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Walk Along: An Experiment on Controlling the Mobile Robot
“Spot” with Voice and Gestures

RENCHI ZHANG, JESSE VAN DER LINDEN, DIMITRA DODOU, HARLEIGH SEYFFERT,
YKE BAUKE EISMA, and JOOST DE WINTER, Faculty of Mechanical Engineering, Delft University
of Technology, Delft, Netherlands

Robots are becoming more capable and can autonomously perform tasks such as navigating between locations.
However, human oversight remains crucial. This study compared two touchless methods for directing mobile
robots: voice control and gesture control, to investigate the efficiency of these methods and the preference of
users. We tested these methods in two conditions: one in which participants remained stationary and one
in which they walked freely alongside the robot. We hypothesized that walking alongside the robot would
result in higher intuitiveness ratings and improved task performance, based on the idea that walking promotes
spatial alignment and reduces the effort required for mental rotation. In a 2 X 2 within-subject design, 218
participants guided the quadruped robot Spot along a circuitous route with multiple 90° turns using rotate left,
rotate right, and walk forward commands. After each trial, participants rated the intuitiveness of the command
mapping, while post-experiment interviews were used to gather the participants’ preferences. Results showed
that voice control combined with walking with Spot was the most favored and intuitive, whereas gesture
control while standing caused confusion for left/right commands. Nevertheless, 29% of participants preferred
gesture control, citing increased task engagement and visual congruence as reasons. An odometry-based
analysis revealed that participants often followed behind Spot, particularly in the gesture control condition,
when they were allowed to walk. In conclusion, voice control with walking produced the best outcomes.
Improving physical ergonomics and adjusting gesture types could make gesture control more effective.
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1 Introduction

Robots have traditionally been viewed as devices designed to perform repetitive tasks, mainly in
industrial settings and logistical operations. However, with the growing capabilities of Al, robots
are taking on new roles. Modern robots can understand and adapt to their surroundings, paving
the way for mobile robotics. This field extends beyond the familiar household cleaning robots and
now also encompasses drones [Halder and Afsari, 2023; Roldan-Gémez et al., 2021], surveillance
robots [Chen et al., 2021; Hafezi et al., 2024], underwater robots [Brantner and Khatib, 2021; Nauert
and Kampmann, 2023], warehouse robots [Fottner et al., 2021; Jacob et al., 2023], agricultural robots
[Benos et al., 2023; Gonzalez-de-Santos et al., 2020], and assistant robots [Hong et al., 2022; Miseikis
et al., 2020], among others.

The Human-Machine Interface (HMI) plays a vital role in the control of mobile robots, as these
robots are not yet capable of fully autonomous operation in open-ended environments [e.g., Endsley,
2017; Ezenkwu and Starkey, 2019; Hatanaka et al., 2023; Pianca and Santucci, 2023]. Although
mobile robots can execute certain maneuvers or subtasks, human supervision and interaction are
still needed for overall task completion. Traditional HMIs for controlling mobile robots include
joysticks [Dinh et al., 2017; Moniruzzaman et al., 2022], gamepads [Solanes et al., 2022; Wan et al.,
2023], keyboards [Di Vincenzo et al., 2022], and graphical user interfaces on tablets carried by
human operators [Colceriu et al., 2023; Kaczmarek et al., 2021].

1.1 Voice and Gestures as Natural Interfaces

While traditional HMIs have demonstrated their effectiveness over the years, they are not necessarily
the most ideal solutions [as pointed out by Gorecky et al., 2014]. Instead, an ideal UI for mobile
robots might mimic human-to-human or human-to-animal interactions [Krueger, 1993]. Given
that the human brain has evolved specialized areas for processing speech and body language,
using such natural UI could require less mental effort compared to interactions via handheld
devices or other physical media. Hancock [1993], ahead of his time, proposed the “sheepdog
metaphor” for human-machine collaboration. This metaphor describes the relationship between
a human (the shepherd) and a robot (the sheepdog). Just as a shepherd gives basic commands
to a sheepdog, allowing it to manage subtasks based on its instincts and learned experience, a
human operator can set high-level targets for a mobile robot, which then performs these tasks
independently. The sheepdog metaphor illustrates that a limited set of commands can facilitate
effective human-machine collaboration. More recently, and in accordance with the sheepdog
metaphor, the concept of maneuver-based control has also been explored in automated driving
[Detjen et al., 2020; Fink et al., 2023].

Possible candidates for interaction between humans and mobile robots include voice control [Li
et al,, 2023; Naeem et al., 2024] and control by means of mid-air gestures [Carfl and Mastrogiovanni,
2021; Coronado et al., 2017]. Beyond technical issues regarding the detectability of the commands,
such as voice control being less effective in noisy environments [Brunete et al., 2021; D’Attanasio
et al., 2024] or gesture control being impractical when someone is wearing gloves or when otherwise
constrained [Hatscher and Hansen, 2018; Sadhu et al., 2023], there are human factors to consider
when implementing such HMIs. Voice commands are transient, while gestures can be sustained by
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the user for longer. It has been found that gesture control can generate a higher sense of embodiment
than a traditional keyboard interface, although with a lower task performance [Di Vincenzo et al.,
2022]. Research has shown that when individuals were tasked with solving challenging spatial-
visualization tasks (such as mentally rotating 3D objects), they spontaneously produced hand
gestures and showed improved performance when doing so [Chu and Kita, 2011]. These findings
indicate that gestures can serve as a bridge between physical movement and abstract spatial
reasoning and suggest that gestures might represent an intuitive interface for controlling a robot’s
movements and rotations. With speech interfaces, on the other hand, an intended movement of the
robot must first be mentally translated into a verbal command. At the same time, Norman [2010]
argued that gestural interfaces are not inherently intuitive or easy to learn.

1.2 Existing Applications of Voice and Gestures for Mobile Robot Control

Previous research on voice versus gesture control for operating mobile robots [Abich and Barber,
2017; Chivarov et al., 2019], in car cockpits [Detjen et al., 2019], or for controlling visual interfaces
[Flick et al., 2021] shows that users generally prefer voice control over gesture control [but see
Korkiakoski et al., 2024, for mixed findings]. Differences in the robustness of detection and the
simplicity or trainability of gestures [Nogales and Benalcazar, 2021; Zhou et al., 2023] may partly
explain the relatively low ratings attributed to gesture control in some of the prior research. Factors
such as the social acceptability of commands [e.g., speaking or gesturing in a shared space may
confuse others; Rico and Brewster, 2010], competition with other tasks [e.g., drivers needing to keep
their attention on the road and their hands on the wheel; Bilius and Vatavu, 2021], and recognition
time delays [e.g., Halder et al., 2024] also play important roles.

As for quadruped mobile robots, previous studies investigated giving commands via gestures
and/or body pose [Rippy et al., 2024; Sandberg, 2023; Shin et al., 2024; Steinke et al., 2023] or via
voice, eye gaze, and head pose [Zhang et al., 2023]. Despite several technical limitations needing
resolution, these innovative methods of control showed promise. Other studies demonstrated the
potential of quadruped mobile robots for guiding people with visual impairments [Cai et al., 2024;
Chen et al., 2023; Doore et al., 2024; Due, 2023; Hata et al., 2024; Kim et al., 2025] or examined people’s
perceived safety as a function of the robot’s walking style [Hashimoto et al., 2024]. Of particular
interest is a study by Chacoén Quesada and Demiris [2024], which evaluated the effectiveness of an
Augmented Reality (AR) interface compared to a traditional handheld interface for controlling a
quadruped robot. Participants completed navigation and manipulation tasks, including a condition
that incorporated a cognitive offloading feature into the AR interface. In this context, cognitive
offloading refers to allowing users to physically position themselves and use hand gestures, such as
pointing to where the robot should go and using voice commands to direct its actions. The study
found that with cognitive offloading, the AR-based interface yielded faster task completion times,
reduced mental workload, and increased usability ratings.

For a complete comparison between voice and gesture controls in mobile robot operation, user
orientation relative to the robot has to be considered. Research on stimulus—response compatibility
shows that a difference in orientation between stimulus and response (requiring mental rotation)
increases errors and information processing time [Fitts and Seeger, 1953; Shepard and Metzler,
1971].

Wickens and Prevett [1995] identified two HMI display perspectives: egocentric and exocentric.
An egocentric display matches the user’s viewpoint since control inputs correspond with the
vehicle’s/robot’s direction, as in First-Person-View (FPV) displays used by expert drone racing
pilots [Pfeiffer and Scaramuzza, 2021; Tezza et al., 2021]. In contrast, an exocentric display, such
as a top-down view or bird’s-eye view, provides a detached perspective, which may increase the
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user’s situational awareness but complicates control input generation [Smolyanskiy and Gonzalez-
Franco, 2017]. In practice, the user’s mobility and positioning relative to the robot will result
in different perspectives: egocentric for users closely aligned with the robot’s orientation and
exocentric for those observing from a distant or static perspective, both of which are likely to
influence performance in control tasks.

To the best of our knowledge, no comparative study has investigated voice and gesture interfaces
for mobile robots while accounting for differences in users’ mobility (e.g., walking vs. standing).
Most existing research that used voice or gestures to control a mobile robot combined these modes
or lacked a direct comparative analysis [Chacén Quesada and Demiris, 2024; Doore et al., 2024;
Du et al., 2021; Fardana et al., 2013; Hata et al., 2024]. In a previous study involving older adults
and individuals with disabilities controlling a mobile robot, gesture control was found to be less
preferred and more fatiguing than voice or joystick control [Chivarov et al., 2019]. Abich and Barber
[2017] compared speech and sign-language-based gestures for robot navigation and investigation
tasks. However, because the study replaced each spoken command with an artificial one-to-one
gesture mapping based on sign language (unlike natural/spontaneous gestures), its comparison
between voice and gesture control may be hard to interpret.

