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Abstract 
Sandy soils are characterized by negligible cohesion (compared to clay) and limited drainage capacity 

(compared to gravel), which makes these soils susceptible to excess pore (water) pressure accumulation 

induced by short term dynamic loading cycles. Pile driving subjects the soil to such type of dynamic 

loading. Accumulation of excess pore water pressure continuous until contact between the sand 

particles is lost, a process known as soil liquefaction. 

This research investigates two soil configurations which are vulnerable to pore pressure accumulation 

and subsequent liquefaction induced by pile driving: slopes and confined aquifers.  Slopes are vulnerable 

because of their geometry. Limited accumulation of excess pore pressures might be sufficient to induce 

sliding failure. Confined aquifers are vulnerable because of the lack of drainage boundaries. This can 

result in significant excess pore pressure accumulation in the aquifer.  

Pile driving induced liquefaction instability is modelled by considering the pile-soil-plug interaction, the 

emission, propagation and attenuation of waves into the soil domain and the resulting generation of 

excess pore pressures. Two models are developed for this purpose.  

The first is an cylindrically symmetric damped elastic pile-soil-plug model. This model calculates the 

vertical and radial displacements in the soil domain as a function of space and time. Shear stresses, 

which are the driving parameter for the second model,  are then calculated as a function of the spatial 

derivatives of the two displacement components. 

The second (liquefaction) model is a combination of the governing differential equation for cylindrically 

symmetric soil consolidation and an empirical model describing generation of excess pore pressures as a 

function of shear stress amplitudes. The output of this model is the steady state relative overpressure 

distribution. The relative overpressure distribution can then be used as input into slope stability analysis 

software in order to investigate whether a slope failure will occur given the reduced soil strength.  

The biggest uncertainty in the second model is the coupling with the first model. This coupling is 

achieved by adjusting the elastic shear stresses (which are unrealistic and can therefore not be directly 

used as input for the liquefaction model) calculated in the first model. Three variables are defined for 

this purpose. Analysis of the sensitivity of these variables show that the variable 𝛽, which is  the ratio 

between yield  shear stress and initial effective stress of a liquefied interface, is the most sensitive and 

therefore most uncertain variable in the model. Experimental validation of 𝛽 is recommended to the 

increase accuracy of the liquefaction model.   
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1 Introduction 

1.1 Problem statement 
Pile driving is a strongly dynamical process (figure 1.1). First energy is transmitted from the impact 

hammer to the pile. This energy is carried down the pile by a stress wave. As time progresses the 

amplitude of the stress wave attenuates because of energy losses at the pile-soil interface. Some energy 

is dissipated by friction when the pile is slipping, while the remaining energy is carried by waves into the 

soil domain (for example conical shear waves originating from the pile shaft and spherical compression 

waves originating from the pile toe).  

This thesis will consider instability in saturated loosely packed sand. Loose packing is an inefficient 

arrangement of the particles. The spaces between the particles (voids) are filled with water in case of 

saturated soils. The oscillating motion of the waves propagating into the soil domain results in shear 

stresses, which shake the sand and force the sand particles into a denser arrangement. This causes a 

reduction in void volume, resulting in excess pore pressures. These excess pore pressures will 

accumulate if the frequency of the loading is high enough and the drainage capacity of the sand is low 

enough (final step in figure 1.1). Accumulation continuous until the excess pore pressures become equal 

to the initial effective stress between the sand particles (overburden stress – hydrostatic water 

pressure). Once this stage is reached, the effective stress between the particles will equal zero. The 

contact between the particles is lost and the sand behaves similar to a viscous fluid. This process is 

called liquefaction. 

 

Figure 1.1: Problem statement  
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Two types of pile driving induced liquefaction instability cases will be considered in this thesis. It is 

important to note that the definition of liquefaction instability in this thesis is not strictly instability 

induced by liquefaction (excess pore pressure = initial effective stress), but rather instability induced by 

excess pore pressures in general. The first case is instability in slopes (figure 1.2). Embankment 

structures in ports commonly consist of a sand core because they are often constructed on reclaimed 

land. The core is constructed by spraying or rainbowing the sand layer by layer. This results in loosely 

packed sand with limited effective stress. Limited accumulation in excess pore water pressure induced 

by pile driving may degrade the resistance of the soil along a certain circle trajectory to become smaller 

than the imposed loading, initiating collapse (figure 1.2). 

 

Figure 1.2: Pile driving induced liquefaction instability in slopes 

The second case of liquefaction induced instability is a confined aquifer (figure 1.3). The figure shows a 

sand layer (the aquifer) confined between two impermeable clay layers. Pile driving results in excess 

pore water pressure in the sand layer, which cannot dissipate easily because of the impermeable upper 

and lower boundaries. This can result in significant accumulation in excess pore pressures. As a 

consequence the upper clay layer will not be evenly supported anymore,  resulting in cracks. Water 

flows to the surface through these cracks. This is a very dangerous type of failure if a building pit is 

located at the surface. 

Combinations of both slopes and confined aquifers might exist as well in practice. 
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Figure 1.3: Pile driving induced liquefaction instability in confined aquifers 

1.2 Objectives 
Various models (analytical, empirical or numerical) exist for describing specific processes like pile 

driving, wave propagation in soils and excess pore pressure accumulation. A comprehensive framework 

is lacking. This thesis aims to set up such a comprehensive framework by combining separate models 

into one integrated model capable of predicting pile driving induced liquefaction instability.  The output 

desired from the final model is a plot which shows the excess pore pressure distribution surrounding the 

pile. This will help practicing engineers to assess if pile driving induced liquefaction instability might pose 

a risk and whether more advanced analysis is required.    

1.3 Outline 
The literature study consists of chapter 2 and 3. Chapter 2 will discuss important background theory. 

Equations of motion for one and three dimensional elastic media will be presented. This is followed by a 

discussion of the types of waves propagating in elastic media and waves emanating from the pile-soil 

interface. The process of liquefaction is elaborated in more detail; and the chapter ends with presenting 

numerical methods in the time domain for solving partial differential equations in later chapters. 

Chapter 3 discusses existing pile driving models: the Smith model (soil is represented by a rheological 

model), the van den Berghe-Holeyman model (soil is represented by rigid cylinders) and the Salgado et 

al. model (soil is represented by thin slices). 

Chapters 4 and 5 present a cylindrically symmetric damped elastic pile-soil-plug model. Chapter 4 

presents the simplified model, neglecting radial displacement; while the full (soil) equations are solved 

in chapter 5. Results presented in chapter 4 will mainly focus on demonstrating the influence of 

different model components. The results in chapter 5 will focus on influence of soil layering and on the 

differences with the simplified model. 
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The final chapter, chapter 6, presents the liquefaction model. The governing equations for the model 

will be derived and the coupling with the pile-soil-plug model will be discussed. Uncertainties in the 

coupling are quantified by variables, of which the sensitivity will be analysed.  

1.4 Input tables 
Tables with input variables used in this report are all assembled in this section for the convenience of 

the reader. Each chapter will refer to one or multiple of these tables. 

Input table 1.1: hammer 

mass 𝑚𝐻 20000 𝑘𝑔 

impact velocity 𝑣0,𝐻 5 𝑚/𝑠 

cushion stiffness 𝑘𝑐,𝐻 1010 𝑁/𝑚 

hammer height 𝐿𝐻 8 𝑚 
Input table 1.1 

Input table 1.2: pile 

external diameter 𝑑𝑃 2 𝑚 
thickness 𝑡𝑃 40 ∗ 10−3 𝑚 

cross-sectional area 𝐴𝑃 1244 ∗ 10−4 𝑚2 
Young’s modulus 𝐸𝑃 200 ∗ 109 𝑁/𝑚2 

density 𝜌𝑃 7850 𝑘𝑔/𝑚3 
wave velocity 𝑐𝑃𝑖𝑙𝑒 5047.54 𝑚/𝑠 

Impedance 𝑍𝑃 4.93 ∗ 106 𝑁𝑠/𝑚 
Input table 1.2 

Input table 1.3: pile driving (values apply for medium sand) 

shaft quake 𝑄𝑠ℎ𝑎𝑓𝑡 2.5 ∗ 10−3 𝑚 

toe quake 𝑄𝑡𝑜𝑒 2.5 ∗ 10−3 𝑚 
shaft static limit 𝜏𝑠 5 ∗ 104 𝑁/𝑚2 
toe static limit 𝑝𝑙𝑖𝑚 8 ∗ 106 𝑁/𝑚2 

shaft damping ratio 𝐽𝑠ℎ𝑎𝑓𝑡 0.16 𝑠/𝑚 

toe damping ratio 𝐽𝑡𝑜𝑒 0.5 𝑠/𝑚 
Input table 1.3 

Input table 1.4: soil 

 shear modulus bulk modulus density shear wave 
velocity 

compression 
wave velocity 

 𝐺 𝐾 𝜌 𝑐𝑠 𝑐𝑐 
 𝑁/𝑚2 𝑁/𝑚2  𝑘𝑔/𝑚3 𝑚/𝑠 𝑚/𝑠 

soft clay 35 ∗ 106 3600 ∗ 106 1600 148 1510 
firm clay 110 ∗ 106 5000 ∗ 106 1800 247 1691 

loose saturated sand 70 ∗ 106 3800 ∗ 106 1700 203 1513 
medium saturated sand 150 ∗ 106 5900 ∗ 106 2000 274 1746 

Input table 1.4 
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Input table 1.5: liquefaction modelling  

empirical constant 𝑎 0.48 − 
empirical constant 𝑏 5 − 
empirical constant 𝜃 0.7 − 

ratio between yield shear stress and initial effective stress for 
zero relative overpressure 

𝛼 0.18 − 

ratio between yield shear stress and initial effective stress for 
unity relative overpressure 

𝛽 0.1 − 

ratio between the increase in amount of shear cycles and the 
decrease of resistance at the pile-soil interface 

𝛾 1 − 

initial relative density 𝐼𝐷 0.5 − 
coefficient of vertical consolidation 𝑐𝑉 0.1 𝑚2/𝑠 

coefficient of horizontal consolidation 𝑐𝐻 0.1 𝑚2/𝑠 
time interval between subsequent blows 𝑡𝑖 1 𝑠 

Input table 1.5 

Sign convention 
𝑠 →  𝑠𝑐𝑎𝑙𝑎𝑟 

𝒗 → 𝑣𝑒𝑐𝑡𝑜𝑟 

[𝑀] → 𝑚𝑎𝑡𝑟𝑖𝑥  
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2 Background theory 
This chapter presents all necessary background theory for this thesis. The equations of motion of elastic 

media and numerical solution procedures will be extensively used in the next chapters. 

2.1 Wave mechanics 

2.1.1 The wave equation 
The wave equation for rods under axial load N (for example piles) can be derived by considering a slice 

of rod having a length ∆𝑥, displacement 𝑢, density 𝜌 and cross-sectional area 𝐴: 

 

Figure 2.1: Force equilibrium of a pile slice 

Using figure 2.1, the equation of motion can be derived from equilibrium: 

 
𝜌𝐴∆𝑥

𝜕2𝑢

𝜕𝑡2
= 𝑁 + ∆𝑁 − 𝑁 = ∆𝑁 (2.1) 

Dividing both sides by ∆𝑥 and taking the limit of ∆𝑥 to 0 results in: 

 𝜕2𝑢

𝜕𝑡2
−
1

𝜌𝐴

𝜕𝑁

𝜕𝑥
= 0 (2.2) 

The constitutive  and kinematic relations (for linear rods) read: 

 
𝑁 = 𝐸𝐴𝜀 = 𝐸𝐴

𝑑𝑢

𝑑𝑥
 (2.3) 

E is the Young’s modulus of the rod and 𝜀 is the strain of the rod.  The final form of the (linear) wave 

equation for rods is obtained by substituting equation 2.3 into equation 2.2: 

 𝜕2𝑢

𝜕𝑡2
−
𝐸

𝜌

𝜕2𝑢

𝜕𝑢2
=
𝜕2𝑢

𝜕𝑡2
− 𝑐2

𝜕2𝑢

𝜕𝑢2
= 0 (2.4) 

In this equation parameter c is the wave propagation velocity. The solution of the wave equation was 

first proposed by D’Alembert: 

 𝑢(𝑥, 𝑡) = 𝑢+(𝑥 − 𝑐𝑡) + 𝑢−(𝑥 + 𝑐𝑡) (2.5) 

It describes two waves travelling in opposite direction, with a constant velocity equal to the wave 

propagation velocity (figure 2.2).  This underlines the significance of this parameter. While propagating 

the waves keep their shape, no distortion is observed. Such a wave is called non-dispersive. 
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Figure 2.2: Wave equation solution visualized 

In section 2.3 it will become clear that the wave equation is also suitable for modelling one dimensional 

wave propagation in soils, either in compression or shear. The only difference is the definition of the 

wave propagation velocity. 

2.1.2 Impedance 
The impedance relates normal force and velocity (Holsher, 2016). The definition of normal force and 

velocity reads: 

 
𝑣(𝑥, 𝑡) =

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
 (2.6) 

 
𝑁(𝑥, 𝑡) = 𝐸𝐴

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
 (2.7) 

Substituting 𝑢+ or 𝑢− from equation 2.5 into equations 2.6 and 2.7 and performing some algebraic 

manipulations yields: 

 
𝑁+ = −

𝐸𝐴

𝑐
𝑣+ = −𝑍𝑣+ (2.8) 

 
𝑁− =

𝐸𝐴

𝑐
𝑣− = 𝑍𝑣− (2.9) 

𝑁+ and 𝑣+ relate to 𝑢+ and 𝑁− and 𝑣− relate to 𝑢−. Z is the impedance. The importance of the 

impedance is illustrated by an example: 

 

Figure 2.3: Sudden change in impedance 

Suppose an incident wave is travelling towards an interface with a discontinuity in the impedance, as 

illustrated in figure 2.3. To determine the reflected and transmitted wave as a function of the incident 

wave, two interface conditions need to be formulated: 

 𝑣𝑖 + 𝑣𝑟 = 𝑣𝑡 (2.10) 
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 𝑁𝑖 +𝑁𝑟 = 𝑁𝑡 → −𝑍1𝑣𝑖 + 𝑍1𝑣𝑟 = −𝑍2𝑣𝑡 (2.11) 

Solving equation 2.10 and 2.11 yields: 

 
𝑣𝑟 =

𝑍1 − 𝑍2
𝑍1 + 𝑍2

𝑣𝑖  (2.12) 

 
𝑁𝑟 =

𝑍2 − 𝑍1
𝑍1 + 𝑍2

𝑁𝑖  (2.13) 

 
𝑣𝑡 =

2𝑍1
𝑍1 + 𝑍2

𝑣𝑖  (2.14) 

 
𝑁𝑡 =

−2𝑍2
𝑍1 + 𝑍2

 (2.15) 

This shows the importance of the impedance: 

 If 𝑍1 ≪ 𝑍2, the incident wave is travelling to a very stiff (almost fixed) boundary. The velocity 

will change sign upon reflection, while the normal force keeps its sign. 

 If 𝑍1 ≫ 𝑍2, the incident wave is travelling to a very weak (almost open ended) boundary. In this 

case the velocity will keep its sign upon reflection, while the normal force changes sign. 

2.1.3 Non-reflective boundary 
A non-reflective boundary fully absorbs the incoming wave energy, therefore no reflection occurs. A 

simple non-reflective boundary consisting of a dashpot at the end of a one dimensional rod (figure 2.4) 

Is considered. 

 

Figure 2.4: Non-reflective boundary 

The boundary condition reads: 

 𝑍(𝑣𝑟 − 𝑣𝑖) = −𝑐𝐷(𝑣𝑖 + 𝑣𝑟) (2.16) 

And therefore: 

 
𝑣𝑟 =

𝑍 − 𝑐𝐷
𝑍 + 𝑐𝐷

𝑣𝑖  (2.17) 

No reflection occurs if the dashpot constant is equal to the impedance of the rod. The importance of the 

impedance as a dynamic parameter is again underlined. This simple non-reflective boundary will be 

extensively used in the various models presented in the upcoming chapters.  
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2.2 Pile driving 

2.2.1 Impact pile driving 
Several types of hammers exist for impact pile driving(Deckner, 2013), the most important are: 

 drop hammers: the hammer is pulled to a certain height and dropped on top of the pile. 

 diesel hammers: igniting diesel causes an explosion raising op a piston, which then falls on top 

of the pile. 

 hydraulic hammers: the lifting of the hammer is assisted by hydraulic devices. 

Deckner also distinguishes between light and heavy impact hammers, the latter having a weight larger 

than the total weight of the pile. The usual blow rate of heavy hammers is 30-60 bpm (blows per 

minute), while light hammers have rates of 300-1000 bpm. 

Massarsch & Fellenius (2008) proposes a simple method of modelling the hammer impact. A simple 

rectangular pulse represents the impact. The height of the pulse (impact velocity) is equal to: 

 
𝑣𝑖𝑚𝑝𝑎𝑐𝑡 =

√2𝑔ℎ0

1 +
𝑍𝑝
𝑍𝐻

 
(2.18) 

In which ℎ0 is the drop height of the hammer, 𝑍𝑝 the impedance of the pile (section 2.4) and 𝑍𝐻 the 

impedance of the hammer. It is observed that according to Massarsch & Fellenius, the mass of the 

hammer does not affect the magnitude of the pulse. Massarsch & Fellenius also propose to add a 

reduction factor, accounting for the energy transmission loss upon hammer impact. The width of the 

pulse is equal to the time needed for the stress wave to travel up and down the hammer (Massarsch & 

Fellenius, 2008): 

 
𝑡𝑝𝑢𝑙𝑠𝑒 =

2𝐿𝐻
𝑐𝐻

 (2.19) 

𝐿𝐻 is the hammer height and 𝑐𝐻 the wave propagation velocity in the hammer (section 2.3). 

A more sophisticated method is proposed by Deeks & Randolph (1993) as shown in figure 2.5. 

 

Figure 2.5: Deeks & Randolph (1993) models for hammer impact 

Model (d) is the most complex, taking every single component into account. The pile is modelled as a 

dashpot, with 𝑍 being the pile impedance. The mass of the pile cap 𝑚𝑎 is taken into account and the 
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cushion is attributed both stiffness 𝑘𝑐 and damping 𝑐𝑐. The hammer is represented by its mass 𝑚𝑟 and 

initial velocity 𝑣0 = √2𝑔ℎ0. To make a comparison with the Massarsch & Fellenius model, model (b) is 

chosen, the analytical solution of the impact velocity for this model is (Holscher, 2016): 

 𝑣𝑖𝑚𝑝𝑎𝑐𝑡(𝑡) = 𝑣0
𝛼

√𝜔2 − 𝛼2
𝑒−𝛼𝑡sin (√𝜔2 − 𝛼2𝑡) (2.20) 

 

𝛼 =
𝑘𝑐
2𝑍𝑃

 𝑎𝑛𝑑 𝜔 = √
𝑘𝑐
𝑚𝑟

 (2.21) 

 Values of 𝑣𝑖𝑚𝑝𝑎𝑐𝑡 < 0 are not allowed, since the hammer cannot pull the pile. The input parameters are 

chosen according to tables 1.1 (pile) and 1.2 (hammer). The impedance of the hammer is assumed equal 

to the impedance of the pile. The following plot shows the results of both methods: 

 

Figure 2.6: Impact velocity on top of the pile as a function of time using different methods and cushion stiffness 

It is clear that higher cushion stiffness results in higher peak impact velocity at the pile head. The Deeks 

& Randolph method is preferred over the Massarsch & Fellenius method, because of the more realistic 

representation of the hammer impact. 

2.2.2 Vibratory pile driving 
The process of vibratory pile driving is depicted in figure 2.7. Two sets of eccentric masses are placed 

symmetrically with respect to the symmetry axis of the vibrator. The masses on each side of the 

symmetry axis rotate in opposite direction, therefore cancelling out the horizontal component of their 

centrifugal force and resulting in a harmonic vertical component over time (van den Berghe, 2001). The 

total vertical force exerted on the pile is the sum of the harmonic force excited by the rotating mases 

and the total static weight of the vibrator (including bias mass).  
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The loading frequency ranges between 1300 and 1800 rpm (rounds per minute) and the centrifugal 

force amplitude is up to 4600 kN (van den Berghe 2001). Figure 2.8 shows an example of vibratory pile 

driving loading, with centrifugal force amplitude of 3000 kN, static load of 1500 kN and frequency of 

1500 rpm.  

 

Figure 2.7: Vibratory pile driving scheme (Holeyman, 2000) 

 

Figure 2.8: Example of vibratory pile driving loading 
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2.3 Soil behaviour 

2.3.1 Soil properties 
This thesis considers elastic behaviour of soils. A set of three variables is required for describing elastic 

soil behaviour: density, shear modulus and bulk modulus.  

The soil density depends on the porosity of the soil. The shape of the soil particles (for example rounded 

or angular), the sorting of the particles and their arrangement (for example loose or dense) will 

determine the porosity (van Tol, 2006). The density of non-porous mineral is around 2650 𝑘𝑔/𝑚3. Table 

2.1 gives estimates for soil density of various types of soil used in this thesis. 

 porosity (%) density (𝑘𝑔/𝑚3) 

loose saturated sand 55 1700 

medium saturated sand 40 2000 

soft clay 60 1600 

firm clay 50 1800 
Table 2.1: Soil density (van Tol, 2006) 

The shear modulus of soil strongly depends on the strain rate. According to Deckner (2013), plastic soils 

(like clay) subjected to high strain rates tend to suffer smaller degradation of the shear modulus 

compared to non-plastic soils (like sand). When modelling soil as an elastic material, these effects are 

not considered. This makes choosing the shear modulus very sensitive to error. Table 2.2 lists an 

estimated range of the shear modulus for different types of soil considered in this thesis. 

 shear modulus (𝑀𝑃𝑎) 

loose saturated sand 15-110 

medium saturated sand 70-250 

soft clay 10-65 

firm clay 55-190 
Table 2.2: Soil shear modulus (Head & Jardine, 1992) 

The upcoming sections will show that both shear and bulk modulus can be derived from the shear and 

compression wave velocity of the soil. 

2.3.2 Equations of motion of an elastic medium 
A detailed derivation of the equation of motion of an elastic medium can be found in Holscher (2016). 

The final form of the equation is given: 

 
𝜌
𝜕2𝒖

𝜕𝑡2
= (𝐾 +

1

3
𝐺)  𝛻𝛻 · 𝒖 + 𝐺𝛻2𝒖 (2.22) 

In which 𝐺 is the shear modulus, 𝐾 is the bulk modulus and 𝜌 is the density. The nabla operator (in 

Cartesian coordinates) is defined as follows: 
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∇=

[
 
 
 
 
 
 
𝜕

𝜕𝑥1
𝜕

𝜕𝑥2
𝜕

𝜕𝑥3]
 
 
 
 
 
 

 (2.23) 

Holscher (2016) also defines a relationship between stresses and strains in elastic soils: 

 
𝜎𝑖𝑗  =  (𝐾 −

2

3
𝐺) 𝜀𝑘𝑘𝛿𝑖𝑗  +  2𝐺𝜀𝑖𝑗  (2.24) 

𝛿𝑖𝑗 is the Kronecker delta. The strains are derivatives of the displacements: 

 
𝜀𝑖𝑗 =

1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 
𝜕𝑢𝑗

𝜕𝑥𝑖
) (2.25) 

2.3.3 Waves in elastic media 

2.3.3.1 Compression waves 

A compression wave is a repeated cycle of particle compressions and dilations in the direction of the 

wave propagation (figure 2.9). 

 

Figure 2.9: Compression wave (Deckner, 2013) 

Consider one-dimensional wave propagation. Because both particle motion and wave propagation is 

along the same axis (say the 𝑥1 axis), the derivatives and displacements along the other axes are equal 

to zero: 

 
𝑢2 = 𝑢3 =

𝜕

𝜕𝑥2
=

𝜕

𝜕𝑥3
= 0 (2.26) 

This simplifies the equation of motion in the previous section: 

 
𝜌
𝜕2𝑢1
𝜕𝑡2

= (𝐾 +
1

3
𝐺) 

𝜕2𝑢1

𝜕𝑥1
2 + 𝐺

𝜕2𝑢1

𝜕𝑥1
2 = (𝐾 +

4

3
𝐺)
𝜕2𝑢1

𝜕𝑥1
2  (2.27) 

The equation of motion has reduced to the wave equation (section 2.1.1). Apparently the propagation 

velocity of compression waves is equal to: 
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𝑐𝑝 =
√
𝐾 +

4
3
𝐺

𝜌
 (2.28) 

𝐾 +
4

3
𝐺 is often denoted as the compression modulus or odometer modulus.  

2.3.3.2 Shear waves 

Shear waves are characterized by a periodic particle motion perpendicular to the axis of wave 

propagation (figure 2.10). 

 

Figure 2.10: Shear wave (Deckner, 2013) 

Consider again one-dimensional wave propagation. If the wave is propagating along the 𝑥1axis and the 

particles are oscillating along the 𝑥2 axis, then: 

 
𝑢1 = 𝑢3 =

𝜕

𝜕𝑥2
=

𝜕

𝜕𝑥3
= 0 (2.29) 

The equation of motion of elastic soils reduces to: 

 
𝜌
𝜕2𝑢2
𝜕𝑡2

= 𝐺
𝜕2𝑢2

𝜕𝑥1
2  (2.30) 

The propagation wave velocity of shear waves is equal to: 

 

𝑐𝑠 = √
𝐺

𝜌
 (2.31) 

This underlines the importance of the shear modulus as a shear stiffness parameter. Head & Jardine 

(1992) give a range of values for both compression and shear wave velocity (table 2.3). 

 compression wave velocity 
(𝑚/𝑠) 

shear wave velocity (𝑚/𝑠) 

clay 1450-1900 80-500 

saturated sand 1400-1800 100-400 
Table 2.3: Estimated values for shear and compression wave velocity (Head & Jardine, 1992) 

2.3.3.3 Rayleigh waves 

Rayleigh waves are formed when compression waves hit the surface at an angle larger than the critical 

angle, according to Massarsch & Fellenius (2008). This critical angle is equal to: 
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𝜃𝑐𝑟𝑖𝑡 = sin

−1 (
𝑐𝑠
𝑐𝑝
) (2.32) 

𝑐𝑠 is the shear wave velocity and 𝑐𝑝 is the compression wave velocity. 

 

Figure 2.11: Rayleigh wave (Deckner, 2013) 

Rayleigh waves are a combination of shear and compression waves (figure 2.11). The particles show an 

orbital motion, with orbit size decreasing down the surface (Deckner, 2013). Figure 2.12 depicts this 

behaviour, from the figure it is also clear that the vertical orbital component is always larger compared 

to the horizontal component. 

 

Figure 2.12: Horizontal and vertical component of Rayleigh waves as a function of depth (Deckner, 2013) 

2.3.4 Waves emitted during pile driving 
During pile driving the main type of wave emitted at the pile shaft-soil interface is a conical shear wave 

(Massarsch & Fellenius, 2008). This wave is the result of friction between the pile surface and the soil. At 

the pile toe-soil interface the main type of wave emitted into the soil is a spherical compression wave 

(Massarsch & Fellenius, 2008). This wave is formed when the pile toe presses against the underlying soil. 
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At a certain distance from the pile Rayleigh waves will be observed around the soil surface. This distance 

is equal to the critical angle defined in the previous section multiplied by the embedment depth of the 

pile. Figure 2.13 shows the different types of waves emitted during pile driving.  

 

Figure 2.13: Waves emitted during pile driving 

Aside from these waves, a minor cylindrical compression wave is emitted at the pile shaft-soil interface. 

This is caused by radial expansion of the pile shell. This radial expansion also causes a minor spherical 

shear wave to be emitted  at the pile toe-soil interface.  

2.3.5 Wave attenuation 
Wave attenuation consists of two components: radiation damping and material damping (Holscher, 

2016). Radiation damping is the decrease of wave energy per unit of volume over time, because of the 

wave spreading out over a larger volume. The type of source determines the rate of radiation damping. 

Holscher (2016), gives the following rates: 

 attenuation of the wave amplitude as a function of 
the distance R from the source 

cylindrical source 1

√𝑅
 

spherical source 1

𝑅
 

Table 2.4: Radiation damping for two different types of wave sources 

Therefore spherical compression waves emitted at the pile toe attenuate much faster compared to 

conical shear waves emitted at the pile shaft. 
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Material damping is the loss of wave energy caused by soil behaviour (for example friction between 

particles or material plasticity).  A simple expression for material damping is purposed by Massarsch & 

Fellenius (2008): 

∆𝐴 = 𝑒−𝛼∆𝑟 

In this expression ∆𝐴 is the decrease of wave amplitude over a distance ∆𝑟 as a function of absorption 

coefficient 𝛼. The absorption coefficient has the following definition: 

𝛼 =
2𝜋𝐷𝑓

𝑐𝑠
 

𝑓 is the frequency of the loading, 𝑐𝑠 is the shear wave velocity and D the material damping coefficient. 

The material damping strongly depends on the strain imposed on the material and the material 

plasticity. Plastic soils like clay have lower material damping (and therefore weaker wave attenuation) 

compared to non-plastic soils like sand according to Deckner (2013) (figure 2.14). 

 

Figure 2.14: Material damping as a function of shear strain and material plasticity (Deckner, 2013) 

2.4 Soil liquefaction 
The effective soil stress (soil skeleton stress) is equal to the total stress minus the pore water pressure: 

 𝜎′ = 𝜎 − 𝑝 (2.33) 

If a dense soil is subject to dynamic loading (for example an earthquake or pile driving), shear stresses 

will cause dilation of the soil. The porosity increases. It is impossible for water to flow in and fill up the 

increased pore volume, because of the very short loading duration. This causes suction pressure in the 

pores, preventing dilation and increasing effective stress: 

 𝜎′ = 𝜎 − (𝑝 − ∆𝑝𝑠𝑢𝑐𝑡𝑖𝑜𝑛) (2.34) 
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Figure 2.15: Dynamic loading acting on dense soil (Hicks, 2017) 

In case of loose soils, shear stresses induced by dynamic loading cause contraction of the soil. The 

porosity decreases, but water cannot flow out during the short loading duration. This causes excess pore 

pressures in the pores, preventing contraction and decreasing effective stress: 

 𝜎′ = 𝜎 − (𝑝 + ∆𝑝𝑒𝑥𝑐𝑒𝑠𝑠) (2.35) 

 

Figure 2.16: Dynamic loading acting on loose soil (Hicks, 2017) 

The excess pore pressures will accumulate under sustained dynamic loading If the drainage capacity is 

insufficient. This is likely to be the case for sand (unless the sand is very coarse and close to being 

classified as gravel). Liquefaction occurs when the effective stress becomes equal to zero: 

 𝜎 = (𝑝 + ∆𝑝𝑒𝑥𝑐𝑒𝑠𝑠) (2.36) 

The soil does not process skeleton strength anymore. Contact between the particles is lost and the soil 

becomes a viscous fluid. 

