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A B S T R A C T

The paper presents a monolithic finite element model for the hydro-visco-elastic analysis of
floating membranes interacting with ocean waves. The formulation couples linearised potential
flow and viscoelastic membrane equations, offering a versatile tool for modelling arbitrarily
shaped floating membranes in varying sea-bed topography. The paper also presents a wet
modal analysis for the coupled problem, accounting for the added mass and stiffness of the
surrounding fluid. This model is used to study the dependence of the wet natural frequencies
of floating membranes on the material properties. It is also used to analyse the reflection,
transmission, scattering and absorption of ocean wave energy by 1D and 2D floating membranes.
Notably, the paper underscores the impact of proportional material damping on these observed
phenomena. The results highlight local peaks in the viscoelastic behaviour at the calculated wet
natural frequencies, and demonstrate the outward dispersion of incoming wave around finite
2D membranes. Furthermore, the model is employed to examine the interaction of viscoelastic
membranes with other structures, such as a monopile, under the influence of ocean waves.
This comprehensive investigation contributes to a deeper understanding of the fluid–structure
interaction inherent to certain floating solar, wave-energy converter and floating breakwater
technologies.

1. Introduction

Floating membranes are flexible structures made of materials such as reinforced rubber, geotextile fibres or plastics that are
widely used in offshore and coastal engineering applications. One of the most common applications are floating breakwaters, either
vertical, e.g. Williams (1996), or horizontal, e.g. Cho and Kim (1998). The use of floating membranes as floating breakwaters presents
several advantages: they are lightweight, easily deployable, reusable and have minimum impact on key coastal processes such as
sediment transport and fish migration.

The use of floating membranes is not limited to breakwater applications. Several innovative technologies are adopting these as
compliant support structures. Most crucial among these is the floating photovoltaic systems (FPVs) (Cazzaniga and Rosa-Clot, 2021;
Vo et al., 2021). FPVs are a cutting-edge new technology aimed at revolutionising ocean renewables by deploying solar platforms in
lakes, coastal and offshore waters. This technology has several benefits, including improved efficiency driven by convective cooling
from the surrounding water, undisturbed access to solar irradiance and critically, avoiding use of the depleting and valuable land
resource. FPVs can also explore synergy with offshore wind farms by deploying these platforms in the exclusion zones of offshore
wind turbines, thus enabling multi-modal energy production. Here several prototypes, such as Ocean Sun’s OS-50 (Ocean Sun,
n.d.) have explored the possibility of using crystalline or amorphous panels on top of floating membranes. This design has the
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distinct advantage of easy deployment, low cost and excellent serviceability. However, the interaction of these large platforms with
ocean waves and their resulting structural resilience in harsh offshore conditions is presently an active field of research, primarily
focusing on the interaction of floating beams with ocean waves using analytical (Xu and Wellens, 2022), semi-analytical (Sree
et al., 2021) and numerical (Sree et al., 2022) approaches. Another set of applications gaining attention in recent years is the
use of flexible membranes as wave energy converters (Michele et al., 2020; Collins et al., 2021; Boren, 2021). These systems
aim at converting the ocean wave energy to motion of large floating platforms, and thereby harvest energy through viscoelastic
membranes, power-take-off systems or damped mooring systems. Here several prototypes explore the use of piezoelectric (Kargar
and Hao, 2022) and dielectric (Moretti et al., 2022) materials for embedding the energy harvesting mechanism within floating
membranes, resulting in a continuous energy extraction mechanism. The primary advantage of this approach lies in its ability to
harvest energy from a broad range of ocean wave frequencies, leading to increased operational bandwidth and efficiency. However,
the successful implementation of this concept requires an improved understanding of the inherent fluid–structure interaction (FSI)
between ocean waves and viscoelastic Very Large Floating Structures (VLFS). The use of flexible floating membranes in these wide
ranges of applications highlights the need for efficient and versatile methods and tools for their design and analysis, especially when
considering the effect of waves in offshore environments.

Traditionally, the analysis of Very Large Floating Structures (VLFS) has been conducted under the assumption of thin-plate theory.
A comprehensive review of literature focusing on the hydro-elastic response of pontoon-type VLFS, assuming thin plate theory, is
provided in Watanabe et al. (2004), Ohmatsu (2005), Lamas-Pardo et al. (2015) and Zhang and Schreier (2022). In the frequency
domain, solution approaches are typically classified into modal expansion methods and direct methods. The modal expansion
method involves decomposing the dynamic response using vibration modes of the plate. Often, these vibration modes are the dry
modes (Kashiwagi, 1998; Taylor and Ohkusu, 2000), although certain studies also consider the wet modes of the plate (Humamoto
and Fujita, 2002; Loukogeorgaki et al., 2012), accounting for the added mass resulting from the inertia of the surrounding water.
On the other hand, the direct method solves the hydro-elastic governing equation without the use of eigen modes (Colomés et al.,
2022). While there is ample literature on the hydro-elastic response of thin-plate pontoon-type VLFS, there is limited literature on
the hydro-elastic response of VLFS constructed from pre-tensioned membranes. The structural response of pre-tensioned membranes
differs from that of thin plates. In thin plates, the transverse restoring force is primarily governed by the bending stiffness of the
plate. In contrast, in pre-tensioned membranes, the transverse restoring force is dominated by the axial pre-tension in the membrane.
This assertion is supported by a dimensional analysis presented in Section 2.2.1 of this paper. Therefore, the focus of this paper is
to address this gap in the literature and study the hydro-elastic response of pre-tensioned floating membranes.

The study of hydro-elastic phenomena in floating membranes faces various challenges, namely: a strong interaction between
elastic deformation and the response to hydrodynamic forces, a high dependency of the response on the material properties and
membrane pre-tension, the characterisation of the response of finite dimensional structures interacting with nonlinear waves, or
the nonlinearities inherent to fluid–structure interaction (FSI). Conventionally, floating membranes have been studied as vertical
breakwaters, which restrict the horizontal flux of wave energy. These analyses focus largely on their performance in reflecting
incoming waves. These include experimental studies using single screen (Kim and Kee, 1996), and a number of analytical studies
on single screen and dual screen wave barriers (Lo, 2000; Suresh Kumar et al., 2007). On the other hand, horizontally floating
membranes suppress vertical fluid motion, thus resulting in partial reflection and significant scattering of the incoming wave.
Some studies have employed experimental analysis of flexible floating membranes (Schreier and Jacobi, 2021), but they have
limitations regarding structural size and wave conditions. Horizontal floating membranes have been analysed by analytical studies
using simplified mode expansion and boundary integral techniques for floating and submerged membranes in infinite depths, finite
depths and stepped sea-bed profiles (Karmakar and Sahoo, 2008). Several studies have also expanded this approach to porous
membranes (Koley and Sahoo, 2017; Guo et al., 2022) by modifying the kinematic boundary condition based on Darcy’s law. Similar
approach was implemented in Mohapatra and Guedes Soares (2022) for studying interaction of floating and porous submerged
flexible tensioned plate with linear waves. However, these approaches are often limited to regular sea-bed topographies and regular
shaped or semi-infinite membranes. This limits the understanding of the multi-directional scattering of ocean waves by finite,
irregularly shaped, an-isotropic membranes. Additionally, these approaches are largely limited to linear analysis. Hence there is
a need to develop solutions for arbitrarily shaped membranes in variable bathymetry.

The numerical solution to this problem can be envisioned in several ways. There are two main considerations: one-way or
two-way interaction, and partitioned or monolithic approach. A one-way interaction only considers the influence of waves on
the structural deformation of the membrane, and completely disregards the dispersion and dissipation of waves of the floating
membrane. This basic approach is only valid for floating islands with characteristic lengths much smaller than the ocean waves.
Nonetheless, the approach has been used to estimate the interaction of Ocean Sun’s OS-50 platform in Berstad and Grøn (2023). A
two-way interaction considers the transformation of the waves by the structure, along with the structural deformation. For VLFS,
this two-way interaction is inevitable and critical due to the scale of the problem, resulting in partial reflection, outward/inward
dispersion of the waves, along with the structural deformation (Zhang and Schreier, 2022). This two-way interaction can be
implemented using a partitioned or a monolithic approach. A partitioned approach would solve the membrane and the fluid problems
using two separate models, and enforce the interaction through iterative algorithms. This approach allows the use of best off-the-shelf
models for each problem, but it often leads to slow simulations and strict stability requirements, limiting their practical application.
Recently, Ma et al. (2020) studied the hydro-elastic behaviour of a thin-elastic floating plate using a partitioned approach by coupling
smoother particle hydrodynamics (SPH) for fluids with finite-element method (FEM) for structural deformation. Alternatively,
2

a monolithic approach formulates a single system of coupled equations for the fluid and the solid, with improved numerical
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stability, strong coupling and simultaneous solution of the multi-physics problem. The monolithic approach often leads to a mixed-
dimension system of partial differential equations, often requiring custom models. However, here the finite-element method (FEM)
is particularly suitable in modelling the multi-dimensional multi-physics system. This was demonstrated in the recent work (Colomés
et al., 2022), where a monolithic framework coupling potential flow with Kirchhoff plate theory was presented using a state-of-the-
art FEM library Gridap (Badia and Verdugo, 2020). The work demonstrated the capabilities of such a monolithic model in studying
he interaction of arbitrarily shaped floating plates with ocean waves. The current literature lacks a similar model for floating
embranes. Additionally, a monolithic approach facilitates the development of a wet modal analysis for the floating membrane,

aking into account the added mass caused by the acceleration of the surrounding fluid and the hydrostatic-gravitational stiffness. The
resence of fluid can notably alter the natural frequency of the membrane. This phenomenon was explored in Loukogeorgaki et al.
2012), focusing on a floating flexible mat and highlighting the consequences of natural frequency on the performance of the mat
s a breakwater. A similar investigation for floating membranes is essential for identifying the predominant natural frequencies and
odes of the membrane, as well as understanding their impact on the membrane’s performance as a wave barrier or wave-absorber.

Finally, a comprehensive description of a floating membrane is incomplete, without addressing its material damping. Besides
xhibiting elastic behaviour due to structural deformation, a membrane often demonstrates dissipative behaviour attributed to
aterial damping. This gives rise to a hydro-viscoelastic, or simply viscoelastic, interaction between the floating membrane and

he ocean waves, resulting in deformation and viscous dissipation within this membrane. Such a viscoelastic material is more
epresentative of the real floating membrane-type breakwater or FPV platforms, where the material damping can play a crucial
ole in scattering and dissipating the incoming wave energy. Additionally, this material damping can also represent the wave
nergy extracted by a floating membrane-type wave-energy converter, especially when the extraction mechanism is from the use
f dielectric or piezoelectric designs throughout the membrane (Boren, 2021). This extracted energy hence represents the capture
idth of such a wave energy converter, and therefore is crucial in estimating the performance and survival of such a system in the
ffshore environment. Recently analysis by Trivedi and Koley (2022) studied the performance of 1D viscoelastic membrane as a
ave-barrier in constant water-depth using the boundary element method. However, the contemporary literature lacks studies on
D finite viscoelastic membranes and their interaction with other bodies.

This manuscript addresses these gaps by presenting a monolithic FEM model for viscoelastic analysis of 2D finite pre-tensioned
loating membranes, with arbitrary shapes and in variable bathymetry. Specifically, the developments in this manuscript include
a) monolithic finite-element formulation for the multi-physics problem involving linear viscoelastic pre-tensioned membrane and
inearised potential flow, (b) wet modal analysis of the coupled problem, accounting for the influence the surrounding fluid. The
ormulation builds upon the FEM approach proposed by Akkerman et al. (2020) for potential flow with linearised free-surface
oundary conditions, and its extension to floating beam by Colomés et al. (2022). Subsequently, the manuscript employs this model
o investigate viscoelastic interactions, specifically: (a) examining the dependence of the wet natural frequencies on the material
roperties of the membrane, (b) reflection and transmission of surface waves by the viscoelastic membrane, (c) scattering of the
aves by 2D finite floating membranes, (d) estimating drift force and wave energy absorbed (or dissipated) by the viscoelastic
embrane, and finally (e) interaction of the viscoelastic membrane with a monopile foundation. The analysis in this manuscript is

imited to the linearised problem. Nevertheless, it establishes the basis for extension to the nonlinear problem in our future work.
The manuscript is organised as follows. Section 2 presents the governing equations for the fluid and the structural problem,

long with the coupling boundary condition. In Section 3 we develop the monolithic numerical formulation for the VLFS floating
embrane, describing the discretised problem and proving the consistency and energy conservation properties of the discrete form.

ection 4 presents the wet modal analysis, developed using the weak-form of the coupled problem and the associated iterative
lgorithm for calculating the wet natural frequency of the system. Section 5 presents a range of numerical studies, investigating the
forementioned viscoelastic behaviour of 1D and 2D floating membranes, with final conclusions drawn in Section 6.

. Problem setting

The problem is defined in a Cartesian coordinate system, consisting of a 3D fluid domain 𝛺. The 𝑍-axis is assumed to be vertically
upwards. It is bounded by irregular bottom surface 𝛤𝑏, inlet and outlet surfaces 𝛤𝑖𝑛 and 𝛤𝑜𝑢𝑡, respectively, and the fluid free-surface
𝛤𝑓𝑠. Additionally, the 3D fluid domain is bounded by a 2D thin floating membrane, denoted by 𝛤𝑚. The boundaries of 𝛤𝑚 are denoted
by 𝛬1 and 𝛬2. Fig. 1a highlights these surfaces in the schematic for the boundary value problem. The analysis in this manuscript
considers the following assumptions:

• Assumption 1 The flow within 𝛺 is incompressible, inviscid and irrotational, and the free-surface elevation is assumed to be
small compared to the wave-length and the water-depth. Therefore, the fluid domain is described by the linearised potential
flow theory.

