A learning-ased approach for dis-
fributed planning and coordination

Of alrport surface movement opera-
tlons

A

Master of Science Thesis

5, S Jpm
oy

= ===y

A learning-based approach for
distriouted planning and
coordination ot alrport surface
movement operations

Master of Science Thesis

by

Spyros Polydorou

For obtaining the degree of

Master of Science
in Aerospace Engineering

at Delft University of Technology

To be defended publicly on 30/09/2021.

Student number: 4355903
Thesis committee: Prof. Dr G.C.H.E de Croon TU Delft, Chairman
Dr. O.A. Sharpanskykh TU Delft, Supervisor
Dr. E. van Kampen TU Delft, External Examiner

Cover photo: Courtesy of P Prestat, licensed by Creative Commons (BY-ND)

An electronic version of this thesis is available at http: //repository.tudelft.nl/.

]
TUDelft

https://www.flickr.com/photos/islandis/5892898833/
https://creativecommons.org/licenses/by-nd/2.0/
http://repository.tudelft.nl/

Acknowledgements

This thesis report marks the end of an incredible seven-year journey at the Delft University of Technology. A
journey that made me the adult and the engineer that I am today. During these years, not only did I get to
enrich my academic and professional background, but I also got to discover myself. I step out of university
life as a self-aware and independent grown-up. A student, I will always nonetheless be.

There are some people that helped me reach this fortunate position and to whom I would like to express
my gratitude. First and foremost, to my supervisor Dr Alexei Sharpanskykh, who introduced me to the field of
Agent-based modelling and shared with me his academic and scientific expertise. Who saw potential in me
and whose support and interest in my thesis was never-ending.

I would also like to express my gratitude to my close friends. To Kostis for spending countless hours
hearing me talking about agents and machine learning and for all the philosophical discussions that helped
me put ideas into perspective. My roommates for being always there for me and showing interest in what I do.
Kosta and Anesti, I would like to thank you for all the fun times we had together. I am sure these will continue
in the future. A special thanks to Filia, who has been in my side all this time, and despite the distance that
separates the two of us, her presence and support were always here.

Finally, I would like to thank my family. My parents, Torkan and Harry, for providing me with all the
necessary conveniences to study abroad and my sister Jasmin for her never-ending love and support. This
work is dedicated to them.

Spyros Polydorou
Delft, September 2021

iii

Contents

List of Figures vii
List of Tables ix
List of Abbreviations xi
List of Symbols xiii
Introduction XV
I Scientific Paper 1
IT Literature Study previously graded under AE4020 29
1 Introduction 31
2 Airport Surface Movement Operations at Schiphol Airport 33
2.1 Schiphol Collaborative Decision Management 33
2.1.1 TheMilestone Approach. e 33
2.1.2 Pre-departure SEQUENCE v v v v v v e e e e e e e e e e e e e e e e e 35
2.1.3 Collaborative Management of Flight Updates 35
2.2 Summary of surface movement operations at Schiphol Lo oL 35
2.3 Schipholsocio-technical system L L 36
231 AGENttypes e e e e e e 36
2.3.2 Interactionbetweenagentso e e 38
24 Runwayconfigurations L. Lo e e e e e 39
2.4.1 Runway configurations at Schiphol Lo oo oo oL 39
2.4.2 Factors influencing runway configurations 0000 39
2.4.3 Planning and execution of reconfigurations Lo Lo 41
2.5 Uncertainty factors in surface movement operations Lo L. 44
3 Previous Research in ATO 47
3.1 Decentralization in Air Transportation - Udluft (2017) 47

3.2 Agent-Based Modelling of an Airports Ground Surface Movement Operation - Noortmans (2018)

48

3.3 Decentralized Control for Resilient Airport Surface Movement Operations - Fines (2019). 51
34 Research@ap L e e 53
4 Learning Mechanisms for Surface Movement Operations 55
4.1 OpportunitiesforLearning L e e e e 55
4.1.1 ModellingIncoming Traffic 55
4.1.2 Predicting Future Traversal Times, 55
4.1.3 Highway Generation. L e e e 56
4.14 SpeedProfile Assignment L. Lo e 56
415 Conclusion. L e e e e 56
4.2 Anticipatoryvehiclerouting Lo L L 56
4.3 Approaches for taxi-time prediction Lo L e 59
4.3.1 Queuingmodels L L L e e e e e e 59
4.3.2 Reinforcementlearning Lo L 59
4.3.3 Multiple linearregression Lo e e 60
434 Fuzzyrulebasedsystems Lo e 61
4.3.5 Other machinelearningmethods L0 L0 63
4.4 Conclusion oL e e e 65

vi

Contents

5 Multi-Agent Path Planning

5.1 Background on Multi-Agent Planning.
5.2 A*basedapproaches Lo oo
5.2.1 CooperativeA*search
5.2.2 Standley’simprovements
5.2.3 Approximate and optimal anytime algorithms.
5.2.4 Otherapproaches
5.3 Rulebasedapproaches L.
5.3.1 PushandSwap.
5.3.2 Tree-based agent swappingstrategy
5.3.3 PushandSwapvariants
5.4 Hybridapproaches L o
5.4.1 Flow Annotation Replanning.
5.4.2 Multi-Agent Path Planning.
5.5 Reduction based approaches
5.5.1 Constraint SatisfactionProblem
5.5.2 SATbasedsolvers
5.5.3 Integer Linear Programming.
5.5.4 Answer Set Programming
5.6 Two-level based approaches
56.1 M*family
5.6.2 Increasingcosttreesearch.
5.6.3 CBSfamily. o
5.7 Sampling based approaches 000,
58 Trade-off

6 Research Proposal

6.1 Research Objective & Questions.
6.2 ResearchScope.

IIT Supporting work
A Model Elaboration

A1 Modellingassumptions. oo
A2 Relevantagentproperties.o
A3 Simulation Parameters Lo Lo o
A4 Forward simulation algorithm,
A5 Bayesian optimisation algorithm00 L.
A.6 Inputflightscheduledetails.
A.7 Input flight schedule details for conflictanalysis

B Simulation results

B.1 Taxi-time results forindividualdays
B.2 Taxi-distance results for individualdays
B.3 Taxi-speed results forindividualdays.
B.4 Link participation per sampling strategy
B.5 Absolute prediction error for ScenariosBandD

B.6 Absolute error distributions for all mechanisms and scenarios

Bibliography

List of Figures

2.1 A-CDMDPIOCESSES . « o v v v v et e 33
2.2 Recommended milestones as described in the Eurocontrol Airport CDM Implementation Man-

ual. Retrieved from [30]. 34
2.3 Collaborative Pre-Departure Sequence Planning. Retrieved from [71]. 35
2.4 Ground operations flow in an airport. Retrieved from [47].. 36
2.5 Diagram of the socio-technical system responsible for the ground operations at Schiphol air-

port. Retrieved from [60]. e 37
2.6 Runway availability windrose at Schiphol airport. Retrieved from [66]. 40
2.7 Average wind speeds and direction present at Schiphol airport for the period between 08/2011

-01/2020. Retrieved from [94]. L 40
2.8 Windrose of Schiphol airport. e 40
2.9 Lgen @verage NOISE CONTOUL. ¢ v v v vttt e et e 43
2.10 Lyjgnr QVerage CONTOUL. oo v vttt et e et et e e e e e e e 43
2.11 Expected average noise level for the flight year of 2019. Retrieved from [22]. 43
3.1 Taxiway layout in the baseline model. Retrieved from [93].. 48
3.2 Originallayout. e e e e e e 50
3.3 Simplifiedlayout 50
3.4 The original layout on the left and the layout considered in the agent based model on the right.

Retrieved from [60]. o 0 v e e e e e e e 50
4.1 The link traversal time is calculated using the intention levels maintained by the infrastructure

4.2

4.3
4.4
4.5

4.6
4.7

5.1
5.2
5.3

5.4

5.5

5.6

5.7

5.8
5.9

agent and congestion information from downstream agents. Retrieved from [17]. 58
Concept of operations of the dMAS at an airport. Based on observed link traversal taxi times and
intentions received by other ATC agents, agents maintain a ML model which maps intention
levels tolink traversal times. L 59
Structure of a typical FRBS. Retrieved from [46]. 62
Comparison of the models’ predictive perfomance on ARN and ZRH data. Retrieved from [65]. . 63
Predicted taxi time error distributions for different traffic flows and weather conditions at CLT.

Retrieved from [53]. o v vt e e e e e e 64
An example of a macroscopic network topology model of a taxi process. Retrieved from [104]. . 65
The values of the machine learning predictors based on the macroscopic network topology

model. Retrieved from [104]. e 65
Performance curves for the approximate algorithms. Retrieved from [83].. 70
Performance curves for the optimal algorithms. Retrieved from [83]. 70

An example of the priority decision making. Agents (1,2,3,4) with identified paths (a,b,c,d) have
lengths (25,10,20,30) respectively. At each round agents update their knowledge of other agents’

PaAthS. . e e e e 71
Example of an alternative path Q; to a precomputed path #(u) ofanagentu. 73
An example of a CPF problem and its expansion graph Exp;(G,4) consisting of 5 time layers.

Retrieved from [88]. o o i e e e e e 75
Success rate and number of solved instances on a 8x8 grid map with 10 agents. Retrieved from

(B9, . v i e e 75
Number of solved as a function of runtime. Retrieved from [89]. 75
The performance of uMDD-SAT and other suboptimal alternatives. Retrieved from [90]. 76
ICT for three agents. The dashed lines represent duplicate child node which can be pruned.

Retrieved from [72]. o o e e e e e 77

viii List of Figures

5.10 The success rate (y-axis) of CBS in the brc202d DAO map for increasing number of agents (x-

axis). Retrieved from [74]. e e e e e 78
5.11 The success rate (y-axis) of MA-CBS(B) using EPEA* as the low-level solver on the brc202d DAO
map for increasing number of agents (x-axis). Retrieved from [75]. 78
5.12 The success rate (left figure) and runtime perfomance (right figure) of several optimal algo-
rithms when tested on the brc202d DAO map. Retrieved from [9]. 79
5.13 Success rate comparison between GCBS variants and optimal CBS. Retrieved from [5]. 80
5.14 Tested on the brc202d DAO map. w=1.01ttt 81
5.15 32x32 grid with 20% obstacles. w=1.1 e 81
5.16 Success rate of ECBS compared to bounded CBS versions (a) and other bounded suboptimal
algorithms (b). Retrieved from([5]. 81
A.1 Arrivals per hour for the 8 days of real world flightschedule. 95
A.2 Departures per hour for the 8 days of real world flight schedule. 95
A.3 Arrivals per hour for 4th and 13thof May2016. 96
A4 Departures per hour for 4th and 13thof May2016. 96
A.5 Number of movements (blue) and runway configuration occurrences (red) for 04-05-16. 97
A.6 Number of movements (blue) and runway configuration occurrences (red) for 13-05-16. 97
B.1 Taxi-time distributions per flight day between Baselineand dMASCBS. 99
B.2 Taxi-time distributions per flight day between Baseline and dMAS-U(200) CBS. 100
B.3 Taxi-time distributions per flight day between Baseline and dMAS-U(300) CBS. 100
B.4 Taxi-time distributions per flight day between Baseline and dMAS-U(400) CBS. 101
B.5 Taxi-distance distributions per flight day between Baselineand dMASCBS. 102
B.6 Taxi-distance distributions per flight day between Baseline and dMAS-U(200) CBS. 102
B.7 Taxi-distance distributions per flight day between Baseline and dMAS-U(300) CBS. 103
B.8 Taxi-distance distributions per flight day between Baseline and dMAS-U(400) CBS. 103
B.9 Taxi-speed distributions per flight day between Baselineand dMASCBS. 104
B.10 Taxi-speed distributions per flight day between Baseline and dMAS-U(200) CBS. 104
B.11 Taxi-speed distributions per flight day between Baseline and dMAS-U(300) CBS. 105
B.12 Taxi-speed distributions per flight day between Baseline and dMAS-U(400) CBS. 105
B.13 Link participation when no undersamplingwas applied. 106
B.14 Link participation when undersampling ratio of 200 was applied. 107
B.15 Link participation when undersampling ratio of 300 was applied. 108
B.16 Link participation when undersampling ratio of 400 was applied. 109
B.17 Conflict prediction error distributions of Adaptive, Baseline and dMAS CBS in Scenario A. 111
B.18 Conflict prediction error distributions of dMAS-U (200), dMAS-U(300) and dMAS-U(400) CBS in
ScenarioA. L e e e e 111
B.19 Conflict prediction error distributions of Adaptive, Baseline and dMAS CBS in ScenarioB. 112
B.20 Conflict prediction error distributions of dAMAS-U(200), dMAS-U(300) and dMAS-U(400) CBS in
Scenario B. L e 112
B.21 Conflict prediction error distributions of Adaptive, Baseline and dMAS CBS in Scenario C.. . . . 113
B.22 Conflict prediction error distributions of dMAS-U (200), dMAS-U(300) and dMAS-U(400) CBS in
Scenario C. L e e 113
B.23 Conlflict prediction error distributions of Adaptive, Baseline and dMAS CBS in ScenarioD.. . . . 114

B.24 Conlflict prediction error distributions of dMAS-U(200), dMAS-U(300) and dMAS-U (400) CBS in
Scenario D. e e e e e 114

2.1
2.2

3.1

4.1

4.2
4.3

4.4

4.5

5.1
5.2

Al
A2
A3

B.1
B.2

List of Tables

Runway availability per trafficflow. 39
Commonly used runway configurations at Schiphol based on 1 month of operations during the
winter 2018. The configurations are given in (X+Y) format where X are the arrival runways and
Y the departing. In case of multiple arrival and/or departing runways a comma (,) is used to
separate them. Retrieved from [36]. e 39

Specification of aircraft kinematics. Retrieved from [60]. 49

The prediction accuracy of the RL model when trained and tested on different US airports. Re-

trievedfrom [4,38]. 60
Summary of the models including the type of variables used. Retrieved from [50].. 61
Percentage of predicted taxi times within 1 minute of the actual taxi times for DFW data. Re-

trieved from [50]. L 61
Comparison between the Mamdani FRBS and Linear regression on predictions made for ZRH.

Retrieved [13]. o 62
Taxi time predictions within +5 minutes for departing aircraft in CLT. Retrieved from [53]. 64
Quantitative trade-off of multi-agent path planning algorithms. 83

Qualitative trade-off of multi-agent path planning algorithms. Red color is assigned to the un-
suitable algorithms. Orange color is assigned to less suitable algorithms. Green color is assigned

to the most suitable algorithms. 84
ATCrelated simulation parameters.ttt 93
Aircraft agent related simulation parameters. oo 93
Other parameters used in the simulations., 93
Statistics of the absolute prediction error for prediction made in ScenarioB. 110
Statistics of the absolute prediction error for prediction made in ScenarioD. 110

AO

ABM
ARN
ATA
ATC
ATM
A-CDM
ADAM
ADS-B
AIBT
ALDT

ANSP
AOBT
AQLI
ASRT
ATCO
ATOT
ACARS
ATFCM
A-SMGCS
BO
BDI

CB

cv
CBS
CLT
CPF
CTOT
CPDLC
CPDSP
DR
DFW
DNN
dMAS
EFS
ETA
ETD
EHAM
EIBT
ELDT
EXOT

List of Abbreviations

Airport Operator

Amsterdam Airport Schiphol
Agent-Based Modelling
Stockholm-Arlanda Airport

Actual Time of Arrival

Air Traffic Control

Air Traffic Management

Airport Collaborative Decision Making
Adaptive Moment Estimation
Automatic Dependent Surveillance-Broadcast
Actual In-Block Time

Actual Landing Time

Artificial Neural Network

Air Navigation Service Provider

Actual Off-Block Time

Aircraft Queue Length Indices

Actual Start-Up Request Time

Air Traffic Controller

Actual Take-Off Time

Aircraft Communications and Reporting System
ATM Flow & Capacity System

Advanced Surface Movement Guidance and Control System

Bayesian Optimisation

Belief Desire Intention

Conflict Based

Cross Validation

Conflict Based Search

Charlotte Douglas International Airport
Cooperative Path Finding

Calculated Take-Off Time

Controller-Pilot Data Link Communications
Collaborative Pre-Departure Sequence Planning System
Dead Reckoning

Dallas/Fort Worth International Airport
Deep Neural Network

Delegated Multi-Agent System

Electronic Flight Strips

Estimated Time of Arrival

Estimated Time of Departure

ICAO code of Amsterdam Schiphol Airport
Estimated In-Block Time

Estimated Landing Time

Estimated Taxi-Out Time

EUROCONTROL European Organisation for the Safety of Air Navigation

FP
FRBS

IFR
KLM
kNN
KPI
LR
LVNL
ML

MAS
MGH
MAPF
MAPP
MRPP
NM
NN
NMOC
oD
PF
PM
QNH
RF

RL
RMO
RWY
SID
SVM
SVR
SCFI
SIFI
SRDI
SESAR
TP
TOBT
TSAT
TTOT
TSK FRBS
UBR
VS
VHF
WTC
ZRH

False Positive

Fuzzy Rule-Based System
International Civil Aviation Organisation
Instrument Flight Rules

KLM Royal Dutch Airlines
k-Nearest Neighbours

Key Performance Indicator
Linear Regression
Luchtverkeersleiding Nederland
Machine Learning

Mean Absolute Error
Multi-Agent System

Main Ground Handler
Multi-Agent Path Finding
Multi-Agent Path Planning
Multi-Robot Path Planning
Network Manager

Neural Network

Network Manager Operations Centre
Origin Destination

Path Finding

Point Merge

Barometric Pressure Level
Random Forest

Reinforcement Learning
Runway Mode of Operations
Runway

Standard Instrument Departure
Support Vector Machine
Support Vector Regression
Surface Cumulative Flow Indices
Surface Instantaneous Flow Indices
Slot Resource Demand Indices
Single European Sky ATM Research
True Positive

Target-Off Block Time

Target Start-Up Approval Time
Target Take-Off Time

Takagi and Sugenos FRBS

Utility Based Regression

Visual Separation

Very High Frequency

Weight Turbulence Category
Zurich Airport

List of Symbols

Symbol Definition Units & Constants
an Acquisition function (-]
B Estimated regression coefficient [-]
0 Time difference between link timeline samples [-1
€ Suboptimality factor (-]
n Learning rate [-]
7 Makespan bound [-]
A Mean arrival rate (-]
4 (x7) Membership function (-]
o(}l/) Relevance function (-]
¢ Activation function (-]
oY) Sigmoid-based activation function [-]
a; ith arrival [-]
d; ith departure [-]
int freq Intention frequency [s]
t Simulation timepoint [s]
to Estimated time of arrival of other aircraft [s]
ts Estimated time of arrival for the commanded aircraft [s]
IR Relevance threshold [-]
Umax Maximum taxi speed (2]
Viurn Maximum turning speed (5]
w Suboptimality factor (-]
X; ith independent variable [-]
Vi ith dependent variable [-]
y Predicted value (-]
A* A star algorithm (-]
Ag Linguistic sets [-]
AC, Commanded aircraft a conflict pair [-1
AC, Other aircraft in a conflict pair (-]
ACy; Aircraft average taxi time [min]
ACyq Aircraft average taxi distance [km]
ACyg Aircraft average taxi speed (5]
o Optimal solution (-]
F Flight schedule [-]
Lgen Dayeveningnight noise level dB
Lyigns Night noise level dB
N Number of aircraft (-]
NP Number of aircraft pushed back before [-]
Np Number of aircraft pushed back after [-]
Ny Number of hidden neurons (-]
Q Queue size (-]
sz aj Adjusted coefficient of determination [-]
R; ith rule in the fuzzy-rule based system rule base (-]
Treq Require time needed to avoid conflict [s]
Twindow Conflict time window [s]
U £ @y Utility of prediction (-]
%4 Velocity [z

xiii

Introduction

This thesis falls in the domain of airport surface movement operations. This domain has extensively been
studied over the years in the Air Transport and Operations department at Delft University of Technology. The
objective is to formulate distributed control architectures for efficient and safe traffic management on airport
surfaces in view of the increasing trends of passenger traffic and the associated bottlenecks that the current
operations face.

This work is the first in the research line to use Machine Learning in such a control architecture. The
proposed model combines an already implemented Multi-Agent Path Finding algorithm with a coordination
pattern called a Delegated Multi-Agent System. The latter enables the handling of communication complex-
ity in domains that require repetitive interactions between agents.

This thesis report consists of two parts: In Part I, the scientific paper is presented. Part II contains the
Literature Study. Finally, Part III further elaborates the model and presents additional results that support the
paper’s findings.

Scientific Paper

1

2

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

A Learning-Based Approach for Distributed Planning
and Coordination of Airport Surface Movement
Operations

S. Polydorou?
Dr. O.A. Sharpanskykh!

Delft University of Technology, Delft, The Netherlands

Abstract

Agent-based distributed planning and coordination has shown promising results in controlling operations
in complex systems such as those present at airports. Distributed planning differs from centralised approaches
because it is performed by several agents, which coordinate plans with each other in order to meet a global
objective. In this research, we examine airport surface movement operations and focus specifically on
improving the conflict detection abilities of a Multi-Agent Path Finding (MAPF) approach for distributed
planning and coordination using machine learning. Our MAPF proposal is built on top of a distributed CBS-
based algorithm implemented in an existing Multi-Agent System (MAS) model of Amsterdam Schiphol
Airport (AAS). In the proposed approach, we use a delegated Multi-Agent System (dMAS), firstly, to
propagate information related to the intended aircraft paths and, secondly, to perform the conflict detection
task of the CBS algorithm. To achieve these, the dMAS accesses a set of Artificial Neural Networks (ANNs),
each allocated to specific taxiway segments to obtain traversal time estimates of aircraft intending to use
those segments. Propagated aircraft intentions are used as predictors for future traversal time predictions
either during the intention propagation phase or during CBS conflict detection. The proposed planning and
coordination model and three of its variants were tested on a real-world flight schedule extracted from ADS-B
ground tracks. Comparisons with a baseline approach that implements a forward kinematic simulation for
conflict detection revealed that dMAS-CBS offered more precise conflict predictions while being less prone
to Type I errors. More specifically, under scenarios where the airport operates at peak capacity, dMAS-
CBS was twice as precise and produced up to five times fewer false positives predictions than the baseline
approach.

1 Introduction

Despite the impact that COVID-19 has had on the aviation industry, reflected in the significant reduction in
traffic levels, the number of Instrument Flight Rules (IFR) flights is expected to rise in the coming years. The
current estimate is that by 2024 the traffic levels of 2019 will be reached [1], and from then on, increasing
trends are expected. A consequence of these increasing trends is the appearance of bottlenecks in the Air
Traffic Management (ATM) system. These are mainly driven by the limited capacity and resources available
to accommodate all the traffic. One of the critical areas are airports. In the third quarter of 2019, 9% of
the total delay encountered in the European network was caused by delays originating from airport operations
[2]. Therefore, there is a strong need to invest in new technologies and find new solutions to overcome these
imminent issues.

