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1
INTRODUCTION

(a) Lagrangian

[Liu et al. 2005]

(b) Eulerian

[Wu et al. 2012]
(c) Eulerian

[Wadhwa et al. 2013]

(d) Hybrid: DVMAG

[Elgharib et al. 2015]

(e) Acceleration Magnification

[Ours 2016]

Figure 1.1: Timeline of topic: motion magnification. Liu et al. [1] amplifies subtle motions by accurately analyzing feature point trajec-
tories, which is one of the earliest influential paper in motion magnification. Eulerian method came up after 7 years [2], in 2012, and
improved [3] in 2013. Elgharib et al. [4] combined both method and tried to magnify small motion inside big motion with the supervi-
sion of ROI and motion mask. We significantly improve the performance by magnifying accelerations without any optical flow, temporal
alignment or region annotations.

Many seemingly static scenes contain subtle changes that are invisible to the naked human eyes. However, it

is useful to magnify or reduce subtle image changes over time such as video editing, medical video analysis,

product quality control and sports. For example, human skin color varies slightly with blood circulation. This

variation, while invisible to the naked eye, can be exploited to extract pulse rate. Similarly, vibration of guitar

strings can be magnified individually by these techniques. Such technique can also be implemented in re-

search area, for example, magnifying small deformations of structures, or magnifying the small movements

of a system in response to some forcing functions.

Considering the magnification method, we do not use optics like regular microscope to increase the size of

objects. Instead, tiny motions and color changes are magnified with the help of image processing algorithms

built on videos. Huge progresses are made in the last few years. We draw a time line and show the most

1



2 1. INTRODUCTION

promising steps in Figure 1.1. The strength of these methods stems from using Eulerian motion analysis in-

stead of Lagrangian motion.

Liu et al. [1] presented one of the first video magnification techniques (see Figure 1.1(a)) in 2005, where he

magnified the motion using Lagrangian method. The Lagrangian approach models the appearance of the

input video as trajectories observed in a reference frame. Motion is estimated per pixel so that pixels which

indicate motions and background can be grouped separately. An affine motion model is fitted on the station-

ary points which registers the examined sequence on a reference frame. Finally, motions are re-estimated,

scaled and added back to the registered sequence, which indicates magnified motions. One big problem for

Lagrangian approach is its computational costs: it uses optical flow in trajectory estimation, which is expen-

sive and an unsolved research topic in its own [5–7].

Instead, the Eulerian approach does not require tracking; it measures flux at a fixed position. Wu et al. [2]

(Figure 1.1(b)) introduced his famous approach in TED in 2012, making motion magnification widely known

around the world. His approach combines spatial and temporal processing to emphasize subtle temporal

changes in a video, where each frame is decomposed into different spatial frequency bands, and motion sig-

nals are magnified temporally afterwards. Wadhwa et al. (Figure 1.1(c)) improved the performance by phase

translation as representation of motion. Wu’s method gives excellent results for color magnification, while

Wadhwa’s method outperforms in magnifying motions, for example, magnifying blood flow, a heart-beat, or

tiny breathing when the object and camera remain still. More details are mentioned in Chapter 2.

Unfortunately, algorithms above work on the basis that no big motion exists in the video, and fail for moving

objects. However, essential properties of dynamic objects become clear only when they move. Consider, for

example, the mechanical stability of a drone in flight, the muscles of an athlete doing sports, or the tremors

of a Parkinson patient during walking. For these examples the properties of interest do not emerge while re-

maining still. The essential properties are the tiny variations that occur only during motion. A useful video

magnification method that deals with large motion is developed by Elgharib [4] (Figure 1.1(d)). It offers a hy-

brid of Eulerian and Lagrangian methods. By manually selecting the regions to magnify, these regions can be

tracked by Lagrangian methods and subsequently temporally aligned using a homography. After alignment

standard Eulerian magnification methods [2, 3] can be applied, yielding good magnification results. A disad-

vantage of this method is that regions of interest require manual segmentation which is time consuming and

error prone. Also, the Lagrangian region tracking is expensive and sensitive to occlusions and 3D rotations.

Furthermore, the alignment assumes a homography, which is often inaccurate for a non-static camera and

non-planar objects. There is some room for improvement. In Chapter 3, we review mainstream video mag-

nification algorithms [2–4] in details.

In this report we developed a new methods for amplifying small variations in the presence of large motion:

Eulerian Video Acceleration Magnification. We ignore linear motion and propose to magnify acceleration.

This method is pure Eulerian and does not require any optical flow, temporal alignment or region annota-

tions. We link temporal second-order derivative filtering to spatial acceleration magnification. We apply our

method to moving objects where we show motion magnification and color magnification. Chapter 5 analy-

ses the results, compares and explains the performance of methods explained above. We submitted a paper
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titled ’Video Acceleration Magnification’ to CVPR 2017. This paper is attached in the end of thesis report (see

appendix C).





2
RELATED WORK

Video magnification is the task of amplifying and visualizing subtle variations in image sequences. Cur-

rent techniques are classified into two main categories: Lagrangian and Eulerian. In Lagrangian approaches

motions are estimated explicitly. Here motions are the subtle variations to be magnified. The Eulerian ap-

proaches, on the other hand, do not estimate motions explicitly. Instead, they estimate subtle variations

by calculating non-motion compensated frame differences. In this chapter, we briefly introduce those two

categories.

2.1. LAGRANGIAN APPROACHES

For the task of motion magnification, successful work focused on Lagrangian approaches. These methods

consider the image changes that happen over time at a certain object location by matching image points or

patches between video frames and estimating the motion based on optical flow. In the presence of large ob-

ject motion or camera motion, robust image registration plays a main role for such methods. In [1] features

are extracted over the frame and these features are tracked and clustered into groups of points where the video

changes are magnified. The work in [8] estimates the heart beat of people from subtle movements of the head.

It does so by extracting features over the head region and tracking them. In more recent work on heart-rate

estimation [9] the tracking and selection of features is achieved by matrix completion. The work in [10] em-

ploys user input to define regions of large motion at which video de-animation is performed by tracking the

pixels and using graph-cut to consistently segment the motion. In this section, we briefly describe each step

of Lagrangian method in [1] so that readers get an abstract overview of this approach. Figure 2.1 illustrates

the overview of Liu’s method, which is separated into six steps. (a) Register input images. Image registration

is implemented so as to eliminate camera shake. It is assumed that image sequence depicts predominantly

5



6 2. RELATED WORK

Figure 2.1: Overview of the Lagrangian method through swing set example. Figure takes from [Liu et al. [1]].

static scene such that image registration works under the videos. (b) Cluster feature point trajectories. In this

phase, objects that move with correlated motions are grouped so that motions of interest can be magnified

independently with background or uncorrelated motions. (c) Segmentation: Layer assignment. After feature

points clustering, motion trajectories are derived for each pixel of the reference frame. Liu used pixel color,

position, as well as motion to estimate the cluster assignment. (d) Motion magnification. Now this Laplacian

model is a set of pixel intensities, clustered into layers, which translate over the video sequence according

to interpolated trajectories. In this stage, Liu magnified motions of motion layers of interest. (e) Texture in-

painting. After motion magnification, regions of the background layer which were never seen in the original

video sequence may appears, inducing black holes in Figure 2.1(d). Liu filled in all holes in the background

layer by the texture synthesis method of Efros and Leung [11]. (f) Final result.

2.2. EULERIAN APPROACHES

Rather than the Lagrangian paradigm based on tracking points over time to estimate the changes of certain

objects, the Eulerian paradigm analyzes the image changes over time at fixed image locations. We show an

example made by Wu in Figure 2.2. These figures illustrate the results of color magnification of human face,

where Figure 2.2(a) indicates four frames from the original video sequence, and Figure 2.2(b) indicates corre-

sponding frames after video magnification. Moreover, it is easy to accurately estimate the pulse rate, shown

in Figure 2.2(c): A vertical scan line from the input (top) and output (bottom) videos plotted over time shows

how Eulerian method amplifies the periodic color variation. In the input sequence the signal is impercepti-

ble, but in the magnified sequence the variation is clear.

Eulerian methods towards magnifying subtle video changes were proposed by first decomposing the video
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Figure 2.2: An example of intensity magnification and pulse detection. Figure takes from [Wu et al. [2]].

Figure 2.3: Explanation of how Eulerian’s method works. Consider the time series of color values at the spatial location (blue spot in (a)).
Its signal/intensity values over time is plotted in (b). By selecting a temporal frequency of interest, and convolving with original signal,
signal containing pulse information remains, see (e). Finally, signal filtered is amplified and added back to the original one, and Figure
(d) is generated.

frames spatially through band-pass filtering, and then temporally filtering the signal to find the information

to be magnified [2, 12], shown in Figure 2.3. These works have shown impressive results especially in the

context of color amplification and heart rate estimation. With the apprise of the complex-steerable pyramid

[13–15], the use of phase-based motion has been considered not only in the context of motion magnifica-

tion but also for other motion-related applications. Examples include phase-based video frame interpolation

[16] and video modification transfer [17]. In [18] phase information is used for extracting sound from high

speed cameras, while in [19] the video phase information is employed for predicting object material and in

[20] phase aids in estimating measurements of structural vibrations. In the context of motion magnification,

the successful work in [3] proposes the use of phase estimated through complex steerable filters and then

magnifies this phase information. A speedup is proposed in [21] through the use of a Riesz pyramid as an

approximation for the complex pyramid. These works achieve impressive results for motion magnification.

However the downside of these approaches is that the subtle motion to be magnified must be isolated — no

large object motion or camera motion should be present.
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To deal with camera and object big motion, in [4], the user is asked to indicate a frame region whose pixels are

tracked and their motion is magnified. The recent work in [22] proposes an alternative to finding the pixels

whose changes should be magnified, by using depth cameras and bilateral filters such that the motion mag-

nification is applied on all pixels located at the same depth. However this method is not tested on moving

objects.

Inspired by these works, we use a pure Eulerian approach to magnifying subtle video motion and we extend

these methods to deal with large object or camera motion.



3
BACKGROUND OF TRADITIONAL MOTION

MAGNIFICATION ALGORITHMS

Many attempts have been made to unveil imperceptible motions in videos in the past few years. Liu et al.

[1] amplifies subtle motions by accurately analyzing feature point trajectories. Wu et al. [2] takes into ac-

count the color values at each spatial location (pixel) and amplifies motion variations temporally in a given

frequency band of interest. Wadhwa et al. [3] improves the performance by substituting pixel intensity by

phase, who assumes phase values for each frame contain motion information. One year later, Wadhwa et al.

[21] develops Riesz Pyramids in order to increase the computation efficiency of Phase-based motion magni-

fication. Recently, Elgharib et al. [4] tries to magnify small motion in presence of large motion by matting and

image registration.

In this chapter, we mainly introduce three motion magnification algorithms [2][3][4] which are frequently

used in our work. We first define the notations used in this chapter. Ii (xk , tk ) indicates the image intensity of

pixel i at position xk at time instant tk , where xk = [xk , yk ]T and k is the frame index. We describe the time

interval between two consecutive frames as δ(tk ). Thus, tk+1 = tk +δ(tk ). Meanwhile, displacement of pixel

in δ(tk ) is denoted as δ(xk ).

3.1. EULERIAN VIDEO MAGNIFICATION

Eulerian approach [2] not only amplifies color variation, but also reveal low-amplitude motion. An overview

of this method is illustrated in Fig. 3.1.

9



10 3. BACKGROUND OF TRADITIONAL MOTION MAGNIFICATION ALGORITHMS

Figure 3.1: Overview of the Eulerian video magnification framework. Step 1, image pyramid is implemented, which decomposes the
input video sequence into different spatial frequency bands. Step 2, a temporal filter is designed manually through all bands in order to
eliminate frame ’noise’. Step 3, the filtered spatial bands are magnified with a factor α. Step 4, signal after amplification is added back to
the original one generated after step 1. Step 5: the spatial bands after processing are collapsed to generate the output video. Figure takes
from [Wu et al. [2]].