• Assumption 2 Absence of air gap (cavitation) between the fluid free-surface and the floating membrane.
• Assumption 3 Thin homogeneous membrane with small transverse deflection and no significant surge displacement.

he present manuscript does not consider the non-linearity associated with ocean waves and membrane deflection.
3
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Fig. 1. (a) Schematic of the boundary value problem. (b) Schematic of the discretised boundary value problem. Note that the membrane 𝛤𝑚,ℎ is a portion of
the boundary of the discretised fluid domain 𝛺ℎ.

2.1. Linear potential flow theory

For the irrotational and inviscid flow with the velocity vector 𝐮 in the fluid domain 𝛺, there exists a scalar potential field 𝜙,
such that 𝐮 = ∇𝜙. Further, the incompressible flow assumption implies ∇ ⋅ 𝐮 = 0, thus returning the following fluid flow governing
equation Eq. (1).

𝛥𝜙 = 0 in 𝛺. (1)

The governing equation is supplemented by the kinematic and dynamic conditions on the domain boundaries, which are written
as follows.

𝐧 ⋅ ∇𝜙 = 0 on 𝛤𝑏 (2a)

𝐧 ⋅ ∇𝜙 = 𝑢𝑖𝑛 on 𝛤𝑖𝑛 (2b)

𝐧 ⋅ ∇𝜙 = 𝑢𝑜𝑢𝑡 on 𝛤𝑜𝑢𝑡 (2c)

𝐧 ⋅ ∇𝜙 = 𝜅𝑡 on 𝛤𝑓𝑠 (2d)

The kinematic condition Eq. (2a) implies no-penetration through the bottom boundary 𝛤𝑏, while Eqs. (2b) and (2c) control the inflow
and outflow across 𝛤𝑖𝑛 and 𝛤𝑜𝑢𝑡, respectively. Here 𝐧 is the outward unit normal to the domain boundary. The kinematic free-surface
condition (KFSC) relates the free-surface elevation 𝜅 with the flow velocity, assuming no-flow across the moving free-surface. For
the present analysis, this condition is linearised given in Eq. (2d).

𝑝 = −𝜌𝜙𝑡 − 𝜌𝑔𝜅 − 1
2
𝜌 (∇𝜙)2 ≃ −𝜌𝜙𝑡 − 𝜌𝑔𝜅 (3a)

𝜙𝑡 = −𝑔𝜅 on 𝛤𝑓𝑠 (3b)

The pressure at the free-surface is given by the linearised Bernoulli equation, Eq. (3a). Here, 𝜌 is the fluid density and
𝑔 = 9.81 ms−2 is the acceleration due to gravity. For the free-surface 𝛤𝑓𝑠 exposed to the atmosphere, 𝑝 = 𝑝𝑎𝑡𝑚 = 0, resulting in
the dynamic free-surface boundary condition (DFSC), Eq. (3b).

2.2. Viscoelastic membrane

This paper presents the analysis for 2D viscoelastic membrane floating on the free-surface of fluid in 3D domain. In order to set
up the governing equations of the membrane, we first need to understand the relative dominance of the axial tensioning and the
bending stiffness for such a membrane.

2.2.1. Dimensional analysis of tensioned beam
We conduct an order of magnitude analysis using a 1D solid tensioned beam, having a length 𝐿𝑚 and thickness ℎ𝑚, made of

material with Young’s modulous 𝐸 and density 𝜌𝑚. The structural governing equation for this tensioned beam is as follows.

𝜌𝑚 ℎ𝑚 𝜂𝑡𝑡 − 𝑇 𝜂𝑥𝑥 + 𝐸𝐼 𝜂𝑥𝑥𝑥𝑥 = 𝑝𝑚 (4)

Here 𝜂 is the transverse deflection, 𝑝𝑚 is the transverse load, 𝐼 = 1
12ℎ

3
𝑚 is the moment of inertia per unit width for the beam,

assuming a solid cross-section, and 𝑇 = 𝐸𝜖ℎ𝑚 is the axial pre-tension per unit width in the beam, with initial axial strain 𝜖. Hence
the term −𝑇 𝜂𝑥𝑥 is the transverse restoring force due to the pre-tensioning of the beam and 𝐸𝐼 𝜂𝑥𝑥𝑥𝑥 is the transverse restoring force
due to the bending stiffness of the beam.
4
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Consider the non-dimensional quantities �̃� = 𝜂∕ℎ𝑚, �̃� = 𝑥∕𝐿𝑚 and 𝑡 = 𝜔𝑡, where 𝜔 is the excitation wave frequency. The
non-dimensional form of the governing Eq. (4) is given as follows.

𝜌𝑚 ℎ2𝑚 𝜔2 �̃�𝑡𝑡 −
𝐸𝜖 ℎ2𝑚
𝐿2
𝑚

�̃��̃��̃� +
𝐸 ℎ4𝑚
12𝐿4

𝑚
�̃��̃��̃��̃��̃� = 𝑝𝑚 (5a)

⟹ �̃�𝑡𝑡 −
𝐸𝜖

𝜌𝑚 𝜔2𝐿2
𝑚
�̃��̃��̃� +

𝐸 ℎ2𝑚
12 𝜌𝑚 𝜔2 𝐿4

𝑚
�̃��̃��̃��̃��̃� =

𝑝𝑚
𝜌𝑚 ℎ2𝑚 𝜔2

(5b)

⟹ �̃�𝑡𝑡 − 𝛽 �̃��̃��̃� + 𝜒 𝛽 �̃��̃��̃��̃��̃� =
𝑝𝑚

𝜌𝑚 ℎ2𝑚 𝜔2
where 𝛽 = 𝐸𝜖

𝜌𝑚 𝜔2 𝐿2
𝑚
, 𝜒 = 1

12
ℎ2𝑚
𝐿2
𝑚

1
𝜖

(5c)

From Eq. (5c), we note that 𝜒 is the ratio of transverse restoring force due to the bending stiffness vs pre-tensioning. Hence if
𝜒 ≪ 1 then the pre-tensioning would dominate, and if 𝜒 ≫ 1 then the bending stiffness would dominate. VLFS are typically thin
structures, having ratio ℎ𝑚

𝐿𝑚
≪ 1. However, in most cases, the VLFS structures do not have significant pre-tensioning, i.e, 𝜖 → 0. In

these cases, lim𝜖→0 𝜒 ≫ 1, and hence it is crucial to consider the bending stiffness, while the pre-tensioning can be neglected.
In this manuscript, we are studying pre-tensioned membranes. Such structures typically have very small thickness, i.e., ℎ𝑚

𝐿𝑚
⋘ 1

and are pre-tensioned using significant initial axial strain, i.e., 𝜖 ≠ 0. For these structures, 𝜒 ⋘ 1, and hence the bending stiffness
can be neglected. Therefore, moving forward, we will not consider the bending stiffness of the floating membrane in this manuscript.

Additionally, the practical implementation of this pre-tensioning can be achieved through various methods. For instance, in
a floating membrane platform with a free edge, pre-tensioning can be accomplished using an outer floating ring. For a floating
membrane platform with a fixed edge, pre-tensioning can be achieved by utilising mooring lines attached to floater buoys.

2.2.2. Governing equation for viscoelastic membrane
As shown in Section 2.2.1, a thin elastic pre-tensioned floating membrane can be considered as a limiting case of a tensioned

beam plate, with bending stiffness approaching zero. The governing equation for transverse deflection 𝜂 of a materially damped,
pre-tensioned, thin and homogeneous 2D membrane, due to the action of transverse load 𝑝𝑚 can hence be obtained by modifying
Eq. (4) as the following (Guo et al., 2022).

𝑝𝑚 = 𝑚𝜂𝑡𝑡 − ∇ℎ ⋅
(

𝑇 ∇ℎ𝜂
)

− ∇ℎ ⋅
(

𝜏𝑇 ∇ℎ𝜂𝑡
)

where∇ℎ = 𝜕
𝜕𝑥

𝑖 + 𝜕
𝜕𝑦

𝑗 (6)

Once again, in this equation, the parameter 𝑚 = 𝜌𝑚ℎ𝑚 represents the mass per unit area of the membrane, with 𝜌𝑚 and ℎ𝑚 denoting
the density and thickness of the membrane, respectively. The variable 𝑇 corresponds to the pre-tension in the stretched membrane.
The material damping is assumed to be directly proportional to the membrane’s stiffness, with the proportionality constant being
the damping coefficient 𝜏 (Trivedi and Koley, 2022). In this manuscript, we only consider an isotropic membrane with uniform
pre-tension 𝑇 and uniform viscous damping coefficient 𝜏. However, the presented numerical model can be applied to an anisotropic
membrane problem with 𝑚, 𝑇 and 𝜏 varying over the membrane. The boundary conditions for membrane edges 𝛬1, 𝛬2 for fixed and
free edge conditions are given by the following Eq. (7).

𝜂 = 0 (fixed edge) (7a)

∇ℎ(𝜂) ⋅ 𝐧 = 0 (free-edge) (7b)

In this equation, 𝐧 is the outward unit-normal at the membrane boundaries.

2.3. Coupling boundary condition

The fluid free-surface under the membrane will track along the deflection of the membrane, considering assumptions 2 and
3. Hence, the kinematic free-surface boundary condition on 𝛤𝑚 is obtained by equating 𝜂𝑡 with normal velocity 𝐧 ⋅ ∇𝜙; and the
dynamic free-surface boundary conditions for 𝛤𝑚 is obtained by equating the transverse load 𝑝𝑚 in the membrane from Eq. (6), with
the free-surface pressure 𝑝 from equation Eq. (3a). The resultant coupling boundary conditions at the membrane-fluid interface are
iven by Eq. (8).

𝐧 ⋅ ∇𝜙 = 𝜂𝑡 on 𝛤𝑚 (8a)

𝑚𝜌𝜂𝑡𝑡 − ∇ℎ ⋅ (𝑇𝜌 ∇ℎ𝜂) − ∇ℎ ⋅ (𝜏𝑇𝜌 ∇ℎ𝜂𝑡) + 𝜙𝑡 + 𝑔𝜂 = 0 on 𝛤𝑚 (8b)

Here, 𝑚𝜌 = 𝑚∕𝜌 is the submerged draft of the membrane, while 𝑇𝜌 = 𝑇 ∕𝜌. This completes the formulation of the mixed-dimension
boundary value problem with the 2D governing equation Eq. (1), with boundary conditions Eqs. (2), (3b) and (8) for the fluid
5

domain, and the boundary condition Eq. (7) for the membrane edges.
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2.4. Frequency domain formulation

Assuming separation of variables and steady-state, the solution for 𝜙, 𝜂, 𝜅 can be written as complex expressions 𝜙(𝑥, 𝑧, 𝑡) =
̄(𝑥, 𝑧) exp(−𝑖𝜔𝑡), 𝜂(𝑥, 𝑡) = �̄�(𝑥) exp(−𝑖𝜔𝑡) and 𝜅(𝑥, 𝑡) = �̄�(𝑥) exp(−𝑖𝜔𝑡). The resulting linearised governing equation and the associated
boundary conditions fluid and membrane can therefore be reduced to Eq. (9). In order to simplify the notation, we neglect the
over-bar hereafter.

𝛥𝜙 = 0 in 𝛺 (9a)

𝜙𝑧 + 𝑖𝜔𝜅 = 0 on 𝛤𝑓𝑠 (9b)

𝜙𝑧 + 𝑖𝜔𝜂 = 0 on 𝛤𝑚 (9c)

−𝑖𝜔𝜌𝜙 + 𝜌𝑔𝜅 = 0 on 𝛤𝑓𝑠 (9d)

−𝑚𝜌𝜔
2𝜂 − ∇ℎ

(

𝑇𝜌 (1 − 𝑖𝜔𝜏) ∇ℎ𝜂
)

− 𝑖𝜔𝜙 + 𝑔𝜂 = 0 on 𝛤𝑚 (9e)

𝐧 ⋅ ∇𝜙 = 0 on 𝛤𝑏 (9f)

𝐧 ⋅ ∇𝜙 = 𝑢𝑖𝑛 on 𝛤𝑖𝑛 (9g)

𝐧 ⋅ ∇𝜙 = 𝑢𝑜𝑢𝑡 on 𝛤𝑜𝑢𝑡 (9h)

Eq. (9e) in frequency domain formulation enables us to draw another physical interpretation of the pre-tensioning terms. The
verall transverse restoring force due to pre-tension is proportional to 𝑇𝜏 = 𝑇𝜌(1 − 𝑖𝜔𝜏). Here, the ℜ(𝑇𝜏 ) = 𝑇𝜌 corresponds to the
torage modulus, which is independent of the excitation frequency. This quantity represents the potential energy stored within the
embrane, as it undergoes transverse deflection. On the other hand, the imaginary part ℑ(𝑇𝜏 ) = −𝑖𝜔𝜏𝑇 represents the loss modulus,
hich is dependent on the excitation frequency (Sree et al., 2021). This quantity corresponds to the energy which is dissipated or
xtracted due to the material damping of the membrane. It should be noted that in the context of wave-energy converters, this loss
odulus represents the mechanism for extracting energy. This can be through the use of dielectric materials in the membrane (Sheng

t al., 2013; Mendoza et al., 2023), or other similar technologies. In the context of floating solar or floating breakwater technologies,
his loss modulus represents the dissipation and partially reflection of the incoming wave energy, resulting in reduced structural
oads and transverse deflections.