Currently, airport movement operations are handled by Air Traffic Controllers (ATCOs) in a way that
resemble operations of a centralised system. Furthermore, humans are limited in terms of their mental capacity,
and hence their workload and performance can vary depending on the conditions existing on the airport’s surface.
An area of research aiming at enhancing the performance of ATCOs is the design of autonomous systems with
the ability to perform some of the ATCOs’ tasks while meeting operational targets such as minimising the
taxiing time and distance. This, however, is a challenging task since factors such as size and airport layout,
number of aircraft taxiing and weather conditions influence the complexity of the problem. In addition, one
needs to capture the various underlying dependencies between taxiing aircraft.

An approach that has shown promising results with respect to increasing the operational efficiency of complex
systems is agent-based distributed planning and coordination. In the context of airport surface movement
operations, decentralisation has shown to be effective at managing movements of aircraft on the airport’s

*Msc Student, Air Transport and Operations, Faculty of Aerospace Engineering, Delft University of Technology
T Assistant Professor, Air Transport and Operations, Faculty of Aerospace Engineering, Delft University of Technology

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

surface [3]. In [3, 4], decentralised bidding mechanisms were used to coordinate actions between virtual ATCOs.
The proposed mechanisms could safely and efficiently handle chaotic operations, with only limited information
exchange needed between the agents. In a follow-up study [5], a distributed version of the Conflict Based Search
(CBS) [6] Multi-Agent Path Finding algorithm was implemented. CBS is a two-level algorithm that firstly
determines and then resolves anticipated conflicts between the agents’ plans. This is achieved by predicting the
arrival time of the agents to segments of their route and imposing constraints if conflicts are found. Comparisons
with real-world historical data showed that the algorithm improved the average aircraft taxi time and positively
influenced the system’s overall resilience to adverse events, such as runway reconfigurations.

In our study, we continue the work presented in [5], focusing specifically on the conflict detection performance
of the CBS-based algorithm. More precisely, at each conflict detection cycle, the algorithm performs a forward
simulation of an aircraft’s path, predicting its taxi time to various locations of the taxiway system. The
simulated paths are then compared with simulated paths of other aircraft to identify possible conflict points.
The predictions made during the simulations consider the aircraft dynamics when taxing in straight and turn
segments. The approach demonstrated good behaviour and solved all of the predicted conflicts for a given flight
schedule. However, certain deficiencies in the conflict prediction method are thought to impact conflict detection
precision negatively. Firstly, the algorithm does not consider the underlying dependencies between aircraft when
calculating their arrival time to a specific location. In addition, the effect of the air traffic controller agent (ATC
Agents) actions when controlling an aircraft is also not taken into account. These issues can ultimately shift the
predicted conflict detection timepoint leading to false positives and negative predictions. A suitable candidate
to overcome limitations related to prediction imprecision is Machine Learning (ML). A learning model able
to capture the underlying relationships between aircraft and the consequences of particular agent actions is
hypothesised to enhance the effectiveness of a distributed airport control system. For this reason, the objective
of this research is formulated as follows:

To study the ability of a cooperative multi-agent path planning algorithm for distributed airport sur-
face movement operations by improving its conflict detection performance using a machine learning
mechanism.

Within the domain of airport surface movement operations, most studies implementing ML methods have
focused on taxi-time prediction. The proposed techniques include queuing models [7], reinforcement learning
[8], multiple-linear regression models [9], fuzzy rule-based systems (FRBS) [10], and other popular algorithms
such as Support Vector Machines, k-Nearest Neighbours (kNN), Random Forests (RF) and Neural Networks
(NN) [11]. According to the authors’ knowledge, there has not been any research that has studied the effects
of learning in controlling airport ground movements in a distributed coordination context. One study with a
similar objective and MAS set-up has been performed in the domain of road traffic control. More specifically,
in [12] the use of an adaptive anticipatory vehicle routing system to control road traffic was proposed. This
MAS-based approach aims to provide users of a road network with traffic information about the most optimal
routes to take. The idea was realised using the technique of delegated Multi-Agent Systems (dMAS) [13, 14].
dMAS is a coordination technique that alleviates the complexity of direct communication protocols between
agents. Instead, the complexity is delegated to a dedicated behaviour module called Mobile Agent, which
exhibits agent-like characteristics.

In this study, the MAS model specifications of the Amsterdam Airport Schiphol in [5] have been expanded
to incorporate the principles of dMAS. Our proposed coordination and planning approach combines dMAS
with a distributed version of the CBS MAPF algorithm. For the remainder of the paper it will be referred to
as AMAS-CBS. More specifically, the Mobile Agents within AMAS are delegated to inform downstream ATC
Agents about the estimated arrival time of aircraft to taxiway segments under their control. This constitutes
the intention propagation phase. The Mobile Agents calculate the estimated arrival time by performing queries
on a set of single-layered artificial neural networks (ANNs). Each ANN is responsible for modelling the traversal
time dynamics of specific taxiway segments while their predictions rely on the count of previously propagated
intentions. All ANN models were trained on data generated by running dMAS on semi-random flight schedules.
The ability of the Mobile Agents to traverse the environment and perform sequential queries is then used in the
CBS algorithm to perform conflict detection.

Moreover, due to the sporadic occurrence of conflicts in the taxiway environment, making them less repre-
sented in the data, we study the possibility of applying undersampling to bias the algorithms’ learning process.
With undersampling, the amount of less relevant samples in the datasets is decreased so that the learning
algorithm gives a higher emphasis on the more relevant samples. In our context, we define as relevant a data
sample that corresponds to a longer link traversal time than average.

All dAMAS variants were compared with the baseline approach using a real-world flight schedule. The
MAS simulations showed that dMAS-CBS was able to control aircraft traffic effectively, but its effect on the
overall system behaviour compared to the original approach was insignificant. When looking at the conflict
detection performance, it is found that, on average, the prediction error of dAMAS-CBS is smaller than the

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

baseline approach, and it is less susceptible to Type I errors. More specifically, under scenarios in which the
airport operates at peak capacity, the dMAS-CBS mechanism is significantly more precise at predicting conflicts.
Regarding the effectiveness of the undersampling variants, the results indicate that reducing the training data
size negatively influences the learners’ behaviour, leading to situations where they cannot safely control the
ground traffic.

The remainder of this paper is structured as follows. Section 2 provides a global overview of the proposed
model. After that, the specifications of the model are presented in Section 3. Details regarding ANN properties
and training are presented in Section 4, while the ways by which the MAS model verification and validation
were incorporated in the study are discussed in Section 5. The results and analysis of the MAS simulations are
presented in Section 6 followed by a discussion and recommendations in Section 7. Finally, the conclusions of
this research are presented in Section 8.

2 Global overview of model

This research is based on a MAS model of AAS, developed in previous studies [3, 4, 5]. Our model consists of a
Multi-Agent Path Finding algorithm enhanced by delegated Multi-Agent Systems and Machine Learning. This
section presents the two components and provides an overview of the proposed agent interactions.

2.1 Multi-Agent Path Finding

The original MAS model ! implements a distributed planning and coordination mechanism that operates simi-
larly to the CBS MAPF [6] algorithm. The mechanism’s goal is to find the shortest conflict-free path for each
aircraft while considering the cost of all paths and the availability of taxiway segments. The shortest path
calculation is performed using the A* algorithm [15]. At the same time, aircraft conflicts are handled in a
two-step manner, specifically in the conflict detection and resolution phase. The two phases are incorporated
into the CBS and ATC agents’ behaviour, respectively. Our research focuses on improving conflict detection,
which is currently done analytically through a forward kinematic simulation algorithm. The algorithm calcu-
lates the estimated time of arrival (ETA) of all aircraft to every ATC Agent along their route by propagating
their instantaneous dynamics and adjusting them in case of turn segments. The algorithm can be found in
Appendix A of [16].

2.2 Delegated Multi-Agent System

Delegated MAS [13, 14] is a type of distributed coordination mechanism inspired by ant behaviour and Belief
Desire Intention (BDI) agents. dMAS has shown to be able to achieve complex coordinated behaviour in
coordination-and-control applications such as manufacturing control and planning of manufacturing plants [14],
allocation and composition of services in cloud environments [17, 18] and in anticipatory vehicle rooting [12, 19].
These are all domains that require repetitive interactions between Task Agents and Resource Agents. The
former represent tasks that need to be accomplished, while the latter represent the various resources necessary
for achieving these tasks. Such repetitive interactions can create communication bottlenecks, especially in large-
scale applications [12]. This complexity can be handled by delegating these interactions to a separate MAS,
called dMAS. A dMAS relies on the concept of an intelligent message or Mobile Agent. In essence, it is a self-
contained entity with agent-like characteristics, able to carry information and move autonomously through a
virtual environment. Our proposed methodology is inspired by the use of dMASs in the domain of anticipatory
vehicle rooting [12].

An overview of the proposed concept and the relevant agents and interactions is shown in Figure 1. A dMAS
is used in two ways; to propagate intentions and to detect conflicts. During the intention propagation phase, the
ATC Agents use Mobile Agents to inform other ATC Agents about the ETA of aircraft under their control. The
same intentions are then used as predictors for future link traversal times queries. In parallel, the CBS Agent
uses the Mobile Agent to retrieve the ETA estimates allowing it to perform the necessary conflict detection
tasks. In both cases, ML is used to estimate the traversal times of the Aircraft Agents to future locations on
the taxiway system.

3 MAS model specifications

In this section, the specifications of the learning-based model are described. The model consists of an abstraction
of the taxiway system at AAS and several types of agents. First the specifications of the environment are
provided followed by the specifications of the agents’ local properties and interactions.

'We refer to as original the MAS model presented in [5]

20

21

22

23

24

25

26

27

28

29

30

31

CBS Agent

ATC Agent

Link

Taxiway

Aircraft
Agent

Mobile
Agent

Intention Propagation I

Retrieve planned path

Deploy Mobile Agent

[for all ATC Agents
along intended path]

Generate inputs

Travel to ATC Agent; and query ETA

Perform

—and pass to ML model"r"‘—\
€ Retrieve prediction forward pass

Update
internal state

Respond to query

M

Send intention

Conflict Detection]

[for all Aircraft Agents]

Retrieve planned path

Deploy Mobile Agent

[for all ATC Agents
along intended path]

Generate inputs

Travel to ATC Agent; and query ETA

Perform

Update
internal state

<
[~ and pass to ML model '
€——Retrieve prediction ; forward pass

Respond to query “

Return ETA

Figure 1: Sequence diagram showing the agent interactions during the phase of intention propagation and
conflict detection.

3.1 Environment Specifications

The MAS environment consists of a graph, G(V, E), representing the taxiway and runway layout of AAS. The
graph model, shown in Figure 2, consists of graph nodes placed in taxiway intersections, pier and runway
entry/exit points. The nodes are connected with graph edges and together make up the taxiway system. The
graph edges can either be bi-directional or uni-directional and can be added or removed. Moreover, each edge
has a weight associated with it which is used by the A* algorithm for new route calculation purposes. Upon
graph initialisation, all edges are made bi-directional, and weights are assigned according to the estimated time
it takes for an aircraft to taxi along the edge at its maximum taxi speed. Further details regarding the choices
behind weight assignment can be found in [4]. The directionality, removal/addition and weight of each edge are
controlled by ATC agents situated on the nodes of the graph model.

Additionally, a flight schedule F' is used as a static environment object that can be accessed at any time
point by the Entry/Exit Agents and the Airport Operation Status Agent. Each row of F' contains the flight’s
ID, entry and exit point in the airport layout, and the scheduled release time to the taxiway system.

To incorporate dMAS into the model, the environment has been designed to include a set of links each
representing a taxiway segment. We distinguish between two types of links, namely Link and LinkM odel.

Links of LinkM odel type are dynamic environment objects, meaning that their state can change during the
simulation. This occurs based on the information propagated by the Mobile Agents. LinkModel links hold
an intention database which can be accessed at any time point by the ATC Agents located at their nodes.
The content of this database is filtered every time point to remove possible outdated and duplicate intentions.
Moreover, links of LinkModel type hold an ML model as an attribute. When queried by a Mobile Agent, the
Link constructs a vector of features and feeds it to its ML model. The ML model then returns a prediction of
traversal time. Included in these features are past intention levels. These are generated by processing the Link’s
intention database. The process involves creating a timeline of intention level counts, based on the database
contents, re-sampled in 30s intervals. Depending on a user-defined input, the intention count from the respective
intervals is then sampled. A default value of 6 has been used for our research. The time-difference §, between
subsequent samples, is set equal to the interval length. Figure 3 shows how this concept works. Links of Link
type also return responses to traversal time queries. Unlike LinkM odel links, they do not have any prediction
logic and always return the average observed aircraft traversal time. Links representing runway exits and gate
segments are of this type. The reason is that aircraft on runway exits have priority over traffic on neighbouring
links, and aircraft are released from their gates only if traffic is not present on neighbouring links [5]. Hence,
the traversal time uncertainty for such links is expected to be low, and assigning ML models is unnecessary.

Figure 2: Environment of the AAS agent-based model. The red dots represent the location of the ATC Agents.
Exit/Entry Agents are located on the green dots. The yellow dot represents the location of the CBS Agent, and
the purple dot the location of the Airport Operation Status Agent. The blue aircraft are the Aircraft Agents.

A

Link Traversal time

N f time

7't

Aircraft Agent count

time
, 3 4 ty

-

0

Figure 3: Diagram depicting the concept of using past intention level as predictors of a function that represents
the link traversal time over time.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

3.2 Agent Specifications
3.2.1 Entry/Exit Agents

Entry and exit agents are responsible for safely inserting and removing aircraft agents from the simulation
environment. They are located at the pier entry/exits and runway holding points, and both have access to the
flight schedule. Entry agents aim to release aircraft agents close to their planned spawn time, as specified in
the flight schedule, and are responsible for computing an initial path for them using the A* algorithm. After
an Aircraft Agent has been handled, the entry or exit agent imposes an occupancy time on the runway or gate,
similar to real-world operational practices.

3.2.2 Aircraft Agents

Aircraft Agents are responsible for the timely execution of the ATC agents’ commands. An Aircraft Agent’s
primary goal is to taxi along its assigned route and reach its destination as soon as possible. While doing so, it
needs to adhere to its operational limits. The Aircraft Agents’ dynamical properties, such as maximum/comfort
acceleration/deceleration and taxi speed, are based on the A320/B737 type of aircraft. The behaviour of the
Aircraft Agent can be summarised in two main properties. These are:

Ezxecute ATC commands: This property involves an interaction between the Aircraft Agent and the ATC
Agents. ATC Agents communicate speed or route related commands to the Aircraft Agents. When instructing
a speed command, the ATC Agent specifies the distance within which the command is required to be satisfied.
When no command is given, the Aircraft Agents accelerate to their maximum speed v;,4,. Route commands
usually involve a change in heading. In case the required heading change is more than 30°, the Aircraft Agent
adjusts its speed to Viyrn-

Maintain Separation: This property involves an interaction between an Aircraft Agent and other Aircraft
Agents. Aircraft Agents are equipped with a radar that enables them to observe their surroundings, up to 250
meters, and maintain separation from other aircraft. The reasoning behind this is to resemble the pilot’s ability
to see his/her surroundings, enabling visual separation to be kept if needed. If separation is lost, the agent’s
internal logic determines the type of conflict, either of the following type or crossing. In a situation where the
two agents are following each other, the agent responsible for maintaining separation is the one behind. In the
case of a crossing conflict, the agent nearest to the crossing node is given priority. Subsequently, the property
determines an appropriate deceleration level to maintain the minimum separation between the aircraft.

3.2.3 CBS agent

The CBS agent is responsible for executing the planning mechanism’s conflict detection tasks. At each simulation
time point, the CBS agent gathers all the intended paths of the Aircraft Agents taxiing on the graph and
predicts the time travel required by them to reach each of the nodes along their path. In the event a pair of
Aircraft Agents is anticipated to pass by an ATC Agent, within a user-defined conflict time window (Tyindow),
irrespective of their direction of travel, a conflict is declared at the ATC agent’s location. The CBS Agents then
contacts the ATC Agent, who then updates his state with the newly acquired information.

To enable dMAS-based conflict detection, the conflict detection property of the original CBS agent specifi-
cation is adapted. More specifically, the CBS agent will dispatch Mobile Agents for each conflict detection cycle
in which dMAS is activated. The delegated agents will return the ETA of an aircraft to each ATC Agent that
it intends to pass by and use it to compare with all other ETA combinations of other Aircraft Agents.

Upon initial trials of this concept, however, it was determined that the additional layer of complexity
significantly increases runtime, especially when the density on the taxiway system is high. For each time point,
an ML query for each link of all aircraft paths has to be made. In order to avoid incurring runtime issues, it
was decided to limit the duration in which dMAS-CBS is used. To further support this action, we argue that
the effect of ML is more appropriate to measure when the system undergoes a change of state due to either the
addition of a new Aircraft Agent or as a result of a conflict resolution command. The dMAS-CBS is therefore
activated for the time-points after such occurrences. The length of the interval that AMAS-CBS is activated
was set to a default value of 20 seconds.

3.2.4 ATC Agents

The ATC Agents are responsible for safely and efficiently guiding the Aircraft Agents along their routes. Their
collective behaviour realises a complete traffic guidance and surveillance system, using distributed coordination
and planning principles. ATC agents take control of the aircraft agents approaching their location and command
them accordingly. Upon termination of control, the controlling ATC Agent hands the flight over to the following
ATC Agent along the aircraft’s route. ATC Agents are placed on taxiway intersections and next to Entry/Exit
Agents. The behaviour of the Aircraft Agent can be summarised in the following properties:

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

3

44

45

46

47

48

49

50

51

52

53

54

55

Determine Conflict Type: This property is executed whenever an ATC Agent receives information from the
CBS agent about a potential conflict at its location. The agent will first determine the type of conflict and
afterwards proceed with the appropriate resolution strategy. Initially, the agent determines whether the aircraft
are heading towards each other from opposite directions. Such a conflict would create a severe gridlock, blocking
traffic at a taxiway segment completely. To avoid such a situation, the agent executes the Head-On Conflict
Resolution Property. If the agent determines that two Aircraft Agents are expected to cross nodes but not in a
head-to-head fashion, it executes the Crossing Conflict Resolution property.

Head-On Conflict Resolution: This property defines an interaction between ATC and Aircraft Agents. The
ATC Agent determines which Aircraft Agent is going to receive a re-route command. The choice is to send the
command to the agent further away from the conflict location since, in general, there would be more alternative
paths available for that agent. By removing the segment in which the conflict is anticipated to occur, the
responsible ATC Agent determines a new route and communicates to the Aircraft Agent. The ATC Agent in
command of that Aircraft Agent is also informed of the change and, depending on the newly determined path,
communicates an appropriate heading command.

Crossing Conflict Resolution Property: This property defines an interaction between ATC and Aircraft
Agents. The ATC agent executes this property in case of an anticipated crossing conflict. The agent determines
which Aircraft Agent is the furthest away from the conflict location and sends a speed control command. The
required speed V.4 is calculated as follows:

d
Treq - ts + Twindow - (ts - tO) -1 (1) ereq = Tis (2)
req

where ¢ and d; are the Estimated Time of Arrival (ETA) and the distance to the conflict location respec-
tively, for the Aircraft Agent that will receive the speed command. Ty indow is @ user defined time window
within which an anticipated conflict is declared, ¢ is the simulation time point and ¢y is the ETA of the other
aircraft to the conflict location.

Dispatch Mobile Agent: This property involves interactions between the Mobile Agent and ATC Agents.
At user-defined time-points (intf,eq), the agent dispatches a Mobile Agent for each Aircraft Agent under its
responsibility. This guarantees that Aircraft Agents that spawn in the taxiway system are taken into account
when the state of the ATC Agents is being updated.

Distribute Intentions: This property involves interactions between the ATC Agent and the environment. At
every time point, the ATC agent determines whether it has received an intention message from a Mobile Agent
as part of a AMAS issued by another ATC Agent. If the agent has received a message, it is read and then stored
in the intention database of the link that the intention message is referring to. The ATC Agent subsequently
discards the message.

Update Link Traversal Time: This property defines an interaction between the ATC Agent and the environ-
ment. For each link traversal, the ATC Agent located at the end of the link updates the state of that link with
the traversal time of the Aircraft Agent. The measurement is used by links of Link type to update the average
traversal time value which they will use to respond to future Mobile Agent queries.

3.2.5 Mobile Agent

Contact ATC Agents: This property defines interactions between:

— Mobile Agent and ATC Agents,
— Mobile Agent and CBS Agent

Mobile Agents are responsible for propagating the Aircraft Agent’s intentions and querying link traversal
time information from relevant links. An intention message contains the location of the Aircraft Agent and the
estimated time of arrival (ETA) to that location, as well as an expiry time. The expiry time ensures that only
valid intentions are stored in the links’ intention databases. Intentions have to be sent in scenarios where the
plan of the Aircraft Agent changes, for example, when a conflict resolution command has been sent or when
the Aircraft Agent is performing a visual separation manoeuvre. ATC Agents use the received information to
update the link intention databases.

The ATC Agent responsible for the control of the Aircraft Agent delegates this task to a Mobile Agent.
The Mobile Agent queries traversal time estimates from each link along the way and, based on the response,
notifies the ATC Agent that the Aircraft Agent will occupy that link between ETA and ETD. Through this
intention propagation process, all ATC Agents of the taxiway system hold information regarding the aircraft’s
future location and time.

Mobile Agents are also instantiated when CBS is switched into dMAS mode of operation. During this period,
instead of using the original forward simulation to compare aircraft paths, the task of determining the traversal
time is delegated to a Mobile Agent. No transfer of the information regarding Aircraft Agents’ intentions takes

20

21

22

23

24

25

26

27

28

29

place in this step. The Mobile Agent constructs a timeline of ATC Agent locations and corresponding ETAs,
which then passes to the CBS Agent. The pseudo-code of the Mobile Agent’s property is shown in Algorithm
1.

Algorithm 1 Contact ATC Agents

A/Chroute < Aircraft Agent route

A/Code + Aircraft Agent mode of operations

AT Copp < ATC Agent which Aircraft Agent is approaching
link. < current Aircraft Agent link

X, < feature vector for current link traversal

t <+ timepoint Mobile Agent is generated

ETA,; + empty list

ETA « t + query(link., X.) // estimated time of arrival to approaching ATC Agent
if A/Chode is arrival then
destination, . < A/Croute — 2 // excluding gate links
: else
destination, e < A/Croute — 3 // excluding runway exit links
: end if
: for each link in A/C,oue until destination, ;. do
ETD « query(link, ETA, X)
if not CBS then
send_intention(ET A, ETD) // sending intention to ATC Agent controlling the link
end if
ETA <« ETA+ ETD // ETA to the next ATC Agent in the route
append ETA in ET A,y
: end for
. if CBS then
return A/Cyroute, ET Aoy // return ETA to each ATC Agent along the route
: end if

NN NN NN e e e e e e
Uik O QY NPT R

3.2.6 Airport Operation Status Agent

This agent is responsible for determining the runway status at any given time point and communicating it to
the ATC Agents. The ATC Agents can then add or remove certain edges, depending on the runway use so that
runway incursions are avoided.