3.1.1. SPACE-TIME VIDEO PROCESSING

Sequence of this approach is composed into two parts: spatial and temporal processing. Spatial processing:

first a full Laplacian pyramid [23][24] is computed based on the input video sequence. The goal of spatial

processing is to increase temporal signal-to-noise ratio by pooling multiple pixels. Temporal processing: We

consider the time series corresponding to the intensity of each pixel throughout video as signal in some fre-

quency bands. Then a bandpass filter is applied to extract the frequency bands of interest. Temporal process-

ing is uniform for all spatial bands. Afterwards the filtered signal is magnified by a factor α, added back to the

original signal, the one after pyramid decomposition, and reconstructed to generate the output video.

3.1.2. PRINCIPLE BEHIND: LINEAR MOTION MAGNIFICATION

Consider a 1D signal undergoing translational motion, shown in Fig. 3.2. We simplify the notation xk as xk .

Since the image undergoes translational motion, we can express the observed intensities with respect to a

displacement function δ(tk ) at frame k such that

Ii (xk , tk ) = f0(xk )

and

Ii (xk+1, tk+1) = f1(xk +δ(tk ))

(Fig.3.2a). The goal of motion magnification is to synthesize the signal Îi (xk+1, tk+1) = f̂1(x + (1+α)δ(tk )) for

some amplification factor α (Fig.3.2b).



3.1. EULERIAN VIDEO MAGNIFICATION 11

Assume that each pixel in temporal scale can be approximated by a first-order Taylor series expansion so that

Ii (xk+1, tk+1) ≈ f1(xk )+δ(tk )
∂ f (xk )

∂xk
(3.1)

Let B(x, t ) be the result of applying a temporal bandpass filter to Ii (xk+1, tk+1) at every pixel i . Meanwhile,

assume the motion signal, δ(t ), is within the bandpass of the filter. Then we have

B(xk , tk ) = δ(tk )
∂ f (xk )

∂xk
(3.2)

Finally we amplify the bandpass signal by α and add it back to Ii (xk+1, tk+1), resulting the magnified signal:

Îi (xk+1, tk+1) ≈ f1(xk )+ (1+α)δ(tk )
∂ f (xk )

∂xk
(3.3)

If the first-order Taylor expansion still holds for amplified motion, then

Îi (xk+1, tk+1) ≈ f̂1(xt + (1+α)δ(t )) = f̂1(xt+1) (3.4)

(a) Signal movement in between consecutive frames (b) Signal movement after magnification with factor α

Figure 3.2: Motion magnification 1D signal model. Temporal filtering can approximate spatial translation. This effect can be represented
on a 1D signal model, and equally applied to 2D cases. Assume that intensity of pixel i at position xk in time instant tk is located on the
curve f (x). Ii (xk , tk ) moves to Ii (xk+1, tk+1) with distance δ(tk ) in the next moment. In the case of Eulerian motion magnification, first-
order Taylor series expansion of Ii (xk+1, tk+1) about xk+1 approximates well the translated signal. The temporal bandpass is amplified
and added to the original signal to generate a larger transition, shown in fig(b). In the case of phase based motion magnification, assume
f0(x) and f1(x) are sine waves, and f1(x) is just f0(x) with transition δ(t ). Thus, f0(x) = Asi n(w x) and f1(x) = Asi n(w x −δ(t )). In this
case, pixel displacement is transformed into phase difference, and motion is magnified when amplifying phase difference.

3.1.3. FILTER SELECTION

For Eulerian’s method, different bandpass filters are selected in order to keep the signal within frequency band

of interest. The choice of filter is generally application dependent. For motion magnification, a filter with a

broad passband is preferred; for color amplification of blood flow, a narrow passband produces a more noise-

free result. Liu et al.[2] uses ideal bandpass filters for color magnification, since they have passbands with

sharp cutoff frequencies. Low-order IIR filters are used for both color magnification and motion amplification
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and are convenient for a real-time implementation. Liu also uses two first-order lowpass filters with cutoff

frequencies ωl and ωh to construct an IIR bandpass filter. In fact, it is not necessary and recommended to

design a higher order filter, for the reason that frequency of small motion is only estimated coarsely by users.

In summary, pseudo code for Eulerian motion magnification is given in Algorithm 1.

Algorithm 1 Eulerian Motion Magnification

1: Input video sequence I;
2: Design bandpass filter H( j w) with frequency band set manually;
3: Generate M-level Laplacian pyramids;
4: for each sub-band image do
5: for each pixel i with intensity Ii do
6: Filtering: Bi (x,t) = H( j w)∗ Ii (x,t);
7: Îi (x,t) = Ii (x,t)+αBi (x,t);
8: end for
9: end for

10: Reconstruct images from pyramids and output video.

3.2. PHASE BASED MOTION MAGNIFICATION

Although Eulerian motion magnification approach magnifies small motion in a low cost, it supports only

small magnification factors at high spatial frequencies. Moreover, it significantly amplifies noise while am-

plifying small motion. Phase-based approach [3] settles the problems above.

Fig.3.3 shows the procedure of phase based approach, which is quite similar as Eulerian one. First input video

is decomposed into multi-scales by complex steerable pyramids [25] [14] (Details of steerable pyramids are

explained in Appendix B). For each sub-band image, temporal band-pass filter is designed. We then amplify

the filtered phase, and add it back to the original phase. Finally, video is reconstructed with the unchanged

magnitude and magnified value of phase.

3.2.1. PRINCIPLE BEHIND: PHASE BASED MOTION MAGNIFICATION

Phase-based approach magnifies small motions by modifying local phase variations in a complex steerable

pyramid representation of the video. In this case, we still use the 1D model in Fig.3.2. It is known that any

function f (x) can be decomposed into Fourier series as followed

f (x) =
∞∑

w=−∞
Aw e i w x (3.5)

Thus, the 1D image intensity profile under global translation over time, f (xk +δ(tk )) can be written as

f (xk +δ(tk )) =
∞∑

w=−∞
Sw (xk , tk ) =

∞∑
w=−∞

Aw e i w(xk+δ(tk )) (3.6)

where Aw is the amplitude, w the angular frequency and w(xk +δ(tk )) the phase containing motion infor-

mation. By applying the bandpass filter on phase, we hope the DC component w xk can be eliminated, and
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Figure 3.3: Overview of the phase video magnification framework. (a), complex steerable image pyramid is implemented. (b), a temporal
filter is designed through all bands in order to eliminate phases independently at each location, orientation and scale. (c), We optionally
apply amplitude-weighted spatial smoothing to increase the phase SNR. (d), the filtered spatial phase bands are magnified with a factor
α, and are added back to the original one generated after (a). (e), the spatial bands after processing are collapsed to generate the output
video. Figure takes from [Wadhwa et al. [3]].

what’s left after filtering is

Bw (xk ) = wδ(tk ) (3.7)

By multiplying the bandpassed phase Bw (xk ) by factor α and increase the phase of sub-band Sw (xk , tk ) we

get

Ŝw (xk , tk ) := Sw (xk , tk )e iαBw = Aw e i w(xk+(1+α)δ(tk ) (3.8)

Finally, we collapse the pyramid by summing up all sub-bands to get the motion magnified sequence f (xk +
(1+α)δ(tk )).

3.2.2. NOISE REDUCTION

Phase-based motion magnification has excellent noise reduction characteristics: Noise is translated rather

than amplified (in [3]) with increment of amplification factor.

Recall subband of steerable pyramid at levelω and frame k is notated as Sw (xk , tk ). We simplify it into Sw (x, t ).

The response for a noisy image I +σnn might be written as

Sw (x, t ) = e i w(x+δ(t )) +σn Nw (x, t ) (3.9)

where Nw (x, t ) is the response of n to the complex steerable pyramid filter indexed by w . It is assumed that

noise variance σn is much lower in magnitude than noiseless signal so that temporal filtering of the phase is
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approximated as wδ(t ) (Eq. 3.7). Thus, signal after magnification can be expressed as

Ŝw (x, t ) = e i w(x+(1+α)δ(t )) +σne iαwδ(t )Nw (x, t ) (3.10)

where the magnitude of Ŝw (x, t ) is

|Ŝw (x, t )| = 1+σn Nw (x, t ) (3.11)

This means, magnitude of noise will not change after motion magnification. Only the phase shift changes,

which corresponds to a translation of the noise. In contrast, Eulerian motion magnification [2] magnifies

noise linearly.

In summery, Pseudo code for phase-based motion magnification is given in Algorithm 2.

Algorithm 2 Phase-based Motion Magnification

1: Input video sequence I;
2: Design bandpass filter H( j w) with frequency band set manually;
3: Generate M-level complex steerable pyramids with L orientations per level;
4: for each sub-band images do
5: for each phase value pi do
6: Filtering: Bi (x,t) = H( j w)∗pi (x,t);
7: p̂i (x,t) = pi (x,t)+αBi (x,t);
8: end for
9: end for

10: Reconstruct images from updated phase value and output video.

3.3. DYNAMIC VIDEO MOTION MAGNIFICATION

Section 3.1 and 3.2 introduced two motion magnification algorithms based on the assumption that only small

motion exists in the video, which is not always the case in the real life. Moreover, performance of both algo-

rithms are severely influenced under handshake or background motions. Elgharib et.al. [4] introduced an

approach called Dynamic Video Motion Magnification (DVMAG) which magnifies small motions while pre-

serving big motions.

3.3.1. MAIN STAGES

Whole approach is consist of two stages: Image warping and layer-based magnification.

In the first stage, large motions are removed by using KLT tracking [26] or optical flow [27][28]. For example,

given an input sequence I , its stabilized sequence I S is estimated by temporally registering I to reference

frame Ir with the transformation matrixΦ estimated by the features between two frames in the ROI:

I S (x, t ) = I (Φr,t (x), t ) (3.12)

After image registration, it is assumed that big motions are eliminated while small motions are preserved.

Afterwards, a layer-based approach for video magnification is presented. Given a region of interest, an image
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is decomposed into three layers: Opacity matte [29], foreground and background. Opacity matte and fore-

ground motions are magnified by Eulerian or phase-based method [2][3]. Finally, the magnified foreground

is registered back to its original position in raw video.

Pseudo code for DVMAG is given in Algorithm 3.

Algorithm 3 DVMAG Motion Magnification

1: Input video sequence I with length N ;
2: Set the region of interest (ROI) manually;
3: Estimate the features x of first frame inside ROI;
4: for Ik where k = [2, N ] do
5: Estimate features in Ik by KLT tracker or optical flow;
6: Estimate transformation matrix between Ik and Ir : Φr,t (x);
7: Frame registration: I S (x) = I (Φr,t (x));
8: Matt the image around ROI: M(x);
9: I S (x) ← M(x)× I S (x);

10: end for
11: Motion magnification: I S (x, t ) → Î S (x, t ) (see Al.1,Al.2);
12: Frame de-registration: Î (x) =Φ−1

r,t Î S (x)

3.4. LIMITATIONS OF EXISTED ALGORITHMS

Table 3.1: Summary of main stream motion magnification algorithms

Eulerian/Phase Motion Magnification Dynamic Video Motion Magnification

Brief
description

Magnify the motion based on pixel intensity
/phase difference between frames.

First eliminate big motion by image
registration, then use traditional
motion magnification algorithms.

Assumptions

(1) Signal after temporal bandpass filter
contains motion information;
(2) For Eulerian method, variation of pixel
intensity on small motion between frames
can be approximated as first-order Taylor
series expansion.

(1) Frames must be registered precisely so
that whole big motions are eliminated.
(2) Assumptions of Eulerian-based methods
remain.

