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Abstract
This thesis focuses on the influence of tides on flow behaviour and salt intrusion in a semi-infinite
channel ending at the sea, with a specific focus on the effects of adding a side channel. Tide causes
variations in the flow behaviour, which in turn affects salt concentrations in the channel. Adding a side
channel has an impact on the flow pattern, mainly because of reflections of the tidal wave, leading to
changes in the salt intrusion. The effect investigated is the influence of varying the distance from the
sea to the junction, and the length of the side channel. A 1-dimensional exploratory model based on the
shallow water equations for the flow behaviour is developed, analysing only the bidaily M2 tide caused
by the gravitational pull of the moon. The flow pattern is solved analytically, while the salt balance is
solved analytically in time but numerically in space. The salt balance contains an advection term and an
effective dispersion term. The effect of adding a branching channel is compared to the same situation
without a branching channel. It is found that the addition of a side channel affects the salt intrusion in
the order of 1 km compared to a single channel. Moreover, both positive and negative changes occur
in the shift of the intrusion length. The results of this study can be used to understand and explain the
behaviour in more complex geometries.
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Nomenclature

System properties

Symbol Definition Unit
𝑤 width of the channel m
ℎ dept of the channel m
𝜏 bottom stress kgms−2
𝜌 water density kgm−3

𝑐𝑑 drag coefficient −
𝑘 effective dispersion prefactor −
𝜔 angular frequency of the tide rad s−1
𝐴 amplitude of the tide m
𝜙0 tidally averaged discharge m3 s−1
𝑠∗ salt concentration in the sea kgm−3

𝑈 typical velocity in the channel ms−1
𝐿1 distance between the sea and the split m
𝐿2 length of the side channel m
𝐿3 length of the numerical domain for the main channel m

Derived properties

Symbol Definition Unit
𝑟 friction factor s−1
𝑐 tidal wave velocity (without friction) ms−1
𝑐′ tidal wave velocity (including friction) ms−1
𝑠(𝑥, 𝑡) salt concentration kgm−3

�̂�(𝑥, 𝑡) scaled salt concentration -
𝜂(𝑥, 𝑡) water height deviation m
𝜙(𝑥, 𝑡) water flow m3 s−1
𝑣(𝑥, 𝑡) water velocity 𝜙/𝑤ℎ ms−1
𝔻 effective dispersion coefficient m2 s−1
𝐿 characteristic intrusion length m

Other

Symbol Definition Unit
𝑥 distance m
�̂� scaled distance -
𝑡 time s
𝑔 gravitational acceleration ms−2

v
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1
Introduction

The Netherlands has a long and impressive history with the sea. But living in harmony with the sea
requires a deep understanding of its effects. One of the effects, of course, is the sea’s ebb and flood
tide behaviour. Tide is the periodic rise and fall of the water level. This is influenced by many different
factors, but one of the biggest influences comes from the gravitational pull of themoon. This contribution
is called the M2 tide, since it is caused by the Moon and occurs twice a day. The M2 tide has a period
of 𝑇 = 12.42h.

A river flowing into the sea, which is an estuarine environment, is influenced by this. If the water
level of the sea is higher than that of the river, water can start flowing from the sea into the river. This
is when salt from the sea is carried into the freshwater river. This process is called salt intrusion, and
it can have an effect on the ecology of the river[7]. The mixing of salt and freshwater creates brackish
water, and this is a biotope in which some plants and animals thrive. It can furthermore have an effect
on the irrigation used for agriculture [11] and it can have an effect on drinking water extraction, because
salt is hard to filter[5]. There is even a global campaign on salinization by the united nations which has
as an objective to raise awareness among researchers, as well as other groups e.g. policy makers[9].
It is therefore of importance to understand the underlying mechanism of the salt transport.

If a branching channel or a port is added to the river and a junction is formed, the flow behaviour is
altered and thus the salt intrusion as well. Furthermore, if the river already has a branching channel and
a weir is placed in it, the flow behaviour is also altered. It is therefore of importance to understand what
effect these interventions can have on the salinization in the river. To understand the physics behind
the salinization, a model is needed for the process behind salt intrusion. There are three common ways
to model salt intrusion. These are a perfectly mixed system in the vertical direction, a two-layer system
or a partially mixed system. Of these three, the perfectly mixed model is the simplest.

Several articles provide more insight into the dynamics inside estuaries and the way in which salt in
estuaries can be modelled. In Ippen[4] it is described how tidal influences in estuaries can be modelled
for estuaries with constant cross-sections and for channels with gradually varying sections. In Schijf[12]
a two-layer system is developed for the salt concentration. This is a model in which the salt and
freshwater layers are sharply separated. In MacGready[6] a model for the tidally-averaged salinity of a
channel system with varying cross-sections is developed and solved numerically. This model does not
assume the salt to be perfectly mixed vertically. In Siles-Ajamil[13], an exploratory model incorporating
salt dynamics is used to review the impact of various interventions on salt intrusion and tidal amplitudes
in a specific estuary, which is modelled as a network of interconnected channels. In Alebregtse[1] the
effects of a branching channel (with friction) on the flow behaviour is analysed for a system consisting
of two closed channels and an open boundary at sea. It is shown that phase shifts and resonance can
occur depending on the distance between the sea and the junction and the length of the branching
channel. What has not been researched yet is the effect that this interference pattern can have on the
salt intrusion. This is relevant when human interventions, such as adding a side channel or placing a
weir in a side channel, are considered.

This bachelor thesis makes a step in improving the understanding of the mechanism of salt in-
trusion in estuarine environments with branching channels by utilising a simple exploratory model.
This model is based on the 1-dimensional shallow water equations for the flow behaviour and a 1-
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2 1. Introduction

dimensional advection-dispersion equation for the salt concentration. A sketch of the junction is pro-
vided in figure 1.1. Its aim is not to provide a perfect description of the real-world conditions, but to be
a tool to be used in the explanation of more complex geometries. The key question addressed here
is: What is the effect of varying the distance between the sea and the junction and the length of the
branching channel on the salt intrusion?

To answer this question, two situations will be discussed. The first situation is a semi-infinite constant
width and constant depth channel which is connected to the sea at one end. This will mainly be used
as a reference for the second situation. The second situation that is analysed is the addition of a finite
(closed at one end) constant width and constant depth channel to the semi-infinite one. It has already
been shown that in this situation resonance can occur [1], and the effects of the interference of the tidal
waves on the salt intrusion is analysed.

We will start the examination by first creating a 1-dimensional model for the tidal flow in both geome-
tries and solving this analytically. Subsequently we will extend this model to describe the salt transport.
This is done in chapter 2. Next, the results are shown and discussed, this is done in chapter 3. Finally,
in chapter 4, we will summarize the main findings and suggest potential directions for further research.

Figure 1.1: Sketch of a branching channel added to a main channel and the distances that can be varied. The horizontal arrow
is the distance between the sea and the split, the vertical arrow is the length of the branching channel.



2
Model

The goal is to describe the influence of a branching channel on the salt concentration. However before
we can describe the salt concentration, we first need to know the flow behaviour. Therefore we will split
the problem into two parts. First we will develop a model for the flow behaviour. This is done in section
2.2. It is first done for a semi-infinite channel and subsequently for a branched channel. Once this is
completed we can construct a salt balance which uses the flow behaviour. This is done in section 2.3.
This is again done first for a semi-infinite channel and finally for a branched channel. We will end the
chapter with a section describing a method for the analysis of the results.

2.1. Problem description
We will now continue with the problem description of the single channel, this will later in the chapter be
expanded to a branched channel system. First, we assume the channel has a constant width 𝑤 and a
constant depth ℎ. The depth is measured as the average of the water height over a full period of the
tidal wave, and thus not dependent on time. The change in water height, compared to the average,
will be denoted by 𝜂(𝑥, 𝑡). At one end it is connected to the sea (at 𝑥 = 0), and at the other end it
stretches to infinity (𝑥 → ∞). Furthermore, the channel has a regular discharge which is not influenced
by tide. We will call this discharge 𝜙0. We furthermore assume the water to be of the same density
everywhere. Moreover we assume the tide and the salt concentration at sea 𝑠∗ not to be influenced by
the channel dynamics. The component of the tide that we are interested in is the bidaily M2 tide. This
is the component that is caused by the gravitational pull of the moon. It can be described as a sine with
period 12.42h. This means that is has an angular frequency of 𝜔 = 2𝜋

𝑇 ≈ 1.405 ⋅10−4s−1. The problem
we are facing is sketched in figure 2.1.

Figure 2.1: The single channel geometry.
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4 2. Model

2.2. Water height and flow rate
In this section we start by developing a model for the water height and the flow rate. First the shallow
water equations are introduced, and subsequently they are solved for a single semi-infinite channel
and a main channel with a connected side channel.

