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FractalAnalyzer: A MATLAB Application for
Multifractal Seismicity Analysis

by P. N. S. Roy and Deepak K. Gupta

Online Material: MATLAB code and associated figures and
tables describing the multifractal seismicity analysis method.

INTRODUCTION

Earthquakes are seismic phenomena caused by the sudden release
of energy in the Earth’s crust. Their effects range from ground
shaking to faulting. Geological and geophysical studies, especially
in light of plate tectonic theory have been used to explain the oc-
currence of earthquakes. Thus from the point of view of statistical
fractals, earthquakes cannot be interpreted as random independent
events (i.e., having Poisson distribution). Rather, it is observed that
the events of the same sequence are clustered in time and space
(Shlien and Toksoz, 1970; Vere-Jones, 1970; Smalley et al., 1987;
De Natale et al., 1988; Roy and Mondal, 2012a,b).

Several past approaches studied the clustering effect of the
earthquakes. The generalized Poisson model is one of the most
commonly used tools to understand the distribution of the seis-
mic events (Ripley, 1988; Stoyan and Stoyan, 1994). This model
assumes that the Poisson distribution can be used to describe the
uncorrelated clusters of events, whereas the number of events in
each cluster is defined by the power law distribution. Some re-
searchers have studied these seismicity clusters by considering the
occurrence of an earthquake to be a stochastic self-exciting proc-
ess (Vere-Jones, 1970; Ogata et al., 1982; Molchan and Kronrod,
2007). Another useful approach toward quantification of the
clustering properties of an earthquake process is the multifractal
analysis of the seismic events.

In the past, several authors have explained the regional seis-
micity clustering through fractal-like structures (Sadovskiy et al.,
1985; Smalley et al., 1987), and these works suggest that multi-
fractal analysis is an effective method for studying earthquake pat-
terns. Moreover, this method provides a detailed explanation of the
chaotic nature of distributions and geometry associated with the
earthquake clustering phenomena (Bak and Tang, 1989; Huang
and Turcotte, 1990; Chen et al., 1991; Kagan and Jackson, 1991;
Godano and Caruso, 1995; Guo and Ogata, 1997; Telesca et al.,
1999; Evison, 2001). The fractal dimensions needed for multi-
fractal analysis can be calculated using different methods. The
correlation integral approach calculates the correlation fractal
dimension (Kagan and Knopoff, 1980; Grassberger and Procaccia,

1983a; Hirata, 1989). Generally, the fractal distributions or stat-
istical scale invariance that exists in nature and in dynamic systems
are found to be heterogeneous (Mandelbrot, 1989). Thus, a
unique fractal dimension is not enough to understand the cluster-
ing of these events. In such cases, multifractal analysis is performed
and the fractal dimensions are characterized by the general dimen-
sion Dq or the f �α� spectrum (Hentschel and Procaccia, 1983;
Halsey et al., 1986; Neuman, 2010). Moreover, multidimensional
fractal study provides a quantitative measure of the spatial cluster-
ing (i.e., whether cluster exists within clusters), thereby giving
information about the crustal deformation in space and time nu-
cleation of events. Therefore, multidimensional will explain the
state from one level to other level of cluster existence, when it
saturates at higher value, it indicates that no further cluster exists
within cluster. This spatial clustering result can be used to under-
stand the seismicity of a region (Aki, 1981, 1984; King, 1983;
Legrand et al., 1996; Nakaya and Hashimoto, 2002; Oncel and
Wilson, 2002, 2004, 2006; Roy and Ram, 2006; Li and Xu, 2012).