3.3 Changes in Original Planning & Coordination

By design, the original CBS implementation [5] was set to perform its conflict detection and resolution cycle at
every time point. In this way, it adapted its conflict prediction estimates according to the evolving dynamics
in the environment. The adaptive nature of the algorithm allowed for the evaluation of a particular conflict
pair multiple times within a given period. According to [5], the algorithm could resolve all conflicts when given
a real-flight schedule. Despite the suitability of the algorithm for separating traffic, a few concerns have been
identified during our study. Firstly, the coupling of the proposed learning mechanism and the distributed CBS
variant was found to increase the overall computational complexity, making the simulation challenging to run
with the current computational resources. The issue was noticeable, especially during peak hours when more
aircraft routes had to be processed by the CBS Agent. The issue can be explained partly by the development
of the simulator in which code is executed sequentially. The computational complexity was also affected by the
evaluation of conflicts at every time point.

Furthermore, the repetitive commands sent out by the ATC Agents to correct for the developing dynamics is
not in line with how ATC and pilot communicate nowadays. In an operational setting and assuming the current
state of technological innovation in an aircraft cockpit, the pilot’s multiple commands would increase workload
in the cockpit and may lead to safety-related occurrences. Minimum communication between ATC and pilot
is preferable for an advanced airport surface movement system. Our last remark is related to the relationship
between adaptive behaviour and learning. The use of learning is motivated by the presence of uncertainty in a
system. By having an adaptive behaviour, part of this uncertainty is implicitly taken into account, and therefore
the evaluation of the contribution of a pure learning method in dealing with uncertainty would not be trivial.

For this research, it was decided to limit the adaptive behaviour of CBS in [5], referred to as Adaptive-CBS
from now on, by constraining the frequency by which CBS examines a particular conflict pair. This resembles

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

the behaviour of the original CBS algorithm, which executes conflict resolution only once, and prior to agent
plan execution [6]. To accomplish this, ATC Agents are allocated a memory that enables them to perceive
a potential conflict for a more extended period of time and thus preventing the frequent allocation of conflict
resolution commands. After the passage of user-defined interval (default set to 20s), the contents of the memory
are erased and the ATC Agent is allowed once again to send commands to the aforementioned conflict pair. The
non-adaptive CBS implementation of [5] will be referred to as the Baseline-CBS mechanism for the remainder
of the paper.

4 Artificial Neural Networks For Traversal Time Prediction

In our research, we use Artificial Neural Networks (ANNSs) to model the traversal time of Aircraft Agents across
the links similarly to [12]. ANNs have been widely used in the Machine Learning community and have been
shown to approximate any continuous function to a sufficient accuracy [20, 21].

The building block of a neural net is the perceptron. The perceptron has inputs x1, o, ..., x; weighted by
real numbers wy, wo, ..., w; and typically a bias term. Within the perceptron, a summation operation takes
place between the weighted inputs and the bias term. If the summation meets a certain condition posed by the
activation function ¢, the output is activated and passed through the network. The use of activation functions
makes NNs particularly good at capturing non-linear relationships. ANNs consist of a network of perceptrons
stacked on top of each other, and depending on the learning task and available computational resources, one
can add multiple layers to a network, resulting in deeper, more complex neural net architectures.

In this study, multiple ANNs are instantiated and allocated to every link eligible to hold a model. The choice
to adopt a distributed model architecture comes from a runtime point of view. Mobile Agents are spawned
multiple times during the simulation and perform multiple inference calls at a single time point. Using a single
unified model, features covering the intrinsic properties of each link would have to be defined, increasing thus
the dimensionality of the model.

4.1 Feature Selection

Upon investigating the input data generated after running simulations under a random schedule, it was deter-
mined that only past intentions levels did not suffice to explain the target value variance existing in the recorded
data. The phenomenon was evident for links of a shorter length where not more than one agent traverses at any
given time. Additional features to better capture the dynamics of the Aircraft Agent during its traversal were
defined for this purpose. An empirical evaluation of the MAS dynamics determined that the link traversal time
is also affected by congestion in neighbouring links, the presence of a turn segment upstream or downstream
the agent’s path and the allocation of a conflict avoidance command to the Aircraft Agent during its traversla
through the link.

Link traversal time is influenced by the inflow of agents at the start of the link and the outflow at a down-
stream link. To capture this phenomenon in the training data, we use the aircraft density on the neighbouring
links as a feature. In the data recording phase, once the agent completes its traversal, the ATC Agents on
either edge of the link determine the number of Aircraft Agents taxiing on their respective links and store
this information as an attribute to the link in question. In the prediction phase, either during a CBS conflict
detection or intention propagation, the instantaneous densities of the neighbouring links are irrelevant since
the information required to make the prediction is of a future time-point. Instead, the ATC Agents access the
intention timeline of the links and sample the expected intention level at the Aircraft Agent’s ETA to that link.

The influence of turns in the traversal time is captured using two categorical features, encoded as binary
values: one for entering and another for exiting the link. If the entry or exit occurs via a turn manoeuvre,
a value of 1 is set to the respective feature. The ATC Agents acquire this information by accessing the path
attribute of the Aircraft Agents. During the prediction phase, the path information is acquired through the
Mobile Agent who carries such information.

Conflict resolution commands are generated either by the CBS Agent (re-route and speed) or when the
internal logic of the Aircraft Agent determines that a loss of separation is imminent. In order to capture the
effect that has in the traversal time, three categorical variables are used to represent each type of executed
resolution command. A fourth one is also added to signify the absence of a command. The variables were
binarized using one-hot encoding.

Besides the command type, the distance from the link exit at which the Aircraft Agent begins the execution
of the command also influences the traversal time. The same goes for the change in speed as a result of a speed
command. The latter is captured using two velocity variables, V7 and V5. The values assigned to these variables,
are based on a set of rules, each representing a particular case. Figure 4 depicts the assignment logic in the data
generation phase, in which the Aircraft Agent completes its traversal through the link and its traversal time
together with the other relevant feature need to be recorded, for ANN offline training purposes (see Section

20

21

22

23

24

25

6.1. Figure 5, depicts the velocity assignment logic in the case of a CBS conflict detection cycle, in which the
Aircraft Agent is completing its taxiing through the link, and the Mobile Agent first has to determine the ETA
to the approaching ATC Agent. Lastly, Figure 6 depicts the logic implemented for the prediction of downstream
links, where it is not known beforehand whether the Aircraft Agent will execute a conflict avoidance command
or not. A downside of the approach is that it works well only for cases where the Aircraft Agent receives a single
command during its traversal. If multiple commands are received instead, only the information corresponding
to the last executed command will be reflected in the data. Table 1 lists all the features and feature types used
as inputs to the ANNs.

Command
received?

Command
received?

No

Yes
> V1= Veurrent
V32 = Viequired

V1= Verty |

Yes

>{V2= Viun

Vi = Veyrrent
V2 = Viequired

>
No
Figure 6: V;/V> assignment logic
used in the prediction of the Air-
craft Agent’s traversal time for
the subsequent links of its path.

Figure 4: V1 /V; assignment logic Figure 5: V;/V, assignment logic

at the moment the Aircraft Agent used in the prediction of the Air-

completes its traversal and a craft Agent’s remaining traversal time

training sample is recorded. through a link. The logic is used in the
command.

Table 1: ANN input features and types.

Selected Features Type Comments

Past intention levels (x6) Continuous 3 minutes, sampled at 30s intervals
Neighbouring link densities Continuous Amount is link dependent
Aircraft Agent heading to a turn Categorical One-hot encoded

Aircraft Agent headed from a turn Categorical One-hot encoded

Type of command received Categorical One-hot encoded
Distance to next ATC Agent Continuous [m]

Vi Continuous [m/s]

Va Continuous [m/s]

4.2 Model Properties

Considering the additional layer of complexity the learning mechanism brings to the MAS model, single-layered
ANNSs have been used. They have previously been argued to be sufficient for approximating any complex nonlin-
ear function [22]. Adopting a single layer architecture also reduces the chances of overfitting, a phenomenon that
complex ANN architectures are known to be prone to. An example of a single-layered ANN, in the context of
our study, is shown in Figure 7. The models were constructed using the MLPRegressor class of the Scikit-Learn
Python library [23].

Neural network training is performed via the backpropagation algorithm [24]. At first, the network weights
are randomly initialised, and the input values are propagated through the network resulting in a prediction.
The prediction is then evaluated against the true value using a cost function. This process is also known as a
forward pass. In this study, the square loss function is used as a cost function. Following the forward pass, a
backward pass occurs in which the calculated error is fed back to the network, and the weights and biases of
the network are updated based on how much they are responsible for the calculated error. Once all training
data have been forward and back-propagated, an epoch is completed. The influence of the weights and biases
on the calculated error is found using a gradient descent like optimisation algorithm.

We chose to use Adaptive moment estimation (ADAM) [25] as the algorithm to update the weight and biases
of the model. ADAM is a computationally efficient optimiser especially suited for non-convex optimisation

10

Hidden
Layer

Output
Layer

Past intention levels {
Neighboring link densities {

To turn

From turn

\/
Type of command received {

Distance to next ATC Agent

Figure 7: A Single-Layered Artificial Neural Network with N,, hidden layer neurons and activation function ¢.

problems. The algorithm computes unique adaptive learning rates for different parameters based on estimates
of the first and second-order gradients. It combines the notion of momentum optimisation and adaptive learning
rate. With momentum optimisation, the past gradients are tracked and used as an accelerating component,
meaning that if the gradient is large, then the descent towards the minimum is fastened. Adaptive learning
rate adapts the learning rate of the algorithm so that it converges faster to a minimum for dimensions with a
larger gradient than for dimensions with smaller. The default value of 0.9 was used for momentum, while the
value for the initial learning rate was chosen after performing hyperparameter optimisation. Table 2 lists other
training-related parameters.

Table 2: Pre-selected machine learning parameters and their values.

Parameter Value
Number of hidden layers 1
Hidden layer activation function = ReLu
Weight optimiser ADAM
Number of training epochs 100
Batch size 8

4.3 Hyperparameter Optimisation

With regards to the tuneable parameters, we chose to focus on the number of neurons (N,), the initial learning
rate (1) used by ADAM and the amount of regularisation. Regarding the latter, the MLPRegressor class has
the option to define levels for the L2 regularisation. Table 3 lists the hyperparameters and their corresponding
chosen ranges.

Table 3: Hyperparameters and associated distributions.

Parameter Range and Distribution
Ny U(10, 60)
Initial n logU(174, 171
L2 penalty logU(17%, 171)
14 In hyperparameter optimisation, the aim is to find parameter values close to optimal by validating their

15 influence on the generalisation performance of

the model on a validation set. Common techniques include grid

11

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

search and random search [26]. The former is computationally expensive in multidimensional hyperparameter
spaces, while random search has shown to outperform grid search in terms of runtime, but at the cost of
potentially limited exploration of the hyperparameter space. A technique that overcomes these limitations and
has become increasingly popular in ML is Bayesian Optimisation (BO). It allows to configure algorithms without
human intervention and has shown to exceed expert-level performance in tuning machine learning models [27].
The objective of BO is to find the minimum of an objective function f(x) on some bounded hyperparameter
set X.

To do so, it builds a probabilistic model for f(x) called a surrogate model and exploits this model to find
where in X to next evaluate the function while calibrating both for epistemic and aleatoric uncertainty [27]. BO
uses information from previous function evaluations to determine which point of the hyperparameter space to
compute next. It can be thought that a learning procedure is running on the background of this process. The
more iterations the BO algorithm run, the closer the surrogate model comes to resembling f(x). To evaluate
which points are to be considered next, an acquisition function a,, is used. The x, 41 is chosen is such a way
so that a,, is maximised. The pseudo-code for the BO framework [28] is shown in Appendix A of [16]. Table 4
lists the parameters chosen for BO.

Table 4: Parameter selected for BO.

Parameter Value
Surrogate model type Gradient Boosting Regression Trees (GBRT) [29]
Acquisition call Expected Improvement (EI) [30]

Number of iterations 400

In order to address potential model performance bias issues caused by splitting the training set between
the traditional training and hold-out fashion, a 3-fold cross-validation (CV) strategy was implemented and
combined with BO. The Skopt Python library [31] was used for this purpose. The best set of hyperparameters
per model was chosen based on the lowest mean CV error. The choice of the performance metric to calculate
this is discussed next.

4.4 Regression For Imbalanced Datasets

Uncertainly on the link traversal time arises when bottlenecks occur on taxiways. These bottlenecks make the
traversal times longer than average. Such cases are of interest in this research as they can strongly influence
CBS’s conflict detection and resolution activities. These phenomena, however, do not occur often and are
therefore less represented in the data. Consequently, it is expected for the learning algorithm to perform less
accurate predictions for these rare cases, as it has been trained to give more importance to the distribution of
the nominal and not so important cases. This problem is identified in the literature as the imbalanced dataset
problem.

Various modelling strategies for imbalanced domains have been proposed, but most of them relate to clas-
sification tasks where the target variable is nominal [32]. For regression tasks where the target variable is
continuous, data pre-processing techniques are among the most popular methods to deal with these imbalances.
In such methods, the training samples’ distribution is altered to steer the learning algorithm towards specific
target variable domains. From these techniques, re-sampling strategies offer a friendly way of performing such
a distribution change without needing to make changes on the learning algorithm itself. Popular re-sampling
strategies are: random under-sampling [33], SMOTER [34] and SMOGN [35]. Random under-sampling is the
simplest and less computationally expensive method to use and chosen to use in this research.

Measuring the performance of a learning model on imbalanced datasets is not straightforward. Commonly
used performance measures in regression tasks such as mean absolute error and mean squared error are not
suitable for problems of this type, as they do not distinguish between nominal and rare cases performance.
Instead, they consider the prediction errors equally across the domain of the target variable, using only the
magnitude of the error as the decisive factor for the cost of the prediction [34]. To cope with this, we consider
the framework of Utility Based Regression (UBR) [36, 37] as a means to differentiate model performance during
the phase of hyperparameter tuning.

Utility Based Regression relies on the notions of the relevance function ¢(y) and that of utility. According
to [36, 37], ¢(y) is a continuous function that maps the target variable domain into a scale of relevance in which
1 represents highest and 0 lowest relevance. Using a threshold ¢r on the relevance values, one can determine
the set of the rare and relevant cases Dy and the set of the normal and uninterested cases Dy. In our study, a
value of 0.8 was used for tg.

Two methods have been proposed for creating ¢(y) for a particular target variable distribution. These
methods are based on the observation that the notion of relevance is inversely proportional to the target variable
probability density function. Information on this density function can be retrieved by box-plot statistics. In

12

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

the first method [38], the authors use a sigmoid-based relevance function whose shape is a function of box-
plot parameters. The second method [37] uses a piece-wise cubic Hermite interpolation to interpolate a set
of relevance function values at user defined control points, S = {[yx, d(yx),» “¥)]}i_,, where ¢'(y;) is the
first-order relevance derivative of control point k.

The first method was used for this research since it is not dependent on any software package and is faster
to implement. The sigmoid-based relevance function is defined as:

1
Y= e

where c is the center of the sigmoid and s is a parameter which defines its shape.

The second notion of Utility Based Regression, is that of a utility of a prediction. Utility tries to answer
whether a prediction led to the correct identification of an extreme type as well as whether that prediction was
precise in numeric terms. The author at [37] proposed the following definition for the utility of a particular
prediction:

3)

=o() - (1 -Ts(@,y) — ¢ (:y) - Tc(,y)
where By(9,9), I'5(9,9)), Tc(9,y), Ch (3, y) are functions related to the costs and benefits of predictions.
The above definition is used to define recall and precision functions for regression problems. In this research

we use the definitions provided in [39], shown in Equations 5 and 6, which can be combined into the Fj-measure
[40].

(4)

> (T+w)

>R 1+ uy
S (T4 é(ys) precision = - - (6)
(yi)>tr > (1+0(@)
#(9:)>tr

5 Verification and Validation

Verification and validation were performed according to the recommended practices in [41, 42]. The face
validity of the MAS model was assessed iteratively using animation, and immersive assessment techniques [41].
A graphical user interface was used during animation assessment to display the aircraft motions within the
taxiway system and how the controller agents’ actions influenced that. The observed animated traffic patterns
were compared to the animated output of the original MAS model and were found to have similar behaviour.
Immersive assessment techniques were utilised to check the behaviour of particular agents and their interactions
with other agents and the environment. Examples of such techniques include displaying the intention level
database of ATC Agents, the filtered intention timeline of the taxiway links and information regarding the
status of the CBS Agent, such as the dMAS counter or details regarding the predicted conflict. In addition,
historical data validation in the form of k-fold cross-validation was performed during the hyperparameter tuning
process of the neural networks. Computerised model verification was carried out throughout the validation
procedure of the MAS model by performing frequent unit testing and code debugging. This ensured the sound
implementation of the conceptual model into code.

6 Experimental Analysis

This section presents the experimental analysis of the dMAS-based CBS mechanism. Section 6.1 describes
the offline data generation process for the purposes of offline learning. The outcome of the hyperparameter
optimisation is discussed in Section 6.2. While in Section 6.3, the results of our experiments are presented and
discussed. All code during model development and experimental analysis was developed in Python 3.7.

6.1 Data generation

Semi-random flight schedules were created in order to facilitate the training of the machine learning models.
The schedules are based on the average hourly traffic counts of an 8-day real-world dataset and comnsist of
departure/arrival times and origin/destination pairs. The real-world dataset was used for performance analysis
later on. In order to generate the schedules, several assumptions were made. Firstly, it is assumed that the
arrival rate of the aircraft to the airport system (arriving and departing separated) follows a Poisson distribution,

13

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

and consequently, the inter-arrival times are computed through the inverse CDF technique, given in Equation
7.
e = -0 ™
The mean arrival rate per unit hour, A, is calculated by dividing each day into 24 intervals and averaging
the traffic counts per mode of traffic across all days. The number of runway reconfigurations is assumed to be
constant and equal to 18 for each day, which is extracted from historical data. The time interval between the
configuration is also assumed to be constant. Furthermore, we distinguish between two modes of operations: a
departure peak and an arrival peak. For each peak, a 2+1 runway configuration is assumed. The choice of the
runway configuration is based on statistics of the most frequent use of combinations at AAS. Tables 5, 6 list
the runway mode of operations considered. Lastly, gates are randomly assigned, and in case of arriving traffic,
the entry to the taxiway system is biased to runway exits closer to the runway end.

Table 5: Runway configurations assumed for Table 6: Runway configurations assumed for
arrival peaks. departure peaks.
Inbound Outbound Inbound Outbound
27, 18R 24 36C 36L, 09
18R, 18C 24 06 36L, 09
06, 36R 36C 18R 18C, 18L

Using the semi-random schedules, a sequence of simulations was performed to generate training data for the
links chosen to participate in the learning task. During the simulations, the dMAS mechanism was switched
on, allowing intentions to be propagated in the environment. Conflict prediction and resolution activities were
performed using the baseline CBS algorithm. At the end of each link traversal, the relevant ATC Agent recorded
the (X, y) sample and stored it in a link specific database. In total, 700 simulations were performed, each under
a different seed, allowing thus for multiple types of traffic patterns to occur. Night traffic, between 23:00 and
05:00, was excluded from the data generation process as only a few movements take place during this time.
After the simulations, the recorded data were aggregated across all days and training data sets for each link was
formed. In total, data for 176 out of 265 links (=~ 66%) was recorded. Subsequently, links with a low number
of samples were discarded as they were not used often by the aircraft, and their contribution to the overall
performance would be minimal. A prediction query was always set to return the average traversal time for these
links, which is calculated based on the recorded data and updated online at the end of every traversal. After
the datasets were formed, an ANN model was allocated to each of the remaining 158 links. The outcome of the
hyperparameter tuning process is discussed next.

6.2 Hyperparameter Optimisation

Four experiments were performed during the hyperparameter optimisation stage. In the first experiment, all
the training data were used, while in the remaining experiments, undersampling of ratios 200, 300 and 400
were applied respectively and according to the principles of the UBR framework. Before the optimisation, each
dataset was split in an 80%-20% fashion into training and test sets. The training set was used to determine the
best set of hyperparameters by performing a Bayesian Optimisation coupled with a 3-fold CV. The optimisation
was initialised by randomly probing 10 points from the hyperparameter space and was limited to 400 iterations.
The hyperparameter combination that returned the lowest Fj score was then selected. For the computations,
an Intel Xeon CPU was used, consisting of 128 2.4GHz cores. Upon completion of the optimisation, the
generalisation performance of the chosen model was tested against a baseline prediction on the test set. The
baseline is simply a naive prediction that returns the average target value of the training data. If a model
fails to generalise better than its naive counterpart, it is discarded and replaced by naive logic. In this way,
we ensure that the models chosen are guaranteed to match or surpass the generalisation performance of the
average prediction, and if selected, they at least have demonstrated the ability to learn.

Table 7 presents the Mean Absolute Error (MAE) and Fj values of each prediction model when tested on
the test set, under different sampling strategies. In effect, we observe that ANNs predict better than the average
for all sampling strategies, which is confirmed by the lower MAE and higher Fj scores. The associated error
distributions are shown in Figure 8. The results indicate that when applying undersampling, the generalisation
performance of the ANNs deteriorates as opposed to the performance of the naive prediction, which remains
more or less constant. This outcome is not in line with the claims made in Section 4.4. In our context, reducing
the normal cases in the datasets by applying undersampling seems to have a negative impact on the predictions.
Specifically, without applying any sampling, at least 10% more ANNs had a better generalisation performance
than the naive prediction resulting thus in a higher participation of learning models in the planning mechanism.
In Appendix B of [16] the links which were allocated an ANN under each sampling strategy are shown. In

14

1 total, 134, 135 and 139 ANNs were allocated for the experiments with undersampling ratios of 200, 300 and 400
> respectively.

Table 7: Model test set evaluation results.

Sampling Mean MAE vy Mean MAENywe Mean Fy,,, Mean Fi, ., % of models with

strategy (s) (s) score score Fiavn > Fiyeie
No sampling 0.79 3.50 0.71 0.11 97
U(200) 1.63 3.33 0.69 0.11 85
U(300) 1.37 3.51 0.69 0.11 85
U(400) 1.17 3.51 0.70 0.11 87
No sampling U(200)
Naive 1—+—TIA+H—0 @ O o Naive 1 +—T—A+—0 0 O
ANN {—Hh@® o o ANN 1 HE-@DO-O
0 5 10 15 20 25 30 0 5 10 15 20 25 30
U(300) u(400)
Naive +—+——&+—® O o O Naive 1 +—T—A+—® O (¢] o
ANN | HA€@D O o ANN { HE-@D o
0 5 10 15 20 25 30 0 5 10 15 20 25 30
MAE [s] MAE [s]

Figure 8: Distribution of the MAE across all models per experiment type.

3 Regarding the choice of hyperparameters, Figure 9 depicts the respective probability density function es-
+ timates for the models developed under each sampling strategy. The distributions chosen when defining the
s hyperparameter spaces are also shown for reference. For the case of the number of neurons, the majority of
s the models resulted in a high number of neurons, between 50 to 60. The distributions of values for the L2
7 regularisation are shown to follow the log-normal nature of the pre-defined distribution, with the majority of
s values belonging to the 0.001-0.01 interval. The same goes for the learning rate values for which the highest
o percentage falls in the 0.001-0.02 interval.