. Numerical formulation

.1. Monolithic weak form

The boundary value problem (9) is solved using a monolithic finite-element formulation, following the method proposed
n Colomés et al. (2022) for VLFS. In this work, we extend this formulation to the case of floating membranes. Before describing
he weak and fully discrete forms of the problem, we first introduce some notation that will be used in the sections to come.

Let us define the space of functions with absolutely integrable 𝑟th power in 𝛺 as 𝐿𝑟(𝛺), for 1 ≤ 𝑟 < ∞. In the case in which
= 2, we have a Hilbert space with inner product

(𝑢, 𝑣)𝛺 = ∫𝛺
𝑢(𝐱) 𝑣(𝐱)𝑑𝛺 (10)

nd induced norm ‖𝑢‖𝐿2(𝛺) ≡ ‖𝑢‖𝛺 = (𝑢, 𝑢)1∕2𝛺 . Abusing of the notation, the same symbol as in (10) will be used for the integral of
he product of two functions, even if these are not in 𝐿2(𝛺), and both for scalar and vector fields. The space of functions whose
istributional derivatives up to order 𝑚 are in 𝐿2(𝛺) are denoted by 𝐻𝑚(𝛺). We will focus on the case of 𝑚 = 1, which is also a
ilbert space. In addition, we will also use the inner product on a given boundary, 𝛤 ⊂ 𝛺, defined as

(𝑢, 𝑣)𝛤 = ∫𝛤
𝑢(𝐱) 𝑣(𝐱)𝑑𝛤 , (11)

ith the associated norm ‖𝑢‖𝐿2(𝛤 ) ≡ ‖𝑢‖𝛤 = (𝑢, 𝑢)1∕2𝛤 .
Let  = 𝐻1(𝛺) be a functional space in 𝛺, 𝛤fs the trace space of  on the free surface 𝛤fs and 𝛤m the trace space of  on

he structure 𝛤m, i.e. 𝛤fs = {𝑣|𝛤fs ∶ 𝑣 ∈ } and, i.e. 𝛤m = {𝑣|𝛤m ∶ 𝑣 ∈ }, respectively. We define the velocity potential 𝜙 ∈ 
and the associated test function 𝑤 ∈  , the free-surface elevation function 𝜅 ∈ 𝛤fs and its associated test function 𝑢 ∈ 𝛤fs and
the membrane deflection 𝜂 ∈ 𝛤m with associated test function 𝑣 ∈ 𝛤m . Note that the functional space associated to the velocity
potential,  , is defined in 𝛺, while the functional spaces for the free-surface elevation, 𝛤fs , and membrane elevation, 𝛤m , are
defined in 𝛤fs and 𝛤m, respectively, leading to a mixed-dimensional problem. Using this notation, the weak form of the problem
reads: Find [𝜙, 𝜂, 𝜅] ∈  × 𝛤m × 𝛤fs such that :

𝐵([𝜙, 𝜂, 𝜅], [𝑤, 𝑣, 𝑢]) = 𝐿([𝑤, 𝑣, 𝑢]) ∀[𝑤, 𝑣, 𝑢] ∈  × 𝛤m × 𝛤fs . (12)

where
6

𝐵([𝜙, 𝜂, 𝜅], [𝑤, 𝑣, 𝑢]) =(∇𝜙,∇𝑤)𝛺 + (𝜙𝑡 + 𝑔𝜅, 𝛽ℎ(𝑢 + 𝛼ℎ𝑤))𝛤𝑓𝑠 − (𝜅𝑡, 𝑤)𝛤𝑓𝑠 + (𝑚𝜌𝜂𝑡𝑡 + 𝜙𝑡 + 𝑔𝜂, 𝑣)𝛤𝑚 (13)
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+ (𝑇𝜌∇𝜂 + 𝑇𝜌𝜏∇𝜂𝑡,∇𝑣)𝛤𝑚 − (𝜂𝑡, 𝑤)𝛤𝑚 − (𝑇𝜌∇𝜂 ⋅ 𝐧 + 𝑇𝜌𝜏∇𝜂𝑡 ⋅ 𝐧, 𝑣)𝛬𝑚

𝐿([𝑤, 𝑣, 𝑢]) =(𝑢𝑖𝑛, 𝑤)𝛤𝑖𝑛 + (𝑢𝑜𝑢𝑡, 𝑤)𝛤𝑜𝑢𝑡 . (14)

The weak form (12) is formulated by first multiplying the governing equation Eq. (1) with test function 𝑤, integrating it over
and using integration by parts to obtain a reduced-order domain integral and boundary integrals. The boundary conditions in

qs. (2) and (8a) are then substituted into the boundary integrals along 𝛤𝑏, 𝛤𝑖𝑛, 𝛤𝑜𝑢𝑡, 𝛤𝑓𝑠 and 𝛤𝑚. The dynamic boundary condition
n 𝛤𝑓𝑠 Eq. (3b) is incorporated following the stabilised approach proposed in Akkerman et al. (2020). Here, the test function is
odified as 𝛽(𝛼𝑤+ 𝑢), where 𝛼 is chosen based on the time-integration scheme to ensure coercivity, see Colomés et al. (2022), and
controls the contribution of the test function. The resultant Petrov–Galerkin weak form reduces the dispersion error and improves

nergy conservation for linear free-surface potential flow (Akkerman et al., 2020). The dynamic fluid–structure coupling boundary
ondition Eq. (8b) is multiplied with test-function 𝑣 and the second order derivative terms are reduced using integration by parts,
esulting in domain integrals along 𝛤𝑚 and boundary (edge) integrals at 𝛬1 and 𝛬2. The final weak form is given by equation
q. (12).

Following a similar approach, the weak form for the frequency domain boundary value problem is given by: Find [𝜙, 𝜂, 𝜅] ∈
× 𝛤m × 𝛤fs such that :

𝐵𝜔([𝜙, 𝜂, 𝜅], [𝑤, 𝑣, 𝑢]) = 𝐿𝜔([𝑤, 𝑣, 𝑢]) ∀[𝑤, 𝑣, 𝑢] ∈  × 𝛤m × 𝛤fs , (15)

ith

𝐵𝜔([𝜙, 𝜂, 𝜅], [𝑤, 𝑣, 𝑢]) =(∇𝜙,∇𝑤)𝛺 + (−𝑖𝜔𝜙 + 𝑔𝜅, 𝛽ℎ(𝑢 + 𝛼ℎ𝑤))𝛤𝑓𝑠 + (𝑖𝜔𝜅,𝑤)𝛤𝑓𝑠 (16)

+ (−𝑚𝜌𝜔
2𝜂 − 𝑖𝜔𝜙 + 𝑔𝜂, 𝑣)𝛤𝑚 + (𝑇𝜌(1 − 𝑖𝜔𝜏)∇𝜂,∇𝑣)𝛤𝑚 + (𝑖𝜔𝜂,𝑤)𝛤𝑚

− (𝑇𝜌(1 − 𝑖𝜔𝜏)∇𝜂 ⋅ 𝐧, 𝑣)𝛬𝑚
,

𝐿𝜔([𝑤, 𝑣, 𝑢]) =(𝑢𝑖𝑛, 𝑤)𝛤𝑖𝑛 + (𝑢𝑜𝑢𝑡, 𝑤)𝛤𝑜𝑢𝑡 . (17)

ote that the weak form for the materially undamped floating membrane is obtained by setting 𝜏 = 0 in the above-mentioned
quations.

.2. Spatial discretisation

The formulation that we define in this work can be solved both, in time and frequency domain. However, in this work, we restrict
urselves to the frequency domain analysis because it is the most used approach for linear problems. The time domain analysis is
traightforward, and we refer the reader to Colomés et al. (2022) for more details on the specific treatment in this case. We use
monolithic finite element solver to obtain the solution to system (15), meaning that all the unknowns are obtained by solving a

ully coupled system of equations.
Let us consider a triangulation, 𝛺ℎ, of the domain 𝛺, leading to the conformal triangulations of the domain boundaries, 𝛤fs,ℎ,

m,ℎ, 𝛤in,ℎ, 𝛤out,ℎ and 𝛤b,ℎ, as depicted in Fig. 1b. We define the finite-dimensional finite-element spaces for the velocity potential,
ree surface elevation and membrane elevation, ℎ, 𝛤fs ,ℎ and 𝛤m ,ℎ, respectively, as follows:

ℎ =
{

𝑤ℎ ∈ 0(𝛺) ∶ 𝑤ℎ|𝐾 ∈ P𝑟(𝐾),∀𝐾 ∈ 𝛺ℎ
}

, (18)

𝛤fs ,ℎ =
{

𝑤ℎ|𝐸 ∶ 𝑤ℎ ∈ ̂ℎ,∀𝐸 ∈ 𝛤fs,ℎ
}

, (19)

𝛤m ,ℎ =
{

𝑤ℎ|𝐸 ∶ 𝑤ℎ ∈ ̂ℎ,∀𝐸 ∈ 𝛤m,ℎ
}

, (20)

where P𝑟(𝐾) is the space of Lagrange polynomials of degree 𝑟 in an element 𝐾, and 𝐸 are facets of dimension 𝑑 − 1, with 𝑑
eing the topological dimension of the domain 𝛺. Using this notation, the final discrete form in the frequency domain reads: Find

[𝜙ℎ, 𝜂ℎ, 𝜅ℎ] ∈ ℎ × 𝛤m ,ℎ × 𝛤fs ,ℎ such that

𝐵𝜔([𝜙ℎ, 𝜂ℎ, 𝜅ℎ], [𝑤ℎ, 𝑣ℎ, 𝑢ℎ]) = 𝐿𝜔([𝑤ℎ, 𝑣ℎ, 𝑢ℎ]) ∀[𝑤ℎ, 𝑣ℎ, 𝑢ℎ] ∈ ℎ × 𝛤m ,ℎ × 𝛤fs ,ℎ, (21)

with 𝐵𝜔 and 𝐿𝜔 as defined in (16) and (17), respectively.

3.3. Consistency and energy conservation of the discrete form

It can be demonstrated that the discrete form defined in (21) is well posed, that is, it has a unique solution. This can be proven
by following an analogous process as the one defined in chapter 4 of Colomés et al. (2022). In order to limit the scope of this paper,
we will only prove the statements of consistency of the solution and energy conservation.

Proposition 1 (Consistency). The discrete problem (21) is consistent. That is, the exact solution [𝜙, 𝜅, 𝜂] ∈  × 𝛤fs × 𝛤m satisfies the
approximate problem

𝐵 ([𝜙, 𝜅, 𝜂], [𝑤 , 𝑣 , 𝑢 ]) = 𝐿 ([𝑤 , 𝑣 , 𝑢 ]) ∀[𝑤 , 𝑣 , 𝑢 ] ∈  ×  ×  . (22)
7

𝜔 ℎ ℎ ℎ 𝜔 ℎ ℎ ℎ ℎ ℎ ℎ ℎ 𝛤fs ,ℎ 𝛤m ,ℎ
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Proof. The consistency statement results from integrating by parts on each element the terms (∇𝜙,∇𝑤ℎ)𝛺ℎ
and (𝑇𝜌(1 −

𝜔𝜏)∇𝜂,∇𝑣ℎ)𝛤m,ℎ
appearing in (16), using the strong form of the Eqs. (9a) and boundary conditions (9d)–(9h). □

Proposition 2 (Energy Conservation). The discrete problem (21) is energy conserving for any 𝛽ℎ such that 0 < 𝛽ℎ < 1. That is,
𝑑𝐸total
𝑑𝑡

= −𝑃dis,str. (23)

With

𝐸total = 𝐸kin,flow + 𝐸pot,flow + 𝐸kin,str + 𝐸ela,str, (24)

and

𝐸kin,flow =1
2
‖∇𝜙‖2𝛺 , (25a)

𝐸pot,flow =
𝑔
2

(

‖𝜅‖2𝛤fs + ‖𝜂‖2𝛤m

)

, (25b)

𝐸kin,str =
1
2
‖

‖

‖

𝑚𝜌 𝜂𝑡
‖

‖

‖

2

𝛤m
, (25c)

𝐸ela,str =
1
2
‖

‖

‖

𝑇𝜌 ∇𝜂
‖

‖

‖

2

𝛤m
, (25d)

𝑃dis,str =
‖

‖

‖

𝑇𝜌𝜏 ∇𝜂𝑡
‖

‖

‖

2

𝛤m
. (25e)

Proof. Let us select the set of test functions as [𝑤ℎ, 𝑣ℎ, 𝑢ℎ] =
[

−𝑖𝜔𝜙ℎ,
−𝑖𝜔
𝛽 𝜅ℎ + 𝑖𝜔𝛼𝑓𝜙ℎ,−𝑖𝜔𝜂ℎ,

]

∈ ℎ×𝛤fs ,ℎ×𝛤m ,ℎ. Introducing them
into (21) we have that, for uin = uout = 0 and ∇𝜂 ⋅ 𝐧 = 0, the following statement holds