This paper presents the application of the correlation integral
method for the determination of the correlation dimension and
the multifractal or generalized fractal dimension. These results are
further used to determine the clustering of seismicity (Grassberger
and Procaccia, 1983b; Roy and Ram, 2006; Roy and Padhi, 2007).
Multifractal analysis also helps to interpret the heterogeneous frac-
tal nature of seismicity. This heterogeneity is an indication of the
complex stress pattern of the region (Legrand et al., 1996; Oncel
and Wilson, 2004). For easy implementation of this method, we
present FractalAnalyzer, a MATLAB-based (http://in.mathworks
.com/support/compilers/R2010a/win32.html; last accessed Au-
gust 2015) application that uses this algorithm to interpret the
spatiotemporal cluster of earthquake occurrence. FractalAnalyzer
is an interactive graphical user interface (GUI) developed in MAT-
LAB R2010a. It is capable of using up to a total of 22 fractal
dimensions to define a cluster of earthquake events. The interac-
tive feature of this application provides the flexibility of choosing
the number of events to be considered within each subset. Addi-
tionally, this application includes a graph-plotting module that can
be used to plot various graphs associated with this algorithm. To
demonstrate the capability and effectiveness of this application, we
used it to analyze the clustering of seismicity before the 08October
2005 Kashmir earthquake (Mw 7.7).

THEORY AND ALGORITHM

Fractals
Fractal dimension is a characteristic index of a fractal object or
set (Hirabayashi et al., 1992). As per Mandelbrot (1977), a
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fractal is defined as a set for which Hausdorff–Besicovitch di-
mension strictly exceeds the topological dimension. The Haus-
dorff–Besicovitch dimension is not easy to calculate for fractals
in the real world. There are several ways of defining the fractal
dimensions (Takayasu, 1990). For example, the similarity di-
mension Ds is defined for an exactly self-similar or a smaller
portion of distributions and has exactly the same kind of dis-
tribution in a larger portion set as

Ds �
log b
log a

; �1�

in which a is the linear size and b is the number of similar
daughters. Ds has a more theoretical than practical base. Scale
invariance distribution, which is not exactly self-similar in all
scales, can be quantified with the capacity dimension D1,
defined as

D1 �
logN�r�
log�1=r� ; �2�

in which N�r� is the smallest number of coverings of the set
with size r. D1 has the practical advantage of extracting infor-
mation about a system in a statistical sense. Further statistical
extraction of the scale invariance distribution is done with the
help of the information dimensionDI , which is based on prob-
ability distribution and defined as

DI � lim
r→0

XN�r�

i�0

Pi�r� log Pi�r�
log r

: �3�

In equation (3), Pi�r� is the probability for a point in the sam-
ple space to belong to the ith box with size r. Correlation di-
mension Dc depends on the correlation integral C�r� and the
relation can be expressed as follows:

C�r� ≈ rDc−d; �4�

in which d is the spatial dimension. C�r� is calculated from N
using the following relation:

C�r� � lim
N→∞

1
N 2 ; �5�

in whichN is the number of pairs of points in the sample space
for which distance is less than r. In general, D1 ≥ DI ≥ Dc . The
relationship holds true for homogeneous fractals, and the in-
equality is valid for heterogeneous multifractals (Hirabayashi
et al., 1992). They are applied to extract information about
distributions of various theoretical and physical situations.
A unique finger print for each of the dimension to be ob-
tained will have its own significance as a multifractal object,
which demands an infinite hierarchy of fractal dimensions,
known as the generalized fractal dimensions Dq. This can be
expressed as

Dq �
1

q − 1
lim
r→0

logfP
i
�Pi�r��qg

log r
; �6�

in which Dq exhibits a nontrivial scaling behavior for differ-
ent values of q � 1; 2; 3;…;. and Pi�r� is the probability of an
event lying within a square box of dimension r. The gener-
alized dimension Dq is defined for all real values of q and is a
monotonically decreasing function.

Mandelbrot (1989) showed that lower- and upper-
limiting dimensions, D−∞ and D∞ respectively, exist that are
related to the different regions of the set. D−∞ and D∞ cor-
respond to the regions in which the measures are most dilute
and most dense, respectively, and this phenomena is termed
multifractality. Usually, the multiplicative cascades of the ran-
dom processes generate multifractal structures, whereas the
additive processes produce simple fractures (Bunde et al.,
1990). The correlation dimension Dc thus obtained is

Dc � lim
q→2

Dq � D2: �7�

In two dimensions, the values of Dq approaching a value of 2
signify a uniform coverage of the plane. We use the spherical
triangular method to calculate the distance between two epi-
centers (Oncel andWilson, 2002; Mandal et al., 2005; Roy and
Nath, 2007; Roy and Mondal, 2009).