Existing gesture interfaces for mobile robot control have relied on wearable gloves [Abich and
Barber, 2017] or an inertial measurement unit to track hand movements [Kandalaft et al., 2018;
Meghana et al., 2020] and non-head-mounted cameras to track body posture [Fardana et al., 2013;
Sandberg, 2023; Shin et al., 2024], hand position [Chivarov et al., 2019], or finger counts [Vanamala
et al., 2022], which limited the users’ mobility and might not be effective in mobile scenarios.
We chose to use an AR headset that tracks the user’s inputs well in both mobile and stationary
conditions. The vision-based gesture recognition we implemented does not require the participants
to wear sensors or stay in front of cameras or microphones, leading to natural hand and body
movements. Furthermore, we have published our code as open source, allowing others to reproduce
our setup and build upon it.

1.3 A Comparative Study of Voice and Gesture Control in Standing and Walking
Conditions

We conducted an experiment using the AR device Microsoft HoloLens 2 to compare voice and
gesture control for operating Spot, a popular quadruped robot developed by Boston Dynamics. In
the current study, participants navigated the robot along a trajectory with multiple 90° turns using
each control method twice: once while standing still at the starting point and once while walking
alongside the robot. When standing still, participants had a consistent view of the trajectory but
experienced stimulus-response incompatibility, especially when the robot was oriented toward
or approaching them. For instance, a Rotate Right command in that case would make the robot
rotate left from the participants’ perspective. When walking, participants could position themselves
behind or next to the robot to reduce this incompatibility.

We examined the effects of these two independent variables ((1) control method, (2) partici-
pant mobility) on task performance and self-reported experience. We differentiated between the
detectability of the commands (i.e., a technical issue regarding speech recognition and computer
vision) and the intuitiveness of command-to-robot-movement (a human factors issue). We hypoth-
esized that walking with the robot would result in better task performance and higher intuitiveness
ratings than controlling the robot while standing still.

Additionally, we expected that gesture control while standing still would be particularly unintu-
itive due to a spatial mismatch between the participant’s hand gestures and the robot’s movement.
In contrast, voice control, which involves verbal and auditory processing, conflicts less with visual
tasks according to the multiple resource theory by Wickens [2002, 2008]. This theory posits that
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humans have distinct cognitive resources (visual, auditory, spatial, and verbal), and tasks using
the same resource type interfere more with each other. Therefore, voice control should cause less
cognitive conflict during moments of incompatibility compared to gesture control, which relies
heavily on visual-spatial resources.

2 Methods
2.1 Participants

A total of 218 participants took part in the experiment. Of these, 216 were students enrolled in an
MSc course on Human—-Robot Interaction offered by the Faculty of Mechanical Engineering at TU
Delft. The remaining two participants were staff members from the same faculty. The course was
part of the MSc Robotics program and the Biomechanical Design track within the MSc Mechanical
Engineering program at TU Delft. Consequently, it can be assumed that the students had a strong
interest in, or basic to advanced knowledge of, technical and robotic systems. However, the HoloLens
2 in combination with the Spot robot was introduced to the students for the first time, meaning
that they were unfamiliar with the experimental facility and task. The experiment was conducted
from 4 December 2023 to 19 January 2024.

In addition to these 218 participants, 3 participants could not complete the experiment because
their control inputs were not recognized, presumably due to an issue with the wireless connection
during the first 2 days of the experiment and were excluded from consideration. Because our
interest was in making a complete comparison between gesture control and voice control, we did
not exclude participants whose hand gestures or voice commands were less well recognized during
the experiment.

Participants’ ages, collected via a post-experiment questionnaire, ranged from 21 to 30 years,
with a mean age of 23.5years (SD = 1.64). Among the participants, 194 were right-handed, 18 were
left-handed, and 6 were mixed-handed. Gender distribution included 160 males, 55 females, and
3 individuals who preferred not to disclose their gender. Of the participants, 121 reported never
wearing any vision aids, 49 wore glasses during the experiment, 36 wore contact lenses, and 12
typically wore glasses or contact lenses but did not wear them during the experiment. In response
to a question: “Before the experiment, did you ever wear a HoloLens or similar augmented-reality
device?” 155 participants answered no, and 63 participants answered yes.

The experiment was approved by the Human Research Ethics Committee of TU Delft, approval
number 3502, with each participant providing written informed consent before the experiment.

2.2 Hardware and Software

The experiment setup included the quadruped robot Spot Explorer [Boston Dynamics, 2020],
measuring 1,100 mm in length, 500 mm in width, and 840 mm in standing height. The setup included
a HoloLens 2 [Microsoft, 2024a], a device used in combination with Spot in earlier studies [Chacén
Quesada and Demiris, 2024; Chen et al., 2024; Rippy et al., 2024; Soler et al., 2024; Steinke et al.,
2023; Vom Hofe et al., 2023; Zhang et al., 2023]. Additionally, a Windows PC equipped with an
Intel i7-8700K processor and an NVIDIA RTX 2080 graphics card was used. These devices were
connected to a TP-Link AX3000 Gigabit Wi-Fi 6 Router [TP-Link, 2019], with the PC connected via
a network cable and the HoloLens 2 and Spot connected via a 2.4 GHz Wi-Fi network.

The HoloLens 2 was used to capture the participant’s control inputs. It ran an application
developed in Unity v2021.3.28f1 [Unity, 2021]. The application was created using the Mixed
Reality Toolkit (MRTK) v2.8 [Microsoft, 2022a] for interaction design and UI components. The
OpenXR Plugin was used to ensure compatibility with the HoloLens platform. Communication
between the HoloLens 2 and the PC took place via the Robot Operating System (ROS) [Quigley
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Fig. 1. The hardware and software structure of the setup. The HoloLens 2 captures human user inputs (i.e.,
speech and hand skeleton data) and processes them via a HoloLens application, which was developed in
Unity [2021] with the OpenXR Plugin for Unity, managed by the Mixed Reality Toolkit 2 (MRTK) [Microsoft,
2022a]. The application also records the 6D pose of the central front camera of the HoloLens 2. The processed
user inputs from the plugin and the camera’s 6D pose are recorded via Rosbag. Additionally, a corresponding
video of the user’s view is recorded by the HoloLens 2. Robot commands are recognized either from speech
by the plugin or from gestures by an ROS node with the hand skeleton data from the application. A state
machine manages the actions of the Spot robot and controls it via the Spot Software Development Kit (SDK).

et al,, 2009] and ROS-TCP-Connector package [Unity, 2022]. Spot was controlled from the PC using
the Python interface of Spot-SDK 3.3.2 [Boston Dynamics, 2023]. An overview of the hardware and
software infrastructure is provided in Figure 1.

2.3 Task

The participants were tasked with controlling the robot using either their voice or gestures to
direct Spot along a trajectory on the floor as quickly as possible. The trajectory contained 14
virtual nodes, including its start and end nodes (Figures 2 and 3). Participants needed to use three
maneuvers/commands: Walk Forward, Rotate Left, and Rotate Right, to complete the trajectory.
The Walk Forward command moved Spot 1 m forward in its Crawl locomotion mode, in which 3
feet touch the ground at all times. The default velocity limit for crawling was used, resulting in an
execution duration of 3 s for each command. Crawl mode was selected because Spot walks more
slowly in this mode compared to the Walk (Trot) mode. It was reasoned that the faster Walk mode
could appear intimidating and reduce the participants’ willingness to walk alongside the robot.
The Rotate Left and Rotate Right commands rotated Spot 90° to its left and right, respectively. The
task was completed with a minimum number of 23 commands, including 13 Walk Forward, 6 Rotate
Left, and 4 Rotate Right commands, resulting in 23 checkpoints of the robot pose.

2.4 Independent Variables

There were two independent variables, each consisting of two levels, and both were manipulated
within subjects:

— Participant’s mobility. Participants were instructed to either remain in their initial position or
walk with the robot.
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Fig. 2. The target trajectory of the Spot robot. The 14 nodes are indicated by means of gray circles. The Walk
Forward, Rotate Left, and Rotate Right commands are represented by straight arrows, black curved arrows,
and white curved arrows, respectively.
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Fig. 3. Overview of the experimental setting. A participant wearing the HoloLens 2 controlled Spot using the
gesture interface while walking alongside it.
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Table 1. The Four Conditions Tested in the Experiment

Participant’s mobility

Walking Standing

Voice Voice Control-Walking (VW) Voice Control-Standing (VS)
Control

method

Gesture  Gesture Control-Walking (GW)  Gesture Control-Standing (GS)

Participants were instructed to use either voice (V) or gesture (G) to control the robot while
walking (W) with it or standing (S) at the initial position.

— Control method. Participants used either voice or gestures to control Spot. In the voice control
conditions, participants vocalized one robot command at a time and then waited for the robot
to execute it. Similarly, in the gesture control conditions, participants performed a gesture,
held it until it was recognized, and then waited for the robot to execute the command.

These two independent variables resulted in the four experimental conditions shown in Table 1.
The experimental conditions were fully counterbalanced, with the 24 possible sequences of the four
experimental conditions repeating every 24 participants.

2.5 Speech Recognition

The HoloLens features speech recognition that can be customized within Unity using the MRTK
[Microsoft, 2022b]. In this experiment, three voice commands were programmed to be recognized
in order to control the robot, namely Walk Forward, Rotate Left, and Rotate Right. A pilot study
showed that participants took about 1s to utter a command, with an additional 1.2 s required for the
system to process it. Thus, the entire process from speaking to recognition took approximately 2.2s.

2.6 Gesture Recognition

A custom gesture recognition pipeline was implemented based on the MRTK of the HoloLens
(Figure 4). The HoloLens provides the 3D coordinates of detected hand skeletons in 26 joints (25
joints from the hand skeleton and 1 joint of the palm) with respect to the HoloLens frame at a
frequency of approximately 30 Hz [Microsoft, 2020; Microsoft, 2021]. The data of the hand skeletons
from the HoloLens were forwarded to the PC and classified into one of four gestures using a
Support Vector Machine (SVM) trained by previously collected gesture data from the HoloLens
(see Appendix A). Three gestures were used for robot commands (Figure 5(f)). One gesture (fist)
acted as a neutral gesture, similar to silent periods between voice commands.