0.030 7 Nosampling s 70 Nosampling o~ = - No sampling
U(200) //.f:\j;\‘ U(200) U(200)
—p uege N -~ U(300) 40 = U(300)
I e \ 60 b R - -
0.025 u(400) AN U(400) U(400)
; 50
0.020 30
> > g
= -
£ 2
S c
© 0.015 9]
° 220
0.010
10
0.005
0.000 0 B T —— o
0 10 20 30 40 50 60 0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04
Number of hidden neurons L2 regularisation parameter Learning rate

Figure 9: Kernel density plots of the best set of hyperparameters for models trained on not sampled datasets.
The black lines correspond to the shapes of the pre-defined hyperparameter distributions.

15

1

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

6.3 Results

The influence of the learning mechanisms in the airport surface movement operations is assessed from two
viewpoints. The first viewpoint focuses on the overall performance of the agent-based model and aims at
determining whether the addition of a learning-based mechanism improves commonly used Key Performance
Indicators (KPIs). In the second viewpoint, the focus is shifted to comparing the conflict detection abilities
of the considered mechanisms, answering thus the question of whether the ML predictions result in a better
conflict identification than the analytical method.

6.3.1 Aggregated Simulation Results

At first, the MAS model was tested under an eight-day real-world flight schedule of AAS. The schedule was
extracted from an ADS-B data analysis performed in [4], consists of origin and destination (O/D) pairs, aircraft
spawn times and distinguishes the flights between inbound and outbound. The various O/D pairs present
in the schedule allow for a wide range of traffic patterns and capture operational scenarios such as runway
reconfigurations and inbound/outbound peaks. Performance analysis was carried out at an aircraft level using
a set of KPIs. These are the aircraft taxi time duration (ACy:), the distance covered during taxiing (AC4q) and
the average taxi speed (AC;s).

To determine the appropriate statistical test to use, the Shapiro-Wilk and the D’Agostino’s K2 tests were
first used to conclude on the normality of the obtained samples. The tests showed that the samples were not
normally distributed, and therefore, the non-parametric Vargha-Delaney A-test [43] was chosen to compare the
differences between the distributions. It is an effect size test commonly used to compare the results of MAS
models. In contrast to other tests that measure statistical significance, the A-test provides a measure for the
scientific significance of the differences in the distributions of two samples. It determines a value between 0 and
1.0 with 0.6, for example, denoting the probability that a randomly selected sample from one distribution has
a higher value from the respective sample of its paired distribution. The A-test values are typically classified
as showing a small, medium or large effect due to the differences in sample values, depending on whether their
value is over 0.56, 0.64 and 0.71, respectively. For values below 0.5, the same intervals are applied.

Table 8 lists the average simulation results of all days in the real-world flight schedule for the Baseline, AMAS
and dMAS-U(300) CBS variants. The remaining dMAS variants failed to successfully resolve all conflicts in
the flight schedule and were discarded from this analysis. The distributions of the KPIs for each flight day and
mechanism type can be found in Appendix B of [16]. Regarding the two dMAS based mechanisms that were
able to successfully resolve all conflicts, we observe that no differences exist between the values of their KPIs
and those of the Baseline mechanism. This is also confirmed by the A-test values being equal or close to 0.50.
These results suggest that the application of dMAS or dMAS-U(300) do not seem to improve nor to deteriorate
the performance of the airport surface movement operations. The invariance in the results can be attributed
to the limited time during which dMAS was active. This was driven by the number of conflicts that took place
during these intervals. As mentioned before, AMAS CBS becomes active for 20 seconds after the Baseline-CBS
has detected a conflict. The dMAS time counter is then updated for every conflict detected by dMAS-CBS
within that time period. The overall traffic handled by dMAS-CBS during these intervals may not have been
sufficient to produce significant changes in the dynamics of the surface movements, and hence its effect is not
evident at a global level. Furthermore, this outcome provides no conclusion regarding the effectiveness of the
learning mechanism at detecting conflicts. A closer analysis, specifically at the conflict detection level, was
conducted for this purpose and is described next.

Table 8: MAS average taxi time (ACy), taxi distance (ACy;) and taxi speed (ACis) of flights on all days.

ACy ACyq AC;s
CBS Mechanism (mi;:l/cﬂtit ht) A-test (kmf}g;d ht) A-test (mj/élﬂcitsht) A-test
g Value g Value s g Value
- [=5.62 [=383 1 = 10.86
Bascline-CBS o =324 i o =255 i o =211 i
1 =5.63 1= 3.83 1 =10.85
dMAS-CBS o — 395 0.50 o — 9255 0.50 o =210 0.49
]] [= 5.64 [= 3.83 4= 10.85
MAS-U(300)-CBS #Z 0 050 MT 050 M UL 049

16

21

22

23

24

25

26

27

28

29

30

6.3.2 Conflict Prediction Analysis

In the second type of analysis, the conflict detection abilities of the (AMAS)-CBS variants were evaluated under
three operational scenarios: departure peaks, arrival peaks and periods with frequent runway reconfigurations.
The comparison is conducted by measuring the precision of the conflict detection capabilities of each method
in the absence of the resolution component of CBS. To accomplish this, the predicted conflict timepoints are
recorded and compared with the actual times the aircraft agents reach the predicted conflict location. For such
measurements, the CBS conflict resolution mechanism is deactivated, forcing the Aircraft Agents to continue
their taxi even if a conflict is imminent. This alteration is applied only for conflicts of crossing nature. The
resolution of head-on conflicts is not excluded from our analysis because these conflicts usually cause severe
bottlenecks, preventing thus the Aircraft Agents from reaching the predicted conflict point. This would hinder
any effort towards measuring the actual time of arrival for these agents. In addition, head-on conflicts account,
on average, for less than 10% of the total amount of conflicts detected.

A downside of such a measurement procedure is the introduction of a measurement bias caused by the self-
separation logic of the Aircraft Agents. To illustrate this, consider the example of having a conflict predicted
correctly. This would mean that as the two Aircraft Agents approach the conflict node, and in the absence
of a CBS resolution component, their separation would be lost, forcing either one to slow down, shifting thus
the actual time of arrival forward in time. A solution to this is to deactivate the self-separation logic of the
aircraft. However, this is less realistic and would imply that conflicts that were not detected by CBS would
not be resolved locally. Therefore, it was decided to stay with the self-separation activated as it is a principle
that applies for all experiments regardless of the type of mechanism used. Once the Aircraft Agents reach
the predicted conflict point, their actual time of arrival (ATA) is recorded and compared to the ETA of the
prediction mechanism.

The operational scenarios were extracted by analysing the properties of each flight day in the real-world
flight schedule. The analysis showed that flight days 04/05 and 13/05 had a high number of movements during
an arrival or departure peak period and also had periods with a high number of runway reconfigurations. Tables
9 and 10 list the flight schedule details concerning the four operational scenarios.

Table 9: Flight schedule details for Scenario A (04/05) and Scenario B (13/05).

. . . Inbound Outbound Inbound Outbound
Scenario Time interval

traffic count traffic count RWYs RWYs
07:00 - 09:00 80 14 RISC, RISR _ RI8L, R24
A (Inbound Peak) 1o o) 1) 09 65 53 R18C, RISR RISL, R24
09:00 - 11:00 35 78 RO6, R36R R36C, R36L
B (Outbound Peak) o 15 59,09 19 75 RO6, R36R R36C, R36L

Table 10: Flight schedule details for Scenario C (04/05) and Scenario D (13/05).

Inbound Outbound RMOs
traffic count traffic count (Inbound, Outbound)
"RISC + RISR, R36L
. RI8R, RISL + R24
. RISR, R24
. R1I8R + R27, R36L
. R06 + R27, R36L

Scenario Time interval

C 16:00 - 18:00 38 41

T W N~

. R36R, R36L
. R36R + RO6R, R36L

. R36R + R06, R36L + R36C
. R36R, R36L + R36C

. R36R + R06, R36L + R36C

D 11:00 - 13:00 46 60

T W N~

The measurements conducted focus on the following: the number of conflict avoidance commands the Aircraft
Agents had to adhere to, the conflict prediction error for conflicts that occurred during the intervals in which
dMAS-reinforced CBS was active and lastly, the precision of the predictions and their relation with the previously
mentioned KPIs.

17

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Number of conflict avoidance commands (CBS vs Visual Separation)

Table 11 lists the average amount of conflict avoidance commands the Aircraft Agents had to adhere to during
each type of simulation. The commands are distinguished between CBS and Visual Separation (VS). The
latter are executed by the Aircraft Agents when their internal logic determines that their separation with
another aircraft is lost. This measurement, and specifically the amount of VS commands executed, provides
insight regarding the effectiveness of CBS at providing separation to the aircraft. The higher the VS commands
executed, the more future conflicts CBS failed to detect. Table 12 lists the A-test values of all mechanisms when
compared to the Adaptive CBS and the values of the AMAS variants when compared to the Baseline-CBS. Note
that the dMAS variants become active only during an uncertainty window. For timepoints outside this window,
the Baseline CBS becomes the active mechanism.

Table 11: Average number of conflict avoidance commands allocated per CBS mechanism in each operational
scenario.

CBS Mechanism Scenario A Scenario B Scenario C Scenario D
CBS VS CBS VS CBS VS CBS VS

Adaptive-CBS 13.92 6.02 1258 9.53 11.0 4.6 7.88 6.79
Baseline-CBS 2.10 633 1.03 9.64 1.53 3.6 0.65 6.79
dMAS-CBS 1.22 5.81 095 10.32 1.00 4.27 0.7 6.79
dMAS-U(200)-CBS - - 090 9.7 121 344 0.56 6.79
dMAS-U(300)-CBS 147 6.51 0.85 10.32 1.00 2.28 0.64 6.79
dMAS-U(400)-CBS 145 6.11 093 1039 1.10 3.71 0.58 6.79

Table 12: A-test values for Scenarios A and B, between Adaptive-CBS and non-adaptive variants (left-inner
column) and between the baseline CBS and the dMAS variants (right-inner column).

CBS Mechanism Scenario A Scenario B Scenario C Scenario D
CBS Vs CBS Vs CBS Vs CBS Vs
Baseline-CBS 0.38 - 0.51 - 0.38 - 0.50 - 0.42 - 0.49 - 0.40 - 0.50 -
dMAS-CBS 0.35 0.45 0.50 0.49 0.38 049 051 051 0.41 047 0.51 0.51 041 050 0.50 0.50

dMAS-U(200)-CBS - - - - 0.38 0.49 050 050 041 048 049 049 040 049 0.50 0.50
dMAS-U(300)-CBS 0.35 0.46 0.51 0.50 0.37 0.48 0.51 0.51 041 048 048 048 040 0.50 0.50 0.50
dMAS-U(400)-CBS 0.36 0.46 0.51 0.50 0.37 049 0.51 0.50 041 049 049 050 040 0.50 0.50 0.50

It can be seen that the number of CBS commands has decreased substantially when using the non-adaptive
variants. This result is expected since the non-adaptive variants execute the conflict detection and resolution
cycle less frequently than the adaptive case. The effect of this change is small to medium, according to the
A-test values. In addition, it is seen that the decrease in the CBS commands does not negatively impact the
amount of the VS commands being executed. All changes observed between the adaptive and the non-adaptive
variants and between the dMAS and its variants were found to have a negligible effect. For Scenario A, a
bottleneck that occurred when using dMAS-U(200) prevented the simulation from completing, and therefore
data was not recorded. With respect to the allocated amount of CBS commands, the lowest amount was found
for the dMAS variant with a reduction of 42% compared to the Baseline. In Scenario B, the dMAS-U(300)
variant allocated the least CBS commands on average, while the slight increase on the VS commands allocated
by the non-adaptive variants compared to the Adaptive variant was found to have a negligible effect. In Scenario
C, the dMAS and dMAS-U(300) variants had a similar performance regarding the allocated CBS commands,
but the latter was found to contribute to fewer aircraft VS commands. In Scenario D, no significant differences
were found between the non-adaptive variants. The VS commands remained constant across all experiments.

Conflict prediction error

The conflict prediction error is calculated from the absolute differences between the estimated times and actual
time of arrivals. We distinguish between the error present in the prediction of the commanded, AC,, or the
other aircraft in a conflict pair, AC, (Equations 8 and 9). In addition, we define a measure for the CBS error,
which is given in Equation 10. The latter is used to determine whether CBS lead to the correct identification
of a conflict. Error values less or equal to Tyindow correspond to conflicts that actually took place. Tables
13, 14 list the mechanisms’ absolute prediction error retrieved under Scenarios A and C respectively. The
tables corresponding to Scenarios B and D can be found in Appendix B of [16]. Furthermore, in Figure 10 the
error distributions for the Adaptive, Non-adaptive and dMAS CBS variants under Scenario A are shown. The
remaining mechanisms and scenarios can as well be found in [16].

18

ACipy = |ET Acmi — AT Acydl 8)
ACy s = |ET Asther — AT Aopher] (9)

OAE

C’BSAE' = HETA('md - ETAother| - |ATArmd - ATAotherH (10)

As mentioned above, these results concern the conflicts detected during the timepoints in which dMAS-
CBS was active. Regarding the non-adaptive variants, it is important to note that because their underlying
detection mechanism is different, the number of conflicts detected by either one will vary. A conflict predicted
by one mechanism does not necessarily mean that it will be predicted by the other. More precisely, between
the Baseline and the dMAS variants, the largest differences were found for AMAS-CBS in Scenarios A and C
where 69% and 64% fewer conflicts were detected respectively, dMAS-U(300) in Scenario B corresponding to
a reduction of 33% and dMAS-U(200) in Scenario D for a reduction of 41%. We see that in all scenarios, the
dMAS variants were more conservative than the Baseline when making conflict predictions. Regarding the mean
and standard deviation of the prediction error, we cannot make an immediate conclusion, as the sample size of
each mechanism is different. Looking at the individual distributions, however, we notice a higher uncertainty
in the predictions of the Baseline mechanism, especially during periods with an increased number of runway
reconfigurations. Many of the predictions of the Adaptive-CBS, on the other hand, are outliers. Despite that,
its average error in all scenarios is maintained at low levels. The latter can be explained by the fact that conflict
prediction for a particular conflict pair in Adaptive-CBS is performed throughout the travel of that pair to
their predicted conflict location. The further away they both are, the more uncertainty is present, which is seen
as an outlier in the data. As the two aircraft approach each other, the underlying uncertainty in their paths
decreases, making the Adaptive-CBS predictions better.

Table 13: Statistics of the absolute prediction error for predictions made in Scenario A.

CBS Mechanism Neop fiicts AC., . [$] AC,, . [9] CBSug [s]
Adaptive-CBS 2692 1n=30.200=40.44 p=47200=>59.34 p=52.99 0 =63.43
Baseline-CBS 267 $t=61430="7090 p=286.580c=98.84 pu=102.090=107.27
dMAS-CBS 82 pw=3256 0 =2752 pu=49.44 0 =39.26 w=24.66 0 =29.19

dMAS-U(200)-CBS -
dMAS-U(300)-CBS 143 [=39.030=27.08 p=>51450=3465 pu=32920=31.16
dMAS-U(400)-CBS 110 [=58360=28553 u=06221c0=7208 pu=66.01c=116.16

Adaptive CBS Baseline CBS dMAS CBS
N conflicts=2692 Nconflicts=267 Nconflicts=82
350 o) 350 350
Q o}
¢ 8 ¢ 8
2 L
300 § 300 g 6 300 -
6 o o}
] $ I
= 250 1 250 4 250
= Q
g 8 o}
(0]
c 200 A] 200 o) 200
2 8
O (o]
5 8
g
S 150 4 150 - —| 150 - 5
L
=]
2 o} o)
= 8
< 100 A 100 4 A 1008
A o}
il o 8
50 4 50 50
0 1 T T T O 1 T T I O L T T T
ACc,, ACo,, CBSae ACc,. ACo,, CBSae ACc,. ACo,, CBSae

Figure 10: Conflict prediction error distributions of Adaptive, Baseline and dMAS CBS in Scenario A.

19

Moreover, we see that in Scenarios C (Table 14) and D (Appendix B [16]), all mechanisms detect fewer
conflicts compared to Scenarios A and B. This is due to the lower traffic levels existing during runway reconfig-
urations as the airport operates in a reduced capacity, having thus less coupled traffic. The results also suggest
that the prediction errors for the AC, are higher than for the AC,. This is observed across all mechanisms and
scenarios. The result is counterintuitive since AC, is the aircraft that is the furthest away from the conflict
location, and we would expect that to be the one that most deviates from the predicted conflict time. A possible
explanation could be that the conflict prediction module of CBS only accounts only for conflict pairs and not
for higher-order dependencies between aircraft. This implies that after a command has been generated, the
other aircraft may not be entirely decoupled from existing traffic and is subject to CBS’s handling at a later
timepoint. Further analysis, however, needs to be performed to support this claim.

Table 14: The mean and standard deviation of the absolute prediction error for predictions made in Scenario

C.

CBS Variant Neon flicts AC., . [$] AC,, [9] CBSag [$]

Adaptive CBS 754 w=233.740=40.61 p©=42960=5454 p©=52.17 0 =66.12
Baseline CBS 58 u=061340=066.87 p©=100.19 0 =199.28 pu=103.78 0 = 94.68
dMAS-CBS 21 1nw=>55380=3546 p=068810c=5053 pu=29.330=32.16
dMAS-U(200)-CBS 35 1n=061800=40.68 p=2=83.000=064.03 p=235.740=45.13
dMAS-U(300)-CBS 21 nw=47.05 0 =4554 p=5843 0 =47.63 p=56.24 0 =62.36
dMAS-U(400)-CBS 24 pu=>50210=3539 pu=06158c=49.65 w=40.00 ¢ = 34.39

In Table 15, the mean and standard deviation of CBS4g for the Baseline and dMAS-CBS on conflict
predictions that are common to both mechanisms are presented. These concern predictions that took place at
the same timepoint and cover the same conflict pair and location. For Scenario A, the 1s increase in the mean
error was found to have no effect or statistical significance. This also applies to Scenarios B and D, where a
decrease of approximately 2s and an increase of 1s were found, respectively. The only significant result was
found for Scenario C, where the average error of AMAS-CBS was 13.5s lower for a sample of 9 conflicts. The
A-test value of 0.43 signifies that the effect due to dMAS-CBS is small. In Table 16 the prediction statistics for
the commonly identified conflicts between the dMAS variants are shown. For Scenarios A and B, any variation
in the CBSAg had a negligible effect according to the A-test values, whereas in Scenario C, the dMAS and
dMAS-U(200) mechanisms had a better prediction performance than the remaining mechanisms. Lastly, in
Scenario D, all AMAS based variants showed better predicting abilities than dMAS. The greatest improvement
was observed for dAMAS-U(200), equal to 12s.

Table 15: CBSar mean and standard deviation for common conflict pairs between the Baseline and dMAS
CBS.

Scenario A Scenario B Scenario C Scenario D
Nconfli(:ts =34 Nconfli(:ts =28 Nuonfli(:ts =9 Ncon,fliuts =10
. n=24.44 1= 44.68 1 =>51.56 = 30.00
Baseline CBS 39 65 i o = 52.87 i o =53.14 i o =39.19
. n=25.41 W e M=4239 . n = 38.00 . p=31.00 .
dMAS-CBS o — 30.74 A-test = 0.55 o — 49.81 A-test = 0.48 o — ALTT A-test = 0.43 o — 3744 A-test = 0.52

Table 16: CBS 4k mean and standard deviation for common conflict pairs between the dMAS variants.

CBS Mechanism Scenario A Scenario B Scenario C Scenario D
Nconflicts =27 Nconflz‘cts =25 Nconflicts =17 Nconflicts =17
TAQ n=17.93 . n=31.28 . pn=34.71 . n=28.14)
dAMAS-CBS o=12.75 o =33.28 o =49.14 o =24.10
n=17.22 . = 32.60 . 1= 34.86 o n=16.43 .
dMAS-U(200)-CBS > — 13.66 A-test = 0.47 o — 34.60 A-test = 0.49 o — 49.97 A-test = 0.51 - — 26.70 A-test = 0.19
TAQTT 200 n=20.22 et n=32.36 et _aq R=05T.14 et _ 0 pp B =120.14 et
dMAS-U(300)-CBS > — 15.90 A-test = 0.54 b — 3470 A-test = 0.49 o — 64.03 A-test = 0.66 o — 9754 A-test = 0.29
1 =20.04 . = 31.56 . 1= 46.86 . n=18.71 .
dMAS-U(400)-CBS o — 14.32 A-test = 0.54 o — 33.01 A-test = 0.50 o — 50.89 A-test = 0.60 o — 2456 A-test = 0.19

20

Conflict prediction precision

The suitability of the proposed mechanisms is further assessed by looking at the amount of true positive (TP)
and false-positive predictions (FP) they generate. A true positive prediction is defined as one in which the
absolute CBS error (Equation 10) is less than or equal to the conflict time window, Tyindow. We then use the
measure of Precision to assess the mechanisms. Precision is defined as the ratio of the true positives over all
the positively identified instances (Equation 11). The more precise a mechanism is, the less the probability
of predicting false positives, also known as Type I error. In our operational setting, this would translate into
having the Aircraft Agents receiving fewer erroneous commands by the ATC Agents. As we saw earlier in
Section 4.4, it is common practice to combine Precision with the measure of Recall, which takes into account
the false negatives predictions (Type II error). However, in our simulations, we do not identify false negative
predictions as we lack a reference that declares a conflict as true. The only conflict information we capture is
based on the mechanisms’ conflict detection principles, meaning that the only validation that can be performed
is only that of an identified conflict. However, we know that a falsely unidentified conflict will trigger the visual
separation logic of the Aircraft Agents at a later timepoint, causing them to slow down or change paths. Tables
18 to 21 present the precision of each mechanism and scenario alongside the previously mentioned KPIs.

TP
Precision = W (11)

Table 17: CBS g statistics for common conflict pairs between the dMAS variants.

Adaptive Baseline dMAS dMAS-U(200) dMAS-U(300) dMAS-U(400)

TP /FP 940 /1752 58 /210 42/ 40 41 / 60 46 / 97 15 /65
Precision 0.35 0.22 0.51 0.41 0.32 0.41
ACy; [min] 6.71 7.14 6.35 6.99 6.92 6.44
ACyq [km] 477 5.12 4.75 4.95 4.75 4.73
ACy, [m/s] 11.31 11.58 11.09 11.20 10.97 11.00

Table 18: Precision and KPI values of all mechanisms in Scenario A.

Table 19: Precision and KPI values of all mechanisms in Scenario B.

Adaptive Baseline dMAS dMAS-U(200) dMAS-U(300) dMAS-U(400)

TP / FP 975 /1833 27 /90 43 /65 26/71 13/ 66 26 /79
Precision 0.35 0.23 0.40 0.27 0.16 0.25
AC; [min] 6.39 7.07 6.91 6.66 6.98 6.67
ACyq [km)] 4.07 4.59 4.42 4.27 4.59 4.32
ACys [m/s] 10.46 10.71 10.69 10.58 10.84 10.66

Table 20: Precision and KPI values of all mechanisms in Scenario C.

Adaptive Baseline dMAS dMAS-U(200) dMAS-U(300) dMAS-U(400)

TP /FP 172 /582 11/47 7 /14 16 / 19 0/21 6/ 18
Precision 0.23 0.19 0.33 0.46 0.00 0.25
ACy; [min) 8.44 8.85 8.38 8.34 9.86 9.53
ACyy [km) 6.04 6.48 5.94 5.82 7.24 6.07
AC,, [m/s] 11.49 11.96 11.09 11.12 11.65 11.19

Table 21: Precision and KPI values of all mechanisms in Scenario D.