Correlation Dimension
The fractal correlation dimension is derived from the correla-
tion integral, which is a cumulative correlation function that
measures the fraction of points in 2D space and is defined as

C�r� � 2
N�N − 1�

XN
j�1

XN
i�j�1

H�r − rij�; �8�

in which N is the number of pairs that can be formed from a
given cluster of seismic events (for 50 events, the N window
will be 50C2, which equals 1225), r is the length scale, rij is the
distance between any two points of the cluster set obtained
using the spherical triangle method, and H is the Heaviside
step function. Grassberger and Procaccia (1983a) defined N as
the total number of events that form the set. We consider it to
be the set of all possible unique vector pairs, with two events
taken each time. C�r� is proportional to the number of vector
pairs of the fractal set having length less than r. Figure 1 shows
a graph of log C�r� versus log r at different stages of an exam-
ple fracture process. Based on regression analysis, we determine
the equation of the line that fits the distribution. The slope of
this line gives the fractal dimension (Dc) of the system. The
large-scale deviations from linear dependence are associated
with the finite size of samples, whereas the small-scale devia-
tions are due to the boundary effects of data.

Generalized Dimension
Multifractal dimension parameter Dq represents the compli-
cated fractal structure or multiscaling nature of the seismic
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events. In this work, we use Dq to analyze the seismicity cluster-
ing toward the multiscale notion. Some of the most common
methods for calculating Dq are the fixed-mass method, the fixed
radius method, and the box-counting method (Grassberger and
Procaccia, 1983a; Halsey et al., 1986; Mandelbrot, 1989). Pawel-
zik and Schuster (1987) extended the Grassberger–Procaccia
method for the recovery of dimension from a time series. The
related formulae are given as

log Cq�r� � Dq log r�r → 0� �9a�

and

Cq�r� �
�
1
N

XN
j�1

�
1
N

XN
i�j

H�r − jXi − Xj�
�
q−1�1=�q−1�

;

�9b�
in which Cq�r� is the qth-order correlation integral. The above
formulation is implemented in FractalAnalyzer to process the
datasets. Dq is the slope of the straight line fitted on the data
of log r versus log Cq�r� graph using the linear regression method.
For a different value of q, we get a different Dq. The curve of
q − Dq is termed the Dq spectrum.

FractalAnalyzer Application
FractalAnalyzer is a MATLAB-based interactive graphical ap-
plication for multifractal analysis of the earthquake events and
seismicity clusters. It consists of two modules: the multifractal

computation module (MCM) and a grapher module (GM). Ⓔ
Figures S1 and S2 (available in the electronic supplement to
this article) show the graphical displays of FractalAnalyzer ap-
plication in MCM mode and GM mode, respectively. MCM
provides the functionalities to perform multifractal analysis
for q (e.g., q � 2; 3;…; 22). GM can be used to plot the various
graphs that are associated with this method, such as q − Dq
plot, log r − log C�r� plot, and Dq − t.

The FractalAnalyzer application is built in MATLAB
R2010a and requires a MATLAB Compiler Runtime (MCR)
v.7.13 or higher. In addition, it is a Windows stand-alone ap-
plication, and the GUI is built using the GUIDE tool of MAT-
LAB. FractalAnalyzer is provided in both forms (a MATLAB-
based GUI application and a MATLAB package), thus it can be
used as an end-user application or a developer’s module. The
MATLAB code is provided under the GNU license and can
be freely edited and used for research purposes. The end-user
package consists of the following files: install.bat, FA.exe, FA_
pkg.exe, and readme.txt. The text file provides details about the
installation of the application. If the user has MCR (v.7.13 or
higher) already installed on the system, then the FA.exe file
should be run first to start the application; otherwise, for com-
plete installation (including the required MCR), the install.bat
file needs to be run first. To let the user be able to modify the
algorithm (MATLAB script), the structure of the program is
described in the following sections.