An empirical equation for the number of cycles resulting in soil liquefaction is proposed by Meijers 

(2007): 

 
𝑁𝑐𝑦𝑐𝑙𝑒𝑠 = (

0.48 ∗ 𝐼𝐷 ∗ 𝜎𝑣0
′

∆𝜏
)

5

 (2.37) 

The amount of cycles depends on initial relative soil density 𝐼𝐷, the initial effective stress 𝜎𝑣0
′  and the 

amplitude of the shear stress ∆𝜏. 
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2.5 Numerical modelling 

2.5.1 Newmark time integration scheme 
In the upcoming chapters both discrete and continuous dynamic systems will be analysed in the time 

domain. Discrete dynamic systems are usually described by the following equation of motion: 

 [𝑀]�̈� + [𝐶]�̇� + [𝐾]𝒖 = 𝑭 (2.38) 

[𝑀] is the mass matrix, [𝐶] the damping matrix, [𝐾] the stiffness matrix and 𝑭 the forcing vector. These 

systems will be analysed using the Newmark  time integration scheme. The scheme is derived starting 

with the definition of displacement, velocity and acceleration in the next time step (Gavin, 2016): 

 
𝒖𝑛+1 = 𝒖𝑛 + ∆𝑡�̇�𝑛 +

∆𝑡2

2
(2𝛽�̈�𝑛+1 + (1 − 2𝛽)�̈�𝑛) (2.39) 

 �̇�𝑛+1 = �̇�𝑛 + ∆𝑡(𝛾�̈�𝑛+1 + (1 − 𝛾)�̈�𝑛) (2.40) 

 
�̈�𝑛+1 =

1

𝛽∆𝑡2
(𝒖𝑛+1 − 𝒖𝑛 − ∆𝑡�̇�𝑛) −

(1 − 2𝛽)

2𝛽
�̈�𝑛 (2.41) 

For averaged acceleration, 𝛽 = 0.25 and 𝛾 = 0.5. Substituting equation 2.41 into the equation 2.40 and 

performing some algebraic manipulations gives the following results: 

 �̈�𝑛+1 = 𝐶1(𝒖𝑛+1 − 𝒖𝑛) − 𝐶2�̇�𝑛 + 𝐶3�̈�𝑛 (2.42) 

 �̇�𝑛+1 = 𝐶4(𝒖𝑛+1 − 𝒖𝑛) + 𝐶5�̇�𝑛 + 𝐶6�̈�𝑛 (2.43) 

With the constants defined as: 

 
𝐶1 =

1

𝛽∆𝑡2
 , 𝐶2 =

1

𝛽∆𝑡
 , 𝐶3 = 1 −

1

2𝛽
 , 𝐶4 =

𝛾

𝛽∆𝑡
 , 𝐶5 = 1 −

𝛾

𝛽
 , 𝐶6 = ∆𝑡 (1 −

𝛾

2𝛽
) (2.44) 

The Newmark time integration scheme is obtained by substituting 2.42 and 2.43 into the equation of 

motion 2.38 and performing further algebraic manipulations: 

 𝒖𝑛+1 = [𝑀𝑎]
−1[𝑭𝑛+1 + [𝑀𝑏]𝒖𝑛 + [𝑀𝑐]�̇�𝑛 − [𝑀𝑑]�̈�𝑛] (2.45) 

With the matrices defined as: 

 [𝑀𝑎] = (𝐶1[𝑀] + 𝐶4[𝐶] + [𝐾]) (2.46) 

 [𝑀𝑏] = (𝐶1[𝑀] + 𝐶4[𝐶]) (2.47) 

 [𝑀𝑐] = (𝐶2[𝑀] − 𝐶5[𝐶]) (2.48) 

 [𝑀𝑑] = (𝐶3[𝑀] + 𝐶6[𝐶]) (2.49) 

2.5.2 Finite difference method 
Continuous dynamic systems are defined by partial differential equations (PDE), which contain both 

derivatives in time and space. These equations need to be discretized in space before solving 

numerically in time. This thesis will make use of finite difference approximations, which can be derived 

from Taylor series expansion (Mazumder, 2016). The approximations can be derived by considering a 

node of interest and all nodes surrounding it (figure 2.17). 
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Figure 2.17: Finite difference grid 

The Taylor series expansion for all surrounding nodes are listed below: 

 
𝑤𝑖+1,𝑗 = 𝑤𝑖,𝑗 + ∆𝑥

𝜕𝑤

𝜕𝑥 𝑖,𝑗
+
1

2
∆𝑥2

𝜕2𝑤

𝜕𝑥2 𝑖,𝑗
+
1

6
∆𝑥3

𝜕3𝑤

𝜕𝑥3 𝑖,𝑗
+ 𝑂(∆𝑥4) (2.50) 

 
𝑤𝑖−1,𝑗 = 𝑤𝑖,𝑗 − ∆𝑥

𝜕𝑤

𝜕𝑥 𝑖,𝑗
+
1

2
∆𝑥2

𝜕2𝑤

𝜕𝑥2 𝑖,𝑗
−
1

6
∆𝑥3

𝜕3𝑤

𝜕𝑥3 𝑖,𝑗
+ 𝑂(∆𝑥4) (2.51) 

 
𝑤𝑖,𝑗+1 = 𝑤𝑖,𝑗 + ∆𝑦

𝜕𝑤

𝜕𝑦 𝑖,𝑗
+
1

2
∆𝑦2

𝜕2𝑤

𝜕𝑦2 𝑖,𝑗
+
1

6
∆𝑦3

𝜕3𝑤

𝜕𝑦3 𝑖,𝑗
+ 𝑂(∆𝑦4) (2.52) 

 
𝑤𝑖,𝑗−1 = 𝑤𝑖,𝑗 − ∆𝑦

𝜕𝑤

𝜕𝑦 𝑖,𝑗
+
1

2
∆𝑦2

𝜕2𝑤

𝜕𝑦2 𝑖,𝑗
−
1

6
∆𝑦3

𝜕3𝑤

𝜕𝑦3 𝑖,𝑗
+ 𝑂(∆𝑦4) (2.53) 

 
𝑤𝑖+1,𝑗+1 = 𝑤𝑖,𝑗 + ∆𝑥

𝜕𝑤

𝜕𝑥 𝑖,𝑗
+ ∆𝑦

𝜕𝑤

𝜕𝑦 𝑖,𝑗
+
1

2
∆𝑥2

𝜕2𝑤

𝜕𝑥2 𝑖,𝑗
+
1

2
∆𝑦2

𝜕2𝑤

𝜕𝑦2 𝑖,𝑗

+ ∆𝑥∆𝑦
𝜕2𝑤

𝜕𝑥𝜕𝑦𝑖,𝑗
+𝑂(∆𝑥3, ∆𝑦3) 

(2.54) 

 
𝑤𝑖+1,𝑗−1 = 𝑤𝑖,𝑗 + ∆𝑥

𝜕𝑤

𝜕𝑥 𝑖,𝑗
− ∆𝑦

𝜕𝑤

𝜕𝑦 𝑖,𝑗
+
1

2
∆𝑥2

𝜕2𝑤

𝜕𝑥2 𝑖,𝑗
+
1

2
∆𝑦2

𝜕2𝑤

𝜕𝑦2 𝑖,𝑗

− ∆𝑥∆𝑦
𝜕2𝑤

𝜕𝑥𝜕𝑦𝑖,𝑗
+𝑂(∆𝑥3, ∆𝑦3) 

(2.55) 

 
𝑤𝑖−1,𝑗+1 = 𝑤𝑖,𝑗 − ∆𝑥

𝜕𝑤

𝜕𝑥 𝑖,𝑗
+ ∆𝑦

𝜕𝑤

𝜕𝑦 𝑖,𝑗
+
1

2
∆𝑥2

𝜕2𝑤

𝜕𝑥2 𝑖,𝑗
+
1

2
∆𝑦2

𝜕2𝑤

𝜕𝑦2 𝑖,𝑗

− ∆𝑥∆𝑦
𝜕2𝑤

𝜕𝑥𝜕𝑦𝑖,𝑗
+𝑂(∆𝑥3, ∆𝑦3) 

(2.56) 
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𝑤𝑖−1,𝑗−1 = 𝑤𝑖,𝑗 − ∆𝑥

𝜕𝑤

𝜕𝑥 𝑖,𝑗
− ∆𝑦

𝜕𝑤

𝜕𝑦 𝑖,𝑗
+
1

2
∆𝑥2

𝜕2𝑤

𝜕𝑥2 𝑖,𝑗
+
1

2
∆𝑦2

𝜕2𝑤

𝜕𝑦2 𝑖,𝑗

+ ∆𝑥∆𝑦
𝜕2𝑤

𝜕𝑥𝜕𝑦𝑖,𝑗
+𝑂(∆𝑥3, ∆𝑦3) 

(2.57) 

The O operator describes the order of the error. From these expansions,  second order error 

approximations can be derived for single variable derivatives: 

 𝜕𝑤

𝜕𝑥 𝑖,𝑗
=
𝑤𝑖+1,𝑗 −𝑤𝑖−1,𝑗

2∆𝑥
+ 𝑂(∆𝑥2) (2.58) 

 𝜕2𝑤

𝜕𝑥2 𝑖,𝑗
=
𝑤𝑖+1,𝑗 − 2𝑤𝑖,𝑗 +𝑤𝑖−1,𝑗

∆𝑥2
+𝑂(∆𝑥2) (2.59) 

And for mixed derivatives: 

 𝜕2𝑤

𝜕𝑥𝜕𝑦𝑖,𝑗
=
𝑤𝑖+1,𝑗+1 −𝑤𝑖+1,𝑗−1 −𝑤𝑖−1,𝑗+1 +𝑤𝑖−1,𝑗−1

4∆𝑥∆𝑦
+ 𝑂(∆𝑥2, ∆𝑦2) (2.60) 

An alternative expression for mixed derivatives is: 

 𝜕2𝑤

𝜕𝑥𝜕𝑦𝑖,𝑗
=
𝑤𝑖+1,𝑗+1 −𝑤𝑖+1,𝑗 −𝑤𝑖,𝑗+1 + 2𝑤𝑖,𝑗 −𝑤𝑖−1,𝑗 −𝑤𝑖,𝑗−1 +𝑤𝑖−1,𝑗−1

2∆𝑥∆𝑦

+ 𝑂(∆𝑥2, ∆𝑦2) 

(2.61) 

This alternative expression is more efficient if the PDE contains at least one single variable derivative 

with respect to x and one with respect to y. 

Discretization in space reduces the PDE to a second order ordinary differential equation (ODE). The 

system of ODEs for elastic soil (section 2.3.2) will have the following form: 

 𝜕2

𝜕𝑡2
𝒘 = [𝑀]𝒘 (2.62) 

[𝑀] is a matrix containing all discretization coefficients with respect to space. Various methods exist to 

integrate the system of ODEs forward in time. The simplest is using a second order error finite difference 

approximation: 

 
𝒘𝑛+1 = ∆𝑡2 [[𝑀] +

2

∆𝑡2
[𝐼]]𝒘𝑛 −𝒘𝑛−1 (2.63) 

[𝐼] is the identity matrix. n+1, n and n-1 denote the next, current and previous time step. The 

disadvantage of this method is the use fixed time step. Matlab has various built in ODE solvers based on 

different numerical schemes, which perform time integration using variable time steps. These solvers 

solve first order ODEs, therefore the system of second order ODEs in equation 2.62 has to be 

transformed to state space description: 
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[
 
 
 
𝜕

𝜕𝑡
𝒘

𝜕2

𝜕𝑡2
𝒘]
 
 
 
= [

[0] [𝐼]
[𝑀] [0]

] [

𝒘
𝜕

𝜕𝑡
𝒘
] (2.64) 

The following figure gives an overview of various Matlab ODE solvers: 

 

Figure 2.18: Overview of Matlab ODE solvers (Raj, 2016) 
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3 Existing pile driving models 
This chapter presents three existing pile driving models: the Smith model (soil is represented by a 

rheological model), the van den Berghe-Holeyman model (soil is represented by rigid cylinders) and the 

Salgado et al. model (soil is represented by thin slices). 

3.1 Smith pile driving model 

3.1.1 Model formulation 
The pile driving model by Smith (Smith, 1960) divides the pile into discrete lumped masses, connected 

together by springs representing the internal stiffness of the pile. The soil is represented by a rheological 

model consisting of a spring (representing soil elasticity) in series with a slider (representing soil 

plasticity), which are placed in parallel with a dashpot (representing both friction and inertial damping).  

 

Figure 3.1: Smith pile driving model 

The equation of motion for a pile divided in N lumped masses is: 

 [𝑀]�̈� + [𝐶]�̇� + [𝐾]𝒖 = 𝑭 (3.1) 

With the matrices [𝑀], [𝐶], [𝐾] and 𝑭 vector defined as: 
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[𝑀] =

[
 
 
 
 
𝑚1 \
\ 𝑚2

\ \

\ ⋱ \

\ \
𝑚𝑁−1 \
\ 𝑚𝑁]

 
 
 
 

 

 

(3.2) 

 [𝐶] = [0] (3.3) 

 [𝐾]

=

[
 
 
 
 
 
 
𝑘1 −𝑘1 /
−𝑘1 𝑘1 + 𝑘2 −𝑘2
/ −𝑘2 𝑘2 + 𝑘3

/
/
−𝑘3

/ /

/ ⋱ /

/ /

−𝑘𝑁−3 𝑘𝑁−3 + 𝑘𝑁−2 −𝑘𝑁−2
/ −𝑘𝑁−2 𝑘𝑁−2 + 𝑘𝑁−1
/ / −𝑘𝑁−1

/
−𝑘𝑁−1
𝑘𝑁−1 ]

 
 
 
 
 
 

 
(3.4) 

 

𝑭 =

[
 
 
 
 
𝐹(𝑡) − 𝑅𝑠ℎ𝑎𝑓𝑡,1
−𝑅𝑠ℎ𝑎𝑓𝑡,2

⋮
−𝑅𝑠ℎ𝑎𝑓𝑡,𝑁−1

−𝑅𝑠ℎ𝑎𝑓𝑡,𝑁 − 𝑅𝑡𝑜𝑒]
 
 
 
 

 (3.5) 

With the lumped mass equal to: 

 
𝑚𝑖 =

𝐿𝑃𝐴𝑃𝜌𝑃
𝑁

 (3.6) 

The internal stiffness is equal to: 

 
𝑘𝑖 =

𝐸𝑃𝐴𝑝𝑁

𝐿𝑃
 (3.7) 

𝐿𝑃 is the pile length, 𝐴𝑃 is the cross-sectional area of the pile, 𝜌𝑃 is the density of the pile and 𝐸𝑃 is the 

Young’s modulus of the pile.  

𝐹(𝑡) = 𝑣0,𝐻(𝑡)𝑍𝑃 Is the impact force on top of the pile. The shaft and toe resistances have the following 

definition (Randolph, 2003): 

 

𝑅𝑠ℎ𝑎𝑓𝑡,𝑖 =
𝜋𝑑𝑃𝜏𝑠𝐿𝑝

𝑁

{
 

 
𝑢𝑖 − 𝑢𝑖,𝑠𝑙𝑖𝑝
𝑄𝑠ℎ𝑎𝑓𝑡

+ 𝐽𝑠ℎ𝑎𝑓𝑡�̇�𝑖, |𝑢𝑖 − 𝑢𝑖,𝑠𝑙𝑖𝑝| ≤ 𝑄𝑠ℎ𝑎𝑓𝑡

𝑢𝑖 − 𝑢𝑖,𝑠𝑙𝑖𝑝

|𝑢𝑖 − 𝑢𝑖,𝑠𝑙𝑖𝑝|
+ 𝐽𝑠ℎ𝑎𝑓𝑡�̇�𝑖, |𝑢𝑖 − 𝑢𝑖,𝑠𝑙𝑖𝑝| > 𝑄𝑠ℎ𝑎𝑓𝑡

 (3.8) 

 

𝑅𝑡𝑜𝑒 = 𝐴𝑝𝑝𝑙𝑖𝑚

{
 

 
0, 𝑢𝑁 − 𝑢𝑁,𝑠𝑙𝑖𝑝 < 0

𝑢𝑁 − 𝑢𝑁,𝑠𝑙𝑖𝑝
𝑄𝑡𝑜𝑒

+ 𝐽𝑡𝑜𝑒�̇�𝑁, 0 ≤ 𝑢𝑁 − 𝑢𝑁,𝑠𝑙𝑖𝑝 ≤ 𝑄𝑡𝑜𝑒

            1 + 𝐽𝑡𝑜𝑒�̇�𝑁, 𝑢𝑁 − 𝑢𝑁,𝑠𝑙𝑖𝑝 > 𝑄𝑡𝑜𝑒

 (3.9) 

In these equations, Q denotes the quake (the limit displacement at which a transition occurs from elastic 

to plastic behaviour), J denotes the damping ratio, 𝜏𝑠 and 𝑝𝑙𝑖𝑚 denote the static shear resistance of the 
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soil at the pile shaft and the static bearing capacity of the soil at the pile toe. 𝑑𝑃 is the pile diameter. 

𝑢𝑠𝑙𝑖𝑝is the total slip accumulation. The soil cannot provide tension resistance at the pile toe, therefore 

toe resistance is zero for negative displacements. Figure 3.2 visualizes expression 4.8 and 4.9: 

 

Figure 3.2: Resistance of pile shaft (left) and toe (right) as a function of displacement 

3.1.2 Model results 
The Smith pile driving model formulated in the previous section is implemented in Matlab using a 

Newmark time integration scheme (section 2.5.1). The Matlab code can be found in appendix B1. 

Averaging acceleration (𝛽 = 0.25 and 𝛾 = 0.5) is chosen for the analysis. The simple case of 

homogenous soil consisting of medium sand (input table 1.4) is considered. The input parameters are 

taken from input tables 1.1 (hammer), 1.2 (pile) and 1.3 (pile driving). The pile length is chosen to be 30 

m and the pile is discretized in to 300 elements. To ensure stability of the Smith pile driving model, the 

time step should be chosen smaller than the time it takes the wave to travel between two pile nodes: 

 
∆𝑡 <

𝐿𝑃
𝑁𝑐𝑃𝑖𝑙𝑒

 (3.10) 

𝑐𝑝𝑖𝑙𝑒 = √
𝐸𝑃

𝜌𝑃
 is the wave propagation velocity in the pile. The pile is assumed to be fully embedded in the 

soil (end of driving phase).  Figure 3.3 shows the stress wave travelling through the pile. The amplitude 

of the wave gradually decays as energy is dissipated by soil resistance. An important parameter for pile 

drivability is the pile set, which is shown in figure 3.4 at toe level. After some oscillations, the pile set 

reaches a stable value of 1.4 mm. The pile set strongly depends on the length of the pile (figure 3.5) and 

the static shear resistance of the soil at the pile shaft  (figure 3.6). A less profound dependency exists 

with the static bearing capacity of the soil at the pile toe (figure 3.7). This less profound dependency 

might be explained by the fact that an open ended pile is considered for this calculation. The results 

show that longer piles driven in stiffer soils require heavier hammers.  
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Figure 3.3: Stress wave travelling through the pile 

 

Figure 3.4: Pile toe displacement as a function of time  
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Figure 3.5: Pile set as a function of pile length (pile is fully embedded in the soil)  

 

Figure 3.6: Pile set as a function of the static shear resistance of the soil at the pile shaft   
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Figure 3.7: Pile set as a function the static bearing capacity of the soil at the pile toe 

3.1.3 Other rheological soil models 
Various rheological soil models have been developed to represent the shaft and toe resistance. Pile 

driving imposes large deformations in the soil. This results in a disturbed soil region in the vicinity of the 

pile. Complicated processes like strain softening, remolding and excess pore pressure development 

make this region hard to model (Massarsch & Fellenius, 2008). Gradual reduction of strength of the 

disturbed soil region during pile driving, will also reduce the emission of wave energy into the 

undisturbed region (Massarsch & Fellenius, 2008).  

The biggest disadvantage of the Smith rheological soil model is that no distinction is made between 

viscous damping (by friction at the interface) and inertial damping (by accelerating the soil). Both 

components are lumped together and represented by a single dashpot. A second disadvantage is that 

input parameters like quake and damping ratio are required instead of meaningful soil properties like 

shear modulus and density. These disadvantages are solved by a more refined model presented by 

Simons & Randolph (1985). The model (shown in figure 3.8) clearly distinguishes between viscous and 

inertial damping. As long as the static capacity of the shaft is not reached, the slider will not activate. 

Therefore all energy is dissipated by inertial damping. Once the static shaft limit is reached, the pile 

starts slipping and viscous damping becomes dominant. The required input to determine shaft 

resistance and toe bearing capacity are the shear modulus and density of the soil. 
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Figure 3.8: Simons and Randolph (1985) rheological soil model 

Naggar & Novak (1994) present a rheological soil model with additional refinements (figure 3.9). This 

model defines  three different zones: a slip zone under elastic-plastic influence, an inner (disturbed) 

region, where both elasto-plasticity and viscosity are significant and finally the undisturbed soil region, 

where stresses are assumed to be small and therefore no plasticity occurs. The dashpot in the 

undisturbed zone represents the inertial damping. Two point masses are added to account for the 

inertia of the soil after the energy input from the pile stops.   

 

Figure 3.9: Naggar & Novak (1994) rheological soil model 
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Despite many rheological soil models being developed in the past decades, the Smith model remains the 

basis for many commercial pile driving packages, because of its simplicity and the familiarity of 

practicing engineers with the Smith input parameters (quake, damping ratio).  

The aim of this theses is to gain understanding in wave propagation and pore pressure accumulation in 

soils induced by pile driving. The Smith pile driving model is not useful for this purpose, since the soil is 

represented by a rheological model. The upcoming models will therefore represent the soil as a 

continuum connected to the pile. The Smith model will be used for fine-tuning pile and hammer input 

parameters for the upcoming models. 

3.2 Holeyman and van den Berghe pile driving model 
This model was developed by Holeyman(1993) and refined by van den Berghe (2001). In this cylindrically 

symmetric model, the pile is assumed to be a rigid mass and the soil is discretised in radial direction into 

rigid cylinders (figure 3.10). 

 

Figure 3.10: Cylindrically symmetric pile driving model with discretization in radial direction only (Holeyman, 1993) 

The shear stiffness of the soil is represented by springs between each soil cylinder and between the pile 

and first soil cylinder. A dashpot is attached to the final soil cylinder to create a non-reflecting boundary 

(section 2.1.3). This model is in fact very similar to the Smith pile driving model, since the pile and the 

soil cylinders can be considered lumped masses (figure 3.11). 
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Figure 3.11: Dynamic scheme of the Holeyman and van den Berghe model 

The spring and dashpot under the pile mass represent the base reaction. This model is an improvement 

compared to the Smith pile driving model, since the elastic behaviour of the soil under impact loading is 

calculated  (displacements, shear stresses). The lack of discretization in vertical direction is however a 

big disadvantage, since no account can be taken for soil layering. Another disadvantage is that wave 

propagation the pile is neglected by assuming the pile to be a rigid mass. These disadvantages are solved 

by the model presented in the next section. 

3.3 Salgado pile driving model 

3.3.1 Model formulation 
The Salgado pile driving model (Salgado et al., 2015) is based on the model of Holeyman and van den 

Berghe presented in the previous section. The soil and pile are discretized in both radial and vertical 

direction, allowing soil layering to be taken into account. The governing equation for the Salgado model 

is derived from the general equations of motion of an elastic medium (section 2.3.2). The model is 

cylindrically symmetric, which reduces the system of three governing equations to two governing 

equations (Verruijt, 2010): 

 
𝜌
𝜕2𝑢

𝜕𝑡2
= (𝐾 +

4

3
𝐺)(

𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
−
𝑢

𝑟2
) + (𝐾 +

1

3
𝐺)

𝜕2𝑤

𝜕𝑟𝜕𝑧
+ 𝐺

𝜕2𝑢

𝜕𝑧2
 (3.11) 

 
𝜌
𝜕2𝑤

𝜕𝑡2
= (𝐾 +

4

3
𝐺)
𝜕2𝑤

𝜕𝑧2
+ (𝐾 +

1

3
𝐺) (

𝜕2𝑢

𝜕𝑟𝜕𝑧
+
1

𝑟

𝜕𝑢

𝜕𝑧
) + 𝐺 (

𝜕2𝑤

𝜕𝑟2
+
1

𝑟

𝜕𝑤

𝜕𝑟
) (3.12) 

𝜌 is the soil density, G the soil shear modulus and K the soil bulk modulus. The first assumption of the 

Salgado pile driving model is that the radial displacement (u) can be neglected, which reduces the 

system of two governing equations to one governing equation: 

 
𝜌
𝜕2𝑤

𝜕𝑡2
= (𝐾 +

4

3
𝐺)
𝜕2𝑤

𝜕𝑧2
+ 𝐺 (

𝜕2𝑤

𝜕𝑟2
+
1

𝑟

𝜕𝑤

𝜕𝑟
) (3.13) 

The vertical discretization allows for another assumption: if the vertical discretization size is chosen 

small enough, the soil is assumed to behave as a stack of slices (figure 3.12), which do not  interact 

which each other. No interaction between the slices implies that the axial stress (
𝜕𝑤

𝜕𝑧
) can be neglected, 

which yields the final form of the governing soil equation for the Salgado model: 

 
𝜌
𝜕2𝑤

𝜕𝑡2
= 𝐺 (

𝜕2𝑤

𝜕𝑟2
+
1

𝑟

𝜕𝑤

𝜕𝑟
) (3.14) 
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Figure 3.12: Thin slices approach (Salgado et al., 2015) 

Because the axial stresses are neglected in the Salgado model, the soil slices will only be able to transfer 

shear waves. The shear waves are excited by the pile motion at the left boundary and an absorbing 

dashpot is placed at the right boundary (figure 3.13).  Another implication of neglecting axial stresses, is 

that the soil resistance at the pile toe cannot be derived from the model. The base reaction is therefore 

represented by a spring and dashpot (figure 3.13).  

 

Figure 3.13: Salgado pile driving model grid 
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Salgado et al. (2015) solve the model using two different methods: the pile is solved with the Newmark 

time integration scheme and the soil is solved using finite difference grid for each soil slice. The models 

are coupled at each time step. This is a very inefficient solution procedure. This thesis follows a different 

approach: pile and soil are considered one single system and solved using 2D finite difference method.  

The governing equation for the pile is (positions i and j can be found in figure 3.13): 

 
𝜌𝑝𝐴𝑝

𝜕2𝑤

𝜕𝑟2
= 𝜋𝑑𝑃𝐺

𝜕𝑤

𝜕𝑟
+ 𝐸𝑝𝐴𝑝

𝜕2𝑤

𝜕𝑧2
     @𝑖 = 1:𝑁, 𝑗 = 1 (3.15) 

𝐴𝑃 is the cross-sectional area of the pile, 𝜌𝑃 is the density of the pile,  𝐸𝑃 is the Young’s modulus of the 

pile and 𝑑𝑃 is the pile diameter. The symbol : is used to denote ‘up to and including’. The boundary 

condition at the pile head is: 

 
𝐸𝑝𝐴𝑝

𝜕𝑤

𝜕𝑧
= −𝐹𝑖𝑚𝑝(𝑡)     @𝑖 = 1, 𝑗 = 1 (3.16) 

And at the pile base: 

 
𝐸𝑝𝐴𝑝

𝜕𝑤

𝜕𝑧
= −𝑅𝑏𝑎𝑠𝑒(𝑡)     @𝑖 = 𝑁, 𝑗 = 1 (3.17) 

The base reaction is defined in the same manner as the Smith pile driving model (section 3.1.1), but 

without plastic component: 

 
𝑅𝑡𝑜𝑒 = 𝐴𝑝𝑝𝑙𝑖𝑚 {

0, 𝑤𝑏𝑎𝑠𝑒 < 0
𝑢𝑁
𝑄𝑡𝑜𝑒

+ 𝐽𝑡𝑜𝑒�̇�𝑁, 𝑤𝑏𝑎𝑠𝑒 ≥ 0
 (3.18) 

The governing equation for the soil reads: 

 
𝜌
𝜕2𝑤

𝜕𝑡2
= 𝐺 (

𝜕2𝑤

𝜕𝑟2
+
1

𝑟

𝜕𝑤

𝜕𝑟
)      @𝑖 = 1:𝑁, 𝑗 = 2:𝑀 (3.19) 

The left soil interface condition reads: 

 𝑤𝑠𝑜𝑖𝑙 = 𝑤𝑝𝑖𝑙𝑒 = 𝑤     @𝑖 = 1:𝑁, 𝑗 = 1 (3.20) 

And the right (non-reflective) boundary condition: 

 𝜕𝑤

𝜕𝑟
= −√

𝜌

𝐺

𝜕𝑤

𝜕𝑡
     @𝑖 = 1:𝑁, 𝑗 = 𝑀 (3.21) 

Using finite difference approximations (section 2.5.2), the governing system of equations is turned into a 

state space system: 

 

[
 
 
 
𝜕

𝜕𝑡
𝒘

𝜕2

𝜕𝑡2
𝒘]
 
 
 
= [

[0] [𝐼]
[𝑀1] [𝑀2]

] [

𝒘
𝜕

𝜕𝑡
𝒘]

+ 𝑭 (3.22) 

[𝑀1] and [𝑀2] contain the discretization coefficients with respect to space and 𝑭 contains the impact 

force at the pile head. The full derivation can be found in appendix A1. 
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3.3.2 Model results 
The state space system presented in the previous section is implemented in Matlab and solved using 

ODE45, the full code can be found in appendix B2. To ensure stability of the Salgado pile driving model, 

the time step should be smaller than the time it takes the compression wave in the pile to travel 

between two pile nodes: 

 
∆𝑡 <

𝐿𝑃
𝑁𝑐𝑃𝑖𝑙𝑒

 (3.23) 

𝐿𝑃 is the pile length and 𝑐𝑃𝑖𝑙𝑒 = √𝐸𝑃/𝜌𝑃 is the compression wave velocity in the pile. This requirement 

is taken care of by the ODE45 solver. Additionally, the radial grid size ∆𝑟 should be chosen small enough, 

allowing the shear waves to be transferred inside the soil: 

 ∆𝑟 <
𝑐𝑠
𝑓𝑙𝑜𝑎𝑑

 (3.24) 

𝑐𝑠 is the shear wave velocity in the soil and 𝑓𝑙𝑜𝑎𝑑 is the frequency of the impact load by the hammer.  

The input parameters are derived from input tables 1.1 (hammer), 1.2 (pile) and 1.4 (soil). First pile 

driving in homogenous soil consisting of loose sand is considered. The pile length is chosen to be 20 

meter and the radial size of the soil domain is also 20 meter. The results are shown in figure 3.14. The 

upper part of the soil (closest to the hammer impact) shows the highest displacement amplitudes. The 

model has no material damping, so the attenuation of wave amplitude as it travels through the soil is 

purely due to geometrical damping. 

Next layered soil is considered. The following layering is chosen (layer properties are taken from input 

table 1.4): 

layer number soil type start height  end height 

1 soft clay 0 5 

2 loose sand 5 10 

3 soft clay 10 15 

4 medium sand 15 20 
Table 3.1: Soil layering 

The results are shown in figure 3.15. The soil layers have different shear moduli and therefore different 

wave propagation velocities. The absence of vertical interaction causes discontinuities at layer 

boundaries.  The thin slices approach proposed by Salgado et al. (2015) is found to be unrealistic for 

layered soil. 
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Figure 3.14 : Salgado pile driving model for homogenous soil 
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Figure 3.15: Salgado pile driving model for layered soil 
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3.3.3 Disadvantages of the Salgado pile driving model 
The Salgado pile driving model seemed to be an improvement compared to the Holeyman & van den 

Berghe model, since the slices approach allows for soil layering to be taken into account. The results 

presented in this section show that the model gives unrealistic results for layered soil (because vertical 

interaction 
𝜕𝑤

𝜕𝑧
 is neglected), taking away this advantage. Other disadvantages of this model are listed: 

 The model neglects radial soil displacements, which might not be a valid assumption. 