2.2.1. Wave equation
Our starting point is the derivation of the governing wave equation. This can be derived by using two
equations. The first equation is the conservation of mass (2.1). This equation denotes that a spatial
difference in flow (𝜙) (r.h.s.) causes the water level (𝜂) to rise (l.h.s.). This rise in water level depends
on the width (𝑤), since if the channel is narrower the water level rises quicker than if the channel was
very wide. This can be written as

𝑤𝜕𝜂𝜕𝑡 = −
𝜕𝜙
𝜕𝑥 . (2.1)

The second equation is the conservation of momentum over a control volume (2.2). The terms from
left to right are; the change in momentum over time, the transport of momentum, the gravitational force
and the friction of the riverbed. This leads to,

1
𝑤ℎ

𝜕𝜙
𝜕𝑡 +

𝜙
(𝑤ℎ)2

𝜕𝜙
𝜕𝑥 + 𝑔

𝜕𝜂
𝜕𝑥 +

𝜏
𝜌ℎ = 0. (2.2)

There are some simplification we can do to make the equations easier to solve. The bottom stress
𝜏 in the friction term in equation (2.2) depends quadratically on the velocity of the water and is therefore
not linear. This makes the equation more difficult to solve compared to a linear term. We can linearize
the friction term as 𝜏

𝜌ℎ =
𝑟
𝑤ℎ𝜙 with friction factor 𝑟 = 𝑐𝑑

ℎ
8𝑈
3𝜋 using a Fourier expansion in which 𝑈 is a

typical velocity in the channel and 𝑐𝑑 is a bottom friction coefficient[10]. Furthermore, the convection
term 𝜙

(𝑤ℎ)2
𝜕𝜙
𝜕𝑥 is usually small for tidal flow[2] and hence is neglected. These two equations can be

combined (see appendix A.1) to form the following wave equation:

𝜕2𝜂
𝜕𝑡2 + 𝑟

𝜕𝜂
𝜕𝑡 = 𝑔ℎ

𝜕2𝜂
𝜕𝑥2 (2.3)

Alternatively, this can be derived using the shallow-water equations. These equations are simplifi-
cations of the Navier-Stokes equations by depth- and width-integrating them and assuming the vertical
velocity is small compared to the horizontal velocity. For equation (2.3) it is natural to define 𝑐 = √𝑔ℎ,
as the wave velocity in the absence of friction. The friction term and the angular frequency of the tide will
affect the final wave velocity. Note that the two equations (2.1 & 2.2) also could have been combined
to form exactly the same equation in terms of 𝜙.

𝜕2𝜙
𝜕𝑡2 + 𝑟

𝜕𝜙
𝜕𝑡 = 𝑔ℎ

𝜕2𝜙
𝜕𝑥2 (2.4)

2.2.2. Semi-infinite channel
We will now proceed with solving equation (2.3) for the single channel. The geometry of the problem is
sketched in figure 2.1. We are interested in the dynamic equilibrium solution. This is because the initial
conditions will dissipate due to the friction and is therefore not of interest. Therefore we do not need
the initial conditions. We are dealing with a second-order linear partial differential equation, hence we
need two boundary conditions. We describe the boundary condition at the sea side (𝑥 = 0) as a wave
with a fixed amplitude (𝐴) independent of the channel. The wave has a certain period (for the M2 tide
this is typically 12 hours and 25 minutes) which is contained in the angular frequency (𝜔 = 2𝜋

𝑇 ) and a
certain phase difference (𝜃). This leads to

𝜂(0, 𝑡) = 𝐴 sin (𝜔𝑡 + 𝜃) . (2.5)

At the other end (landward), we require that the tidal wave is bounded as 𝑥 → ∞. This means we have
𝜂 < ±𝐵 as 𝑥 → ∞.



2.2. Water height and flow rate 5

Nowwe have the problem clear, we can proceed by applying a Fourier transform in the time variable.
This changes the partial differential equation into an ordinary differential equation in the 𝑥 variable (2.6)
which is easier to solve.

𝜕2ℱ {𝜂}
𝜕𝑥2 = −𝜉

2 + 𝑟𝜉𝑖
𝑐2 ℱ {𝜂} (2.6)

We define 𝜆2(𝜉) = − 𝜉
2+𝑟𝜉𝑖
𝑐2 . Note that 𝜆 is imaginary, its real part satisfies ℝe{𝜆} > 0 (see A.2), and

we have 𝜆(−𝜉) = 𝜆(𝜉). With the overline denoting the complex conjugate. The general solution for
(2.6) is:

ℱ {𝜂} = 𝑐1(𝜉)𝑒−𝜆𝑥 + 𝑐2(𝜉)𝑒𝜆𝑥 (2.7)

First we will use the landward boundary condition. The tidal wave is bounded as 𝑥 → ∞. This means
that ℱ {𝜂} < ±𝐵′ as 𝑥 → ∞. Since ℝe{𝜆} > 0 and 𝑒𝜆𝑥 = 𝑒ℝe{𝜆}𝑥𝑒𝕀m{𝜆}𝑥𝑖 this can only happen if 𝑐2 = 0.

Secondly we will use the seaward boundary condition. We apply a Fourier transform to equation
(2.5), and this leads to the following expression for 𝑐1:

𝑐1(𝜉) =
𝐴𝑖
2 (𝑒

−𝑖𝜃𝛿(𝜉 − 𝜔) − 𝑒𝑖𝜃𝛿(𝜉 + 𝜔)) (2.8)

If we now apply the inverse transform to (2.7) we get our final solution for the semi-infinite channel.

𝜂(𝑥, 𝑡) = 𝐴𝑒−ℝe{𝜆(𝜔)}𝑥 sin (𝕀m{𝜆(𝜔)}𝑥 + 𝜔𝑡 + 𝜃) (2.9)

In the solution we see a wave decaying exponentially as 𝑥 becomes larger, with the wave oscil-
lating in space and time. A solution for 𝜙 can be constructed using equation (2.1 or 2.2). It will be a
superposition of the tidally averaged part (𝜙0) and the tidally influenced part.

2.2.3. Branched channels
Nowwe turn our attention to a side channel connected to a main channel. The geometry of this situation
is sketched in figure 2.2. The channel connecting the sea with the junction will be called the sea channel
and will have subscript 1, the side channel has subscript 2 and the last channel will be called the main
channel with corresponding subscript 3. We can view this problem as three separate branches with
coupled boundary conditions. Hence, the governing equation is still wave equation (2.3). However,
since it will make the analysis easier, we will complexify the wave equation and take the real part of the
complex solution. The complex wave height and the complex flow will be denoted by a bold symbol,
respectively 𝜼 and 𝝓.

As previously mentioned, we are interested in the dynamic equilibrium. Therefore we do not need
initial conditions. For each branch we need two boundary conditions. We will start with the boundary
conditions at the junction. At the junction we require the water level to be continuous, this leads to
𝜂1(0, 𝑡) = 𝜂2(0, 𝑡) and 𝜂2(0, 𝑡) = 𝜂3(0, 𝑡). Additionally we need to have that the flow into the junction
equals the flow out of the junction (conservation of mass). This means we demand that 𝜙1+𝜙2+𝜙3 = 0.

We will now continue with the boundary conditions for the other ends. For the boundary of the sea
channel we prescribe the boundary as a complex exponential with angular frequency 𝜔 and complex
amplitude 𝐴,

𝜼1(𝐿1, 𝑡) = 𝐴𝑒𝑖𝜔𝑡 . (2.10)

For the side channel we require that 𝜙2(𝐿2, 𝑡) = 𝜙2,0, this means that we require the flow at the bound-
ary to equal a constant flow 𝜙2,0 not depending on time (for example due to a weir). If we set this
constant 𝜙2,0 = 0 this would correspond to a hard wall. Conversely, setting it to a different value can
be interpreted as a weir that regulates a constant discharge into the channel. Last but not least, for
the main channel we require that 𝜂 is bounded (𝜂3(𝑥, 𝑡) < ±𝐵) as 𝑥 → ∞. Alternatively we can also
prescribe a similar boundary condition as the side channel, if we want to represent a weir.

We can now continue with solving the problem. From our analysis of the semi-infinite channel the
following structure for solutions with periodic forcing at the boundary is suggested:

𝜼 = 𝑍(𝑥)𝑒𝑖𝜔𝑡 (2.11)
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Figure 2.2: The geometry of the branched channel situation.