Multifractal Computation Module
MCM contains functionalities for performing correlation-
integral-based multifractal analysis and saving the results in
an organized format. Ⓔ Figure S1 shows a screenshot of this
module, providing information about the format of the input
file. The input file required for MCM is a fixed seven-column
format without any headers. The file extension is .dat. The seven
columns are year (yyyy), month (mm), day (dd), hours, minutes,
latitude, and longitude. Once the input file is supplied, this mod-
ule provides the flexibility of choosing the number of data points
to be kept in each cluster for Dq computation. Figure 2 shows a
flowchart describing the process of computing the Dq values
from the provided input. The main steps for multifractal analysis
are described in the following sections.

Input Data
As mentioned above, FractalAnalyzer is very specific with the
format of the input data. The data needs to be arranged in a
fixed seven-column format without any headers and the file
name should contain a .dat extension.

Choose the Window Size
The data need to be divided into several segments based on the
length of the window. The multifractal dimension is then cal-
culated for each of the segments independently. Further, to
understand the stress accumulation, the fractal dimension values
from all the segments are grouped together and on a temporal
scale. The length of the window should neither be very large nor
too small. The optimum length of the window is 50–75 events.

▴ Figure 1. Log C�r� versus log r is shown for one time window of
the Kashmir earthquake region with latitude (32°–37° N) and longi-
tude (70°–75° E); the slope gives DC. The straight line demarcates
the scaling region obeying the power law (i.e., scale invariance). R2

represents correlation coefficients of the regression line.
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If the number of events within each segment exceeds 100, it is
expected that the shorter patterns will be missed out (Roy and
Mondal, 2012a). For windows with few events, it is difficult to
obtain a reliable linear fit for the log r − log C�r� graph; in this
case, statistical invalidity would be prominent due to lack of data.

Determine r-Values
The distance (rij) between any two points of a set is calculated
as stated above and operated with r, defining the space con-
taining a fraction of points. The result is characterized with
the Heaviside function and summed over all the possible pairs
of points that lie within a defined window. The MATLAB
code for determination of r-values is contained within the dis-
tance.m file, and it forms the integral part of the FractalAna-
lyzer package.

Calculating the Correlation Integrals
FractalAnalyzer uses a correlation integral approach to deter-
mine the multifractal correlation dimension for a given
sequence of seismic events. The cumulative correlation function
is used to measure the distribution as shown by equation (8)
(Grassberger and Procaccia, 1983a; Roy and Ram, 2006). Here,
N is used as (NC2) for each window, as stated above in the Cor-
relation Dimension section. Using the r-values and the Heavi-
side function value, the corresponding correlation integrals are
calculated.

Regression Analysis for Dq
The correlation integral (Cq�r�) values are obtained, these data
values are plotted with respect to r. Both, Cq�r� and r are plot-
ted on a logarithmic scale. Dq is obtained from a log–log plot
corresponding to the linear portion as stated previously in the
Generalized Dimension section. A minimum of 51% continu-
ous points should be chosen to perform proper multifractal
analysis, otherwise we would have unreliable estimate (Oncel
and Wilson, 2002).

FractalAnalyzer uses the plotting functions of MATLAB
to fit the points on a line, such that the fitness function or
regression coefficient has a value >0:99. In the region of active
seismicity, the minimum values of 0.98 are also acceptable
(Oncel and Wilson, 2002). If the misfit is more, then the re-
sults obtained from multifractal analysis will be ambiguous. For
further development purposes, the subroutine distance.m can
be used.