 It is not possible to derive the base reaction from this model, therefore the base reaction is 

modelled by a spring and dashpot. 

 The soil plug is not taken into account. 

 The models presented in the upcoming chapters will try to resolve these disadvantages.  
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4 Simplified cylindrically symmetric damped elastic pile-soil-plug model 

neglecting radial displacement 
This chapter presents a cylindrically symmetric damped elastic pile-soil-plug model. Vertical interaction, 

soil reaction at the pile toe and soil plug are taken into account. The radial displacement is neglected in 

this chapter and will be added in the next chapter. 

4.1 Model formulation 
Figure 4.1 gives the discretization map of the model and is used for the derivation of the governing 

equations of motion. 

 

Figure 4.1: Model discretization map 
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The governing equation of motion of an elastic cylindrically symmetric elastic medium, neglecting radial 

displacement reads (Verruijt, 2010): 

 𝜌
𝜕2𝑤

𝜕𝑡2
= (𝐾 +

4

3
𝐺)
𝜕2𝑤

𝜕𝑧2
+ 𝐺 (

𝜕2𝑤

𝜕𝑟2
+
1

𝑟

𝜕𝑤

𝜕𝑟
) (4.1) 

w is the vertical displacement, 𝜌 is the soil density, G the soil shear modulus and K the soil bulk modulus. 

This equation is expanded with soil damping: 

 
𝜕2𝑤

𝜕𝑡2
= (1 + 𝛼

𝜕

𝜕𝑡
) ((𝐾 +

4

3
𝐺)
𝜕2𝑤

𝜕𝑧2
+ 𝐺 (

𝜕2𝑤

𝜕𝑟2
+
1

𝑟

𝜕𝑤

𝜕𝑟
)) (4.2) 

𝛼 is the damping coefficient. This will be the governing equation for the soil and plug nodes. For the axis 

of symmetry the following boundary condition holds: 

 𝜎𝑟𝑧 = 𝐺
𝜕𝑤

𝜕𝑟
= 0     @𝑖 = 𝑛:𝑁, 𝑗 = 1 (4.3) 

Please note that damping is only applied at the internal nodes and not at the boundary nodes. The 

symbol : is used to denote ‘up to and including’. The free surface boundary condition is: 

 𝜎𝑧𝑧 = (𝐾 +
4

3
𝐺)
𝜕𝑤

𝜕𝑧
= 0     @ 𝑖 = 𝑛, 𝑗 = 1:𝑚 − 1 𝑎𝑛𝑑 𝑖 = 1, 𝑗 = 𝑚 + 1:𝑀 (4.4) 

 The vertical non-reflective boundary condition: 

 𝜎𝑟𝑧 = 𝐺
𝜕𝑤

𝜕𝑟
= −√𝐺𝜌

𝜕𝑤

𝜕𝑡
     @𝑖 = 1:𝑁, 𝑗 = 𝑀 (4.5) 

And the horizontal non-reflective boundary condition: 

 𝜎𝑧𝑧 = (𝐾 +
4

3
𝐺)
𝜕𝑤

𝜕𝑧
= −√(𝐾 +

4

3
𝐺)𝜌

𝜕𝑤

𝜕𝑡
     @𝑖 = 𝑁, 𝑗 = 1:𝑀 (4.6) 

The interface boundary conditions read: 

 𝑤𝑝𝑙𝑢𝑔 = 𝑤𝑝𝑖𝑙𝑒 = 𝑤     @𝑖 = 𝑛: 𝑛𝑃 , 𝑗 = 𝑚 (4.7) 

 𝑤𝑠𝑜𝑖𝑙 = 𝑤𝑝𝑖𝑙𝑒 = 𝑤     @𝑖 = 1: 𝑛𝑃 , 𝑗 = 𝑚 (4.8) 

The equation of motion for the pile reads: 

 𝜌𝑝𝐴𝑝
𝜕2𝑤

𝜕𝑡2
= 𝜋𝑑𝑒𝐺

𝜕𝑤

𝜕𝑟
|𝑠𝑜𝑖𝑙 + 𝐸𝑝𝐴𝑝

𝜕2𝑤

𝜕𝑧2
     @𝑖 = 1: 𝑛 − 1, 𝑗 = 𝑚 (4.9) 

Or: 

 𝜌𝑝𝐴𝑝
𝜕2𝑤

𝜕𝑡2
= 𝜋𝑑𝑒𝐺

𝜕𝑤

𝜕𝑟
|𝑠𝑜𝑖𝑙 − 𝜋𝑑𝑖𝐺

𝜕𝑤

𝜕𝑟
|𝑝𝑙𝑢𝑔 + 𝐸𝑝𝐴𝑝

𝜕2𝑤

𝜕𝑧2
     @𝑖 = 𝑛: 𝑛𝑝, 𝑗 = 𝑚 (4.10) 

|𝑠𝑜𝑖𝑙  denotes a single sided derivative to the right and |𝑝𝑙𝑢𝑔 denotes a single sided derivative to the left.  

𝐴𝑃 is the cross-sectional area of the pile, 𝜌𝑃 is the density of the pile,  𝐸𝑃 is the Young’s modulus of the 

pile, 𝑑𝑖  is the internal pile diameter and 𝑑𝑒 is the external pile diameter. The boundary condition at the 

pile head reads: 
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 𝐸𝑝𝐴𝑝
𝜕𝑤

𝜕𝑧
= −𝐹𝑖𝑚𝑝(𝑡)     @𝑖 = 1, 𝑗 = 𝑚 (4.11) 

𝐹𝑖𝑚𝑝(𝑡) is the hammer impact force as a function of time. The boundary condition at the pile toe reads: 

 

𝐸𝑝𝐴𝑝
𝜕𝑤

𝜕𝑧
=
1

4
𝜋((𝑑𝑛 + ∆𝑟)

2 − (𝑑𝑛 − ∆𝑟)
2) (𝐾 +

4

3
𝐺)
𝜕𝑤

𝜕𝑧
|𝑠𝑜𝑖𝑙

= 𝜋𝑑𝑛∆𝑟 (𝐾 +
4

3
𝐺)
𝜕𝑤

𝜕𝑧
|𝑠𝑜𝑖𝑙,𝑉   @𝑖 = 𝑛𝑃 , 𝑗 = 𝑚 

(4.12) 

|𝑠𝑜𝑖𝑙,𝑉  is a single sided derivative downwards.  𝑑𝑛 =
𝑑𝑖+𝑑𝑒

2
 is the nominal pile diameter. ∆𝑟 is the radial 

grid size. Using finite difference approximations (section 2.5.2), the governing system of equations is 

discretized and transformed into a state space system of first order ordinary differential equations: 

 

[
 
 
 
𝜕

𝜕𝑡
𝒘

𝜕2

𝜕𝑡2
𝒘]
 
 
 
= [

[0] [𝐼]
[𝑀1] [𝑀2]

] [

𝒘
𝜕

𝜕𝑡
𝒘]

+ 𝑭 (4.13) 

[𝑀1] and [𝑀2] contain the discretization coefficients with respect to space, [𝐼] is the identity matrix and 

𝑭 contains the impact force at the pile head. The full derivation can be found in appendix A3. 

4.2 Numerical aspects 
The same stability requirements that are presented in section 3.3.2 hold for this model. Furthermore, to 

ensure transfer of compression waves into the soil, a third stability requirement is necessary: 

 ∆𝑧 <
𝑐𝑝
𝑓𝑙𝑜𝑎𝑑

 (4.14) 

∆𝑧 is the vertical grid size, 𝑐𝑝 is the compression wave velocity in the soil and 𝑓𝑙𝑜𝑎𝑑 is the frequency of 

the impact load by the hammer. It is also necessary to modify the equation of motion for the axis of 

symmetry, since: 

 
1

𝑟

𝜕𝑤

𝜕𝑟
=
0

0
 (4.15) 

The modified expression is found using L’Hopital rule (Mazumder, 2016): 

 
𝜕2𝑤

𝜕𝑟2
+
1

𝑟

𝜕𝑤

𝜕𝑟
= 2

𝜕2𝑤

𝜕𝑟2
     @𝑖 = 𝑛:𝑁, 𝑗 = 1 (4.16) 

4.3 Model results 

4.3.1 Soil damping 
The model is implemented numerically in Matlab and solved using ODE45. The full code can be found in 

appendix B3. First the soil model without pile is investigated. The interface is excited by a prescribed 

harmonic displacement: 

 𝑤𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = 10
−3 sin(800𝑡) (4.17) 

The soil is considered to be homogenous and consists of loose sand according to input table 1.3. 
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Figure 4.2: Vertical displacement field for various damping coefficients 

[s]

[]  

[s]

[]  

[s]

[]  

[s]

[]  



42 
 

The influence of damping coefficient 𝛼 is shown in figure 4.2. The band is quite narrow. The damping is 

limited for  𝛼 = 10−4, while  𝛼 = 5 ∗ 10−3 seems to give an overdamped solution.  

4.3.2 Soil layering 
Two types of soil layering are considered, with soil parameters according to input table 1.4: 

layer start height end height soil type first 
calculation 

soil type second 
calculation 

1 0 5 soft clay firm clay 

2 5 10 loose sand loose sand 

3 10 15 soft clay firm clay 

4 15 50 medium sand medium sand 
Table 4.1: soil layering for two comparison calculations 

 

Figure 4.3: Displacement field for layered soil: loose sand between two soft clay layers 

The results in figure 4.3 clearly show that lower stiffness results in higher displacements. Taking vertical 

interaction into account gives more realistic results for layered soil. 

4.3.3 Soil plug 
The pile is now added to the model to investigate the importance of the soil plug. The pile length is 

chosen to be 15 m, the radial domain size 15 m and the vertical domain size 35 m. Homogenous soil 

consisting of loose sand (input table 1.4) is chosen for the calculation. Hammer and pile properties are 

taken from input tables 1.1 and 1.2. The first calculation is carried out without soil plug and the second 

with a plug height of 12 m. 
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Figure 4.4: Pile-soil behavior after hammer impact with plug height equal to 0 m 
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Figure 4.5: Pile-soil behavior after hammer impact with plug height equal to 12 m 

The results in figures  4.4 and 4.5 show that the soil plug is important in the dynamic pile-soil behaviour. 

The plug delays and redistributes the emission of wave energy into the soil. If damping is present in the 

system, the plug will also absorb part of the wave energy. 
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4.3.4 Extending the pile above the surface 
To study different phases of pile driving, it is important to understand the behaviour of the pile-soil-plug 

model when part of the pile is extended above the surface. For this purpose pile driving in loose sand 

(input table 1.4) is considered. 20 meter of the pile is above the surface and the remaining 10 meter 

below the surface. The results are shown in figure 4.6. Comparison with figure 4.4 shows that extending 

the pile above the surface will result in a longer period of time before the motion of the pile is damped 

out. The amount of displacement cycles increases.  

 

Figure 4.6: Behavior of pile-soil model with large part of the pile extended above the surface 

4.3.5 Pile driving in a sloped soil structure 
One of the main objectives of this thesis is to quantify vibrations and excess pore pressure accumulation 

induced by pile driving in embankments. Embankments are 3D rather than cylindrically symmetric. It is 

however possible to get an impression of the behaviour of a real slope by considering an cylindrically 

symmetric slope. The slope considered is 1/3 and consists of loosely packed sand (input table 1.4).  The 

results are shown in figure 4.7. The results are very similar to the results shown in figure 4.4. This 

indicates that an cylindrically symmetric slope does not significantly alter the vibrations induced by pile 

driving. It is difficult to predict if this also holds for a real 3D slope.    
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Figure 4.7: Pile driving in an cylindrically symmetric slope 
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5 Cylindrically symmetric damped elastic pile-soil-plug model  
This chapter improves the model presented in chapter 4 by accounting for radial displacement, 

therefore solving the full soil equations. Radial displacement of the pile shell is also taken into account 

by introducing the Donnell thin shell theory. 

5.1 Model formulation 
The model in the previous chapter is expanded with radial displacement. The discretization map of the 

model is shown in figure 5.1.  

 

Figure 5.1: Model discretization map 
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The governing system of equations of an cylindrically symmetric elastic medium (Verruijt, 2010) 

expanded with soil damping read: 

 𝜌
𝜕2𝑢

𝜕𝑡2
= (1 + 𝛼

𝜕

𝜕𝑡
)((𝐾 +

4

3
𝐺)(

𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
−
𝑢

𝑟2
) + (𝐾 +

1

3
𝐺)

𝜕2𝑤

𝜕𝑟𝜕𝑧
+ 𝐺

𝜕2𝑢

𝜕𝑧2
) (5.1) 

 

𝜌
𝜕2𝑤

𝜕𝑡2
= (1 + 𝛼

𝜕

𝜕𝑡
) ((𝐾 +

4

3
𝐺)
𝜕2𝑤

𝜕𝑧2
+ (𝐾 +

1

3
𝐺)(

𝜕2𝑢

𝜕𝑟𝜕𝑧
+
1

𝑟

𝜕𝑢

𝜕𝑧
)

+ 𝐺 (
𝜕2𝑤

𝜕𝑟2
+
1

𝑟

𝜕𝑤

𝜕𝑟
)) 

(5.2) 

u is the radial displacement, w the vertical displacement, 𝛼 is the damping coefficient, K the bulk 

modulus, G the shear modulus and 𝜌 the density of the soil.  For the axis of symmetry the following 

boundary conditions hold: 

 𝑢 = 0     @𝑖 = 𝑛:𝑁, 𝑗 = 1 (5.3) 

 𝜎𝑟𝑧 = 𝐺 (
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑟
) = 0     @𝑖 = 𝑛:𝑁, 𝑗 = 1 (5.4) 

Please note that damping is only applied at the internal nodes and not at the boundary nodes. The 

symbol : denotes ‘up to and included’. The free surface boundary conditions: 

 
𝜎𝑧𝑧 = (𝐾 +

4

3
𝐺)
𝜕𝑤

𝜕𝑧
+ (𝐾 −

2

3
𝐺) (

𝑢

𝑟
+
𝜕𝑢

𝜕𝑟
) = 0      

@𝑖 = 𝑛, 𝑗 = 1:𝑚 − 1 𝑎𝑛𝑑 𝑖 = 1, 𝑗 = 𝑚 + 1:𝑀 
(5.5) 

 𝜎𝑟𝑧 = 𝐺 (
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑟
) = 0     @𝑖 = 𝑛, 𝑗 = 1:𝑚 − 1 𝑎𝑛𝑑 𝑖 = 1, 𝑗 = 𝑚 + 1:𝑀 (5.6) 

The vertical non-reflective boundary conditions read: 

 𝜎𝑟𝑟 = (𝐾 +
4

3
𝐺)
𝜕𝑢

𝜕𝑟
+ (𝐾 −

2

3
𝐺) (

𝑢

𝑟
+
𝜕𝑤

𝜕𝑧
) = −√𝜌 (𝐾 +

4

3
𝐺)
𝜕𝑢

𝜕𝑡
  @𝑖 = 1:𝑁, 𝑗 = 𝑀 (5.7) 

 𝜎𝑟𝑧 = 𝐺 (
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑟
) = −√𝜌𝐺

𝜕𝑤

𝜕𝑡
     @𝑖 = 1:𝑁, 𝑗 = 𝑀 (5.8) 

The horizontal non-reflective boundary read: 

 
𝜎𝑧𝑧 = (𝐾 +

4

3
𝐺)
𝜕𝑤

𝜕𝑧
+ (𝐾 −

2

3
𝐺) (

𝑢

𝑟
+
𝜕𝑢

𝜕𝑟
) = −√𝜌 (𝐾 +

4

3
𝐺)
𝜕𝑤

𝜕𝑡
     

 @𝑖 = 𝑁, 𝑗 = 1:𝑀 

(5.9) 

 𝜎𝑟𝑧 = 𝐺 (
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑟
) = −√𝜌𝐺

𝜕𝑢

𝜕𝑡
     @𝑖 = 𝑁, 𝑗 = 1:𝑀 (5.10) 
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The interface conditions read: 

 𝑤𝑝𝑖𝑙𝑒 = 𝑤𝑠𝑜𝑖𝑙 = 𝑤     @𝑖 = 1: 𝑛𝑃 , 𝑗 = 𝑚 (5.11) 

 𝑤𝑝𝑖𝑙𝑒 = 𝑤𝑝𝑙𝑢𝑔 = 𝑤     @𝑖 = 𝑛: 𝑛𝑃 , 𝑗 = 𝑚 (5.12) 

 𝑢𝑝𝑖𝑙𝑒 = 𝑢𝑠𝑜𝑖𝑙 = 𝑢     @𝑖 = 1: 𝑛𝑃 , 𝑗 = 𝑚 (5.13) 

 𝑢𝑝𝑖𝑙𝑒 = 𝑢𝑝𝑙𝑢𝑔 = 𝑢     @𝑖 = 𝑛: 𝑛𝑃 , 𝑗 = 𝑚 (5.14) 

The pile equations are based on Donnell thin shell theory (Banks et al. 1995): 

 
𝜕2𝑤

𝜕𝑡2
=

𝐸𝑃

𝜌𝑃(1 − 𝑣𝑃
2)

𝜕2𝑤

𝜕𝑧2
+

𝐸𝑃𝑣𝑃

𝜌𝑃(1 − 𝑣𝑃
2)

1

𝑟

𝜕𝑢

𝜕𝑧
 (5.15) 

 
𝜕2𝑢

𝜕𝑡2
= −

𝑣𝑃𝐸𝑃

𝜌𝑃(1 − 𝑣𝑃
2)

1

𝑟

𝜕𝑤

𝜕𝑧
−

𝐸𝑃

𝜌𝑃(1 − 𝑣𝑃
2)

1

𝑟2
𝑢 −

𝐸𝑃𝑡𝑃
2

12𝜌𝑃(1 − 𝑣𝑃
2)

𝜕4𝑢

𝜕𝑧4
 (5.16) 

𝜌𝑃 is the density of the pile,  𝐸𝑃 is the Young’s modulus of the pile, 𝑣𝑃is the poison ratio of the pile and 

𝑡𝑃 is the thickness of the pile shell. The equations are modified to include dynamic soil resistance: 

 

𝜕2𝑤

𝜕𝑡2
=

𝐸𝑃

𝜌𝑃(1 − 𝑣𝑃
2)

𝜕2𝑤

𝜕𝑧2
+

𝐸𝑃𝑣𝑃

𝜌𝑃(1 − 𝑣𝑃
2)

1

𝑟

𝜕𝑢

𝜕𝑧
+

𝐺

𝜌𝑃𝑡𝑃

𝜕𝑤

𝜕𝑟
|𝑠𝑜𝑖𝑙 +

𝐺

𝜌𝑃𝑡𝑃

𝜕𝑢

𝜕𝑧
|𝑠𝑜𝑖𝑙,𝑉      

 @𝑖 = 1: 𝑛 − 1, 𝑗 = 𝑚 

(5.17) 

 

𝜕2𝑢

𝜕𝑡2
= −

𝑣𝑃𝐸𝑃

𝜌𝑃(1 − 𝑣𝑃
2)

1

𝑟

𝜕𝑤

𝜕𝑧
−

𝐸𝑃

𝜌𝑃(1 − 𝑣𝑃
2)

1

𝑟2
𝑢 −

𝐸𝑃𝑡𝑃
2

12𝜌𝑃(1 − 𝑣𝑃
2)

𝜕4𝑢

𝜕𝑧4

+
(𝐾 +

4
3𝐺)

𝜌𝑃𝑡𝑃

𝜕𝑢

𝜕𝑟
|𝑠𝑜𝑖𝑙 +

(𝐾 −
2
3𝐺)

𝜌𝑃𝑡𝑃
(
𝑢

𝑟
+
𝜕𝑤

𝜕𝑧
|𝑠𝑜𝑖𝑙,𝑉)   

   @𝑖 = 1: 𝑛 − 1, 𝑗 = 𝑚 

(5.18) 

 

𝜕2𝑤

𝜕𝑡2
=

𝐸𝑃

𝜌𝑃(1 − 𝑣𝑃
2)

𝜕2𝑤

𝜕𝑧2
+

𝐸𝑃𝑣𝑃

𝜌𝑃(1 − 𝑣𝑃
2)

1

𝑟

𝜕𝑢

𝜕𝑧
+

𝐺

𝜌𝑃𝑡𝑃

𝜕𝑤

𝜕𝑟
|𝑠𝑜𝑖𝑙 −

𝐺

𝜌𝑃𝑡𝑃

𝜕𝑤

𝜕𝑟
|𝑝𝑙𝑢𝑔     

 @𝑖 = 𝑛: 𝑛𝑃 , 𝑗 = 𝑚 

(5.19) 

 

𝜕2𝑢

𝜕𝑡2
= −

𝑣𝑃𝐸𝑃

𝜌𝑃(1 − 𝑣𝑃
2)

1

𝑟

𝜕𝑤

𝜕𝑧
−

𝐸𝑃

𝜌𝑃(1 − 𝑣𝑃
2)

1

𝑟2
𝑢 −

𝐸𝑃𝑡𝑃
2

12𝜌𝑃(1 − 𝑣𝑃
2)

𝜕4𝑢

𝜕𝑧4

+
(𝐾 +

4
3𝐺)

𝜌𝑃𝑡𝑃

𝜕𝑢

𝜕𝑟
|𝑠𝑜𝑖𝑙 −

(𝐾 +
4
3𝐺)

𝜌𝑃𝑡𝑃

𝜕𝑢

𝜕𝑟
|𝑝𝑙𝑢𝑔     @𝑖 = 𝑛: 𝑛𝑃 , 𝑗 = 𝑚 

(5.20) 

|𝑠𝑜𝑖𝑙  denotes a single sided derivative to the right and |𝑝𝑙𝑢𝑔 denotes a single sided derivative to the left. 

|𝑠𝑜𝑖𝑙,𝑉 is a single sided derivative downwards. 

  



50 
 

 The boundary conditions at the pile head read: 

 (
𝜕𝑤

𝜕𝑧
+ 𝑣𝑃

𝑢

𝑟
) = −

1 − 𝑣𝑃
2

𝐸𝑝𝐴𝑝
𝐹𝑖𝑚𝑝(𝑡)    @𝑖 = 1, 𝑗 = 𝑚 (5.21) 

 
𝜕2𝑢

𝜕𝑧2
= 0     @𝑖 = 1, 𝑗 = 𝑚 (5.22) 

 
𝜕3𝑢

𝜕𝑧3
= 0     @𝑖 = 1, 𝑗 = 𝑚 (5.23) 

𝐴𝑝 is the cross-sectional area of the pile. In reality the moments and shear forces will not be zero  at the 

pile head because the hammer will always hit the pile eccentrically and at an angle compared to the 

vertical axis. These loads are not axisymmetric and can therefore not be taken into account in this 

model.  The boundary conditions at the pile toe read: 

 

(
𝜕𝑤

𝜕𝑧
+ 𝑣𝑃

𝑢

𝑟
) =

𝜋𝑑𝑛∆𝑟(1 − 𝑣𝑃
2)

𝐸𝑝𝐴𝑝
((𝐾 +

4

3
𝐺)
𝜕𝑤

𝜕𝑧
|𝑠𝑜𝑖𝑙,𝑉

+ (𝐾 −
2

3
𝐺) (

𝑢

𝑟
+
𝜕𝑢

𝜕𝑟
|𝑠𝑜𝑖𝑙))      @𝑖 = 𝑛𝑃 , 𝑗 = 𝑚 

(5.24) 

 
𝜕2𝑢

𝜕𝑧2
= 0     @𝑖 = 𝑛𝑃 , 𝑗 = 𝑚 (5.25) 

 
𝜕3𝑢

𝜕𝑧3
= 0     @𝑖 = 𝑛𝑃 , 𝑗 = 𝑚 (5.26) 

𝑑𝑛 is the nominal pile diameter. The moments and shear forces at the pile toe are not necessarily zero 

because of shear stress between the soil and the pile toe. This shear stress (which calculations show to 

be the same magnitude as the shear stresses observed along the shaft) is neglected, considering the 

small base area of open ended piles. The governing equations of motion, boundary and interface 

conditions are discretized with respect to space and transformed into a state space system: 

 

[
 
 
 
𝜕

𝜕𝑡
𝒅

𝜕2

𝜕𝑡2
𝒅]
 
 
 
= [

[0] [𝐼]
[𝑀1] [𝑀2]

] [
𝒅
𝜕

𝜕𝑡
𝒅
] + 𝑭 (5.27) 

With: 

 𝒅 = [
𝒘
𝒖
] (5.28) 

[𝑀1] and [𝑀2] contain the discretization coefficients with respect to space, [𝐼] is the identity matrix and 

𝑭 contains the impact force at the pile head. The full derivation can be found in appendix A3. The state 

space system is numerically implemented in Matlab and solved using ODE 45 solver. The full code can be 

found in appendix B4. 

5.2 Numerical aspects 
The governing equation of motion for the axis of symmetry needs to be adjusted because of singularity. 

The same approach used in section 4.2 is implemented here. By using the fact that the radial 
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displacement is zero and applying the L’Hopital rule, the system of two governing equations reduces to 

one: 

 𝜌
𝜕2𝑤

𝜕𝑡2
= (1 + 𝛼

𝜕

𝜕𝑡
) ((𝐾 +

4

3
𝐺)
𝜕2𝑤

𝜕𝑧2
+
𝜕2𝑢

𝜕𝑟𝜕𝑧
+ 2𝐺

𝜕2𝑤

𝜕𝑟2
)      @𝑖 = 𝑛:𝑁, 𝑗 = 1 (5.29) 

The convergence of the model is studied by considering the behaviour of soil system separately. The 

interface is excited by a harmonic vertical unity displacement (figure 5.2): 

 𝑤𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = 10
−3 sin(800𝑡) (5.30) 

 𝑢𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = 0 (5.31) 

Or a harmonic radial unity displacement (figure 5.3): 

 𝑤𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = 0 (5.32) 

 𝑢𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = 10
−3 sin(800𝑡) (5.33) 

Results in figure 5.2 show that the model converges for a grid size (both vertical and radial) of 2 cm. 

Various calculations with different ratio’s between vertical and radial grid size show that the optimal 

ratio is approximately 2:1. Looking at the vertical displacement field at t=0.05 second for a grid size of 2 

cm (figure 5.2 bottom left) and 10 cm (figure 5.2 top left), the difference seems to be twofold. The 10 

cm plot has 2 concentrated diagonals, originating from the edges. The diagonals seem to divert 

displacements from the surface and from underneath the interface . For the 2 cm, the concentrated 

diagonals disappear. This results in Rayleigh waves at the surface being clearly distinguishable from the 

vertical shear waves and the disappearance of the stagnant zone underneath the interface. 

Results in figure 5.3 show the development of pressure waves originating from the interface at two 

different instances: 0.005 s and 0.5 s. The complex interaction with the vertical displacement results in a 

chaotic displacement field. 

Convergence of the coupled pile-soil-plug model is harder to determine, since it depends on many 

factors like soil and plug layering, embedment of the pile in the soil and the hammer impact 

characteristics. Calculations with different layering and grid sizes show that the optimal ratio between 

vertical and radial grid size for the coupled model is approximately 2:1. Recommended grid sizes are 

given in table 5.1, along with an indication of computation time and accuracy. 

∆𝑧 [cm] ∆𝑟 [cm] indication of computation time (running  calculation on a 
laptop from 0 to 200 ms for a 50 m * 40 m domain size)  

indication of 
accuracy 

10 20 10 minutes moderate 

5 10 2 hours high 

2.5 5 8 hours converged 
Table 5.1: Recommended grid sizes for the coupled model 
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Figure 5.2: Behavior of the soil system under harmonic vertical unity excitation at the interface for various grid sizes  
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Figure 5.3: Behavior of the soil system under harmonic radial unity excitation at the interface at t=0.005 s and t=0.05 s 
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5.3 Confined aquifer modelling 
The coupled pile-soil-plug model is first applied to investigate displacements and shear stresses for the 

confined aquifer problem. The aquifer consists of loose sand, confined by either soft or firm clay. Three 

different pile driving phases are considered , as shown in figure 5.4. The layering of the soil is given in 

table 5.2. 

 

Figure 5.4: Three pile driving phases for the confined aquifer problem 

layer start height end height soil type first calculation 

1 0 9 soft or firm clay 

2 9 15 loose sand 

3 15 22 soft or firm clay 

4 22 50 medium sand 
Table 5.2: Soil layering 

The layering of the plug is different for each phase, as shown in figure 5.4. The damping coefficient used 

for all examples in this chapter is 0.0001. All other input values are derived from input tables 1.1 

(hammer), 1.3 (pile) and 1.4 (soil). 
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Figure 5.5 shows a comparison between phase 1 and 3 for two firm confining clay layers. In phase 3, the 

pile is almost fully embedded in the soil, while in phase 1 most of the pile extends above the surface. 

This results in more displacement cycles, as was the case in section 4.3.4. The vertical shear waves in the 

sand layer clearly lag behind those in the top clay layer, because of lower shear wave propagation 

velocity. Weak displacement amplitudes are observed in the lower clay layer. 

 

 

Figure 5.5: Comparison between phase 1 and 3 for loose sand confined by two firm clay layers  
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Figure 5.6 compares the shear stress as a function of time for the three different phases at various 

positions. In this case the aquifer is confined by two firm clay layers. The main wave front arrives at a 

certain point first in phase 3 and last in phase 1. This is because during phase 1 the wave first needs to 

travel the distance of the pile extended above the surface. Phase 3 is Cleary not the critical phase. Phase 

1 generates most cycles, while phase 2 yields the highest average cycle amplitude. Chapter 6 will show 

that cycle amplitude (even if it is slightly larger), is more important for excess pore pressure generation. 

 

 

 

Figure 5.6:  Shear stress as a function of time at various positions for the case of two firm confining clay layers 
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Figure 5.7 compares phase 2 with soft and firm confining clay layers. For the case of soft confining 

layers, the displacements are more severe because of the lower total stiffness of the system. Instead of 

lagging behind, the vertical shear waves in the loose sand layer are ahead in case of soft confining layers. 

 

 

Figure 5.7: Comparison between soft and firm confining clay layers 
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Figure 5.8 shows the shear stresses for the three different phases at various positions for the case of 

soft confining layers. Compared to the case with firm confining layers, the shear stresses clearly shift 

toward the negative side. This is because of higher positive displacements as shown in figure 5.7. Phase 

2 still has the higher average cycle amplitude and therefore it remains critical for excess pore pressure 

generation. 

 

 

 

Figure 5.8: Shear stress as a function of time at various positions for the case of two soft confining clay layers 
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Figure 5.9 shows (for the case of firm confining layers) a comparison of shear stresses between the 

current model and the simplified model in the previous chapter. Two important observations can be 

made: the shear stress amplitudes decay much faster in the simplified model and the wave front arrives 

earlier. It is assumed that stronger interaction with the firm confining clay layers (higher shear wave 

propagation velocity) causes the wave front to arrive earlier (compared to the full equations model) at a 

random point in the sand layer for the simplified model.  