Limitations

(1) Only small motion exists in video;
(2) Magnification factor is bounded;
(3) For Eulerian method, Noise is magnified
linearly when magnifying small motion.

(1) ROI is set manually;
(2) If big motion cannot be eliminated
precisely, small motion magnification
will induce huge artifacts.

Existed algorithms perform quite well under specific assumptions. However, those assumptions tremen-

dously influence the performance and usage of motion magnification in real life videos. In this section, we

summarize the limitation of those algorithms.

For Lagrangian motion magnification methods [1] (including DVMAG [4]), motion is computed explicitly and

video frames are warped using a homography. In addition to the problem computation cost, such method

easily gets failed under occlusion and/or 3D environment, which is quite common in real world videos.

Eulerian based approaches eliminate the need of costly flow computation, and process the video separately in

space and time, which can run in real time. Wu al et. [2] successfully magnifies small color changes and sub-

tle motions. However, these algorithms only support small magnification factor and magnifies noise linearly.
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Wadhwa al et. [3] improves the performance where the magnification method is based on phase translation:

Just as the phase variations of Fourier basis functions (sine waves) are related to translation via the the Fourier

shift theorem, the phase variations of the complex steerable pyramid correspond to local motions in spatial

sub-bands of an image. Moreover, phase-based method magnifies motions without magnifying noise. How-

ever, both methods suffer from artifacts in the region of large motion.

Table 3.1 briefly summarizes the characters of mainstream motion magnification algorithms.



4
ACCELERATION MAGNIFICATION

From chapters above, we fully explained the principles of most popular motion magnification algorithms and

argued their limitations under real life videos. In this chapter, we introduce our method, which more robustly

magnifies small motions under big motions. We start from explaining the mathematical foundations of our

method, and compares magnification effects under 1D model. Results of real life videos and synthetic videos

are illustrated in Section 5. (Appendix A introduced an interpolation based video magnification algorithm,

which is where acceleration magnification algorithm orients.)

4.1. LINEAR VIDEO MAGNIFICATION

We take inspiration from prior work on linear Eulerian video magnification [2, 3]. Linear magnification al-

gorithms estimate and magnify subtle video changes — pixel intensity or motion changes — at fixed image

locations, temporally.

To illustratively compare our method to linear methods [2, 3] we consider a 1D signal with small motion

changes under a larger translation motion, see Figure 4.1. For input signal I (x, t ) at position x and time t , the

linear method assumes a displacement function δ(t ) such that I (x, t ) = f (x +δ(t )). The goal is to synthesize

Î (x, t ) = f (x + (1+α)δ(t )) where α is the magnification factor.

Assuming that the signal at time t can be decomposed by a first-order Taylor series expansion around x gives:

I (x, t ) ≈ f (x)+δ(t )
∂ f (x)

∂x
, (4.1)

where the first-order term δ(t ) ∂ f (x)
∂x gives the linear change in signal over time.

The linear magnification method uses a temporal bandpass filter B(x, t ) tuned to measure the desired video

17
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Figure 4.1: Illustration of a 1 D signal where small motions undergo a larger translation for linear magnification and accel-
eration magnification. The signal I (x, t ) is shown for 3 time instants, {t −1, t , t +1}. The red line shows the magnification
results for a factor α = 3. (a) For first-order methods, the linear filter B(x, t ) is magnified and added to the original sig-
nal I (x, t ). Note that all motions are magnified, both small and large. (b) Acceleration magnification uses a temporal
acceleration filter C (x, t ) which is magnified and added to the original signal I (x, t ). By assuming local linearity of the
large translation motion, the translation has little effect on the magnification and only the small, non-linear, motions are
magnified. This allows our method to magnify small changes of moving objects or scenes recorded with a moving camera.

changes to be magnified:

B(x, t ) = δ(t )
∂ f (x)

∂x
. (4.2)

The magnified signal Î (x, t ) with a factor α is then:

Î (x, t ) = I (x, t )+αB(x, t ), (4.3)

which relates to the first-order term in the Taylor expansion:

Î (x, t ) ≈ f (x)+ (1+α)δ(t )
∂ f (x)

∂x
. (4.4)

For details, see [2].

Linear methods [2, 3] measure all motion changes: small motions and large motions. The bandpass filter

B(x, t ) measures the magnitude of a change, and it does not discriminate if the change is big or small. Thus, all

translational motion will be magnified. In 4.1(a) we show the effect of large motions on linear magnification.

As the figure illustrates, linear methods are sensitive to large motions such as camera or object motion.

4.2. VIDEO ACCELERATION MAGNIFICATION

Rather than magnifying all temporal changes we magnify the deviation of change. For example, if an object

moves in one direction, then we enhance every small deviation from that direction. This includes the special

case of an object that does not move, where deviations from no motion will be magnified. By assuming that

the large object motion is approximately linear at the temporal scale of the small changes, we can disregard
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all linear motion. We do not magnify linear changes: we magnify accelerations.

For the 1 D input signal I (x, t ) at position x and time t , we model displacement by two terms: δ(t ) for linear

changes and τ(t ) for non-linear second-order displacement added to the linear motion:

I (x, t ) = f (x +δ(t )+τ(t )). (4.5)

Our goal is to obtain a magnified signal Î (x, t ) that is solely based on second-order changes magnified withα:

Î (x, t ) = f (x +δ(t )+ (1+α)τ(t )). (4.6)

Decomposing the signal in a second order Taylor series around x yields:

I (x, t ) ≈ f (x)+ (δ(t )+τ(t ))
∂ f (x)

∂x
+ (δ(t )+τ(t ))2 1

2

∂2 f (x)

∂x2
, (4.7)

where the first-order term (δ(t )+τ(t )) ∂ f (x)
∂x gives the linear change and the second-order term (δ(t )+τ(t ))2 1

2
∂2 f (x)
∂x2

the deviations from linearity in the signal over time. Since by our definition the term δ(t ) only measures lin-

ear motion and τ(t ) only the second-order changes to δ(t ), we can set τ(t ) = 0 in the linear term and δ(t ) = 0

in the second-order term, resulting in:

I (x, t ) ≈ f (x)+δ(t )
∂ f (x)

∂x
+τ(t )2 1

2

∂2 f (x)

∂x2 . (4.8)

Let C (x, t ) be the result of applying a temporal acceleration filter to I (x, t ) at every position x, then we capture

the second-order offset:

C (x, t ) = τ(t )2 1

2

∂2 f (x)

∂x2 , (4.9)

which we can multiply with α as the magnification factor

Î (x, t ) = I (x, t )+αC (x, t ). (4.10)

This relates back to our magnified signal Î (x, t ) through the second-order term in the Taylor expansion as:

Î (x, t ) ≈ f (x)+δ(t )
∂ f (x)

∂x
+ (1+α)τ(t )2 1

2

∂2 f (x)

∂x2 . (4.11)

Therefore, we focus on magnifying second-order signal changes: acceleration. In 4.1(b) we show the effect of

large motions on acceleration magnification. As the figure illustrates, our method only magnifies the small

motion and is robust to large motions such as camera or object motion.

4.3. TEMPORAL ACCELERATION FILTERING

Acceleration is the second temporal derivative of the signal I (x, t ). To take a second-order derivative of the

discrete video signal we use a Laplacian filter. The Laplacian is the second-order derivative of the Gaussian

filter and it allows us to take an exact derivative of a smoothed discrete signal. The Gaussian is the only filter
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that does not introduce spurious resolution [31] and due to the linearity of the operators [32] the relation

between the Laplacian and the second derivative of the signal is:

∂2I (x, t )

∂t 2 ⊗Gσ(t ) = I (x, t )⊗ ∂2Gσ(t )

∂t 2 , (4.12)

where ⊗ is convolution and Gσ(t ) is a Gaussian filter with variance σ2 and ∂2Gσ(t )
∂t 2 is the Laplacian.

The σ parameter of the Gaussian allows for selecting the observation scale of the frequency to magnify [33,

34]. For setting the observation scale, we denote the desired frequency by w and we select a temporal window

in the video that is equal to our target frequency as r
4w , where r denotes the video frame rate. We center the

temporal window on the current video frame. Subsequently, following [34], we find the scale of the Laplacian

kernel as: σ= r
4w

p
2

.

4.4. PHASE-BASED ACCELERATION MAGNIFICATION

For magnifying motion information, rather than intensity changes over time, we use as a starting point the

successful work of [3] where phase information is magnified by using the linear method of [2]. We use accel-

eration magnification in the phase domain to magnify non-linear motions.

Motion can be represented by a phase shift. For a given input signal f (x) with linear displacement δ(t ) and

second-order displacement τ(t )2 at time t , we can decompose the signal by Fourier series as sum of sinusoids

over all frequencies w :

f (x +δ(t )+τ(t )2) =
∞∑

w=−∞
Aw e i w(x+δ(t )+τ(t )), (4.13)

where the global phase information at frequency w for the displacements δ(t ) and τ(t )2 is φw = w(x +δ(t )+
τ(t )).

Spatially localized phase information of an image over time is related to local motion [35] and is used for

magnifying motions in the phase domain linearly [3]. This motion magnification method uses the complex

steerable pyramid [15] to separate the image signal into multi frequency bands and orientations. The pyramid

contains a set of filters Ψw,θ at various scales w , and orientations θ. The local phase information of the 2D

image I (x, y) is given by:

(I (x, y)⊗Ψw,θ)(x, y) = Aw,θ(x, y)e iφw,θ(x,y), (4.14)

where ⊗ is convolution, Aw,θ(x, y) is the amplitude and φw,θ the corresponding phase at scale w and orien-

tation θ.

The phase information φw,θ(x, y, t ) at a given frequency w , and orientation θ and frame t , is magnified in our

proposed approach by temporally filtering the phase φw,θ(x, y, t ) with a Laplacian:

φ̂w,θ(x, y, t ) =φw,θ(x, y, t )+αCσ(φw,θ(x, y, t )), (4.15)

Cσ(φw,θ(x, y, t )) =φw,θ(x, y, t )⊗ ∂2Gσ(x, y, t )

∂t 2 , (4.16)
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where ⊗ is convolution and Cσ(·) represents the temporal Laplacian filter with scale σ.

Due to the periodicity of the phase between [−π,π], there is an interval ambiguity that may be present: a

small increase to a value slightly less then 2π at time t may cause the phase to become slightly bigger than

0 at time t +1. This causes artifacts in the convolution with the Laplacian. We correct for this using phase

unwrapping.





5
RESULTS

In this Chapter, we show the experiments and results based on Acceleration Video Magnification in Chapter

4, and compare them with old methods mentioned in Chapter 3.

5.1. EXPERIMENTAL SETUP

Video α w (Hz) Gaussian σ FPS

Light bulb 20 60 2.95 1000
Baby 100 2.5 6.63 30
Gun 8 20 4.24 480

Synthetic ball 8 2 5.30 60
Cat toy 4 3 1.41 240
Parkinson-1 3 3 2.12 30
Parkinson-2 4 3 2.12 30
Drone 5 5 1.06 30
Water bottle 4 2 2.83 30

Table 5.1: Parameters for all videos. “Light bulb” and “Gun” are from [3], the rest is new.

We evaluate our proposed method on real videos as well as synthetic ones with ground truth magnification.

We set the magnification factor α, and the frequency of the change to be magnified as given in table 5.1. For

all videos we process the video frames in YIQ color space. We provide these videos as well as additional videos

depicting our magnification method in the supplementary material.

Motion Magnification. We use the complex steerable pyramid [15] with half-octave bandwidth filters and

eight orientations. We decompose each frame into magnitude and phase, and convolve with our proposed

kernel over the phase signal temporally.

23
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Color Magnification. We decompose each video frame into multiple scales using a Gaussian pyramid, and

we magnify the intensity changes only in the third level of the pyramid, similar to [2].