Grapher Module
GM is the secondary module of FractalAnalyzer, which pro-
vides the flexibility to view the several plots associated with the
multifractal analysis procedure. This helps in immediate analy-
sis of the results without the need to switch to any additional
software. The module allows viewing the following plots:
log r − log C�r�, Dq − q, and Dq − t (Fig. 3b).

log r − log C�r� Plot
This is a plot of the cumulative correlation function C�r� ver-
sus the maximum allowable separation between two points r.
C�r� is defined as described in the Correlation Dimension
section, mainly obtained with the controlling parameter r. As
discussed in the Correlation Dimension section, when C�r�
and r are plotted on logarithmic scales to obtain Dc , they
show a linear relationship with slight deviations. Significant
deviation from the above said value in the Regression Analysis
for Dq section will lead to ambiguity, which is shown in Ⓔ

Tables S1 and S2.
Once MCM is executed, the entire study dataset is divided

into several sets with n number of events contained in each set.
MCM allows the user to change the value of n (default 100) as
per the requirements, but it should not be<30. The data (log r
and log C�r�) are saved in the folder corresponding to each
cluster. For example, the output for the third set of 50 events
for Dq � 2 is saved in log_files_50_3\correlation/Cqr_2.dat.
This data file can be loaded in GM to view the plot. Ⓔ Fig-

▴ Figure 2. Flowchart describing the process of computation of
the Dq values from the provided seismicity data input.
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ure S3 shows the graphical display of the FractalAnalyzer ap-
plication in GM mode using the plot of log r versus log C�r�.
The MATLAB code for this subroutine is located in Fractal-
Analyzer.m.

Dq − q Plot
In general, Dq is defined for all real values of q. FractalAnalyzer
calculates Dq for q � 2; 3; 4;…; 22. For values >20, Dq is
found to approach zero and is thus restricted to 22. Thus, the
validation of a fractal system can be done using the Dq − q plot
to see the trend of monotonically decreasing Dq with q, as
stated in the Fractals section.

Again, in the case in which the MCM is executed, Dq value
is computed for q � 2; 3; 4;…; 22 and is saved in a file with
.dqq extension in the folder corresponding to each cluster. For
example, the output for the third cluster of 50 events is saved
inlog_files_50_3\DQVsQ.dqq. Further, this data file can be
loaded directly in GM mode to view the plot. Ⓔ Figure S4
shows FractalAnalyzer in GM mode. An interesting point is
observed: the value of Dq decreases monotonically with in-
crease in the value of q and approaches 0 for higher q values.
To use this function as a subroutine for further development
purpose, we suggest using the computeDQVsQ.m function.
This file contains the MATLAB implementation for plotting
the Dq values with respect toq.

Dq − t Plot
The plot of Dq versus time �t� is studied to identify the region
that leads to low generalized fractal dimension (Dq) values.
Intense clustering leads to lowDq values. As the events get clus-
tered, their limit tends toward a point, that is, they are ap-
proaching dimension 0. Hirata et al. (1987) demonstrated
this with rock sample microfracturing in a laboratory experi-
ment. Thus, theDq versus t plot helps analyze the stress state of
the regional crust. This can help in better hazard mitigation of
the study region and its adjoining areas.

When FractalAnalyzer is run in MCMmode, the Dq value
is computed for each cluster of seismic events belonging to the
study region and is grouped in a single file in the DQ folder
with. dqv extension. For example, for q � 2, the output will be
saved in DQ/DQ_2.dqv. The MATLAB code for this func-
tionality is saved in computeDC.m.

APPLICATION

To test the capability and effectiveness of the FractalAnalyzer
application and to test efficiency of the correlation integral
method, we use of two sets of seismic events, one before the
strong 8 October 2005 Kashmir earthquake (Mw 7.7), and the
other immediately after it.

Data
For study purpose, we use the earthquake datasets for the region
bounded by 32° and 36° N latitudes and 71° and 75° E longi-
tudes. A total dataset of ∼1300 events (1974–2012) is obtained
from the U.S. Geological Survey (USGS) Preliminary Deter-
mined Epicenter database (body-wave magnitude mb ≥3:5).
The whole data are further divided into two sections: the
events before the 2005 Kashmir earthquake and the events
after it. The two subsets are arranged in a seven-column format
so as to match the input file criteria of FractalAnalyzer.