 

 

 

Figure 5.9: Comparison between vertical displacement model and full equations model for the case of firm confining layers 
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Figure 5.10 confirms the assumption made in the previous page. The figure shows the case of soft 

confining layers. The lower shear wave propagation velocity in the soft confining clay layers causes the 

wave front to arrive later (compared to the full equations model) at a random point in the sand layer for 

the simplified model.  

 

 

 

Figure 5.10: Comparison between vertical displacement model and full equations model for the case of soft confining layers 
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The results in figure 5.9 and 5.10 show that the simplified model in chapter 4 is fundamentally different 

from the full equations model presented in this chapter. The simplified model has stronger vertical 

interaction. This causes the shear stress amplitude to decay faster compared to the full equations 

model. The stiffness of the confining layers will also have a stronger influence on the arrival time of the 

wave front in the aquifer. 

5.4 Slope modelling 
 The slope (figure 5.11 left) is modelled by an cylindrically symmetric model (figure 5.11 right). As was 

the case for the confined aquifer, the critical phase is when the pile tip is just embedded in the clay 

layer.  The model consists of a loosely packed sand layer on top of either a soft or firm clay layer. The 

layering is given in table 5.2. 

 

Figure 5.11: slope model 

layer start height end height soil type first calculation 

1 0 14 loose sand 

2 14 19 soft or firm clay 

3 19 50 medium sand 
Table 5.3: Layering of the slope model 

The comparison of shear stresses for the case of a soft or firm undelying clay layer is shown in figure 

5.12. The results are surprisingly similar. It appears that not the stiffness of the lower clay layer, but 

rather the stiffness of the upper clay layer is critical for the behaviour of the system.The slope model 

does not have an upper clay layer and the stiffness of the lower clay layer apperantly does not 

significantly influence the shear stresses in the sand layer.  
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Figure 5.12: Comparison of the shear stresses for the slope model at various points in case of soft or firm clay layer 
underneath the sand layer 
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6 Liquefaction model 
This chapter presents the liquefaction model and the coupling with the pile-soil-plug model. The 

sensitivity of the input and coupling variables will be analysed and discussed. 

6.1 Model formulation 
Impact pile driving is characterized by a dynamic phase following the hammer impact in which waves 

propagate into the soil domain. Once all energy has been transferred from the pile to the soil and the 

waves have propagated out of the soil domain, the consolidation phase starts. In this phase the excess 

pore pressures generated during the dynamic phase will dissipate. The consolidation phase lasts until 

the next blow occurs. This process is summarized in figure 6.1. 

 

Figure 6.1: Typical shear loading for impact pile driving 

The process of liquefaction can therefore be modelled by using the consolidation equation, with the 

addition of a excess pore pressure generation term for the dynamic phase. The cylindrically symmetric 

governing equation for soil consolidation reads (Verruit, 2013): 

 
𝜕𝑝

𝜕𝑡
= 𝑐𝑉

𝜕2𝑝

𝜕𝑧2
+ 𝑐𝐻 (

1

𝑟

𝜕𝑝

𝜕𝑟
+
𝜕2𝑝

𝜕𝑟2
) (6.1) 

p is the overpressure, 𝑐𝑉 is the coefficient of vertical consolidation and 𝑐𝐻 is the coefficient of horizontal 

consolidation. It is convenient to change p into the relative overpressure 𝑟𝑢 =
𝑝

𝜎𝑣0
′ .  𝜎𝑣0

′  is the initial 

effective stress. This gives the following set of equations: 

 
𝜕𝑟𝑢
𝜕𝑡

= 𝑟𝑢,𝑖𝑛𝑝𝑢𝑡(𝑡) + 𝑐𝑉
𝜕2𝑟𝑢
𝜕𝑧2

+ 𝑐𝐻 (
1

𝑟

𝜕𝑟𝑢
𝜕𝑟

+
𝜕2𝑟𝑢
𝜕𝑟2

)      @𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑝ℎ𝑎𝑠𝑒 (6.2) 

 
𝜕𝑟𝑢
𝜕𝑡

= 𝑐𝑉
𝜕2𝑟𝑢
𝜕𝑧2

+ 𝑐𝐻 (
1

𝑟

𝜕𝑟𝑢
𝜕𝑟

+
𝜕2𝑟𝑢
𝜕𝑟2

)      @𝑐𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒 (6.3) 

The input term requires an excess pore pressure generation model. An excellent overview of available 

models is found in the work of P. Meijers (Meijers, 2007). This overview is shown in figure 6.2. The Seed 

& Rahman model is the best fit for the purpose of the model presented in this chapter.  
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Figure 6.2: Overview of soil densification models (Meijers, 2007) 

The Seed and Rahman model is based on experimental research studying the excess pore pressure 

development in sand specimen subjected to harmonic shear loading. The development curve of the 

relative overpressure was found to be very similar to that of an inverse sine function (figure 6.3). 

 

Figure 6.3: Observed development of excess pore pressures in a sand specimen subject to harmonic shear loading 
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According to this model, the relative overpressure is equal to: 

 𝑟𝑢 =
2

𝜋
𝑎𝑟𝑐𝑠𝑖𝑛 (

𝑁

𝑁𝑙𝑖𝑞
)

1
2𝜃

 (6.4) 

With: 

 𝑁𝑙𝑖𝑞 = (
𝑎𝜎𝑣0

′ 𝐼𝐷
∆𝜏

)

𝑏

 (6.5) 

𝑁 is the current amount of cycles, 𝑁𝑙𝑖𝑞 is the amount of cycles required to reach liquefaction. 𝑁𝑙𝑖𝑞 

depends on the initial effective stress 𝜎𝑣0
′ , the initial relative density of the sand 𝐼𝐷 and the shear stress 

amplitude ∆𝜏. Commonly mentioned values in literature for the empirical constants 𝜃, 𝑎 and 𝑏 are 

(Meijers, 2007): 

 𝑎 = 0.48 (6.6) 

 𝑏 = 5 (6.7) 

 𝜃 = 0.7 (6.8) 

The inverse sine function is plotted for theta equal to 0.7 (figure 6.4). The figure shows that the arcsin 

function can be approximated by a linear function 𝑦 = 0.8𝑥. The advantage of the linear function is that 

the relative overpressure can reach unity, while this is not the case for the arcsin function (the limit of 

this function is a relative overpressure of 0.88). The linear function can also be used to estimate the post 

liquefaction behavior. The adapted function used in this chapter is: 

 𝑟𝑢 =
0.8 ∗ 2

𝜋

𝑁

𝑁𝑙𝑖𝑞
=
1.6

𝜋

𝑁

𝑁𝑙𝑖𝑞
 (6.9) 

 

Figure 6.4: Comparison arcsin and linear function 
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Figure 6.5: Liquefaction model 

The increment of the relative overpressure at node (i,j) (figure 6.5) for one single blow exciting 𝑁𝑛 

cycles is now described by the following equations: 

 
∆𝑟𝑢

𝑖,𝑗,𝑛
=
1.6𝑁𝑛

𝜋𝑁𝑙𝑖𝑞
𝑖,𝑗,𝑛

 
(6.10) 

 𝑁𝑙𝑖𝑞
𝑖,𝑗,𝑛

= (
𝑎𝜎𝑣0

′ 𝑖
𝐼𝐷

∆𝜏𝑐𝑦𝑐𝑙𝑒
𝑖,𝑗,𝑛

)

𝑏

 (6.11) 

i is the node position in vertical direction,  j the node position in radial direction and n the blow count.  

The elastic model presented in chapter 5 and the liquefaction model are coupled in two steps. The first 

step is to represent the shear stresses obtained from the elastic model at each node by an equivalent 

cycle. Because 𝑏 = 5, the relation between 𝑟𝑢 and the shear cycle amplitude is power 5. A small drop in 

cycle amplitude is equal to a steep drop in generated 𝑟𝑢.Therefore, to increase the speed of the 

calculation, the primary shear cycle amplitude is taken as the average of the maximum and absolute 

value of the minimum shear stress at a certain node. All secondary cycles are described by an primary 

cycle equivalence factor, depending on the severity of the secondary cycles. Figure 6.6 shows two 

examples of shear loading patters. Pattern one has weak secondary cycles, while pattern two has severe 

secondary cycles. Table 6.1 shows that the generated relative overpressures drop quickly with decrease 

in cycle amplitude. Calculations show that the primary cycle equivalence factor is 1.1 for pattern 1 and 

1.6 for pattern 2 (figure 6.7). Therefore: 

 𝑐1 = 1.1 𝑢𝑝 𝑡𝑜 1.6 (6.12) 

 ∆𝑟𝑢
𝑖,𝑗,𝑛

=
1.6𝑐1𝑁

𝑛

𝜋𝑁𝑙𝑖𝑞
𝑖,𝑗,𝑛

 (6.13) 

𝑁𝑛 now only represents primary shear loading cycles. 
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Figure 6.6: Two example shear loading patterns 

cycle cycle amplitude as percentage of the 
primary cycle amplitude pattern 1-2 

overpressure generated by cycle as percentage of 
overpressure generated by primary cycle pattern 1-2 

1 100-100 100-100 

2 40-80 2-29 

3 30-60 1-9 

4 20-40 0-2 

5 10-20 0-0 

Equivalent cycle with an amplitude of the primary cycle has a duration of between 1.1-1.6 times the 
duration of the primary cycle 

Table 6.1: Cycle equivalence comparison 

 

Figure 6.7: Equivalent cycles for the two shear loading patterns 
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The primary shear cycle amplitude is calculated for all nodes. Subsequently, the ratio is calculated 

between the primary shear cycle amplitude of a random node and the primary shear cycle amplitude at 

the interface with the same vertical height (figure 6.8). The ratio at each node is the primary output of 

the elastic model in chapter 5.  

 

Figure 6.8: Ratio between primary shear cycle amplitude at random point and the primary shear cycle amplitude at interface 
with same vertical height 

Realistic shear stresses are obtained by multiplying the ratios obtained from the elastic model by the 

yield shear stress at the interface: 

 𝜏𝑦𝑖𝑒𝑙𝑑
𝑖,1,𝑛 = (𝛽 + (1 − 𝑟𝑢

𝑖,1,𝑛)(𝛼 − 𝛽))𝜎𝑣0
′ 𝑖

 (6.14) 

 𝛼 = 𝐾0𝑡𝑎𝑛𝛿 = (1 − 𝑠𝑖𝑛𝜑) tan (
2

3
𝜑) (6.15) 

𝛼 is the ratio between yield shear stress and initial effective stress for zero relative overpressure. It can 

be approximated from the angle of internal friction 𝜑. For example 𝜑 = 30° gives 𝛼 = 0.18. 𝛽 is the 

ratio between yield shear stress and initial effective stress for unity relative overpressure. Meijers (2007) 

recommends 𝛽 = 0.1, though this may be considered a conservative value. The shear cycle at each node 

is now obtained by multiplying the ratio obtained from the elastic model with the yield shear stress: 

 ∆𝜏𝑐𝑦𝑐𝑙𝑒
𝑖,𝑗,𝑛

= 𝜏𝑦𝑖𝑒𝑙𝑑
𝑖,1,𝑛

∆𝜏𝑐𝑦𝑐𝑙𝑒,𝑒𝑙𝑎𝑠𝑡𝑖𝑐
𝑖,𝑗

∆𝜏𝑐𝑦𝑐𝑙𝑒,𝑒𝑙𝑎𝑠𝑡𝑖𝑐
𝑖,1

= (𝛽 + (1 − 𝑟𝑢
𝑖,1,𝑛)(𝛼 − 𝛽))𝜎𝑣0

′ 𝑖
∆𝜏𝑐𝑦𝑐𝑙𝑒,𝑒𝑙𝑎𝑠𝑡𝑖𝑐

𝑖,𝑗

∆𝜏𝑐𝑦𝑐𝑙𝑒,𝑒𝑙𝑎𝑠𝑡𝑖𝑐
𝑖,1

 (6.16) 

From the previous chapters, it is well known that vertical shear waves are the main transfer mechanism 

of energy from the pile into the soil. The shear stresses at the interface obtained from the elastic model 

are too high because slip is neglected (the pile and soil are assumed to be rigidly connected). The 

previous equation solves this by correcting for yield shear stress (𝑐𝑜𝑟 =
(𝛽+(1−𝑟𝑢

𝑖,1,𝑛)(𝛼−𝛽))𝜎𝑣0
′ 𝑖

∆𝜏𝑐𝑦𝑐𝑙𝑒,𝑒𝑙𝑎𝑠𝑡𝑖𝑐
𝑖,1 ). This 

however implies that the resistance added to the pile in the elastic model is also too high. The previous 

chapters show that smaller resistance results in more cycles. A conservative approach is to assume that 

the cycles increase proportionally  with the decrease in resistance at the interface: 
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 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑐𝑦𝑐𝑙𝑒𝑠 = 𝑚𝑒𝑎𝑛(
∆𝜏𝑐𝑦𝑐𝑙𝑒,𝑒𝑙𝑎𝑠𝑡𝑖𝑐

𝑖,1

(𝛽 + (1 − 𝑟𝑢
𝑖,1,𝑛)(𝛼 − 𝛽))𝜎𝑣0

′ 𝑖
) (6.17) 

The mean of the correction is taken, because 𝜎𝑣0
′ 𝑖,1

 strongly varies with vertical position. This would 

result in strong variation of cycle increase, which is not realistic. Assuming that the cycles increase 

proportionally  with the decrease in resistance at the interface is conservative, because  increase in 

friction and toe resistance will take over some of the energy originally  transferred by vertical shear 

waves, therefore a control parameter 𝛾 is added: 

 𝑁𝑛 = 1 + (𝛾 ∗ (𝑚𝑒𝑎𝑛(
∆𝜏𝑐𝑦𝑐𝑙𝑒,𝑒𝑙𝑎𝑠𝑡𝑖𝑐

𝑖,1

(𝛽 + (1 − 𝑟𝑢
𝑖,1,𝑛)(𝛼 − 𝛽))𝜎𝑣0

′ 𝑖
)− 1)) (6.18) 

𝛾 ratio between the increase in amount of shear cycles and the decrease of resistance at the pile-soil 

interface. Two extreme cases  of 𝛾 can be distinguished: 

 The energy that cannot be carried anymore by a single vertical shear wave cycle is fully taken 

over by increased friction and toe resistance, 𝛾 = 0. 

 There will not be any increase in friction and toe resistance. The energy that cannot be carried 

anymore by a single vertical shear wave cycle is still transferred by vertical shear waves, but by 

an increased amount of cycles, 𝛾 = 1. 

Practical values of 𝛾 will be in-between 0 and 1. 𝑁𝑛 now represents the total amount of primary cycles 

for each blow. 

The final form of the excess pore pressure generation model is obtained by substituting the expressions 

for ∆𝜏𝑐𝑦𝑐𝑙𝑒
𝑖,𝑗,𝑛

 (equation 6.16) and 𝑁𝑛 (equation 6.18) into equations 6.11 and 6.13: 

 ∆𝑟𝑢
𝑖,𝑗,𝑛

=
1.6𝑐1

𝜋𝑁𝑙𝑖𝑞
𝑖,𝑗,𝑛

∗

(

 
 
1+ (𝛾 ∗ (𝑚𝑒𝑎𝑛(

∆𝜏𝑐𝑦𝑐𝑙𝑒,𝑒𝑙𝑎𝑠𝑡𝑖𝑐
𝑖,1

(𝛽 + (1 − 𝑟𝑢
𝑖,1,𝑛)(𝛼 − 𝛽))𝜎𝑣0

′ 𝑖
)− 1))

)

 
 

 (6.19) 

 𝑁𝑙𝑖𝑞
𝑖,𝑗,𝑛

= (
𝑎𝐼𝐷∆𝜏𝑐𝑦𝑐𝑙𝑒,𝑒𝑙𝑎𝑠𝑡𝑖𝑐

𝑖,1

(𝛽 + (1 − 𝑟𝑢
𝑖,1,𝑛)(𝛼 − 𝛽))∆𝜏𝑐𝑦𝑐𝑙𝑒,𝑒𝑙𝑎𝑠𝑡𝑖𝑐

𝑖,𝑗
)

𝑏

 (6.20) 
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The governing equation for the dynamic phase is therefore: 

 

𝜕𝑟𝑢
𝑖,𝑗,𝑛

𝜕𝑡
=
1.6𝑐1
𝜋𝑇𝑑𝑦𝑛

∗ (

 
 
1+ (𝛾 ∗ (𝑚𝑒𝑎𝑛(

∆𝜏𝑐𝑦𝑐𝑙𝑒,𝑒𝑙𝑎𝑠𝑡𝑖𝑐
𝑖,1

(𝛽 + (1 − 𝑟𝑢
𝑖,1,𝑛)(𝛼 − 𝛽))𝜎𝑣0

′ 𝑖
) − 1))

)

 
 

(
𝑎𝐼𝐷∆𝜏𝑐𝑦𝑐𝑙𝑒,𝑒𝑙𝑎𝑠𝑡𝑖𝑐

𝑖,1

(𝛽 + (1 − 𝑟𝑢
𝑖,1,𝑛)(𝛼 − 𝛽))∆𝜏𝑐𝑦𝑐𝑙𝑒,𝑒𝑙𝑎𝑠𝑡𝑖𝑐

𝑖,𝑗
)

𝑏
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𝜕2𝑟𝑢
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+ 𝑐𝐻 (

1

𝑟

𝜕𝑟𝑢
𝑖,𝑗,𝑛
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+
𝜕2𝑟𝑢

𝑖,𝑗,𝑛

𝜕𝑟2
) 

(6.21) 

𝑇𝑑𝑦𝑛 is the duration of the dynamic phase. The governing equation for the consolidation phase reads: 

 
𝜕𝑟𝑢

𝑖,𝑗,𝑛

𝜕𝑡
= 𝑐𝑉

𝜕2𝑟𝑢
𝑖,𝑗,𝑛

𝜕𝑧2
+ 𝑐𝐻 (

1

𝑟

𝜕𝑟𝑢
𝑖,𝑗,𝑛

𝜕𝑟
+
𝜕2𝑟𝑢

𝑖,𝑗,𝑛

𝜕𝑟2
) (6.22) 

Figure 6.9 gives the model scheme of the liquefaction model and shows the coupling with the elastic 

model. 

 

Figure 6.9: liquefaction model scheme 
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6.2 Slope liquefaction modelling 
The liquefaction model only considers the upper loosely packed sand layer, with the boundary 

conditions shown in figure 6.10. Default input parameters can be found in input table 1.5. Based on the 

results in section 5.4, a cycle equivalence factor 𝑐1 = 1.4 is chosen (medium severity secondary cycles). 

 

Figure 6.10: Slope liquefaction modelling 

Figure 6.11 shows the steady state relative overpressure in the case the post liquefaction behaviour is 

neglected (relative overpressure cannot exceed unity). Figure 6.12 shows the case of approximating the 

post liquefaction behaviour by the linear function and figure 6.13 shows the development of the layer 

averaged relative overpressure as a function of time for both cases. Figure 6.13 indicates that the 

relative overpressures in the sand layer reach a steady state at around 2000 seconds for both cases. The 

layer averaged steady state relative overpressure is slightly higher for the case of neglecting post 

liquefaction behaviour. This is also clear from comparing figures 6.11 and 6.12: in figure 6.11 high 

relative overpressures seem to extend slightly further from the pile.  Neglecting post liquefaction 

behaviour yields a conservative (on the safe side) solution, and is therefore used as default setting for 

further analysis. 

 

Figure 6.11: Steady state relative overpressure for default control parameters and neglecting post liquefaction behaviour 
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Figure 6.12: Steady state relative overpressure for default control parameters and approximating post liquefaction behaviour 
with a linear function 

 

Figure 6.13: Comparison of the layer averaged relative overpressure development as a function of time for the two 
mentioned cases 

Figures 6.14 and 6.15 show the sensitivity of 𝛽 and 𝛾. 0.01 and 0.16 can be considered theoretical limits 

of 𝛽. This is because the main transfer mechanism of shear stress in a viscous fluid is assumed to be 

locking between the soil particles. In case of smooth particles with poor sorting, 𝛽 will approach zero. In 

case of angular particles with good sorting, 𝛽 will approach 𝛼. Practical values of 𝛽 and 𝛾 will be 

between the theoretical limits. In this range, 𝛽 is significantly more sensitive compared to 𝛾. The biggest 

uncertainty in the model is therefore 𝛽. Experimental validation of 𝛽 is recommended to reduce this 

uncertainty. 
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Figure 6.14: Sensitivity of 𝜷 

 

Figure 6.15: Sensitivity of 𝜸 

Figures 6.16, 6.17 and 6.18 show the sensitivity of the input variables: the time interval between each 

blow, the consolidation coefficient and the initial relative density. The initial relative density is clearly 

the most sensitive variable. This variable describes the initial packing of the sand and is therefore a 

strong measure for liquefaction potential. The time interval between each blow is the least sensitive 

variable. This is the only variable that can be altered during design.  
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Figure 6.16: Sensitivity of the time interval between each blow 

 

Figure 6.17: Sensitivity of the consolidation coefficient 

 

Figure 6.18: Sensitivity of the initial relative density 
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6.3 Confined aquifer liquefaction modelling 
For the case of the confined aquifer, only the aquifer is considered for the liquefaction model. The 

boundary conditions are shown in figure 6.20. The default input variables can be found in input table 

1.5. Elastic shear stresses derived from the case of two firm confining layers turn out to give the most 

severe results. Based on the results in section 5.3 for this case, a cycle equivalence factor 𝑐1 = 1.2 is 

chosen (limited severity of the secondary cycles). 

 

 

Figure 6.19: Confined aquifer liquefaction model 

Figures 6.20, 6.21 and 6.22 show the steady state relative overpressure for the case of default values, 

𝛽 = 0.05 and 𝛾 = 0.5. The results are very similar to the confined aquifer model: 𝛽 shows a higher 

sensitivity compared to 𝛾. The biggest difference can be found in figure 6.23, which shows the layer 

averaged relative overpressure development in time for the three different cases. The aquifer only has 

one outflow boundary (compared to two for the slope model). Steady state is reached after 5000 

seconds (compared to 2000 seconds for the slope model). Because of weaker  drainage capacity, the 

steady state layer averaged relative overpressures are significantly higher compared to those shown in 

figure 6.13 for the slope model.  
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Figure 6.20: Steady state relative overpressure for default values 

 

Figure 6.21: Steady state relative overpressure for beta = 0.05 

 

Figure 6.22: Steady state relative overpressure for gamma = 0.5 

 

Figure 6.23: Comparison of the layer averaged relative overpressure development as a function of time for the three 
mentioned cases   
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7 Conclusion and recommendations 

7.1 Conclusions 
Some interesting conclusions can be drawn from each chapter. The Smith pile driving model, presented 

in chapter 3, is the basis of many modern pile driving software packages. This model is not suitable for 

describing wave propagation in the soil domain, since the soil is represented by rheological models. The 

model reveals some interesting aspects of pile driving, for example the linear relation between pile set 

and toe resistance and the quadratic relation between pile set and shaft resistance. Excess pore 

pressure accumulation at the interface reduces the shaft resistance and is therefore essential in 

achieving pile set. 

Two existing simplified pile-soil models are presented in chapter 3. The van den Berghe and Holeyman 

model simplifies the pile to a rigid mass and the soil to concentric rigid cylinders. The Salgado et all. 

Model adds vertical discretization, simplifying the soil to thin ring slices without vertical interaction. 

Results show that these models achieve good results for homogenous soil. The models are inadequate 

for modelling layered soil. 

Chapter 4 and 5 try to overcome the disadvantages of the existing pile driving models, by introducing 

coupled pile-soil-plug models that take vertical interaction into account. The simplified model in chapter 

4 neglects radial displacement, while the model in chapter 5 solves the full equations. Results show that 

both models are fundamentally different. The simplified model shows much stronger vertical 

interaction, causing shear stress amplitudes to attenuate faster with radial distance from the pile. 

Additionally, wave front arrival at a certain position in a certain layer shows stronger dependence on 

stiffness of the surrounding layers in the simplified model. 

The liquefaction model presented in chapter 6 is a combination of the differential equation governing 

cylindrically symmetric soil consolidation and the empirical Seed and Rahman model describing 

generation of relative overpressures as a function of shear stress amplitudes. Coupling with the pile-soil-

plug model is achieved by introducing three coupling variables: 𝛼 (ratio between yield shear stress and 

initial effective stress for zero relative overpressure),  𝛽 (ratio between yield shear stress and initial 

effective stress for unity relative overpressure)  and 𝛾 (ratio between the increase in amount of shear 

cycles and the decrease of resistance at the pile-soil interface). 𝛼 is a well-defined variable in 

geotechnical engineering. 𝛽 and 𝛾 are uncertain variables. Results show that 𝛽 is the most sensitive and 

therefore the most uncertain variable in the model. 

7.2 Recommendations  
This thesis has investigated the pile-soil-plug interaction, the emission, propagation and attenuation of 

waves into the soil domain and resulting generation of excess pore pressures. The objective of the thesis 

was to develop a comprehensive framework, capable of estimating pile driving induced liquefaction 

instability. This objective has been achieved, although uncertainties remain regarding variables 𝛽 and 𝛾. 

Recommended values for these variables to obtain a conservative upper bound solution are 0.1 and 1. 

Further research may contribute to increasing the accuracy of this framework. 

Numerical improvements are not recommended. This is because of the incompatibility of the timescales 

and critical time steps of liquefaction on the one hand (timescale ~ 1000 s and critical time step ~ 0.1 s) 

and wave propagation on the other hand (timescale ~ 0.1 s and critical time step ~ 10−5 s). A fully 

coupled model will therefore have a timescale of ~ 1000 s and a critical time step of ~ 10−5 s, which 
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results in unrealistic calculation times.  Another issue is that the concept of yield shear stress at the 

interface is critical for pile driving induced liquefaction instability. No matter the followed modelling 

approach, the yield shear stress at the interface has to be included for the model to be realistic. This 

implies that it is impossible to set up a model without 𝛼 and 𝛽 being included as variables. The 

sensitivity of the variable 𝛾 (the only variable that can be improved numerically) is not considered 

significant enough to compensate for a sharp increase in calculation time. 

Experimental validation of 𝛽 is recommended instead. Increasing the certainty of predicting this variable 

will increase the accuracy of the model in general. Locking between particles is assumed to be the most 

important mechanism of shear transfer through a liquefied interface. 𝛽 should therefore be verified for 

sand specimen with different sorting and angularity. A probabilistic model may be set up to couple 

results of the liquefaction model with slope stability analysis software. If all these steps are carried out 

successfully, it might be possible to formulate an empirical formula which predicts liquefaction 

instability risk as a function of three variables: the 𝛽 (a measure for the peak shear stress amplitude that 

can be transferred into the soil domain), the initial relative density 𝐼𝐷 (a measure for the liquefaction 

potential of the soil) and the consolidation coefficient 𝑐𝑣 (a measure for the drainage capacity of the 

soil). These are the three critical (most sensitive) variables which can be used to make a first estimation 

of the full problem. 