5.2. REAL-LIFE VIDEOS

5.2.1. COMPARISON ON EXISTING VIDEOS

Figure 5.1: Intensity magnification on a static video. We indicate with a green stripe the locations at which we temporally
sample the video. Note that our method is well able to magnify the intensity for videos without large motions.
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Figure 5.2: Intensity magnification. Note that the hand holding the light bulb moves upwards. We indicate with a green
stripe the locations at which we temporally sample the video. We show the original intensity change, the Eulerian [2]
intensity magnification, the DVMAG [4], where the blue region shows the user input area in which changes are magnified,
and our proposed acceleration magnification. We also show the intensity changes over time in the hand area reflecting the
light of the bulb. The intensity changes are measured at the indicated red dot. Our proposed method manages to magnify
the intensity changes of the light bulb, but it also captures the intensity changes in the hand cause by the reflection of the
light.

As a first experiment we show in 5.1 we show that our method can also magnify changes when there is no

motion in the video.

Figure 5.2 shows a person holding a light bulb while the hand moves upwards. The intensity variations in the
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light bulb are hardly visible. The Eulerian-based method [2] reveals the intensity changes, but creates addi-

tional artifacts. DVMAG [4] relies on a user-input region around the bulb and therefore does not magnify the

small reflections on the hand. Our proposed method not only magnifies the intensity variations of the light

bulb without manual masking, but also magnifies the intensity changes of the hand, caused by the reflection

of the light, as shown in the plot on the right of Figure 5.2.

(a) Raw video. (b) Phase-based [3]. (c) DVMAG [4]. (c) Ours.

Figure 5.3: Motion magnification. (a) Original video frame. We indicate with three green stripes the locations at which we
temporally sample the video. (b) Phase-based based motion magnification [3]. (c) The DVMAG [4] results with user an-
notated areas indicated in blue. (c) Our proposed acceleration magnification. This figure shows a gun shooting sequence,
where the recoil of the gun induces movement in the arm muscles. DVMAG only magnifies the motion within the user
annotated region, while the Eulerian based method results in large artifacts. Our proposed method magnifies he arm
motion without inducing blurring and artifacts.

Figure 5.3 shows various motion magnification results for a gun shooting sequence. Due to the strong recoil,

subtle motion in the arm muscles can be recovered. We record the motion of the forearm, upper limb, and

the bracelet in the spatio-temporal slices indicated with three green lines over the original video. The phase-

based motion magnification proposed in [3] induces large artifacts due to the strong arm movement. The

DVMAG [4] relies on a user annotated region where the motion is magnified. Therefore, the magnification

performance depends on the user input, as seen in the figure. Our method magnifies the muscle movement

of the complete arm without creating artifacts and without the need for user input.

5.2.2. ADDITIONAL VIDEOS WITH LARGE OBJECT MOTION
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(a) Original video. (b) Phase-based [3]. (c) Ours. (d) Intensity changes.
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(a) Raw video. (b) Our magnification (a) Raw video. (b) Our magnification.

Figure 5.4: Hand tremor magnification. The left example (Parkinson-1) has the person walking towards the screen. The
right example (Parkinson-2) has the person do a 3D rotation. We overlay 2 frames of the video to visualize how the person
moves. (a) Original video frames. We indicate with a green stripe the locations at which we temporally sample the video.
(b) Our proposed acceleration magnification. We manage to amplify the motion in the arm of the person while the person
is moving towards the camera and even under a 3D rotatation. This is possible because the scale of the body motion is
considerably larger than the scale of the hand tremor.

Figure 5.5: A toy moving along a trajectory depicted by the black arrow, while vibrating at a high frequency. The top row
shows 3 frames overlayed to indicate the toy’s trajectory. The bottom row shows a single column of pixels – the green
line in (a) – for relevant video frames. (a) Original video. (b) Phase-based motion magnification [3]. (c) Our proposed
acceleration magnification. (d) Intensity changes at the location of the red pixel in the top row in (a) — corresponding to
a spatio-temporal rectangle in the bottom row. Our method generates sharper results with a greater magnification than
the phase-based method in [3].

(a) Raw video. (b) Our magnification.

Figure 5.6: A drone oscillating while flying in a cluttered environment. (a) Original video frames. We indicate with a green
stripe the locations at which we temporally sample the video. (b) Our proposed acceleration magnification. Our proposed
magnification method is able to amplify the oscillations of the drone without being affected by the background clutter.

In figure 5.4 we consider a medical use case in which a person walks towards screen — zooming, and a video

in which a person is rotating in 3D , while having a tremor motion present in the right arm. Our proposed

approach is able to magnify the tremor of the arm without introducing considerable artifacts and blurring

in the rest of the areas. We are able to deal with non-linear large motion such as zooming and 3D rotation,

because the scale of the body motion is larger than the scale of the hand tremor.
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(a) Raw video. (b) Our magnification.

Figure 5.7: The water fluctuating in a bottle while the bottle is being pulled sideways on a smooth surface. (a) Original
video frames. We indicate with a green stripe the locations at which we temporally sample the video. (b) Our proposed
acceleration magnification. Our propose magnification method is able to amplify the fluctuations in the water level while
not adding substantial blur.

Figure 5.2.2 shows a toy moving on the table while vibrating with a high frequency. The goal of the experi-

ment is to magnify the vibration while not creating artifacts and blurring. Our proposed method manages

to achieve this by magnifying the motion at the pixels that have a non-zero acceleration, thus amplifying the

vibration of the toy and ignoring the motion along the trajectory of the toy on the table.

In figure 5.6 we show our results on a mechanical stability quality control application where a drone is oscil-

lating while flying in a cluttered environment. Moreover, in 5.7 we show a transparent bottle with water being

pulled on a smooth table — the level of water in the bottle fluctuates. Our method is able to correctly mag-

nify the desired motion — oscillation of the drone and fluctuations of the water level, despite the challenging

setup of background clutter and transparent elements whose motion must be magnified.

5.3. CONTROLLED EXPERIMENTS

Figure 5.8: Synthetic Video. A ball with intensity varying while moving from top-left corner to the bottom-right.

In figure 5.8 we show a synthetic ball which moves diagonally on the screen from the top-left corner to

bottom-right corner, with its intensity fluctuating in certain frequency. We set the radius of ball as 10 pixels.

The ball moves with 1 pixel/frame. We model the intensity changes as a sine wave, with a maximum intensity

change of 20. The intensity frequency is 2 cycle/sec, and we set the frame rate to 60 frame/sec. For ground

truth magnification, we amplify the intensity changes 4 times without changing any other parameters. For

all methods, we first apply a Gaussian pyramid and only magnify the third pyramid level with amplification
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Figure 5.9: (a) We record the change in intensity temporally at the value of the red point indicated in the left frame of figure
5.8. The black curve shows the original intensity values, while the blue curve shows the ground truth magnification.
(b) Signal magnification result for our method, the Eulerian method [2], and STFT (Short Term Fourier Transform) with
window sizes 5 and 15. Our method generated a signal magnification closer to the ground truth magnification, while not
creating additional artifacts.

factor 8.

Figure 5.9 shows magnification results for a set of considered baselines. We compare with an ideal filter of

1.5−2.5 Hz from the Eulerian magnification method in [2] which uses the whole video. To make this a more

fair baseline we also use this method with the STFT (Short Term Fourier Transform) with a temporal window

of frame sizes 5 and 15. The Eulerian approach generates background artifacts due to the bandpass filter

which uses the complete temporal length of the video. STFT partially alleviates this problem, artifacts being

removed outside the temporal window. However, it generates larger artifacts inside the temporal window. For

a smaller window size the intensity changes are magnified less, because at a coarse frequency resolution in

Fourier domain more signals are filtered out. Our method generates an intensity magnification that closely

resembles the ground truth, without introducing artifacts.
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(a) Error while increasing intensity frequency.
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(b) Error while increasing object speed.

We analyze the effect of the intensity frequency on the magnification methods. The ball speed is fixed

to 0.5 pixel/frame, and we vary the intensity frequency from 0.5 Hz to 7 Hz in increments of 0.25 Hz while

keeping other parameters unchanged. We estimate MSE (Mean Square Error) between the predicted intensity
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and the ground truth intensity magnification, measured over the whole image in all frames. Results are given

in figure 5.10a. The error of the Eulerian method [2] decreases with the increase in intensity frequency. This

is because the ideal bandpass filter in the frequency domain is able to measure more periods of the signal

at high frequencies. The STFT methods, perform well when the corresponding temporal window contains

precisely one cycle of the intensity change. For example, for an STFT with window size 25, there is a drop in

MSE around the frequency 2.5 Hz, while for STFT with window size 15, the drop is at 4 Hz. Our method is

sensitive to low frequencies, where the signal barely fits in the temporal window. For higher frequencies the

method stabilizes and outperforms the others.

For analyzing the effect of the speed on the magnification methods we fix the intensity frequency at 2 Hz,

and increase the ball speed with increments of 0.25 from 0 to 7 pixel/frame while keeping other parameters

unchanged. In figure 5.10b it shows that the Eulerian approach [2] and the STFT methods have trouble for

speeds around 1.5 pixel/frame. For most methods, MSE decreases slowly with the increase in ball speed.

The high error for the lower frequencies is mostly due to blurring effects outside the ball. When increasing

the speed of the ball, less intensity changes are available to measure. Our proposed method has a similar

behavior, albeit at a better performance level then others.





6
CONCLUSION

We present a methods for magnifying small changes in the presence of large motions: acceleration motion

magnification. Standard video magnification algorithms [2, 3] cannot handle large motion while the con-

current DVMAG method [4] requires user annotations, optical flow, and temporal alignment. We are not

bounded by such constraints and can magnify unconstrained videos. We magnify acceleration by measuring

deviations from linear motion. We do this by linking a the response of a second-order Gaussian derivative to

spatial acceleration.

We demonstrate our approach on synthetic and several real-world videos where we do better, and/or require

less user intervention than other methods. Results in Chapter 5 show that, our method can magnify intensi-

ties as good as Eulerian’s method under still background (Figure 5.1). Moreover, bulb video (Figure 5.2) shows

that our method magnifies global intensity changes (both bulb and hand) under complex 3D environment,

while DVMAG only magnifies intensity changes inside ROI, and Eulerian’s method induces clipping. For mo-

tion magnification, our method shows larger advantages towards others. Figure 5.3 illustrates the sequence

of gun shooting. We indicate with three strips on fore-arm, up-arm and bracelet. Phase-based method shows

blurring both fore-ground and back-ground. DVMAG only magnifies motions of fore-arm, while our method

magnifies motions of whole arm. Figure 5.4 shows the effect of hand tremor magnification. We made two

videos related, with one video a person walking towards the screen and the other a person rotates himself.

We indicate with a green stripe the locations at which we temporally sample the video. Our method manages

to amplify the motion in the arm of the person while the person is moving towards the camera and even un-

der a 3D rotation, while other methods induce blurring, clipping or other artifacts.

On the other side, our algorithm still has some rooms to improve. Our method induces blurring for high speed

objects, i.e. movement of a car/train through the screen. Moreover, phase discrepancy is also an unsettled

problem, which also induces blurring around moving objects.
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Thus, our real-world videos show the potential of our method in the medical domain (Parkinson-I and Parkinson-

II), in sports (Gun), and in mechanical stability quality control (Drone).
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A
INTERPOLATION BASED VIDEO

MAGNIFICATION

Chapter 3 briefly introduced three most popular algorithms in motion magnification, where Eulerian and

Phase based methods magnify the small motion under the assumption of still background, while DVMAG

assumes big motion can be eliminated through image registration, and ROI has to be set manually. It is proved

that all existed methods fail to work under big motion in 3D environment. In this chapter, we introduce

a method to magnify small motions under various environments, without the need for explicit tracking or

image registration. Moreover, our method can magnify/attenuate motions and intensity variations.