Hand skeleton data from the HoloLens were streamed to the SVM gesture classifier, and a sliding
window system was applied to the predicted labels from SVM. The sliding window buffered the last
90 predictions of the incoming hand skeletons. This buffer remained unchanged if the HoloLens did
not capture any hand skeleton data. A gesture was recognized when at least 70% (i.e., 63 or more
samples) of the predicted labels within the current buffer were in the same class, and the mean
classification confidence level of all 90 samples was above 0.83. Given that the recording frequency
was approximately 30 Hz, the minimum time required for recognition was approximately 2.1s. If
the current gesture was the neutral gesture or the same as the last recognized gesture, no command
was sent to the robot. After a gesture command was successfully sent to the robot, a 3-s timeout
was activated during which no further recognized commands would be transmitted.
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Fig. 4. Gesture recognition process. Each hand skeleton frame detected by the HoloLens 2 was streamed to the
PC as 3D coordinates of 26 joints and filled into a sliding window. A Support Vector Machine (SVM) gesture
classifier predicted gestures in the latest 90 frames (frame rate of approximately 30 Hz). These predictions
were processed by a majority voting and a confidence check to determine the current hand gesture, which
was sent as a valid gesture command only if it was a new (other than the fist/neutral) gesture and the timeout
was not activated.

2.7 Heads-Up Display Information

Once the participant had put on the HoloLens, a series of visual AR elements appeared to guide
the participant through each phase of the experiment (Figure 5). After the participant completed
the built-in HoloLens instructions and performed the eye-tracking calibration (Figure 5(a)), our
custom application was initialized. Initially, the first guidance panel and two buttons to start the
experiment or to exit the application were displayed (Figure 5(b)). Upon pressing the start button
(Figure 5(c)), the initial panel was replaced by the second panel and two switches, corresponding to
gesture and voice control (Figure 5(d)). This guidance panel instructed the participant to follow
the demonstration given by the experimenter (Figure 5(e)) and to toggle the appropriate switch to
proceed with the upcoming condition (Figure 5(f)).

Once a switch was toggled, the second guidance panel faded out (Figure 5(g)). A command
panel with the three available commands remained available (gesture commands: Figure 5(f); voice
commands: Figure 6). The command panel served as a memory aid for the participant, so that
they could always refer to the three possible commands. Upon recognition of a voice or gesture
command, a popup message (Walk Forward, Rotate Right, or Rotate Left) was displayed for 1.5s
(Figures 5(g) and 6). Additionally, the HoloLens emitted a beep tone approximately 3 s after the
command was recognized to indicate that the participant could issue the next command. The
execution of the robot’s movement lasted 3 s, commencing with the appearance of the popup
message and concluding approximately at the same time as the beep.

At the end of each trial, participants deactivated the gesture or voice control (Figure 5(i)), which
removed the command panel and activated a questionnaire panel along with a confirmation button
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i X

Fig. 5. HoloLens interfaces during various phases of the experiment under the Gesture Control-Standing
(GS) condition. (a) The participant pressed the eye-tracking calibration button. (b) After the calibration, the
participant saw the initial guidance panel with general instructions, along with “Start” and “Exit” buttons. (c)
The participant pressed “Start.” (d) A second guidance panel, informing the participant about a demonstration
from the experimenter and how to start a trial, was visible along with two switches for gesture and voice
control. (e) The participant was mimicking the experimenter’s demonstration of commands. (f) Toggling
gesture control made a command panel visible, while the second guidance panel was fading out. (g) A popup
message confirmed a successfully recognized gesture command. (h) The participant continued the trial. (i)
The participant toggled off the gesture control upon completion of the trial. (j) A post-trial questionnaire
panel and a “Done” button were shown. (k) The participant pressed “Done” to finalize the questionnaire. (I)
The questionnaire panel disappeared, and the second instruction panel was resumed.

(Figure 5(j)). Pressing the confirmation button (Figure 5(k)) closed the questionnaire panel and
restored the second instruction panel, preparing for the next condition (Figure 5(1)).

2.8 Dependent Measures

The collected data were used to examine participants’ performance and behaviors. These measures
were determined based on the stored command input data for Spot, the odometry of Spot (recorded
at a frequency of approximately 30 Hz), and the data from the participants’ HoloLens camera
position and orientation (recorded at a frequency of approximately 25Hz). For odometry, we used
the “odom” frame, an inertial frame that provides an estimate of Spot’s location in the world based
on Spot’s kinematics (the recorded data also contained a “vision” frame, which we did not use).
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Fig. 6. HoloLens 2 view for the Voice Control-Standing (VS) condition. The command panel can be seen, as
well as the popup window Walk Forward that indicates the latest recognized command.

In addition to evaluating participants’ performance and behaviors, we gathered their self-reported
opinions on two key aspects: (1) Spot’s command detection performance, i.e., whether participants
felt that the robot accurately interpreted their instructions (a technical issue related to speech or
gesture recognition), and (2) the intuitiveness of the mapping between the participants’ commands
and Spot’s movements (which reflects a psychological rather than technical issue). These two items
were chosen over existing usability scales, which were considered too generic for this context.

Below, we report all the dependent measures used:

(A)

(B)

©

Median inter-command time. This measure represents the median time between sequential
commands given to the robot. The median was chosen for its robustness against outliers
of individual commands, such as occasional long responses due to interruptions or slow
command detection.

Shorter inter-command times are indicative of better human-robot interaction. To provide
a benchmark, the minimum observed median inter-command time recorded among all 218
participants, including walking and rotating, was 3.3 s for the voice control conditions and
3.9 s for the gesture control conditions. These times represent performances achieved when
participants issued commands in an anticipatory manner, i.e., before the robot completed its
current maneuver.
Number of commands. This metric indicates the total number of robot commands issued in
one trial to complete the trajectory. The minimum number of commands required was 23, as
shown in Figure 2. Participants needed additional commands to correct any mistakes made
during the trial. The more commands issued, the poorer the performance of the human-robot
system.
Total distance walked. This was calculated from the x and y position coordinates of the
HoloLens camera. A moving median filter with a time interval of 1 s was applied to the co-
ordinates to remove the effect of high-frequency noise. The total distance covered by the
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participant is not a performance measure but an index of the participant’s style of behavior.
For the standing conditions, a distance close to 0 m is naturally expected. For the walking
conditions, it is relevant to assess how much participants walked as well as their orientation
relative to the robot (as expressed using Measure F).

(D) Command detection, from 1 (Strongly disagree) to 5 (Strongly agree). Response to the question:
“The robot properly picked up my control commands.” This measure was based on a post-trial
questionnaire (Figure 7).

(E) Mapping intuitiveness, from 1 (Strongly disagree) to 5 (Strongly agree). Response to the
question: “The mapping of my commands to the robot’s motion was intuitive”. This measure
was also based on the post-trial questionnaire.

(F) Participant-Spot alignment percentage. To determine the extent to which participants oriented
themselves in the same direction as Spot, we calculated the difference in bearing angle
between the HoloLens camera and Spot. We defined 0° as when the participant and Spot were
oriented in the same direction, 90° as Spot turned 90° to the right relative to the participant,
180° as Spot was oriented facing the participant, and 270° as Spot turned 90° to the left relative
to the participant. We then calculated the percentage of time during the trial that this angle
was between —45° (i.e., 315°) and +45°, as an index of the portion of time the human and robot
were oriented in approximately the same direction. Note that participants had little control
over this angle in the Voice Control-Standing (VS) and Gesture Control-Standing
(GS) conditions but had full control in the Voice Control-Walking (VW) and Gesture
Control-Walking (GW) conditions.

In addition to the above measures, we conducted a more specific performance analysis of the
command inputs made by the participants. For each of the 23 checkpoints, we tabulated whether
the participant gave an incorrect input, where we distinguished between duplicate commands,
left/right mistakes, and other types of mistakes. Further details on how these errors were counted
can be found in Appendix B.

(G) Number of duplicate command mistakes. These are occasions where a participant mistakenly
repeated the same command at a single checkpoint.

(H) Number of left/right mistakes. These are occasions where, at a checkpoint, the participant
should have provided a Rotate Left command but provided a Rotate Right command instead,
or vice versa.

(I) Number of other command mistakes. This category consists of cases in which a Walk Forward
command was provided where Rotate Left or Rotate Right was expected, and cases in which
Rotate Left or Rotate Right commands were provided where Walk Forward was expected.

Finally, a brief interview was conducted at the end of the experiment, where participants were
asked to identify their most and least favorite conditions of the four tested and to explain why. The
participants’ answers were manually extracted from the HoloLens audio recording. Subsequently,
we counted the number of participants per condition and determined the corresponding 95%
confidence intervals for the percentage of participants per category, as calculated based on a
binomial distribution.

Previous research indicates that Large Language Models (LLMs), provided that an appropriate
prompting strategy is used, are capable of content analysis or summarizing interview transcripts
[e.g., Friedman et al., 2024; Tabone and De Winter, 2023]. Therefore, we performed an LLM-based
analysis of the transcripts. Specifically, we transcribed all interviews using OpenAI’'s Whisper
Large-V3 [Radford et al., 2023]. Some interviews for which transcription failed were transcribed
manually. We then used OpenAI’s ChatGPT web interface [selected model: 01 pro mode; date:
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Post-Trial Questionnaire: S;

The robot properly picked up my control commands.

r

Strongly disagree Disagree Neither agree nor disagree
1
3

Agree Strongly agree
& 5

The mapping of my commands to the robot's motion was intuitive.

Strongly disagree Disagree Neither agree nor disagree Agree
1
3

2 Strongly agree

5

How do you feel at the moment?

Uneasiness Dizziness, warmth, headache,
(no typical  stomach awareness, sweating, ... Nausea
No problems symptoms) ~ Vague Slight ~Fairly Severe Slight Fairly Severe Retching Vomiting
0 1 2 3 4 5 6 7 8 9 10

Fig. 7. Post-trial questionnaire projected as an augmented reality overlay.