 

Figure 7.1: Recommendation for further research 
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Appendix A1: Derivation of the Salgado pile driving model 
Soil grid: 

 𝜌
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First the equation is discretized: 
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After some algebraic manipulations: 
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Non-reflective boundary: 
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The equation is discretized: 
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Which is equivalent to: 
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With: 
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Equation 8 is substituted into equation 3 obtaining: 
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Pile: 

 𝜌𝑝𝐴𝑝
𝜕2𝑤

𝜕𝑡2
= 𝜋𝑑𝑃𝐺

𝜕𝑤

𝜕𝑟
+ 𝐸𝑝𝐴𝑝

𝜕2𝑤

𝜕𝑧2
 (11) 

The equation is discretized: 

 𝜌𝑝𝐴𝑝
𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = 𝜋𝑑𝑃𝐺

(𝑤𝑖,𝑗+1
 −𝑤𝑖,𝑗

 )

∆𝑟
+ 𝐸𝑝𝐴𝑝

(𝑤𝑖+1,𝑗
 − 2𝑤𝑖,𝑗

 +𝑤𝑖−1,𝑗
 )

∆𝑧2
 (12) 
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And after some algebraic manipulations: 

 
𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = 𝐶4𝑤𝑖,𝑗+1

 − (𝐶4 + 2𝐶5)𝑤𝑖,𝑗
 + 𝐶5𝑤𝑖+1,𝑗

 + 𝐶5𝑤𝑖−1,𝑗
  (13) 

With: 

 𝐶4 =
𝜋𝑑𝑃𝐺

2∆𝑟𝜌𝑝𝐴𝑝
 (14) 

 𝐶5 =
𝐸𝑝

∆𝑧2𝜌𝑝
 (15) 

Pile head: 

 𝐸𝑝𝐴𝑝
𝜕𝑤

𝜕𝑧
= −𝐹𝑖𝑚𝑝(𝑡) (16) 

Discretization gives the following result: 

 𝐸𝑝𝐴𝑝
𝑤𝑖+1,𝑗
 −𝑤𝑖−1,𝑗

 

2∆𝑧
= −𝐹𝑖𝑚𝑝

 (𝑡) (17) 

Therefore: 

 𝑤𝑖−1,𝑗
 = 𝐶6𝐹𝑖𝑚𝑝

 +𝑤𝑖+1,𝑗
  (18) 

With: 

 𝐶6 =
2∆𝑧

𝐸𝑝𝐴𝑝
 (19) 

Substituting equation 18 into equation 13 gives the following result: 

 
𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = 𝐶4𝑤𝑖,𝑗+1

 − (𝐶4 + 2𝐶5)𝑤𝑖,𝑗
 + 2𝐶5𝑤𝑖+1,𝑗

 + 𝐶5𝐶6𝐹𝑖𝑚𝑝
  (20) 

 

Pile toe:  

 𝐸𝑝𝐴𝑝
𝜕𝑤

𝜕𝑧
= −

𝐴𝑝𝑝𝑙𝑖𝑚
𝑄𝑡𝑜𝑒

𝑤 − 𝐴𝑝𝑝𝑙𝑖𝑚𝐽𝑡𝑜𝑒
𝜕𝑤

𝜕𝑡
 (21) 

The equation is discretized: 

 𝐸𝑝𝐴𝑝
𝑤𝑖+1,𝑗
 −𝑤𝑖−1,𝑗

 

2∆𝑧
= −

𝐴𝑝𝑝𝑙𝑖𝑚

𝑄𝑡𝑜𝑒
𝑤𝑖,𝑗 − 𝐴𝑝𝑝𝑙𝑖𝑚𝐽𝑡𝑜𝑒

𝜕

𝜕𝑡
𝑤𝑖,𝑗 (22) 

Which is equivalent  to: 

 𝑤𝑖+1,𝑗
 = −𝐶7𝑤𝑖,𝑗 − 𝐶8

𝜕

𝜕𝑡
𝑤𝑖,𝑗 +𝑤𝑖−1,𝑗

  (23) 

With: 

 
𝐶7 =

2∆𝑧𝑝𝑙𝑖𝑚
𝑄𝑡𝑜𝑒𝐸𝑝

 

 

(24) 

 𝐶8 =
2∆𝑧𝑝𝑙𝑖𝑚𝐽𝑡𝑜𝑒

𝐸𝑝
 (25) 
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Substituting equation 23 into equation 13 gives the following expression:  

 
𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = 𝐶4𝑤𝑖,𝑗+1

 − (𝐶4 + 2𝐶5 + 𝐶5𝐶7)𝑤𝑖,𝑗
 + 2𝐶5𝑤𝑖−1,𝑗

 − 𝐶5𝐶8
𝜕

𝜕𝑡
𝑤𝑖,𝑗 (26) 
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Appendix A2: Derivation of the simplified cylindrically symmetric model 
Grid: 

 𝜌
𝜕2𝑤

𝜕𝑡2
= (1 + 𝛼

𝜕

𝜕𝑡
) ((𝐾 +

4

3
𝐺)
𝜕2𝑤

𝜕𝑧2
+ 𝐺 (

𝜕2𝑤

𝜕𝑟2
+
1

𝑟

𝜕𝑤

𝜕𝑟
)) (1) 

The equation is discretized: 

 

𝜌
𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = (1 + 𝛼

𝜕

𝜕𝑡
)((𝐾 +

4

3
𝐺)
𝑤𝑖+1,𝑗 − 2𝑤𝑖,𝑗 +𝑤𝑖−1,𝑗

∆𝑧2

+ 𝐺 (
𝑤𝑖,𝑗+1 − 2𝑤𝑖,𝑗 +𝑤𝑖,𝑗−1

∆𝑟2
+
1

𝑟𝑗

𝑤𝑖,𝑗+1 −𝑤𝑖,𝑗−1

2∆𝑟
)) 

(2) 

After performing some algebraic manipulations: 

 

𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = (1 + 𝛼

𝜕

𝜕𝑡
) (−2(𝐶1 + 𝐶2)𝑤𝑖,𝑗 + 𝐶1𝑤𝑖+1,𝑗 + 𝐶1𝑤𝑖−1,𝑗 + (𝐶2 + 𝐶3

1

𝑟𝑗
)𝑤𝑖,𝑗+1

+ (𝐶2 − 𝐶3
1

𝑟𝑗
)𝑤𝑖,𝑗−1) 

(3) 

With: 

 𝐶1 =
(𝐾 +

4
3𝐺)

∆𝑧2𝜌
 (4) 

 𝐶2 =
𝐺

∆𝑟2𝜌
 (5) 

 𝐶3 =
𝐺

2∆𝑟𝜌
 (6) 

Axis of symmetry: 

 𝜎𝑟𝑧 = 𝐺
𝜕𝑤

𝜕𝑟
= 0 (7) 

Discretizing the equation: 

 𝑤𝑖,𝑗−1 = 𝑤𝑖,𝑗+1 (8) 

Substituting equation 8 into equation 3 (please note no damping is used  for boundary nodes): 

 
𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = −(2𝐶1 + 4𝐶2)𝑤𝑖,𝑗 + 𝐶1𝑤𝑖+1,𝑗 + 𝐶1𝑤𝑖−1,𝑗 + 4𝐶2𝑤𝑖,𝑗+1 (9) 

Free surface: 

 𝜎𝑧𝑧 = (𝐾 +
4

3
𝐺)
𝜕𝑤

𝜕𝑧
= 0 (10) 

The equation is discretized: 
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 𝑤𝑖−1,𝑗 = 𝑤𝑖+1,𝑗 (11) 

Substituting equation 11 into equation 3 yields the following result: 

 
𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = −2(𝐶1 + 𝐶2)𝑤𝑖,𝑗 + 2𝐶1𝑤𝑖+1,𝑗 + (𝐶2 + 𝐶3

1

𝑟𝑗
)𝑤𝑖,𝑗+1 + (𝐶2 − 𝐶3

1

𝑟𝑗
)𝑤𝑖,𝑗−1 (12) 

Vertical continuous boundary: 

 𝜎𝑟𝑧 = 𝐺
𝜕𝑤

𝜕𝑟
= −√𝐺𝜌

𝜕𝑤

𝜕𝑡
 (13) 

The equation is discretized: 

 𝐺
𝑤𝑖,𝑗+1 −𝑤𝑖,𝑗−1

2∆𝑟
= −√𝐺𝜌

𝜕

𝜕𝑡
𝑤𝑖,𝑗 (14) 

This is equivalent to: 

 𝑤𝑖,𝑗+1 = −𝐶4
𝜕

𝜕𝑡
𝑤𝑖,𝑗 +𝑤𝑖,𝑗−1 (15) 

With: 

 𝐶4 = 2∆𝑟√
𝜌

𝐺
 (16) 

Substituting equation 15 into equation 3 yields: 

 

𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = −2(𝐶1 + 𝐶2)𝑤𝑖,𝑗 + 𝐶1𝑤𝑖+1,𝑗 + 𝐶1𝑤𝑖−1,𝑗 + 2𝐶2𝑤𝑖,𝑗−1

− 𝐶4 (𝐶2 + 𝐶3
1

𝑟𝑗
)
𝜕

𝜕𝑡
𝑤𝑖,𝑗 

(17) 

Horizontal continuous boundary: 

 𝜎𝑧𝑧 = (𝐾 +
4

3
𝐺)
𝜕𝑤

𝜕𝑧
= −√(𝐾 +

4

3
𝐺) 𝜌

𝜕𝑤

𝜕𝑡
 (18) 

Discretize the equation: 

 (𝐾 +
4

3
𝐺)
𝑤𝑖+1,𝑗 −𝑤𝑖−1,𝑗

2∆𝑧
= −√(𝐾 +

4

3
𝐺)𝜌

𝜕

𝜕𝑡
𝑤𝑖,𝑗 (19) 

Or: 

 𝑤𝑖+1,𝑗 = −𝐶5
𝜕

𝜕𝑡
𝑤𝑖,𝑗 +𝑤𝑖−1,𝑗 (20) 

With: 

 
𝐶5 = 2∆𝑧√

𝜌

(𝐾 +
4
3𝐺)

 
(21) 
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Substituting equation 20 into equation 3 yields: 

 

𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = −2(𝐶1 + 𝐶2)𝑤𝑖,𝑗 + 2𝐶1𝑤𝑖−1,𝑗 + (𝐶2 + 𝐶3

1

𝑟𝑗
)𝑤𝑖,𝑗+1 + (𝐶2 − 𝐶3

1

𝑟𝑗
)𝑤𝑖,𝑗−1

− 𝐶1𝐶5
𝜕

𝜕𝑡
𝑤𝑖,𝑗 

(22) 

Pile: 

 𝜌𝑝𝐴𝑝
𝜕2𝑤

𝜕𝑡2
= 𝜋𝑑𝑒𝐺

𝜕𝑤

𝜕𝑟
|𝑜𝑢𝑡𝑒𝑟 − 𝜋𝑑𝑖𝐺

𝜕𝑤

𝜕𝑟
|𝑝𝑙𝑢𝑔 +

𝜕2𝑤

𝜕𝑧2
 (23) 

The equation is discretized: 

 

𝜌𝑝𝐴𝑝
𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = 𝜋𝑑𝑒𝐺

𝑤𝑖,𝑗+1
 −𝑤𝑖,𝑗

 

∆𝑟
− 𝜋𝑑𝑖𝐺

𝑤𝑖,𝑗
 −𝑤𝑖,𝑗−1

 

∆𝑟

+ 𝐸𝑝𝐴𝑝
𝑤𝑖+1,𝑗
 − 2𝑤𝑖,𝑗

 +𝑤𝑖−1,𝑗
 

∆𝑧2
 

(24) 

After some algebraic manipulations: 

 
𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = 𝐶6𝑤𝑖,𝑗+1

 + 𝐶6𝑝𝑤𝑖,𝑗−1
 + 𝐶7𝑤𝑖+1,𝑗

 + 𝐶7𝑤𝑖−1,𝑗
 + (−2𝐶7 − 𝐶6 − 𝐶6𝑝)𝑤𝑖,𝑗

  (25) 

With: 

 𝐶6 =
𝜋𝑑𝑒𝐺

∆𝑟𝜌𝑝𝐴𝑝
 (26) 

 𝐶6𝑝 =
𝜋𝑑𝑖𝐺

∆𝑟𝜌𝑝𝐴𝑝
 (27) 

 𝐶7 =
𝐸𝑝

∆𝑧2𝜌𝑝
 (28) 

Pile head: 

 𝐸𝑝𝐴𝑝
𝜕𝑤

𝜕𝑧
= −𝐹𝑖𝑚𝑝(𝑡) (29) 

Discretizing the equation: 

 𝐸𝑝𝐴𝑝
𝑤𝑖+1,𝑗
 −𝑤𝑖−1,𝑗

 

2∆𝑧
= −𝐹𝑖𝑚𝑝(𝑡) (30) 

This is equivalent to: 

 𝑤𝑖−1,𝑗
 = 𝐶8𝐹𝑖𝑚𝑝

 (𝑡) + 𝑤𝑖+1,𝑗
  (31) 

With: 

 𝐶8 =
2∆𝑧

𝐸𝑝𝐴𝑝
 (32) 

Substituting equation 31 into equation 25 yields: 
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𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = 𝐶6𝑤𝑖,𝑗+1

 + 𝐶6𝑝𝑤𝑖,𝑗−1
 + 2𝐶7𝑤𝑖+1,𝑗

 + (−2𝐶7 − 𝐶6 − 𝐶6𝑝)𝑤𝑖,𝑗
 

+ 𝐶7𝐶8𝐹𝑖𝑚𝑝
 (𝑡) 

(33) 

Pile base: 

 𝐸𝑝𝐴𝑝
𝜕𝑤

𝜕𝑧
=
1

4
𝜋 ((𝑑𝑛 +

∆𝑧

2
)
2

− (𝑑𝑛 −
∆𝑧

2
)
2

)(𝐾 +
4

3
𝐺)
𝜕𝑤

𝜕𝑧
 (34) 

The equation is discretized: 

 𝐸𝑝𝐴𝑝
𝑤𝑖+1,𝑗
 −𝑤𝑖−1,𝑗

 

2∆𝑧
=
1

2
𝜋𝑑𝑛∆𝑟 (𝐾 +

4

3
𝐺)
𝑤𝑖+1,𝑗
 −𝑤𝑖,𝑗

 

∆𝑧
 (35) 

This is equivalent to: 

 𝑤𝑖+1,𝑗
 = 𝐶9(𝑤𝑖+1,𝑗

 −𝑤𝑖,𝑗
 ) + 𝑤𝑖−1,𝑗

  (36) 

With: 

 𝐶9 =
𝜋𝑑𝑛∆𝑟 (𝐾 +

4
3𝐺)

𝐸𝑝𝐴𝑝
 (37) 

Substituting equation 36 into equation 25 yields: 

 

𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = 𝐶6𝑤𝑖,𝑗+1

 + 𝐶6𝑝𝑤𝑖,𝑗−1
 + 𝐶7𝐶9𝑤𝑖+1,𝑗

 + 2𝐶7𝑤𝑖−1,𝑗
 

+ (−2𝐶7 − 𝐶6 − 𝐶6𝑝 − 𝐶7𝐶9)𝑤𝑖,𝑗
  

(38) 
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Appendix A3: Derivation of the cylindrically symmetric model 
Grid U: 

Governing equation: 

 𝜌
𝜕2𝑢

𝜕𝑡2
= (1 + 𝛼

𝜕

𝜕𝑡
)((𝐾 +

4

3
𝐺)(

𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
−
𝑢

𝑟2
) + (𝐾 +

1

3
𝐺)

𝜕2𝑤

𝜕𝑟𝜕𝑧
+ 𝐺

𝜕2𝑢

𝜕𝑧2
) (1) 

Discretization of the governing equation: 

 

𝜌
𝜕2

𝜕𝑡2
𝑢𝑖,𝑗 = (1 + 𝛼

𝜕

𝜕𝑡
)((𝐾 +

4

3
𝐺)(

𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1

∆𝑟2
+
1

𝑟𝑗

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗−1

2∆𝑟

−
𝑢𝑖,𝑗

𝑟𝑗
2 ) + (𝐾 +

1

3
𝐺)
𝑤𝑖+1,𝑗+1 −𝑤𝑖+1,𝑗−1 −𝑤𝑖−1,𝑗+1 +𝑤𝑖−1,𝑗−1

4∆𝑧∆𝑟

+ 𝐺
𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

∆𝑧2
) 

(2) 

This is equivalent to: 

 

𝜕2

𝜕𝑡2
𝑢𝑖,𝑗 = (1 + 𝛼

𝜕

𝜕𝑡
)((𝐶1 + 𝐶2

1

𝑟𝑗
)𝑢𝑖,𝑗+1 + (𝐶1 − 𝐶2

1

𝑟𝑗
)𝑢𝑖,𝑗−1

− (2𝐶1 + 2𝐶5 + 𝐶3
1

𝑟𝑗
2)𝑢𝑖,𝑗 + 𝐶5𝑢𝑖+1,𝑗 + 𝐶5𝑢𝑖−1,𝑗 + 𝐶4𝑤𝑖+1,𝑗+1

− 𝐶4𝑤𝑖+1,𝑗−1 − 𝐶4𝑤𝑖−1,𝑗+1 + 𝐶4𝑤𝑖−1,𝑗−1) 

(3) 

With: 

 𝐶1 =
(𝐾 +

4
3𝐺)

∆𝑟2𝜌
 (4) 

 𝐶2 =
(𝐾 +

4
3𝐺)

2∆𝑟𝜌
 (5) 

 𝐶3 =
(𝐾 +

4
3𝐺)

𝜌
 (6) 

 𝐶4 =
(𝐾 +

1
3𝐺)

4∆𝑧∆𝑟𝜌
 (7) 
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 𝐶5 =
𝐺

∆𝑧2𝜌
 (8) 

Grid W: 

Governing equation: 

 

𝜌
𝜕2𝑤

𝜕𝑡2
= (1 + 𝛼

𝜕

𝜕𝑡
) ((𝐾 +

4

3
𝐺)
𝜕2𝑤

𝜕𝑧2
+ (𝐾 +

1

3
𝐺)(

𝜕2𝑢

𝜕𝑟𝜕𝑧
+
1

𝑟

𝜕𝑢

𝜕𝑧
)

+ 𝐺 (
𝜕2𝑤

𝜕𝑟2
+
1

𝑟

𝜕𝑤

𝜕𝑟
)) 

(9) 

Discretization of  the governing equation: 

 

𝜌
𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = (1 + 𝛼

𝜕

𝜕𝑡
) ((𝐾 +

4

3
𝐺)
𝑤𝑖+1,𝑗 − 2𝑤𝑖,𝑗 +𝑤𝑖−1,𝑗

∆𝑧2

+ (𝐾 +
1

3
𝐺)(

𝑢𝑖+1,𝑗+1 − 𝑢𝑖+1,𝑗−1 − 𝑢𝑖−1,𝑗+1 + 𝑢𝑖−1,𝑗−1

4∆𝑧∆𝑟

+
1

𝑟𝑗

𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗

2∆𝑧
)

+ 𝐺 (
𝑤𝑖,𝑗+1 − 2𝑤𝑖,𝑗 +𝑤𝑖,𝑗−1

∆𝑟2
+
1

𝑟𝑗

𝑤𝑖,𝑗+1 −𝑤𝑖,𝑗−1

2∆𝑟
)) 

(10) 

This is equivalent to: 

 

𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = (1 + 𝛼

𝜕

𝜕𝑡
)(𝐶6𝑤𝑖+1,𝑗 + 𝐶6𝑤𝑖−1,𝑗 − (2𝐶6 + 2𝐶8)𝑤𝑖,𝑗 + (𝐶8 + 𝐶9

1

𝑟𝑗
)𝑤𝑖,𝑗+1

+ (𝐶8 − 𝐶9
1

𝑟𝑗
)𝑤𝑖,𝑗−1 + 𝐶4𝑢𝑖+1,𝑗+1 − 𝐶4𝑢𝑖+1,𝑗−1 − 𝐶4𝑢𝑖−1,𝑗+1

+ 𝐶4𝑢𝑖−1,𝑗−1 + 𝐶7
1

𝑟𝑗
𝑢𝑖+1,𝑗 − 𝐶7

1

𝑟𝑗
𝑢𝑖−1,𝑗) 

(11) 

With: 

 𝐶6 =
(𝐾 +

4
3𝐺)

∆𝑧2𝜌
 (12) 

 𝐶7 =
(𝐾 +

1
3𝐺)

2∆𝑧𝜌
 (13) 

 𝐶8 =
𝐺

∆𝑟2𝜌
 (14) 

 𝐶9 =
𝐺

2∆𝑟𝜌
 (15) 
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Free surface: 

Boundary conditions: 

 𝜎𝑧𝑧 = (𝐾 +
4

3
𝐺)
𝜕𝑤

𝜕𝑧
+ (𝐾 −

2

3
𝐺) (

𝑢

𝑟
+
𝜕𝑢

𝜕𝑟
) = 0 (16) 

 𝜎𝑟𝑧 = 𝐺 (
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑟
) = 0 (17) 

Discretization of the boundary conditions: 

 (𝐾 +
4

3
𝐺)
𝑤𝑖+1,𝑗 −𝑤𝑖−1,𝑗

2∆𝑧
+ (𝐾 −

2

3
𝐺)(

1

𝑟𝑗
𝑢𝑖,𝑗 +

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗−1

2∆𝑟
) = 0 (18) 

 
𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗

2∆𝑧
+
𝑤𝑖,𝑗+1 −𝑤𝑖,𝑗−1

2∆𝑟
= 0 (19) 

This is equivalent to: 

 𝑤𝑖−1,𝑗 = 𝐶10
1

𝑟𝑗
𝑢𝑖,𝑗 + 𝐶11𝑢𝑖,𝑗+1 − 𝐶11𝑢𝑖,𝑗−1 +𝑤𝑖+1,𝑗 (20) 

 𝑢𝑖−1,𝑗 = 𝐶12𝑤𝑖,𝑗+1 − 𝐶12𝑤𝑖,𝑗−1 + 𝑢𝑖+1,𝑗 (21) 

With: 

 𝐶10 =
2∆𝑧 (𝐾 −

2
3𝐺)

(𝐾 +
4
3𝐺)

 (22) 

 𝐶11 =
∆𝑧 (𝐾 −

2
3𝐺)

∆𝑟 (𝐾 +
4
3𝐺)

 (23) 

 𝐶12 =
∆𝑧

∆𝑟
 (24) 
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Equations 3 and 11 with modified mixed derivative and without damping (damping only applied for 

internal nodes): 

 

𝜕2

𝜕𝑡2
𝑢𝑖,𝑗 = (𝐶1 + 𝐶2

1

𝑟𝑗
)𝑢𝑖,𝑗+1 + (𝐶1 − 𝐶2

1

𝑟𝑗
)𝑢𝑖,𝑗−1 − (2𝐶1 + 2𝐶5 + 𝐶3

1

𝑟𝑗
2)𝑢𝑖,𝑗

+ 𝐶5𝑢𝑖+1,𝑗 + 𝐶5𝑢𝑖−1,𝑗 + 𝐶4𝑚𝑤𝑖+1,𝑗+1 − 𝐶4𝑚𝑤𝑖+1,𝑗−1 − 𝐶4𝑚𝑤𝑖,𝑗+1

+ 𝐶4𝑚𝑤𝑖,𝑗−1 

(25) 

 

𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = 𝐶6𝑤𝑖+1,𝑗 + 𝐶6𝑤𝑖−1,𝑗 − (2𝐶6 + 2𝐶8)𝑤𝑖,𝑗 + (𝐶8 + 𝐶9

1

𝑟𝑗
)𝑤𝑖,𝑗+1

+ (𝐶8 − 𝐶9
1

𝑟𝑗
)𝑤𝑖,𝑗−1 + 𝐶4𝑚𝑢𝑖+1,𝑗+1 − 𝐶4𝑚𝑢𝑖+1,𝑗−1 − 𝐶4𝑚𝑢𝑖,𝑗+1

+ 𝐶4𝑚𝑢𝑖,𝑗−1 + 𝐶7
1

𝑟𝑗
𝑢𝑖+1,𝑗 − 𝐶7

1

𝑟𝑗
𝑢𝑖−1,𝑗 

(26) 

With: 

 𝐶4𝑚 =
(𝐾 +

1
3𝐺)

2∆𝑧∆𝑟𝜌
 (27) 

Substituting boundary condition expressions 20 and 21 into equations 25 and 26 yields the final result: 

 

𝜕2

𝜕𝑡2
𝑢𝑖,𝑗 = (𝐶1 + 𝐶2

1

𝑟𝑗
)𝑢𝑖,𝑗+1 + (𝐶1 − 𝐶2

1

𝑟𝑗
)𝑢𝑖,𝑗−1 − (2𝐶1 + 2𝐶5 + 𝐶3

1

𝑟𝑗
2)𝑢𝑖,𝑗

+ 2𝐶5𝑢𝑖+1,𝑗 + (𝐶5𝐶12 − 𝐶4𝑚)𝑤𝑖,𝑗+1 + (𝐶4𝑚 − 𝐶5𝐶12)𝑤𝑖,𝑗−1

+ 𝐶4𝑚𝑤𝑖+1,𝑗+1 − 𝐶4𝑚𝑤𝑖+1,𝑗−1 

(28) 

 

𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = 2𝐶6𝑤𝑖+1,𝑗 − (2𝐶6 + 2𝐶8)𝑤𝑖,𝑗 + (𝐶8 + (𝐶9 − 𝐶7𝐶12)

1

𝑟𝑗
)𝑤𝑖,𝑗+1

+ (𝐶8 + (𝐶7𝐶12 − 𝐶9)
1

𝑟𝑗
)𝑤𝑖,𝑗−1 + 𝐶6𝐶10

1

𝑟𝑗
𝑢𝑖,𝑗 + 𝐶4𝑚𝑢𝑖+1,𝑗+1

− 𝐶4𝑚𝑢𝑖+1,𝑗−1 + (𝐶6𝐶11 − 𝐶4𝑚)𝑢𝑖,𝑗+1 + (𝐶4𝑚 − 𝐶6𝐶11)𝑢𝑖,𝑗−1 

(29) 
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Vertical non-reflective boundary: 

Boundary conditions: 

 𝜎𝑟𝑟 = (𝐾 +
4

3
𝐺)
𝜕𝑢

𝜕𝑟
+ (𝐾 −

2

3
𝐺) (

𝑢

𝑟
+
𝜕𝑤

𝜕𝑧
) = −√𝜌 (𝐾 +

4

3
𝐺)
𝜕𝑢

𝜕𝑡
 (30) 

 𝜎𝑟𝑧 = 𝐺 (
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑟
) = −√𝜌𝐺

𝜕𝑤

𝜕𝑡
 (31) 

Discretization of the boundary conditions: 

 

(𝐾 +
4

3
𝐺)
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗−1

2∆𝑟
+ (𝐾 −

2

3
𝐺)(

1

𝑟𝑗
𝑢𝑖,𝑗 +

𝑤𝑖+1,𝑗 −𝑤𝑖−1,𝑗

2∆𝑧
)

= −√𝜌(𝐾 +
4

3
𝐺)

𝜕

𝜕𝑡
𝑢𝑖,𝑗 

(32) 

 𝐺 (
𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗

2∆𝑧
+
𝑤𝑖,𝑗+1 −𝑤𝑖,𝑗−1

2∆𝑟
) = −√𝜌𝐺

𝜕

𝜕𝑡
𝑤𝑖,𝑗 (33) 

This is equivalent to: 

 𝑢𝑖,𝑗+1 = −𝐶14  
1

𝑟𝑗
𝑢𝑖,𝑗 − 𝐶15𝑤𝑖+1,𝑗 + 𝐶15𝑤𝑖−1,𝑗 + 𝑢𝑖,𝑗−1 − 𝐶13

𝜕

𝜕𝑡
𝑢𝑖,𝑗 (34) 

 𝑤𝑖,𝑗+1 = −𝐶17𝑢𝑖+1,𝑗 + 𝐶17𝑢𝑖−1,𝑗 +𝑤𝑖,𝑗−1 − 𝐶16
𝜕

𝜕𝑡
𝑤𝑖,𝑗 (35) 

With: 

 
𝐶13 = 2∆𝑟√

𝜌

(𝐾 +
4
3𝐺)

 
(36) 

 𝐶14 =
2∆𝑟 (𝐾 −

2
3𝐺)

(𝐾 +
4
3𝐺)

 (37) 

 𝐶15 =
∆𝑟 (𝐾 −

2
3𝐺)

∆𝑧 (𝐾 +
4
3𝐺)

 (38) 

 𝐶16 = 2∆𝑟√
𝜌

𝐺
 (39) 

 𝐶17 =
∆𝑟

∆𝑧
 (40) 
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Equations 3 and 11 with modified mixed derivative and without damping: 

 

𝜕2

𝜕𝑡2
𝑢𝑖,𝑗 = (𝐶1 + 𝐶2

1

𝑟𝑗
)𝑢𝑖,𝑗+1 + (𝐶1 − 𝐶2

1

𝑟𝑗
)𝑢𝑖,𝑗−1 − (2𝐶1 + 2𝐶5 + 𝐶3

1

𝑟𝑗
2)𝑢𝑖,𝑗

+ 𝐶5𝑢𝑖+1,𝑗 + 𝐶5𝑢𝑖−1,𝑗 + 𝐶4𝑚𝑤𝑖+1,𝑗 − 𝐶4𝑚𝑤𝑖+1,𝑗−1 − 𝐶4𝑚𝑤𝑖−1,𝑗

+ 𝐶4𝑚𝑤𝑖−1,𝑗−1 

(41) 

 

𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = 𝐶6𝑤𝑖+1,𝑗 + 𝐶6𝑤𝑖−1,𝑗 − (2𝐶6 + 2𝐶8)𝑤𝑖,𝑗 + (𝐶8 + 𝐶9

1

𝑟𝑗
)𝑤𝑖,𝑗+1

+ (𝐶8 − 𝐶9
1

𝑟𝑗
)𝑤𝑖,𝑗−1 + 𝐶4𝑚𝑢𝑖+1,𝑗 − 𝐶4𝑚𝑢𝑖+1,𝑗−1 − 𝐶4𝑚𝑢𝑖−1,𝑗

+ 𝐶4𝑚𝑢𝑖−1,𝑗−1 + 𝐶7
1

𝑟𝑗
𝑢𝑖+1,𝑗 − 𝐶7

1

𝑟𝑗
𝑢𝑖−1,𝑗 

(42) 

Substituting boundary condition expressions 34 and 35 into equations 41 and 42 yields the final result: 

 

𝜕2

𝜕𝑡2
𝑢𝑖,𝑗 = 2𝐶1𝑢𝑖,𝑗−1 − (2𝐶1 + 2𝐶5 + 𝐶1𝐶14

1

𝑟𝑗
+ (𝐶3 + 𝐶2𝐶14)

1

𝑟𝑗
2)𝑢𝑖,𝑗 + 𝐶5𝑢𝑖+1,𝑗

+ 𝐶5𝑢𝑖−1,𝑗 + (𝐶4𝑚 − 𝐶15 (𝐶1 + 𝐶2
1

𝑟𝑗
))𝑤𝑖+1,𝑗 − 𝐶4𝑚𝑤𝑖+1,𝑗−1

+ (𝐶15 (𝐶1 + 𝐶2
1

𝑟𝑗
) − 𝐶4𝑚)𝑤𝑖−1,𝑗 + 𝐶4𝑚𝑤𝑖−1,𝑗−1

− 𝐶13 (𝐶1 + 𝐶2
1

𝑟𝑗
)
𝜕

𝜕𝑡
𝑢𝑖,𝑗 

(43) 

 

𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = 𝐶6𝑤𝑖+1,𝑗 + 𝐶6𝑤𝑖−1,𝑗 − (2𝐶6 + 2𝐶8)𝑤𝑖,𝑗 + 2𝐶8𝑤𝑖,𝑗−1

+ (𝐶4𝑚 − 𝐶17𝐶8 + (𝐶7 − 𝐶17𝐶9)
1

𝑟𝑗
)𝑢𝑖+1,𝑗 − 𝐶4𝑚𝑢𝑖+1,𝑗−1

+ (𝐶17𝐶8 − 𝐶4𝑚 + (𝐶17𝐶9 − 𝐶7)
1

𝑟𝑗
)𝑢𝑖−1,𝑗 + 𝐶4𝑚𝑢𝑖−1,𝑗−1

− 𝐶16 (𝐶8 + 𝐶9
1

𝑟𝑗
)
𝜕

𝜕𝑡
𝑤𝑖,𝑗  

(44) 

 

 

 

 

  



98 
 

Horizontal non-reflective boundary: 

Boundary conditions: 

 𝜎𝑧𝑧 = (𝐾 +
4

3
𝐺)
𝜕𝑤

𝜕𝑧
+ (𝐾 −

2

3
𝐺) (

𝑢

𝑟
+
𝜕𝑢

𝜕𝑟
) = −√𝜌 (𝐾 +

4

3
𝐺)
𝜕𝑤

𝜕𝑡
 (45) 

 𝜎𝑟𝑧 = 𝐺 (
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑟
) = −√𝜌𝐺

𝜕𝑢

𝜕𝑡
 (46) 

Discretization of the boundary conditions: 

 

(𝐾 +
4

3
𝐺)
𝑤𝑖+1,𝑗 −𝑤𝑖−1,𝑗

2∆𝑧
+ (𝐾 −

2

3
𝐺)(

1

𝑟𝑗
𝑢𝑖,𝑗 +

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗−1

2∆𝑟
)

= −√𝜌(𝐾 +
4

3
𝐺)

𝜕

𝜕𝑡
𝑤𝑖,𝑗 

(47) 

 𝐺 (
𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗

2∆𝑧
+
𝑤𝑖,𝑗+1 −𝑤𝑖,𝑗−1

2∆𝑟
) = −√𝜌𝐺

𝜕

𝜕𝑡
𝑢𝑖,𝑗 (48) 

This is equivalent to: 

 𝑤𝑖+1,𝑗 = −𝐶10
1

𝑟𝑗
𝑢𝑖,𝑗 − 𝐶11𝑢𝑖,𝑗+1 + 𝐶11𝑢𝑖,𝑗−1 +𝑤𝑖−1,𝑗 − 𝐶18

𝜕

𝜕𝑡
𝑤𝑖,𝑗 (49) 

 𝑢𝑖+1,𝑗 = −𝐶12𝑤𝑖,𝑗+1 + 𝐶12𝑤𝑖,𝑗−1 + 𝑢𝑖−1,𝑗 − 𝐶19
𝜕

𝜕𝑡
𝑢𝑖,𝑗 (50) 

With: 

 
𝐶18 = 2∆𝑧√

𝜌

(𝐾 +
4
3𝐺)

 
(51) 

 𝐶19 = 2∆𝑧√
𝜌

𝐺
 (52) 
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Equations 3 and 11 with modified mixed derivative and without damping: 

 

𝜕2

𝜕𝑡2
𝑢𝑖,𝑗 = (𝐶1 + 𝐶2

1

𝑟𝑗
)𝑢𝑖,𝑗+1 + (𝐶1 − 𝐶2

1

𝑟𝑗
)𝑢𝑖,𝑗−1 − (2𝐶1 + 2𝐶5 + 𝐶3

1

𝑟𝑗
2)𝑢𝑖,𝑗

+ 𝐶5𝑢𝑖+1,𝑗 + 𝐶5𝑢𝑖−1,𝑗 + 𝐶4𝑚𝑤𝑖,𝑗+1 − 𝐶4𝑚𝑤𝑖,𝑗−1 − 𝐶4𝑚𝑤𝑖−1,𝑗+1

+ 𝐶4𝑚𝑤𝑖−1,𝑗−1 

(53) 