0 =𝐵𝜔([𝜙ℎ, 𝜅ℎ, 𝜂ℎ], [−𝑖𝜔𝜙ℎ,
−𝑖𝜔
𝛽

𝜅ℎ + 𝑖𝜔𝛼𝑓𝜙ℎ,−𝑖𝜔𝜂ℎ]) − 𝐿𝜔([−𝑖𝜔𝜙ℎ,
−𝑖𝜔
𝛽

𝜅ℎ + 𝑖𝜔𝛼𝑓𝜙ℎ,−𝑖𝜔𝜂ℎ,]) (26)

=(∇𝜙ℎ,−𝑖𝜔∇𝜙ℎ)𝛺 + (𝑔𝜅ℎ,−𝑖𝜔𝜅ℎ)𝛤𝑓𝑠 + (−𝑚𝜌𝜔
2𝜂ℎ,−𝑖𝜔𝜂ℎ)𝛤𝑚 + (𝑔𝜂ℎ,−𝑖𝜔𝜂ℎ)𝛤𝑚 + (𝑇𝜌∇𝜂ℎ,−𝑖𝜔∇𝜂ℎ)𝛤𝑚

+ (−𝑖𝜔𝜏𝑇𝜌∇𝜂ℎ,−𝑖𝜔∇𝜂ℎ)𝛤𝑚 .

ntroducing back the time-domain transformation defined in Section 2.4 into Eq. (26) and using the energy definitions (24)–(25),
eads to the following statement

0 = 𝑑
𝑑𝑡

( 1
2
‖

‖

∇𝜙ℎ
‖

‖

2
𝛺

)

+ 𝑑
𝑑𝑡

( 1
2
𝑔 ‖
‖

𝜅ℎ‖‖
2
𝛤𝑓𝑠

)

+ 𝑑
𝑑𝑡

( 1
2
𝑚𝜌

‖

‖

𝜂ℎ,𝑡‖‖
2
𝛤𝑚

)

+ 𝑑
𝑑𝑡

(1
2
𝑔 ‖
‖

𝜂ℎ‖‖
2
𝛤𝑚

)

+ 𝑑
𝑑𝑡

( 1
2
𝑇𝜌 ‖‖∇𝜂ℎ‖‖

2
𝛤𝑚

)

(27)

+
(

𝜏𝑇𝜌 ‖‖∇𝜂ℎ,𝑡‖‖
2
𝛤𝑚

)

=
𝑑𝐸total
𝑑𝑡

+ 𝑃dis,str.

hich proves Proposition 2. Note that the selection for 𝑣ℎ imposes a mild compatibility requirement on the discretisation spaces in
order for the proof to hold, viz. 𝛾𝛤fs () ∈ 𝛤fs . □

3.4. Wave generation and wave damping zones

The waves in the numerical domain are generated using the Neumann boundary condition Eq. (2b) on 𝛤𝑖𝑛, where 𝑢𝑖𝑛 is prescribed
using the linear Airy’s wave theory. An additional damping zone of length 𝐿𝑑 is placed adjacent to 𝛤𝑖𝑛, as shown in Fig. 1. This
damping zone 𝛺𝑑 will absorb the waves reflected by the floating membrane. Inside the damping zone, we apply an artificial wave
damping function on the free-surface boundary 𝛤𝑑 , based on the 𝜙𝑛−𝜂 typeMethod 5 outlined in Kim et al. (2014). This is summarised
in Eq. (28), where 𝜇1 and 𝜇2 are the damping functions, 𝑘 is the wavenumber, 𝑥0 denotes the starting-point of the damping zone.
Eq. (28) includes terms for prescribing the input wave elevation 𝜂𝑖𝑛 and input velocity potential 𝜙𝑖𝑛 at the free-surface along the
ength of the damping zone, facilitating selective absorption of waves reflected by the membrane. We prescribe the input quantities
𝑖𝑛 and 𝜙𝑖𝑛 using the linear Airy’s wave theory. Further details regarding the methodology, conservation properties, and accuracy
f this damping zone method can be found in Kim et al. (2014). As per the conclusions in Kim et al. (2014), the 𝜙𝑛 − 𝜂 method has
een shown to effectively absorb nonlinear, multi-directional and irregular waves.

The outgoing waves are absorbed on 𝛤𝑜𝑢𝑡 using the Neumann boundary condition Eq. (2c). Here, the 𝑢𝑜𝑢𝑡 for linear waves is
rescribed following the Sommerfeld radiation boundary condition, given by Eq. (29) in the frequency domain formulation. In
ertain cases, an additional damping zone 𝛺𝑑 is placed next to 𝛤𝑜𝑢𝑡 to improve the absorbance of outgoing waves.

DFSC on 𝛤𝑑
𝜕𝜙
𝜕𝑡

= −𝑔𝜅 − 𝜇1

(

𝜕𝜙
𝜕𝑛

−
𝜕𝜙𝑖𝑛
𝜕𝑛

)

KFSC on 𝛤𝑑
𝜕𝜂
𝜕𝑡

=
𝜕𝜙
𝜕𝑧

− 𝜇2(𝜅 − 𝜅𝑖𝑛) (28)

where 𝜇1 = 𝜇0

(

1 − sin
(

𝜋
2
𝑥 − 𝑥0
𝐿𝑑

))

, and 𝜇2 = 𝑘𝜇1

∇𝜙 ⋅ 𝐧 = 𝑖𝑘𝜙 on 𝛤 (29)
8
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Fig. 2. Iterative algorithm for determining the wet natural frequencies and mode shapes of the floating membrane.

4. Natural frequencies and mode shapes of materially undamped floating membrane

Modal analysis for a membrane in the absence of surrounding fluid will depend on the material properties and the structural
design; and is termed as the dry modal analysis. However, the free-vibration of a floating membrane will be influenced by
the acceleration of the surrounding fluid (added-mass) and the additional hydrostatic-gravitational stiffness. The modal analysis
accounting for these effects is termed as wet modal analysis.

The present work uses the linearised frequency domain weak form Eq. (15), with 𝜏 = 0, for deriving the expressions for added
mass and added stiffness for the materially undamped floating membrane. As mentioned in Section 3.1, the function 𝑢, 𝑣 and 𝑤
are the basis functions for unknowns 𝜅, 𝜂 and 𝜙, respectively. Therefore, the estimates of these unknowns within an element are
given by 𝜂ℎ =

∑

𝑖 𝑣ℎ,𝑖 𝜂𝑃 ,𝑖, 𝜙ℎ =
∑

𝑗 𝑤ℎ,𝑗 𝜙𝑃 ,𝑗 , and 𝜅ℎ =
∑

𝑘 𝑢ℎ,𝑘 𝜅𝑃 ,𝑘, where 𝜂𝑃 ,𝑖, 𝜙𝑃 ,𝑗 and 𝜅𝑃 ,𝑘 are the degrees of freedom. Using this
notation, the weak form Eq. (15) is split into the membrane, free-surface and fluid equations with diagonal and coupling terms as
shown in Eq. (30).

⎡

⎢

⎢

⎣

−𝜔2𝐌11 +𝐊𝑑
11 +𝐊𝑤

11 −𝑖𝜔𝐂12 0
𝑖𝜔𝐂21 𝐊22 𝐂23

0 𝐂32 𝐊33

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝜼𝑃
𝝓𝑃
𝜿𝑃

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐅𝜂
𝐅𝜙
𝐅𝜅

⎤

⎥

⎥

⎦

(30)

Where 𝜼𝑃 = {𝜂𝑃 ,𝑖}, 𝝓𝑃 = {𝜙𝑃 ,𝑖} and 𝜿𝑃 = {𝜅𝑃 ,𝑖}. This mixed-domain system will have square diagonal matrices (𝐌,𝐊) and
rectangular non-diagonal coupling matrices (𝐂). These matrices are defined as follows. Here we use the free-edge boundary condition
at the membrane edges 𝛬𝑚.

𝐌11 = (𝑚𝜌𝑣ℎ, 𝑣ℎ)𝛤𝑚 𝐊𝑑
11 = (𝑇𝜌∇𝑣ℎ, ∇𝑣ℎ)𝛤𝑚

𝐊𝑤
11 = (𝑔𝑣ℎ, 𝑣ℎ)𝛤𝑚 𝐊22 = (∇𝑤ℎ, ∇𝑤ℎ)𝛺 − (𝑖𝑘𝑤ℎ, 𝑤ℎ)𝛤𝑖𝑛 ,𝛤𝑜𝑢𝑡 𝐊33 = (𝑔𝑢ℎ, 𝑢ℎ)𝛤𝑓𝑠

𝐂12 = (𝑤ℎ, 𝑣ℎ)𝛤𝑚 𝐂21 = (𝑣ℎ, 𝑤ℎ)𝛤𝑚
𝐂23 = (𝑖𝜔𝑢ℎ, 𝑤ℎ)𝛤𝑓𝑠 𝐂32 = (−𝑖𝜔𝑤ℎ, 𝑢ℎ)𝛤𝑓𝑠

(31)

The matrix 𝐊𝑑
11 is presented for free-edge boundary condition. For the free-vibration analysis, the external forcing terms 𝐹𝜂 = 0,

𝐹𝜙 = 0, 𝐹𝜅 = 0. Further, the boundary integrals on 𝛤𝑖𝑛 and 𝛤𝑜𝑢𝑡 are used to apply the radiation boundary condition ∇𝜙 ⋅ 𝐧 = 𝑖𝑘𝜙, as
seen in 𝐾22. It should be noted that the matrices 𝐊22, 𝐂23 and 𝐂32 are dependent on frequency 𝜔.

The dry modes of the membrane are determined through eigenvalue analysis of Eq. (32).

(−𝜔2𝐌11 +𝐊𝑑
11) 𝜂

𝑃 = 0 (32)

In order to determine the wet modes of the floating membrane, the matrix equation Eq. (30) is written in terms of 𝜂𝑃 through
the process of elimination of variables. This results in an undamped spring-mass system with added mass 𝐀 and added stiffness 𝐊𝑤

11,
as shown in Eq. (33).

(−𝜔2(𝐌11 + 𝐀) +𝐊𝑑
11 +𝐊𝑤

11) 𝜂
𝑃 = 0

where 𝐀 = 𝐂12𝐌−1
𝜙 𝐂21, 𝐌𝜙 = 𝐊22 − 𝐂23𝐊−1

33𝐂32
(33)

The added mass 𝐀 depends on frequency 𝜔 because of the coefficients 𝐊22, 𝐂23 and 𝐂32. Therefore, this wet eigenvalue problem is
nonlinear. For each mode, we follow the iterative algorithm shown in Fig. 2 to solve for the natural frequency and the corresponding
mode shape. In Section 5.2, we present calculated the Eigen frequencies and mode shapes for a membrane, and analyse their
dependence on the material and design properties.

5. Numerical results

The finite-element formulation and modal analysis were numerically implemented in Julia programming language (Bezanson
et al., 2017), using the Gridap finite element library (Badia and Verdugo, 2020). This library enables high-level implementation of
9
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Fig. 3. (a) Plots showing the computed numerical error with the increasing number of elements, using elements of polynomial degree 𝑟 = 1, 2, 3. (b) Plots
showing the evolution of the numerical solution for 𝜂, obtained using quadratic polynomial shape function for various numbers of elements.

the formulation, resembling the mathematical notations in weak form. The Gridap library efficiently assembles internal loops based
on this notation-based expression, optimised for the high-performance Julia JIT compiler. A comprehensive software implementation
of Gridap is available in Verdugo and Badia (2022). These features enable swift prototyping of the finite-element program, and
exhibit excellent computational performance. Critically, Grdiap, possesses the ability to assemble finite-element formulation over
mixed-dimensions and mixed-order. This feature is of utmost importance because the monolithic floating viscoelastic membrane
problem necessitates a formulation over a fluid domain and the attached membrane surface. The program used to generate the
results for this manuscript is similar to the registered Julia package (Colomes Gene, 2022).

5.1. Convergence analysis

The spatial convergence analysis for the numerical model is conducted by studying the elastic response of a finite floating
membrane to a monochromatic incoming wave in frequency domain formulation. The analysis is conducted in a 2D vertical
numerical domain with a constant water-depth of ℎ = 10 m and a domain length of 𝐿𝛺 = 21ℎ. The incoming waves are generated
using the left boundary 𝛤𝑖𝑛. A damping zone 𝛺𝑑 of length 𝐿𝑑 = 6ℎ is placed adjacent to 𝛤𝑑𝑖𝑛 to absorb the waves reflected by the
floating membrane. The outgoing waves are absorbed using the radiation boundary condition Eq. (29) applied on 𝛤𝑜𝑢𝑡. A floating
membrane of length 𝐿𝑚 = 3ℎ, mass per unit area 𝑚 = 0.9𝜌, and tension 𝑇 = 0.9𝜌𝑔 is located at a distance of 12ℎ from 𝛤𝑖𝑛. The
present analysis is carried out using free-edge boundary condition Eq. (7b) for the membrane. A membrane with these properties
is expected to generate significant deflection which is ideal for visualising the convergence of the solution. The floating membrane
is exposed to linear regular waves corresponding with 𝜔 = 2.0 rad s−1 and amplitude 𝜅0 = 0.025ℎ.

The domain is meshed as a Cartesian grid with rectangular elements having uniform 𝛥𝑥 and 𝛥𝑧. The analysis is conducted for
linear, quadratic and cubic polynomial shape functions. The convergence rate is monitored using the 𝐿2 norm, given by the following
Eq. (34).