16 December 2024; OpenAl, 2024] to ask a number of questions to gain further insight into the
participants’ preferences. We chose this model because previous evaluations suggested that the
recent class of reasoning LLMs performs well in content analysis, i.e., tabulating after reflecting
on texts [De Winter et al.,, 2025]. One example prompt we used was: “What are the five main
reasons participants preferred voice control based on the transcripts? Provide concise one-liner state-
ments (max 140 characters) summarizing the reasons, avoiding direct quotes.”, followed by all the
transcripts.

Additionally, to evaluate the validity of the output generated by ChatGPT o1 pro mode, we
prompted the model to examine whether it could replicate the participant counts based on the
manual analysis of the participants’ most favorite condition.

2.9 Experimental Procedure

Upon arrival, participants were provided with a consent form. Participants also received a printout
with the task instructions, stating:
You will be asked to control the robot using four different control methods:

— Voice commands while standing

— Gesture commands while standing

— Voice commands while walking with the robot
— Gesture commands while walking with the robot

Your task is to instruct the robot to follow a designated trajectory and reach the end point as fast as
possible.

After signing the consent form, participants wore the HoloLens and performed the eye gaze
calibration provided by the HoloLens (Figure 5(a)). Next, the experimenter demonstrated the
voice or gesture commands that could be used in the upcoming trial (Figure 5(e)). In the voice
control conditions, the three voice commands were given verbally as the demonstration. In the
gesture control conditions, the experimenter used the right hand to demonstrate the three gestures
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corresponding to the robot commands and a neutral gesture, and instructed participants to use the
right hand for gesture commands as well and to return to the neutral gesture between commands.
Participants were informed that, during the trial, a panel (Figures 5(f) and 6) would display the
three voice or gesture commands. Depending on the experimental condition, the experimenter
asked the participant to either stay in the initial position during the trial or walk with Spot in any
way they preferred. Before the first trial, the experimenter explained that after a command was
given, a small overlay would confirm the receipt of this command by the software (Figures 5(g)
and 6). It was also stated that a beep tone, occurring a few seconds later, would indicate when the
next command could be given.

After the demonstration, the participants toggled the virtual button (“Voice” or “Gesture”) to
activate the corresponding control method and start the trial, marked by a beep tone. If the
participant remained stationary during a walking trial, the experimenter reminded them to walk.
During the trials, if a wrong command was given to the robot, the experimenter asked the participant
to use commands to reposition Spot back to the last correct robot pose before the mistake. After
completing a trial, the participants were asked to toggle the button off so that the post-trial
questionnaire was displayed in the HoloLens (Figure 7).

One trial was conducted in each condition for all participants. After completing all four conditions,
the participants were briefly interviewed about which of the four conditions they favored most and
least, and then asked to complete a post-experiment questionnaire using the Qualtrics platform
[Qualtrics, 2024] on a laptop, to collect general participant information.

2.10 Statistical Analyses

For each dependent measure, we calculated the mean and the 95% confidence interval for the mean,
assuming a normal distribution. These means and confidence intervals were plotted in a bar plot
with error bars. We also performed three paired-samples t-tests:

(1) VW vs. VS,

(2) GW vs. GS, and

(3) Voice Control-Walking and Standing (VW&S) vs. Gesture Control-Walking and
Standing (GW&S).

For the third comparison, the values for the standing and walking conditions were averaged
per participant. To account for multiple comparisons, we reduced the critical alpha value to
0.05/3~0.0167. Cohen’s d for independent samples was used to measure the effect size between the
two conditions.

The paired-samples t-test is based on the assumption that the differences between the paired
observations should be approximately normally distributed. The use of non-normally distributed
data or Likert-scale questionnaire items does not necessarily render the t-test unsuitable or require
switching to non-parametric tests like the Wilcoxon signed-rank test. The suitability of the t-test
depends on the degree to which assumptions are violated, and the associated Type I and Type II
error probabilities. Research suggests that t-tests are generally appropriate for five-point Likert
items [De Winter and Dodou, 2010].

In Appendix C, we substantiate the use of paired-samples t-tests by re-performing the statistical
analysis after a rank transformation [Conover and Iman, 1981; Iman et al., 1984]. Overall, the
resulting p-values and corresponding Cohen’s d effect sizes correspond to those obtained through
the original paired-samples t-test. Since a paired-samples t-test is simpler to report and the associated
means with confidence intervals are easier to visualize, we chose to use this method. Additionally,
Appendix D includes boxplots of several dependent variables to increase transparency regarding
the data distribution.
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Regarding the angular difference between Spot and the participant, we generated a polar density
plot to create a more complete picture of how the participant and Spot were oriented relative to
each other overall. This density plot was calculated per participant per condition and then averaged
over all participants.

3 Results
3.1 Trial Completion and Missing Data

All 218 participants each completed four trials, resulting in post-trial questionnaire data for all 872
trials. A recording of the post-experiment interview was unavailable for 1 out of 218 participants,
due to a HoloLens failure. Regarding the commands, data for one trial in the VW condition failed
to be saved, while for the Spot and HoloLens data, this occurred for 3, 1, 1, and 2 trials for the VW,
VS, GW, and GS conditions, respectively.

A total of 15 trials (VW: 7 trials, VS: 3 trials, GW: 4 trials, GS: 1 trial) experienced an interruption.
Reasons included a crash of the HoloLens app (3 trials), a software restart because the participant’s
commands were not recognized at all or recognized very slowly (2 trials), a loss of connection with
Spot (3 trials), accidental toggling of the experiment settings by the participant (1 trial), accidental
exiting of the experimenter software by the participant (1 trial) or by the experimenter (1 trial), or
experimenter intervention to place Spot back on its trajectory (4 trials). This latter intervention
occurred when Spot, using its obstacle avoidance mechanism, maintained a safe margin from the
participant or an object (e.g., fence, cupboard) after an incorrect command from the participant.
Because our interest was in the mistakes participants made, and because we used a robust measure
to gauge the speed at which commands were given (median inter-command time), the trials with
interruptions were retained in the analysis.

As part of the post-trial questionnaire, motion sickness was also monitored, using the MISC
scale [Bos et al., 2005; Figure 7]. Motion sickness scores on the scale of 0 to 10 were generally low
and similar between conditions, with means of 0.28, 0.32, 0.30, and 0.28 for the four respective
conditions.

3.2 Dependent Measure A: Median Inter-Command Time

Voice control averaged for the walking and standing conditions (VW&S) generally resulted in
shorter inter-command times than gesture control averaged for the walking and standing con-
ditions (GW&S). Specifically, the mean (SD) for VW&S was 5.50 s (0.60), while the mean (SD) for
GW&S was 5.96 s (0.58), t(216) = —11.38, p<0.001 (d = —0.78). There were no statistically significant
differences between VW and VS, or between GW and GS (see overlapping confidence intervals in
Figure 8(a)).

There are various reasons for the time difference between voice and gesture control, making the
median inter-command time of the two interfaces not directly comparable. The voice recognition
was technically more robust and faster than gesture recognition because the gesture recognition
requires the participant to hold a gesture for at least 2s within the view of the HoloLens. The
unfamiliarity of gesture control is another reason for such a difference. Some participants tended
to hold a gesture longer than necessary (i.e., while Spot was already moving), which delayed the
transition to the neutral (fist) gesture and to the next gesture (see Appendix E). Others forgot to
use the fist between consecutive Walk Forward commands (see Appendix F).

The maximum inter-command time was longer than 20s in 17, 8, 44, and 25 trials for the VW,
VS, GW, and GS conditions, respectively, which further indicates that hands or hand gestures were
detected less reliably for some participants, especially when walking.
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Fig. 8. Means and 95% confidence intervals for the dependent measures. VW, Voice Control-Walking; VS,
Voice Control-Standing; GW, Gesture Control-Walking; GS, Gesture Control-Standing.

3.3 Dependent Measure B: Number of Commands

With VW&S, participants sometimes repeated a command for clarity or because the robot did not
respond immediately, resulting in a double execution of the command, which the participant then
had to correct, typically by turning around and walking back. This can explain the greater number
of commands for VW&S compared to GW&S in Figure 8(b). The mean (SD) number of commands
for VW&S was 24.26 (1.81), while the mean (SD) for GW&S was 23.74 (1.41), #(216) = 3.15, p = 0.002
(d = 0.32).

3.4 Dependent Measure C: Total Distance Walked

The average walked distance in the VW and GW conditions was comparable (Figure 8(c)), with
means (SD) of 18.4m (7.0) and 17.7m (10.1), respectively, a nonsignificant difference, #(214) = 1.40,
p =0.163 (d = 0.07).

3.5 Dependent Measure D: Self-Reported Command Detection

VW&S received higher command detection ratings than GW&S, with a mean (SD) of 4.60 (0.54)
and 4.22 (0.59), respectively, a statistically significant difference, #(217) = 8.09, p<0.001 (d = 0.68).
Differences in command detection between walking and standing were not significant; VW vs. VS:
£(217) = 0.78, p = 0.434 (d = 0.06), GW vs. GS: (217) = —2.34, p = 0.020 (d = —0.19) (Figure 8(d)).

3.6 Dependent Measure E: Self-Reported Intuitiveness

Participants found standing still less intuitive than walking along with Spot (Figure 8(e)). Specifically,
the mean (SD) intuitiveness score for VW was 4.56 (0.63), while the mean (SD) for VS was 4.25
(0.74), t(217) = 6.03, p<0.001 (d = 0.45), and equivalently, the mean (SD) for GW was 4.37 (0.70),
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Fig. 9. Boxplot of the alignment percentage. The red square indicates the mean, the green horizontal line
represents the median, and the blue shape spans from the 25th to the 75th percentile. Each black marker
denotes an individual participant. VW, Voice Control-Walking; VS, Voice Control-Standing; GW, Gesture
Control-Walking; GS, Gesture control-Standing.

while the mean (SD) for GS was 3.96 (0.80), #(217) = 7.25, p<0.001 (d = 0.54). Additionally, VW&S
was rated more intuitive than GW&S, with means (SD) of 4.40 (0.57) and 4.17 (0.63), respectively,
£(217) = 5.02, p<0.001 (d = 0.40).