 

𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = 𝐶6𝑤𝑖+1,𝑗 + 𝐶6𝑤𝑖−1,𝑗 − (2𝐶6 + 2𝐶8)𝑤𝑖,𝑗 + (𝐶8 + 𝐶9

1

𝑟𝑗
)𝑤𝑖,𝑗+1

+ (𝐶8 − 𝐶9
1

𝑟𝑗
)𝑤𝑖,𝑗−1 + 𝐶4𝑚𝑢𝑖,𝑗+1 − 𝐶4𝑚𝑢𝑖,𝑗−1 − 𝐶4𝑚𝑢𝑖−1,𝑗+1

+ 𝐶4𝑚𝑢𝑖−1,𝑗−1 + 𝐶7
1

𝑟𝑗
𝑢𝑖+1,𝑗 − 𝐶7

1

𝑟𝑗
𝑢𝑖−1,𝑗 

(54) 

Substituting boundary condition expressions 49 and 50 into equations 53 and 54 yields the final result: 

 

𝜕2

𝜕𝑡2
𝑢𝑖,𝑗 = (𝐶1 + 𝐶2

1

𝑟𝑗
)𝑢𝑖,𝑗+1 + (𝐶1 − 𝐶2

1

𝑟𝑗
)𝑢𝑖,𝑗−1 − (2𝐶1 + 2𝐶5 + 𝐶3

1

𝑟𝑗
2)𝑢𝑖,𝑗

+ 2𝐶5𝑢𝑖−1,𝑗 + (𝐶4𝑚 − 𝐶5𝐶12)𝑤𝑖,𝑗+1 + ( 𝐶5𝐶12 − 𝐶4𝑚)𝑤𝑖,𝑗−1

− 𝐶4𝑚𝑤𝑖−1,𝑗+1 + 𝐶4𝑚𝑤𝑖−1,𝑗−1 − 𝐶5𝐶19
𝜕

𝜕𝑡
𝑢𝑖,𝑗 

(55) 

 

𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = 2𝐶6𝑤𝑖−1,𝑗 − (2𝐶6 + 2𝐶8)𝑤𝑖,𝑗 + (𝐶8 + (𝐶9 − 𝐶7𝐶12)

1

𝑟𝑗
)𝑤𝑖,𝑗+1

+ (𝐶8 + (𝐶7𝐶12 − 𝐶9)
1

𝑟𝑗
)𝑤𝑖,𝑗−1 − 𝐶6𝐶10

1

𝑟𝑗
𝑢𝑖,𝑗

+ (𝐶4𝑚 − 𝐶6𝐶11)𝑢𝑖,𝑗+1 + (𝐶6𝐶11 − 𝐶4𝑚)𝑢𝑖,𝑗−1 − 𝐶4𝑚𝑢𝑖−1,𝑗+1

+ 𝐶4𝑚𝑢𝑖−1,𝑗−1 − 𝐶6𝐶18
𝜕

𝜕𝑡
𝑤𝑖,𝑗 − 𝐶7𝐶19

1

𝑟𝑗

𝜕

𝜕𝑡
𝑢𝑖,𝑗 

(56) 

 

Axis of symmetry: 

Modified governing equation (section 5.1): 

 𝜌
𝜕2𝑤

𝜕𝑡2
= (𝐾 +

4

3
𝐺)
𝜕2𝑤

𝜕𝑧2
+ (𝐾 +

1

3
𝐺)(

𝜕2𝑢

𝜕𝑟𝜕𝑧
) + 2𝐺

𝜕2𝑤

𝜕𝑟2
 (57) 
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Discretization of the governing equation: 

 

𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 =

(𝐾 +
4
3
𝐺)

∆𝑧2𝜌
(𝑤𝑖+1,𝑗 − 2𝑤𝑖,𝑗 +𝑤𝑖−1,𝑗)

+
(𝐾 +

1
3
𝐺)

4∆𝑧∆𝑟𝜌
(𝑢𝑖+1,𝑗+1 − 𝑢𝑖+1,𝑗−1 − 𝑢𝑖−1,𝑗+1 + 𝑢𝑖−1,𝑗−1)

+
2𝐺

∆𝑟2𝜌
(𝑤𝑖,𝑗+1 − 2𝑤𝑖,𝑗 +𝑤𝑖,𝑗−1) 

(58) 

Since the following relations hold for the axis of symmetry: 

 𝑤𝑖,𝑗−1 = 𝑤𝑖,𝑗+1     𝑎𝑛𝑑     𝑢𝑖+1,𝑗−1 = −𝑢𝑖+1,𝑗+1     𝑎𝑛𝑑     𝑢𝑖−1,𝑗−1 = −𝑢𝑖−1,𝑗+1 (59) 

The final expression is: 

 

𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = 𝐶6𝑤𝑖+1,𝑗 + 𝐶6𝑤𝑖−1,𝑗 − (2𝐶6 + 4𝐶8)𝑤𝑖,𝑗 + 4𝐶8𝑤𝑖,𝑗+1 + 𝐶4𝑚𝑢𝑖+1,𝑗+1

− 𝐶4𝑚𝑢𝑖−1,𝑗+1 
(60) 

Pile W: 

Governing equation: 

 

𝜕2𝑤

𝜕𝑡2
=

𝐸𝑃

𝜌𝑃(1 − 𝑣𝑃
2)

𝜕2𝑤

𝜕𝑧2
+

𝐸𝑃𝑣𝑃

𝜌𝑃(1 − 𝑣𝑃
2)

1

𝑟

𝜕𝑢

𝜕𝑧
+

𝐺

𝜌𝑃𝑡𝑃

𝜕𝑤

𝜕𝑟
|𝑠𝑜𝑖𝑙 −

𝐺

𝜌𝑃𝑡𝑃
|𝑝𝑙𝑢𝑔

𝜕𝑤

𝜕𝑟
|𝑝𝑙𝑢𝑔

+
𝐺

𝜌𝑃𝑡𝑃
|𝑠𝑜𝑖𝑙

𝜕𝑢

𝜕𝑧
|𝑠𝑜𝑖𝑙  

(61) 

Discretization of the governing: 

 

𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 =

𝐸𝑃

∆𝑧2𝜌𝑃(1 − 𝑣𝑃
2)
(𝑤𝑖+1,𝑗 − 2𝑤𝑖,𝑗 +𝑤𝑖−1,𝑗)

+
𝐸𝑃𝑣𝑃

2∆𝑧𝜌𝑃(1 − 𝑣𝑃
2)

1

𝑟𝑗
(𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗) +

𝐺

∆𝑟𝜌𝑃𝑡𝑃
(𝑤𝑖,𝑗+1 −𝑤𝑖,𝑗)

−
𝐺

∆𝑟𝜌𝑃𝑡𝑃
|𝑝𝑙𝑢𝑔(𝑤𝑖,𝑗 −𝑤𝑖,𝑗−1) +

𝐺

∆𝑧𝜌𝑃𝑡𝑃
|𝑠𝑜𝑖𝑙(𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗) 

(62) 

 

This is equivalent to: 

 

𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = 𝐶20𝑤𝑖+1,𝑗 + 𝐶20𝑤𝑖−1,𝑗 − (2𝐶20 + 𝐶22 + 𝐶22𝑝)𝑤𝑖,𝑗 + 𝐶22𝑤𝑖,𝑗+1

+ 𝐶22𝑝𝑤𝑖,𝑗−1 + (𝐶21
1

𝑟𝑗
+ 𝐶23𝑠)𝑢𝑖+1,𝑗 − 𝐶21

1

𝑟𝑗
𝑢𝑖−1,𝑗 − 𝐶23𝑠𝑢𝑖,𝑗 

(63) 
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With 

 𝐶20 =
𝐸𝑃

∆𝑧2𝜌𝑃(1 − 𝑣𝑃
2)

 (64) 

 𝐶21 =
𝐸𝑃𝑣𝑃

2∆𝑧𝜌𝑃(1 − 𝑣𝑃
2)

 (65) 

 𝐶22 =
𝐺

∆𝑟𝜌𝑃𝑡𝑃
 (66) 

 𝐶22𝑝 =
𝐺

∆𝑟𝜌𝑃𝑡𝑃
 (67) 

 𝐶23𝑠 =
𝐺

∆𝑧𝜌𝑃𝑡𝑃
 (68) 

Pile U: 

Governing equation: 

 

𝜕2𝑢

𝜕𝑡2
= −

𝑣𝑃𝐸𝑃

𝜌𝑃(1 − 𝑣𝑃
2)

1

𝑟

𝜕𝑤

𝜕𝑧
−

𝐸𝑃

𝜌𝑃(1 − 𝑣𝑃
2)

1

𝑟2
𝑢 −

𝐸𝑃𝑡𝑃
2

12𝜌𝑃(1 − 𝑣𝑃
2)

𝜕4𝑢

𝜕𝑧4

+
(𝐾 +

4
3𝐺)

𝜌𝑃𝑡𝑃

𝜕𝑢

𝜕𝑟
|𝑠𝑜𝑖𝑙 −

(𝐾 +
4
3𝐺)

𝜌𝑃𝑡𝑃
|𝑝𝑙𝑢𝑔

𝜕𝑢

𝜕𝑟
|𝑝𝑙𝑢𝑔

+
(𝐾 −

2
3𝐺)

𝜌𝑃𝑡𝑃
|𝑠𝑜𝑖𝑙 (

𝑢

𝑟
+
𝜕𝑤

𝜕𝑧
) |𝑠𝑜𝑖𝑙  

(69) 

Discretization of the governing equation: 

 

𝜌
𝜕2

𝜕𝑡2
𝑢𝑖,𝑗 = −

𝑣𝑃𝐸𝑃

2∆𝑧𝜌𝑃(1 − 𝑣𝑃
2)

1

𝑟𝑗
(𝑤𝑖+1,𝑗 −𝑤𝑖−1,𝑗) −

𝐸𝑃

𝜌𝑃(1 − 𝑣𝑃
2)

1

𝑟𝑗
2 𝑢𝑖,𝑗

−
𝐸𝑃𝑡𝑃

2

12∆𝑧4𝜌𝑃(1 − 𝑣𝑃
2)
(𝑢𝑖−2,𝑗 − 4𝑢𝑖−1,𝑗 + 6𝑢𝑖,𝑗 − 4𝑢𝑖+1,𝑗 + 𝑢𝑖+2,𝑗)  

+
(𝐾 +

4
3𝐺)

∆𝑟𝜌𝑃𝑡𝑃
(𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗) −

(𝐾 +
4
3𝐺)

∆𝑟𝜌𝑃𝑡𝑃
|𝑝𝑙𝑢𝑔(𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1)

+
(𝐾 −

2
3𝐺)

𝜌𝑃𝑡𝑃
|𝑠𝑜𝑖𝑙

1

𝑟𝑗
𝑢𝑖,𝑗 +

(𝐾 −
2
3𝐺)

∆𝑧𝜌𝑃𝑡𝑃
|𝑠𝑜𝑖𝑙(𝑤𝑖+1,𝑗 −𝑤𝑖,𝑗) 

(70) 
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This is equivalent to: 

 

𝜌
𝜕2

𝜕𝑡2
𝑢𝑖,𝑗 = (𝐶29𝑠 − 𝐶24

1

𝑟𝑗
)𝑤𝑖+1,𝑗 + 𝐶24

1

𝑟𝑗
𝑤𝑖−1,𝑗 − 𝐶29𝑠𝑤𝑖,𝑗

+ (−𝐶27 − 6𝐶26 − 𝐶27𝑝 + 𝐶28𝑠
1

𝑟𝑗
− 𝐶25

1

𝑟𝑗
2)𝑢𝑖,𝑗 − 𝐶26𝑢𝑖−2,𝑗

+ 4𝐶26𝑢𝑖−1,𝑗 + 4𝐶26𝑢𝑖+1,𝑗 − 𝐶26𝑢𝑖+2,𝑗 + 𝐶27𝑢𝑖,𝑗+1 + 𝐶27𝑝𝑢𝑖,𝑗−1 

(71) 

With: 

 𝐶24 =
𝑣𝑃𝐸𝑃

2∆𝑧𝜌𝑃(1 − 𝑣𝑃
2)

 (72) 

 𝐶25 =
𝐸𝑃

𝜌𝑃(1 − 𝑣𝑃
2)

 (73) 

 𝐶26 =
𝐸𝑃𝑡𝑃

2

12∆𝑧4𝜌𝑃(1 − 𝑣𝑃
2)

 (74) 

 𝐶27 =
(𝐾 +

4
3
𝐺)

∆𝑟𝜌𝑃𝑡𝑃
 (75) 

 𝐶27𝑝 =
(𝐾 +

4
3𝐺)

∆𝑟𝜌𝑃𝑡𝑃
 (76) 

 𝐶28𝑠 =
(𝐾 −

2
3
𝐺)

𝜌𝑃𝑡𝑃
 (77) 

 𝐶29𝑠 =
(𝐾 −

2
3
𝐺)

∆𝑧𝜌𝑃𝑡𝑃
 (78) 

Pile head: 

Boundary conditions: 

 (
𝜕𝑤

𝜕𝑧
+ 𝑣𝑃

𝑢

𝑟
) = −

1 − 𝑣𝑃
2

𝐸𝑝𝐴𝑝
𝐹𝑖𝑚𝑝(𝑡) (79) 

 
𝜕2𝑢

𝜕𝑧2
= 0 (80) 

 
𝜕3𝑢

𝜕𝑧3
= 0 (81) 
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Discretization  of the boundary conditions: 

 𝑤𝑖−1,𝑗 =
2∆𝑧(1 − 𝑣𝑃

2)

𝐸𝑝𝐴𝑝
𝐹𝑖𝑚𝑝(𝑡) + 2∆𝑧𝑣𝑃

1

𝑟𝑗
𝑢𝑖,𝑗 +𝑤𝑖+1,𝑗 (82) 

 
𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

∆𝑧2
= 0 (83) 

 

1
2
𝑢𝑖+2,𝑗 − 𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 −

1
2
𝑢𝑖−2,𝑗

∆𝑧3
= 0 (84) 

This is equivalent to: 

 𝑤𝑖−1,𝑗 = 𝑤𝑖+1,𝑗 + 𝐶31
1

𝑟𝑗
𝑢𝑖,𝑗 + 𝐶30𝐹𝑖𝑚𝑝(𝑡) (85) 

 𝑢𝑖−2,𝑗 = 6𝑢𝑖,𝑗 − 8𝑢𝑖+1,𝑗 + 3𝑢𝑖+2,𝑗 (86) 

 𝑢𝑖−1,𝑗 = 3𝑢𝑖,𝑗 − 3𝑢𝑖+1,𝑗 + 𝑢𝑖+2,𝑗 (87) 

With: 

 𝐶30 =
2∆𝑧(1 − 𝑣𝑃

2)

𝐸𝑝𝐴𝑝
 (88) 

 𝐶31 = 2∆𝑧𝑣𝑃 (89) 

Substituting boundary condition expressions 85, 86 and 87 into equations 63 and 71 yields the final 

result: 

 

𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = 2𝐶20𝑤𝑖+1,𝑗 − (2𝐶20 + 𝐶22 + 𝐶22𝑝)𝑤𝑖,𝑗 + 𝐶22𝑤𝑖,𝑗+1 + 𝐶22𝑝𝑤𝑖,𝑗−1

+ ((𝐶20𝐶31 − 3𝐶21)
1

𝑟𝑗
− 𝐶23𝑠)𝑢𝑖,𝑗 + (4𝐶21

1

𝑟𝑗
+ 𝐶23𝑠)𝑢𝑖+1,𝑗

− 𝐶21
1

𝑟𝑗
𝑢𝑖+2,𝑗 + 𝐶20𝐶30𝐹𝑖𝑚𝑝(𝑡) 

(90) 

 

𝜕2

𝜕𝑡2
𝑢𝑖,𝑗 = 𝐶29𝑠𝑤𝑖+1,𝑗 −𝑤𝑖,𝑗𝐶29𝑠 + (−𝐶27 − 𝐶27𝑝 + 𝐶28𝑠

1

𝑟𝑗
+ (𝐶24𝐶31 − 𝐶25)

1

𝑟𝑗
2)𝑢𝑖,𝑗

+ 𝐶27𝑢𝑖,𝑗+1 + 𝐶27𝑝𝑢𝑖,𝑗−1 + 𝐶24𝐶30
1

𝑟𝑗
𝐹𝑖𝑚𝑝(𝑡) 

(91) 
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Pile toe: 

Boundary conditions: 

 (
𝜕𝑤

𝜕𝑧
+ 𝑣𝑃

𝑢

𝑟
) =

𝜋𝑑𝑝∆𝑟(1 − 𝑣𝑃
2)

𝐸𝑝𝐴𝑝
((𝐾 +

4

3
𝐺)
𝜕𝑤

𝜕𝑧
|𝑠𝑜𝑖𝑙 + (𝐾 −

2

3
𝐺) (

𝑢

𝑟
+
𝜕𝑢

𝜕𝑟
|𝑠𝑜𝑖𝑙)) (92) 

 
𝜕2𝑢

𝜕𝑧2
= 0 (93) 

 
𝜕3𝑢

𝜕𝑧3
= 0 (94) 

Discretization of the boundary conditions: 

 

𝑤𝑖+1,𝑗 =
2𝜋𝑑𝑝∆𝑟(1 − 𝑣𝑃

2) (𝐾 +
4
3
𝐺)

𝐸𝑝𝐴𝑝
(𝑤𝑖+1,𝑗 −𝑤𝑖,𝑗)

+
2∆𝑧 (𝜋𝑑𝑝∆𝑟(1 − 𝑣𝑃

2) (𝐾 −
2
3𝐺) − 𝑣𝑃𝐸𝑝𝐴𝑝)

𝐸𝑝𝐴𝑝

1

𝑟𝑗
𝑢𝑖,𝑗

+
2∆𝑧𝜋𝑑𝑝(1 − 𝑣𝑃

2) (𝐾 −
2
3𝐺)

𝐸𝑝𝐴𝑝
(𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗) + 𝑤𝑖−1,𝑗 

 

(95) 

 
𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

∆𝑧2
= 0 (96) 

 

1
2
𝑢𝑖+2,𝑗 − 𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 −

1
2
𝑢𝑖−2,𝑗

∆𝑧3
= 0 (97) 

This is equivalent to: 

 𝑤𝑖+1,𝑗 = 𝐶32𝑤𝑖+1,𝑗 +𝑤𝑖−1,𝑗 − 𝐶32𝑤𝑖,𝑗 + (𝐶33
1

𝑟𝑗
− 𝐶34)𝑢𝑖,𝑗 + 𝐶34𝑢𝑖,𝑗+1 (98) 

 𝑢𝑖+2,𝑗 = 6𝑢𝑖,𝑗 − 8𝑢𝑖−1,𝑗 + 3𝑢𝑖−2,𝑗 (99) 

 𝑢𝑖+1,𝑗 = 3𝑢𝑖,𝑗 − 3𝑢𝑖−1,𝑗 + 𝑢𝑖−2,𝑗 (100) 

With: 

 𝐶32 =
2𝜋𝑑𝑝∆𝑟(1 − 𝑣𝑃

2) (𝐾 +
4
3𝐺)

𝐸𝑝𝐴𝑝
 (101) 

 𝐶33 =
2∆𝑧 (𝜋𝑑𝑝∆𝑟(1 − 𝑣𝑃

2) (𝐾 −
2
3𝐺) − 𝑣𝑃𝐸𝑝𝐴𝑝)

𝐸𝑝𝐴𝑝
 (102) 
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 𝐶34 =
2∆𝑧𝜋𝑑𝑝(1 − 𝑣𝑃

2) (𝐾 −
2
3
𝐺)

𝐸𝑝𝐴𝑝
 (103) 

Substituting boundary condition expressions 85, 86 and 87 into equations 63 and 71 yields the final 

result: 

 

𝜕2

𝜕𝑡2
𝑤𝑖,𝑗 = 𝐶20𝐶32𝑤𝑖+1,𝑗 + 2𝐶20𝑤𝑖−1,𝑗 − (2𝐶20 + 𝐶20𝐶32 + 𝐶22 + 𝐶22𝑝)𝑤𝑖,𝑗

+ 𝐶22𝑤𝑖,𝑗+1 + 𝐶22𝑝𝑤𝑖,𝑗−1

+ (2𝐶23𝑠 − 𝐶20𝐶34 + (𝐶20𝐶33 + 3𝐶21)
1

𝑟𝑗
)𝑢𝑖,𝑗

+ (−3𝐶23𝑠 − 4𝐶21
1

𝑟𝑗
)𝑢𝑖−1,𝑗 + (𝐶21

1

𝑟𝑗
+ 𝐶23𝑠)𝑢𝑖−2,𝑗 + 𝐶20𝐶34𝑢𝑖,𝑗+1 

(104) 

 

𝜕2

𝜕𝑡2
𝑢𝑖,𝑗 = (𝐶29𝑠𝐶32 − 𝐶24𝐶32

1

𝑟𝑗
)𝑤𝑖+1,𝑗 + 𝐶29𝑠𝑤𝑖−1,𝑗

+ (−𝐶29𝑠𝐶32 − 𝐶29𝑠 + 𝐶24𝐶32
1

𝑟𝑗
)𝑤𝑖,𝑗

+ (−𝐶27 − 𝐶27𝑝 − 𝐶29𝑠𝐶34 + (𝐶28𝑠 + 𝐶29𝑠𝐶33 + 𝐶24𝐶34)
1

𝑟𝑗

+ (−𝐶24𝐶33 − 𝐶25)
1

𝑟𝑗
2)𝑢𝑖,𝑗 + (𝐶29𝑠𝐶34 + 𝐶27 − 𝐶24𝐶34

1

𝑟𝑗
)𝑢𝑖,𝑗+1

+ 𝐶27𝑝𝑢𝑖,𝑗−1 

(105) 

Second node from head: 

Boundary condition: 

 𝑢𝑖−2 = 3𝑢𝑖−1 − 3𝑢𝑖 + 𝑢𝑖+1 (106) 

Substituting boundary condition 106 into equation 63: 

 

𝜌
𝜕2

𝜕𝑡2
𝑢𝑖,𝑗 = (𝐶29𝑠 − 𝐶24

1

𝑟𝑗
)𝑤𝑖+1,𝑗 + 𝐶24

1

𝑟𝑗
𝑤𝑖−1,𝑗 −𝑤𝑖,𝑗𝐶29𝑠

+ (−𝐶27 − 3𝐶26 − 𝐶27𝑝 + 𝐶28𝑠
1

𝑟𝑗
− 𝐶25

1

𝑟𝑗
2)𝑢𝑖,𝑗 + 𝐶26𝑢𝑖−1,𝑗

+ 3𝐶26𝑢𝑖+1,𝑗 − 𝐶26𝑢𝑖+2,𝑗 + 𝐶27𝑢𝑖,𝑗+1 + 𝐶27𝑝𝑢𝑖,𝑗−1 

(107) 
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Second node from toe: 

Boundary condition: 

 𝑢𝑖+2 = 3𝑢𝑖+1 − 3𝑢𝑖 + 𝑢𝑖−1 (108) 

Substituting boundary condition 108 into equation 63: 

 

𝜌
𝜕2

𝜕𝑡2
𝑢𝑖,𝑗 = (𝐶29𝑠 − 𝐶24

1

𝑟𝑗
)𝑤𝑖+1,𝑗 + 𝐶24

1

𝑟𝑗
𝑤𝑖−1,𝑗 −𝑤𝑖,𝑗𝐶29𝑠

+ (−𝐶27 − 3𝐶26 − 𝐶27𝑝 + 𝐶28𝑠
1

𝑟𝑗
− 𝐶25

1

𝑟𝑗
2)𝑢𝑖,𝑗 − 𝐶26𝑢𝑖−2,𝑗

+ 3𝐶26𝑢𝑖−1,𝑗 + 𝐶26𝑢𝑖+1,𝑗 + 𝐶27𝑢𝑖,𝑗+1 + 𝐶27𝑝𝑢𝑖,𝑗−1 

(109) 
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Appendix B1: Matlab code Smith pile driving model 

clearvars 

close all 

clc 

 

beta=0.25; %Newmark scheme variable 

gamma=0.5; %Newmark scheme variable 

E=200*(10^9); %Young's modulus pile [N/m^2] 

l=30; %pile length [m] 

dof=301; %amount of discrete pile elements 

di=1.96; %pile internal diameter [m] 

de=2; %pile external diameter [m] 

rho=7850; %pile volumetric weight [kg/m^3] 

quake=2.5*(10^-3); %quake [m] 

Jb=0.5; %damping ratio pile base [s/m] 

Js=0.16; % damping ratio pile shaft [s/m] 

pub=8*(10^6); %static limit pile base [N/m^2] 

pus=5*(10^4); %static limit pile shaft [N/m^2] 

v0=5; %hammer impact velocity [m/s] 

mh=20000; %hammer mass [kg] 

kc=10^10; %cushion stiffness [N/m] 

acc=2; %numerical accuracy (minimum value=1.1)  

 

cp=sqrt(E/rho); 

dt=(l/(dof-1))/(acc*cp); 

Ar=(((de^2)-(di^2))*pi())/4; 

ki=(E*Ar)/(l/(dof-1)); 

dm=Ar*(l/(dof-1))*rho; 

Z=(E*Ar)/cp; 

Rub=pub*Ar; 

Rus=(l/(dof-1))*de*pi()*pus; 

t=0:dt:0.25; 

doft=size(t,2)+1; 

alpha=kc/(2*Z); 

omega=sqrt(kc/mh); 

c1=1/(beta*(dt^2)); 

c2=1/(beta*dt); 

c3=1-(1/(2*beta)); 

c4=gamma/(beta*dt); 

c5=1-(gamma/beta); 

c6=dt*(1-(gamma/(2*beta))); 

K=diag((2*ki*ones(1,dof)))+diag((-ki*ones(1,dof-1)),-1)+diag((-ki*ones(1,dof-1)),1); 

K(1,1)=ki; 

K(dof,dof)=ki; 

M=diag((dm*ones(1,dof))); 

C(dof,dof)=0; 

Ma=(c1*M)+(c4*C)+K; 

Mai=inv(Ma); 

Mb=(c1*M)+(c4*C); 

Mc=(c2*M)-(c5*C); 

Md=(c3*M)+(c6*C); 
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U(dof,doft)=0; 

V(dof,doft)=0; 

A(dof,doft)=0; 

sum(dof)=0; 

sumb=0; 

F(dof,1)=0; 

for a=1:size(t,2) 

    Fh=Z*(((v0*alpha)/sqrt((omega^2)-(alpha^2)))*exp(-alpha*t(a))*sin(sqrt((omega^2)-

(alpha^2))*t(a))); 

    for i=1:dof 

        if a>1 && abs(U(i,a)-sum(i))>quake 

            sum(i)=sum(i)+U(i,a)-U(i,(a-1)); 

            F(i,a)=-(Rus*((U(i,a)-sum(i))/abs(U(i,a)-sum(i))))-(Rus*Js*V(i,a)); 

        else 

            F(i,a)=-(Rus*((U(i,a)-sum(i))/quake))-(Rus*Js*V(i,a)); 

        end 

    end 

    F(1,a)=F(1,a)+Fh; 

    if a>1 && (U(dof,a)-sumb)>quake 

        sumb=sumb+U(dof,a)-U(dof,(a-1)); 

        Fb=-Rub-(Rub*Jb*V(dof,a)); 

    elseif a>1 && (U(dof,a)-sumb)<0 

        Fb=0; 

    else 

        Fb=-(Rub*((U(dof,a)-sumb)/quake))-(Rub*Jb*V(dof,a)); 

    end 

    F(dof,a)=F(dof,a)+Fb; 

    U(:,a+1)=Mai*(F(:,a)+(Mb*U(:,a))+(Mc*V(:,a))-(Md*A(:,a))); 

    V(:,a+1)=(c4*(U(:,a+1)-U(:,a)))+(c5*V(:,a))+(c6*A(:,a)); 

    A(:,a+1)=(c1*(U(:,a+1)-U(:,a)))-(c2*V(:,a))+(c3*A(:,a)); 

    if t(a)<0.01 

        clf 

        plot(V(:,a+1)) 

        axis([0 dof -3 3]) 

        ylabel('velocity [m/s]','FontSize',14) 

        xlabel('vertical position [m]','FontSize',14) 

        set(gca,'XTick',[0 dof/2 dof]) 

        set(gca,'XTickLabel',[0 l/2 l] ) 

        title(['t = ' sprintf('%0.5f',t(a)) ' [s]'],'FontSize',14) 

        drawnow 

    end 

end 

close all 

plot(t,(10^3).*U(dof,2:end)) 

ylabel('pile toe displacement [mm]','FontSize',14) 

xlabel('time [s]','FontSize',14) 
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Appendix B2: Matlab code Salgado pile driving model 

clearvars 

close all 

clc 

 

dz=0.1; %vertical grid size 

dr=0.1; %radia grid size 

Z=20; %pile length 

R=20; %radial domain length 

dp=2; %pile diameter 

t=40*(10^-3); %pile shell thickness 

rhop=7850; %pile volumetric wieght 

Ep=200*(10^9); %pile Young's modulus 

v0=5; %hammer impact velocity 

mh=20000; %hammer mass 

kc=10*(10^9); %cushion stiffness 

quake=2.5*(10^-3); %quake 

Jb=0.5; %damping ratio pile base 

pub=8*(10^6); %static limit pile base 

tend=0.1; %end time computation 

tstep=0.001; %show plots at these intervals 

acc=2; %numerical accuracy (minimum value = 1.1) 

%Layering definition [startheight endheight shearmodulus density; nextlayer...] 

layer=[1 5/dz 110*(10^6) 1800; (5/dz)+1 10/dz 70*(10^6) 1700; (10/dz)+1 15/dz 110*(10^6) 1800; 

(15/dz)+1 (Z/dz)+1 150*(10^6) 2000]; 

 

dofz=(Z/dz)+1; 

dofr=(R/dr)+1; 

dof=dofz*dofr; 

doft=tend/tstep; 

Ap=0.25*pi()*(((dp+(t/2))^2)-((dp-(t/2))^2)); 