Error = ‖ 𝜂 − 𝜂𝑟𝑒𝑓 ‖𝐿2(𝛤𝑚)
def
=

√

∫𝛤𝑚
| 𝜂 − 𝜂𝑟𝑒𝑓 |

2 𝑑𝛤𝑚 (34)

Here, 𝜂𝑟𝑒𝑓 is the solution obtained using the smallest mesh size and cubic polynomial shape function. We report the error in the
numerical solution for various mesh sizes and polynomial orders. Fig. 3a reports the computed convergence rate for elements of
polynomial degree 𝑟 and its comparison against the optimal convergence rate 𝑂(𝑟+1). Fig. 3b reports the evolution of the numerical
solution at the crest, obtained using quadratic polynomial (𝑟 = 2) shape function, for various mesh sizes. From these results, it is
concluded that the presented model has an optimal rate of convergence.

5.2. Natural frequencies of 1D finite floating membrane

This section employs the iterative algorithm described in Section 4 for studying wet mode shapes and corresponding natural
frequencies for a finite, materially undamped, floating membrane. The analysis is done for a membrane of length 𝐿𝑚 with free-edge
boundary condition, placed in a domain with water-depth ℎ and domain length 𝐿𝛺 = 3𝐿𝑚. This analysis does not require the
generation of incoming waves. Therefore, the domain does not contain any damping zones and the boundaries 𝛤𝑖𝑛 and 𝛤𝑜𝑢𝑡 are both
set to radiation boundary condition, Eq. (29). After conducting a convergence analysis similar to the one in Section 5.1, we employ
rectangular elements with quadratic polynomial shape function. Further, these elements have a uniform 𝛥𝑥 = 0.025𝐿𝑚, while the
𝛥𝑧 increases exponentially from 𝛥𝑧 = 0.038ℎ at the free-surface to 𝛥𝑧 = 0.2ℎ at the bottom boundary across a span of 10 intervals.
This mesh configuration is computationally efficient as it ensures a greater number of elements are allocated to capture the larger
gradients along the free surface.
10
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Fig. 4. Contour plots of variations in dry natural frequency 𝜔𝑑 , wet natural frequency 𝜔𝑤 for the first three elastic modes, over a range of mass and tension of
the membranes with free-edge boundary condition. The values of 𝑇𝜌∕𝑔ℎ2 and 𝑚𝜌∕𝐿𝑚 are plotted on log10 axis.

Fig. 5. Plots of first three elastic wet mode shapes for floating membranes with same 𝑇𝜌 and different 𝑚𝜌, compared against corresponding dry mode shapes.

Fig. 6. Plots of first three elastic wet mode shapes for floating membranes with same 𝑚𝜌 and different 𝑇𝜌, compared against corresponding dry mode shapes.
11
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The numerical tests were conducted on a range of thin-floating membranes with free-edge boundary condition, characterised by
raft 𝑚𝜌∕𝐿𝑚 ∈ [0.01, 0.05] and 𝑇𝜌∕𝑔𝐿2

𝑚 ∈ [0.0125, 0.2], in deep-water conditions. The analytical expression for dry natural frequency
𝑑
𝑛 for mode 𝑛 is given by Eq. (35).

𝜔𝑑
𝑛 = 𝑛𝜋

√

𝑇𝜌∕𝐿2
𝑚

𝑚𝜌
⟹ log(𝜔𝑑

𝑛 ) = log(𝑛𝜋) + 1
2
log

(

𝑇𝜌
𝐿2
𝑚

)

− 1
2
log(𝑚𝜌) (35)

Fig. 4 presents the numerically obtained values of 𝜔𝑑
𝑛 , calculated through eigenvalue analysis based on Eq. (32). We evaluate the

ccuracy of the numerically obtained values of 𝜔𝑑
𝑛 against the analytical expression for 𝜔𝑑

𝑛 given in Eq. (35). The root mean square
ifference between numerical and analytical values of 𝜔𝑑

𝑛 , for the plotted range of 𝑚𝜌∕𝐿𝑚 and 𝑇𝜌∕𝑔𝐿2
𝑚, is 1.42 × 10−7 for Mode 1,

.55 × 10−6 for Mode 2 and 3.45 × 10−5 for Mode 3.
The wet natural frequency is obtained using the eigen-value analysis of Eq. (33), following the iterative algorithm in Fig. 2.

e illustrates the variation of wet natural frequency 𝜔𝑤
𝑛 for a range of 𝑚𝜌∕𝐿𝑚 and 𝑇𝜌∕𝑔𝐿2

𝑚 in Fig. 4. For the floating membrane,
he natural frequency is influenced by the hydrostatic stiffness of the water-plane area and the added mass due to the presence of
urrounding fluid. It is noteworthy that 𝜔𝑤

𝑛 is consistently lower than 𝜔𝑑
𝑛 within the tested range, indicating a dominating influence of

dded mass. Compared to 𝜔𝑑
𝑛 , 𝜔𝑤

𝑛 demonstrates reduced sensitivity to the mass 𝑚𝜌 of the membrane, particularly for high frequency
odes. Based on this analysis, it is concluded that the wet natural frequency of the floating membrane can be primarily adjusted

y controlling its tension 𝑇𝜌.
We further analyse the mode shapes for both the dry and wet modes of the membrane. Fig. 5 shows the comparison of wet and dry

ode shapes for membranes, while keeping the tension constant and varying the mass. Fig. 6 presents the same, while keeping the
ass constant and varying the tension in the membrane. The dry mode shape for a particular mode remains consistent regardless of

he membrane’s mass and tension. For each mode, a single plot adequately represents the dry mode shape, characterised by regular
inusoidal patterns. In contrast, while the wet mode shapes closely resembles a sinusoidal pattern, they are not perfectly sinusoidal.
s a result, distinctions between the wet and dry mode shapes are discernible in Fig. 5 and Fig. 6.

.3. Frequency domain solution of 1D finite floating membrane

Having completed the convergence and modal analysis, we proceed to examine the response of 1D finite floating membrane
n a 2D fluid domain, subjected to linear regular waves. The water depth is set at a constant value of ℎ, and the length of the
inite floating membrane is 𝐿𝑚. The total length of the domain is 16.5𝐿𝑚. The incoming progressive waves are generated using
he Neumann boundary condition Eq. (9g) on 𝛤𝑖𝑛, with the analytical expression for 𝜙𝑖𝑛 and 𝜂𝑖𝑛 based on linear wave theory.
urthermore, a damping zone 𝛺𝑑 of length 𝐿𝑑 = 7.5𝐿𝑚 is placed adjacent to 𝛤𝑖𝑛, in the range 𝑥 ∈ [−7.5𝐿𝑚, 0], in order to absorb the
aves reflected by the floating membrane, (refer to the schematic in Fig. 1). The outgoing waves are captured using the radiation
oundary condition Eq. (29) on 𝛤𝑜𝑢𝑡. No additional damping zone is placed adjacent to 𝛤𝑜𝑢𝑡. The floating membrane is placed between
∈ [4𝐿𝑚, 5𝐿𝑚] to provide a space of 4𝐿𝑚 on both sides of the membrane. This configuration facilitates the observation and analysis
f the reflected and transmitted waves upstream and downstream from the membrane.

The computational domain is discretised using second-order quadrilateral elements, with a constant 𝛥𝑥 = 0.01𝐿𝑚, while the
𝑧 varies exponentially over 20 elements from 𝛥𝑧 = 0.0054ℎ near the free-surface to 𝛥𝑧 = 0.17ℎ near the bottom boundary. This
onfiguration is chosen following the convergence analysis from Section 5.1, considering the structural response, and the wave-length
nd steepness of the shortest wave. This results in 33000 second-order quadrilateral elements. The simulations are executed on a
ystem with Intel(R) Core(TM) i5-11320H processor and 32 GB RAM. For this numerical setup, the run-time for the simulations is
.5 s per frequency.

A number of probes are placed throughout the domain for gathering data. Let 𝜅𝑖𝑛, 𝜅𝑟 and 𝜅𝑡 be the complex-valued space varying
olutions for incoming waves, reflected waves upstream of the membrane and transmitted waves downstream of the membrane,
espectively. The incoming regular wave is generated with an amplitude of 𝜅0 = |𝜅𝑖𝑛|. Upstream of the membrane, three probes
re placed at 𝑥𝑝1 = 2.635𝐿𝑚, 𝑥𝑝2 = 2.685𝐿𝑚 and 𝑥𝑝3 = 2.75𝐿𝑚 to extract the reflected wave 𝜅𝑟 solution using the least-squares
ethod (Mansard and Funke, 1980). The downstream transmitted wave 𝜅𝑡 is measured using a single probe at 𝑥𝑝4 = 6.25𝐿𝑚. These

bservations are used for reporting the reflection and the transmission coefficients 𝐾𝑅 = 𝑃𝑅
𝑃𝑖𝑛

and 𝐾𝑇 = 𝑃𝑇
𝑃𝑖𝑛

. The energy absorbed
y the materially-damped floating membrane 𝜏 ≠ 0 is reported using absorption coefficient 𝐾𝐴 = 𝑃𝐴

𝑃𝑖𝑛
. If the proportional damping

echanism represents the power extracted by a wave-energy converter, then 𝐾𝐴 can be termed as its capture width. The expressions
or input 𝑃𝑖𝑛, reflected 𝑃𝑅 and transmitted 𝑃𝑇 wave power per unit width, averaged over a wave-period are given by the following
qs. ((36)a-c) (Dean and Dalrymple, 1991, Chapter 4).

𝑃𝑖𝑛 =
1
2
𝜌𝑔| 𝜅𝑖𝑛 |

2𝐶𝑔 where 𝐶𝑔 = 𝜔
𝑘
1
2

(

1 + 2𝑘ℎ
sinh(2𝑘ℎ)

)

(36a)

𝑃𝑅 = 1
2
𝜌𝑔| 𝜅𝑟 |

2𝐶𝑔 (36b)

𝑃𝑇 = 1
2
𝜌𝑔| 𝜅𝑡 |

2𝐶𝑔 (36c)

𝑃𝐴 = 1
𝑡𝑤𝑎𝑣𝑒 ∫

𝑡+𝑡𝑤𝑎𝑣𝑒

𝑡

(

∫𝛤𝑚
𝑃dis,str 𝑑𝛤𝑚

)

𝑑𝑡 = 1
2
𝜌𝑇𝜌𝜏𝜔

2
∫𝛤𝑚

|∇𝜂 |2 𝑑𝛤 (36d)
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Fig. 7. Contour plot of solution of 𝜙 in the vicinity of the floating membrane, for 𝜔 = 2.0 rad s−1 and 𝜏 = 0.0, highlighting the elongation of the wave underneath
the membrane. Exaggerated plots of the surface-elevation 𝜅 and membrane deflection 𝜂.

Fig. 8. Plots of magnitude of the complex solution along the domain length for total free-surface elevation 𝜅, membrane deflection 𝜂, reflected wave 𝜅𝑟 and
incoming wave 𝜅𝑖𝑛. (a) 𝜔 = 2.0 rad s−1 and 𝜏 = 0.0, (b) 𝜔 = 2.4 rad s−1 and 𝜏 = 0.0.

Here Eq. (36d) is the expression for 𝑃𝐴, power absorbed or dissipated by the viscoelastic membrane per unit width, averaged
over a wave period 𝑡𝑤𝑎𝑣𝑒. This is derived using the dissipated power expression 𝑃dis,str from Eq. (25e).

The wave reflection and transmission coefficients are often expressed as 𝐶𝑅 = 𝜅𝑟
𝜅𝑖𝑛

and 𝐶𝑇 = 𝜅𝑡
𝜅𝑖𝑛

. However, in our study, we opt
to represent wave reflection and transmission coefficients as 𝐾𝑅 = 𝑃𝑅

𝑃𝑖𝑛
and 𝐾𝑇 = 𝑃𝑇

𝑃𝑖𝑛
for two reasons: (1) The absorption coefficient

𝐾𝐴 = 𝑃𝑎
𝑃𝑖𝑛

lacks an equivalent expression 𝐶𝐴 = 𝜅𝑎
𝜅𝑖𝑛

due to the absence of a physical ‘‘absorbed wave amplitude’’ 𝜅𝑎. Therefore,
our chosen coefficients enable us to present reflection, transmission, and absorption in a consistent manner; and (2) Our choice of
these coefficient offers readers a direct representation of the proportional wave energy reflected, transmitted, and absorbed by the
viscoelastic membrane.
13
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Fig. 9. Contour plots of amplitude of the deflection 𝜂, reflected wave 𝜅𝑟 and transmitted wave 𝜅𝑡 in the vicinity of the membrane MEMB1 for 𝜔 ∈ [0.7, 5.0]. (a)
𝜏 = 0.0, (b) 𝜏 = 0.01, (c) 𝜏 = 0.05, (d) 𝜏 = 0.10. The arrows indicate the wet natural frequency of MEMB1 having 𝜏 = 0.

Fig. 10. Plots of reflection and transmission coefficient for regular waves interaction with floating membrane MEMB1 with 𝜏 = 0. The vertical lines are natural
frequencies of the wet modes of MEMB1.