Results
FractalAnalyzer is used to study the multifractal distribution of
all events with mb ≥3:5 that occurred in the northwest Hima-
layan region during 1974–2012. From the Dq − t plot, it is
observed that the Dq value fluctuates with time (Fig. 3a,b).
Dq values are plotted against mean time of each 50-event win-
dow for consecutive periods to study the variation of spatial-
generalized fractal dimension with time. The correlation inte-
gral approach is used for the entire analysis as stated above in
earlier section.

Generalized Fractal Dimension
The nature of slopes of the linear fits for the log Cq�r� − log r
plots obtained for all the 20 consecutive time windows prior
to the 8 October 2005 earthquake of Mw 7.7 appears to be of
similar nature. Hence, we show only one such window for
demonstration purpose (Ⓔ Fig. S3). The range of r for which
the corresponding plot of log Cq�r� versus log r is a straight
line is an indication of the range over which a fractal model
holds true. Dq can be obtained from this linear portion of the

Time (year)

Time (year)

1975 1980 1985 1990 1995 2000 2005 2010

D
q

D
q

0

0.5

1

1.5

2
(a)

(b)

D
q
 Vs t plot

D
q
 Vs t plot

q = 2
q = 5
q = 8

2005 2006 2007 2008 2009 2010 2011
0

0.5

1

1.5

2

q = 2
q = 5
q = 8

▴ Figure 3. Using the FractalAnalyzer application, the multifractal
dimensions Dq as a function of time are plotted for the spatial dis-
tribution of seismic events (mb ≥3:5) (a) before and (b) after the
Kashmir earthquake 8 October 2005 (Mw 7.7).
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plot. TheDq values obtained for different values of q are shown
in Ⓔ Figure S4, and the curve is known as the Dq spectrum.
It characterizes the multifractal or heterogeneous fractal for
the spatial distribution of events. The multifractal nature sug-
gests the events form subclusters within a cluster of the fractal
structure.

The decrease and then increase in the value of Dq with
respect to the spatial distribution of seismic events indicates
clustering and dispersion in multifractal structure. In Ⓔ Fig-
ures S5 and 3b, the variation of Dq with respect to time has a
nature similar to those of the results published in the past (Hir-
ata et al., 1987; Nakaya and Hashimoto, 2002; Roy and Nath,
2007; Roy and Padhi, 2007). The fluctuation is due to strain
accumulation and liberation around the stressed zone.

Correlation Fractal Dimension
Dc can be obtained from the linear portion of the log C�r�
versus log r plot (Fig. 1). Ⓔ Figure S6 shows events prior to
the 8 October 2005 Kashmir earthquake lying within the study
area. Low Dc values of 1.28 and 0.92 are observed for windows
with mean time 2003.25 and 2005.083 years, respectively. The
clustering of the aftershocks of the 2005 Kashmir earthquake is
analyzed for the study area, and the low Dc values can be ob-
served in Ⓔ Figure S7. The technique of using 50 events for
each window provides a precursor for the 2005 Kashmir earth-
quake (Roy and Nath, 2007; Roy and Padhi, 2007). Here, we
define precursor as relative low Dc value for intermediate size
events set, which excludes aftershocks. This precursor is an in-
dicator of strain accumulation (Hirata et al., 1987; Nakaya and
Hashimoto, 2002). Again we may state that clustering of in-
termediate size seismicity helps to identify crustal deforma-
tion on a regional scale (Oncel and Wilson, 2006), which
possibly contributes to large earthquake preparation in self-
organized mode (Bak and Tang, 1989; Bak et al., 1994; Al-
Kindy and Main, 2003). Even Jaume and Sykes (1999) state
that combined observational and simulation evidence indicates
the period of increased moment release in moderate earthquake
signals establishes long-wavelength correlation in the regional
stress field. However, we would like to add that the above pre-
cursors cannot be classified as classical, because an exhaustive
search for such precursors was not carried out and we do not
know how common such an extremeDc value is or how goodDc
would be at predicting individual earthquakes.