If we substitute this back into the (complex) wave equation we see that:

𝑍(𝑥) = 𝛼(𝜔)𝑒−𝜆(𝜔)𝑥 + 𝛽(𝜔)𝑒𝜆(𝜔)𝑥 (2.12)

with 𝜆 defined slightly differently (compared to the semi-infinity channel) as 𝜆2 = −𝜔2+𝑟𝜔𝑖
𝑐2 . To determine

the coefficients 𝛼 and 𝛽 we use the 6 boundary conditions.
We can rewrite all boundary conditions as a system of six linear equations for the coefficients

𝛼1, ..., 𝛽3. From the top to bottom row these represent (1) & (2): continuous water level, (3) conser-
vation of flow, (4) bounded at infinity, (5) constant flow at the boundary, (6) tide behaviour at sea side.
This is explained in more detail in the appendix.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 −1 −1 0 0
0 0 1 1 −1 −1
−𝑤1𝜆1

𝑤1
𝜆1

−𝑤2𝜆2
𝑤2
𝜆2

−𝑤3𝜆3
𝑤3
𝜆3

0 0 0 0 0 1
0 0 −𝑒−𝜆2𝐿2 𝑒𝜆2𝐿2 0 0

𝑒−𝜆1𝐿1 𝑒𝜆1𝐿1 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎣

𝛼1
𝛽1
𝛼2
𝛽2
𝛼3
𝛽3

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
𝐴

⎤
⎥
⎥
⎥
⎥
⎦

(2.13)

The solution of this system gives us the coefficients that we are looking for, and with these we can
construct the solution for 𝜼1, 𝜼2 and 𝜼3.

Similar to 𝜼, we can construct a solution for 𝝓. We will do this by using the following structure

𝝓 = 𝝓0 +𝝓1(𝑥)𝑒𝑖𝜔𝑡 . (2.14)

Hereby, 𝝓0 is the tidally averaged flow and 𝝓1(𝑥)𝑒𝑖𝜔𝑡 is the flow caused by the tide. We can use
equation (2.1) or (2.2) to relate the coefficients of 𝝓 to those of 𝜼. This leads to

𝝓1(𝑥) =
𝑤𝜔𝑖
𝜆 (𝛼𝑒−𝜆𝑥 − 𝛽𝑒𝜆𝑥) . (2.15)

The final solution of 𝜂 and 𝜙 is then the real part of 𝜼 and 𝝓.
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2.3. Salt transport
Nowwe have a way to describe the water flow as a function of time and location, we can begin modelling
the salt transport in the channels. To do this we start off with a salt balance[4], where we denote the salt
concentration as 𝑠(𝑥, 𝑡). The change in concentration (l.h.s.) consists of an advection term caused by

Figure 2.3: Dispersion due to velocity differences. The salt con-
centration is represented by the purple dots. Image inspired on
the lecture notes of Environmental Physics (AP3141).

the flow (𝑣 = 𝜙
𝑤ℎ ) and an effective dispersion

term. Especially this last term needs some expla-
nation. Due to the reduction of the 3D geometry
to a 1D model we have modelled the flow to be
only dependent on 𝑥, while in fact there are veloc-
ity differences in the flow in the width and depth
dimensions. This concept is shown in figure 2.3.
This together with the effects of mixing due to tur-
bulence is captured in the effective dispersion co-
efficient 𝔻. This constant is determined empiri-
cally and can also capture other effects of order
𝜕2𝑠
𝜕𝑥2 . Its value typically ranges from order 101 to
103 m2s−1 [8]. This balance can be written as,

𝜕𝑠
𝜕𝑡 = −𝑣

𝜕𝑠
𝜕𝑥 + 𝔻

𝜕2𝑠
𝜕𝑥2 . (2.16)

2.3.1. Single Channel
We will now proceed with solving equation (2.16) for a single channel. We start off with describing the
two boundary conditions for the single channel

At 𝑥 = 0 (sea side) we assume that the salt concentration is constant. This means that we assume
that the brackish water from the river does not lower the salt concentration because the sea is massive
and is well mixed. The boundary condition at the other end is a bit more tricky. The first choice that
comes to mind is the condition that as 𝑥 → ∞ we must have that 𝑠(𝑥, 𝑡) → 0. However, since we
use a numerical approximation we need a finite domain. We can therefore approximate this boundary
condition by using a large enough domain so that we can say that the concentration is zero at that end
of the domain. Therefore the two boundary conditions are:

𝑠(0, 𝑡) = 𝑠∗
𝑠(𝐿, 𝑡) = 0 (2.17)

To solve this equation we make two important remarks. (1) Since 𝜙 oscillates with an angular
frequency of 𝜔 and 𝜙 causes a transport of salt, it follows from equation (2.16) that 𝑠 will oscillate with
an angular frequency of 𝜔 or a multiple of it as well. (2) The higher the multiple of 𝜔, the smaller the
amplitude of this frequency. Using only the frequencies (−2𝜔,… , 2𝜔), this translates in the following
Ansatz:

𝑠(𝑥, 𝑡) =
2

∑
𝑘=−2

𝑠𝑘(𝑥)𝑒𝑘𝑖𝜔𝑡 (2.18)

The next step is to use this Ansatz in equation (2.16) and matching the terms with the same fre-
quency (−2𝜔,… , 2𝜔). Note that we ignore the terms for−3𝜔 and 3𝜔, since we assume their contribution
to the overall solution are small. The matching of these 5 frequencies lead to 5 equations. If we define
𝑠 as:

𝑠 =
⎡
⎢
⎢
⎢
⎣

𝑠−2
𝑠−1
𝑠0
𝑠1
𝑠2

⎤
⎥
⎥
⎥
⎦

(2.19)
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Then we can write the 5 equations as:

𝐀𝑠 + 𝐁(𝑥) 𝜕𝑠𝜕𝑥 + 𝐂
𝜕2𝑠
𝜕𝑥2 = 0⃗ (2.20)

with matrices 𝐀, 𝐁 and 𝐂 defined below:

𝐀 =
⎡
⎢
⎢
⎢
⎣

−2𝑖𝜔 0 0 0 0
0 −1𝑖𝜔 0 0 0
0 0 0 0 0
0 0 0 𝑖𝜔 0
0 0 0 0 2𝑖𝜔

⎤
⎥
⎥
⎥
⎦

𝐁 = 1
2𝑤ℎ

⎡
⎢
⎢
⎢
⎢
⎣

𝝓0 +𝝓0 𝝓1 0 0 0
𝝓1 𝝓0 +𝝓0 𝝓1 0 0
0 𝝓1 𝝓0 +𝝓0 𝝓1 0
0 0 𝝓1 𝝓0 +𝝓0 𝝓1
0 0 0 𝝓1 𝝓0 +𝝓0

⎤
⎥
⎥
⎥
⎥
⎦

𝐂 =
⎡
⎢
⎢
⎢
⎣

−𝔻 0 0 0 0
0 −𝔻 0 0 0
0 0 −𝔻 0 0
0 0 0 −𝔻 0
0 0 0 0 −𝔻

⎤
⎥
⎥
⎥
⎦

(2.21)

This system (2.20) is hard to solve analytically because 𝐁 is dependent on 𝑥 via 𝝓1. Therefore we
will numerically solve this system in the spatial dimension. For the first derivative backward difference
is used and for the second derivative the second-order central difference method is used. This can be
written as

𝜕𝑠
𝜕𝑥 ≈

𝑠(𝑥 + Δ𝑥) − 𝑠(𝑥)
Δ𝑥 ,

𝜕2𝑠
𝜕𝑥2 ≈

𝑠(𝑥 + Δ𝑥) − 2𝑠(𝑥) + 𝑠(𝑥 − Δ𝑥)
Δ𝑥2 .

(2.22)

The reason backward difference is used instead of the central difference for the first derivative is be-
cause otherwise the numerical system will show numerical oscillations due to the loose coupling of
even and odd points.

Combining all of this with the boundary conditions (2.17) gives rise to a block matrix. The solution
of this system gives us the vector 𝑠 at each point in the discretized spatial domain. If we take the dot
product of this vector with the time vector [𝑒−2𝑖𝜔𝑡 , … , 𝑒2𝑖𝜔𝑡]𝑇 we get the solution we are searching for
at this coordinate for every point in time.

2.3.2. Branched Channels
Now we know how to solve a single channel, we are ready to extend this solution to multiple channels.
The governing equation for any channel in this system is still equation (2.16), and we still use the
geometry as sketched in figure (2.2).

We will start with the boundary conditions at the junction. To simplify the notation we will denote
the transport (the advection term plus the diffusion term) as 𝑇. The boundary condition at the junction
are equal concentration for all three channels (a & b) and conservation of salt mass (transport) at the
junction (c). This can be written as,

{
𝑠1(0, 𝑡) = 𝑠2(0, 𝑡)
𝑠2(0, 𝑡) = 𝑠3(0, 𝑡)

𝑇1(0, 𝑡) + 𝑇2(0, 𝑡) + 𝑇3(0, 𝑡) = 0.