5.3.1. No material damping
We consider a membrane MEMB1 of length 𝐿𝑚 = 2ℎ, 𝑇𝜌∕𝑔𝐿2

𝑚 = 0.025, 𝑚𝜌∕𝐿𝑚 = 0.045, floating in still-water depth ℎ = 10 m
with free-edge boundary condition. These parameter settings align with those employed in the BEM analysis of Trivedi and Koley
(2022). The problem will be solved using the frequency-domain approach, as described in Section 3.1. Following the analysis from
Section 5.2, the first four wet natural frequencies of MEMB1 are 𝜔𝑤

1−4 = {1.55322.41363.46694.6418} rad s−1. These values can be
contrasted against the dry natural frequencies of MEMB1 𝜔𝑑

1−4 = {1.6400, 3.2805, 4.9217, 6.5642} rad s−1. We once again highlight the
significant difference between 𝜔𝑤 and 𝜔𝑑 values resulting from the added-mass and stiffness due to the presence of the fluid.

The next step is to examine the interaction of regular waves with MEMB1 having no material damping, i.e., 𝜏 = 0. The first
test is conducted using monochromatic waves 𝜅𝑖𝑛 with 𝜔 = 2.0 rad s−1, in between its 𝜔𝑤

1 and 𝜔𝑤
2 , with the wave-amplitude

𝜅 = | 𝜅 | = 0.1 m. The resultant solution for 𝜙 throughout the domain 𝛺, 𝜂 on 𝛤 and 𝜅 on 𝛤 are presented in Fig. 7. The figure
14
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Fig. 11. Contour plots illustrating the proportional contribution of the dry mode shapes of MEMB1 in the elastic response of the floating membrane MEMB1
across a range of frequencies for 𝜏 = 0.

highlights the deflection of the floating membrane, accompanied by partial reflection and transmission of the incoming waves, and
stretching of the waves underneath the membrane. The magnitude of the solution for surface elevation 𝜅 in the vicinity of the
membrane and the deflection 𝜂 of the membrane are presented in Fig. 8a. This figure further decomposes the upstream solution for
𝜅 into incoming wave 𝜅𝑖𝑛 and reflected wave 𝜅𝑟 = 𝜅 − 𝜅𝑖𝑛. Given the 2D nature of this problem setting, the downstream solution for
𝜅 is equal to the transmitted wave 𝜅𝑡. It is observed that the magnitude of reflected and transmitted waves is steady away from the
membrane. We can also observe the presence of evanescent waves in both the 𝜅𝑟 and 𝜅𝑡 plots in the vicinity of the membrane. The
figure further highlights a higher magnitude for the transmitted waves compared to the reflected waves, quantified as reflection
coefficient 𝐾𝑅 = 0.3976 and transmission coefficient 𝐾𝑇 = 0.6025.

The observed discontinuity between free-surface elevation and membrane deflection is expected in this linearised problem.
Continuity between 𝜅 and 𝜂 is not enforced in this analysis, as it would lead to an over-constrained system. Furthermore, the
formulation does not necessitate continuity between 𝜅 and 𝜂 since these are treated as two distinct boundaries of the domain,
interconnected solely by the velocity potential 𝜙. Fig. 7 underscores the required continuity in the velocity potential 𝜙 at the
interfaces between the fluid underneath the membrane and outside the membrane.

We repeat the same analysis using incoming monochromatic waves with 𝜔 = 2.4 rad s−1, which is very close to the second elastic
wet mode of the membrane with 𝜔𝑤

2 = 2.4136 rad s−1. In this case, the incoming wave is nearly completely transmitted by the floating
membrane, as seen in Fig. 8b. The values of reflection and transmission coefficient are 𝐾𝑅 = 0.0007 and 𝐾𝑇 = 0.9992 respectively.
In Section 5.2 we calculated the elastic mode shapes for the membrane. In Fig. 8b, we superimpose the magnitude of the second
elastic mode plus the rigid heave motion. This overlay allows us to contrast the obtained deflection with the second elastic mode
shape, highlighting the strong presence of this elastic mode.

This analysis is repeated for regular waves in frequency range 𝜔 ∈ [0.7, 5] rad s−1. Fig. 9a presents the magnitude of the solution
for membrane deflection 𝜂, reflected wave 𝜅𝑟 and transmitted wave 𝜅𝑡 in the vicinity of the membrane for the tested frequency range.
From the figure we can observe that the lower wave frequencies produce a larger deflection in the membrane, while the higher
frequencies result in relatively small membrane deflection. Additionally, it is evident that the membrane largely transmits the lower
frequencies and reflects the higher frequencies. This observation is quantified as the reflection and transmission coefficient 𝐾𝑅 and
𝐾𝑇 as shown in Fig. 10. The arrows in Fig. 9 and the vertical lines in Fig. 10 correspond to the wet natural frequencies of MEMB1
with 𝜏 = 0. From these figures, it is distinctly evident that waves aligning with the wet natural frequencies of the membrane are
fully transmitted. Therefore, the materially undamped membrane (𝜏 = 0) behaves like a mechanical filtering, largely transmitting
waves with frequencies corresponding to its wet natural frequencies.

In Section 4, we obtained the shapes of the wet and the dry elastic modes of the membrane. The steady-state response of the
floating membrane can be expanded as a series of dry modes. Fig. 11 presents the contour plots of the relative contribution of each
dry elastic mode in the elastic response of MEMB1 across a range of wave frequencies.

5.3.2. Including material damping
The simulation setup from Section 5.3.1 was used to test the response of the floating membrane to regular waves, now including

the material damping (𝜏 ≠ 0). Fig. 12 shows the solution for 𝜙, 𝜂 and 𝜅 for the case of 𝜔 = 2.0 rad s−1 and 𝜏 = 0.1. The response
of a membrane with 𝜏 = 0.1 to monochromatic regular waves of frequency 𝜔 = 2.0 rad s−1 and 𝜔 = 2.4 rad s−1 is shown in Fig. 13.
These figures can be contrasted against the response for materially undamped floating membrane, as was shown in Fig. 7 and
Fig. 8. It is observed that for 𝜔 = 2.0 rad s−1, which lies between 𝜔𝑤

1 and 𝜔𝑤
2 , the damped membrane with 𝜏 = 0.1 has a lower

reflection coefficient of 𝐾𝑅 = 0.2968 and lower transmission coefficient 𝐾𝑇 = 0.3911, compared to 𝐾𝑅 = 0.3976 and 𝐾𝑇 = 0.6025 for
𝜏 = 0.0. This is because a certain proportion of the wave energy is damped (or absorbed) by the membrane, computed as absorption
coefficient 𝐾𝐴 = 0.3121, using the Eq. (36d) for absorbed power 𝑃𝐴. A bigger contrast is observed for 𝜔 = 2.4 rad s−1. For this
excitation frequency, which lies close to the wet natural frequency 𝜔𝑤, we previously observed a nearly complete transmission of
15

2



Journal of Fluids and Structures 129 (2024) 104167S. Agarwal et al.
Fig. 12. Contour plot of solution of 𝜙 in the vicinity of the floating membrane, for 𝜔 = 2.0 rad s−1 and 𝜏 = 0.10. Exaggerated plots of the surface-elevation 𝜅
and membrane deflection 𝜂.

Fig. 13. Plots of magnitude of complex solution along the domain length for total free-surface elevation 𝜅, membrane deflection 𝜂, reflected wave 𝜅𝑟 and
incoming wave 𝜅𝑖𝑛. (a) 𝜔 = 2.0 rad s−1 and 𝜏 = 0.10, (b) 𝜔 = 2.4 rad s−1 and 𝜏 = 0.10.

the incoming wave for 𝜏 = 0. However, with 𝜏 = 0.1 the wave is now partially reflected, with 𝐾𝑅 = 0.1203 and 𝐾𝑇 = 0.2924, and a
relatively high absorption coefficient of 𝐾𝐴 = 0.5874.

The same test is repeated for monochromatic waves in frequency range 𝜔 ∈ [0.7, 5] and for damping coefficients 𝜏 =
{0.01, 0.05, 0.10, 0.50}. The space varying solution for the magnitude of membrane deflection, reflected wave and transmitted wave
are shown in Fig. 9b–d for values of 𝜏 = {0.01, 0.05, 0.10}. The variation of reflection, transmission and absorption coefficients is
plotted in Fig. 14. The wet natural frequencies 𝜔𝑤

𝑛 of the membrane are also overlayed as arrows in Fig. 9b–d and vertical lines
in Fig. 14. We observe that for the highest damping coefficient 𝜏 = 0.5, the reflection and transmission coefficients monotonically
increase and decrease with the wave frequency, respectively. For lower damping coefficients, the reflection coefficient plots have
local minima and the transmission coefficient plots have local maxima at 𝜔𝑤.
16
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Fig. 14. Plots quantifying the (a) reflection coefficient, (b) transmission coefficient, (c) absorption coefficient and (d) drift force for floating membrane MEMB1
across a range of frequencies. The results are plotted for various damping coefficients 𝜏. The vertical lines are the wet natural frequencies of MEMB1.

Fig. 15. Plots quantifying the (a) modal damping ratio, (b) error in power balance for floating membrane MEMB1 across a range of frequencies. The results are
plotted for various damping coefficients 𝜏. The vertical lines are the wet natural frequencies of MEMB1.

We observe a rather interesting behaviour for the absorption coefficient 𝐾𝐴. In general, 𝐾𝐴 has a local maxima at 𝜔𝑤
𝑛 . However,

the overall maxima of 𝐾𝐴 is observed at different natural frequencies for different 𝜏. For example, 𝐾𝐴 is highest at 𝜔𝑤
4 for 𝜏 = 0.01,

while it is highest at 𝜔2
𝑤 for 𝜏 = 0.10. From Eq. (36d) it is evident that the absorbed power depends on the gradient of the deflection.

The highest gradients are observed at higher wet modes. However, this is counterbalanced by the increasing reflection of the high-
frequency waves by the membrane with higher 𝜏. Therefore, the 𝐾𝐴 increases for lower modes with increasing 𝜏. This is a key
result from the perspective of harvesting wave energy from membrane-type wave energy converters. It highlights that the material
properties of the membrane can be ‘‘tuned’’ such that its wet natural frequencies align with peak wave frequencies of the ocean
spectrum. This can in fact be done actively, either by controlling the tension of the membrane, or by varying the damping coefficient
through the energy extraction mechanism.

We further emphasise the damping of the higher modes by the material damping using the plots of the modal damping ratio,
presented in Fig. 15a. As shown in Eq. (6), the viscous damping in the material is proportional to the stiffness of the membrane.
Therefore, the modal damping ratio is given by 𝜁 = 𝜏𝜔𝑤

𝑛
2 . The drift force 𝐹𝑑 acting on the floating membrane was estimated

in Longuet-Higgins (1977) based on the conservation of momentum. The expression for 𝐹𝑑 in constant water-depth ℎ is given by
Eq. (37a).

𝐹𝑑 = 1𝜌𝑔
(

𝜅2
𝑖𝑛 + 𝜅2

𝑟 − 𝜅2
𝑡
)

(

1 + 2𝑘ℎ
)

= 𝑘 𝐶𝑔 𝑃𝑖𝑛
(

1 +𝐾𝑅 −𝐾𝑇
)

(37a)
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Fig. 16. Plots comparing the FE results from this manuscript with the BEM results from Trivedi and Koley (2022) for MEMB1 with fixed edge boundary condition.
(a) Wave reflection coefficient (b) Wave transmission coefficient. The results are plotted for 𝜏 = 0.0 and 𝜏 = 0.10. The vertical lines correspond to the wet natural
frequencies of MEMB1 with fixed-edge boundary condition.

(𝐼𝐶𝑔)𝑖𝑛 =
1
4
𝜌𝑔𝜅2

𝑖𝑛

(

1 + 2𝑘ℎ
sinh(2𝑘ℎ)

)

= 𝑘
𝜔
𝐶𝑔 𝑃𝑖𝑛 (37b)

The variation of this drift force acting over a range of excitation frequencies 𝜔 for various values of 𝜏 is reported in Fig. 14d.
Here the 𝐹𝑑 is non-dimensionalised against the momentum flux of incoming wave (𝐼𝐶𝑔)𝑖𝑛 given by Eq. (37b). The expression for
𝐹𝑑 highlights that higher wave reflection will increase the drift force on the floating body, whereas a higher wave transmission
will reduce the drift force. Therefore, at the wet natural frequencies, the floating membrane will have 𝐹𝑑 = 0, because the wave
is completely transmitted for 𝜏 = 0. The damping of the incoming wave by the viscoelastic membrane 𝜏 ≠ 0 will take out some
incoming wave momentum. However, in general, this also increases the reflection and reduces the transmission of the wave as
evident in Fig. 14a and Fig. 14b, especially for the higher frequencies. Therefore, 𝐹𝑑 is generally observed to increase with higher
𝜏.

The energy conservation properties of this monolithic formulation can be studied by comparing the reflection, transmitted and
absorbed power Eqs. (36) against the input power of the incoming progressive wave. We quantify this energy conservation error as
follows

PErr =
(

1 −
𝑃𝑅 + 𝑃𝑇 + 𝑃𝐴

𝑃𝑖𝑛

)

× 100 =
(

1 −𝐾𝑅 −𝐾𝐴 −𝐾𝑇
)

× 100 (38)

Fig. 15b presents the plot of 𝑃𝐸𝑟𝑟 for all cases tested in Section 5.3.2. It should be noted that the error does not exceed 0.02%
across the tested range of 𝜔 and 𝜏, thereby affirming the effective conservation of total energy within the monolithic multi-physics
model.