Discussions
The main Himalayan thrust behavior within the western syn-
taxis of the range is poorly understood. Some of the surface
ruptures have been mapped. The exact locations of active faults
are ambiguous, and a few paleoseismological studies have also
been completed. Tectonic processes generally activate the fault
system, in which strain accumulation yields highly stressed
zone. The rupture may nucleate from those stressed zones, ac-
counting for most of the high-frequency seismic energy radi-
ation and eventually causing a large earthquake (Ⓔ Fig. S8).
The stressed zones control the distribution of earthquakes over
a fault zone that triggers repeated earthquakes, as controlled by

fault surface heterogeneities. Such a stress trigger has been re-
ported for the adjoining Himalayan zone by, for example, the
coloumb stress transfer approach (Gupta et al., 2015). Inter-
estingly, these zones possess different physical states and prop-
erties and hence can remain difficult to map by standard
geophysical techniques. Imaging this intriguing nature of the
subelements of the megathrusts is a challenge for geophysicists.

Analysis reveals significant variation in the multifractal
properties of seismicity between the tectonic subdivisions of the
area under study. Differences between D2 and D22 (as shown in
Fig. 3a,b) are related to the differences in the tendency for seis-
micity to be clustered or dispersed at different scales. Hence, the
differences between the multifractal dimensions D2 and D22 are
interpreted to result from fractal heterogeneity between regional
and local scales, respectively (Oncel andWilson, 2006). Changes
between the fractal dimension Dc and multifractal (q � 2–22)
measures illustrate the sensitivity of the multifractal characteri-
zation changes in the local complexity. The large difference be-
tween D2 and D22 implicates the presence of significant fractal
heterogeneity within the hypocenter distribution of shallow seis-
micity. This is due to the differences in fault complexity at local
scales (i.e., q � 15; 16;…; 22). With the help of multifractal
analysis, the fractal properties of complex fault systems can be
more suitably characterized.

In addition to the precursor for the 2005 Kashmir earth-
quake, several other low-DC-value zones exist. Some of these low
Dc values can be explained by the occurrence of events of the
order of magnitude of 6. The rest of these are the precursors to
the 2005 Kashmir earthquake, as mentioned in Ⓔ Table S1.

CONCLUSIONS

FractalAnalyzer is a simple, versatile tool for analyzing a well-
constrained catalog for seismically active regions to demonstrate
a quantitative representation of seismicity. Here, we could have
better spatiotemporal understanding of seismicity and its impli-
cation on physical understanding. FractalAnalyzer is also capable
of identifying the seismicity clustering based on low Dc or Dq
values. To demonstrate the effectiveness of this tool, we used
it to study the 2005 Kashmir earthquake. The relative clustering
is considered to be the set of all possible unique vector pairs
formed by two elements each time from the fractal set. The
modified conventional correlation integral approach has given
added benefit in this multifractal analysis of the intermediate-
size events prior to the major 8 October 2005 Kashmir earth-
quake. Consequently these patterns are totally in agreement,
which may serve as a precursor for this major earthquake.
Further, we use this tool to study the aftershocks. The results
presented here demonstrate the capability of the multifractal
method, as well as the FractalAnalyzer application. Moreover,
the multifractal analysis approach gave a view of heterogeneity
of the crust leading to such complex seismicity. The implemen-
tation of this method in a graphical interface for user-friendly
interactive environment makes FractalAnalyzer a strong tool for
studying the earthquake patterns. To be specific, FractalAnalyzer
and its importance can be judged as a viable technique, given
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quantitative spatiotemporal distributions for numerical warn-
ing rather than earthquake prediction. Thus, this reproducible
numerical precursor prior to major earthquakes might help in
improving hazard mitigation and, therefore, also in disaster man-
agement for other seismically active regions having past event
episodes. Thus FractalAnalyzer may play a key role in analyzing
strong earthquake preparation within a short span by using a
well-constrained catalog of seismically active zones.

DATA AND RESOURCES

FractalAnalyzer and its recent updates are available to down-
load from http://sourceforge.net/projects/fractalanalyzer/
(last accessed July 2015).
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