(2.23a)
(2.23b)
(2.23c)

For the sea side boundary we again prescribe that there is a constant concentration (d). In the
side channel there is a weir on the boundary which discharges a constant flow (𝜙0) of freshwater (not
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containing salt) into the river, and no salt can be transported past this boundary. This results in a
no-transport condition (e). The boundary condition of the main channel is similar to that of the single
channel. We would like that as 𝑥 → ∞ we have that 𝑠(𝑥, 𝑡) → 0. We approximate this by using a large
enough domain so that we can say that the concentration is zero at that end of the domain. We use 𝐿3
to denote the length of the numerical domain. (f).

{
𝑠1(0, 𝑡) = 𝑠0
𝑇2(𝐿2, 𝑡) = 0
𝑠3(𝐿3, 𝑡) = 0

(2.23d)
(2.23e)
(2.23f)

We will now continue with solving for the salt concentration. We can use most of the analysis of
the single channel as we understand that, other than the boundary conditions, each channel will still
behave as described in section 2.3.1. We can therefore reuse the matrices for each of the channels
interior points and only have to think about the boundary conditions. We define𝐌1 for the sea channels’
interior points, 𝐌2 for the side channels’ interior points and 𝐌3 for the main channels’ interior points.
We can summarize these equations in the following block matrix. The components of this matrix are
other matrices which in turn consist of other matrices. 𝑛 denotes the number of frequencies used, in
our analysis we use 𝑛 = 5 as described in equation (2.18).

[
𝐌1 𝟎𝑛⋅(𝑚1−2),𝑛⋅𝑚2 𝟎𝑛⋅(𝑚1−2),𝑛⋅𝑚3

𝟎𝑛⋅(𝑚2−2),𝑛⋅𝑚1 𝐌2 𝟎𝑛⋅(𝑚2−2),𝑛⋅𝑚3
𝟎𝑛⋅(𝑚3−2),𝑛⋅𝑚1 𝟎𝑛⋅(𝑚3−2),𝑛⋅𝑚2 𝐌3

] [
𝑠1
𝑠2
𝑠3
] = [

0⃗𝑛⋅𝑚1
0⃗𝑛⋅𝑚2
0⃗𝑛⋅𝑚3

] (2.24)

This corresponds to 𝑛 ⋅ (𝑚1+𝑚2+𝑚3−6) equations for 𝑛 ⋅ (𝑚1+𝑚2+𝑚3) unknowns (the length of
the stacked vectors 𝑠1, 𝑠2 and 𝑠3). The missing 𝑛 ⋅ 6 equations are exactly the 6 boundary conditions.
These boundary conditions (2.23 a-f) can be rewritten into the same form as equation (2.24). This will
result in 𝑛 equations per boundary condition, namely one equation for every frequency, bringing the
total to the required 𝑛 ⋅ (𝑚1 + 𝑚2 + 𝑚3) equations. This is worked out in more detail in the appendix.
The vectors 𝑠1, 𝑠2 and 𝑠3 give us the solution at each point in the domain of the channels when the
dot product is taken with the time vector [𝑒−2𝑖𝜔𝑡 , … , 𝑒2𝑖𝜔𝑡]𝑇. We have an analytical solution in the time
domain and a numerical solution in the spatial domain.

2.4. Analysis methods
2.4.1. Characteristic length and concentration
To get a feel for equation (2.16) we can try to analyse what would happen if we do not take the tidal
influences into account. We will get a steady-state solution (𝜕𝑠𝜕𝑡 = 0) since there is no part any more

that varies with time, and 𝑣(𝑥, 𝑡) = 𝜙
𝑤ℎ reduces to a constant ( 𝜙0𝑤ℎ ), namely the tidally averaged flow

velocity. The solution of this (constant coefficients) ordinary differential equation, taking the boundary
conditions as described before into account, is given by:

𝑠 = 𝑠∗𝑒−
𝜙0
𝑤ℎ𝔻𝑥 (2.25)

Two important insights arise by looking at this solution. First we see that the solution exponentially
decays as 𝑥 increases, secondly we see that the initial concentration at the sea (𝑠0) does not influence
the behaviour of the solution, but only scales it. These two insights lead us to define a characteristic
length and a characteristic concentration.

For the characteristic concentration we can use 𝑠∗. Now we can define the dimensionless con-
centration �̂� = 𝑠/𝑠∗, note that dimensionless symbols will be indicated by a hat. For the characteristic
length we take the point of the solution where the concentration at that distance is only 10% of the initial
concentration. This means that we define 𝐿 to be:

𝐿 = 𝑤ℎ𝔻
𝜙0

𝑙𝑛(0.1) (2.26)

This leads to the following dimensionless variables:



10 2. Model

⎧

⎨
⎩

�̂� = 𝑠
𝑠∗

�̂� = 𝑥
𝐿

(2.27a)

(2.27b)

2.4.2. Scaling
To further improve our understanding of the salt dynamics we can use scaling to look at the magnitude
of the different processes that influence the salt balance. We are particularly interested in the tidally-
averaged salt concentration. This corresponds to the 𝑠0 term in equation (2.18). If we look at equation
(2.20), and only focus on the 𝑠0 term, we can see the terms that influence it.

We use the characteristic length and concentration as defined above (2.27) to rewrite this equation
into dimensionless variables.

1
2𝜙0

(𝜙1
𝜕�̂�−1
𝜕�̂� + 𝜙1

𝜕�̂�1
𝜕�̂� ) +

𝜕�̂�0
𝜕�̂� −

1
𝑙𝑛(0.1)

𝜕2�̂�0
𝜕�̂�2 = 0 (2.28)

To use scaling to assess the importance of each of the terms we have to keep in mind that the above
equation is still complex. This is especially of importance in the first term. If we consider the polar form
of 𝜙1 and

𝜕�̂�∗1
𝜕�̂� , we see that the real part of their multiplication is,

ℝe{𝜙1
𝜕�̂�1
𝜕�̂� } = |𝜙1| ⋅ |

𝜕�̂�1
𝜕�̂� | ⋅ cos (Δ𝜑𝜙,𝑠1) (2.29)

Here Δ𝜑𝜙,𝑠1 denotes the phase difference between 𝜙1 and
𝜕�̂�1
𝜕�̂� . A similar argument can be made for

𝜙1 and
𝜕�̂�−1
𝜕�̂� , with the same phase difference Δ𝜑𝜙,𝑠1 .



3
Results

In this chapter, we first present and discuss the results obtained from the wave equation (tidal flow and
water height). An insight of the underlying flow behaviour is needed for our understanding of the salt
transport, which will be presented in the subsequent section. We will need to choose some values
to use in the model, the chosen values are shown in table 3.1. These values are used consistently
throughout the results, to ensure a fair comparison. In the branched channel situation, every branch
uses these same values as the single channel unless clearly indicated otherwise. The number of grid
points used in the sea- and main channel is 1800. The number of grid points in the side channel varies
with the length 𝐿2, but the same distance between the grid points is used as in the main channel which
is Δ𝑥 = 100m. For the single channel and branched channels a doubling of the number of grid-points
gave no visible better resolution.

𝑤 2 ⋅ 102m
ℎ 1 ⋅ 101m
𝑐𝑑 1 ⋅ 10−2
𝑈 1ms−1
𝜔 1.405 ⋅ 10−4rad s−1
𝜙0 −1 ⋅ 102rad s−1

Table 3.1: The model settings to be used throughout the whole chapter.

3.1. Flow behaviour
We will first look at the results of the single semi-infinite channel, afterwards we will present the effect
of the addition of a second channel.

3.1.1. Semi-Infinite Channel
From our analytic solution (2.9) we can already notice two important properties. We see that due to
the sine function there will be oscillations both in space (𝑥) and time (𝑡). Furthermore, we see that the
wave height (and therefore also the flow) decreases exponentially as 𝑥 becomes larger. This decay
is due to the dissipation of energy due to friction. These are of course two properties that we would
expect. Furthermore if we were to ignore the decay, we would expect there to be characteristics over
which the solution should stay constant [3]. This should be at the wave velocity including friction, which
is 𝑐′ = 𝜔

𝜆(𝜔) . Lastly, if we take 𝑥 = 0 (the sea boundary) we see that the solution indeed follows the
boundary condition.

In figure (3.1) the results for a semi-infinite channel with a default set of parameters are plotted. The
plot shows iso-value contours of the change in water height (𝜂) and the velocity of the water (𝑣). For 𝜂,
red indicates an elevation and blue a decrease in water height. For 𝜙 a positive flow (landward) is red
and a negative flow (seaward) is blue. The wave velocity is indicated with a black arrow, we see that
along this arrow the solution does not oscillate but decays exponentially.