5.3.3. Comparison against contemporary literature: MEMB1 with fixed edge
There is limited literature available on the interaction of pre-tensioned floating membrane with free-surface waves. Most

experiments conducted thus far have focused on thin-plate type problems. However, as explained in Section 2.2.1, the physics
of pre-tensioned membrane differ from a thin-plate assumption. The work of Trivedi and Koley (2022) presents a Boundary Element
Method (BEM) based analysis of the pre-tensioned floating membrane problem. In their methodology, the free-surface is defined
using Green’s function, where the wave number 𝑘 is defined as the real and imaginary solutions of the dispersion relationship
𝜔2 = 𝑔𝑘 tanh(𝑘ℎ).

Similar to Trivedi and Koley (2022), we consider a membrane of length 𝐿𝑚 = 2ℎ, 𝑇𝜌∕𝑔𝐿2
𝑚 = 0.025, 𝑚𝜌∕𝐿𝑚 = 0.045, floating in

still-water depth ℎ = 10 m. These properties are the same as the properties of MEMB1 studied in the previous sections. However,
while our previous analyses focused on MEMB1 with free-edge boundary conditions, Trivedi and Koley (2022) investigated the
membrane with fixed-edge boundary conditions. To facilitate a direct comparison with their findings, in this section, we examine
MEMB1 with fixed-edge boundary conditions, as defined by Eq. (7a).

We use the same numerical setup as described in Section 5.3.1. We subject the floating membrane to a range of wave frequencies.
The initial test is conducted for 𝜏 = 0. We monitor the amplitudes of the reflected wave |𝜅𝑟| and transmitted wave |𝜅𝑡|. The
study by Trivedi and Koley (2022) reported the wave reflection and transmission coefficients, defined as |𝜅𝑟|∕|𝜅𝑖𝑛| and |𝜅𝑡|∕|𝜅𝑖𝑛|,
respectively, as functions of 𝑘ℎ. To facilitate comparison with their findings, we present the same quantities in Fig. 16. We repeat
the tests for 𝜏 = 0.10 and report the comparison against the results from Trivedi and Koley (2022).

Furthermore, following the natural frequency analysis outlined in Section 5.2, we compute the first four wet natural frequencies
of MEMB1 with fixed-edge boundary conditions. These wet natural frequencies are 𝜔𝑤

1−4 = {0.9874, 2.0802, 3.1608, 4.3509} rad s−1,
and are depicted as vertical lines at the corresponding 𝑘ℎ values in Fig. 16.

The observations from the FE model results for MEMB1 with fixed-edge boundary conditions closely resemble the observations
for MEMB1 with free-edge boundary condition, as detailed in Section 5.3.1 and Section 5.3.2. Once again, we note that for 𝜏 = 0,
the waves are nearly entirely transmitted at frequencies close to the computed wet natural frequency. Furthermore, the introduction
of material damping, i.e., 𝜏 = 0.1, results in increased reflection of higher wave frequencies.
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Fig. 17. Schematic of the numerical domain containing a viscoelastic floating membrane 𝛤𝑚 (shown in red). (a) Top view of the domain. (b) Vertical view of
the middle plane of the domain. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The results from the BEM analysis of Trivedi and Koley (2022) for these cases are presented as discrete points in Fig. 16. We
observe similarities between the BEM results and the FE results for high frequencies. However, the results from BEM and FE differ at
the low wave frequencies. In general, the BEM results indicate a higher reflection coefficient for the low wave frequencies compared
to the FE results. Also, the BEM result indicates that the zero reflection happens at 𝑘ℎ = 0.88, whereas the FE results indicate zero
reflection at 𝑘ℎ = 1.11. Moreover, for 𝜔𝑤

1 = 0.9874, the corresponding 𝑘ℎ = 1.19 aligns closely with the FE results. These observations
suggest that the FE results correspond well with the computed wet natural frequency, while the BEM results tend to overestimate
the reflection coefficient for low frequencies.

5.4. Natural frequencies of 2D finite floating membrane

The FEM formulation in Section 3.1 and the modal analysis in Section 4 can readily be applied to a 3D problem. Here the
notation-based programming of Gridap FEM library and the operations-based logic of Julia programming language are particularly
convenient for expanding the program to 3D with minimum modifications. In this section, we demonstrate the 3D capabilities of
the model by analysing the natural frequencies and mode shapes of a 2D finite floating membrane and further study the interaction
of this membrane with waves.

We conduct a modal analysis for a floating membrane MEMB2D1, with length and width 𝐿𝑚 = 𝑊𝑚 = 2ℎ, uniform pre-tension
𝑇𝜌∕𝑔𝐿2

𝑚 = 0.025, 𝑚𝜌∕𝐿𝑚 = 0.045, floating in still-water depth of ℎ = 10 m with free-edge boundary condition ∇𝜂 ⋅ 𝐧 = 0 on 𝛬𝑚. The
modal analysis is done in a 3D cuboidal numerical domain of length 𝐿𝛺 = 6ℎ, width 𝑊𝛺 = 4ℎ and depth ℎ. Fig. 17 presents the
schematic of the 3D problem, highlighting the boundaries of the domain. The side-wall boundaries 𝛤𝑠𝑤 and the bottom boundary
𝛤𝑏 are all set to slip walls. This analysis does not require incoming waves. Therefore, the upstream and downstream boundaries 𝛤𝑖𝑛
and 𝛤𝑜𝑢𝑡 are both set to radiation boundary condition Eq. (29), and the domain does not have any damping zones. The membrane
boundary 𝛤𝑚 and the free-surface boundary 𝛤𝑓𝑠 are set to the same dynamic and kinematic boundary conditions specified in Eqs. (9).
The domain is discretised into hexahedron elements, using uniform 𝛥𝑥 = 0.05𝐿𝑚 and 𝛥𝑦 = 0.05𝑊𝑚, while 𝛥𝑧 varies exponentially
from 𝛥𝑧 = 0.0408ℎ near the free-surface to 𝛥𝑧 = 0.1280ℎ near the bottom boundary, over 13 steps.

This configuration is solved to obtain the first 12 wet modes and natural frequencies of MEMB2D1, as shown in Fig. 18. We can
contrast these with the mode shapes of the 1D membrane, as shown in Fig. 5 and Fig. 6. It is evident that the 2D mode shapes are
a combination of the 1D shapes, along both the X and the Y axes. However, in this analysis, we constrained the 𝑌 -axis with wall
boundary conditions. The asymmetry in the mode shapes is therefore observed due to the influence of the tank’s side-walls.

5.5. Frequency domain solution of 2D finite floating membrane

We next examine the response of MEMB2D1 having 𝜏 = 0 for a range of wave frequencies. However, before delving into this
analysis, it is crucial to understand the wave-celerity within the floating membrane. The dispersion relationship for the wave
propagating in fluid free-surface is given by Eq. (39a). The dispersion relationship for a wave propagating through the floating
membrane with 𝜏 = 0 is given by Eq. (39b), where 𝑘𝑚 and 𝑐𝑚 are the wave-number and wave-celerity within the floating membrane.
This equation is derived by combining the kinematic and dynamic boundary conditions on 𝛤𝑚 in Eqs. (9). We refer the readers
to Karmakar and Sahoo (2008) for the detailed derivation.

𝜔2 = 𝑔𝑘 tanh(𝑘ℎ) ⟹ 𝑐2 =
𝑔
tanh(𝑘ℎ) (39a)
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Fig. 18. Contour plots of mode shapes of first 12 wet modes for MEMB2D1, along with the corresponding natural frequencies 𝜔𝑤.

Fig. 19. Plots showing the comparison of wave celerity in floating membrane MEMB2D1 vs the wave celerity in the fluid free-surface.

𝜔2 = 𝑔𝑘𝑚 tanh(𝑘𝑚ℎ)
(

1 − 𝑚
𝜌𝑔

𝜔2 + 𝑇
𝜌𝑔

𝑘2𝑚

)

⟹ 𝑐2𝑚 =
𝑔
𝑘𝑚

tanh(𝑘𝑚ℎ)
(

1 − 𝑚
𝜌𝑔

𝜔2 + 𝑇
𝜌𝑔

𝑘2𝑚

)

(39b)

The comparison of wave celerity 𝑐𝑚 for MEMB2D1 and 𝑐 for fluid is shown in Fig. 19. This comparison reveals that the wave
celerity, and consequently the wavelength, is greater for the wave travelling within the membrane in contrast to the free surface
of the fluid. As per the conclusions of Zhang and Schreier (2022), this should result in the spreading of the waves downstream of
MEMB2D1.

We analyse the response of MEMB2D1 for wave-frequencies 𝜔 ∈ [1.5, 4.5] rad s−1, corresponding to wave-length 𝜆∕𝐿𝑚 ∈ (0.15, 1.3).
The schematic of the numerical domain used for this analysis is shown in Fig. 17. Similar to Section 5.4, the numerical domain
has a width 𝑊𝛺 = 4ℎ and depth ℎ. The length of the domain is set as 𝐿𝛺 = 6𝜆 + 2𝐿𝑚, including two damping zones 𝛺𝑑1 in
𝑥 ∈ (−3𝜆 − 0.5𝐿𝑚,−0.5𝐿𝑚) upstream and 𝛺𝑑2 in 𝑥 ∈ (1.5𝐿𝑚, 1.5𝐿𝑚 + 3𝜆) downstream of the membrane, each of length 3𝜆 to
efficiently absorb the reflected waves. The membrane is placed in the middle of the domain’s free-surface between 𝑥 ∈ (0, 1𝐿 )
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Fig. 20. 3D render of the solution for ℜ(𝜙) on 𝛺, ℜ(𝜂) on 𝛤𝑚 and ℜ(𝜅) on 𝛤𝜅 , throughout the numerical domain, for 𝜔 = 2.75 rad s−1 and 𝜏 = 0.0.

Fig. 21. Contour plots of the spatial variation of the solution of membrane deflection 𝜂 and surface elevation 𝜅 in the vicinity of the membrane for
𝜔 = {2.00, 2.45, 2.75} rad s−1 and 𝜏 = 0.0.

and 𝑦 ∈ (−0.5𝑊𝑚, 0.5𝑊𝑚). The domain is meshed using second-order hexahedron elements, having 𝛥𝑥 = 𝜆∕12, 𝛥𝑦 = 𝜆∕12 and
𝛥𝑧 varying exponentially from 0.0385ℎ near the free-surface to 0.1988ℎ near the bottom boundary over 10 steps. Given that the
wave-length is expected to be longer within the membrane compared to the fluid free-surface, the mesh size is governed by the
wave-length within the fluid free-surface.

The analysis is first done for materially undamped membrane having 𝜏 = 0.0. Fig. 20 presents a 3D view of the complete
numerical domain for 𝜔 = 2.75 rad s−1, highlighting the complex interaction of the incoming waves with the 2D membrane and
the tank side-walls. The damping zones 𝛺𝑑1 and 𝛺𝑑2 upstream and downstream of the domain are observed to absorb the waves
scattered by the membrane. Subsequently, we narrow our focus to the vicinity of the membrane. Fig. 21 presents the real and
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Fig. 22. Contour plots showing the spatial variation of the absolute value of the solution of membrane deflection 𝜂 and surface elevation 𝜅 in the vicinity of
the membrane for 𝜔 = {2.00, 2.45, 2.75} rad s−1 and 𝜏 = {0.0, 0.10}.

Fig. 23. Contour plots of the spatial variation of the solution of membrane deflection 𝜂 and surface elevation 𝜅 in the vicinity of the membrane for
𝜔 = {2.00, 2.45, 2.75} rad s−1 and 𝜏 = 0.10.

imaginary value of the solution for surface elevation 𝜅 and membrane deflection 𝜂, scaled against the input wave amplitude 𝜅0 for
three different 𝜔. Fig. 22a presents the absolute value of the solution for 𝜏 = 0.0. We use these figures to conduct a qualitative
assessment of the hydro-elastic interaction between the 2D membrane and the waves. These figures highlight comparatively longer
22
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Fig. 24. Plots of absorption coefficient for MEMB2D1 for a range of excitation frequencies and 𝜏 = {0.01, 0.05, 0.10}. Here the vertical lines denote the wet
natural frequencies of the 2D finite floating membrane.

wave-length within the membrane contrasted against the wave-length within the free-surface. This relative acceleration of the wave
within the membrane along with the diffraction of the wave by the boundary of the membrane creates a complex outward dispersion
of the transmitted wave. This effect is particularly emphasised by the reflection of the transmitted wave against the tank side-walls
and the creation of a sheltered zone in the wake of the membrane. Further, Fig. 22a indicates that reflection from the membrane is
more pronounced for high frequencies, as evident from the higher peaks upstream of the membrane for 𝜔 = 2.75 rad s−1 compared to
𝜔 = 2.0 rad s−1. At 𝜔 = 2.45 rad s−1, which is close to the wet natural frequency 𝜔𝑤

5 = 2.49 rad s−1, we observe a lower reflection of the
wave as evident from lower peaks in the upstream solution in Fig. 22a. In fact the real value of the deflection 𝜂 for 𝜔 = 2.45 rad s−1

closely aligns with the real value of the mode shape 𝜔𝑤
5 presented in Fig. 18.