3.7 Dependent Measure F: Alignment Percentage

The mean (SD) percentage of all time samples in which the participant-Spot angular difference was
smaller than 45° was 41.9% (8.4) for VW and 29.1% (3.3) for VS (Figure 8(f)), a significant difference.
Similarly, the mean (SD) for GW was 46.8% (8.4), while the mean (SD) for GS was 29.6% (3.6).

It is noteworthy that the difference in alignment between VW (41.9%) and GW (46.8%) was
significant, #(214) = —7.38, p<0.001 (d = —0.58). Figure 9 provides a boxplot of the alignment
percentage, including markers representing individual participant values, with the aim of illustrating
the magnitude of the differences between conditions and the individual differences.

Note that the values for the standing conditions were mainly determined by the path Spot followed
and the time it spent at the various checkpoints. In the walking conditions, the participants had a
greater influence on the alignment percentage because they could determine their own position
relative to Spot.

Figure 10 shows the distribution of the bearing angle difference between Spot and the HoloLens
camera worn by the participant. It can be seen that in the walking conditions (VW, GW; black solid
lines), participants less frequently exhibited a large alignment deviation (90°, 180°, 270°) compared
to the standing conditions (VS, GS; pink dotted lines). In other words, compared to the standing
conditions, participants in the walking conditions more often followed Spot and less frequently
experienced a misalignment with it.
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Fig. 10. Polar density plot of the bearing angle difference between the participant and Spot. The bin size
equals 1°. (a): Voice control (VW: Voice Control-Walking, VS: Voice Control-Standing); (b): Gesture control
(GW: Gesture Control-Walking, GS: Gesture Control-Standing).

3.8 Dependent Measure G: Number of Duplicate Command Mistakes

As can be seen from Figure 11(a) and as pointed out above, there were more erroneous duplicate
commands for voice control than for gesture control: The mean (SD) for VW&S was 0.195 (0.308),
while the mean (SD) for GW&S was 0.090 (0.231), #(214) = 3.75, p<0.001 (d = 0.39).

Furthermore, duplicate commands were more frequent for GW (M = 0.152, SD = 0.397) than for
GS (M =0.032, SD = 0.177), t(215) = 4.27,p <0.001 (d = 0.39). In the GW condition, due to more body
and head movements, participants’ hands were more likely to move out of the frame/recognition
area for gesture recognition, resulting in more recognition errors than the GS condition. There was
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Fig. 11. Means and 95% confidence intervals for (a) the number of duplicate command mistakes, (b) left/right
reversal command mistakes, and (c) other types of command mistakes. VW, Voice Control-Walking; VS, Voice
Control-Standing; GW, Gesture Control-Walking; GS, Gesture Control-Standing.

no statistically significant difference in the number of erroneous duplicate commands between VW
(M =0.214, SD = 0.464) and VS (M = 0.180, SD = 0.408), £(214) = 0.88, p = 0.378 (d = 0.08).

3.9 Dependent Measure H: Number of Left/Right Command Mistakes

Figure 11(b) shows that participants more frequently confused left and right commands in the GS
condition (M = 0.213, SD = 0.474) compared to the GW condition (M = 0.032, SD = 0.202), a signif-
icant difference, #(215) = —5.30, p <0.001 (d = —0.50). Left/right mistakes for the GS condition were
particularly prevalent when participants were facing Spot after it had turned 180° (see Appendix F).

The difference in left-right reversals between VW (M = 0.116, SD = 0.321) and VS (M = 0.143,
SD = 0.444) was not significant, #(214) = —0.85, p = 0.397 (d = —0.07). Additionally, VW&S (M = 0.130,
SD =0.305) and GW&S (M = 0.123, SD = 0.264) did not differ significantly, #(214) = 0.26, p = 0.797
(d = 0.03).

3.10 Dependent Measure I: Number of Other Command Mistakes

Regarding the number of other command mistakes (Figure 11(c)), such as giving a Rotate Right
instead of a Walk Forward command, there were no significant differences between VW (M = 0.037,
SD =0.190) and VS (M = 0.046, SD = 0.210), #(214) = —0.50, p = 0.618 (d = —0.04). There was also
no significant difference between GW (M =0.014, SD = 0.117) and GS (M = 0.051, SD = 0.241),
£(215) = —2.16, p = 0.032 (d = —0.20).

3.11 Post-Experiment Interviews

The interviews were manually reviewed to determine each participant’s most and least favorite
condition. In some instances, participants did not express a preference or dislike for a single
condition. For example, they might have indicated a general preference for voice or gestures without
distinguishing between standing still or walking. The cases were labeled as “no differentiation.” If
no condition could be identified from the interview, it was labeled as “not mentioned.”

The results, shown in Table 2, indicate that VW was predominantly considered the most favorite
condition (53% of participants) and GS as the least favorite (47% of participants). Additionally, a
sizable proportion of respondents (23%) regarded GW as their most favorite condition. In total, voice
control was the favorite for 154 participants (71%), while gesture control was the favorite for 62
participants (29%), and 1 participant favored both voice and gestures as long as walking was possible.

We used ChatGPT o1 pro mode to ask several targeted questions about all 217 transcripts as a
whole, see Table 3. When inquiring why participants preferred voice control (Prompt 1), it was
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Table 2. Overview of How Often the Experimental Conditions Were Rated as
the Participants’ Most Favorite and Least Favorite

Most favorite Least favorite
Not mentioned 0 (0%, 0-2%) 9 (4%, 2-8%)
VW 116 (53%, 47-60%) 9 (4%, 2-8%)
Vs 28 (13%, 9-18%) 41 (19%, 14-25%)
VW or VS (no differentiation) 10 (5%, 2—8%) 5 (2%, 1-5%)
GW 49 (23%, 17-29%) 41 (19%, 14-25%)
GS 9 (4%, 2-8%) 103 (47%, 41-54%)
GW or GS (no differentiation) 4 (2%, 1-5%) 9 (4, 2-8%)
VW or GW (no differentiation) 1 (0%, 0-3%) 0 (0%, 0-2%)
Total 217 (100%) 217 (100%)

The first number in each cell represents the number of participants. Also shown in paren-
theses are the percentage of participants and the corresponding 95% confidence interval.
VW, Voice Control-Walking; VS, Voice Control-Standing; GW, Gesture Control-Walking;
GS, Gesture Control-Standing.

found that they considered it more intuitive and natural, less physically demanding, faster, more
accurate, and easier to use as it allows them to focus on the robot rather than their gestures.

Asking the same question about gestures (Prompt 2) revealed that participants found them to be a
natural and intuitive way of interaction, offering clarity through direct pointing, reducing frustration
by eliminating voice misinterpretation, increasing engagement through physical involvement, and
providing better spatial alignment with the robot’s orientation.

When inquiring about standing still versus walking (Prompt 3), it was consistent with our hy-
pothesis that mental rotation while standing still was deemed mentally demanding and confusing.
Walking alongside Spot was also considered more engaging. In line with Wickens’s results on ego-
centric and exocentric displays [Wickens and Prevett, 1995], standing still was seen as advantageous
for maintaining an overview of the trajectory and a fixed reference frame.

An inquiry about multitasking (Prompt 4) indicated that voice control enabled participants to
keep paying attention to the robot, whereas with gesture control, participants tended to direct their
attention to their hand as well, leading to distributed attention.

To verify the validity of the responses provided by ChatGPT o1 pro mode, we repeated the manual
analysis regarding the most favored condition as reported in Table 2 using a prompt (Prompt 5). The
prompt and its output are presented in Table 3 and show reasonable agreement with the manual
analysis. Specifically, the number of participants per category as reported by ChatGPT o1 pro mode,
with the human counts in parentheses, is as follows: Not mentioned 2 (0), VW 123 (116), VS 30
(28), VW or VS (no differentiation) 10 (10), GW 30 (49), GS 5 (9), GW or GS (no differentiation)
10 (4), and VW or GW (no differentiation) 7 (1). While this does not represent perfect agreement,
there is strong similarity (r = 0.98) between the two vectors of counts, leading us to conclude that
the output of ChatGPT o1 pro mode is sufficiently valid. It should also be noted that the task was
occasionally challenging for the human annotator because participants sometimes used ambiguous
wording. Also, in some cases, participants provided incomplete information, such as “I preferred
the first condition” This required the human annotator to look up which condition this referred to,
information that ChatGPT did not have access to.

4 Discussion

This study aimed to compare two different control methods: voice control and hand gesture control.
Additionally, this study examined the difference between walking with the robot and standing
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Table 3. Prompts Given to ChatGPT o1 Pro Mode and the Corresponding Output

Prompt 1:

What are the five main reasons participants preferred voice control based on the transcripts? Provide
concise one-liner statements (max 14@ characters) summarizing the reasons, avoiding direct quotes.
ChatGPT o1 pro mode:

1. Less arm strain: speaking requires no awkward or tiring hand positions.

2. More natural control: verbal instructions feel simpler and more intuitive.

3. Faster response: voice commands register and execute more quickly.

4. Easier orientation: saying “left” or “right” is simpler than rethinking directions.

5. Reduced confusion: clear spoken commands minimize guesswork and errors.

Prompt 2:

What are the five main reasons participants preferred gesture control based on the transcripts?
Provide concise one-liner statements (max 140 characters) summarizing the reasons, avoiding direct
quotes.

ChatGPT o1 pro mode:

1. Gestures felt more natural and intuitive than speaking commands.

. Pointing directly made directions clearer without mental translation.

. No voice misinterpretation reduced delays and frustration.

. Physical interaction provided a more engaging, hands-on control experience.

. Continuous hand guidance offered better spatial alignment with the robot’s orientation.