11
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Figure 3.1: Water height 𝜂 and flow velocity 𝑣 = 𝜙
𝑤ℎ due to tidal influences in a semi-infinite channel (constant width and depth).

Water height 𝜂 = 0 and flow 𝜙 = 0 are represented in white. The tidally averaged velocity 𝑣0 is shown as a black line on the
colorscale. The wave velocity including friction is indicated with an arrow.

In figure 3.2 a few slices of 𝜂 and 𝜙 in the spatial and temporal direction are given. In the above two
plots we see a slice in time taken at different 𝑥 points. We clearly see the oscillations of the solution
and we see the amplitude of the oscillating decreasing with increasing 𝑥. In the two plots at the bottom
we see a slice taken in space (𝑥) at different moments in time (𝑡). In this plot the exponential decay is
more noticeable. We see clearly that the wave dampens out as 𝑥 → ∞.

Since 𝜙 is a superposition of the tidal influenced part and the average flow part (which is negative),
the negative flow (seaward) is dominant over the positive flow (landward). This can be noticed in figure
3.1 by the velocity (𝑣) plot being mostly blue. Moreover note the slack tide (𝜙 = 0) in the plot, these
are the moments in which the flow in the river reverses direction, flowing landward instead of seaward.
This aspect will become important later on with the analysis of the salt intrusion.

3.1.2. Branched Channels
We will now continue with the branched channel situation, of which the geometry is shown in figure
(2.2). The same parameters as in the semi-infinite channel are used, with the addition of a second
channel of length 𝐿2 = 40km at the location 𝐿1 = 25km. All the other properties are the same as
the other two channels. The results for the water height are given in figure (3.3) and the results for
the flow are given in figure (3.4). From looking at the analytical solution we again expect there to be
oscillations both in space and time with an exponential decay. However, there are now differences due
to reflections in the side channel.

Figure 3.3 shows the results for the water height (𝜂). We see that the wave from the tidal forcing
propagates in the system. An important thing to notice is that due to the no-flow boundary condition
at the end of the side channel the incoming wave is reflected at this boundary and ’moves back’ into
the sea channel again. Two characteristics are indicated with arrows in the side channel. In the sea
channel and the side channel we see a wave interference effect caused by the reflections. Instead
of the neat diagonal iso-contours, as in the main channel, we see a more complex warped shape. In
figure 3.3 this is most clear in the sea channel. If the reflected tide wave returns when an incoming
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Figure 3.2: Slices of 𝜂 and 𝜙 taken in 𝑥 and 𝑡. The above two plots are slices taken in the time domain and the two slices below
are taken in the spatial domain. All for the single semi-infinite channel.

ebb wave enters, the tidal amplitude is damped. In the main channel there are no reflections. The tidal
wave propagates until it has completely dissipated.
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Figure 3.3: Water height 𝜂 due to tidal influences in a branched channel system. Water height 𝜂 = 0 is represented in white,
and the contours of the slack tide (black dashed lines) are shown as well. The arrows show a reflection in the side channel and
the interference with a new tidal wave at the junction.

Figure 3.4: Water flow 𝑣 = 𝜙
𝑤ℎ due to tidal influences in a branched channel system. Flow 𝜙 = 0 is represented in white. The

tidally averaged flow velocity is indicated as a black line in the colorscale.
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Figure 3.5: The scaled salt concentration �̂� in the single semi-infinite channel.

In figure (3.4) the results for the corresponding flow (𝜙) are displayed. As with the single semi-infinite
channel, the flow is a superposition of the average flow with the tidal influenced flow, and therefore we
see more seaward flow (blue) than landward flow (red) in the sea- and main channel.

In the side channel the situation is different. Since there is a no-flow condition at the end, the mass
transport of this channel should be balanced. The mass transport in equals the mass transport out over
a tidal period, as there is no net transport in the long term. This is indeed what we see in the figure.
Again we can also see an interference effect of the waves in the sea- and side channel.

3.2. Salt intrusion
In this section we will explore the results of the salt model. We will first look at a single channel, then
a specific configuration with a branched channel to get an understanding for the system dynamics.
Finally, we will see how the salt intrusion changes as we vary the distance to the junction (𝐿1) and the
length of the channel (𝐿2).

3.2.1. Semi-Infinite Channel
In figure 3.5 the results for a single semi-infinite channel are plotted. We see the salt concentration
decreasing rapidly as 𝑥 becomes larger. In fact, this decrease is almost exponential as described by
the solution of the problem without tide (2.25). The 10% concentration contour is also plotted (in red),
and we see that this is close to the characteristic length 𝐿 which is represented as a white dashed line,
but slightly more landwards. This means that the salt intrusion is slightly larger due to tide compared
to the solution without tide.

This can be explained by looking at the scaled equation (2.28) of section 2.4.2. If we look at the
coefficients of the tidally averaged advection term and the dispersion term, we see that their magnitudes
in this situation are 1 and 1/𝑙𝑛(10) ≈ 0.43. The coefficient in front of the tidally influenced part is a
bit more tricky to analyse. This is due to the phase difference between 𝜕�̂�−1

𝜕�̂� or 𝜕�̂�1𝜕�̂� and 𝜙1. They are
almost completely out of phase with each other which makes this prefactor relatively small. That they
are out of phase with each other can be seen in figure 3.5. The salt is at its maximum during the slack
tide. Therefore when the change in salt concentration in time is around zero, the change of flow in time
is highest. This indicates that they are almost completely out of phase.

We can also see that there is an oscillating behaviour with the same frequency of the tide, but the
double frequency of the tide is not noticeable in the plot. This is also one of the assumptions that
we made while building the salt model. This is more noticeable if we split up the contributions of the
different frequencies, this is done in figure (3.6). We see that the most part comes from the constant
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Figure 3.6: The influence of the different frequencies on the salt concentration. The actual concentration is the sum of all of
these. The negative and positive frequencies (−𝜔𝑡 and 𝜔𝑡) are combined.

part, there is a slight contribution from the 𝜔𝑡 part, and the contribution of the 2𝜔𝑡 part is not noticeable.
The contours of the slack tide (𝜙 = 0) are also plotted. We can notice that there is a minimum or a

maximum in the salt concentration at this contour. This can be explained if we consider the underlying
process. Themoment the flow in the channel reverses, salt is transported by advection landwards. This
means that the salt concentration is building up. The moment the flow reverses again, and water is
streaming into the sea, the salt is transported by advection seawards and the concentration decreases
again.

3.2.2. Branched Channels
Before we will continue with the analysis of the effect of changing the junction location (𝐿1) and the
branch length (𝐿2) we will have a look at a specific example. Figure 3.7 shows the salt concentration in
the branched channel situation. We notice almost the same features as described above in the main-
and sea channel. We see the decrease in concentration, the oscillating behaviour and the maximum
and minimum at slack tide. In the side channel we see an almost constant concentration. This can
be explained by the absence of tidally averaged flow in the channel. There is no fresh water flow in
that channel to flush out the salt water so the concentration in the channel will be roughly the average
concentration at the junction except for a small tidal influence.

3.2.3. Effect junction location and branch length
In this section, we will present the results of varying the location of the junction and the length of the
branch and explore how this affects salt intrusion in a tidal system. We will compare the salt intrusion
length in the branched system to that of the single channel. Therefore we will work with the difference
in intrusion length between the two.

In figure 3.8 we see the difference in salt intrusion length if we vary 𝐿1 (the length between the sea
and the junction) and 𝐿2 (the length of the branched channel) compared to the semi-infinite channel.
It is plotted for different effective dispersion coefficients, but all with a tidally averaged flow of 𝜙0 =
−100m3 s−1.

We see that as 𝐿1 increases (the junction point is located further inland) the effect on the salt intrusion
decreases. The dissipation of energy due to friction can explain this relation. If the junction is further
inland, the energy of the tidal wave has mostly been dissipated before it has reached the junction. This
can be seen by looking at the flow behaviour of the branched channel. Therefore the branch does not
cause a different flow behaviour for the part of the channel that the salt can reach and consequently
the salt intrusion is not influenced by the branch. Although in the figure 𝐿1 is not large enough for
the difference in salt intrusion to go to zero, it is checked for several configurations that the difference
indeed goes to zero.

In figure 3.9 we see the difference in intrusion length but now for 𝜙0 = −50m3 s−1. Something that
immediately stands out is the large blue area. This means that for those configurations of 𝐿1 and 𝐿2 the
salt intrusion length is decreased by adding a branching channel. We see that this decrease is around
𝐿2 = 60km.
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Figure 3.7: The scaled salt concentration for a specific configuration of the branched channel system.