Adaptive Baseline dMAS dMAS-U(200) dMAS-U(300) dMAS-U(400)

TP /FP 306 /475 5 /24 6 /30 8/9 8/ 18 9 /12
Precision 0.39 0.17 0.17 0.40 0.31 0.43
ACy; [min) 5.62 6.31 6.41 6.53 6.66 6.29
ACq [km)] 3.64 4.16 4.15 4.23 4.39 4.18
ACy, [m/s] 10.50 10.83 10.47 10.35 10.83 10.63

21

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Tables 18, 19, 20 and 21 list the Precision and the associated KPIs of the mechanisms, for Scenarios A, B,
C and D respectively. Overall, the dMAS variants are shown to be more precise when characterising conflicts.
In scenarios with peak traffic, pure dMAS is the most precise mechanism of all. In Scenario A, dMAS scored
a precision of 51% compared to 35% and 22% that the Adaptive and Baseline CBS scored. The result is
accompanied by a reduction in the mean values of all three KPIs. The decrease, however, has a negligible
effect according to the associated A-test values. Furthermore, dMAS predicted nearly five times fewer false
positives than the Baseline variant without being negatively impacted by potential false-negative predictions as
seen by the KPIs. All AMAS variants had a better performance than the Baseline but made more false-positive
predictions than dMAS. A similar pattern is seen for Scenario B, where dMAS scored a precision of 40%. Like
in Scenario A, the slight decrease of the KPI values compared to the Baseline has a negligible effect according to
the A-tests. Looking at the amount of true positive predictions in Scenario B, we see that the baseline variant
had at least 45% more false-negative predictions than dMAS. In Scenario C, the difference between the precision
values of AMAS and the Baseline is lower than for the previous two scenarios. dMAS-U(200) was, in fact, the
best performing mechanism, while dMAS-U(300) was not able to correctly identify any conflict and, as a result,
had the highest ACy; of all mechanisms. In Scenario D, the Baseline and dMAS performed very similarly to
each other, with the KPIs being slightly in favour of the Baseline, but the difference was negligible. The dMAS
variants, on the other hand, performed better, with dMAS-U(400) scoring the highest precision of all.

From the above, we deduce that the precision of AMAS-CBS is substantially higher for scenarios with a
higher number of aircraft movements and greater coupled traffic. During runway reconfigurations, the lower
traffic levels and coupling between aircraft make dMAS base predictions more prone to Type I errors. The
undersampling variants, on the other hand, have shown good performance during runway reconfiguration,
except from dMAS-U(300), which failed to positively identify future conflicts.

7 Discussion

This study demonstrated that machine learning could improve the conflict prediction performance of a CBS-
based cooperative coordination and planning mechanism. Four dMAS based mechanisms were tested, of which
three were trained on under-sampled datasets.

The pure dMAS mechanism offered more precise predictions and matched the overall system performance
of the Baseline mechanism. In addition, its conflict prediction precision was found to be significantly better
in scenarios at which the airport experiences capacity peaks. However, the extent to which undersampling
improves our proposed learning-based approach is not clear. More research on this topic needs to be conducted.
The dMAS-U(200) and dMAS-U(400) variants seem to underperform in traffic conditions with a high number
of movements by allowing bottlenecks to be created and preventing the smooth flow of traffic. During runway
reconfigurations, the dMAS variants, except from dMAS-U(300), were shown to offer a higher conflict detection
precision than the Baseline and pure dMAS variants. When looking at the CBS4g, however, improvements
only in one of the two considered scenarios were observed. The pure dMAS, on the other hand, was found to
be more consistent in terms of both prediction error and precision than the dMAS variants and was able to
operate successfully to the full extent of the provided flight schedule. Undersampling reduces the training data
size to allow the ratio of rare to normal samples to be greater. In certain cases, this might lead to insufficient
training, especially if the number of rare samples is small. As a result, the mechanisms may be more prone to
incorrect predictions. We recommend the use of other sampling techniques to bias the learning algorithms, such
as oversampling or a combination of both [34].

Concerning the decision around the learning task, a few points can be made. Firstly, the choice of the
learning model to predict link specific traversal times was purely based on the choices made in a previous work
[12]. Other ML algorithms such as SVMs [44], or Random Forests [45], which have been used in the past in the
taxi-time estimation literature [11], could offer better estimates than ANNs. A more elaborate model selection
process is recommended for future research. Secondly, the ML models are trained offline using data that are
generated during simulation runtime. An interesting direction to investigate would involve implementing online
learning in the system, allowing the models to adapt their predictions according to the changing circumstances
at the airport. The concept was trialled in the early stages of this study, but issues were found during the online
feature normalisation caused by the in-variance of feature values at specific simulation periods. Tree-based
models [46] which do not require data normalisation would be better candidates to implement.

In this study, only a limited set of data was available, and therefore semi-random flight schedules were used
as inputs in the data generation process. Although the schedules produced by the flight schedule generation
mechanism resemble reality to some extend, not all real-life traffic patterns are captured. Models trained on
actual data instead are expected to have greater generalisation abilities than the current case. Moreover, it
would allow the assessment of the proposed mechanisms on a broader set of operational scenarios.

In addition, a sensitivity analysis on the model parameters was not performed in this study. It was deemed
infeasible given the number of parameters and the computational complexity involved in the process. It would be

22

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

of interest to determine the response of the MAS model in variations of the aircraft, CBS and dMAS parameters.
This would allow generalising better the conclusions found. Furthermore, we did not differentiate between input
features per type of taxiway link in this study, and all ML links were allocated the same features. However,
depending on their location and size, links are subject to different traffic patterns, which other combinations of
features can capture. Therefore, we recommend analysing the feature importance on links of similar properties
in order to identify better fitting features.

From an operational perspective, simulation experiments were performed using fixed aircraft kinematic
parameters such as maximum and minimum acceleration levels and speeds. The parameters were chosen based
on the A320 and B737 aircraft types, which are largely operated at AAS. In reality, however, various aircraft
kinematic profiles are present at AAS. The MAS model can therefore be extended to incorporate variable
aircraft performances. Future work should also consider incorporating the apron operations into the model
and the effects of the flight crew behaviour. Regarding the latter, in real life, crews do not always taxi at the
maximum taxi speed in order to reduce fuel consumption or to fulfil safety requirements. Furthermore, certain
aspects in their behaviour, such as uncertainty or unfamiliarity with the taxiway layout, may prevent them from
timely executing their allocated plans. These additions would increase the simulations’ realism and allow for a
more consolidated assessment of the implemented mechanisms.

8 Conclusion

This study has taken the first step to investigate how machine learning can be used to enhance the performance
of a cooperative multi-agent path planning algorithm in the context of airport surface movement operations.
The proposed learning-based mechanism aims to replace a deterministic conflict detection algorithm that is
based on the propagation of the instantaneous aircraft dynamics.

The proposed mechanism consists of a delegated Multi-Agent System (dMAS) that runs on top of a dis-
tributed version of the Conflict Based Search (CBS) Multi-Agent Path Finding (MAPF) algorithm and a set of
single-layered Artificial Neural Networks (ANNs), each responsible for modelling the traversal time dynamics
of specific taxiway segments. The dMAS uses the notion of intention propagation where ATC Agents inform
other ATC Agents about changes in the intentions of aircraft under their control. Information propagation is
performed by means of lightweight agents, called Mobile Agents. Each Mobile Agent holds information related
to a single Aircraft Agent. When deployed, the Mobile Agent traverses the intended path of the Aircraft Agent
and, by querying the ANNs, builds a timeline of the associated estimated times of arrivals. Relevant ATC
Agents use this information to update their internal state and the expected future aircraft count on taxiway
segments that coincide with their location. Together with other predictors that capture local taxiway dynam-
ics, the updated future intention levels are also used during a CBS prediction cycle. Similarly to the intention
propagation process, Mobile Agents are deployed, and instead of notifying ATC Agents, they only return the
queried timeline estimates. The CBS agent who maintains the conflict prediction logic compares the estimated
timelines for potential future conflicts and notifies the relevant ATC Agent if needed.

At the beginning of our analysis, all ANNs were trained on data generated by dMAS during runs on
semi-random flight schedules. In addition to the dMAS-CBS mechanism, we also studied the effect of biasing
the ANNs to give greater importance to samples that corresponded to longer taxi times. The technique of
undersampling was used for that purpose, and three additional dMAS variants with undersampling ratios of
200, 300 and 400 were created. We then performed simulation experiments using a real-world flight schedule.

Concerning dMAS-CBS, it was found that although it was able to control aircraft traffic safely, the effect on
the overall system behaviour compared to the original approach was insignificant. A closer analysis performed
on the conflict prediction level showed that dMAS-CBS is more conservative than the Baseline-CBS when
making predictions. In almost all of the tested operational scenarios, dMAS-CBS handled fewer conflicts than
its counterpart without negatively affecting the system dynamics. The measured error distributions indicate
less variance in the dMAS-CBS predictions. When looking at the precision of the mechanisms, it was found
that AMAS-CBS is, on average, more precise. In a scenario where the airport experienced arrival peaks, the
precision of AMAS-CBS was measured to be 51% compared to 22% of the baseline mechanism. More specifically,
dMAS-CBS predicted five times fewer false positives than the baseline. During departure peaks, a precision
of 40% was measured for dAMAS-CBS while only 23% for the baseline. During periods with a high number
of runway reconfigurations, dMAS had a similar performance to the baseline, which can be explained by the
absence of actual conflicts in the datasets, as the airport operates at a reduced capacity.

Regarding the undersampling variants, it was found that their performance in scenarios of peak traffic was
lower than dMAS-CBS, both in terms of conflict prediction error and precision. In certain cases, they could
not safely control traffic which resulted in the formation of bottlenecks. In one of the scenarios of multiple
reconfigurations, the variants offered better precision than dMAS. However, we cannot conclude whether these
are more suited for such scenarios, as their conflict prediction error was found to be higher than dAMAS-CBS
in another similar scenario. Other ways of biasing the learning algorithm should therefore be investigated in

23

1

2

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

future research.

References

[1] EUROCONTROL, “Eurocontrol five-year forecast 2020-2024,” 2020.

[2] EUROCONTROL, “European aviation in 2040, challenges of growth, annex 1, flight forecast to 2040,”
2018.

[3] H. Udluft, Decentralization in Air Transportation. Phd thesis, Faculty of Aerospace Engineering - Delft
University of Technology, 2017.

[4] T. Noortman, Agent-Based Modelling of an Airport’s Ground Surface Movement Operation. Master’s thesis,
Faculty of Aerospace Engineering - Delft University of Technology, 2018.

[5] K. Fines, A. Sharpanskykh, and M. Vert, “Agent-based distributed planning and coordination for resilient
airport surface movement operations,” Aerospace, vol. 7, no. 4, p. 48, 2020.

[6] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based search for optimal multi-agent
pathfinding,” Artificial Intelligence, vol. 219, pp. 40-66, 2015.

[7] H. Idris, J.-P. Clarke, R. Bhuva, and L. Kang, “Queuing Model for Taxi-Out Time Estimation,” Air Traffic
Control Quarterly, vol. 10, no. 1, pp. 1-22, 2002.

[8] P. Balakrishna, R. Ganesan, and L. Sherry, “Application of reinforcement learning algorithms for predicting
taxi-out times,” Proceedings of the 8th USA/Furope Air Traffic Management Research and Development
Seminar, ATM 2009, pp. 255-261, 2009.

[9] S. Ravizza, J. A. Atkin, M. H. Maathuis, and E. K. Burke, “A combined statistical approach and ground
movement model for improving taxi time estimations at airports,” Journal of the Operational Research
Society, vol. 64, no. 9, pp. 1347-1360, 2013.

[10] J. Chen, S. Ravizza, J. A. Atkin, and P. Stewart, “On the utilisation of fuzzy rule-based systems for taxi
time estimations at Airports,” OpenAccess Series in Informatics, vol. 20, pp. 134-145, 2011.

[11] H. Lee, W. Malik, and Y. C. Jung, “Taxi-out time prediction for departures at charlotte airport using
machine learning techniques,” 16th AIAA Awviation Technology, Integration, and Operations Conference,
no. June, pp. 1-11, 2016.

[12] R. Claes, Anticipatory Vehicle Routing: Coordinating traffic using community generated traffic predictions.
Phd thesis, Faculty of Engineering Science - Katholieke Universiteit Leuven, 2015.

[13] T. Holvoet and P. Valckenaers, “Exploiting the environment for coordinating agent intentions,” in Inter-
national Workshop on Environments for Multi-Agent Systems, pp. 51-66, Springer, 2006.

[14] T. Holvoet, D. Weyns, and P. Valckenaers, “Patterns of delegate mas,” in 2009 Third IEEE international
conference on self-adaptive and self-organizing systems, pp. 1-9, IEEE, 2009.

[15] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost
paths,” IEEE transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.

[16] S. Polydorou, A learning based approach for distributed airport surface movement operations. Master’s
thesis, Faculty of Aerospace Engineering - Delft University of Technology, 2021.

[17] M. H. C. Torres and T. Holvoet, “Self-adaptive resilient service composition,” in 2014 International Con-
ference on Cloud and Autonomic Computing, pp. 141-150, IEEE, 2014.

[18] M. Ferber, T. Rauber, M. H. C. Torres, and T. Holvoet, “Resource allocation for cloud-assisted mobile
applications,” in 2012 IEEFE Fifth International Conference on Cloud Computing, pp. 400-407, IEEE, 2012.

[19] R. Claes and T. Holvoet, “Ad hoc link traversal time prediction,” in 2011 14th International IEEE Con-
ference on Intelligent Transportation Systems (ITSC), pp. 1803-1808, IEEE, 2011.

[20] B. Irie and S. Miyake, “Capabilities of three-layered perceptrons.,” in ICNN, pp. 641-648, 1988.

.-1. Funahashi, n the approximate realization of continuous mappings by neural networks, eura
21] K.-I. Funahashi, “On th i lizati f i i b 1 ks,” Neural

networks, vol. 2, no. 3, pp. 183-192, 1989.

24

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

[22]

[23]

[24]

[25]

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,”
Neural networks, vol. 2, no. 5, pp. 359-366, 1989.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine learning in python,” the Journal of machine Learning
research, vol. 12, pp. 2825-2830, 2011.

R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Neural networks for perception,
pp. 65-93, Elsevier, 1992.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980,
2014.

J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization.,” Journal of machine learn-
ing research, vol. 13, no. 2, 2012.

J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine learning algorithms,”
arXiv preprint arXiv:1206.2944, 2012.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the human out of the loop:
A review of bayesian optimization,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148-175, 2015.

J. H. Friedman, “Stochastic gradient boosting,” Computational statistics € data analysis, vol. 38, no. 4,
pp. 367-378, 2002.

J. Mockus, V. Tiesis, and A. Zilinskas, “The application of bayesian methods for seeking the extremum,”
Towards global optimization, vol. 2, no. 117-129, p. 2, 1978.

S. Markov, “Skopt documentation,” 2017.

P. Branco, L. Torgo, and R. Ribeiro, “A survey of predictive modelling under imbalanced distributions,”
arXiv preprint arXiv:1505.01658, 2015.

M. Kubat, S. Matwin, et al., “Addressing the curse of imbalanced training sets: one-sided selection,” in
Ieml, vol. 97, pp. 179-186, Citeseer, 1997.

L. Torgo, P. Branco, R. P. Ribeiro, and B. Pfahringer, “Resampling strategies for regression,” Ezpert
Systems, vol. 32, no. 3, pp. 465-476, 2015.

P. Branco, L. Torgo, and R. P. Ribeiro, “Smogn: a pre-processing approach for imbalanced regression,” in
First International Workshop on Learning with Imbalanced Domains: Theory and Applications, pp. 36-50,
PMLR, 2017.

L. Torgo and R. P. Ribeiro, “Utility-based regression,” in Furopean Conference on Principles of Data
Mining and Knowledge Discovery, pp. 597-604, Springer, 2007.

R. P. A. Ribeiro, Utility Based Regression. Phd thesis, Dep. Computer Science, Faculty of Sciences -
University of Porto,, 2011.

)

L. Torgo and R. Ribeiro, “Precision and recall for regression,” in International Conference on Discovery

Science, pp. 332-346, Springer, 2009.

P. Branco, Re-sampling approaches for regression tasks under imbalanced domains. Master’s thesis, Dep.
Computer Science, Faculty of Sciences - University of Porto,, 2014.

C. Van Rijsbergen, Information Retrieval. Dept. of Computer Science, University of Glasgow, 2 ed., 1979.

F. Kligl, “A validation methodology for agent-based simulations,” in Proceedings of the 2008 ACM sym-
posium on Applied computing, pp. 39-43, 2008.

R. Sargent, “Verification and validation of simulation models,” vol. 37, pp. 166 — 183, 01 2011.

A. Vargha and H. D. Delaney, “A critique and improvement of the ¢l common language effect size statistics
of mcgraw and wong,” Journal of Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101-132, 2000.

Y. Tian, Y. Shi, and X. Liu, “Recent advances on support vector machines research,” Technological and
Economic Development of Economy, vol. 18, 03 2012.

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5-32, 2001.

G. James, D. Witten, T. Hastie, and R. Tibshirani, “Tree-based methods,” in An introduction to statistical
learning, pp. 303-335, Springer, 2013.

25

Literature Study previously graded under AE4020

29

Introduction

Air traffic has been experiencing significant growth over the last decades. In Europe alone, the number of
Instrument Flight Rules (IFR) flights is expected to reach a total of 16.2 million by 2040, a 53% increase from
the flight year of 2017 [31]. This increasing trend has been creating bottlenecks in the Air Traffic Management
(ATM) system which is limited in terms of capacity and resources. To cope with such challenges, initiatives
such as the Single European Sky (SESAR) in Europe and Next Generation Air Transportation System (NextGen)
in the United States have been established in order to modernize the current Air Traffic Control (ATC) system
while meeting the appropriate safety and environmental standards. One of key areas at focus are airports
who are among the key players to contribute to these bottlenecks. In the third quarter of 2019, 9% of the
total delay encountered was caused by airport operations. Issues such as arrival and departure management,
gate assignment and surface movements operations have thus received a significant attention by the research
community lately.

In this thesis, the focus lies on the airport surface movement operations problem which is best described
as a path planning problem. The goal is to find conflict free routes for aircraft through the taxiways to their
destination as quickly as possible, while reducing the overall taxi time and/or other objectives such as taxi
distance. This is a challenging task as factors such as size and airport layout, the number of aircraft present
and weather conditions have a direct influence on the complexity of the problem. In addition, one needs to
consider the various dependencies between taxiing aircraft [2]. Currently, movement operations are handled
by Air Traffic Controllers (ATCOs) in a way which resembles operations of a centralized system. ATCOs are
limited in terms of mental capacity and their workload and performance can vary depending on the condi-
tions existing on the airport’s surface.

Research performed in the Air Transport and Operations section of TU Delft has proposed a concept,
using the Agent-Based Modelling (ABM) methodology, in which movement operations are handled in a dis-
tributed manner. Agent based modeling (ABM) is a technique which allows the modeling of interactions
between agents in complex socio-technical systems and provides the user with the means to identify emer-
gent behaviors and system wide effects which would not have been the case with other modeling techniques
[76]. Particular attention has been spent to the ground operation of Amsterdam Airport Schiphol (AAS), one
of the busiest and most complex airports in Europe. An existing model realizes distributed control by allocat-
ing tasks to virtual controller agents placed on the taxiway infrastructure. Each controller is responsible for
handling traffic in its local environment as well as coordinate and plan activities with agents in its vicinity. It
has been shown that such a distributed control system is able to match the performance of the ATCOs under
nominal system states and demonstrate a good behavior when runway reconfigurations take place.

This MSc thesis continues in the same research direction. The focus is to enhance the current implemen-
tation and make it more suitable for applications in real-world like scenarios. Two ways which are thought to
enhance the current system have been identified in this literature study. The first involves the introduction
of alearning mechanism based on which the agents will perform their tasks in a more efficient manner, and
the second involves the modification of the existing planning mechanism to a variant which is shown to be
more efficient in terms of scalability and runtime.

This literature study is structured in the following way. First, in Chapter 2, the airport surface movement
operations as currently being performed at AAS are discussed. The focus in this chapter is to obtain an un-
derstanding of the processes and interactions between the stakeholders responsible for managing aircraft

31

32 1. Introduction

movements as well as to describe some of the challenges they face. Following this introduction, Chapter 3,
outlines the main features of previous research performed in this department, on the domain of airport sur-
face movement operations, resulting in an identification of a research gap which this thesis will aim to fill.
Chapter 4, discusses multi-agent learning, one of the aspects thought to address the identified research gap.
At first, opportunities in which the existing distributed control system can be enhanced through a learning
mechanism are identified and the most relevant is chosen. Subsequently, existing literature which cover cer-
tain aspects of the identified learning task is reviewed, and a course of action is formulated to some extent.
The key for the implementation of efficient distributed control is to have agents plan their actions. An existing
implementation of a multi-agent planning mechanism has shown promising results; however, new methods
proposed in the literature are still worth to be investigated. For this reason, in Chapter 5 a number of multi-
agent path planning (MAPP) algorithms covered in the literature are presented and a trade-off is performed
in order to select the most suitable candidate. Lastly, the findings from this literature study are combined in
Chapter 6 to a research proposal, in which a main research question and several sub-questions are derived.

Airport Surface Movement Operations at
Schiphol Airport

The focus in this chapter is to present information on how airport surface movement operations are being
performed within a complex airport. The airport at focus is Amsterdam Airport Schiphol (AAS) which has
also been extensively studied in [36, 60]. Schiphol is one of Europe’s largest airport consisting of 6 runways
and a large taxiway network. In 2018 it was connected to 327 destinations worldwide by 108 airlines and
accommodated a total of 71.1 million passengers, making it the 11th busiest airport in the world [1, 70]. It
is also the hub airport for KLM, KLM Cityhopper, Martinair, Transavia and TUI fly Netherlands. The chapter
is divided as follows. First, in Section 2.1, a description of the Schiphol Collaborative Decision Management
system is given. In Section 2.2, a summary of the surface movement operations is given while Section 2.3
describes the socio-technical system of Schiphol, identifying all agents and their interactions. Section 2.4
deals with the operational aspect of runways re-configurations and lastly, in Section 2.5, uncertainty factors
which play an important role in surface movement operations are identified.

2.1. Schiphol Collaborative Decision Management

The information presented in this section has been derived from Eurocontrol’s Airport CDM Implementation
Manual [30] and Schiphol’s CDM Operations Manual [71].

Ground operations at Schiphol are performed according to the Airport Collaborative Decision Making
system (A-CDM) introduced by EUROCONTROL. According to the Eurocontrol Airport CDM Implementation
manual, the system aims at improving the Air Traffic Flow and Capacity Management (ATFCM) at airports by
reducing delay, improving the predictability of events and optimizing the use of the available resources. This
is achieved through the timely information exchange between the A-CDM stakeholders [30]. For Schiphol
airport these stakeholders are the airlines, ground handlers, Luchtverkeersleiding Nederland' (IVNL), and
AAS itself. Schiphol-CDM is in line with Eurocontrol’s Implementation Manual and aims at optimizing the
turnaround process at its entirety. A-CDM consists of 5 processes. These are shown in Figure 2.1. The pro-
cesses shown in dark blue are elaborated in this section as there are more relevant to consider for this study.