Prompt 3:

What are the five main advantages and five main disadvantages of standing still based on the
transcripts? Summarize using concise one-liner statements (max 140 characters), avoiding direct
quotes.

ChatGPT o1 pro mode:

Five Advantages of Standing Still:

. Provides a clear, stable vantage point for planning movements.

. Reduces physical strain compared to walking alongside the robot.

. Minimizes the need to constantly reorient your perspective.

. Allows you to think ahead without changing your own position.

. Offers a consistent reference frame for issuing commands.

(S N PVRN N}

g wN =

Five Disadvantages of Standing Still:

1. Increases confusion in determining correct left or right turns.

2. Requires extra mental effort to adapt to the robot’s orientation.

3. Feels less natural and more forced than walking with the robot.

4. Less engaging, reducing the sense of interaction and presence.

5. Slows down decision-making due to complex spatial reasoning.

Prompt 4:

What was mentioned about multitasking based on the transcripts? Summarize the key points using concise
one-liner statements (max 140 characters), avoiding direct quotes.

ChatGPT o1 pro mode:

1. Walking while giving voice commands felt intuitive, reducing mental juggling between actions.

. Standing still required mentally flipping perspectives, increasing cognitive load.

. Holding hand gestures steadily added effort, straining both focus and comfort.

. Voice commands freed attention from hand position, easing multitasking demands.

. Coordinating movement, orientation, and commands simultaneously felt more complex with gestures.
Prompt 5:

Based on the following transcripts, how many of the 217 participants:

— Do not mention any favorite condition,

— Find *Voice Control Walkingx their favorite,

— Find *Voice Control Standingx their favorite,

— Find *Voice Controlx their favorite, with the participant not distinguishing between walking and
standing,

— Find *Gesture Control Walking* their favorite,

— Find *Gesture Control Standing* their favorite,

— Find *Gesture Controlx their favorite, with the participant not distinguishing between walking and
standing,

— Find *Walking* their favorite, with the participant not distinguishing between voice control and
gesture control. ?

oA W N

(Continued)
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Table 3. Continued

Allocate each participant only once to a category. Only give the total counts per category. Do not
refuse this task; if you are not absolutely sure, make an estimate.

ChatGPT o1 pro mode:

Below is an approximate distribution based on the given transcripts and the instruction to make an
estimate if not absolutely sure:

Do not mention any favorite condition: 2

Find Voice Control Walking their favorite: 123

Find Voice Control Standing their favorite: 30

Find Voice Control their favorite (no distinction between walking/standing): 10
Find Gesture Control Walking their favorite: 30

Find Gesture Control Standing their favorite: 5

Find Gesture Control their favorite (no distinction between walking/standing): 10
Find Walking their favorite (no distinction between voice/gesture): 7

Each of the four prompts was provided together with all 217 transcripts.

in one place, hypothesizing that the former would result in fewer mistakes than the latter. A
maneuver-based control approach was used where the voice and gesture commands were mapped
to discrete robot maneuvers: rotate left, rotate right, and walk forward.

4.1 Effects of Voice Control versus Gesture Control

Voice and gesture control operate on fundamentally different recognition principles (speech recog-
nition vs. image recognition), which makes direct comparisons challenging. In our study, these
differences affected robustness in various ways: certain hand shapes were more difficult to track,
some voice accents were harder to recognize, and background noise (e.g., lab activities, the robot’s
cooling fan, and stepping motion) complicated voice detection [as also discussed in Halder et al.,
2024]. For this reason, our post-trial questionnaire distinguished between the system’s ability to
detect commands and the intuitiveness of the commands.

Overall, most participants (71%) preferred voice control. Technically, voice commands were easier
to recognize and took less time to execute than gestures, which had to be held until recognized.
Meanwhile, the voice commands, as in similar research [Abich and Barber, 2017; Chivarov et al.,
2019], were common English words that participants pronounced with ease. Some participants also
struggled to keep their hand within the HoloLens gesture frame.

Although the participants in our study were relatively young and therefore likely more physically
adept than older individuals [see a gesture-control study among older and disabled persons by
Chivarov et al., 2019], some participants experienced fatigue when using gestures. Voice commands
were deemed more intuitive and less fatiguing, which is consistent with previous research [e.g.,
Hansberger et al., 2017], whereas the Rotate Right gesture tended to cause wrist strain. Additionally,
many participants unnecessarily prolonged their gestures, possibly due to a perceived visual link
between their hand movement and the robot’s actions. Others forgot to neutralize their gesture
(make a fist) between consecutive commands, which indicates a need for clearer instructions and
more intuitive gesture designs.

Despite these challenges, 29% of participants favored gesture control. They found it engaging
and felt it more naturally conveyed movement directions to the robot. By contrast, the speed and
responsiveness of voice recognition allowed for “queued” commands, an advantage that also led
to mistakes when participants unintentionally repeated a command. The second command would
activate immediately after the first, sometimes sending the robot off-course and requiring further
corrections. For some, the risk of compounding errors outweighed the convenience of voice control,
which made gesture control more appealing.
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4.2 Effects of Participant Mobility (Walking vs. Standing)

Our hypothesis was that controlling the robot would be more intuitive for participants when
walking with it. Consistent with our hypothesis and recent literature on cognitive offloading
when controlling Spot [Chacén Quesada and Demiris, 2024], stimulus—response incompatibility
due to spatial misalignment was particularly problematic in the GS condition. The GS condition
received the lowest mean intuitiveness rating (Figure 8(e)) and had a larger number of left-right
confusions compared to the GW condition (Figure 11(b)). The large number of left-right confu-
sions in the GS condition can potentially be explained by the close link between mental simula-
tions of actions and gestures [e.g., Hostetter and Alibali, 2019; Popescu and Wexler, 2012; Segal
et al., 2014].

The post-experiment interview results and the human-robot alignment percentages (Figure 8(f))
suggest that walking alongside Spot was overall appreciated because it allowed participants to align
themselves with the robot, preventing issues of stimulus-response incompatibility. The alignment
analysis also revealed that participants were more likely to align themselves with Spot when using
gesture control compared to voice control. This could be because the “embodied” nature of gesture
control felt particularly counterintuitive when being misaligned with the robot.

However, some participants indicated that walking alongside Spot made it harder for them to men-
tally plan the trajectory due to the changing ego-orientation. The current experiment was conducted
on a relatively simple circuitous course. The findings still need to be validated in more complex
teleoperation scenarios that demand a high level of spatial awareness from the human operator.

4.3 Limitations

Although our research provides important insights into the human factors of mobile robot control,
the current gesture control method may not have reached its full potential. We used a 2.1-s sliding
window for gesture recognition, with the aim of keeping gesture commands on par with voice
commands. However, participants often spoke voice commands more quickly than expected (see
Appendix E). Further complicating matters, the 3-s timeout in the gesture control conditions may
have hindered optimal performance, as indicated by 1.8% of voice commands occurring within
intervals shorter than 3 s. These observations suggest that more thorough instructions, additional
training on gesture performance, and refined gesture recognition models (or simply adjusting the
sliding window) could yield a fairer comparison between gesture and voice control. Additionally,
an improved HMI that more quickly and clearly indicates when a voice or gesture command is
detected, as well as better transparency regarding command queuing, is necessary to fully realize
the potential of touchless control of mobile robots.

In the current study, only three commands were used. Determining the optimal number of
commands requires further research and is contingent upon the number of subtasks the robot must
autonomously perform. Previous research on drone control using speech and gestures showed that
task execution took longer compared to conventional joysticks, likely due to the extensive number
of commands and the variety of gestures involved [Herrmann and Schmidt, 2018]. Moreover, an
increased number of commands increases the risk of misclassifications; in our study, we observed a
small number of unintended activations (7 out of 10,550 commands, or 0.07% in the voice conditions)
of a hidden “Walk Backward” command, which was designed only for the experimenters to move
the robot backward.

The present study was conducted among MSc students at a technical university. It is plausible
that these students possess a relatively high capacity to comprehend the mechanisms of robot
control and AR, as well as being proficient in information-processing and mental rotation tasks.
Consequently, it must be acknowledged that the number of errors is likely to be larger in a sample
that is more representative of the general population.
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5 Conclusion

This study compared voice control with gesture control, two relatively novel forms of touchless
control for a mobile robot, while specifically examining how users’ mobility, whether stationary or
walking, impacted their performance and perceived intuitiveness. While the final word has not
yet been said on this topic, the current study has provided valuable insights. The results showed
that voice control is preferred over gesture control and that walking alongside the robot is favored
over a more exocentric viewpoint of standing in one location. Gesture control while standing still
was regarded as particularly incompatible with human intuition and caused greater confusion for
left/right commands.

For future research, gesture control can be improved with less physically demanding gestures,
improved detection, and by specifying position targets instead of directions. For example, with the
HoloLens, users should be able to point to targets in the environment in a laser-like manner [Chu
and Weng, 2024; also called “Hand ray,” see Microsoft, 2024b], which can decrease the number of
required commands and alleviate physical fatigue [Ro et al., 2019]. Gesture control may also be
advantageous in situations where silence or privacy is important, or when other people should
not be disturbed [e.g., Sun et al., 2018]. Simultaneously, voice control will be necessary when the
human’s hands are not free, such as when objects need to be lifted.
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Appendices
A Training the Gesture Classifier

To train the gesture classifier, a researcher wearing the HoloLens 2 demonstrated each of the four
right-hand gestures. He kept his head stationary and held the gestures in front of him. To add
variety in the dataset, the hand moved horizontally at different heights, with fingers continuously
bending and extending within a specific range. The hand movement limits were approximately
25cm left and right from the middle camera of the HoloLens, with the upper limit at the same
height as the HoloLens and the lower limit extending down to about 40 cm. The hand reached as
far as 45 cm away from and as close as 20 cm to the camera. These limits were inside the gesture
frame of the HoloLens.