Imp=(Ep*Ap)/sqrt(Ep/rhop); 

alpha=kc/(2*Imp); 

omega=sqrt(kc/mh); 

q1=((v0*alpha)/sqrt((omega^2)-(alpha^2)))*Imp; 

q2=sqrt((omega^2)-(alpha^2)); 

tv=0:tstep:tend; 

geo=zeros(dofz,dofr); 

geo(:,2:dofr-1)=1; 

geov=zeros(dofz,dofr); 

geov(:,dofr)=1; 

geop1=zeros(dofz,dofr); 

geop1(1,1)=1; 

geop2=zeros(dofz,dofr); 

geop2(2:dofz-1,1)=1; 

geop3=zeros(dofz,dofr); 

geop3(dofz,1)=1; 

r=zeros(dofr,1); 

geor=zeros(dofz,dofr); 

geovr=zeros(dofz,dofr); 

for i=1:dofr 
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    r(i,1)=(dr*(i+(dp/(2*dr))-1)); 

    geor(:,i)=(1/r(i,1)).*geo(:,i); 

    geovr(:,i)=(1/r(i,1)).*geov(:,i); 

end 

c1=zeros(dofz,dofr); 

c2=zeros(dofz,dofr); 

c3=zeros(dofz,dofr); 

c4=zeros(dofz,dofr); 

c5=zeros(dofz,dofr); 

c6=zeros(dofz,dofr); 

c7=zeros(dofz,dofr); 

c8=zeros(dofz,dofr); 

for i=1:size(layer,1) 

    c1(layer(i,1):layer(i,2),:)=layer(i,3)/((dr^2)*layer(i,4)); 

    c2(layer(i,1):layer(i,2),:)=layer(i,3)/(2*dr*layer(i,4)); 

    c3(layer(i,1):layer(i,2),:)=2*dr*sqrt(layer(i,4)/layer(i,3)); 

    c4(layer(i,1):layer(i,2),:)=(pi()*dp*layer(i,3))/(dr*rhop*Ap); 

    c5(layer(i,1):layer(i,2),:)=Ep/((dz^2)*rhop); 

    c6(layer(i,1):layer(i,2),:)=(2*dz)/(Ep*Ap); 

    c7(layer(i,1):layer(i,2),:)=(2*dz*pub)/(quake*Ep); 

    c8(layer(i,1):layer(i,2),:)=(2*dz*pub*Jb)/Ep; 

end 

M1=sparse(dof,dof); 

M2=sparse(dof,dof); 

M22=-(2.*c1).*geo; 

M1=M1+sparse(1:dof,1:dof,M22(:),dof,dof); 

M21=(c1.*geo)-(c2.*geor); 

M1=M1+sparse(dofz+1:dof,1:dof-dofz,M21(dofz+1:dof)',dof,dof); 

M23=(c1.*geo)+(c2.*geor); 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,M23(1:dof-dofz)',dof,dof); 

M22=-(2.*c1).*geov; 

M1=M1+sparse(1:dof,1:dof,M22(:),dof,dof); 

M21=(2.*c1).*geov; 

M1=M1+sparse(dofz+1:dof,1:dof-dofz,M21(dofz+1:dof)',dof,dof); 

M22=-((c3.*c1).*geov)-((c3.*c2).*geovr); 

M2=M2+sparse(1:dof,1:dof,M22(:),dof,dof); 

M22=-((2.*c5).*geop1)-(c4.*geop1); 

M1=M1+sparse(1:dof,1:dof,M22(:),dof,dof); 

M32=(2.*c5).*geop1; 

M1=M1+sparse(1:dof-1,2:dof,M32(1:dof-1)',dof,dof); 

M23=c4.*geop1; 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,M23(1:dof-dofz)',dof,dof); 

M22=-((2.*c5).*geop2)-(c4.*geop2); 

M1=M1+sparse(1:dof,1:dof,M22(:),dof,dof); 

M12=c5.*geop2; 

M1=M1+sparse(2:dof,1:dof-1,M12(2:dof)',dof,dof); 

M32=c5.*geop2; 

M1=M1+sparse(1:dof-1,2:dof,M32(1:dof-1)',dof,dof); 

M23=c4.*geop2; 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,M23(1:dof-dofz)',dof,dof); 

M22=-((2.*c5).*geop3)-(c4.*geop3)-((c5.*c7).*geop3); 

M1=M1+sparse(1:dof,1:dof,M22(:),dof,dof); 

M12=(2.*c5).*geop3; 
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M1=M1+sparse(2:dof,1:dof-1,M12(2:dof)',dof,dof); 

M23=c4.*geop3; 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,M23(1:dof-dofz)',dof,dof); 

M22=-(c5.*c8).*geop3; 

M2=M2+sparse(1:dof,1:dof,M22(:),dof,dof); 

Mi=speye(dof,dof); 

Mz=sparse(dof,dof); 

M=[Mz Mi; M1 M2]; 

F=zeros(2*dof,1); 

F(dof+1)=c5(dofz,1)*c6(dofz,1); 

w0=zeros(2*dof,1); 

figure('units','normalized','outerposition',[0 0 1 1]) 

for n=1:doft 

    tspan=((n-1)*tstep):(tstep/2):(n*tstep); 

    [t,w]=ode45(@(t,w) M*w+((q1*exp(-alpha*t)*sin(q2*t)).*F),tspan,w0); 

    w0=w(3,:)'; 

    W=w(3,1:dof)'; 

    WW=reshape(W,[dofz,dofr]); 

    pcolor(WW) 

    colormap(jet) 

    set(gca,'XAxisLocation','top','YAxisLocation','left','ydir','reverse') 

    colorbar 

    caxis([-(10^-3) (10^-3)]) 

    xticks([0 dofr]) 

    xticklabels([0  R]) 

    yticks([0 dofz]) 

    yticklabels([0 Z]) 

    set(gca,'FontSize',15); 

    axis equal 

    axis tight 

    set(gcf,'color','w'); 

    shading flat 

    title(['t = ' sprintf('%0.5f',tv(n+1))],'FontSize',20) 

    drawnow; 

end 
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Appendix B3: Matlab code simplified cylindrically symmetric model 

clearvars 

close all 

clc 

 

dz=0.1; %vertical grid size 

dr=0.1; %horizontal grid size 

Z=16; %pile length below surface 

Zt=8; %pile length above surface 

R=20; %radial domain size 

Zf=35; %vertical domain size 

dn=2; %nominal pile diameter 

th=40*(10^-3); %pile thickness 

plug=10; %plug height 

damp=0.00001; %damping 

tend=0.1; %end time calculation 

tstep=0.001; %intervals at which plot is shown 

rhop=7850; %volumetric wieght pile 

Ep=200*(10^9); %Young's modulus pile 

v0=5; %impact velocity hammer 

mh=20000; %mass hammer 

kc=10*(10^9); %cushion stiffness 

%soil and plug layering definition [startheight endheight shearmodulus bulkmodulus density; 

nextlayer...] 

layer=[1 9/dz 110*(10^6) 5000*(10^6) 1800; (9/dz)+1 15/dz 70*(10^6) 3800*(10^6) 1700; (15/dz)+1 

22/dz 110*(10^6) 5000*(10^6) 1800; (22/dz)+1 (Zf/dz)+1 150*(10^6) 5900*(10^6) 2000]; 

layerp=[1 8/dz 110*(10^6) 5000*(10^6) 1800; (8/dz)+1 9/dz 70*(10^6) 3800*(10^6) 1700; (9/dz)+1 

plug/dz 110*(10^6) 5000*(10^6) 1800]; 

 

dofz=((Zt+Zf)/dz)+1; 

dofzz=((Zt+Z)/dz)+1; 

dofzt=Zt/dz; 

dofp=(((Zt+Z)-plug)/dz)+1; 

dofr=((R+(dn/2))/dr)+1; 

dofrr=((dn/2)/dr)+1; 

dof=dofz*dofr; 

Ap=0.25*pi()*(((dn+(th/2))^2)-((dn-(th/2))^2)); 

Imp=(Ep*Ap)/sqrt(Ep/rhop); 

alpha=kc/(2*Imp); 

omega=sqrt(kc/mh); 

Imp=(Ep*Ap)/sqrt(Ep/rhop); 

q1=((v0*alpha)/sqrt((omega^2)-(alpha^2)))*Imp; 

q2=sqrt((omega^2)-(alpha^2)); 

doft=tend/tstep; 

tv=0:tstep:tend; 

geo=zeros(dofz,dofr); 

geo(dofzt+2:dofz-1,2:dofr-1)=1; 

geo(dofzt+2:dofp,2:dofrr)=0; 

geo(dofzt+1:dofzz,dofrr)=0; 

geo(dofzz,dofrr)=1; 

geos=zeros(dofz,dofr); 
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geos(dofp:dofz-1,1)=1; 

geof=zeros(dofz,dofr); 

geof(dofzt+1,dofrr+1:dofr-1)=1; 

geof(dofp,2:dofrr-1)=1; 

geov=zeros(dofz,dofr); 

geov(dofzt+2:dofz-1,dofr)=1; 

geoh=zeros(dofz,dofr); 

geoh(dofz,2:dofr-1)=1; 

geop1=zeros(dofz,dofr); 

geop1(1,dofrr)=1; 

geop2=zeros(dofz,dofr); 

geop2(2:dofzz-2,dofrr)=1; 

geop3=zeros(dofz,dofr); 

geop3(dofzz-1,dofrr)=1; 

r=zeros(dofr,1); 

geor=zeros(dofz,dofr); 

geofr=zeros(dofz,dofr); 

geovr=zeros(dofz,dofr); 

geohr=zeros(dofz,dofr); 

gs=geo+geof+geov+geoh+geos+geop1+geop2+geop3; 

gs(gs==0)=NaN; 

for i=1:dofr 

    r(i,1)=(dr*(i-1)); 

    if i>1 

        geor(:,i)=(1/r(i,1)).*geo(:,i); 

        geofr(:,i)=(1/r(i,1)).*geof(:,i); 

        geovr(:,i)=(1/r(i,1)).*geov(:,i); 

        geohr(:,i)=(1/r(i,1)).*geoh(:,i); 

    end 

end 

c1=zeros(dofz,dofr); 

c2=zeros(dofz,dofr); 

c3=zeros(dofz,dofr); 

c4=zeros(dofz,dofr); 

c5=zeros(dofz,dofr); 

c6=zeros(dofz,dofr); 

c6p=zeros(dofz,dofr); 

c7=zeros(dofz,dofr); 

c9=zeros(dofz,dofr); 

c7(1:dofzz-1,dofrr)=Ep/((dz^2)*rhop); 

c8=(2*dz)/(Ep*Ap); 

for i=1:size(layer,1) 

    c1(dofzt+layer(i,1):dofzt+layer(i,2),:)=(layer(i,4)+((4/3)*layer(i,3)))/((dz^2)*layer(i,5)); 

    c2(dofzt+layer(i,1):dofzt+layer(i,2),:)=layer(i,3)/((dr^2)*layer(i,5)); 

    c3(dofzt+layer(i,1):dofzt+layer(i,2),:)=layer(i,3)/(2*dr*layer(i,5)); 

    c4(dofzt+layer(i,1):dofzt+layer(i,2),:)=2*dr*sqrt(layer(i,5)/layer(i,3)); 

    

c5(dofzt+layer(i,1):dofzt+layer(i,2),:)=2*dz*sqrt(layer(i,5)/(layer(i,4)+((4/3)*layer(i,3)))); 

    c6(dofzt+layer(i,1):dofzt+layer(i,2),:)=(pi()*(dn+(th/2))*layer(i,3))/(dr*rhop*Ap); 

    

c9(dofzt+layer(i,1):dofzt+layer(i,2),:)=(2*pi()*dn*dr*(layer(i,4)+((4/3)*layer(i,3))))/(Ep*Ap); 

end 

for i=1:size(layerp,1) 
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    c1(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-

1)=(layerp(i,4)+((4/3)*layerp(i,3)))/((dz^2)*layerp(i,5)); 

    c2(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-1)=layerp(i,3)/((dr^2)*layerp(i,5)); 

    c3(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-1)=layerp(i,3)/(2*dr*layerp(i,5)); 

    c4(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-1)=2*dr*sqrt(layerp(i,5)/layerp(i,3)); 

    c5(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-

1)=2*dz*sqrt(layerp(i,5)/(layerp(i,4)+((4/3)*layerp(i,3)))); 

    c9(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-

1)=(2*pi()*dn*dr*(layerp(i,4)+((4/3)*layerp(i,3))))/(Ep*Ap); 

end 

for i=1:size(layerp,1) 

    c6p(dofp-1+layerp(i,1):dofp-1+layerp(i,2),dofrr)=(pi()*(dn-(th/2))*layerp(i,3))/(dr*rhop*Ap); 

end 

M1=sparse(dof,dof); 

M22=(-2.*(c1+c2)).*geo; 

M1=M1+sparse(1:dof,1:dof,M22(:),dof,dof); 

M12=c1.*geo; 

M1=M1+sparse(2:dof,1:dof-1,M12(2:dof)',dof,dof); 

M32=c1.*geo; 

M1=M1+sparse(1:dof-1,2:dof,M32(1:dof-1)',dof,dof); 

M21=(c2.*geo)-(c3.*geor); 

M1=M1+sparse(dofz+1:dof,1:dof-dofz,M21(dofz+1:dof)',dof,dof); 

M23=(c2.*geo)+(c3.*geor); 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,M23(1:dof-dofz)',dof,dof); 

M22=((-2.*c1)+(-4.*c2)).*geos; 

M1=M1+sparse(1:dof,1:dof,M22(:),dof,dof); 

M12=c1.*geos; 

M12(dofp,1)=0; 

M1=M1+sparse(2:dof,1:dof-1,M12(2:dof)',dof,dof); 

M32=c1.*geos; 

M32(dofp,1)=2*c1(dofp,1); 

M1=M1+sparse(1:dof-1,2:dof,M32(1:dof-1)',dof,dof); 

M23=(4.*c2).*geos; 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,M23(1:dof-dofz)',dof,dof); 

M22=(-2.*(c1+c2)).*geof; 

M1=M1+sparse(1:dof,1:dof,M22(:),dof,dof); 

M32=(2.*c1).*geof; 

M1=M1+sparse(1:dof-1,2:dof,M32(1:dof-1)',dof,dof); 

M21=(c2.*geof)-(c3.*geofr); 

M1=M1+sparse(dofz+1:dof,1:dof-dofz,M21(dofz+1:dof)',dof,dof); 

M23=(c2.*geof)+(c3.*geofr); 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,M23(1:dof-dofz)',dof,dof); 

M2=damp.*M1; 

M22=(-2.*(c1+c2)).*geov; 

M1=M1+sparse(1:dof,1:dof,M22(:),dof,dof); 

M12=c1.*geov; 

M1=M1+sparse(2:dof,1:dof-1,M12(2:dof)',dof,dof); 

M32=c1.*geov; 

M1=M1+sparse(1:dof-1,2:dof,M32(1:dof-1)',dof,dof); 

M21=(2.*c2).*geov; 

M1=M1+sparse(dofz+1:dof,1:dof-dofz,M21(dofz+1:dof)',dof,dof); 

Md=-c4.*((c2.*geov)+(c3.*geovr)); 

M2=M2+sparse(1:dof,1:dof,Md(:),dof,dof); 
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M22=(-2.*(c1+c2)).*geoh; 

M1=M1+sparse(1:dof,1:dof,M22(:),dof,dof); 

M12=(2.*c1).*geoh; 

M1=M1+sparse(2:dof,1:dof-1,M12(2:dof)',dof,dof); 

M21=(c2.*geoh)-(c3.*geohr); 

M1=M1+sparse(dofz+1:dof,1:dof-dofz,M21(dofz+1:dof)',dof,dof); 

M23=(c2.*geoh)+(c3.*geohr); 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,M23(1:dof-dofz)',dof,dof); 

Md=-c1.*(c5.*geoh); 

M2=M2+sparse(1:dof,1:dof,Md(:),dof,dof); 

M22=(-(2.*c7)-c6-c6p).*geop1; 

M1=M1+sparse(1:dof,1:dof,M22(:),dof,dof); 

M32=(2.*c7).*geop1; 

M1=M1+sparse(1:dof-1,2:dof,M32(1:dof-1)',dof,dof); 

M21=c6p.*geop1; 

M1=M1+sparse(dofz+1:dof,1:dof-dofz,M21(dofz+1:dof)',dof,dof); 

M23=c6.*geop1; 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,M23(1:dof-dofz)',dof,dof); 

M22=(-(2.*c7)-c6-c6p).*geop2; 

M1=M1+sparse(1:dof,1:dof,M22(:),dof,dof); 

M12=c7.*geop2; 

M1=M1+sparse(2:dof,1:dof-1,M12(2:dof)',dof,dof); 

M32=c7.*geop2; 

M1=M1+sparse(1:dof-1,2:dof,M32(1:dof-1)',dof,dof); 

M21=c6p.*geop2; 

M1=M1+sparse(dofz+1:dof,1:dof-dofz,M21(dofz+1:dof)',dof,dof); 

M23=c6.*geop2; 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,M23(1:dof-dofz)',dof,dof); 

M22=(-(2.*c7)-c6-c6p-(c7.*c9)).*geop3; 

M1=M1+sparse(1:dof,1:dof,M22(:),dof,dof); 

M12=(2.*c7).*geop3; 

M1=M1+sparse(2:dof,1:dof-1,M12(2:dof)',dof,dof); 

M32=(c7.*c9).*geop3; 

M1=M1+sparse(1:dof-1,2:dof,M32(1:dof-1)',dof,dof); 

M21=c6p.*geop3; 

M1=M1+sparse(dofz+1:dof,1:dof-dofz,M21(dofz+1:dof)',dof,dof); 

M23=c6.*geop3; 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,M23(1:dof-dofz)',dof,dof); 

Mi=speye(dof,dof); 

Mz=sparse(dof,dof); 

M=[Mz Mi; M1 M2]; 

F=zeros(2*dof,1); 

F(dof+((dofrr-1)*dofz)+1)=c7(1,dofrr)*c8; 

w0=zeros(2*dof,1); 

figure('units','normalized','outerposition',[0 0 1 1]) 

for n=1:doft 

    tspan=((n-1)*tstep):(tstep/2):(n*tstep); 

    [t,w]=ode45(@(t,w) M*w+(q1*exp(-alpha*t)*sin(q2*t)).*F,tspan,w0); 

    w0=w(3,:)'; 

    W=reshape(w(3,1:dof)',[dofz,dofr]); 

    pcolor(gs.*W) 

    colormap(jet) 

    set(gca,'XAxisLocation','top','YAxisLocation','left','ydir','reverse') 
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    colorbar 

    caxis([-(10^-3) (10^-3)]) 

    xticks([0 dofrr dofr]) 

    xticklabels([0 (dn/2) R]) 

    yticks([dofp dofz]) 

    yticklabels([Z-plug Zf]) 

    set(gca,'FontSize',15); 

    axis equal 

    axis tight 

    set(gcf,'color','w'); 

    shading flat 

    title(['t = ' sprintf('%0.5f',tv(n+1))],'FontSize',20) 

    drawnow; 

end 
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Appendix B4: Matlab code cylindrically symmetric model 

clearvars 

close all 

clc 

 

dz=0.1; %vertical grid size 

dr=0.1; %radial grid size 

Zt=8; %pile length above surface 

Z=16; %pile length beneath surface 

R=41; %radial domain size 

plug=10; %plug height 

Zf=50; %vertical domain size 

dn=2; %nominal pile diameter 

th=40*(10^-3);  %pile shell thickness 

damp=0.0001; %soil damping 

dampi=0.00002; %pile damping 

tend=0.1; %end time calculation 

tstep=0.001; %intervals at which plot is shown 

rhop=7850;  %pile density 

Ep=200*(10^9); %pile Young's modulus 

vp=0.3; %pile Poisson ratio 

v0=5; %impact velocity hammer 

mh=20000; %mass hammer 

kc=10^10; %cushion stiffness 

%soil and plug layering definition [startheight endheight shearmodulus bulkmodulus density; 

nextlayer...] 

layer=[1 9/dz 110*(10^6) 5000*(10^6) 1800; (9/dz)+1 15/dz 70*(10^6) 3800*(10^6) 1700; (15/dz)+1 

22/dz 110*(10^6) 5000*(10^6) 1800; (22/dz)+1 (Zf/dz)+1 150*(10^6) 5900*(10^6) 2000]; 

layerp=[1 8/dz 110*(10^6) 5000*(10^6) 1800; (8/dz)+1 9/dz 70*(10^6) 3800*(10^6) 1700; (9/dz)+1 

plug/dz 110*(10^6) 5000*(10^6) 1800]; 

 

dofz=((Zt+Zf)/dz)+1; 

dofzz=((Zt+Z)/dz)+1; 

dofr=((R+(dn/2))/dr)+1; 

dofrr=((dn/2)/dr)+1; 

dof=dofz*dofr; 

doff=2*dof; 

doft=tend/tstep; 

dofp=(((Z+Zt)-plug)/dz)+1; 

dofpt=Zt/dz; 

tv=0:tstep:tend; 

Ap=0.25*pi()*(((dn+(th/2))^2)-((dn-(th/2))^2)); 

Imp=(Ep*Ap)/sqrt(Ep/rhop); 

alpha=kc/(2*Imp); 

omega=sqrt(kc/mh); 

q1=((v0*alpha)/sqrt((omega^2)-(alpha^2)))*Imp; 

q2=sqrt((omega^2)-(alpha^2)); 

layer(2:end,1)=layer(2:end,1)+(dofpt.*ones(size(layer,1)-1,1)); 

layer(:,2)=layer(:,2)+(dofpt.*ones(size(layer,1),1)); 

c1=zeros(dofz,dofr); 

c2=zeros(dofz,dofr); 
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c3=zeros(dofz,dofr); 

c4=zeros(dofz,dofr); 

c4m=zeros(dofz,dofr); 

c4mm=zeros(dofz,dofr); 

c5=zeros(dofz,dofr); 

c6=zeros(dofz,dofr); 

c7=zeros(dofz,dofr); 

c8=zeros(dofz,dofr); 

c9=zeros(dofz,dofr); 

c10=zeros(dofz,dofr); 

c11=zeros(dofz,dofr); 

c12=zeros(dofz,dofr); 

c13=zeros(dofz,dofr); 

c14=zeros(dofz,dofr); 

c15=zeros(dofz,dofr); 

c16=zeros(dofz,dofr); 

c17=zeros(dofz,dofr); 

c18=zeros(dofz,dofr); 

c19=zeros(dofz,dofr); 

c20=zeros(dofz,dofr); 

c21=zeros(dofz,dofr); 

c22=zeros(dofz,dofr); 

c22p=zeros(dofz,dofr); 

c23s=zeros(dofz,dofr); 

c24=zeros(dofz,dofr); 

c25=zeros(dofz,dofr); 

c26=zeros(dofz,dofr); 

c27=zeros(dofz,dofr); 

c27p=zeros(dofz,dofr); 

c28s=zeros(dofz,dofr); 

c29s=zeros(dofz,dofr); 

c30=zeros(dofz,dofr); 

c31=zeros(dofz,dofr); 

c32=zeros(dofz,dofr); 

c33=zeros(dofz,dofr); 

c34=zeros(dofz,dofr); 

for i=1:size(layer,1) 

c1(layer(i,1):layer(i,2),:)=(layer(i,4)+((4/3)*layer(i,3)))/((dr^2)*layer(i,5)); 

c2(layer(i,1):layer(i,2),:)=(layer(i,4)+((4/3)*layer(i,3)))/(2*dr*layer(i,5)); 

c3(layer(i,1):layer(i,2),:)=(layer(i,4)+((4/3)*layer(i,3)))/layer(i,5); 

c4(layer(i,1):layer(i,2),:)=(layer(i,4)+((1/3)*layer(i,3)))/(4*dz*dr*layer(i,5)); 

c4m(layer(i,1):layer(i,2),:)=(layer(i,4)+((1/3)*layer(i,3)))/(2*dz*dr*layer(i,5)); 

c4mm(layer(i,1):layer(i,2),:)=(layer(i,4)+((1/3)*layer(i,3)))/(1*dz*dr*layer(i,5)); 

c5(layer(i,1):layer(i,2),:)=layer(i,3)/((dz^2)*layer(i,5)); 

c6(layer(i,1):layer(i,2),:)=(layer(i,4)+((4/3)*layer(i,3)))/((dz^2)*layer(i,5)); 

c7(layer(i,1):layer(i,2),:)=(layer(i,4)+((1/3)*layer(i,3)))/(2*dz*layer(i,5)); 

c8(layer(i,1):layer(i,2),:)=layer(i,3)/((dr^2)*layer(i,5)); 

c9(layer(i,1):layer(i,2),:)=layer(i,3)/(2*dr*layer(i,5)); 

c10(layer(i,1):layer(i,2),:)=(2*dz*(layer(i,4)-

((2/3)*layer(i,3))))/(layer(i,4)+((4/3)*layer(i,3))); 

c11(layer(i,1):layer(i,2),:)=(dz*(layer(i,4)-

((2/3)*layer(i,3))))/(dr*(layer(i,4)+((4/3)*layer(i,3)))); 

c12(layer(i,1):layer(i,2),:)=dz/dr; 
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c13(layer(i,1):layer(i,2),:)=2*dr*sqrt(layer(i,5)/(layer(i,4)+((4/3)*layer(i,3)))); 

c14(layer(i,1):layer(i,2),:)=(2*dr*(layer(i,4)-

((2/3)*layer(i,3))))/(layer(i,4)+((4/3)*layer(i,3))); 

c15(layer(i,1):layer(i,2),:)=(dr*(layer(i,4)-

((2/3)*layer(i,3))))/(dz*(layer(i,4)+((4/3)*layer(i,3)))); 

c16(layer(i,1):layer(i,2),:)=2*dr*sqrt(layer(i,5)/layer(i,3)); 

c17(layer(i,1):layer(i,2),:)=dr/dz; 

c18(layer(i,1):layer(i,2),:)=2*dz*sqrt(layer(i,5)/(layer(i,4)+((4/3)*layer(i,3)))); 

c19(layer(i,1):layer(i,2),:)=2*dz*sqrt(layer(i,5)/layer(i,3)); 

c20(layer(i,1):layer(i,2),:)=Ep/((dz^2)*rhop*(1-(vp^2))); 

c21(layer(i,1):layer(i,2),:)=(Ep*vp)/(2*dz*rhop*(1-(vp^2))); 

c22(layer(i,1):layer(i,2),:)=layer(i,3)/(dr*rhop*th); 

c23s(layer(i,1):layer(i,2),:)=layer(i,3)/(dz*rhop*th); 

c24(layer(i,1):layer(i,2),:)=(vp*Ep)/(2*dz*rhop*(1-(vp^2))); 

c25(layer(i,1):layer(i,2),:)=Ep/(rhop*(1-(vp^2))); 

c26(layer(i,1):layer(i,2),:)=(Ep*(th^2))/(12*(dz^4)*rhop*(1-(vp^2))); 

c27(layer(i,1):layer(i,2),:)=(layer(i,4)+((4/3)*layer(i,3)))/(dr*rhop*th); 

c28s(layer(i,1):layer(i,2),:)=(layer(i,4)-((2/3)*layer(i,3)))/(rhop*th); 

c29s(layer(i,1):layer(i,2),:)=(layer(i,4)-((2/3)*layer(i,3)))/(dz*rhop*th); 

c30(layer(i,1):layer(i,2),:)=(2*dz*(1-(vp^2)))/(Ep*Ap); 

c31(layer(i,1):layer(i,2),:)=2*dz*vp; 

c32(layer(i,1):layer(i,2),:)=(2*pi()*dn*dr*(1-(vp^2))*(layer(i,4)+((4/3)*layer(i,3))))/(Ep*Ap); 

c33(layer(i,1):layer(i,2),:)=(2*dz*((pi()*dn*dr*(1-(vp^2))*(layer(i,4)-((2/3)*layer(i,3))))-

(vp*Ep*Ap)))/(Ep*Ap); 

c34(layer(i,1):layer(i,2),:)=(2*dz*pi()*dn*(1-(vp^2))*(layer(i,4)-((2/3)*layer(i,3))))/(Ep*Ap); 

end 

c22(1:dofpt,:)=0; 

c23s(1:dofpt,:)=0; 

c27(1:dofpt,:)=0; 

c28s(1:dofpt,:)=0; 

c29s(1:dofpt,:)=0; 

c23s(dofp:dofz,:)=0; 

c28s(dofp:dofz,:)=0; 

c29s(dofp:dofz,:)=0; 

if plug>0 

for i=1:size(layerp,1) 

c1(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-

1)=(layerp(i,4)+((4/3)*layerp(i,3)))/((dr^2)*layerp(i,5)); 

c2(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-

1)=(layerp(i,4)+((4/3)*layerp(i,3)))/(2*dr*layerp(i,5)); 

c3(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-

1)=(layerp(i,4)+((4/3)*layerp(i,3)))/layerp(i,5); 

c4(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-

1)=(layerp(i,4)+((1/3)*layerp(i,3)))/(4*dz*dr*layerp(i,5)); 

c4m(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-

1)=(layerp(i,4)+((1/3)*layerp(i,3)))/(2*dz*dr*layerp(i,5)); 

c4mm(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-

1)=(layerp(i,4)+((1/3)*layerp(i,3)))/(1*dz*dr*layerp(i,5)); 

c5(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-1)=layerp(i,3)/((dz^2)*layerp(i,5)); 

c6(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-

1)=(layerp(i,4)+((4/3)*layerp(i,3)))/((dz^2)*layerp(i,5)); 

c7(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-

1)=(layerp(i,4)+((1/3)*layerp(i,3)))/(2*dz*layerp(i,5)); 
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c8(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-1)=layerp(i,3)/((dr^2)*layerp(i,5)); 

c9(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-1)=layerp(i,3)/(2*dr*layerp(i,5)); 

c10(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-1)=(2*dz*(layerp(i,4)-

((2/3)*layerp(i,3))))/(layerp(i,4)+((4/3)*layerp(i,3))); 

c11(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-1)=(dz*(layerp(i,4)-

((2/3)*layerp(i,3))))/(dr*(layerp(i,4)+((4/3)*layerp(i,3)))); 

c13(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-

1)=2*dr*sqrt(layerp(i,5)/(layerp(i,4)+((4/3)*layerp(i,3)))); 

c14(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-1)=(2*dr*(layerp(i,4)-

((2/3)*layerp(i,3))))/(layerp(i,4)+((4/3)*layerp(i,3))); 

c15(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-1)=(dr*(layerp(i,4)-

((2/3)*layerp(i,3))))/(dz*(layerp(i,4)+((4/3)*layerp(i,3)))); 

c16(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-1)=2*dr*sqrt(layerp(i,5)/layerp(i,3)); 

c18(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-

1)=2*dz*sqrt(layerp(i,5)/(layerp(i,4)+((4/3)*layerp(i,3)))); 

c19(dofp-1+layerp(i,1):dofp-1+layerp(i,2),1:dofrr-1)=2*dz*sqrt(layerp(i,5)/layerp(i,3)); 

c22p(dofp-1+layerp(i,1):dofp-1+layerp(i,2),dofrr)=layerp(i,3)/(dr*rhop*th); 

c27p(dofp-1+layerp(i,1):dofp-1+layerp(i,2),dofrr)=(layerp(i,4)+((4/3)*layerp(i,3)))/(dr*rhop*th); 

end 

end 

geo=zeros(dofz,dofr); 

geo(dofpt+2:dofz-1,2:dofr-1)=1; 

geo(dofpt+2:dofp,2:dofrr)=0; 

geo(dofpt+2:dofzz,dofrr)=0; 

geos=zeros(dofz,dofr); 

geos(dofp+1:dofz-1,1)=1; 

geof=zeros(dofz,dofr); 

geof(dofpt+1,dofrr+1:dofr-1)=1; 

geof(dofp,2:dofrr-1)=1; 

geoe=zeros(dofz,dofr); 

geoe(dofp,1)=1; 

geov=zeros(dofz,dofr); 

geov(dofpt+2:dofz-1,dofr)=1; 

geoh=zeros(dofz,dofr); 

geoh(dofz,2:dofr-1)=1; 

geop1=zeros(dofz,dofr); 

geop1(1,dofrr)=1; 

geop2=zeros(dofz,dofr); 

geop2(2,dofrr)=1; 

geop3=zeros(dofz,dofr); 

geop3(3:dofzz-2,dofrr)=1; 

geop4=zeros(dofz,dofr); 

geop4(dofzz-1,dofrr)=1; 

geop5=zeros(dofz,dofr); 

geop5(dofzz,dofrr)=1; 

r=zeros(dofr,1); 

geor=zeros(dofz,dofr); 

geofr=zeros(dofz,dofr); 

geovr=zeros(dofz,dofr); 

geohr=zeros(dofz,dofr); 

geop1r=zeros(dofz,dofr); 

geop2r=zeros(dofz,dofr); 

geop3r=zeros(dofz,dofr); 
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geop4r=zeros(dofz,dofr); 

geop5r=zeros(dofz,dofr); 

geor2=zeros(dofz,dofr); 

geofr2=zeros(dofz,dofr); 

geovr2=zeros(dofz,dofr); 

geohr2=zeros(dofz,dofr); 

geop1r2=zeros(dofz,dofr); 

geop2r2=zeros(dofz,dofr); 

geop3r2=zeros(dofz,dofr); 

geop4r2=zeros(dofz,dofr); 

geop5r2=zeros(dofz,dofr); 

gs=geo+geof+geov+geoh+geos+geoe+geop1+geop2+geop3+geop4+geop5; 

gs(gs==0)=NaN; 

for i=1:dofr 

    r(i,1)=(dr*(i-1)); 

    if i>1 

        geor(:,i)=(1/r(i,1)).*geo(:,i); 

        geofr(:,i)=(1/r(i,1)).*geof(:,i); 

        geovr(:,i)=(1/r(i,1)).*geov(:,i); 

        geohr(:,i)=(1/r(i,1)).*geoh(:,i); 

        geop1r(:,i)=(1/r(i,1)).*geop1(:,i); 

        geop2r(:,i)=(1/r(i,1)).*geop2(:,i); 

        geop3r(:,i)=(1/r(i,1)).*geop3(:,i); 

        geop4r(:,i)=(1/r(i,1)).*geop4(:,i); 

        geop5r(:,i)=(1/r(i,1)).*geop5(:,i); 

        geor2(:,i)=(1/(r(i,1)^2)).*geo(:,i); 

        geofr2(:,i)=(1/(r(i,1)^2)).*geof(:,i); 

        geovr2(:,i)=(1/(r(i,1)^2)).*geov(:,i); 

        geohr2(:,i)=(1/(r(i,1)^2)).*geoh(:,i); 

        geop1r2(:,i)=(1/(r(i,1)^2)).*geop1(:,i); 

        geop2r2(:,i)=(1/(r(i,1)^2)).*geop2(:,i); 

        geop3r2(:,i)=(1/(r(i,1)^2)).*geop3(:,i); 

        geop4r2(:,i)=(1/(r(i,1)^2)).*geop4(:,i); 

        geop5r2(:,i)=(1/(r(i,1)^2)).*geop5(:,i); 

    end 

end 

M1=sparse(doff,doff); 