A.1. OVERVIEW

Interpolation video magnification algorithm is consist of three steps, also shown in Figure A.1.

(1) Decomposition: Similar as Eulerian based video magnification methods [2] [3], each frame is decom-

posed by image pyramid. For intensity magnification, we decompose frame by Gaussian pyramid in order

to increase signal-noise-ratio (SNR), while for motion magnification, complex steerable pyramid is used to

decompose each frame into magnitude and phase. Section A.2 introduced the concept and necessity of steer-

able pyramid, and APPENDIX B explains more details.

(2) Interpolation. This magnification method is based on phase-based interpolation between selected frames

[16]: Given phase values of two selected frames, we estimate phase of middle frame by linear phase interpola-

tion and adjusts the phase shift information using a coarse-to-fine approach. Section A.3 mainly introduces

frame interpolation, and section A.4 elaborates how frame interpolation developed in motion magnification.
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40 A. INTERPOLATION BASED VIDEO MAGNIFICATION

Figure A.1: Overview of our method. Interpolation based Video Magnification is decomposed into three steps: Decomposition, Inter-
polation and Magnification. Decomposition: We use complex steerable pyramid to separate each frame into magnitude and phase.
Interpolation: We select frames In−m , In and In+m where frame interval m is calculated based on small motion frequency. Afterwards,
we estimate phase of frame n: În by phase interpolation. Magnification: We calculated and magnified the phase difference between
In and În , which contains small motion. Finally magnified phase difference is added back to the phase of In and modified image Ĩn is
reconstructed.

(3) After the phase of interpolated middle frame is estimated, we calculate the phase difference between

real and estimated frame, which is assumed that only contains the small motion. By multiplying this phase

difference and add it back, finally the middle frame after magnification is reconstructed.

Pseudo-code of Interpolation Video Magnification is listed in Al.4.

Algorithm 4 Interpolation Video Magnification

1: Inputs: Images In , In−m , In+m , where m is the frame interval;
2: Output: Modified image Ĩn ;
3: Given fm , α;
4: τ← est i mateT i meInter val ( fm , fr ). Sec A.4;
5: m̂ = fr ∗ 1

fm
∗τ;

6: m = cei l (m̂);
7: (Pn−m ,Pn ,Pn+m) ← pyDecompose(In−m , In , In+m). Sec A.2;
8: αi nter po = m−m̂

m ;
9: φ̂n−m ← phaseInter pol ati on(φn−m ,φn ,αi nter po). Sec A.3;

10: φ̂n+m ← phaseInter pol ati on(φn+m ,φn ,1−αi nter po);
11: αmi ddl e = 0.5;
12: φ̂n ← phaseInter pol ati on(φ̂n−m , φ̂n+m ,αmi ddl e );
13: φ̃n =φn +αφ̂n ;
14: Steerable pyramid recombination: Pα← (φ̃α, Aα);
15: Interpolated image reconstruction: Iα← r econstr uct (Pα).
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A.2. IMAGE PYRAMID DECOMPOSITION

Our method, in principle, is similar as phase-based video magnification [3]: Motions in video are represented

by local phase values in different scales and orientations. We use complex steerable pyramids to decompose

the video and separate the amplitude of the local wavelets from their phase.

Why steerable pyramid. Steerable pyramid [14][15] has three properties that are important in motion analy-

sis: non-aliased subbands, quadrature phase filters and phase-motion correlation. We measure phase within

each sub-band using the pairs of even and odd phase oriented spatial filters whose outputs are the complex

valued coefficients in the steerable pyramid. The sub-sampling scheme of the steerable pyramid avoids spa-

tial aliasing and thus allows meaningful signal phase measurements from the coefficients of the pyramid.

Referring to the steerable filter, its basic functions are directional derivative operators that come in different

sizes and orientations. The necessary conditions for a filter basis to be steerable is the ability to synthesize a

filter of any orientation from a linear combination of filters at fixed orientations. Here we set Φω,θ as the fre-

quency domain transfer function in the orientation θ and scale ω. The steerable pyramid is built by applying

Φω,θ to the discrete Fourier transform Ĩ of image I for each scale and orientation: Rω,θ = ĨΦω,θ . Phase based

sub-bands, containing the motion information, are used for motion estimation and magnification. More

details of steerable pyramid and steerable filter are explained in APPENDIX B.

A.3. PHASE-BASED MOTION INTERPOLATION

Traditional image interpolation algorithms are normally classified into either Lagrangian or Eulerian. La-

grangian methods, for example, [30] , calculates accurate pixel correspondences between images using op-

tical flow; Eulerian methods, normally popular in motion magnification and attenuation [2][3], can also be

extended for image interpolation. Meyer et.al [16] represents motions in the phase shift of individual pixels,

and interpolates them by phase modification. This approach is proved to overwhelm others both in interpo-

lation accuracy and computation speed, which is used in our project.

A.3.1. MODEL

Phase-based approaches build on the insight that motion of certain signal can be represented as phase-shift.

We first build two models to explain the principle of motion propagation in 1D and 2D cases.

1D case. Consider a one dimensional sinusoidal function shown in Figure A.2 which is defined as y = Asi n(w(x−
φshi f t )), where A is the amplitude, w the angular frequency. φshi f t , phase difference between y = Asi n(w x)

and y = Asi n(w(x −φshi f t )), indicating spatial displacement between frames. We can also modify the phase

difference according to a factor α. Intermediate position of motions are calculated when α ∈ (0,1) (see

Fig.A.2), while motions are magnified when α> 1 (see Fig.3.2).

We extend this idea into general function f (x) by Fourier series decomposition [3][16]: f (x) =∑w=+∞
w=−∞ Aw e i w x

over all frequencies. Then its shifted function f (x +δ(t )) can be expressed as:
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Figure A.2: 1D model of motion interpolation. Left figure shows the sine waves, indicating motion translation, with phase difference
φdi f f . Right figure shows such motion can be interpolated with factor α. Green curve indicates α = 0.3, and red one corresponds
α= 0.7.

f (x +δ(t )) =
w=+∞∑
w=−∞

Rw (x, t ) (A.1)

, where each sinusoid represents one frequency band Rw (x, t ) = Aw e i w(x+δ(t )). The corresponding phase

φw = w(x +δ(t )) can be directly modified w.r.t. α, leading to modified bands

R̂w (x, t ) = Aw e i w(x+αδ(t )) (A.2)

Thus, signal after interpolation is written as

f (x +αδ(t )) ≈
w=+∞∑
w=−∞

R̂w (x, t ) (A.3)

2D case. For two dimension functions, complex steerable pyramid is applied to separate each image into

bands according to both frequency ω and orientations θ. As mentioned in section A.2, we can express each

band of steerable pyramid as

Rω,θ = ĨΦω,θ (A.4)

, where Ĩ is the Fourier transformation of image I , and Φω,θ the steerable filter in the orientation θ and scale

ω. Eq. A.4 can also be expressed as

Rω,θ(x, y) = (I ∗Φω,θ)(x, y) (A.5)

= Aω,θ(x, y)e iφω,θ(x,y) (A.6)

=Cω,θ(x, y)+ i Sω,θ(x, y) (A.7)

, where Cω,θ(x, y)/Sω,θ(x, y) represent even/odd symmetric steerable filter response, and φω,θ(x, y) indicates

phase response of steerable pyramid. In this case, φdi f f is just the phase difference between two adjacent

frames:

φdi f f (x, y) = atan2(sin(φ1(x, y)−φ2(x, y)),cos(φ1(x, y)−φ2(x, y))) (A.8)
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Thus, each band of steerable pyramid after interpolation (with factor α) is written as

R̂ω,θ(x, y) = Aω,θe i (φω,θ(x,y)+αφdi f f (x,y)) (A.9)

A.3.2. PHASE CORRECTION

Equation A.8 shows the way of calculating phase difference between phases of two frames. Since at an2 is

the four-quadrant inverse tangent, all the phase difference values are gathered between [−π,π]. This interval

restricts the motion that to be represented, which is bounded by

|φshi f t | =
|φdi f f |

w
=≤ π

w
(A.10)

, where w = 2πν, and ν being the spatial frequency. Thus, Large displacements with phase difference more

than π lead to phase ambiguity. Meyer et.al [16] introduces a method to overcome this limit. This approach

is based on the assumption that the phase difference between two pyramid levels does not differ arbitrarily:

Consider the phase value for two pyramid level l and l + 1, shift correlation is performed only if the value

of φshi f t in current level l differs more than a threshold from the coarser level l + 1. Main procedures are

followed: First, we add ±2kπ to φdi f f so that phase difference between consecutive pyramid levels never

exceeds tolerance π. Next, for the phase between two levels,

φ= atan2(sin(φl
di f f −λφl+1

di f f ),cos(φl
di f f −λφl+1

di f f )) (A.11)

if |φ| >π/2, large motion is assumed to exist, and phase difference in pyramid level l is corrected as:

φ̃l
di f f =λφ̃l+1

di f f (A.12)

Meanwhile, Meyer also limitsφdi f f by a constantφl i mi t in order to avoid blurring artifacts: Ifφl
di f f >φl i mi t ,

then φ̃l
di f f =λφ̃l+1

di f f . Value of φl i mi t depends on the scale factor λ, τ, and total/current pyramid level L/l :

φl i mi t = τπλL−l (A.13)

A.3.3. PHASE INTERPOLATION

After phase correction for the phase difference under each level of pyramid, phase value for the second frame

need to be corrected further since φ1 + φ̃di f f may not matching φ2 any more. Here, we search for φ̃di f f that

is ±2γπ φdi f f

φ̂di f f =φdi f f +γ2π (A.14)

Optimal γ∗ is chosen so that φ̂di f f is closest towards φ̃di f f :

γ∗ = ar g mi nγ(φ̃di f f − (φdi f f +γ2π))2 (A.15)
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Finally, phase and magnitude in the interpolated position are calculated linearly, as followed:

φα =φ1 +αφ̂di f f (A.16)

Aα = A1 +α(A2 − A1) (A.17)

Algorithm 5 provides a summary of phase-based interpolation algorithm [16].

Algorithm 5 Phase-based Frame Interpolation for Video

1: Given interpolation factor α, levels of steerable pyramid L;
2: Input: two images I1, I2. Output: Interpolated image Iα;
3: Steerable pyramid decomposition: (P1,P2) ← decompose(I1, I2);
4: Extract phase matrices: (φ1,φ2) ← phase(P1,P2);
5: Extract amplitude matrices: (A1, A2) ← ampli tude(P1,P2);
6: Calculate phase difference: φdi f f = at an2(si n(φ1 −φ2),cos(φ1 −φ2));
7: for all l = L−1 : 1 do
8: φ̃l

di f f ← shi f tCor r el ati on(φ̃l+1
di f f );

9: end for
10: Adjust the phase difference φ̃di f f in order to smooth interpolation between φ1 and φ2:
11: φ̂di f f = φ̃di f f +γ∗2π, where
12: γ∗ = ar g mi nγ{(φ̃di f f − (φdi f f +γ2π))2}
13: Phase interpolation: φα =φ1 +αφ̂di f f ;
14: Amplitude blending: Aα = A1 +α(A2 − A1);
15: Steerable pyramid recombination: Pα← r ecombi ne(φα, Aα);
16: Interpolated image reconstruction: Iα← r econstr uct (Pα).

Given two input images, we try to estimate the motions in between by linearly interpolating phases calculated

by complex steerable pyramid with steps of phase correction. By integrating this method, nonlinear motions,

i.e. small motions, can be separated, which are finally magnified without blurring linear big motions.