This decrease can be explained if we look at the wave velocity including friction (𝑐′ = 18.89kmh−1)
we can calculate the wave length 𝜆 = 𝑐′𝑇 = 234.61𝑘𝑚. This means that a quarter wavelength is
𝜆
4 = 58.7𝑘𝑚, which coincides with the peak we see in the data. To understand this a bit better, we
can take a look at what happens with the flow pattern in a side channel without friction with a quarter
wavelength. Note that in this case the wavelength is larger due to the absence of friction. This flow
pattern is shown in figure 3.10. We see that in this situation that only in the sea channel and the side
channel tidal flow occurs . If we go back to our situation including friction, we would still expect this
destructive interference, however due to friction we do not expect a full cancellation but only a damping
of the tidal waves.

Another feature that is noticeable, is the peak in salt intrusion difference arising at 𝐿1 = 10km. The
location seems independent of the effective dispersion coefficient 𝔻 and the tidally averaged flow 𝜙0.
The height of the peak does seem to be influenced by the effective dispersion coefficient 𝔻, where a
lower coefficient leads to a larger difference in intrusion length.

This reason why the negative valley exists for 𝜙0 = −50m3 s−1 and not for 𝜙0 = −100m3 s−1 might
be due to that in the first case the ’pressure’ of the freshwater pushing the salt water back is weaker.
In this case the intrusion length can be further than the junction. If due to the interference the flow
is weakened in the main channel of the branched situation then the intrusion length will be reduced
compared to the single channel situation. However in this case you would still expect the valley to be
visible for smaller values of 𝐿1, nevertheless it might be that this effect is outbalance by the peak the
exists for small values of 𝐿1.
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Figure 3.8: The difference of salt intrusion lengths compared to the single channel. This is plotted for different effective dispersion
coefficients all using the same tidally averaged flow 𝜙0 = −100m3 s−1. The dispersion coefficients from top to bottom are:
𝔻 = 200, 500, 800m2 s−1.
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Figure 3.9: The difference of salt intrusion lengths compared to the single channel. This is plotted for a system with an effective
dispersion coefficient of 𝔻 = 500m2 s−1 and a tidally averaged flow of 𝜙0 = −50m3 s−1.

Figure 3.10: The flow behaviour in a branched channel system with no friction in the side channel. The side channel is exactly
a quarter of the wavelength.





4
Conclusion

The aim of this thesis was to investigate the effect of a finite-length side channel on the salt intrusion
in a semi-infinite main channel. To reach this goal we had to develop a simple exploratory model for
the flow and salt intrusion due to tidal influences in estuarine environments. The focus was on the
effect of the length of the side channel and the distance of the junction to the sea. The model was
developed by considering a channel of constant width, depth and friction factor. Conservation of mass
and conservation of momentum were used to derive a wave equation including a friction term.

After the flow behaviour was solved analytically, themodel was extended by including a salt balance.
The salt balance assumes the channels to be perfectly mixed in the vertical direction. This equation
was solved analytically in the time domain and for the spatial part a numerical model was created to
solve for the salt concentration.

4.1. Main findings
For the chosen model parameters, the intrusion length for a single channel can be approximated well
by considering a characteristic length defined by solving the salt balance without the tidally dependent
part. It is observed that a maximum and minimum in the salt concentration occurs at slack tide (the
moment the flow reverses direction).

In a branched system it is noticed that due to reflections of the tidal wave, interference creates a
change in the flow pattern which in turn changes the salt intrusion. It is observed that, due to the zero
tidally averaged flow, the salt concentration in the channel will be roughly the average concentration at
the junction. This is because of the absence of fresh water discharge to flush out the salt.

The intrusion length for different configurations of a branched system was compared to that of the
single channel system. For the situation analysed as described in the beginning of the results chapter, it
is shown that the addition of the branch has a small (but not negligible) effect on the intrusion length (in
the order of magnitude of 1km). This effect can be either positive or negative. A negative change can
be observed if the length of the branching channel is close to a quarter wavelength. Due to destructive
interference the tidal forcing in themain channel can beweakened thereby reducing the intrusion length.
A smaller tidally averaged flow leads to a bigger influence of the tide behaviour.

4.2. Further research
There are a lot of interesting aspects still left to investigate further. In terms of model assumptions, an
improvement that could be made, so the model is closer to reality, is to make the friction factor depend
quadratically on the water flow rate. Currently the model has linearised the bottom stress, while more
accurately it should depend quadratically on the flow rate. This can, for example, be done by using a
numerical model. Secondly, the model can be extended by allowing the channel cross-section to vary
gradually. In this manner, more complex geometries can be considered. Another modification to be
considered is taking the increased density of salt water into account. Currently, the model assumes
the increased density of the water does not affect the flow behaviour, and that the channel is perfectly
mixed in the vertical direction. One can look at a model describing the salt concentration using a two
layer model or a partially mixed model.

21
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Since the solution for the flow rate and water height are analytical, the flow behaviour can be calcu-
lated quite fast. The modelling of the salt concentration is done numerically on a grid with a constant
step size. The performance and accuracy of the model could be increased by considering a finer grid
near the sea and the junction and a coarser grid landwards where the variations in the salt concentration
are smaller.

In terms of choices on what to study, the effect of the other physical parameters can be systemat-
ically studied, especially the effect of 𝔻 and 𝜙0 on the salt intrusion can be interesting. Furthermore,
the research can be extended by looking at the effect of adding multiple branches or changing the
main channel into a finite channel, this will cause more reflections and presumably a more complex
wave interference pattern. Another extension could be to take other tide components into account.
The current model only focuses on the M2 tidal component, however there are many more. One can
look at the addition of the S2 component (the solar influence). Since the different tidal components will
propagate at different velocities in the system and have different wavelengths. This will also influence
the dynamics of the system.
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Appendix

A.1. Wave equation derivation
We start with equation (2.2) and apply the approximation as described in section 2.2.1 ( 𝜏𝜌ℎ =

𝑟
𝑤ℎ𝜙 and

neglecting 𝜙
(𝑤ℎ)2

𝜕𝜙
𝜕𝑥 ). Furthermore, we multiply with 𝑤ℎ.

𝜕𝜙
𝜕𝑡 + 𝑤ℎ𝑔

𝜕𝜂
𝜕𝑥 + 𝑟𝜙 = 0 (A.1.1)

The second step is to differentiate (A.1.1) in space and (2.1) in time. This leads to:

𝜕2𝜙
𝜕𝑥𝜕𝑡 + 𝑤ℎ𝑔

𝜕2𝜂
𝜕𝑥2 + 𝑟𝜙 = 0 (A.1.2a)

𝑤𝜕
2𝜂
𝜕𝑡2 = −

𝜕2𝜙
𝜕𝑡𝜕𝑥 (A.1.2b)

We now substitute the two equations and get:

−𝑤𝜕
2𝜂
𝜕𝑡2 +𝑤ℎ𝑔

𝜕2𝜂
𝜕𝑥2 + 𝑟

𝜕𝜙
𝜕𝑥 = 0

(A.1.3)

The last step is to use equation (2.2) once more and to divide by −𝑤.

𝜕2𝜂
𝜕𝑡2 + 𝑟

𝜕𝜂
𝜕𝑡 = 𝑐

2 𝜕2𝜂
𝜕𝑥2 (A.1.4)

With 𝑐 = √𝑔ℎ and this is the required wave equation as mentioned in (2.3).

A.2. Semi-Infinite channel derivation
We start by Fourier transforming the wave equation (2.3). We use the following Fourier transform:

ℱ {𝑓} (𝜉) = 1
2𝜋 ∫

∞

−∞
𝑓(�̄�)𝑒𝑖𝜉�̄�𝑑�̄� (A.2.1a)

ℱ−1 = ∫
∞

−∞
ℱ(𝜉)𝑒−𝑖𝜉𝑥𝑑𝜉 (A.2.1b)

This leads to:

(−𝑖𝜉)2ℱ {𝜂} + 𝑟(−𝑖𝜉)ℱ {𝜂} = 𝑐2 𝜕
2ℱ {𝜂}
𝜕𝑥2 (A.2.2)
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So this results in an ordinary differential equation for ℱ {𝜂}.

