Available:
https://doi.org/10.1145/963770.963772

[21] Z. Meng, R. McCreadie, C. Macdonald, and I. Ounis,
Exploring Data Splitting Strategies for the Evaluation
of Recommendation Models. New York, NY, USA:
Association for Computing Machinery, 2020, pp.
681–686. [Online]. Available: https://doi.org/10.1145/
3383313.3418479

[22] K. Algra, L. Bouter, A. Hol, J. van Kreveld, D. An-
driessen, C. Bijleveld, R. D’Alessandro, J. Dankelman,
and P. Werkhoven, “Netherlands code of conduct for re-
search integrity,” Sep. 2018.

[23] M. Baker, “1,500 scientists lift the lid on reproducibil-
ity,” Nature, vol. 533, no. 7604, pp. 452–454, May.
2016.

[24] W. I. Matters, “Reproducible research,” Computing in
Science Engineering, vol. 12, no. 5, pp. 8–13, 2010.

[25] D. Mehta, “Highlight negative results to improve
science,” Nature, 2019. [Online]. Available: https:
//www.nature.com/articles/d41586-019-02960-3

https://doi.org/10.1007/978-1-0716-2197-4_2
https://doi.org/10.1007/978-1-0716-2197-4_2
https://doi.org/10.1145/3209978.3209991
https://doi.org/10.1145/3038912.3052569
https://arxiv.org/abs/1511.06939
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1145/3308774.3308781
https://doi.org/10.1145/3308774.3308781
https://doi.org/10.1145/3298689.3347041
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/3383313.3418479
https://doi.org/10.1145/3383313.3418479
https://www.nature.com/articles/d41586-019-02960-3
https://www.nature.com/articles/d41586-019-02960-3

	Introduction
	Methodology
	Data
	Rating Predictions
	Performance Measurements and Comparisons

	Collaborative Filtering with Total Variation
	Total Variation
	Graph Collaborative Filtering
	Data Preprocessing
	Similarity Graph
	Rating Interpolation
	Performance Evaluation

	Experimental Setup and Results
	Experimental Setup
	Results

	Responsible Research
	Discussion
	Result Significance
	Related Work
	Similarity Graph

	Conclusion