Pre-denart Collaborative
Management of
S Flight Updates

Figure 2.1: A-CDM processes

2.1.1. The Milestone Approach
An important feature of the A-CDM is the Milestone Approach Element. It describes the most significant
events that occur for a flight, from its initial planning phase to its take-off. The time at which these events

1The Dutch Air Navigation Service Provider

33

34 2. Airport Surface Movement Operations at Schiphol Airport

occur is shared between the stakeholders and enables the realization of a common situational awareness and
predictability of imminent events. The events are denoted as milestones. The completion of a particular
milestone triggers the decision making process for later events and influences the progress of the flight as
well as the accuracy at which this progress can be predicted. Figure 2.2 shows the milestones recommended
by Eurocontrol.

_ W CDM Milestones
FIR Entry/Local ATC &
ATOT \ ALDT
S
»
2 3 4 5 6 MTIT Minimum Turn
Final / Round Times will be
ina in the CDM platform
Approach and can be updated
by AO/GH
718
Take 0ff from outstation AIBT 9 1
AGHT / ATC issues TSAT
-2hrs CTOT allocation Final update
of TOBT

-3hrs Flight Plan activation (FPL)

Figure 2.2: Recommended milestones as described in the Eurocontrol Airport CDM Implementation Manual. Retrieved from [30].

The milestones relevant for this study are milestone 6 until milestone 16 (Actual Take-off Time, ATOT).
At Schiphol’s CDM system, milestones 12 and 14 are not considered. The actions taking place during each
milestone are explained in the following:

* Milestone 6, Aircraft landed: The Actual Landing Time (ALDT) and the Estimated In-Block Time (EIBT)
are updated. The flight state in the system is updated to Flight Taxiing.

* Milestone 7/8, Aircraft In-Block: The Actual In-Block Time (AIBT) is updated and the flight state is
updated to Flight In-Blocks.

* Milestone 9, Final Target-Off Block Time (TOBT) update: TOBT is the time at which the Main Ground
Handler (MGH) estimates to have completed all ground handling activities including, the aircraft’s
doors closed and the boarding bridge and any ground equipment removed. The MGH, who is ap-
pointed by the airline operator, is responsible for updating the TOBT.

* Milestone 10, ATC issues Target Start-Up Approval Time (TSAT): The TSAT window is the estimated
time at which the aircraft is able to start the engines and begin its taxiing. It has a range between -5 and
+5 minutes and is computed by the outbound planner using the Collaborative Pre-Departure Sequence
Planning System (CPDSP), using the TOBT as an input. More information regarding the CPDSP are
given in the following subsection.

* Milestone 11, Boarding Starts: The flight state in the A-CDM system is updated by the gate agent to
Boarding.

* Milestone 13, Actual Start-Up Request Time (ASRT): ATC sets the ASRT when the pilot calls a ready
clearance within the flight’s TSAT window. The flight state is then updated to Ready by the system. The
Target Take-Off Time (TTOT) is also updated. In the case that the pilot calls ready prior to the assigned
TSAT window, the pilot is asked to call ready when the flight is on its TSAT window.

* Milestone 15, Off-Block: The Actual Off-Block Time (AOBT) is updated and the flight state is updated
to Flight Taxiing.

* Milestone 16, Take-Off: The Actual Take-Off Time (ATOT) is updated and the flight state is update to
Flight airborne.

2.2. Summary of surface movement operations at Schiphol 35

2.1.2, Pre-departure Sequence

The Pre-Departure sequence refers to the order at which the aircraft are planned to depart from their stands,
taking into account operators preferences and operational constraints. At Schiphol airport, the CPDSP sys-
tem has been implemented for this purpose. Figure 2.3 shows a diagram of how CPDSP works. By adding
the Estimated Taxi-Out Time (EXOT) to the TOBT an earliest estimate of the Target Take-off Time (TTOT) is
made. This estimate is then fed to an optimization algorithm together with information regarding the current
runway usage and required separation times/distances based on the flight’s Standard Instrument Departure
(SID) and Wake Turbulence Category (WTC). The output of the algorithm is an optimized TTOT which when
subtracted by the EXOT leads to the optimized TSAT.

The order at which the CPDSP plans the flights is the following. Flights which are constrained by the
Network Manager Operations Centre (NMOC) of Eurocontrol have a higher priority. These flights are given
an Air Traffic Flow Management (ATFM) departure slot which restricts their departure to a window between
5 minutes before and 10 minutes after the Calculated Take-Off Time (CTOT). These departure slots are issued
when the NMOC foresees an imbalance between demand and capacity at airports or along a flight’s route
[32].

; z

+ taxitime
(EXOT) | Earliest possible Target

Target Off-Block Time Take-Off Time

(TOBT) (TTOT)

Algoritm
Startup delay Sequencing rules
based on :
->Time
CTOT, SID, WTC,
v RWY capacity
WIE I Target Take-Off Time
Approval Time TTOT
(TSAT) - tapitime ()
(EKXOT)
4 &

Figure 2.3: Collaborative Pre-Departure Sequence Planning. Retrieved from [71].

2.1.3. Collaborative Management of Flight Updates

According to Eurocontrol’s definition, collaborative management of flight updates requires the exchange of
flight update messages between the Network Manager (NM) and the A-CDM airport, the provision of landing
time estimates and lastly the improvement of the ATFM slot management process for departing flights. At
Schiphol, the Eurocontrol Flight Update Messages information is used by the ATC to determine Estimated
Landing Times (ELDT) for inbound flights even before these flights are assumed by the ATC. Furthermore,
Schiphol-CDM is linked to NMOC via a departure planning information connection. This connection enables
local stakeholders to reduce ATFM delays, optimize their runway capacity and turnaround processes. It is
also beneficial to the whole ATM network (ANSPs and AOs) as it enables the generation of more accurate
flight profile estimates and informs when a flight is canceled.

2.2, Summary of surface movement operations at Schiphol

Having explained the main components of Shicphol’s-CDM system, a summary of surface movement opera-
tions is given in this section. The information has been derived from two previous MSc studies [36, 60]. Figure
2.4 depicts a series of surface movement operations phases that are typical at any airport. For convenience it
is used to describe the operations as done in Schiphol.

In the first phase, a flight lands after receiving a landing clearance from the runway controller. The ALDT
is recorded right after touchdown and shared through the A-CDM portal. The aircraft is required to vacate the
runway as soon as it reaches a certain speed, so that the next aircraft in the arrival sequence can safely land.
Aircraft can exit the runway with a higher speed via a rapid exit taxiway. These are taxiways with intersection
angle of 30° to the runway. The maximum speed at which aircraft can exit the runway via a rapid exit is set
by ICAO to be 35kts [42], although in some cases exits of up to 50kts have been observed, depending on the
radius of the taxiway at turn-off.

36 2. Airport Surface Movement Operations at Schiphol Airport

Airport ATC Airport flight

Arrival

Landing Taxiing

I

|

|

|

|

|

Cloriht *
(Runway) (Taxiway) (Apfon) (Stand) Terminal

Dep-flight } }

I |

l |

Figure 2.4: Ground operations flow in an airport. Retrieved from [47].

Taxiing

1
1
i Take-off
1

After the aircraft has vacated the runway; it is handed over to the ground controller who is responsible for
providing taxi route information to the assigned aircraft stand. The route provided to the aircraft is used to
estimate EXOT which is then recorded to the CDM system. In the case that the stand at which the aircraft
must taxi is not available, due to for example delays of the departing aircraft, the ground controller might
issue new taxi instructions to an empty stand or instruction to hold inside or outside the apron until the
stand becomes available again. If the waiting time is expected to be long, the aircraft might be instructed to
taxi towards a remote holding area in order not to block other traffic.

Once the arriving aircraft makes it to the stand, the engines are shut down and the ground handler starts
with the turnaround activities. These include, passenger boarding/disembarking and cargo loading/unload-
ing, cleaning, maintenance checks and refuelling. At the same time the AIBT is recorded at Schiphol’s CDM.
The aircraft is then prepared for its next flight.

During the turnaround process, the MGH issues a TOBT which the delivery controller uses to compute a
TSAT. Once all activities have been completed, the flight crew communicates a ready clearance at time ASRT
to the delivery controller. The crew then contacts the ground controller and requests a push back and engine
start-up clearance. Following specific stand/apron procedures, the controller gives the respective clearance
after checking the nearby traffic and whether the flight has called ready within its assigned TSAT window.

At the timepoint at which the aircaft starts its push-back, the AOBT is recorded to the CDM system. When
the crew is ready to taxi, they contact the ground controller who then provides them with taxiing instructions
towards the holding point of the runway used for departures. Once again, EXOT is estimated and recorded in
the CDM system. At the holding point, the responsibility of the flight is passed on to the tower controller who
then gives a take-off clearance at ATOT.

2.3. Schiphol socio-technical system

In the previous sections it was seen that the ground operations at Schiphol are performed concurrently via
a number of different agents. Figure 2.5 presents these agents and the agents with whom they interact. The
figure is further elaborated in subsection 2.3.1 where the goals and responsibilities of each agent are explained
and in subsection 2.3.2 where the interactions between on another are identified. The information presented
here has been derived from two previous Msc studies [36, 60].

2.3.1. Agent types

The socio-technical system of ground operations at Schiphol consists of 6 agents. These are:

Aircraft

Aircraft are controlled by their flight crews. They have properties such as: wingspan, weight, number of
engines and WTC. The flight crews are expected to follow the commands given by the ATC and act in ac-
cordance with the rules of air defined by ICAO”. In the context of surface movement operations, aircraft are
distinguished between arrival and departing aircraft. The goal of the arriving aircraft is to travel from the
runway to their assigned gate in an optimal manner with respect to fuel burn and/or taxi time. For departing
aircraft their goal is to reach the runway from their gates in an optimal manner.

2Annex 2: Rules of Air [43]

2.3. Schiphol socio-technical system 37

Other Aircraft

Ground Handler

Y

Air Traffic Control

Figure 2.5: Diagram of the socio-technical system responsible for the ground operations at Schiphol airport. Retrieved from [60].

Ground Handler

The ground handler is responsible for performing all pre-flight and post-flight operations on the aircraft while
that is parked at the stand. These include: passenger boarding/disembarking and cargo loading/unloading,
cleaning, maintenance checks and refuelling. In addition, the ground handler is responsible for estimating
a TOBT in the A-CDM system which the delivery controller uses then to compute a TSAT. The goal of the
ground handler is to minimize the turnaround time of the aircraft and ensure that the difference between the
AOBT and the TOBT entered in the system is kept to a minimum.

Delivery Controller

The delivery controller is responsible for issuing route clearances to the departing aircraft. This is done by
verifying their respective flight plans, issuing a SID with respect to the departing runway and a squawk code
such that the aircraft can be identified. If an aircraft is assigned a CTOT by NMOC this is communicated
via the delivery controller. Furthermore, a clearance request received by the aircraft’s flight crew which is
assigned a CTOT, is checked to be within the CTOT window prior to issuing the clearance. The goal of the
delivery controller is to verify flight plans, provide each departing aircraft a SID and a squawk code and receive
a confirmation by the flight crew about the issued instructions. Depending on the workload, the task of the
delivery controller and the outbound planner can be performed by the same controller.

Outbound Planner

After the flight crew has reported that the flight is ready to start, the outbound planner determines whether
the flight can actually be given a start-up clearance. The decision depends on the congestion levels of the
airport at the given time. The outbound planner makes use of the CPDSP tool to determine TSAT sequences
for the flights such that the formation of queues at the runways is avoided. The tool uses as input the earliest
estimate of target take-off time (TTOT’) which is equal to the TOBT plus the estimated taxi time (EXOT). If
there are many aircraft with a similar TTOT’ then queues will from at the runways. Based on sequencing rules
such as CTOT, SID, WTC and runway capacity (check Figure 2.3), a sequencing delay is added to each flight
making their TSAT and hence their TTOT different. The goal of the outbound planner is to regulate the flow
of traffic based on the TSATs issued by the CPDSP tool and grant start-up clearances.

Ground Controller

The ground controller is responsible for managing all airport surface movement operations. This includes
the granting of push-back clearances and taxi instructions for both arriving and departing aircraft, as well as
the control of ground vehicles. The ground controller is actively monitoring the apron and taxiway system
and prevents collisions from happening. The ground controller is also responsible for making sure that the
departing aircraft timely reaches the runway and is sequenced in accordance to the CPDSP tool. The goal of
the ground controller is to safely and efficiently guide the aircraft and ground vehicles to their destination.

38

2. Airport Surface Movement Operations at Schiphol Airport

Runway Controller

The runway controller is responsible for managing all operations related to the use of the runway system.
This includes: granting take-off and landing clearances based on the departure sequence, ensuring aircraft
separation based on WTC, granting runway crossing permissions as well as controlling ground vehicles which
perform runway inspections. The goal of the runway controller is to ensure that the above mentioned activi-
ties are executed as safely and efficiently as possible.

2.3.2. Interaction between agents
The interactions between the agents as shown in Figure 2.5 are described below:

1.

Ground Handler & Outbound Planner: Based on the progress of the turnaround processes performed
on an aircraft, the ground controller estimates the TOBT which is passed to the outbound planner
through the A-CDM portal.

Ground Handler & Aircraft: The ground handler informs the aircraft’s flight crew regarding the progress
of the turnaround processes. The flight crew informs the ground handler of any issues related to the
TOBT/TSAT issued by the outbound planner. In addition, the flight crew can make requests to the
ground handler for additional services.

Aircraft & Delivery Controller: The flight crew requests a flight plan clearance from the delivery con-
troller either through radio communication or Aircraft Communications and Reporting System (ACARS)
or Controller-Pilot Data Link Communications (CPDLC). The flight crew also acknowledges clearances
and instructions given by the controller. The delivery controller grants delivery related clearances to the
aircraft’s flight crew. This includes: SID, squawk code and other flight plan related clearances. The de-
livery controller must receive clearance and instruction confirmations by the flight crew. The controller
informs the flight crew to contact the outbound planner.

Aircraft & Outbound Planner: The flight crew notifies the outbound planner that they are ready to
start-up. By that time all turnaround related activities must have been completed. The outbound plan-
ner grants permission to the crew to start-up based on whether the request made is within the desig-
nated TSAT window. The planner communicates information like the Automatic Terminal Information
Service and barometric pressure level (QNH) to the flight crew and requests them to contact the ground
controller.

Aircraft & Ground Controller: The flight crew states the gate at which their aircraft is standing and
requests a pushback clearance. Once pushback is completed, they notify the ground controller that the
aircraft is ready to taxi. The ground controller grants pushback permission to the flight crew when this
is permissible as well as taxi instructions after the pushback is completed. During taxiing, the controller
monitors the ground traffic and advises the flight crew accordingly. Once close to the runway holding
point, the ground controller asks the flight crew to contact the runway controller.

. Aircraft & Runway Controller: The flight crew notifies the runway controller that they are ready for

departure and they read back any clearances issued by the controller. The runway controller commu-
nicates instructions related to holding short, taking-off, landing and runway crossing to the flight crew.
The controller also notifies arrival and crossing aircraft to contact the ground controller.

. Aircraft & Other Aircraft: The flight crew observes nearby traffic and is responsible for maintaining

visual separation. In addition, the crew must comply with ICAQO’s rules of air [43].

. Delivery Controller & Outbound Planner: The delivery controller transfers the responsibility of a flight

to the outbound planner, once the clearance is given and read back by the flight crew. The handover is
made through the use of Electronic Flight Strips (EFS). The outbound planner hands over the respon-
sibility of the flight in the same manner as before when changes to the clearances are required. For
example, in the scenario of a sudden runway reconfiguration a new SID has to be given to the depart-
ing aircraft.

. Outbound Planner & Ground Controller: The outbound planner transfers the responsibility of a flight

to the ground controller, once the start-up clearance has been given. The responsibility of the flight can
be handed back to the outbound planner if an aircraft experiences an issue which does not allow it to
pushback or taxi. The handover in both cases is performed by means of the EFS.

2.4. Runway configurations 39

10. Ground Controller & Runway Controller: When an aircraft is approaching the runway holding point
or needs to cross an active runway, the responsibility is handed over to the runway controller. After an
aircraft has vacated the runway either after a landing or a runway crossing, the responsibility is handed
to the ground controller. The handover in both cases is performed by means of the EFS.

2.4. Runway configurations

An important operational aspect of the surface operations at Schiphol airport is the frequent occurrence of
runway re-configurations. On average, runways at Schiphol are reconfigured 14 times during the day [60].
When a reconfiguration takes place, the active landing and departing runways changes and the airport enters
a transient state of operations. During such states the ATC needs to determine new routes for the arriving
and departing aircraft while taking into account the routes of the aircraft taxiing at the moment of the recon-
figuration. The workload of the ATCO increases which might result in a temporary decrease in the airport’s
capacity. Subsection 2.4.1 describes the types of configurations which are commonly seen at Schiphol, fol-
lowed by a discussion regarding the factors that contribute to runway reconfigurations in subsection 2.4.2.
Lastly, in subsection 2.4.3 insights as to how the reconfigurations are planned and executed are provided.

2.4.1. Runway configurations at Schiphol

Not all runways at Schiphol are used for take-offs or landings. A distinction between runways used for arrivals
and departures is made in Table 2.1 [57].

Runway Arrivals Departures

36R v X
36C v v
36L X v
18L X 4
18C v v
18R v X
09 v Ve
27 v v
22 v v
04 v v
06 v v

Table 2.1: Runway availability per traffic flow.

An analysis performed by Fines [36] using one month data in the winter period of 2018 identified the most
common runway configurations, shown in Table 2.2.

Runway Combination Time Used [mins] Percentage of Total Time [%]

18R+24 7835 20.2
06+36L 6170 15.9
18R+24, 18L 5190 13.3
18R, 18C+18L 3505 9.0
06, 36R+36L 2110 5.4
06+36L, 36C 2070 5.3
18R, 18C+24, 18L 2060 5.3

Table 2.2: Commonly used runway configurations at Schiphol based on 1 month of operations during the winter 2018. The
configurations are given in (X+Y) format where X are the arrival runways and Y the departing. In case of multiple arrival and/or
departing runways a comma (,) is used to separate them. Retrieved from [36].

2.4.2. Factors influencing runway configurations

The main factors influencing the runway configurations at Schiphol are weather, noise abatement procedures
and airport demand.

40 2. Airport Surface Movement Operations at Schiphol Airport

Weather

According to LVNL [58], the runway combination is firstly determined by the weather conditions. Every air-
port operates under certain wind limits and visibility conditions in order to maintain safe and efficient oper-
ations. If aircraft were to depart with tailwind components, for example, larger take-off distances would be
required to reach the take-off speeds and therefore the total runway capacity would decrease. From a safety
point of view, landing with tailwind or crosswind is also undesirable. There have been cases in the past were
aircraft would not have enough runway length to stop or have been blown-off due to severe crosswinds. As
a rule, aircraft take-off and land opposite to the wind’s direction. According to ICAO [61], typically tailwind
components are not allowed to exceed 10kts while crosswind components are limited to 15-25kts. Addi-
tionally, aircraft manufacturers also place their own limits for the maximum tailwind/crosswind that their
aircraft are allowed to experience. Above those limits the aircraft are not safe to perform a landing or take-off.
At Schiphol airport the tailwind and crosswind limits are set to 7kts and 20kts respectively and can change
depending on the visibility range and cloud ceiling [60]. The runway conditions which can be either dry or
wet can influence these limits.

Figure 2.6: Runway availability windrose at Schiphol airport. Retrieved from [66].

[EHAM] AMSTERDAM/SCHIPH
Windrose Plot [All Year]
Period of Record: 22 Aug 201N1 -22Jan 2020

SE
Summary

obs count: 152200
Missing: 4151
Avg Speed: 9.7 kts

Calm values are < 2.0 kts.
Arrows indicate wind direction

Generated: 22 Jan 2020

Wind Speed [knot]
NN 2-5 Wew 5-7 WEN 7-10 WEN 10-15 WEN 15-20 mEN 20+

Figure 2.7: Average wind speeds and direction present at Schiphol airport for the period between 08/2011 - 01/2020. Retrieved from [94].

Figure 2.8: Windrose of Schiphol airport.

Figure 2.6 shows the runway availability windrose used by ATCOs to decide on permissible runway con-

2.4. Runway configurations 41

figurations. The windrose diagram shows which runways are allowed to be used based on current wind speed
and direction. For example, assume that at a given day the airport is experiencing 25kts coming from direc-
tion 100°. This means that a possible runway combination during an arrival peak, would be to have runways
18C and 18R for arrivals and runway 18L for departures. At the extreme scenario of having 25kts wind coming
from direction 300°, no runway can be utilized as all of them exceed their crosswind and tailwind limit. How-
ever, according to Figure 2.7 such a phenomenon is quite rare. The figure shows the wind speed and direction
distributions at Schiphol airport for the period between August 2011 and January 2020. It can be seen that
South-South West winds are the most dominant, followed by West-South West winds.

Apart from wind, visibility and cloud ceiling also influence the combination of runways which can be
used. According to LVNL [58], the poorer the visibility, the greater separation aircraft need. When the visi-
bility is low the runways’ landing instrument landing systems (ILS) are used to help with landings. When the
visibility is greater than 5km and the ceiling is higher than 1000 f no special precautions are applied. If the
visibility is between 1500m and 5km and/or the ceiling is between 300 and 1000 f ¢ then visual approaches
are not permitted and specific procedures are applied to dependent runways. Lastly, if the visibility is less
than 1500m and the ceiling is lower than 300 f ¢, low visibility procedures are implemented.

In wintry conditions, the ATC adjusts the airport’s capacity according to the condition of the runways,
taxiways, parking areas and the provision of de-icing facilities [59]. Clearance plans are created in consulta-
tion with the ATC and airlines, so that the airport operator can clear the infrastructure from snow and/or ice.
Thunderstorms, hail and icing in the clouds can also influence the usages of the runways.

Noise

The choice of runway use also depends on noise abatement procedures present at Schiphol airport. The
procedures state that certain runways and runway configurations cannot be used in certain times during
the day. More specifically, during daytime (0600-2230) 2+1 runways (landing, take-off or vice versa) can be
used while during nightime (2230-0600) 1+1 runways are used. In addition, during nightime RWY 06-24 and
18R-36L are preferred for take-offs or landings as they are located at a greater distance from residential areas
around Schiphol [40]. An alternative is to use runways 18C-36C or 09-27. RWY 18L-36R is not used during the
night while RWY 04-22 is closed in night [35].

The noise pollution caused by the air traffic is normally described using two indicators, the Lg,, and
Lyign:- Both of them describe the annual noise load experienced. Ly, or day-evening-night level is based on
air traffic throughout the entire day while L,;¢p,; focuses only on night traffic (2300-0700). Figure 2.11 shows
the average estimated noise contours for the flight year of 2019. The estimated variation of the contours due
to changing weather conditions is also shown. These estimates are based on 47 years of historical weather
data [22]. Two things can be noted from the figures: in areas closer to the runways the noise level experienced
is higher while low noise levels are encountered over populated areas during the night time due to the noise
abatement procedures.