(a) 1D model, traditional methods (b) 2D model

Figure A.3: Traditional motion models. (a) In 1D situation, assume pixel Ii (xk , tk ), located in the position xk at time instant tk , moves to
xk+1 in the next moment with displacement δ(xk ). Movements can be magnified with factorα so that Ii (xk , tk ) in blue spot horizontally
transits αδ(xk ) and reaches green spot. (b) In 2D model, Ii (xk , tk ) still indicates pixel i at location xk at time instant tk , where xk =
(x1k , x2k )T shows intensity of pixel i in an image. Explanation of this model is similar as 1D case, where the movement of pixel i from
Ii (xk , tk ) to Ii (xk+1, tk+1) is magnified α times towards Îi (xk +αδ(xk ), tk +δ(tk )).
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A.4. INTERPOLATION BASED MOTION MAGNIFICATION

For traditional video magnification algorithms (see Figure 3.2), and phase-based interpolation algorithm (see

Figure A.2), 1D models are built based on curve translation: Define Ii (xk , tk ) as the intensity of pixel i at

position xk in time instant tk . As shown in Figure A.3a, pixel i in the location xk moves to xk+1 (equals to

xk +δ(xk )) after time δ(tk ) (red spot). Moreover, transitions can be magnified with factor α so that Ii (xk , tk )

moves to xk +αδ(xk ) (green spot). It is seen that vertical axis in those models indicate pixel intensity. Thus,

motion movements in the video without big motions, in fact, corresponds to horizontal translation of curves

in these models. However, this model is not valid under big motions.

Figure A.4: 1D model for interpolation magnification method. In order to magnify the displacement, we linear interpolate F1 and F2 to
get F̂α, and finally F̃α = Fα+α∗ (Fα− F̂α).

Eulerian motion magnification [2] works on two assumptions: (1)first-order Taylor expansion, as explained

in Chapter 3 and texts above; (2)if the first-order derivative of f (x, t ) respect to x can be approximated by

temporal signal after band-pass filtering. First assumption gets failed under the increment of magnification

factor α, which is improved by phase based motion magnification [3]. Second assumption is not valid under

big motion, which is clearly illustrated in Figure A.5.

If we extend model to 2D, shown in Figure A.3b: Blue spot Ii (xk , tk ) indicates pixel i at image position xk .

After time δ(xk ), it moves to the position xk+1, where xk+1 = xk +δ(xk ). If we magnify motion α times, this

pixel moves to the green spot with displacement x̂k+1 = xk +αδ(xk ). Corresponding 1D model is shown in

Figure A.4.

A.5. FRAME SELECTION

We select frames F1 and F2 in order to get the maximum response of magnification (maximum value of Fα−F̂α

in the plot). Such maximum response is easily found when distance between two frames is approximated to
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Figure A.5: Eulerian method fails under big motion. If we add a linear big motion on the original sine wave, indicating small motion, we
would find f (x, t ) after band-pass filter never coincides with its first-order derivatives.

half cycle of small motion signal. Denote small motion frequency as fm , and frame rate fr , we can estimate

F1 and F2 by:

F1 = Fα− cei l ( fr ∗ 1

fm
∗τ) (A.18)

F2 = Fα+ cei l ( fr ∗ 1

fm
∗τ) (A.19)

, where time interval τ= 1
4 fm

.



B
IMAGE PYRAMIDS

An image pyramid can be regarded as hierarchical representation of an image. This appendix includes de-

scription of two kinds of image pyramids: Gaussian & Laplacian pyramids [23], Complex steerable pyramids

[14].

B.0.1. GAUSSIAN AND LAPLACIAN PYRAMIDS

First, the original image is convolved with a Gaussian kernel and scaled down. The Laplacian is then com-

puted as the difference between the original image and the low pass filtered image. This process is continued

to obtain a set of band-pass filtered images (since each is the difference between two levels of the Gaussian

pyramid). Thus the Gaussian pyramid is a set of low pass filters, and Laplacian pyramid is a set of band pass

filters. Details are followed:

Assume we decompose an image into N levels pyramids. Let Gi be the image of ith pyramid level where

0 ≤ i < N . (For example, G0 is the bottom level of the pyramid, and also the original image.) For each itera-

tion, Gi is blurred by a Gaussian like weighting function and subsampled by a factor of α (i.e. 2):

Gl (i , j ) =∑
m

∑
n

w(m,n)Gl−1(2i +m,2 j +n) (B.1)

Adelson et.al [23] calls this process standard REDUCE operation, and simply writes

Gl = REDUC E [Gl−1] (B.2)

47
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The opposite operation towards REDUCE is called EXPAND. Let Gl ,k be the image obtained by expanding Gl

k times. Then

Gl ,k = 4
∑
m

∑
n

Gl ,k−1(
2i +m

2
,

2 j +n

2
) (B.3)

also written as

Gl ,k = E X PAN D[Gl ,k−1] (B.4)

The ith level of the bandpass pyramid, Li is specified as

Li =Gi −E X PAN D(Gl+1) =Gl −Gl+1,1 (B.5)

Figure.B.3 and B.4 show the 4 levels Gaussian and Laplacian pyramids of the test image in Figure.B.2.

B.0.2. COMPLEX STEERABLE PYRAMIDS

The Steerable Pyramid is a linear multi-scale, multi-orientation image decomposition that provides a useful

front-end for image-processing and computer vision applications. It can be thought of as an orientation se-

lective version of a Laplacian pyramid, in which a bank of steerable filters are used at each level of the pyramid

instead of a single Laplacian of Gaussian filter.

Simoncelli et.al [14] summarize and compare the performance of steerable pyramid in Table B.1: In addition

to having steerable orientation subbands, steerable transform is designed to be self-inverting and is essen-

tially aliasing-free. Moreover, the pyramid can be designed to produce any number of orientation bands, k at

the cost of overcompleteness by a factor of 4k/3.

Table B.1: Properties of the Steerable Pyramid relative to two other well-known multi-scale representations.

Laplacian Pyramid Dyadic QMF/ Wavelet Steerable Pyramid
self-inverting no yes yes
overcompleteness 4/3 1 4k/3
aliasing in subbands perhaps yes no
rotated orientation bands no only on hex lattice yes

More details are followed: In most papers [14][36][15], image decomposition is defined in Fourier domain for

the ease of polar separability, as shown in Fig.B.1(a). Fourier magnitude of the ith oriented bandpass filter

can be written as:

Bi (−→w ) = A(θ−θi )B(w) (B.6)

where θ = t an−1(wy /wx ), θi = 2π/k and w =−→w . Moreover, A(θ) and B(w) are the angular portion and radial

function of the decomposition, respectively. A(θ) is determined by the desired derivative order. We explain

the designing procedure of polar-separable filters in the end of this appendix. B(w) is designed recursively,

which is similar as construction of Gaussian and Laplacian pyramid: Assume we decompose an image into

N levels pyramids. Set Hi (w) high pass signal in ith level, and L0(w) low pass signal in the same level. For

each iteration, a signal is decomposed into two portions, high pass and low pass signal. The low pass portion
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is subsampled and the recursion is performed by repeatedly applying the recursive transformation to the

lowpass signal.

Figure B.1: steerable pyramid illustrations. (a) Idealized spectral decomposition performed by a steerable pyramid with four orientations.
Frequency axes range from −π to π. The basis functions are related by translations, dilations and rotations. For example, the shaded
region corresponds to the spectral support of a single vertically-oriented sub-band. (b) This pyramid has octave bandwaidth filters and
four orientations, designed by Portilla and Simoncelli [15]. The impulse response of the filters is narrow (rows 2-3), which reduces the
maxmimum magnification possible (row 4-5). (c-d) Pyramid representations with two and four filters per octave. These representations
are more over-complete, but support larger magnification factors.

Steerable filter. In the end of this appendix, we briefly introduce the concepts of steerable filter. As men-

tioned above, it is useful to apply filters of arbitrary orientation under adaptive control, and to examine the

filter output as a function of both orientation and phase. One approach to finding the response of a filter at

many orientations is to apply many versions of the same filter, each different from the others by small rotation

in angle. Freeman and Adelson [13] use the term ’steerable filter’ to describe a class of filters in which a filter

of arbitrary orientation is synthesized as a linear combination of a set of ’basis filters’. The simplest exam-

ple of steerable filter is first order derivative of Gaussian filters, at 0◦ and 90◦. Consider the two dimensional

normalized Gaussian function:

G(x, y) = e−(x2+y2) (B.7)

We write nth derivative of a Gaussian in the direction θ as Gθ
n . The first derivative of Gaussian function in x

direction is:

G0◦
1 = ∂

∂x
e−(x2+y2) =−2xe−(x2+y2) (B.8)

The same function after 90 degrees rotation:

G90◦
1 = ∂

∂y
e−(x2+y2) =−2ye−(x2+y2) (B.9)

It is easy to deduce that

Gθ
1 = cos(θ)G0◦

1 + si n(θ)G90◦
1 (B.10)

which means, G1 filter at any orientation θ is linear combination of basis functions: G0◦
1 and G90◦

1 . Thus,

Freeman and Adelson define the steering constraint as:

f θ(x, y) =
M∑

j=1
k j (θ) f θ j (x, y) (B.11)
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so that function f (x, y) steers when it can be written as a linear sum of rotated version of itself.

Figure.B.5 illustrates the 4-level, 4-orientation steerable pyramids of the test image in Figure.B.2.

Figure B.2: Test image.

Figure B.3: Gaussian Pyramid with 4 levels.

Figure B.4: Laplacian Pyramid with 4 levels.
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Figure B.5: Steerable Pyramid with 4 levels and 4 orientations.
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(a) Original video. (b) Phase-based [26]. (c) Ours. (d) Intensity changes.

Figure 1: A toy moving along a trajectory depicted by the black arrow, while vibrating at a high frequency. The top row shows 3 frames
overlayed to indicate the toy’s trajectory. The bottom row shows a single column of pixels – the green line in (a) – for relevant video frames.
(a) Original video. (b) Phase-based motion magnification [26]. (c) Our proposed acceleration magnification. (d) Intensity changes at the
location of the red pixel in the top row in (a) — corresponding to a spatio-temporal rectangle in the bottom row. Our method generates
sharper results with a greater magnification than the phase-based method in [26]. See the supplementary material for the video result.

Abstract

The ability to amplify or reduce subtle image changes
over time is useful in contexts such as video editing, medical
video analysis, product quality control and sports. In these
contexts there is often large motion present which severely
distorts current video amplification methods that magnify
change linearly. In this work we propose a method to cope
with large motions while still magnifying small changes. We
make the following two observations: i) large motions are
linear on the temporal scale of the small changes; ii) small
changes deviate from this linearity. We ignore linear motion
and propose to magnify acceleration. Our method is pure
Eulerian and does not require any optical flow, temporal
alignment or region annotations. We link temporal second-
order derivative filtering to spatial acceleration magnifica-
tion. We apply our method to moving objects where we show
motion magnification and color magnification. We provide
quantitative as well as qualitative evidence for our method
while comparing to the state-of-the-art.

1. Introduction

Essential properties of dynamic objects become clear
only when they move. Consider, for example, the mechan-
ical stability of a drone in flight, the muscles of an athlete

doing sports, or the tremors of a Parkinson patient during
walking. For these examples the properties of interest do
not emerge while remaining still. The essential properties
are the tiny variations that occur only during motion.

Tiny temporal variations that are hard or impossible to
see with the naked eye can be enhanced by impressive video
magnification algorithms [26, 27]. The strength of these
methods stems from using Eulerian motion analysis instead
of Lagrangian motion. The Lagrangian approach uses opti-
cal flow which is expensive and an unsolved research topic
in its own [6, 14, 21]. Instead, the Eulerian approach does
not require tracking; it measures flux at a fixed position.
The Eulerian motion magnification methods [26, 27] give
excellent results for magnifying blood flow, a heart-beat, or
tiny breathing when the object and camera remain still. Un-
fortunately, these methods fail for moving objects because
large motions overwhelm the small temporal variations.