Although each gesture was demonstrated for 60s at 60 Hz (expected 14,400 frames), occasional
frame loss occurred, resulting in 14,021 samples in total for the four gestures. The gesture data,
including demos of three gesture commands (Walk Forward, Rotate Left, Rotate Right) and one
gesture (fist) for the neutral hand pose, made up the dataset for training and testing the gesture
classifier. Each sample consisted of a set of joints on the extracted hand skeleton.

The collected dataset was preprocessed using MinMaxScaler and StandardScaler from the Python
scikit-learn package [Pedregosa et al., 2011] to normalize the data. The data were then split into a
training set and a test set in a 70:30 ratio. The training set was fed into an SVM with a linear kernel,
chosen for its effectiveness with a small number of classes (in our case, four gestures). With our
dataset and preprocessing, the SVM-based gesture classifier achieved an overall accuracy of 99% on
the test set.

The trained gesture classifier could run at a maximum of 60 Hz on our PC with the offline hand
skeleton data. However, during the experiment, due to computational and communication overhead
between devices, its frequency dropped to approximately 30 Hz.
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B Detecting Command Mistakes

The logged data for each trial contained the commands participants gave to the robot, either
through gestures or speech. Each entry included a command and its corresponding timestamp.
The minimum 23 commands required to complete the task resulted in 23 unique corresponding
robot poses in (x, y, orientation). By using these 23 correct robot poses and their corresponding
commands at each checkpoint, incorrect commands and extra commands given by participants to
correct Spot’s position after a mistake were detected. These were then analyzed to identify specific
types of human mistakes.

For each trial, the initial robot pose was set to (0, 0, 0), and the robot’s poses after each command
were computed sequentially. Then, the robot poses were compared with the reference poses one
by one to determine if they were correct. If they did not match, the first incorrect command was
marked as a human mistake, while the subsequent commands needed to return the robot to the
correct position were not counted as additional mistakes. The comparison resumed at the next
matching robot pose between the participant’s command sequence and the reference sequence,
skipping any intermediate corrective poses.

Table B1. The Reference Command List (Left Table) and the Command List of Participant 10 in the VW
Condition (Right Table)

Pose Pose .
Step | Command (x, y, orientation) Step | Command (x, y, orientation) Mistake
1 Walk Forward | [1, 0, 0] 1 Walk Forward [1,0,0] no
2 Rotate Right [1,0,3] 2 Rotate Right [1,0,3] no
3 Walk Forward | [1, -1, 3] 3 Walk Forward | [1, -1, 3] no
4 Rotate Left [1, -1, 0] 4 Rotate Left [1,-1,0] no
5 Walk Forward | [2, —1, 0] 5 Walk Forward [2,-1,0] no
6 Walk Forward | [3, -1, 0] 6 Walk Forward [3,-1,0] no
7 Rotate Left [3,-1,1] 7 Walk Forward | [4, -1, 0] yes
8 Walk Forward | [3,0, 1] 8 Rotate Left [4,-1,1] no
9 Rotate Left [3,0,2] 9 Walk Forward | [4,0, 1] no
10 Walk Forward | [2, 0, 2] 10 Rotate Left [4,0, 2] no
11 Rotate Right [2,0,1] 11 Walk Forward | [3, 0, 2] no
12 Walk Forward | [2, 1, 1] 12 Walk Forward | [2, 0, 2] no
13 Rotate Right [2,1,0] 13 Rotate Right [2,0,1] no
14 Walk Forward | [3, 1, 0] 14 Walk Forward [2,1,1] no
15 Rotate Left [3,1,1] 15 Rotate Right [2,1,0] no
16 Walk Forward | [3, 2, 1] 16 Walk Forward | [3, 1, 0] no
17 Rotate Left [3,2,2] 17 Rotate Left [3,1,1] no
18 Walk Forward | [2, 2, 2] 18 Walk Forward [3,2,1] no
19 Walk Forward | [1, 2, 2] 19 Rotate Left [3,2,2] no
20 Rotate Left [1,2,3] 20 Walk Forward | [2, 2, 2] no
21 Walk Forward | [1, 1, 3] 21 Walk Forward [1,2,2] no
22 Rotate Right [1,1,2] 22 Rotate Left [1,2,3] no
23 Walk Forward | [0, 1, 2] 23 Walk Forward [1,1, 3] no
24 Rotate Right [1,1,2] no
25 Walk Forward [0, 1, 2] no

The underlined row in the right table indicates a duplicate command mistake (Walk Forward followed by Walk Forward).
The boldfaced row in the right table indicates Spot’s first aligned pose achieved through different commands than those
in the correct command list (left table), due to the participant not correcting the robot’s position after making a previous
command mistake.
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When a mistake happened, sometimes the participant did not reposition the robot to the pose
before the mistake (e.g., steps 7-10 in Table B1, right). In these cases, correct robot poses in the
reference command list were skipped in order to continue the comparison and mistake detection.

The detected mistakes were classified into one of three classes: (1) duplicated command mistakes,
(2) left/right command mistakes, and (3) other command mistakes. A mistake was marked as a
duplicate if the incorrect command was the same as the immediately preceding correct command
(i-e., issuing the same command twice unnecessarily). Left/right mistakes occurred when the
participant issued a rotation command opposite to the rotation required. The rest were marked as
other mistakes.

C Full Statistical Results

This appendix provides the means and SD of all dependent measures. Additionally, the correlation
matrix is presented for the scores of the four conditions, along with the results of paired-samples
t-tests.

Additionally, the data were transformed into ranks using the RT-1 procedure as described by
Conover and Iman [1981]. Specifically, the 218 X 4 matrix of scores was transformed into a rank-
order variable ranging from 1 to 872 (or a smaller number in case of missing data). In cases of tied
scores, the mean of the ranks was used.

Below, the corresponding means and SD of the ranks, as well as the results of paired-samples
t-tests on the ranks, are provided. According to Monte Carlo simulations by Iman et al. [1984],
this rank-based t-test is a statistically powerful test in the case of skewed distributions. It can be
observed that the p-values and Cohen’s d effect sizes are roughly comparable to those of the regular
paired-samples t-test. This supports the justification for using the paired-samples t-test in our article.

MEDIAN INTER-COMMAND TIME (s)

VW VS GW GS
Sample size: 217 218 218 218
Mean: 5.50 5.50 5.96 5.95
SD: 0.64 0.62 0.75 0.54
Mean rank: 325.60 319.79 539.19 558.90
SD of rank 225.84 215.71 234.27 223.48

Pearson product-moment correlation matrix
VW VS GW GS
VW 1.00 0.79 0.42 0.29
VS 0.79 1.00 0.50 0.45
GW 0.42 0.50 1.00 0.59
GS 0.29 0.45 0.59 1.00
Spearman rank-order correlation matrix
VW VS GW GS

VW 1.00 0.79 0.39 0.37
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GW 0.39 0.47 1.00 0.72

GS 0.37 0.50 0.72 1.00

Normal: VW&S vs. GW&S, t(216) =-11.38, p = 8.03e-24
Rank: VW&S vs. GW&S, t(216) =-15.11, p = 1.08e-35
Normal: VW vs. VS , t(21l6) = -0.10, p = 9.24e-01
Rank: VW vs. VS , t(216) = 0.54, p = 5.89%e-01
Normal: GW vs. GS , t(217) = 0.31, p = 7.60e-01
Rank: GW vs. GS , t(217) = -1.70, p = 9.00e-02
NUMBER OF COMMANDS

VW VS
Sample size: 217 218
Mean: 24.21 24.30
SD: 2.22 2.61 1.90 1.
Mean rank: 459.98 454.79
SD of rank 205.50 205.25 168.79 180.

Pearson product-moment correlation matrix

VW VS GW GS

VW 1.00 0.11 -0.11 0.01

VS 0.11 1.00 -0.07 -0.04

GwWw -0.11 -0.07 1.00 0.18

GS 0.01 -0.04 0.18 1.00
Spearman rank-order correlation matrix

VW VS GW GS

VW 1.00 0.10 -0.11 0.06

VS 0.10 1.00 -0.02 0.04

GWw -0.11 -0.02 1.00 0.10

GS 0.06 0.04 0.10 1.00
Normal: VW&S vs. GW&S, t(216) = 3.15,
Rank: VW&S vs. GW&S, t(216) = 3.12,
Normal: VW vs. VS , t(2le6) = -0.44,
Rank: VW vs. VS , t(2le) = 0.25,
Normal: GW vs. GS , t(217) = -0.43,
Rank: GW vs. GS , t(217) = -1.54,

TOTAL DISTANCE WALKED (m)

p = 1.88e-03
p = 2.08e-03
p = 6.60e-01
p = 8.06e-01
p = 6.65e-01

p = 1.26e-01

76

4

19

GW

23.71

02.53

.78) .
.09).
.01) .
.03) .
.02) .

.09) .

GS

218

23.78

426.81
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Sample size:

Mean:

SD: 7.0 0.
Mean rank:
SD of rank 124.2 132.

Pearson product-moment correlat

VW VS GW

VW 1.00 0.09 0.62 -0.

Vs 0.09 1.00 0.02 0.

GW 0.62 0.02 1.00 -0.

GS -0.03 0.37
Spearman rank-order correlation

VW VS GW

VW 1.00 0.09 0.64 -0.

vs 0.09 1.00 0.07 0.

GW 0.64 0.07 1.00 0.

GS -0.02 0.46 0.00 1.

Normal: VW vs. GW , t(214) =
Rank: VW vs. GW , t(214) =

COMMAND DETECTION (1-5)

Sample size:

Mean:

SD: 0.61 0.6
Mean rank:
SD of rank 203.04 212.3

Pearson product-moment correlat

VW VS GW

VW 1.00 0.42 0.16 0.

VS 0.42 1.00 0.26 0.

GW 0.16 0.26 1.00 0

GS 0.07 0.14 0.29 1.

Spearman rank-order correlation

-0.05 1.