W22=(-2.*(c6+c8)).*geo; 

M1=M1+sparse(1:dof,1:dof,W22(:),doff,doff); 

W12=c6.*geo; 

M1=M1+sparse(2:dof,1:dof-1,W12(2:dof)',doff,doff); 

W32=c6.*geo; 

M1=M1+sparse(1:dof-1,2:dof,W32(1:dof-1)',doff,doff); 

W21=(c8.*geo)-(c9.*geor); 

M1=M1+sparse(dofz+1:dof,1:dof-dofz,W21(dofz+1:dof)',doff,doff); 

W23=(c8.*geo)+(c9.*geor); 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,W23(1:dof-dofz)',doff,doff); 

U12=-c7.*geor; 

M1=M1+sparse(2:dof,dof+1:doff-1,U12(2:dof)',doff,doff); 

U32=c7.*geor; 

M1=M1+sparse(1:dof-1,dof+2:doff,U32(1:dof-1)',doff,doff); 

U33=c4.*geo; 

M1=M1+sparse(1:dof-dofz-1,dof+dofz+2:doff,U33(1:dof-dofz-1)',doff,doff); 
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U31=-c4.*geo; 

M1=M1+sparse(dofz:dof,dof+1:doff-dofz+1,U31(dofz:dof)',doff,doff); 

U13=-c4.*geo; 

M1=M1+sparse(1:dof-dofz+1,dof+dofz:doff,U13(1:dof-dofz+1)',doff,doff); 

U11=c4.*geo; 

M1=M1+sparse(dofz+2:dof,dof+1:doff-dofz-1,U11(dofz+2:dof)',doff,doff); 

W33=c4.*geo; 

M1=M1+sparse(dof+1:doff-dofz-1,dofz+2:dof,W33(1:dof-dofz-1)',doff,doff); 

W31=-c4.*geo; 

M1=M1+sparse(dof+dofz:doff,1:dof-dofz+1,W31(dofz:dof)',doff,doff); 

W13=-c4.*geo; 

M1=M1+sparse(dof+1:doff-dofz+1,dofz:dof,W13(1:dof-dofz+1)',doff,doff); 

W11=c4.*geo; 

M1=M1+sparse(dof+dofz+2:doff,1:dof-dofz-1,W11(dofz+2:dof)',doff,doff); 

U22=((-2.*(c1+c5)).*geo)-(c3.*geor2); 

M1=M1+sparse(dof+1:doff,dof+1:doff,U22(:),doff,doff); 

U12=c5.*geo; 

M1=M1+sparse(dof+2:doff,dof+1:doff-1,U12(2:dof)',doff,doff); 

U32=c5.*geo; 

M1=M1+sparse(dof+1:doff-1,dof+2:doff,U32(1:dof-1)',doff,doff); 

U21=(c1.*geo)-(c2.*geor); 

M1=M1+sparse(dof+dofz+1:doff,dof+1:doff-dofz,U21(dofz+1:dof)',doff,doff); 

U23=(c1.*geo)+(c2.*geor); 

M1=M1+sparse(dof+1:doff-dofz,dof+dofz+1:doff,U23(1:dof-dofz)',doff,doff); 

M2=(damp.*M1); 

W22=(-2.*(c6+c8)).*geof; 

M1=M1+sparse(1:dof,1:dof,W22(:),doff,doff); 

W32=(2.*c6).*geof; 

M1=M1+sparse(1:dof-1,2:dof,W32(1:dof-1)',doff,doff); 

W21=(c8.*geof)+(((c7.*c12)-c9).*geofr); 

M1=M1+sparse(dofz+1:dof,1:dof-dofz,W21(dofz+1:dof)',doff,doff); 

W23=(c8.*geof)+((c9-(c7.*c12)).*geofr); 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,W23(1:dof-dofz)',doff,doff); 

U22=(c6.*c10).*geofr; 

M1=M1+sparse(1:dof,dof+1:doff,U22(:),doff,doff); 

U33=c4m.*geof; 

M1=M1+sparse(1:dof-dofz-1,dof+dofz+2:doff,U33(1:dof-dofz-1)',doff,doff); 

U31=-c4m.*geof; 

M1=M1+sparse(dofz:dof,dof+1:doff-dofz+1,U31(dofz:dof)',doff,doff); 

U23=((c6.*c11)-c4m).*geof; 

M1=M1+sparse(1:dof-dofz,dof+dofz+1:doff,U23(1:dof-dofz)',doff,doff); 

U21=(c4m-(c6.*c11)).*geof; 

M1=M1+sparse(dofz+1:dof,dof+1:doff-dofz,U21(dofz+1:dof)',doff,doff); 

W33=c4m.*geof; 

M1=M1+sparse(dof+1:doff-dofz-1,dofz+2:dof,W33(1:dof-dofz-1)',doff,doff); 

W31=-c4m.*geof; 

M1=M1+sparse(dof+dofz:doff,1:dof-dofz+1,W31(dofz:dof)',doff,doff); 

W23=((c5.*c12)-c4m).*geof; 

M1=M1+sparse(dof+1:doff-dofz,dofz+1:dof,W23(1:dof-dofz)',doff,doff); 

W21=(c4m-(c5.*c12)).*geof; 

M1=M1+sparse(dof+dofz+1:doff,1:dof-dofz,W21(dofz+1:dof)',doff,doff); 

U22=((-2.*(c1+c5)).*geof)-(c3.*geofr2); 

M1=M1+sparse(dof+1:doff,dof+1:doff,U22(:),doff,doff); 
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U32=(2.*c5).*geof; 

M1=M1+sparse(dof+1:doff-1,dof+2:doff,U32(1:dof-1)',doff,doff); 

U21=(c1.*geof)-(c2.*geofr); 

M1=M1+sparse(dof+dofz+1:doff,dof+1:doff-dofz,U21(dofz+1:dof)',doff,doff); 

U23=(c1.*geof)+(c2.*geofr); 

M1=M1+sparse(dof+1:doff-dofz,dof+dofz+1:doff,U23(1:dof-dofz)',doff,doff); 

W22=(-2.*(c6+c8)).*geov; 

M1=M1+sparse(1:dof,1:dof,W22(:),doff,doff); 

W12=c6.*geov; 

M1=M1+sparse(2:dof,1:dof-1,W12(2:dof)',doff,doff); 

W32=c6.*geov; 

M1=M1+sparse(1:dof-1,2:dof,W32(1:dof-1)',doff,doff); 

W21=(2.*c8).*geov; 

M1=M1+sparse(dofz+1:dof,1:dof-dofz,W21(dofz+1:dof)',doff,doff); 

U12=(((c17.*c8)-c4m).*geov)+(((c17.*c9)-c7).*geovr); 

M1=M1+sparse(2:dof,dof+1:doff-1,U12(2:dof)',doff,doff); 

U32=((c4m-(c17.*c8)).*geov)+((c7-(c17.*c9)).*geovr); 

M1=M1+sparse(1:dof-1,dof+2:doff,U32(1:dof-1)',doff,doff); 

U31=-c4m.*geov; 

M1=M1+sparse(dofz:dof,dof+1:doff-dofz+1,U31(dofz:dof)',doff,doff); 

U11=c4m.*geov; 

M1=M1+sparse(dofz+2:dof,dof+1:doff-dofz-1,U11(dofz+2:dof)',doff,doff); 

Md=-((c16.*c8).*geov)-((c16.*c9).*geovr); 

M2=M2+sparse(1:dof,1:dof,Md(:),doff,doff); 

W12=(((c15.*c1)-c4m).*geov)+((c15.*c2).*geovr); 

M1=M1+sparse(dof+2:doff,1:dof-1,W12(2:dof)',doff,doff); 

W32=((c4m-(c15.*c1)).*geov)-((c15.*c2).*geovr); 

M1=M1+sparse(dof+1:doff-1,2:dof,W32(1:dof-1)',doff,doff); 

W31=-c4m.*geov; 

M1=M1+sparse(dof+dofz:doff,1:dof-dofz+1,W31(dofz:dof)',doff,doff); 

W11=c4m.*geov; 

M1=M1+sparse(dof+dofz+2:doff,1:dof-dofz-1,W11(dofz+2:dof)',doff,doff); 

U22=-((2.*(c1+c5)).*geov)-((c1.*c14).*geovr)-((c3+(c2.*c14)).*geovr2); 

M1=M1+sparse(dof+1:doff,dof+1:doff,U22(:),doff,doff); 

U12=c5.*geov; 

M1=M1+sparse(dof+2:doff,dof+1:doff-1,U12(2:dof)',doff,doff); 

U32=c5.*geov; 

M1=M1+sparse(dof+1:doff-1,dof+2:doff,U32(1:dof-1)',doff,doff); 

U21=(2.*c1).*geov; 

M1=M1+sparse(dof+dofz+1:doff,dof+1:doff-dofz,U21(dofz+1:dof)',doff,doff); 

Md=-((c13.*c1).*geov)-((c13.*c2).*geovr); 

M2=M2+sparse(dof+1:doff,dof+1:doff,Md(:),doff,doff); 

W22=(-2.*(c6+c8)).*geoh; 

M1=M1+sparse(1:dof,1:dof,W22(:),doff,doff); 

W12=(2.*c6).*geoh; 

M1=M1+sparse(2:dof,1:dof-1,W12(2:dof)',doff,doff); 

W21=(c8.*geoh)+(((c7.*c12)-c9).*geohr); 

M1=M1+sparse(dofz+1:dof,1:dof-dofz,W21(dofz+1:dof)',doff,doff); 

W23=(c8.*geoh)+((c9-(c7.*c12)).*geohr); 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,W23(1:dof-dofz)',doff,doff); 

U22=-(c6.*c10).*geohr; 

M1=M1+sparse(1:dof,dof+1:doff,U22(:),doff,doff); 

U13=-c4m.*geoh; 
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M1=M1+sparse(1:dof-dofz+1,dof+dofz:doff,U13(1:dof-dofz+1)',doff,doff); 

U11=c4m.*geoh; 

M1=M1+sparse(dofz+2:dof,dof+1:doff-dofz-1,U11(dofz+2:dof)',doff,doff); 

U23=(c4m-(c6.*c11)).*geoh; 

M1=M1+sparse(1:dof-dofz,dof+dofz+1:doff,U23(1:dof-dofz)',doff,doff); 

U21=((c6.*c11)-c4m).*geoh; 

M1=M1+sparse(dofz+1:dof,dof+1:doff-dofz,U21(dofz+1:dof)',doff,doff); 

Md=-(c6.*c18).*geoh; 

M2=M2+sparse(1:dof,1:dof,Md(:),doff,doff); 

Md=-(c7.*c19).*geohr; 

M2=M2+sparse(1:dof,dof+1:doff,Md(:),doff,doff); 

W13=-c4m.*geoh; 

M1=M1+sparse(dof+1:doff-dofz+1,dofz:dof,W13(1:dof-dofz+1)',doff,doff); 

W11=c4m.*geoh; 

M1=M1+sparse(dof+dofz+2:doff,1:dof-dofz-1,W11(dofz+2:dof)',doff,doff); 

W23=(c4m-(c5.*c12)).*geoh; 

M1=M1+sparse(dof+1:doff-dofz,dofz+1:dof,W23(1:dof-dofz)',doff,doff); 

W21=((c5.*c12)-c4m).*geoh; 

M1=M1+sparse(dof+dofz+1:doff,1:dof-dofz,W21(dofz+1:dof)',doff,doff); 

U22=((-2.*(c1+c5)).*geoh)-(c3.*geohr2); 

M1=M1+sparse(dof+1:doff,dof+1:doff,U22(:),doff,doff); 

U12=(2.*c5).*geoh; 

M1=M1+sparse(dof+2:doff,dof+1:doff-1,U12(2:dof)',doff,doff); 

U21=(c1.*geoh)-(c2.*geohr); 

M1=M1+sparse(dof+dofz+1:doff,dof+1:doff-dofz,U21(dofz+1:dof)',doff,doff); 

U23=(c1.*geoh)+(c2.*geohr); 

M1=M1+sparse(dof+1:doff-dofz,dof+dofz+1:doff,U23(1:dof-dofz)',doff,doff); 

Md=-(c5.*c19).*geoh; 

M2=M2+sparse(dof+1:doff,dof+1:doff,Md(:),doff,doff); 

W22=(-(2.*c6)-(4.*c8)).*geos; 

M1=M1+sparse(1:dof,1:dof,W22(:),doff,doff); 

W12=c6.*geos; 

M1=M1+sparse(2:dof,1:dof-1,W12(2:dof)',doff,doff); 

W32=c6.*geos; 

M1=M1+sparse(1:dof-1,2:dof,W32(1:dof-1)',doff,doff); 

W23=(4.*c8).*geos; 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,W23(1:dof-dofz)',doff,doff); 

U33=c4m.*geos; 

M1=M1+sparse(1:dof-dofz-1,dof+dofz+2:doff,U33(1:dof-dofz-1)',doff,doff); 

U13=-c4m.*geos; 

M1=M1+sparse(1:dof-dofz+1,dof+dofz:doff,U13(1:dof-dofz+1)',doff,doff); 

W22=(-(2.*c6)-(4.*c8)).*geoe; 

M1=M1+sparse(1:dof,1:dof,W22(:),doff,doff); 

W32=(2.*c6).*geoe; 

M1=M1+sparse(1:dof-1,2:dof,W32(1:dof-1)',doff,doff); 

W23=(4.*c8).*geoe; 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,W23(1:dof-dofz)',doff,doff); 

U33=c4mm.*geoe; 

M1=M1+sparse(1:dof-dofz-1,dof+dofz+2:doff,U33(1:dof-dofz-1)',doff,doff); 

U23=((2.*(c6.*c11))-c4mm).*geoe; 

M1=M1+sparse(1:dof-dofz,dof+dofz+1:doff,U23(1:dof-dofz)',doff,doff); 

M3=M1; 

W22=-((2.*c20)+c22+c22p).*geop1; 
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M1=M1+sparse(1:dof,1:dof,W22(:),doff,doff); 

W32=(2.*c20).*geop1; 

M1=M1+sparse(1:dof-1,2:dof,W32(1:dof-1)',doff,doff); 

W21=c22p.*geop1; 

M1=M1+sparse(1+dofz:dof,1:dof-dofz,W21(1+dofz:dof)',doff,doff); 

W23=c22.*geop1; 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,W23(1:dof-dofz)',doff,doff); 

U22=(((c20.*c30)-(3.*c21)).*geop1r)-(c23s.*geop1); 

M1=M1+sparse(1:dof,dof+1:doff,U22(:),doff,doff); 

U32=((4.*c21).*geop1r)+(c23s.*geop1); 

M1=M1+sparse(1:dof-1,dof+2:doff,U32(1:dof-1)',doff,doff); 

U42=-c21.*geop1r; 

M1=M1+sparse(1:dof-2,dof+3:doff,U42(1:dof-2)',doff,doff); 

W22=-c29s.*geop1; 

M1=M1+sparse(dof+1:doff,1:dof,W22(:),doff,doff); 

W32=c29s.*geop1; 

M1=M1+sparse(dof+1:doff-1,2:dof,W32(1:dof-1)',doff,doff); 

U22=((-c27-c27p).*geop1)+(c28s.*geop1r)+(((c24.*c31)-c25).*geop1r2); 

M1=M1+sparse(dof+1:doff,dof+1:doff,U22(:),doff,doff); 

U21=c27p.*geop1; 

M1=M1+sparse(dof+dofz+1:doff,dof+1:doff-dofz,U21(dofz+1:dof)',doff,doff); 

U23=c27.*geop1; 

M1=M1+sparse(dof+1:doff-dofz,dof+dofz+1:doff,U23(1:dof-dofz)',doff,doff); 

W22=-((2.*c20)+c22+c22p).*geop2; 

M1=M1+sparse(1:dof,1:dof,W22(:),doff,doff); 

W12=c20.*geop2; 

M1=M1+sparse(2:dof,1:dof-1,W12(2:dof)',doff,doff); 

W32=c20.*geop2; 

M1=M1+sparse(1:dof-1,2:dof,W32(1:dof-1)',doff,doff); 

W21=c22p.*geop2; 

M1=M1+sparse(dofz+1:dof,1:dof-dofz,W21(dofz+1:dof)',doff,doff); 

W23=c22.*geop2; 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,W23(1:dof-dofz)',doff,doff); 

U22=-c23s.*geop2; 

M1=M1+sparse(1:dof,dof+1:doff,U22(:),doff,doff); 

U12=-c21.*geop2r; 

M1=M1+sparse(2:dof,dof+1:doff-1,U12(2:dof)',doff,doff); 

U32=(c21.*geop2r)+(c23s.*geop2); 

M1=M1+sparse(1:dof-1,dof+2:doff,U32(1:dof-1)',doff,doff); 

W22=-c29s.*geop2; 

M1=M1+sparse(dof+1:doff,1:dof,W22(:),doff,doff); 

W12=c24.*geop2r; 

M1=M1+sparse(dof+2:doff,1:dof-1,W12(2:dof)',doff,doff); 

W32=(-c24.*geop2r)+(c29s.*geop2); 

M1=M1+sparse(dof+1:doff-1,2:dof,W32(1:dof-1)',doff,doff); 

U22=-(((3.*c26)+c27+c27p).*geop2)+(c28s.*geop2r)-(c25.*geop2r2); 

M1=M1+sparse(dof+1:doff,dof+1:doff,U22(:),doff,doff); 

U12=(1.*c26).*geop2; 

M1=M1+sparse(dof+2:doff,dof+1:doff-1,U12(2:dof)',doff,doff); 

U32=(3.*c26).*geop2; 

M1=M1+sparse(dof+1:doff-1,dof+2:doff,U32(1:dof-1)',doff,doff); 

U42=-c26.*geop2; 

M1=M1+sparse(dof+1:doff-2,dof+3:doff,U42(1:dof-2)',doff,doff); 
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U21=c27p.*geop2; 

M1=M1+sparse(dof+dofz+1:doff,dof+1:doff-dofz,U21(1+dofz:dof)',doff,doff); 

U23=c27.*geop2; 

M1=M1+sparse(dof+1:doff-dofz,dof+dofz+1:doff,U23(1:dof-dofz)',doff,doff); 

W22=-((2.*c20)+c22+c22p).*geop3; 

M1=M1+sparse(1:dof,1:dof,W22(:),doff,doff); 

W12=c20.*geop3; 

M1=M1+sparse(2:dof,1:dof-1,W12(2:dof)',doff,doff); 

W32=c20.*geop3; 

M1=M1+sparse(1:dof-1,2:dof,W32(1:dof-1)',doff,doff); 

W21=c22p.*geop3; 

M1=M1+sparse(dofz+1:dof,1:dof-dofz,W21(dofz+1:dof)',doff,doff); 

W23=c22.*geop3; 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,W23(1:dof-dofz)',doff,doff); 

U22=-c23s.*geop3; 

M1=M1+sparse(1:dof,dof+1:doff,U22(:),doff,doff); 

U12=-c21.*geop3r; 

M1=M1+sparse(2:dof,dof+1:doff-1,U12(2:dof)',doff,doff); 

U32=(c21.*geop3r)+(c23s.*geop3); 

M1=M1+sparse(1:dof-1,dof+2:doff,U32(1:dof-1)',doff,doff); 

W22=-c29s.*geop3; 

M1=M1+sparse(dof+1:doff,1:dof,W22(:),doff,doff); 

W12=c24.*geop3r; 

M1=M1+sparse(dof+2:doff,1:dof-1,W12(2:dof)',doff,doff); 

W32=(-c24.*geop3r)+(c29s.*geop3); 

M1=M1+sparse(dof+1:doff-1,2:dof,W32(1:dof-1)',doff,doff); 

U22=-(((6.*c26)+c27+c27p).*geop3)+(c28s.*geop3r)-(c25.*geop3r2); 

M1=M1+sparse(dof+1:doff,dof+1:doff,U22(:),doff,doff); 

U02=-c26.*geop3; 

M1=M1+sparse(dof+3:doff,dof+1:doff-2,U02(3:dof)',doff,doff); 

U12=(4.*c26).*geop3; 

M1=M1+sparse(dof+2:doff,dof+1:doff-1,U12(2:dof)',doff,doff); 

U32=(4.*c26).*geop3; 

M1=M1+sparse(dof+1:doff-1,dof+2:doff,U32(1:dof-1)',doff,doff); 

U42=-c26.*geop3; 

M1=M1+sparse(dof+1:doff-2,dof+3:doff,U42(1:dof-2)',doff,doff); 

U21=c27p.*geop3; 

M1=M1+sparse(dof+dofz+1:doff,dof+1:doff-dofz,U21(1+dofz:dof)',doff,doff); 

U23=c27.*geop3; 

M1=M1+sparse(dof+1:doff-dofz,dof+dofz+1:doff,U23(1:dof-dofz)',doff,doff); 

W22=-((2.*c20)+c22+c22p).*geop4; 

M1=M1+sparse(1:dof,1:dof,W22(:),doff,doff); 

W12=c20.*geop4; 

M1=M1+sparse(2:dof,1:dof-1,W12(2:dof)',doff,doff); 

W32=c20.*geop4; 

M1=M1+sparse(1:dof-1,2:dof,W32(1:dof-1)',doff,doff); 

W21=c22p.*geop4; 

M1=M1+sparse(dofz+1:dof,1:dof-dofz,W21(dofz+1:dof)',doff,doff); 

W23=c22.*geop4; 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,W23(1:dof-dofz)',doff,doff); 

U22=-c23s.*geop4; 

M1=M1+sparse(1:dof,dof+1:doff,U22(:),doff,doff); 

U12=-c21.*geop4r; 
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M1=M1+sparse(2:dof,dof+1:doff-1,U12(2:dof)',doff,doff); 

U32=(c21.*geop4r)+(c23s.*geop4); 

M1=M1+sparse(1:dof-1,dof+2:doff,U32(1:dof-1)',doff,doff); 

W22=-c29s.*geop4; 

M1=M1+sparse(dof+1:doff,1:dof,W22(:),doff,doff); 

W12=c24.*geop4r; 

M1=M1+sparse(dof+2:doff,1:dof-1,W12(2:dof)',doff,doff); 

W32=(-c24.*geop4r)+(c29s.*geop4); 

M1=M1+sparse(dof+1:doff-1,2:dof,W32(1:dof-1)',doff,doff); 

U22=-(((3.*c26)+c27+c27p).*geop4)+(c28s.*geop4r)-(c25.*geop4r2); 

M1=M1+sparse(dof+1:doff,dof+1:doff,U22(:),doff,doff); 

U02=-c26.*geop4; 

M1=M1+sparse(dof+3:doff,dof+1:doff-2,U02(3:dof)',doff,doff); 

U12=(3.*c26).*geop4; 

M1=M1+sparse(dof+2:doff,dof+1:doff-1,U12(2:dof)',doff,doff); 

U32=(1.*c26).*geop4; 

M1=M1+sparse(dof+1:doff-1,dof+2:doff,U32(1:dof-1)',doff,doff); 

U21=c27p.*geop4; 

M1=M1+sparse(dof+dofz+1:doff,dof+1:doff-dofz,U21(1+dofz:dof)',doff,doff); 

U23=c27.*geop4; 

M1=M1+sparse(dof+1:doff-dofz,dof+dofz+1:doff,U23(1:dof-dofz)',doff,doff); 

W22=-((2.*c20)+c22+c22p+(c20.*c32)).*geop5; 

M1=M1+sparse(1:dof,1:dof,W22(:),doff,doff); 

W12=(2.*c20).*geop5; 

M1=M1+sparse(2:dof,1:dof-1,W12(2:dof)',doff,doff); 

W32=(c20.*c32).*geop5; 

M1=M1+sparse(1:dof-1,2:dof,W32(1:dof-1)',doff,doff); 

W21=c22p.*geop5; 

M1=M1+sparse(dofz+1:dof,1:dof-dofz,W21(dofz+1:dof)',doff,doff); 

W23=c22.*geop5; 

M1=M1+sparse(1:dof-dofz,dofz+1:dof,W23(1:dof-dofz)',doff,doff); 

U22=(((2.*c23s)-(c20.*c34)).*geop5)+(((c20.*c33)+(3.*c21)).*geop5r); 

M1=M1+sparse(1:dof,dof+1:doff,U22(:),doff,doff); 

U02=(c23s.*geop5)+(c21.*geop5r); 

M1=M1+sparse(3:dof,dof+1:doff-2,U02(3:dof)',doff,doff); 

U12=-((3.*c23s).*geop5)-((4.*c21).*geop5r); 

M1=M1+sparse(2:dof,dof+1:doff-1,U12(2:dof)',doff,doff); 

U23=(c20.*c34).*geop5; 

M1=M1+sparse(1:dof-dofz,dof+dofz+1:doff,U23(1:dof-dofz)',doff,doff); 

W22=((-c29s-(c29s.*c32)).*geop5)+((c24.*c32).*geop5r); 

M1=M1+sparse(dof+1:doff,1:dof,W22(:),doff,doff); 

W12=c29s.*geop5; 

M1=M1+sparse(dof+2:doff,1:dof-1,W12(2:dof)',doff,doff); 

W32=((c29s.*c32).*geop5)-((c24.*c32).*geop5r); 

M1=M1+sparse(dof+1:doff-1,2:dof,W32(1:dof-1)',doff,doff); 

U22=((-c27-c27p-(c29s.*c34)).*geop5)+((c28s+(c29s.*c33)+(c24.*c34)).*geop5r)+((-c25-

(c24.*c33)).*geop5r2); 

M1=M1+sparse(dof+1:doff,dof+1:doff,U22(:),doff,doff); 

U21=c27p.*geop5; 

M1=M1+sparse(dof+dofz+1:doff,dof+1:doff-dofz,U21(dofz+1:dof)',doff,doff); 

U23=((c27+(c29s.*c34)).*geop5)-((c24.*c34).*geop5r); 

M1=M1+sparse(dof+1:doff-dofz,dof+dofz+1:doff,U23(1:dof-dofz)',doff,doff); 

M2=M2+((M1-M3).*dampi); 
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Mz=sparse(doff,doff); 

Mi=speye(doff,doff); 

M=[Mz Mi; M1 M2]; 

F=zeros(2*doff,1); 

F(doff+((dofrr-1)*dofz)+1)=c20(1,dofrr)*c30(1,dofrr); 

F(doff+dof+((dofrr-1)*dofz)+1)=(c24(1,dofrr)*c30(1,dofrr))/r(dofrr); 

w0=zeros(2*doff,1); 

figure('units','normalized','outerposition',[0 0 1 1]) 

for n=1:doft 

    tspan=((n-1)*tstep):(tstep/2):(n*tstep); 

    [t,w]=ode45(@(t,w) M*w+(q1*exp(-alpha*t)*sin(q2*t)).*F,tspan,w0); 

    w0=w(3,:)'; 

    WW=reshape(w(3,1:dof)',[dofz,dofr]); 

    UU=reshape(w(3,dof+1:doff)',[dofz,dofr]); 

    subplot(1,2,1) 

    pcolor(WW.*gs) 

    colormap(jet) 

    set(gca,'XAxisLocation','top','YAxisLocation','left','ydir','reverse') 

    colorbar 

    caxis([-(10^-3) (10^-3)]) 

    xticks([0 dofrr dofr]) 

    xticklabels([0 (dn/2) R]) 

    yticks([dofp dofz]) 

    yticklabels([Z-plug Zf]) 

    set(gca,'FontSize',15); 

    axis equal 

    axis tight 

    set(gcf,'color','w'); 

    shading flat 

    title(['W at t = ' sprintf('%0.5f',tv(n+1))],'FontSize',20) 

    subplot(1,2,2) 

    pcolor(UU.*gs) 

    colormap(jet) 

    set(gca,'XAxisLocation','top','YAxisLocation','left','ydir','reverse') 

    colorbar 

    caxis([-2*(10^-4) 2*(10^-4)]) 

    xticks([0 dofrr dofr]) 

    xticklabels([0 (dn/2) R]) 

    yticks([dofp dofz]) 

    yticklabels([Z-plug Zf]) 

    set(gca,'FontSize',15); 

    axis equal 

    axis tight 

    set(gcf,'color','w'); 

    shading flat 

    title(['U at t = ' sprintf('%0.5f',tv(n+1))],'FontSize',20) 

    drawnow; 

end 

 