Similar to Section 5.3, we repeat the analysis for different values of damping coefficient 𝜏. Fig. 23 presents real and imaginary
values of the solutions for the membrane deflection and free-surface elevation in the vicinity of the membrane for 𝜏 = 0.10. Fig. 22b
presents the absolute value of the solution for 𝜏 = 0.10. Fig. 22 distinctly highlights the lower magnitude of the free-surface elevation
and membrane deflection for 𝜏 = 0.10 compared to 𝜏 = 0.0, primarily due to partial absorption of the incoming wave energy by
the membrane. The 2D membrane essentially can absorb energy from deformation along both the X and Y axes. This absorbed
energy can be quantified using Eq. (36d). Fig. 24 presents the plots of absorption coefficient 𝐾𝐴 for a range of frequencies for
𝜏 = {0.01, 0.05, 0.10}. We observe irregularities in the 𝐾𝐴 plot for 𝜏 = 0.01, potentially influenced by the presence of tank side-walls.
For higher damping ratio 𝜏, these irregularities in the 𝐾𝐴 plot are smoothed out. The plot also marks the computed wet natural
frequencies of MEMB2D1. We once again observe a local peak at a few, not all, wet natural frequencies of the membrane. This
is potentially because the membrane was excited by unidirectional waves propagating along the length of the membrane, which
only excited a few of the wet modes. Nevertheless, the analysis underscores that upon identifying the predominant wet modes, it
becomes feasible to devise mechanisms aimed at harnessing the maximum potential offered by these modes.

5.6. Application to 2D floating membrane around a monopile

In this section, we present the application of the developed model to a physical problem. We study the interaction of a bottom-
fixed monopile foundation with a circular viscoelastic membrane in the presence of ocean waves. The viscoelastic membrane here
can be installed as a floating breakwater to offset/partially reflect the ocean waves and thereby protect the monopile foundation.
It can also function as a wave-energy converter, extracting ocean energy from a wide bandwidth of frequencies, thus exploring the
synergy between different ocean renewable technologies.

We consider the typical dimensions of the wind-turbine foundation installed in the North Hoyle wind farm, located in Liverpool
Bay, 8 km off the coast of North Wales. These monopile foundations have a diameter 4m and are installed in the depth of 7 − 11 m.
We place this monopile on a submerged conical island, in order to show the capabilities of the model to simulate irregular sea-bed.
The specifics of the test case are shown in Fig. 25. A monopile of diameter 𝐷𝑐 = 4 m and length 𝐿𝑐 = 1.5𝐷𝑐 is placed in the middle
of a numerical domain with width 𝑊𝛺∕𝐷𝑐 = 10, length 𝐿𝛺∕𝐷𝑐 = 40 and depth ℎ = 10 m. The monopile is placed on top of a
conical island with top diameter 3𝐷𝑐 , bottom diameter 5𝐷𝑐 and height 0.4ℎ. The monopile is surrounded by a viscoelastic floating
membrane 𝛤𝑚 of diameter 𝐷𝑚 = 6𝐷𝑐 . The membrane is made of high-density polyethylene (HDPE), having density of 𝜌𝑚 = 970 km3

and thickness of ℎ𝑚 = 0.005 m, resulting in 𝑚𝜌∕𝐷𝑚 = 2.08 × 10−4, and has a pre-tension of 𝑇𝜌∕𝑔𝐷2
𝑚 = 8.633 × 10−3.

The boundary condition for the side-walls 𝛤𝑠𝑤, cylinder boundary 𝛤𝑐𝑦𝑙 and the bottom 𝛤𝑏 are slip walls. Additionally, the domain
has two damping zones, each of length 𝐿𝑑∕𝐷𝐶 = 10, attached to the inlet 𝛤𝑖𝑛 and outlet 𝛤𝑜𝑢𝑡 boundaries to absorb the waves
dispersed by the membrane and the monopile. The domain is decomposed using an unstructured mesh of second-order tetrahedral
elements. The element size 𝛥𝑟 is prescribed as 𝛥𝑟∕𝐷 = 0.15 at the top boundary 𝛤 ∪𝛤 and at the monopile boundary 𝛤 . For the
23
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Fig. 25. Schematic of the numerical domain containing a monopile with boundary 𝛤𝑐𝑦𝑙 , surrounded by a viscoelastic floating membrane 𝛤𝑚 (shown in red). The
monopile is installed on a conical submerged island. (a) Top view of the domain. (b) Vertical view of the middle plane of the domain. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 26. 3D render of the solution for ℜ(𝜂) and ℜ(𝜅) throughout the numerical domain for 𝜔 = 2.50 rad s−1 and 𝜏 = 0.0. The figure also includes a zoomed-in
view of the membrane deflection around the monopile and the contour plot of the corresponding dynamic pressure ℜ(𝑃𝑑 ) on the monopile surface.

remaining domain, the element size is controlled using an exponential background field function gradually varying the mesh size
from 𝛥𝑟∕𝐷𝑐 = 0.15 on the top to 𝛥𝑟∕𝐷𝑐 = 0.50 at the bottom, resulting in 551,433 s order tetrahedral elements. These simulations
are executed as a serial process on a system with Intel(R) Xeon(TM) E5-6248R processor and 192 GB of RAM. The run-time for
simulations is 5 min per frequency.

The membrane and monopile are exposed to a range of excitation frequencies 𝜔 ∈ [1.5, 3.2] rad s−1. For this range of frequencies,
𝐷𝑐∕𝜆 ∈ (0.2, 0.8), and hence there is significant diffraction of the waves by the monopile. Fig. 26 presents a 3D render of the solution
for the membrane deflection and the free-surface elevation over the complete numerical domain for 𝜔 = 2.5 rad s−1 and 𝜏 = 0.0. It
also highlights the performance of the damping zones upstream and downstream of the monopile. The solution for velocity potential
𝜙 can be used for evaluating the dynamic pressure 𝑃𝑑 in the domain, 𝑃𝑑 = 𝜌𝑖𝜔𝜙. Fig. 26 additionally presents a contour plot of
the dynamic pressure on the monopile due to the action of the wave for the corresponding scenario. Using this dynamic pressure,
we evaluate the dynamic force on the monopile due to the action of the waves 𝐅 = ∫𝛤𝑐𝑦𝑙 𝑃𝑑 𝐧𝑐𝑦𝑙 𝑑𝛤 . This force is used to evaluate
the performance of the viscoelastic membrane in sheltering the monopile foundation from the ocean waves. Fig. 27a presents the
magnitude of the dynamic force acting along the wave direction (X-axis) on the monopile due to the action of the waves. Here
the calculated force 𝐹 is appropriately non-dimensionalised as 𝐹 , considering the volume of the cylinder, the wave-elevation
24
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Fig. 27. (a) Plots of wave force on the monopile, in the absence and presence of the viscoelastic floating membrane, for a range of wave frequencies and various
damping coefficients 𝜏. (b) Plots of wave power absorbed by the viscoelastic membrane, for a range of wave frequencies and various damping coefficients. The
vertical lines in the plot are the wet natural frequencies of the floating membrane.

Fig. 28. Contour plots showing the spatial variation of ℜ(𝜂) and ℜ(𝜅) in the vicinity of the monopile for 𝜔 = {2.50, 2.90} rad s−1. The figures present results in
the absence of the floating membrane, and in the presence of the floating membrane with 𝜏 = 0.0 and 𝜏 = 0.10.

and the wave-frequency. Additionally, Fig. 27b presents the wave power absorbed/dissipated by the viscoelastic membrane having
𝜏 ≠ 0.0.
25
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In the absence of a surrounding membrane, the force (𝐹𝑥,𝑛𝑑) acting on the monopile follows a steadily decreasing pattern as
the wave frequency increases. When the thin viscoelastic membrane is introduced, there is a noticeable reduction in wave force,
particularly at lower wave frequencies. The reason for this can be deduced from the contour plots of membrane deflection and wave
elevation in the vicinity of the membrane, as shown in Fig. 28. The viscoelastic membrane partially reflects the incoming waves, as
was discussed in Section 5.3. Additionally, the higher wave celerity within the membrane, compared to the fluid free-surface 𝑐𝑚 > 𝑐
(see Fig. 19), causes outward dispersion of the incoming waves. The higher 𝑐𝑚 is distinctly evident in the longer wavelength within
the membrane in Fig. 28. These combined effects contribute to a reduction in the wave force acting on the monopile.

However, Fig. 27a shows an increase in wave force in the presence of the membrane beyond 𝜔 = 2.7 rad s−1, peaking around
𝜔 = 2.9 rad s−1. This increase is attributed to the existence of membrane mode at 𝜔 = 2.9 rad s−1, highlighted by the vertical lines
in the plot. The excitation of this mode leads to resonance and consequently, an increase in the force acting on the monopile in
the presence of the membrane. The introduction of viscous damping (𝜏 ≠ 0) can partially mitigate this effect, as evident from the
plot for 𝜏 = 0.10 in Fig. 27a. The plot of absorption coefficient 𝐾𝐴 for 𝜏 ≠ 0 once again reveals local peaks at a few wet natural
requencies of the membrane in Fig. 27b, consistent with our observations in the earlier sections.

. Conclusions

In this manuscript, we have presented a monolithic finite-element model that couples linear free-surface potential flow with
he viscoelastic membrane equation. The study has rigorously defined the coupled multi-physics problem, along with the necessary
oundary conditions. Subsequently, the manuscript presented the weak form of the system, and established the consistency and
nergy-conserving properties of the system. Furthermore, the weak form was used as the basis for deriving the wet modal analysis
or the coupled system, along with the description of the iterative algorithm for calculating the wet natural frequencies of the floating
embrane.

Subsequently, the manuscript illustrates the convergence characteristics of the model, obtaining an 𝑂(𝑟+ 1) rate of convergence
or elements of polynomial degree of 𝑟. Following this, we focus on the wet natural frequencies and corresponding mode shapes
f a 1D floating membrane, and study their variation with respect to the tension and the mass of the membrane. The manuscript
nderscores the dominance of added mass, evident in the lower values of wet natural frequency in comparison to the dry natural
requency. Furthermore, it emphasises the primary dependence of the wet natural frequency on the membrane tension.

The manuscript further examines the interaction of 1D floating membrane with incoming ocean waves. We first study the
ehaviour of the materially undamped membrane with 𝜏 = 0, employing reflection and transmission coefficients. In general, we
bserved the reflection coefficient to increase with the wave frequency. Crucially, the floating membrane here is observed to
unction akin to a mechanical filter, where the waves at the wet natural frequency of the membrane are found to be entirely
ransmitted. This underscores the significance of computing these frequencies and presents the mechanism for tuning the response
f the floating membrane. Subsequently, the manuscript studies materially damped membranes having 𝜏 ≠ 0. Here we additionally
alculate the wave energy absorbed by the membrane, indicative of energy harvested by a wave-energy converter or the energy
issipated by a floating breakwater or floating solar platform. We also report the drift force on the membrane, calculated based
n the conservation of momentum. At lower low frequencies, the membrane predominantly exhibits heaving motion. For higher
requencies, the membrane largely reflects the waves, with minimal deflection response. Hence there is a narrow bandwidth of the
requencies, depending on the value of 𝜏, which induces an elastic response from the membrane. At the wet natural frequencies,
e observe local peaks in the absorption and transmission coefficients and local troughs in reflection and drift force. The specific
lobal peak in absorption coefficient is dependent on the value of 𝜏.

The following sections study the 3D problem of a 2D finite floating membrane, underscoring the versatility of the developed
odel and wet modal analysis. We first study a square membrane and report its calculated wet natural frequencies and mode

hapes. Subsequently, we examine the interaction of this finite 2D membrane with ocean waves for a wide range of frequencies.
e demonstrate that the wavelength within the membrane is longer than within the free surface, aligning with the membrane’s

ispersion relationship. This leads to an outward dispersion of the wave and creates a sheltered zone in the wake. Other observations
or 2D membranes were similar to the 1D case, with local peaks in absorption coefficient at certain natural frequencies and increased
eflection of higher frequency waves. The final numerical test studies the interaction of a circular floating membrane with a
onopile, assessing its efficacy as a floating breakwater. In this scenario, the membrane is noted to decrease the wave force on

he monopile at lower frequencies. However, our analysis underscores that the excitation of the wet mode of the membrane can, in
act, amplify the wave force on the membrane.

The manuscript has presented the formulation and capabilities of this monolithic FE model for studying irregularly shaped 2D
isco-elastic membranes in 3D fluid environments. The presented FE model adeptly captures both propagating and evanescent modes
f waves generated in the fluid domain as a result of the elastic response of the floating membrane. This capability sets it apart
rom the traditional mode expansion approach, which may have limitations in analysing evanescent modes, if any. Such analysis
s particularly crucial for low-frequency excitation, as emphasised in Section 5.3.3. Lastly, our results underscore the promising
otential of low-dimensional (thin) structures to serve as effective wave-energy converters or breakwaters, leveraging material
amping to enhance their performance.

The presented model can hence be used for the structural analysis of floating membranes for floating solar, floating breakwater
nd wave-energy converter applications. Our subsequent work will focus on implementing nonlinear free-surface and nonlinear
embrane deflection governing equations. The presented FE model can readily accommodate nonlinear free-surface dynamics
26

hrough a semi-Lagrangian approach. A significant challenge ahead is determining the value of 𝜏. The current work has demonstrated



Journal of Fluids and Structures 129 (2024) 104167S. Agarwal et al.

&

D

t

D

A

the impact of this coefficient on the membrane response. Furthermore, the model can accommodate the variation in 𝜏 based on the
membrane and the excitation frequency. However, there is little information in the literature about calculating this coefficient for
various materials. Additionally, in the content of wave-energy converters, additional research is needed for correlating the damping
coefficient with the electro-mechanical process of converting deformation to electrical energy.
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