VW Vs GW GS
215 217 217 216
18.4 1.4 17.7 1.4
9 10.1 0.6
662.0 211.7 637.1 222.4
7 124.6 117.2

ion matrix

GS
03
37
05
00
matrix
GS
02
46
00
00
1.40, p = 1.63e-01 (d = 0.07).
3.66, p = 3.22e-04 (d = 0.20).
VW VS GW GS
218 218 218 218
4.62 4.58 4.15 4.29
7 0.77 0.68
507.07 498.67 353.19 387.07
1 226.13 218.60

ion matrix

GS

07

14

.29

00

matrix
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Vi Vs GW GS
VW 1.00 0.43 0.19 0.11
Vs 0.43 1.00 0.24 0.11
GW 0.19 0.24 1.00 0.32

GS 0.11 0.11 0.32 1.00

Normal: VW&S vs. GW&S, t(217) = 8.09, p = 4.33e-14 (d = O
Rank: VW&S vs. GW&S, t(217) = 8.89, p = 2.41le-16 (d = O
Normal: VW vs. VS , t(217) = 0.78, p = 4.34e-01 (d = O
Rank: VW vs. VS , t(217) = 0.56, p = 5.74e-01 (d = O
Normal: GW vs. GS , t(217) = -2.34, p = 2.03e-02 (d = -0.
Rank: GW vs. GS , t(217) = -1.94, p = 5.33e-02 (d = -0.
INTUITIVENESS (1-5)
VW VS GW
Sample size: 218 218 218
Mean: 4.56 4.25 4.37
SD: 0.63 0.74 0.70 0.80
Mean rank: 525.04 422.70 460.15
SD of rank 208.21 224.93 224.37 223.27
Pearson product-moment correlation matrix
VW VS GW GS

VW 1.00 0.38 0.19 0.19

Vs 0.38 1.00 0.08 0.40

GW 0.19 0.08 1.00 0.40

GS 0.19 0.40 0.40 1.00
Spearman rank-order correlation matrix

VW VS GW GS

VW 1.00 0.45 0.23 0.21

VS 0.45 1.00 0.14 0.39

GW 0.23 0.14 1.00 0.41

GS 0.21 0.39 0.41 1.00
Normal: VW&S vs. GW&S, t(217) = 5.02, p = 1.05e-06 (d = O
Rank: VW&S vs. GW&S, t(217) = 5.17, p = 5.22e-07 (d = O
Normal: VW vs. VS , t(217) = 6.03, p = 7.16e-09 (d = O
Rank: VW vs. VS , t(217) = 6.58, p = 3.57e-10 (d = O
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Normal: GW vs. GS , t(217) = 7.25, p = 7.05e-12 (d = 0.54).
Rank: GW vs. GS , t(217) = 7.41, p = 2.71le-12 (d = 0.55).
ALIGNMENT PERCENTAGE

VW Vs GW GS
Sample size: 215 217 217 216
Mean: 41.9 29.1 46.8 29.6
SD: 8.4 3.3 8.4 3.6
Mean rank: 575.8 243.5 667.4 245.8
SD of rank 187.9 130.3 166.8 153.1

Pearson product-moment correlation matrix

VW VS GW GS

VW 1.

vs -0.

GW 0.

GS -0.

00 -0.07 0.37 -0.10
07 1.00 -0.02 -0.03
37 -0.02 1.00 0.03

10 -0.03 0.03 1.00

Spearman rank-order correlation matrix

VW VS GW GS
VW 1.00 -0.05 0.35 -0.13
vsS -0.05 1.00 -0.02 0.00
GW 0.35 -0.02 1.00 0.02
GS -0.13 0.00 0.02 1.00
Normal: VW vs. GW , t(214) = -7.38, p = 3.36e-12 (d = -0.58).
Rank: VW vs. GW , t(214) = -6.47, p = 6.40e-10 (d = -0.52).
SICKNESS (0-10)
VW VS GW GS
Sample size: 218 218 218 218
Mean: 0.28 0.32 0.30 0.28
SD: 0.73 0.82 0.77 0.60
Mean rank: 432.64 434.83 436.92 441.61
SD of rank 169.35 173.95 173.15 174.88

Pearson product-moment correlation matrix

VW VS GW GS
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GW

GS

0.58

0.53

.66

0.73

Spearman rank-order correlation matrix
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Normal:

Rank:

Normal:

Rank:

Normal:

Rank:

NUMBER

Sample
Mean:

SD:

VW

1.00

VW&S vs.

VW&S vs.

VW vSs.

VW vs.

GW vS.

GW vS.

OF DUPLICATE

size:

Mean rank:

SD of rank

Pearson product-moment correlation matrix

VW

VS
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Spearman rank-order correlation

VW
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Normal:
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Rank:

Normal:

Rank:

Normal:

Rank:

VW&S vs.
VW vs.
VW vSs.
GW vs.
GW vs.

NUMBER OF LEFT/RIGHT

Sample size:

Mean:

SD:

Mean rank:

SD of rank

Pearson product-moment correlation matrix

VW

)

GW

GS

Spearman rank-order correlation matrix

VS

GW
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Normal:

Rank:

Normal:
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Normal:

Rank:

VW

VW

VW&S vs.

VW&S vs.

VW

VW

GW
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vS.
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vSs.

NUMBER OF OTHER

Sample size:

Mean:
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VS

GWs&S, t(214) = 3.85,
VS , t(214) = 0.88,
VS , t(214) = 0.66,
GS , t(215) = 4.27,
GS , t(215) = 4.34,

COMMAND MISTAKES

VW

215

0.116
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GW GS

0.01 0.08
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SD:

Mean rank:

SD of rank

0.190

81.957

Pearson product-moment correlation matrix

VW

VS

GW

GS

-0.02

-0.04

-0.

-0.

VS

.07

.00

03

05

Spearman rank-order correlation
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Rank:

Normal:

Rank:

Normal:

Rank:

GW

GW

vs.

vsS.

)

.07

.00

.03

.05

GWsS,

GWsS,

)

)

GS

GS

’

’

’

’

0.210 0.117 0.241
433.574 437.408 423.472
90.785 50.559 91.317
GW GS
-0.02 -0.04
-0.03 -0.05
1.00 0.14
0.14 1.00
matrix
GW GS
-0.02 -0.04
-0.03 -0.05
1.00 0.16
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D Boxplots of Selected Dependent Measures

12

Median inter-command time (s)

vw VS GW GS

Fig. D1. Boxplot of the median inter-command time. The red square indicates the mean, the green horizontal
line represents the median, and the blue shape spans from the 25th to the 75th percentile. Each black marker
denotes an individual participant. VW, Voice Control-Walking; VS, Voice Control-Standing; GW, Gesture
Control-Walking; GS, Gesture Control-Standing.
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Fig. D2. Boxplot of the number of commands. The red square indicates the mean, the green horizontal line
represents the median, and the blue shape spans from the 25th to the 75th percentile. Each black marker
denotes an individual participant. VW, Voice Control-Walking; VS, Voice Control-Standing; GW, Gesture
Control-Walking; GS, Gesture Control-Standing.
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Fig. D3. Boxplot of the total distance walked. The red square indicates the mean, the green horizontal line
represents the median, and the blue shape spans from the 25th to the 75th percentile. Each black marker
denotes an individual participant. VW, Voice Control-Walking; VS, Voice Control-Standing; GW, Gesture
Control-Walking; GS, Gesture Control-Standing.
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E Timeline of Voice and Gesture Interface

Beep 2 . L

Say Rotate Left

Recognition 2 -

Beep 1 . L

Say Walk Forward -

Recognition 1 r

I T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (ms)

[BmBeep ERRecognition MARobot Execution MlSpeech|

Fig. E1. Timeline analysis of a participant with typical performance in the voice conditions. The participant
uttered a voice command (taking approximately 600 ms), which was recognized in approximately 900 ms,
waited for the robot to finish the command execution, heard the beep, and then gave the next command.

Beep 2 . -

Gesture 2 to Fist —| _
Robot Execution 2 | _ L
Fist to Gesture 2 - . L
Recognition 2 o _ L
Not sending command —| _ L

Beep 1 .

Gesture 1 to Fist - L
Robot Execution 1 —| _ L

Fist to Gesture 1 -

Recognition 1 -

T T T T T
0 2000 4000 6000 8000 10000 12000
Time (ms)

ElIBeep ERecognition MARobot Execution MMHand Movement Il Timeout]

Fig. E2. Timeline analysis of a participant with typical performance in the gesture conditions. The participant
first changed the hand from a fist to a gesture. After a valid gesture command was recognized (in around
2,200 ms), the robot executed this command, and a 3-s timeout was activated, preventing the transmission of
additional recognized gestures during this period. The participant held the gesture until the robot completed
its execution, transitioned to the fist (neutral) gesture, and changed to the next gesture after the beep. It
can be noticed that the participant held the gesture longer than necessary (i.e., while the robot was already
moving, and in the first case, almost until the robot had completed its movement toward the next checkpoint).
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F Mistakes and Command Times per Checkpoint
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Checkpoint

Fig. F1. Percentage of participants who made a left/right mistake, for each of the 23 checkpoints (see
Appendix B). Light gray backgrounds represent checkpoints where the correct command was Walk Forward.
Light green backgrounds (Checkpoints 11 and 20) indicate checkpoints where the correct command was
Rotate Left or Rotate Right, and Spot was rotated 180° with respect to its initial orientation. It can be observed
that the GS condition resulted in a large number of mistakes when Spot was facing the participants during
Checkpoints 11 and 20. VW and VS conditions led to a large number of left/right mistakes at Checkpoint 2,
possibly due to a misunderstanding of the task and reliance on the command panel (Figure 5).
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Fig. F2. Trimmed mean of the time since the previous command, for each of the 23 checkpoints. For each
data point, only correct commands were considered, and the fastest 5% and slowest 5% of values have been
removed to provide a more robust estimate. Light gray backgrounds represent checkpoints where the correct
command was Walk Forward. Light green backgrounds (Checkpoints 11 and 20) indicate checkpoints where
the correct command was Rotate Left or Rotate Right, and Spot was rotated 180° with respect to its initial
orientation. It can be observed that participants in the GW and GS conditions experienced difficulty with
double Walk Forward commands.
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