A useful video magnification method that deals with
large motion is developed by Elgharib et al. [7]. It offers
a hybrid of Eulerian and Lagrangian methods. By manu-
ally selecting the regions to magnify, these regions can be
tracked by Lagrangian methods and subsequently tempo-
rally aligned using a homography. After alignment stan-
dard Eulerian magnification methods [26, 27] can be ap-
plied, yielding good magnification results. A disadvantage
of this method is that regions of interest require manual seg-

1
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mentation which is time consuming and error prone. Also,
the Lagrangian region tracking is expensive and sensitive
to occlusions and 3D rotations. Furthermore, the alignment
assumes a homography, which is often inaccurate for a non-
static camera and non-planar objects. There is some room
for improvement.

In this paper we propose video acceleration magnifica-
tion for amplifying small variations in the presence of large
motion. Our method does not require manual region annota-
tion nor tracking or region alignment as done in [7]. Instead,
our method is closer to the original Eulerian approach [27]
in its elegant simplicity. We make the observation that at
the scale of the small variations the large motion is typi-
cally linear. By only magnifying small deviations of linear
motion we arrive at accelerations magnification.

The contributions of this paper are as follows. 1) We
propose a pure Eulerian method for magnifying small vari-
ations in the presence of large motion. 2) We show the re-
lation between a second-order temporal derivative filter and
spatial acceleration magnification. 3) We give practical in-
sight and analyze the success and failure of our method. 4)
We outperform relevant video magnification baselines both
in observed output quality and in a quantitative evaluation.

2. Related Work
2.1. Lagrangian Approaches

For the task of motion magnification, successful work fo-
cused on Lagrangian approaches. These methods consider
the image changes that happen over time at a certain ob-
ject location by matching image points or patches between
video frames and estimating the motion based on optical
flow. In the presence of large object motion or camera mo-
tion, robust image registration plays a main role for such
methods. In [16] features are extracted over the frame and
these features are tracked and clustered into groups of points
where the video changes are magnified. The work in [2] es-
timates the heart beat of people from subtle movements of
the head. It does so by extracting features over the head
region and tracking them. In more recent work on heart-
rate estimation [24] the tracking and selection of features is
achieved by matrix completion. The work in [1] employs
user input to define regions of large motion at which video
de-animation is performed by tracking the pixels and using
graph-cut to consistently segment the motion. Dissimilar to
these works, we propose an Eulerian approach that does not
rely on image registration, can deal with object and camera
motion, and still magnifies the small video changes.

2.2. Eulerian Approaches

Rather than the Lagrangian paradigm based on track-
ing points over time to estimate the changes of certain ob-
jects, the Eulerian paradigm analyzes the image changes

over time at fixed image locations. Eulerian methods to-
wards magnifying subtle video changes were proposed by
first decomposing the video frames spatially through band-
pass filtering, and then temporally filtering the signal to find
the information to be magnified [22, 27]. These works have
shown impressive results especially in the context of color
amplification and heart rate estimation. With the apprise of
the complex-steerable pyramid [9,20,23], the use of phase-
based motion has been considered not only in the context of
motion magnification but also for other motion-related ap-
plications. Examples include phase-based video frame in-
terpolation [18] and video modification transfer [17]. In [5]
phase information is used for extracting sound from high
speed cameras, while in [4] the video phase information is
employed for predicting object material and in [3] phase
aids in estimating measurements of structural vibrations. In
the context of motion magnification, the successful work
in [26] proposes the use of phase estimated through com-
plex steerable filters and then magnifies this phase informa-
tion. A speedup is proposed in [25] through the use of a
Riesz pyramid as an approximation for the complex pyra-
mid. These works achieve impressive results for motion
magnification, however the downside of these approaches is
that the subtle motion to be magnified must be isolated —
no large object motion or camera motion should be present.
Inspired by these works, we use a pure Eulerian approach to
magnifying subtle video motion and we extend these meth-
ods to deal with large object or camera motion.

To deal with camera and object motion, in [7], the user
is asked to indicate a frame region whose pixels are tracked
and their motion is magnified. The recent work in [13]
proposes an alternative to finding the pixels whose changes
should be magnified, by using depth cameras and bilateral
filters such that the motion magnification is applied on all
pixels located at the same depth. However this method is
not tested on moving objects. Dissimilar to these works, we
aim to perform video enhancement without the use of addi-
tional information such as user input or depth information.

3. Acceleration Magnification

3.1. Linear Video Magnification

We take inspiration from prior work on linear Eulerian
video magnification [26, 27]. Linear magnification algo-
rithms estimate and magnify subtle video changes — pixel
intensity or motion changes — at fixed image locations,
temporally.

To illustratively compare our method to linear meth-
ods [26, 27] we consider a 1D signal with small motion
changes under a larger translation motion, see figure 2.

For input signal I(x, t) at position x and time t, the
linear method assumes a displacement function δ(t) such
that I(x, t) = f(x + δ(t)). The goal is to synthesize

2
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Figure 2: Illustration of a 1 D signal where small motions undergo a larger translation for linear magnification and acceleration magnifi-
cation. The signal I(x, t) is shown for 3 time instants, {t− 1, t, t+1}. The red line shows the magnification results for a factor α = 3. (a)
For first-order methods, the linear filter B(x, t) is magnified and added to the original signal I(x, t). Note that all motions are magnified,
both small and large. (b) Acceleration magnification uses a temporal acceleration filterC(x, t) which is magnified and added to the original
signal I(x, t). By assuming local linearity of the large translation motion, the translation has little effect on the magnification and only the
small, non-linear, motions are magnified. This allows our method to magnify small changes of moving objects or scenes recorded with a
moving camera.

Î(x, t) = f(x + (1 + α)δ(t)) where α is the magnifica-
tion factor.

Assuming that the signal at time t can be decomposed by
a first-order Taylor series expansion around x gives:

I(x, t) ≈ f(x) + δ(t)
∂f(x)

∂x
, (1)

where the first-order term δ(t)∂f(x)∂x gives the linear change
in signal over time.

The linear magnification method uses a temporal band-
pass filter B(x, t) tuned to measure the desired video
changes to be magnified:

B(x, t) = δ(t)
∂f(x)

∂x
. (2)

The magnified signal Î(x, t) with a factor α is then:

Î(x, t) = I(x, t) + αB(x, t), (3)

which relates to the first-order term in the Taylor expansion:

Î(x, t) ≈ f(x) + (1 + α)δ(t)
∂f(x)

∂x
. (4)

For details, see [27].
Linear methods [26, 27] measure all motion changes:

small motions and large motions. The bandpass filter
B(x, t) measures the magnitude of a change, and it does not

discriminate if the change is big or small. Thus, all transla-
tional motion will be magnified. In figure 2(a) we show the
effect of large motions on linear magnification. As the fig-
ure illustrates, linear methods are sensitive to large motions
such as camera or object motion.

3.2. Video Acceleration Magnification

Rather than magnifying all temporal changes we mag-
nify the deviation of change. For example, if an object
moves in one direction, then we enhance every small de-
viation from that direction. This includes the special case
of an object that does not move, where deviations from no
motion will be magnified. By assuming that the large object
motion is approximately linear at the temporal scale of the
small changes, we can disregard all linear motion. We do
not magnify linear changes: we magnify accelerations.

For the 1 D input signal I(x, t) at position x and time
t, we model displacement by two terms: δ(t) for linear
changes and τ(t) for non-linear second-order displacement
added to the linear motion:

I(x, t) = f(x+ δ(t) + τ(t)). (5)

Our goal is to obtain a magnified signal Î(x, t) that is solely
based on second-order changes magnified with α:

Î(x, t) = f(x+ δ(t) + (1 + α)τ(t)). (6)

Decomposing the signal in a second order Taylor series

3
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around x yields:

I(x, t) ≈ f(x)+(δ(t)+τ(t))
∂f(x)

∂x
+(δ(t)+τ(t))2

1

2

∂2f(x)

∂x2
,

(7)
where the first-order term (δ(t) + τ(t))∂f(x)∂x gives

the linear change and the second-order term (δ(t) +

τ(t))2 1
2
∂2f(x)
∂x2 the deviations from linearity in the signal

over time. Since by our definition the term δ(t) only mea-
sures linear motion and τ(t) only the second-order changes
to δ(t), we can set τ(t) = 0 in the linear term and δ(t) = 0
in the second-order term, resulting in:

I(x, t) ≈ f(x) + δ(t)
∂f(x)

∂x
+ τ(t)2

1

2

∂2f(x)

∂x2
. (8)

Let C(x, t) be the result of applying a temporal acceler-
ation filter to I(x, t) at every position x, then we capture the
second-order offset:

C(x, t) = τ(t)2
1

2

∂2f(x)

∂x2
, (9)

which we can multiply with α as the magnification factor

Î(x, t) = I(x, t) + αC(x, t). (10)

This relates back to our magnified signal Î(x, t) through the
second-order term in the Taylor expansion as:

Î(x, t) ≈ f(x)+δ(t)
∂f(x)

∂x
+(1+α)τ(t)2

1

2

∂2f(x)

∂x2
. (11)

Therefore, we focus on magnifying second-order signal
changes: acceleration. In figure 2(b) we show the effect of
large motions on acceleration magnification. As the figure
illustrates, our method only magnifies the small motion and
is robust to large motions such as camera or object motion.

3.3. Temporal Acceleration Filtering

Acceleration is the second temporal derivative of the sig-
nal I(x, t). To take a second-order derivative of the discrete
video signal we use a Laplacian filter. The Laplacian is the
second-order derivative of the Gaussian filter and it allows
us to take an exact derivative of a smoothed discrete sig-
nal. The Gaussian is the only filter that does not introduce
spurious resolution [11] and due to the linearity of the oper-
ators [12] the relation between the Laplacian and the second
derivative of the signal is:

∂2I(x, t)

∂t2
⊗Gσ(t) = I(x, t) ⊗ ∂2Gσ(t)

∂t2
, (12)

where ⊗ is convolution and Gσ(t) is a Gaussian filter with
variance σ2 and ∂2Gσ(t)

∂t2 is the Laplacian.
The σ parameter of the Gaussian allows for selecting

the observation scale of the frequency to magnify [15, 19].

For setting the observation scale, we denote the desired fre-
quency by w and we select a temporal window in the video
that is equal to our target frequency as r

4w , where r denotes
the video frame rate. We center the temporal window on the
current video frame. Subsequently, following [19], we find
the scale of the Laplacian kernel as: σ = r

4w
√
2

.

3.4. Phase-based Acceleration Magnification

For magnifying motion information, rather than intensity
changes over time, we use as a starting point the successful
work of [26] where phase information is magnified by using
the linear method of [27]. We use acceleration magnifica-
tion in the phase domain to magnify non-linear motions.

Motion can be represented by a phase shift. For a given
input signal f(x) with linear displacement δ(t) and second-
order displacement τ(t)2 at time t, we can decompose the
signal by Fourier series as sum of sinusoids over all fre-
quencies w:

f(x+ δ(t) + τ(t)2) =

∞∑
w=−∞

Awe
iw(x+δ(t)+τ(t)), (13)

where the global phase information at frequency w for the
displacements δ(t) and τ(t)2 is φw = w(x+ δ(t) + τ(t)).

Spatially localized phase information of an image over
time is related to local motion [8] and is used for magni-
fying motions in the phase domain linearly [26]. This mo-
tion magnification method uses the complex steerable pyra-
mid [20] to separate the image signal into multi frequency
bands and orientations. The pyramid contains a set of fil-
ters Ψw,θ at various scales w, and orientations θ. The local
phase information of the 2D image I(x, y) is given by:

(I(x, y) ⊗ Ψw,θ)(x, y) = Aw,θ(x, y)eiφw,θ(x,y), (14)

where ⊗ is convolution, Aw,θ(x, y) is the amplitude and
φw,θ the corresponding phase at scale w and orientation θ.