𝜕2ℱ {𝜂}
𝜕𝑥2 = −𝜉

2 + 𝑟𝜉𝑖
𝑐2 ℱ {𝜂} (A.2.3)

If we define 𝜆2 = − 𝜉
2+𝑟𝜉𝑖
𝑐2 the general solution of this equation is:

ℱ {𝜂} = 𝑐1(𝜉)𝑒−𝜆𝑥 + 𝑐2(𝜉)𝑒𝜆𝑥

=𝑐1(𝜉)𝑒ℝe{−𝜆}𝑥𝑒𝕀m{−𝜆}𝑥𝑖 + 𝑐2(𝜉)𝑒ℝe{𝜆}𝑥𝑒𝕀m{𝜆}𝑥𝑖
(A.2.4)

Since we have ℝe{𝜆} = √1
2
1
𝑐
√−𝜉2 +√𝜉4 + 𝑟2𝜉2 > 0. We must have that 𝑐2(𝜉) = 0 since the

solution should be bounded as 𝑥 → ∞ and exp{ℝe{𝜆}𝑥} → ∞ as 𝑥 → ∞. To incorporate the other
boundary condition, we fourier transform this condition as well:

ℱ {𝜂(0, 𝑡)} = ℱ {𝐴 sin (𝜔𝑡 + 𝜃)}

= 𝐴 𝑖2 (𝑒
−𝑖𝜃𝛿(𝜉 − 𝜔) − 𝑒𝑖𝜃𝛿(𝜉 + 𝜔))

(A.2.5)

And we therefore conclude that 𝑐1(𝜉) = 𝐴 𝑖2 (𝑒
−𝑖𝜃𝛿(𝜉 − 𝜔) − 𝑒𝑖𝜃𝛿(𝜉 + 𝜔)). The next step is to do

an inverse Fourier transform on the solution for ℱ {𝜂}.

𝜂 = ∫
∞

−∞
𝐴 𝑖2 (𝑒

−𝑖𝜃𝛿(𝜉 − 𝜔) − 𝑒𝑖𝜃𝛿(𝜉 + 𝜔)) 𝑒ℝe{−𝜆}𝑥𝑒𝕀m{−𝜆}𝑥𝑖𝑒−𝑖𝜉𝑥𝑑𝜉 (A.2.6)

If we solve this and use the observation that 𝜆(−𝜔) = 𝜆(𝜔), we get:

𝜂(𝑥, 𝑡) = 𝑖
2𝑒

−ℝe{𝜆(𝜔)}𝑥2𝕀m{𝑒−(𝕀m{𝜆(𝜔)}𝑥+𝜔𝑡+𝜃)𝑖}𝑖

= 𝐴𝑒−ℝe{𝜆(𝜔)}𝑥 sin (𝕀m{𝜆(𝜔)}𝑥 + 𝜔𝑡 + 𝜃)
(A.2.7)

And this is the equation as described in (2.9).

A.3. Branched channel derivation
This sections is split into three subsections in section A.3.1 we derive a (complex) expression for 𝜂. The
constants for this expression are subsequently derived in section A.3.3, lastly the (complex) expression
for 𝜙 is derived in section A.3.2.

A.3.1. η derivation
We start with the complex wave equation:

𝜕2𝜂
𝜕𝑡2 + 𝑟

𝜕𝜂
𝜕𝑡 = 𝑐

2 𝜕2𝜂
𝜕𝑥2

(A.3.1)

We substitute the following Ansatz in equation (A.3.1)

𝜂 =
𝑁

∑
𝑛=0

𝑍𝑛(𝑥)𝑒𝑖𝜔𝑛𝑡 (A.3.2)

This leads to:
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𝑁

∑
𝑛=0
(𝑖𝜔𝑛)2𝑍𝑛(𝑥)𝑒𝑖𝜔𝑛𝑡 + 𝑟

𝑁

∑
𝑛=0
(𝑖𝜔𝑛)𝑍𝑛(𝑥)𝑒𝑖𝜔𝑛𝑡 = 𝑐2

𝑁

∑
𝑛=0

𝜕2𝑍𝑛(𝑥)
𝜕𝑥2 𝑒𝑖𝜔𝑛𝑡

𝑁

∑
𝑛=0

𝜕2𝑍𝑛
𝜕𝑥2 + 𝜔

2
𝑛 − 𝑟𝜔𝑛𝑖
𝑐2 𝑍𝑛 = 0

(A.3.3)

This must be true for every 𝑛, if we now define 𝜆2,𝑛 =
−𝜔2𝑛+𝑟𝜔𝑛𝑖

𝑐2 :

𝜕2𝑍𝑛
𝜕𝑥2 − 𝜆2,𝑛𝑍𝑛 = 0 (A.3.4)

and this means that:

𝑍𝑛 = 𝛼𝑛𝑒−𝜆𝑛𝑥 + 𝛽𝑛𝑒𝜆𝑛𝑥 (A.3.5)

and thus we have:

𝜂 =
𝑁

∑
𝑛=0

(𝛼𝑛𝑒−𝜆𝑛𝑥 + 𝛽𝑛𝑒𝜆𝑛𝑥) 𝑒𝑖𝜔𝑛𝑡 (A.3.6)

A.3.2. Φ derivation
We know Φ can be written as:

Φ =
𝑁

∑
𝑛=0

𝑌𝑛(𝑥)𝑒𝑖𝜔𝑛𝑡 (A.3.7)

Using this knowledge we can rewrite relation A.1.1:

𝜕Φ𝑖
𝜕𝑡 + 𝑔𝑤𝑖ℎ𝑖

𝜕𝜂𝑖
𝜕𝑥 + 𝑟𝑖Φ

𝑖 = 0

𝜕Φ𝑖
𝜕𝑡 + 𝑟𝑖Φ

𝑖 = −𝑔𝑤𝑖ℎ𝑖
𝜕𝜂𝑖
𝜕𝑥

𝑁

∑
𝑛=0
(𝑖𝜔𝑛 + 𝑟𝑖)𝑌𝑖,𝑛(𝑥)𝑒𝑖𝜔𝑛𝑡 = −𝑔𝑤𝑖ℎ𝑖

𝑁

∑
𝑛=0

(−𝛼𝑖𝑛𝜆𝑖,𝑛𝑒−𝜆𝑖,𝑛𝑥 + 𝛽𝑖𝑛𝜆𝑖,𝑛𝑒𝜆𝑖,𝑛𝑥) 𝑒𝑖𝜔𝑛𝑡

(A.3.8)

If we match the terms with the same frequencies we get:

𝑌𝑖,𝑛(𝑥) =
𝑔𝑤𝑖ℎ𝑖𝜆𝑖,𝑛 (𝛼𝑖,𝑛𝑒−𝜆𝑖,𝑛𝑥 − 𝛽𝑖,𝑛𝑒𝜆𝑖,𝑛𝑥)

𝑖𝜔𝑛 + 𝑟𝑖
= 𝑤𝑖𝜔𝑛𝑖

𝜆𝑖,𝑛
(𝛼𝑖,𝑛𝑒−𝜆𝑖,𝑛𝑥 − 𝛽𝑖,𝑛𝑒𝜆𝑖,𝑛𝑥) (A.3.9)

A.3.3. Boundary conditions
Split boundary conditions
We will now continue with the boundary conditions of the branched channel situation.

We start with the split (𝑥 = 0) where we have the following boundary condition:
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𝜂1(0, 𝑡) = 𝜂2(0, 𝑡)
𝑁

∑
𝑛=0

(𝛼1,𝑛 + 𝛽1,𝑛) 𝑒𝑖𝜔𝑛𝑡 =
𝑁

∑
𝑛=0

(𝛼2,𝑛 + 𝛽2𝑛) 𝑒𝑖𝜔𝑛𝑡

𝑁

∑
𝑛=0

(𝛼1,𝑛 + 𝛽1,𝑛 − 𝛼2,𝑛 − 𝛽2𝑛) 𝑒𝑖𝜔𝑛𝑡 = 0

(A.3.10)

A similar calculation can be done for the second boundary condition at the split:

𝜂2(0, 𝑡) = 𝜂3(0, 𝑡) (A.3.11)

We can capture both these boundary conditions in matrix form:

[1 1 −1 −1 0 0
0 0 1 1 −1 −1] ⋅

⎡
⎢
⎢
⎢
⎢
⎣

𝛼1,𝑛
𝛽1,𝑛
𝛼2,𝑛
𝛽2,𝑛
𝛼3,𝑛
𝛽3,𝑛

⎤
⎥
⎥
⎥
⎥
⎦

= [00] (A.3.12)

The other boundary condition at the split is:

Φ1 +Φ2 +Φ3 = 0 (A.3.13)

We can rewrite this (A.3.13) using our expression for 𝜙 (A.3.7) as:

𝑁

∑
𝑛=0
(𝑌1,𝑛(0) + 𝑌2,𝑛(0) + 𝑌3,𝑛(0))𝑒𝑖𝜔𝑛𝑡 = 0 (A.3.14)