Traffic demand

Schiphol experiences periods during the day in which the outbound or inbound traffic levels are high. This
is a typical property of hub airports. Up to 100 flights can be managed in these periods. Based on the traffic
demand the ATC uses different runway configurations. More specifically, during inbound peaks, Schiphol
operates 2 landing runways and 1 take-off runway. Similarly, during outbound peaks, 1 runway is used for
landings and 2 for take-offs. In periods where the inbound and outbound peaks overlap, a configuration of 2
runways for each traffic flow is used [58].

Other factors

In addition to the three main factors described earlier a number of other factors can cause reconfigurations.
These occur less frequently and are very difficult to predict. Examples are: aborted take-offs, technical failures
on runway systems, emergency landings, aircraft crashes, runway cleaning and runway maintenance.

2.4.3. Planning and execution of reconfigurations
Based on the information presented in two previous Msc studies [36, 60], the planning and execution of run-
way reconfigurations at Schiphol will be explained in this section.

The majority of re-configurations at Schiphol are planned in advance by LVNL. The planning process
consists of the tactical planning and operational planning phases [36]. The tactical planning is performed

42 2. Airport Surface Movement Operations at Schiphol Airport

with three briefings during the day. This is to ensure that the dynamics of flight schedules and weather, the
driving forces of reconfigurations, are captured. The first briefing is performed at the evening of each day
and determines a runway schedule up until the midday of the following day. Based on the published flight
schedule the inbound and outbound peaks are identified and are used to determine the number of runways
that are needed to accommodate the traffic during the associated periods. Weather forecasts are then used
to determine the runway directions per arrival and/or departing peaks. The choice is also dependent on the
noise abatement procedures. The briefing is repeated in the morning and the midday of the following day, in
order to determine the runway schedule between midday and evening and evening on-wards, respectively.
One hour to 30 minutes prior to the planned reconfiguration, the approach supervisor and the tower super-
visor discuss the set of runways to be selected based on a revision of the flight schedules, the meteorological
conditions and operational conditions present at the airport at that time. Having selected the runways in
question, the two supervisors then define the moment in time where the reconfiguration will take place. The
delay caused by the reconfiguration is also calculated. In order to absorb this delay it might be necessary
to activate a new runway for the duration in which the re-configuration is in effect or delay pushback clear-
ances in order to reduce queues from forming at runway holding points. The time of the re-configuration is
communicated to the tower controllers in order to update their strategies and is subsequently entered in the
CPDSP system in order to generate new clearances and TSAT windows [60].

2.4. Runway configurations

43

Figure 2.10: Ly g, average contour.

Figure 2.11: Expected average noise level for the flight year of 2019. Retrieved from [22].

44 2. Airport Surface Movement Operations at Schiphol Airport

2.5. Uncertainty factors in surface movement operations

According to Rappaport et al.[63] the air traffic management systems is a non-linear, highly complex system
with many interrelated components and bottlenecks appearing in the system often result from reduced air-
ports’ capacity. The authors identified 18 sources of uncertainty and performed quantitative analysis in 4 of
those. The identified sources of uncertainty are the following (list derived directly from [63]):

1. Accuracy of the surface surveillance systems at an airport
2. Final approach trajectory uncertainty
3. Taxi-in time uncertainty
4. Ramp entry/exit time uncertainty
5. Turnaround time uncertainty
6. Push-back time uncertainty
7. Uncertainty of departure queues and taxi-out
8. Runway crossing uncertainties
9. Uncertainty on the time an aircraft lands on the runway (wheels-on)
10. Taxi-route uncertainty
11. Departure and arrival runway prediction uncertainty
12. Uncertainty of departure runway balancing
13. Wheels-off time uncertainty
14. Gate-in time uncertainty
15. Runway occupancy time
16. Impact of ATCFM regulations
17. Impact of deicing in departure times

18. Impact of departure times on en-route sector times and en-route planning

The weather conditions present at the airport can also be thought of an uncertainty source and has a direct
influence on the sources presented above. Using historical surveillance data from the Detroit Metropolitan
Wayne County Airport, the authors performed 4 quantitative analyses. The first analysis focused on studying
the ramp exit time uncertainty. Their analysis showed 23% of the departure flights is stopped at the ramp
spot® while the remaining did not. It was also found that the ramp spot waiting time is about seven times
longer if a flight stopped at the ramp spot. The second analysis focused on the taxi-route uncertainty. They
concluded that the taxi-out time is correlated to both the distance between gate and runway as well as the
route taken. Their analysis revealed that the shortest taxi route is not always the most optimal and often
longer routes are used in order to avoid areas of congestion or crossing busy runways. The third analysis
looked at the speed at which aircraft taxi the taxiway system. In addition to the aircraft type and single or
double engine taxi, the taxi speed is dependent on the route intent, meaning whether a turn is imminent
or the pilot continues on a straight segment. Based on the data, distributions were generated and filtered
according to whether aircraft had to turn or continue straight at the following intersection. They showed
that flights which continued straight after the intersection reached a higher average speed when entering
the intersection than flights which had to perform a turn. The same conclusion was drawn by Gong [39]
in a different study. Lee and Balakrishnan [52] also investigated the taxi speed uncertainty using fast time
Monte-Carlo simulations. Their objective was to study the impact of aircaft taxiing at different speeds on the
ground delay. They showed that the total ground delay increases as the taxi speed increases for both arrival
and departing flights. They argue that this increase is expected because the taxi speeds of the flights are

3The location of the airport surface at which the aircraft enter (or exits) the ramp area.

2.5. Uncertainty factors in surface movement operations 45

constrained by slower flights. Their last analysis investigated the magnitude of delays experienced during a
runway reconfiguration. Delays ranging from about 8 minutes up to 46 minutes were observed.

It is evident that uncertainty is an integral part of airport surface movement operations. A distributed
airport control system designed to manage surface movement operation should demonstrate reliability un-
der these circumstances. As will be discussed in Chapter 3, previous research in this domain studied the
behavior of such a system under the occurrence of runway reconfigurations, a phenomenon often occurring
at Schiphol. However, there is still plenty of room to explore the suitability of such methods under real-world
conditions.

Previous Research in ATO

This study is part of ongoing research performed at the Air Transport Operations department of TU Delft, on
the context of airport surface movement operations. The studies so far have looked at the problem from an
agent-based modeling perspective. Agent based modeling (ABM) is a technique which allows the modeling
of interactions between agents in complex socio-technical systems and provides the user with the means to
identify emergent behaviors and system wide effects which would not have been the case with other model-
ing techniques [76]. Furthermore, all studies have implemented decentralized control in which the decision
making process, in this case the aircraft traffic control, is shifted to a local level. Decentralization provides
the means to distribute the demand across multiple nodes of the system and avoids capacity bottlenecks
[93]. Decentralization is implemented by placing local controllers at taxiway intersections where each of
them uses local information to solve conflicts locally. In addition, different coordination and multi-agent
planning (MAP) methodologies have been implemented such that the global goal of such a system is met.
The focus in this chapter is to provide the reader with summaries of the studies that make up the research so
far. Section 3.1 summarizes some of the work performed in a PhD study performed by Udluft [93]. Particular
attention is given to the studies performed by Noortmans [60] in Section 3.2 and Fines [36] in Section 3.3 who
performed their analyses on Schiphol airport, each for different research objectives. The combined outcome
of these studies is a working ABM simulator of Schiphol airport which will be used as a baseline for this study.

3.1. Decentralization in Air Transportation - Udluft (2017)
The original ABM tool to simulate ground operations was developed by Udluft during his PhD work [93]. His
work was motivated from the fact that centralized resources in the air traffic management system, such as
air traffic controllers, are limited in terms of capacity. Air traffic controllers have a limited mental ability of
processing information, interacting with aircraft and making decisions. In order to ensure safe and stable
operations, their amount of workload is dependent on the amount and complexity of traffic. Approaches to
address the capacity bottleneck of the air transport system were proposed at the time but few were based
on decentralization. Decentralized networks had already been proven to be more robust, agile and resilient
than centralized networks and implementations were found in other domains, such as biology, robotics and
business. One of Udluft’s goals was to demonstrate the feasibility of using decentralized air traffic control to
perform airport surface movements operations.

For his study a dummy airport with a simple symmetric layout (shown in Figure 3.1) was considered.
It contained 3 gates, 18 intersections and 2 runways with two entries each. Decentralized control was im-
plemented by placing local agents on the intersections of the taxiway system, on gates and also on runway
nodes. Two types of agents were defined: the aircraft and the intersection agent. The aircraft agent’s task was
to maintain separation from other aircraft and react to heading and stop commands given by the intersection
agents. The intersection agent’s task was to control the traffic on adjacent taxiway segments. It continuously
computes the shortest path for the aircraft under its control using Dijkstra’s algorithm and is also respon-
sible for reserving adjacent links such the aircraft can be safely accommodated. The agent has knowledge
regarding the traffic density in its environment which is limited by the scope of information. To model the
kinematics of the aircraft as accurate as possible, average values based on observations from one week of
track data at Schiphol were used. The study only considered departing traffic.

47

48 3. Previous Research in ATO

H\’U\{ A; RWY Ap R\’\«"*’ B,y R“"\f(’ B2

t t t
Gate 1 Gate 2 Gate 3

Figure 3.1: Taxiway layout in the baseline model. Retrieved from [93].

Upon running the model, a randomly generated flight schedule assigns an aircraft a gate and a runway.
Once the aircraft leaves the gate the intersection agents are responsible for guiding it to its destination. The
intersection agents coordinate between each other by means of an auction mechanism about whose aircaft
gets to use the taxiway system first. ATC agents who have aircraft under their responsibility are allowed to
bid for the allocation of taxiway segments. The highest bidder is allocated the taxiway segments which are
subsequently given to the aircraft under his control. Udluft looked at the following aspects:

* The impact of the scope of information: A higher scope means that the intersection agents use more
information regarding the state of the system. No performance gain was observed when using global
information. In fact, local knowledge of the state of the system was sufficient to achieve global perfor-
mance. From this it was concluded that local knowledge is sufficient for implementing decentralized
control.

* The impact of the scope of coordination between the intersection agents: A higher scope means that
the intersection agent is able to coordinate with other intersection agents further away. The results indi-
cated that the performance of the system increases with increasing scope of coordination. The auction
based coordination mechanism was compared to coordination by means of a procedure which aims
at decoupling traffic streams on the airport layout. The procedure based approach achieved a higher
performance with respect to measures like taxi time and total number of stops made but is not able to
adapt to changing conditions such as runway reconfigurations as good as the decentralized approach
which is inherently more adaptive. Furthermore, for very high aircraft spawn rates it performed worse
than the auction based coordination mechanism with a certain degree of scope.

* The complexity and emerging behavior of the system: It was shown that different traffic complexities
exist with different coordination strategies. Three coordination strategies were investigated: no co-
ordination, auction-based coordination and procedure-based coordination. The uncoordinated case
resulted in the highest complexity while the procedure-based approach resulted in the lowest complex-
ity. An analysis based on runway re-configurations showed that the decentralized controllers were able
to handle the disruption but no significant results were found with respect to the different coordination
strategies.

Udluft concluded that given limited amount of information decentralization is a viable approach to per-
form airport surface movement operations and is also able to respond to developing traffic conditions. In
addition, the results based on the auction-based coordination mechanism indicated that it can potentially
outperform pre-defined static procedures.

3.2. Agent-Based Modelling of an Airports Ground Surface Movement Op-

eration - Noortmans (2018)
During his literature search Noortmans [60] concluded that linear programming, search algorithms, historical
data and agent based modeling where among the techniques most commonly used in the domain of ground

3.2. Agent-Based Modelling of an Airports Ground Surface Movement Operation - Noortmans (2018) 49

operations. However, most of the studies he investigated based their results on modeling steady state oper-
ations. No research was found to focus on improving the efficiency of ground operations in transient states,
for example caused by runway re-configurations. Many of these studies made assumptions which oversim-
plified the problem. For example, some studies only considered departing aircraft while studies based on
linear programming and search algorithms completely missed the existing interdependencies between the
aircraft. Only a few studies used observations to obtain an understanding of the underlying operations and
procedures during ground operations. Almost no study validated the generated results with actual ground
operation data. Lastly, the concept of decentralized control was considered only by a few studies but has
only been applied to simple airport layouts (referring to Udluft’s work). Based on the above, Noortmans'’s fo-
cus was to obtain an understanding of the principles and mechanisms of decentralized air traffic control by
comparing the emergent behavior of an agent based model to the actual ground operation.

Noortmans limited his scope into investigating the operations on the taxiway infrastructure. The apron
operations were omitted and it was assumed that aircraft gates are always available and that no towing opera-
tions take place. The study was performed on AAS using a simplification of the actual layout, shown in Figure
3.4, a derived flight schedule, and an analysis of the strategies applied by ATCOs. Using 2 weeks of historical
ADS-B data of ground traffic at Schiphol, he obtained the paths most likely travelled by aircraft as well as an
actual flight schedule which he used as an input to his agent based model. The aircraft motion was modelled
according to the fixed values used by Udluft. These are listed in Table 3.1.

Symbol Description Value
Umax Maximum taxi speed 30 kts
Viurn Maximum turn speed 10 kts
acccom Comfort acceleration 0.5 kts/s
deccom Comfort deceleration -1.5kts/s

decmax Maximum deceleration -10 kts/s

Table 3.1: Specification of aircraft kinematics. Retrieved from [60].

Noortmans expanded Udluft's ABM simulator by defining a total of 8 agents in his ABM specification of
which 7 are used for the realization of decentralized control (referred to as ATC agents hereafter). Detailed
explanations of their properties and the interaction between one another can be found in [60]. The responsi-
bilities of these agents are:

1. Source agent: Responsible for safely releasing aircraft agents into the taxiway system.
2. Sink agent: Responsible for removing aircraft agents from the taxiway system.
3. Apron agent: Responsible for accommodating the flow of aircraft agents entering and leaving the apron.

4. Runway agent: Responsible for managing the flow of aircraft willing to either take-off, land or cross the
runway and is responsible to generate a schedule of future runway usage.

5. Endpoint agent: Responsible for slowing down the aircraft which are reaching their destination, either
to line-up on the runway or enter the apron area.

6. Intersection agent: Responsible for controlling the aircraft by giving route, speed and stop commands.

7. Stopbar agent: Responsible for accommodating a safe runway operation by controlling the flow of air-
craft willing to enter, leave or cross a runway as well as responsible for removing segments in the taxiway
system.

8. Aircraft agent: Aircraft agents follow the commands issued by the ATC agents and are responsible for
reaching their destinations as quickly as possible while maintaining separation from other aircraft.

The environment of the agent-based model consisted of a flight schedule which is observed by the source
agents and a directed graph representing the taxiway system of Schiphol airport. Regarding the interactions

between the agents, the following high level interactions were introduced on top of Udluft’s implementation:

* Discussion and reservation making between ATC agents;

50 3. Previous Research in ATO

Figure 3.3: Simplified layout

Figure 3.4: The original layout on the left and the layout considered in the agent based model on the right. Retrieved from [60].

* Determination of future mode of operations;
 Sharing of runway schedule by the runway agents to the stopbar agents;

* Requesting permission to pass a stopbar;

The interactions between the agents and their environment include the reservation of taxiway segments.
This is done in order to prevent other aircraft from entering taxiway segments used during an aircraft’s hand
off between ATC agents. Furthermore, ATC intersection agents are coordinated using an auction based coor-
dination mechanism in order to achieve safe operations. This is similar to what Udluft used in his work. The
auction is initiated whenever an aircraft is at a certain distance from its responsible intersection agent. The
outcome of the auction process is used by the intersection agent to determine a future path for the aircraft
under its control. After the extended ABM specifications were implemented on Udluft’s model, the resulting
model was fine-tuned based on observations and comparisons with actual operations.

The performance of the model was compared with the actual operations using a dataset containing 2
weeks of track data at Schiphol. The perfomance was measured using 4 key performance indicators, namely
taxi time, taxi distance, average taxi speed and average traffic density. After conducting his experiments and
sensitivity analysis on operational parameters as well as aircraft dynamics, the following conclusions were
drawn:

* The performance of the decentralized control has similar patterns with the actual operations in terms
of taxi time and taxi distance;

3.3. Decentralized Control for Resilient Airport Surface Movement Operations - Fines (2019) 51

* There exist differences in the routing strategies between the simulated and the actual scenario due to
the fact that decentralized control is using the taxiway system in a more flexible manner;

e The results supported Udluft’s claim that a limited scope of information is required to allow safe oper-
ations but local information alone is not sufficient to achieve good performance;

* Decentralized control is able to handle more complex and chaotic operations since it does not need to
comply to preferred taxi patterns and thus has a larger option space to respond to disturbances;

* The results supported Udluft’s claim that the effect of coordination only becomes visible for highly
congested taxiway networks;

3.3. Decentralized Control for Resilient Airport Surface Movement Oper-
ations - Fines (2019)

Fines [36] performed his research on the context of surface movement operations from a resilience stand-
point. His objective was to evaluate the contribution of agent-based distributed planning and coordination
to the resilience of airport surface movement operations when runway reconfigurations take place. The ap-
proach undertaken consisted of introducing a distributed planning mechanism to execute the tasks of the
local ATC controllers. This is different to what Udluft and Noortmans used in their works where the agents’
action were coordinated through auctions. The new approach enabled not only the coordination of activities
but also the planning of those. He used a distributed version of the Conflict Based Search (CBS) Multi-Agent
Path Finding (MAPF) algorithm and 2 variants based on highways to perform the planning activities. CBS
is a type of algorithm where the individual agent plans, in this case paths, are coordinated only after they
have been generated. Other planning algorithms do not follow this logic. CBS is explained in more detail in
Subsection 5.6.3.

Planning and coordination

A distributed version of the CBS algorithm was implemented in his research. It works by detecting conflicts
between agents bound to occur within a time window and resolves them by delaying or re-routing one of
the agents. In addition to this, Fines also experimented with 2 adaptive highway mechanisms which were
built on the original CBS implementation. This was justified from the fact that highways are used both in the
resilience of city evacuations as well as in the current ground operations at Schiphol. Point-merge (PM) high-
ways were used to merge aircraft paths which follow the same traffic flow and direct them towards specific
points. The conflict-based (CB) highways mechanism on the other hand was used to create highways based
on the amount of anticipated conflicts in regions of the airport’s surface. In both cases, the highways were
created and removed when certain traffic conditions existed in the environment.

ABM specification

The study was performed having in mind the concept of an Advanced Surface Movement Guidance and
Control System (A-SMGCS) called Follow-the-Greens. Follow-the-Greens is a concept in which the airfield
ground system controls the movement of aircraft in a decentralized manner. More information can be found
in [36, 37]. The ABM was defined based on a simplified socio-technical representation of the system. In
terms of model environment specifications, the same airport layout and derived flight schedule with Noort-
man’s model was used. In terms of agent specifications, changes to Noortman’s model had to be made. A
total of 4 type of agents were defined. These are described in short together with their properties. For a more
detailed description please refer to Fines’s Msc thesis [36].

1. Entry/Exit agent: Responsible for creating initial routes for the aircraft, safely releasing those into the
taxiway network and removing those from the taxiway system. They are located at all pier entry/exits
and runway holding points. Agent properties:

* Checks the flight schedule;
* Generates an aircraft route based on Dijkstra’s algorithm;

* Removes aircraft from the taxiway network;

52 3. Previous Research in ATO

2. Aircraft agent: Responsible for following the commands of the ATC agents, taxi along their assigned
route while maintaining separation from other aircraft. Each agent has a certain flight type depending
on whether its departing or arriving and its destination within the airport environment. Properties:

* Follows acceleration, heading and decision making protocols;
* Follows speed control commands given by ATC agents;
* Computes distance travelled;

* Computes taxi time;

3. ATC agent: Responsible for detecting and resolving anticipated conflicts, creating and removing high-
ways and guiding the Aircraft agents to their destinations. It is through the ATC agents that the CBS
algorithms and its variants are implemented. Properties:

* Detects anticipated conflicts;

* Determines the type of the anticipated conflict;

* Resolves a head-on type of conflict;

* Resolves a crossing type of conflict;

* Issues speed control commands;

 Creates/removes point-merge highways;

* Creates/removes conflict-based highways;

* Removes edges opposite to the Aircraft agent’s direction of travel;
* Adds/ removes runway crossing related edges;

* Hands-over the responsibility of an Aircraft agent to neighboring ATC agent.

4. Airport Operation Status agent: Responsible for determining which runways are in use and commu-
nicating that to the ATC agents which they should add or remove edges such that runway crossing can
be avoided. Properties:

* Determines the runway use based on the flight schedule;

* Determines which edges close to the runways must be added or removed;

Conflict detection and resolution

The distributed version of the CBS algorithm is implemented in the following way. ATC agents detect conflicts
by evaluating the time that it takes for Aircraft agents to reach their location. If Aircraft agents are anticipated
to cross the ATC agent within a time window, Ty,;,40., then a conflict is declared. The prediction of the time
point at which an Aircraft agent crosses is made using a simple forward simulation of the aircraft’s path.
The algorithm computes the unimpeded taxi time of an aircraft by considering its dynamics when taxing
in straight and turn segments. It serves as an approximation of the actual taxi time but does not take into
consideration the dependency of an aircraft’s route on other aircaft and other ATC agents. Once a conflict
is detected it is further assessed to determine whether its a head-on or crossing conflict. If it is a head-on
conflict the aircraft furthest away from the conflict node is re-routed. If it is a crossing conflict, the aircraft
furthest away from the conflict node receives a speed control command computed using the estimated time
of arrival to the node.

Results & conclusions

The contribution of the 3 distributed planning and coordination mechanism was assessed using two metrics,
the average taxi time and the average taxi distance travelled. Resilience was measured by the change in the
average taxi time and distance during and after the occurence of re-configurations. The results were com-
pared with the corresponding values obtained from real-world operations. Fines used a total of 8 days of real
flight data for his simulations from the same dataset as Noortmans used in his own research, resulting in a
total of 6852 movements. The following results were obtained:

 Taxi time & distance behavior: The average taxi time was in favor of the 3 distributed mechanisms.
CBS was the best performing mechanism with an average reduction of 1.07min/flight. In terms of the
average taxi distance, no significant differences were found.

3.4. Research gap 53

* Resilience behavior: During the period of runway re-configurations, no significant difference was
found in the taxi times compared to the real-world. In terms of the average taxi distance, all 3 mech-
anisms demonstrated a lower performance than the real-world. The performance of mechanisms in
terms of taxi times however outweighed the perfomance of the real-world after the occurrence of run-
way reconfigurations. No significant results were found in terms of the taxi distance. The most resilient
behavior was achieved by the CBS+PM mechanism with an average delay of 1.5min/event compared
to 2.12min/event in real-world.

3.4. Research gap

From the studies conducted so far there has been a significant contribution to the understanding of whether
airport surface movement operations can be performed autonomously. The results indicate that, under cer-
tain assumptions, the distributed planning and coordination mechanisms are capable of managing ground
movements to a degree which is similar to the real-world. In certain cases, they even surpass the perfomance
of actual controllers. Taking as a basis the latest research on the subject, the goal of this Msc thesis is to
improve the performance of the current implementation.