The phase information φw,θ(x, y, t) at a given fre-
quency w, and orientation θ and frame t, is magnified in
our proposed approach by temporally filtering the phase
φw,θ(x, y, t) with a Laplacian:

φ̂w,θ(x, y, t) = φw,θ(x, y, t) + αCσ(φw,θ(x, y, t)),

(15)

Cσ(φw,θ(x, y, t)) = φw,θ(x, y, t) ⊗
∂2Gσ(x, y, t)

∂t2
, (16)

where ⊗ is convolution and Cσ(·) represents the temporal
Laplacian filter with scale σ.

Due to the periodicity of the phase between [−π, π],
there is an interval ambiguity that may be present: a small
increase to a value slightly less then 2π at time t may cause
the phase to become slightly bigger than 0 at time t + 1.
This causes artifacts in the convolution with the Laplacian.
We correct for this using phase unwrapping [10].
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Video α w (Hz) Gaussian σ FPS

Light bulb 20 60 2.95 1000
Baby 100 2.5 6.63 30
Gun 8 20 4.24 480

Synthetic ball 8 2 5.30 60
Cat toy 4 3 1.41 240
Parkinson-1 3 3 2.12 30
Parkinson-2 4 3 2.12 30
Drone 5 5 1.06 30
Water bottle 4 2 2.83 30

Table 1: Parameters for all videos. “Light bulb” and “Gun”
are from [26], the rest is new.

4. Results
4.1. Experimental Setup

We evaluate our proposed method on real videos as well
as synthetic ones with ground truth magnification. We set
the magnification factor α, and the frequency of the change
to be magnified as given in table 1. For all videos we pro-
cess the video frames in YIQ color space. We provide these
videos as well as additional videos depicting our magnifica-
tion method in the supplementary material.

Motion Magnification. We use the complex steerable pyra-
mid [20] with half-octave bandwidth filters and eight ori-
entations. We decompose each frame into magnitude and
phase, and convolve with our proposed kernel over the
phase signal temporally.

Color Magnification. We decompose each video frame
into multiple scales using a Gaussian pyramid, and we mag-
nify the intensity changes only in the third level of the pyra-
mid, similar to [27].

4.2. Real-Life Videos

4.2.1 Comparison on Existing Videos

As a first experiment we show in figure 3 we show that our
method can also magnify changes when there is no motion
in the video.

Figure 4 shows a person holding a light bulb while the
hand moves upwards. The intensity variations in the light
bulb are hardly visible. The Eulerian-based method [27] re-
veals the intensity changes, but creates additional artifacts.
DVMAG [7] relies on a user-input region around the bulb
and therefore does not magnify the small reflections on the
hand. Our proposed method not only magnifies the inten-
sity variations of the light bulb without manual masking, but
also magnifies the intensity changes of the hand, caused by
the reflection of the light, as shown in the plot on the right
of Figure 4.

Figure 3: Intensity magnification on a static video. We indicate
with a green stripe the locations at which we temporally sample the
video. Note that our method is well able to magnify the intensity
for videos without large motions.
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Figure 4: Intensity magnification. Note that the hand holding
the light bulb moves upwards. We indicate with a green stripe
the locations at which we temporally sample the video. We show
the original intensity change, the Eulerian [27] intensity magni-
fication, the DVMAG [7], where the blue region shows the user
input area in which changes are magnified, and our proposed ac-
celeration magnification. We also show the intensity changes over
time in the hand area reflecting the light of the bulb. The inten-
sity changes are measured at the indicated red dot. Our proposed
method manages to magnify the intensity changes of the light bulb,
but it also captures the intensity changes in the hand cause by the
reflection of the light.
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(a) Raw video. (b) Phase-based [26]. (c) DVMAG [7]. (c) Ours.

Figure 5: Motion magnification. (a) Original video frame. We indicate with three green stripes the locations at which we temporally
sample the video. (b) Phase-based based motion magnification [26]. (c) The DVMAG [7] results with user annotated areas indicated
in blue. (c) Our proposed acceleration magnification. This figure shows a gun shooting sequence, where the recoil of the gun induces
movement in the arm muscles. DVMAG only magnifies the motion within the user annotated region, while the Eulerian based method
results in large artifacts. Our proposed method magnifies he arm motion without inducing blurring and artifacts.

Figure 5 shows various motion magnification results for
a gun shooting sequence. Due to the strong recoil, subtle
motion in the arm muscles can be recovered. We record the
motion of the forearm, upper limb, and the bracelet in the
spatio-temporal slices indicated with three green lines over
the original video. The phase-based motion magnification
proposed in [26] induces large artifacts due to the strong
arm movement. The DVMAG [7] relies on a user annotated
region where the motion is magnified. Therefore, the mag-
nification performance depends on the user input, as seen in
the figure. Our method magnifies the muscle movement of
the complete arm without creating artifacts and without the
need for user input.

4.2.2 Additional Videos with Large Object Motion

Figure 1 shows a toy moving on the table while vibrating
with a high frequency. The goal of the experiment is to mag-
nify the vibration while not creating artifacts and blurring.
Our proposed method manages to achieve this by magnify-
ing the motion at the pixels that have a non-zero accelera-
tion, thus amplifying the vibration of the toy and ignoring
the motion along the trajectory of the toy on the table.

In figure 6 we consider a medical use case in which a
person walks towards screen — zooming, and a video in
which a person is rotating in 3D, while having a tremor
motion present in the right arm. Our proposed approach is
able to magnify the tremor of the arm without introducing
considerable artifacts and blurring in the rest of the areas.

In figure 7 we show our results on a mechanical stabil-
ity quality control application where a drone is oscillating
while flying in a cluttered environment. Moreover, in fig-

ure 8 we show a transparent bottle with water being pulled
on a smooth table — the level of water in the bottle fluc-
tuates. Our method is able to correctly magnify the de-
sired motion — oscillation of the drone and fluctuations
of the water level, despite the challenging setup of back-
ground clutter and transparent elements whose motion must
be magnified.

4.3. Controlled Experiments

In figure 9 we show a synthetic ball which moves diago-
nally on the screen from the top-left corner to bottom-right
corner, with its intensity fluctuating in certain frequency.
We set the radius of ball as 10 pixels. The ball moves with
1 pixel/frame. We model the intensity changes as a sine
wave, with a maximum intensity change of 20. The inten-
sity frequency is 2 cycle/sec, and we set the frame rate to 60
frame/sec. For ground truth magnification, we amplify the
intensity changes 4 times without changing any other pa-
rameters. For all methods, we first apply a Gaussian pyra-
mid and only magnify the third pyramid level with amplifi-
cation factor 8.

Figure 10 shows magnification results for a set of consid-
ered baselines. We compare with an ideal filter of 1.5− 2.5
Hz from the Eulerian magnification method in [27] which
uses the whole video. To make this a more fair baseline
we also use this method with the STFT (Short Term Fourier
Transform) with a temporal window of frame sizes 5 and
15. The Eulerian approach generates background artifacts
due to the bandpass filter which uses the complete temporal
length of the video. STFT partially alleviates this problem,
artifacts being removed outside the temporal window. How-
ever, it generates larger artifacts inside the temporal win-
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(a) Raw video. (b) Our magnification (a) Raw video. (b) Our magnification.

Figure 6: Hand tremor magnification. The left example (Parkinson-1) has the person walking towards the screen. The right example
(Parkinson-2) has the person do a 3D rotation. We overlay 2 frames of the video to visualize how the person moves. (a) Original video
frames. We indicate with a green stripe the locations at which we temporally sample the video. (b) Our proposed acceleration magnification.
We manage to amplify the motion in the arm of the person while the person is moving towards the camera and even under a 3D rotatation.
This is possible because the scale of the body motion is considerably larger than the scale of the hand tremor.

(a) Raw video. (b) Our magnification.

Figure 7: A drone oscillating while flying in a cluttered environ-
ment. (a) Original video frames. We indicate with a green stripe
the locations at which we temporally sample the video. (b) Our
proposed acceleration magnification. Our proposed magnification
method is able to amplify the oscillations of the drone without be-
ing affected by the background clutter.

dow. For a smaller window size the intensity changes are
magnified less, because at a coarse frequency resolution in
Fourier domain more signals are filtered out. Our method
generates an intensity magnification that closely resembles
the ground truth, without introducing artifacts.

We analyze the effect of the intensity frequency on the

(a) Raw video. (b) Our magnification.

Figure 8: The water fluctuating in a bottle while the bottle is
being pulled sideways on a smooth surface. (a) Original video
frames. We indicate with a green stripe the locations at which we
temporally sample the video. (b) Our proposed acceleration mag-
nification. Our propose magnification method is able to amplify
the fluctuations in the water level while not adding substantial blur.

magnification methods. The ball speed is fixed to 0.5
pixel/frame, and we vary the intensity frequency from 0.5
Hz to 7 Hz in increments of 0.25 Hz while keeping other
parameters unchanged. We estimate MSE (Mean Square
Error) between the predicted intensity and the ground truth
intensity magnification, measured over the whole image in
all frames. Results are given in figure 11. The error of
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Figure 9: Synthetic Video. A ball with intensity varying while
moving from top-left corner to the bottom-right.
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Figure 10: (a) We record the change in intensity temporally at
the value of the red point indicated in the left frame of figure 9.
The black curve shows the original intensity values, while the blue
curve shows the ground truth magnification. (b) Signal magnifi-
cation result for our method, the Eulerian method [27], and STFT
(Short Term Fourier Transform) with window sizes 5 and 15. Our
method generated a signal magnification closer to the ground truth
magnification, while not creating additional artifacts.

the Eulerian method [27] decreases with the increase in in-
tensity frequency. This is because the ideal bandpass filter
in the frequency domain is able to measure more periods
of the signal at high frequencies. The STFT methods, per-
form well when the corresponding temporal window con-
tains precisely one cycle of the intensity change. For ex-
ample, for an STFT with window size 25, there is a drop
in MSE around the frequency 2.5 Hz, while for STFT with
window size 15, the drop is at 4 Hz. Our method is sensitive
to low frequencies, where the signal barely fits in the tem-
poral window. For higher frequencies the method stabilizes
and outperforms the others.

For analyzing the effect of the speed on the magnifica-
tion methods we fix the intensity frequency at 2 Hz, and
increase the ball speed with increments of 0.25 from 0 to
7 pixel/frame while keeping other parameters unchanged.
In figure 12 it shows that the Eulerian approach [27] and
the STFT methods have trouble for speeds around 1.5
pixel/frame. For most methods, MSE decreases slowly with
the increase in ball speed. The high error for the lower fre-
quencies is mostly due to blurring effects outside the ball.
When increasing the speed of the ball, less intensity changes
are available to measure. Our proposed method has a simi-
lar behavior, albeit at a better performance level then others.

1 2 3 4 5 6 7
Intensity frequency [Hz]

0

10

20

30

M
ea

n 
sq

ua
re

 e
rr

or
 (

M
S

E
) STFT: window 5

STFT: window 15
STFT: window 25
Eulerian
Ours

Figure 11: Error while increasing intensity frequency.
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Figure 12: Error while increasing object speed.

5. Conclusions

We present a method for magnifying small changes in
the presence of large motions. Standard video magnifica-
tion algorithms [26, 27] cannot handle large motion while
the concurrent DVMAG method [7] requires user anno-
tations, optical flow, and temporal alignment. We are
not bounded by such constraints and can magnify uncon-
strained videos.

We magnify acceleration by measuring deviations from
linear motion. We do this by linking a the response of a
second-order Gaussian derivative to spatial acceleration.

We demonstrate our approach on synthetic and several
real-world videos where we do better, and/or require less
user intervention than other methods. Our real-world videos
show the potential of our method in the medical domain
(Parkinson-I and Parkinson-II), in sports (Gun), and in me-
chanical stability quality control (Drone).
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