Using equation (A.3.9) for 𝑌𝑖,𝑛(𝑥) in the equation above leads to the following equation for 𝛼 and 𝛽:

𝑌1,𝑛(0) + 𝑌2,𝑛(0) + 𝑌3,𝑛(0) = 0
𝑤1𝜔𝑛𝑖
𝜆1,𝑛

(𝛼1,𝑛 − 𝛽1,𝑛) +
𝑤2𝜔𝑛𝑖
𝜆2,𝑛

(𝛼2,𝑛 − 𝛽2𝑛) +
𝑤3𝜔𝑛𝑖
𝜆3,𝑛

(𝛼3,𝑛 − 𝛽3,𝑛) = 0
(A.3.15)

If we divide by 𝜔𝑛𝑖, we can write it in matrix-form:

[− 𝑤1
𝜆1,𝑛

𝑤1
𝜆1,𝑛

− 𝑤2
𝜆2,𝑛

𝑤2
𝜆2,𝑛

− 𝑤3
𝜆3,𝑛

𝑤3
𝜆3,𝑛 ] ⋅

⎡
⎢
⎢
⎢
⎢
⎣

𝛼1,𝑛
𝛽1,𝑛
𝛼2,𝑛
𝛽2,𝑛
𝛼3,𝑛
𝛽3,𝑛

⎤
⎥
⎥
⎥
⎥
⎦

= [0] (A.3.16)

Sea channel boundary condition
For the first branch (𝜂1) we have the following boundary condition:

𝜂1(𝐿1, 𝑡) =
𝑁

∑
𝑛=0

𝐴𝑛𝑒𝑖𝜔𝑛𝑡

𝑁

∑
𝑛=0

(𝛼1,𝑛 exp{−𝜆1,𝑛𝐿1} + 𝛽1,𝑛 exp{𝜆1,𝑛𝐿1}) 𝑒𝑖𝜔𝑛𝑡 =
𝑁

∑
𝑛=0

𝐴𝑛𝑒𝑖𝜔𝑛𝑡
(A.3.17)
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This is captured in matrix-form as:

[𝑒−𝜆1,𝑛𝐿1 𝑒𝜆1,𝑛𝐿1 0 0 0 0] ⋅

⎡
⎢
⎢
⎢
⎢
⎣

𝛼1,𝑛
𝛽1, 𝑛
𝛼2,𝑛
𝛽2, 𝑛
𝛼3,𝑛
𝛽3,𝑛

⎤
⎥
⎥
⎥
⎥
⎦

= [𝐴𝑛] (A.3.18)

Side channel boundary condition
For the side channel we have 𝜙2(𝐿2, 𝑡) = 𝜙0, using the expression (A.3.7) for 𝜙2 we get:

𝜙2(𝐿2, 𝑡) =
𝑁

∑
𝑛=0

𝑤𝑖𝜔𝑛𝑖
𝜆𝑖,𝑛

(𝛼𝑖𝑛𝑒−𝜆𝑖,𝑛𝐿2 − 𝛽𝑖𝑛𝑒𝜆𝑖,𝑛𝐿2) 𝑒𝑖𝜔𝑛𝑡 = 𝜙2,0 (A.3.19)

If we match terms with the same frequency (and divide by the prefactor), we can capture this in
matrix form too:

[0 0 −𝑒−𝜆2𝑛𝐿2 𝑒𝜆2𝑛𝐿2 0 0] ⋅

⎡
⎢
⎢
⎢
⎢
⎣

𝛼1,𝑛
𝛽1, 𝑛
𝛼2,𝑛
𝛽2, 𝑛
𝛼3,𝑛
𝛽3,𝑛

⎤
⎥
⎥
⎥
⎥
⎦

= [0] (A.3.20)

Main channel boundary condition
For 𝜂3 we need to have that:

lim
𝑥→∞

|𝜂3(𝑥, 𝑡)| < ∞

lim
𝑥→∞

|
𝑁

∑
𝑛=0

(𝛼3,𝑛𝑒−𝜆3,𝑛𝑥 + 𝛽3,𝑛𝑒𝜆3,𝑛𝑥) 𝑒𝑖𝜔𝑛𝑡| < ∞
(A.3.21)

Since we have that ℝe{𝜆3,𝑛} > 0 we must have that:

𝛽3,𝑛 = 0 (A.3.22)

And this leads to the last condition in matrix form:

[0 0 0 0 0 1] ⋅

⎡
⎢
⎢
⎢
⎢
⎣

𝛼1,𝑛
𝛽1, 𝑛
𝛼2,𝑛
𝛽2, 𝑛
𝛼3,𝑛
𝛽3,𝑛

⎤
⎥
⎥
⎥
⎥
⎦

= [0] (A.3.23)

A.4. Salt system derivation
We start with the salt balance.

𝜕𝑠
𝜕𝑡 +

𝜙
𝑤ℎ

𝜕𝑠
𝜕𝑥 − 𝔻

𝜕2𝑠
𝜕𝑥2 = 0

(A.4.1)

We use the following ansatz for 𝑠:
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𝑠(𝑥, 𝑡) =
2

∑
𝑛=−2

𝑠𝑛(𝑥)𝑒𝑛𝑖𝜔𝑡 (A.4.2)

Substituting this will result in the following expression:

2

∑
𝑛=−2

𝑛𝑖𝜔𝑠𝑛𝑒𝑛𝑖𝜔𝑡 +
Φ1𝑒−𝑖𝜔𝑡 +Φ0 +Φ0 +Φ1𝑒𝑖𝜔𝑡

2𝑤ℎ (
2

∑
𝑛=−2

𝜕𝑠𝑛
𝜕𝑥 𝑒

𝑛𝑖𝜔𝑡) −𝔻
2

∑
𝑛=−2

𝜕2𝑠𝑛
𝜕𝑥2 𝑒

𝑛𝑖𝜔𝑡 = 0 (A.4.3)

Matching terms with the same frequency lead to the following equations:
For 𝑛 = −2:

−2𝑖𝜔𝑠−2 +
Φ1
2𝑤ℎ

𝜕𝑠−1
𝜕𝑥 + Φ0 +Φ02𝑤ℎ

𝜕𝑠−2
𝜕𝑥 − 𝔻𝜕

2𝑠−2
𝜕𝑥2 = 0 (A.4.4)

For −1 ≤ 𝑛 ≤ 1:

𝑛𝑖𝜔𝑠𝑛 +
Φ1
2𝑤ℎ

𝜕𝑠𝑛+1
𝜕𝑥 + Φ0 +Φ02𝑤ℎ

𝜕𝑠𝑛
𝜕𝑥 +

Φ1
2𝑤ℎ

𝜕𝑠𝑛−1
𝜕𝑥 − 𝔻𝜕

2𝑠𝑛
𝜕𝑥2 = 0 (A.4.5)

Lastly we have for 𝑛 = 2:

2𝑖𝜔𝑠2 +
Φ0 +Φ0
2𝑤ℎ

𝜕𝑠2
𝜕𝑥 +

Φ1
2𝑤ℎ

𝜕𝑠1
𝜕𝑥 − 𝔻

𝜕2𝑠2
𝜕𝑥2 = 0 (A.4.6)

And this will results in the matrices 𝐀, 𝐁(𝑥) and 𝐂 as defined in section 2.3.1. The next step is to
create a numerical model. We use the following approximations:

𝜕𝑠
𝜕𝑥 ≈

𝑠(𝑥 + Δ𝑥) − 𝑠(𝑥)
Δ𝑥 , 𝜕2𝑠

𝜕𝑥2 ≈
𝑠(𝑥 + Δ𝑥) − 2𝑠(𝑥) + 𝑠(𝑥 − Δ𝑥)

Δ𝑥2
(A.4.7)

And this will lead to the following matrix equation.

𝐂
Δ𝑥2 𝑠(𝑥 − Δ𝑥) + (𝐀 −

𝐁(𝑥)
Δ𝑥 − 2𝐂

Δ𝑥2) 𝑠(𝑥) + (
𝐁(𝑥)
Δ𝑥 + 𝐂

Δ𝑥2) 𝑠(𝑥 + Δ𝑥) = 0 (A.4.8)

This can again be written in matrix form (a block matrix). We write:

[
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 𝐂

Δ𝑥2 𝐀 − 𝐁(𝑥)
Δ𝑥 − 2𝐂

Δ𝑥2
𝐁(𝑥)
Δ𝑥 + 𝐂

Δ𝑥2 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮

]
⎡
⎢
⎢
⎢
⎣

⋮
⃗𝑠𝑖−1
𝑠𝑖
⃗𝑠𝑖+1
⋮

⎤
⎥
⎥
⎥
⎦

= [
⋮
0⃗
⋮
] (A.4.9)
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