One aspect that has been thought of improving the perfomance of the current model is the use of alearn-
ing mechanism. So far there has not been any other research who studied the effects of distributed learning in
controlling ground movements at an airport. Research in multi-agent learning however has received a lot at-
tention during the last decade. The reason is that multi-agent systems (MAS) often operate in environments
which have a complex and dynamic nature. For such systems it is unfeasible to specify the optimal agent
behaviors at the design phase [77]. A learning mechanism able to capture relationships between certain en-
vironmental factors and consequences of particular agent actions, might result in enhancing the efficiency
and effectiveness of a distributed airport control system. Both Noortmans and Fines recommended the use
of learning elements for enhancing the performance of their models. Another aspect which can be looked
at is the choice of the MAP mechanism. The field of multi-agent path planning (MAPP) is broad and a very
active lately and although CBS was shown to perform to a degree similar to the real-world other, more ad-
vanced, algorithms might exist. Furthermore, in his study, Fines modeled the motion characteristics of the
aircraft using fixed kinematics (Table 3.1), meaning all aircraft had the same taxi speed and accelerations. In
the real-world however, aircraft do not taxi in the same manner. The performance of the distributed plan-
ning and coordination mechanism has therefore not been assessed under uncertain kinematic conditions.
As mentioned in Section 2.5, variability in terms of aircraft accelerations and taxi speeds has been observed.
To be able to make generalized conclusions regarding the efficiency of a distributed airport control system,
uncertainty factors which form a big part of the actual operations should be taken into consideration. Of
course accounting for all factor is complex, nearly impossible task. The focus will be more on how such a
system behaves when aircraft kinematics are not identical.

The issues presented in this section will be the focus of this MSc study. The remaining of this literature
review is focused on finding ways to address these. In Chapter 4, opportunities were learning can be applied
are discussed and a review of various techniques is made. Next, in Chapter 5 a review of MAPP mechanisms
is made.

Learning Mechanisms for Surface
Movement Operations

This chapter presents a review of learning mechanisms which are suitable to apply in the domain of airport
surface movement operations. In Section 4.1, opportunities in which learning can be applied to enhance
the agents’ tasks are identified and the most appropriate to address in this thesis is selected. In Section 4.2,
a research which uses learning techniques in an agent-based modelling set-up similar to the current im-
plementation is presented while in Section 4.3 approaches used in the literature of taxi-time prediction are
reviewed.

4.1. Opportunities for Learning

This section describes opportunities in which learning mechanisms can be applied.

4.1.1. Modelling Incoming Traffic

The idea is inspired by Dresner and Stone [26] who performed their research on multi-agent road traffic
management. More specifically, they looked at ways of improving the efficiency of agents placed at road
intersections at controlling road traffic. These agents are able to communicate with vehicle agents and are
responsible for directing vehicles through the intersection by accepting or rejecting requests made by the
vehicles. Their hypothesis is that a machine learning model which predicts future traffic states can lead to
more well-informed decisions for the intersection agents. The predictions can be based on inputs such as
time of day, day of week and traffic history. In addition, they propose that the behavior of intersection agents
can also be improved with the use of reinforcement learning. Actions which increase the system’s overall goal
are rewarded more than other actions. This requires, however, the definition of all possible state action pairs
which is a complex task when considering a multi-agent scenario [92].

4.1.2. Predicting Future Traversal Times

As discussed in Section 3.3 the accuracy of the planning mechanism is limited by its prediction ability regard-
ing the timepoint at which conflicts are going to occur. The forward simulation acts as an approximation of
an aircraft’s route and does not take into account dependencies with other aircraft taxiing. For example, it
can be the case that based on an aircraft current route, a conflict is incorrectly declared. The aircraft is then
re-routed taking more time and distance to reach its destination. Vice versa, a potential conflict might not be
detected resulting in a collision between aircraft. The T,,;,40, parameter can be adjusted such that conflicts
are avoided at all cases, but doing so results in suboptimal solutions as aircraft would be re-routed more fre-
quently. An alternative method would be to use a learning mechanism which makes predictions regarding
the time that it takes to traverse a certain link and adapts itself based on the conditions present on the airport
surface. This might improve the accuracy of the distributed planning and coordination mechanism resulting
in improving the global goals of the system.

55

56 4. Learning Mechanisms for Surface Movement Operations

4.1.3. Highway Generation

Fines [36] investigated the contribution of highways in performing resilient airport surface movement oper-
ations. Currently, highways are generated based on the amount of traffic and conflicts present on the taxiway
network and removed based on a user defined parameter #j,;yy—j; fespan- A possible learning task would be
to train a model able to capture the relationships, if any, between the location of congestion and anticipated
conflicts, the time needed for highways to stay activated such that the disturbance is absorbed and the length
of these highways.

4.1.4. Speed Profile Assignment

Another opportunity where learning can be applied is the allocation of speed profiles to the users of the taxi-
way network. In the current ABM specification, ATC agents issue a speed command to one of the conflicting
aircaft such that a predicted conflicted is avoided. When no ATC commands are given, aircraft accelerate to
their maximum taxi speed while maintaining the required separation with other aircraft. Speed commands
could also be given such that congestion and build up of queues at intersections is avoided. A learning mech-
anism able to map congestion levels in the taxiway network to speed commands could potentially result in a
smoother flow of traffic.

4.1.5. Conclusion

The perfomance of a distributed control system when coupled with one or a combination of the above learn-
ing mechanisms is certainly worth investigating. For the requirements of this MSc thesis however, it is de-
cided to focus on a single learning task. The mechanism considered as a better fit to the current state of the
model is the prediction of future traversal times. The reason is twofold. Firstly, the performance of the dis-
tributed planning mechanism, in this case the CBS, is dependent on accurate predictions of future conflict
points. It is more logical to focus on methods which enhance the perfomance of already implemented mech-
anisms than introducing new ones. Secondly, the remaining learning mechanism are some what dependent
on information regarding the location of aircraft on the taxiway network, and possibly their location at future
time points. The errors present in the predictions of the simple forward simulation might be propagated and
learned by the other learning mechanisms resulting in, potentially, an amplification of these errors. This will
make the assessment of these other learning mechanisms not a straightforward task.

4.2. Anticipatory vehicle routing

A method in line with the objective of the selected learning mechanism was introduced by Claes [17]. Claes
investigated the use of an anticipatory vehicle routing system to control road traffic. His adaptive MAS-based
approach aimed at providing users of a road network with traffic information about which routes are more
optimal to take. The idea is realised using the technique of delegated multi-agent systems (AMAS). At first the
system collects information about the intentions of the road users. This information is used as input to an
artificial neural network (ANN) model which form predictions as to how much time will it take for the user to
traverse a certain segment of the road network. These predictions are then communicated back to the users.

Claes defined two types of agents in his MAS model. A vehicle agent and an infrastructure agent. The
vehicle agent represents the road user and the infrastructure agent represents the traffic infrastructure. The
interaction between the two is such that the vehicle agents provide information regarding which part of the
infrastructure will they use (intend) and the estimated time of arrival and departure for each segment on that
route. The information is shared only to the infrastructure agents involved in the vehicle agent’s route. The
infrastructure agents then provide the vehicle agents with predictions of the traffic conditions based on the
amount of intentions that have been shared with them at any given time. This allows the latter to determine
the most suitable route to follow.

The vehicle agent evaluates possible routes by dispatching the so called smart messages or mobile agents.
These agents resemble in behavior the behavior of ants in the swarm-based ant-colony technique but they
do not make their own decisions. A mobile agent is sent to the first infrastructure agent who represents the
first link in the route being evaluated and queries the agent about information regarding the link traversal
time. The predicted link traversal time or the estimated time for departure for that link is then used as the
estimated time of arrival for the next link in the route. The process continues until the mobile agent reaches
the road user’s destination. The estimated time of departure for the last link in the route is then used as
the vehicle’s predicted time to reach its destination. After calculating the estimated time of arrival at the
destination, the mobile agent returns to the vehicle agent and shares the information. Having mobile agents

4.2. Anticipatory vehicle routing 57

to handle the communication instead of sending direct messages to the infrastructure agents significantly
reduces the overall communication costs and bottlenecks. Besides the mobile agents, the vehicle agents also
dispatch the so called intention mobile agents. An intention mobile agent operates in similar manner to the
basic mobile agent but additionally informs an infrastructure agent that the vehicles it represents intends to
traverse its link between the estimated time of arrival and departure for that link.

The infrastructure agent receives intention information which contain a vehicle ID and the estimated
time of arrival. Time is discretized in time intervals and for every time interval, the number of intentions
are aggregated and stored. In addition, it is possible for the intentions of the road users to be changed at
a later time interval, for example when a better route is found by the vehicle agents. For this reason the
infrastructure agents require regular updates from the vehicle agents regarding the intentions of their road
users. Intentions are set to have a certain lifetime. During this lifetime, if the intention is not reinforced
with an update, meaning that the validity of the intention can not be proved, the intention is considered
irrelevant and is discarded when its lifetime ends. In this way, infrastructure agents maintain more accurate
information which will yield in more accurate predictions of future states.

The infrastructure agents use the intention information to train, online, a prediction model that the ve-
hicle agents can then access indirectly through the delegation of mobile agents. The predictions are made
using an ANN. The difference of this method compared to the simple forward simulation is that it considers
the dynamics existing between vehicles based on intention information. These intentions describe the future
states of the segments connecting infrastructure agents. The ANN, known to be universal function approxi-
mator [45], is used to generate a function approximation which maps the intention levels into link traversal
times. The inputs to the ANN are the current intention levels for future timepoint ¢ as well as the intention
levels of previous timepoints. Furthermore, in order to make the predictions more realistic, congestion in-
formation from downstream infrastructure agents are used as inputs. The reason is that link traversal times
depend on the amount of inflow and outflow movements in the link. By monitoring the speed and vehicle
inflow infrastructure agents can learn a threshold of intention level after which their link becomes congested.
The information of whether their link is congested can be passed to the agent upstream via a direct message
and be used as an input for their predictions. Like the intention information, the congestion information also
has a certain lifetime. A visualization of the ANN structure is shown in Figure 4.1.

Claes evaluated the performance of the anticipatory vehicle rooting system under different traffic sce-
narios and compared it with that of a baseline scenario. Regarding the prediction ability of the system he
concluded that the ANNs were capable of predicting the link traversal times in the network. The quality of
these predictions however decreased as the prediction time horizon was increased.

The distributed control system presented in Section 3.3 shares a few similarities with the approach pre-
sented in this section. First of all, the vehicle agents and infrastructure agents have similar properties with
the aircraft and ATC agents respectively in the current ABM specification. The ATC agents are located in parts
of the airport’s infrastructure just like the infrastructure agents are located in parts of the virtual road net-
work. They have a view of their local environment and are able to communicate with agents upstream or
downstream. Additionally, both need to make predictions regarding the future traversal times for the moving
agents (vehicle or aircraft) although for different reasons each. The predictions made by the infrastructure
agents in Claes’s model are used to propose more optimal routes for road users. In this study, these predic-
tions are used by the MAPP algorithm and its anticipated conflict detection and resolution property. Claes
uses artificial neural networks to perform the mapping between intention levels and future traversal time.
Generally speaking, other machine learning techniques could also be used for making the predictions. In the
next section approaches found in the literature of taxi-time prediction are presented.

A possible implementation of Claes’s approach to the current distributed control system is visualized in
Figure 4.2. The steps are summarized below:

1. An ATC agent shares an aircraft’s newly generated taxi plan to the ATC agents belonging to that path;

2. All ATC agents maintain intention levels based on received taxi plans. These are updated at frequent
time intervals;

3. All ATC agents observe aircraft link traversal times and use these to train a model which maps current
intention levels to observed traversal times;

4. When an ATC agents determines that an aircraft agent will pass by it (for example agent B), it sends
smart messages which travel to every ATC agent involved in an aircraft’s planned path (shown as agent

58

4. Learning Mechanisms for Surface Movement Operations

3
a2
-]
g
&
£
S
o
£
©
4
-]
&
< e
t time
¢!
t-
-
S
8,
o |
<2
=1
Lr

time
Figure 4.1: The link traversal time is calculated using the intention levels maintained by the infrastructure agent and congestion

information from downstream agents. Retrieved from [17].

A), querying taxi time predictions for the links each represent. Aggregation of these estimates results in
the predicted taxi time to the sender’s location;

5. ATC agents compare aggregated taxi times and if a conflict is found, they act accordingly;

4.3. Approaches for taxi-time prediction 59

@ ATC agent - | ATGagent

X
—_— INTENTION INTENTION
$ [ML MODEL H lEais [[ML MODEL }H[LEVELS }

ATC agent

X
INTENTION
Sp— pod e

\—‘—J

Figure 4.2: Concept of operations of the dMAS at an airport. Based on observed link traversal taxi times and intentions received by other
ATC agents, agents maintain a ML model which maps intention levels to link traversal times.

ATC agent

ML MODEL

INTENTION
LEVELS

|

4.3, Approaches for taxi-time prediction
This section presents the main approaches that have been used in the literature of taxi-time prediction.

4.3.1. Queuing models

Idris et al. [44] proposed a method based on a queuing model for improving the accuracy of taxi-out pre-
dictions. Taxi-out refers to the time duration between the actual push-back time to actual wheels-off from
the runway. First, they analyzed 3 months of data from Boston Logan International Airport to identify the
main factors that influence the taxi-out time. Their analysis showed that runway configurations, the airline
terminal, the downstream restrictions and take-off queue sizes are the main factors. From these factors the
take-off queue size was the most influential. In their study, queue size was defined as the number of take-offs
that take place between the aircraft’s pushback time and take-off. The queue size for a particular flight was
determined by:

Q=N-N"+Np (4.1)

Where N is the number of aircraft present on the airport surface at the pushback time, N* is the number
of aircraft that pushed back before the reference aircraft’s pushback and took off after the reference aircraft,
lastly Np is the number of aircraft that pushed back after the reference aircraft’s pushback and took off before
the reference aircraft. Initially, only the relationship between N and taxi-out time was evaluated. Adding
Q resulted in a more accurate trend line while the aircaft type did not seem to have a significant influence.
The taxi time was then modeled using the Q for every runway or airline configuration possible. The queuing
model was compared to a 14-day running average model on a test set of 1 month. The mean absolute errors
obtained were 5.69 minutes for the running average model and 4.56 minutes for the queuing model.

A limitation of the proposed method and the running average model is that they are based solely on his-
torical data. They are not able to adapt to the dynamic conditions present on the airport surface which the
training dataset might have failed to capture. Furthermore, only the traffic flow of departing flights was con-
sidered in their study.

4.3.2. Reinforcement learning
Motivated from the fact that learning based approximate dynamic programming methods such as RL are
adaptive and well suited for making predictions in dynamic environments, Balakrishna et al. [4, 38] applied
RL methodology to test its effectiveness on making taxi-out predictions.

The method proposed by the authors uses RL to predict the taxi-out times of individual aircraft 15 minutes
prior to gate push-back time. To construct the model the airport decision making process and the taxi-out

60 4. Learning Mechanisms for Surface Movement Operations

time prediction process were modelled as Markov Decision Processes. The RL model was trained, offline,
using 6 months of historical flight data consisting of 10 features. A random set of 42 days was used to test the
model performance. The prediction perfomance of the model was tested on flight data from a number of US
airports including Boston Logan International Airport where the learning scheme consisting of 3600 states
and 61 actions took 3 hours to complete. The authors do not provide any specifications of the machine on
which the model was trained but they mention that the taxi-out estimate of flight scheduled to leave at t+15
min can be obtained instantaneously making their method suitable for real-time applications. The results
obtained for different airports are shown in Table 4.1.

. Within Within
Airport name . .
+ 3 min + 5min
Tampta International Airport 89.9%-95.7% -
John E Kennedy International Airport - 20.7%-100%
Boston Logan International Airport - 72.57%
Detroit Metropolitan Airport 89.9%-97.1% -

Table 4.1: The prediction accuracy of the RL model when trained and tested on different US airports. Retrieved from [4, 38].

The adaptive nature of the proposed method is in line with the requirements of a distributed system
aimed at performing surface movement operations. However, there is a major drawback with RL methods.
According to [11], the main challenge when implementing RL in a multi-agent scenario is the exponential
growth of the state-action space with increasing number of states and action variables. The complexity of RL
methods is also exponential with the number of agents. In the Schiphol model (Section 3.3), several inter-
section agents are present which make the definition of the state-action space a complex task. In the study
proposed here, actions only from 2 (ATCO and ground controller) agents were considered. A possible way
of overcoming this limitation is to use a value function approximation method but this comes at the cost of
prediction accuracy [91].

4.3.3. Multiple linear regression

Ravizza et al. [64] proposed a taxi-time estimation method based on multiple linear regression. Their study
was performed using data from Stockholm-Arlanda Airport (ARN) and Zurich Airport (ZRH) and considered
both departing and arriving flights. Both dataset contained information from an entire day’s flight move-
ments. For ARN the dataset contained a total of 661 movements while the ZRH dataset contained 679. In
multiple linear regression the goal is to model the ith dependent variable y;, as a linear weighted function
of independent variables x;i,..., x;; and an error term €;. The predicted value y for the ith observation is
calculated using:

9= Bo+ Brxi1 + ..t Buin 4.2)

Where f1, ..., B, are the estimated regression coefficients and can be estimated using least square regres-
sion. To measure how well the model fits the data, the adjusted coefficient of determination Ri aj is used.

The authors did not predict taxi times directly but taxi speeds instead which, as they argue, are good
estimators of taxi times. In an analysis performed, it was found that taxi speed estimations better fit the
linear requirements of their linear model. The set of independent variables considered are the following:

* Distance that the aircraft travelled divided into three components;
* The total angular deviations between adjacent arcs on the route travelled by the aircraft;
* Whether the flight is departing or arriving;

* 8integer variables (based on N and Q) inspired by the study of Idris et al. [44] which allow the consid-
eration of the amount of traffic on the airport surface;

* For ZRH only, the operational mode of the runways;

Logarithmic transformations were used when necessary in order to fine tune the models. The Rfl aj values

after fitting the models were 0.863 and 0.878 for ARN and ZRH respectively. The percentage of aircraft with
a time difference between the predicted time and the actual time within a threshold of +3min was 94.4%

4.3. Approaches for taxi-time prediction 61

for ARN and 95.6% for ZRH. The authors concluded that the average speed between the runway and the
gate is highly correlated with taxi distance while arrival aircraft have a higher taxi speed than departing due
departure queues forming at the runways. Lastly, the amount of traffic on the airport surface, the total turning
angle as well as the runway operating modes also showed high correlations with the average taxi speed.

In a study performed by Atkins et al. [3] the same multiple linear approach was used to estimate taxi
times at London Heathrow Airport, using a one week dataset. Rather than having a single regression model,
the authors found it more useful to have separate models for departures and arrivals and to divide those
according to which runway the aircraft were departing from or arriving at. They found that for departing
aircraft the Rfl dj values were 0.903 and 0.956 for RWYs 27R and 27L respectively. For arriving aircraft the RZ dj
values were 0.812 and 0.861 for RWYs 27R and 27L respectively.

Kistler et al. [50] performed their analysis using data from 15 days of operations at Dallas/Fort Worth
International airport (DFW). They developed different multiple linear regression models and used a variety
of independent variables of which the most influential were the distance travelled, the number of stops and
the surface traffic (both regional and total). Table 4.2 shows the setup of the different models considered in
their study.

Model Type S(l;l;‘f:ilcf Insctl(l)ll()ii g Variables Adjusted R?
LR Linear Regional No All 0.910
LR-S Linear Regional Yes All 0.968
LR-S* Linear Regional Yes Significant 0.968
LT-S Linear Total Yes All 0.967
LT-S* Linear Total Yes Significant 0.967
MR Log-linear Regional No All 0.997
MR* Log-linear Regional No Significant 0.997
MR-S Log-linear Regional Yes All 0.998
MR-S* Log-linear Regional Yes Significant 0.997

Table 4.2: Summary of the models including the type of variables used. Retrieved from [50].

Five of these models were tested on an independent dataset containing movements for one day of oper-
ations. The percentage of taxi-times within 1 minute from the actual taxi times are given in Table 4.3. The
authors concluded that the linear models performed better than the log-linear models.

Model Percentage

LR 58.11%
LR-S* 71.86%
LI-§* 71.07%
MR* 59.14%
MR-S* 64.55%

Table 4.3: Percentage of predicted taxi times within 1 minute of the actual taxi times for DFW data. Retrieved from [50].

4.3.4. Fuzzy rule based systems

Chen et al. [13] utilized the features identified by Ravizza et al. [64] to have a strong influence on taxi time
predictions and trained a non-linear Fuzzy Rule-Based System (FRBS) using data from ZRH. They argue that
FRBSs are more capable of capturing the non-linear, time-varying relationships present in the airport data
than linear methods. Similar to ANNs, FRBSs have also been proven to approximate any real continuous
function [100, 101]. FRBSs combine human expertise, sensory measurement and mathematical models to
perform their predictions. The structure of a typical FRBS is shown in Figure 4.3.

A FRBS consists of five functional blocks. The rule base contains a number of fuzzy if-then rules, the
database contains the membership function definitions used in the fuzzy rules, the decision-making unit
performs the inference operation on the fuzzy rules, the fuzzification interface is responsible for transforming
the inputs into linguistic values and the defuzzification interface is responsible of transforming the fuzzy
results into an output [46]. The rule-base of a FRBS has the following form:

62 4. Learning Mechanisms for Surface Movement Operations

knowledge base

input
I: fuzzification

: interface | ‘ interface -
(crisp) j J—‘ (crisp)

(huzzy) decision-making unit (hazzy)

output

database rule base

Hefuzzification

Figure 4.3: Structure of a typical FRBS. Retrieved from [46].

Ri: If xy isAll. andxgisA?,...,andxjisA{ then y; =2, (4.3)

Where R; is the ith rule to be considered, x; (for [= 1,...j) are the independent variables and Ag are
the linguistic sets or fuzzy sets which are represented by a membership function u . (x7). According to the
authors, FRBSs have the following properties:

* Able to approximate complex nonlinear systems;
* Rules are able to differ in different regions;

° Human expertise can be integrated;

¢ Interpretability of the underlying system;

The authors used a revised version of the Mamdani FRBS in which a genetic algorithm and a k-means clus-
tering algorithm were used to categorize the data into separate clusters and automatically generate the rules
in the rule base. The membership function was chosen to have a Gaussian form.

The resulting Mambani FRBS model had 12 rules and was compared with a linear regression model. The
results are listed in Table 4.4 showing a greater predictive perfomance for Mambani FRBS.

Model +3min +5min
Linear regression 95.6% 99.4%
Mamdani FRBS 98.8% 100%

Table 4.4: Comparison between the Mamdani FRBS and Linear regression on predictions made for ZRH. Retrieved [13].

In a subsequent study, Ravizze et al.[65] used another form of FRBS called Takagi and Sugeno’s (TSK)
FRBS. According to the authors, the TSK FRBS has the following characteristics:

* Each rule in the rule base resembles a multiple linear regression for a decomposed independent vari-
able region;

* The rules work cooperatively in order to produce more accurate predictions;
* Some linguistic meanings could be lost in comparison to the Mamdani FRBS;

In TSK FRBS the if-then fuzzy rules are described as follows:

Ri: If xy isAll. andxgisA?,...,andxjisA{ then y;=gi(x1,%2,..., X}), (4.4)

Where g; is a linear function. The same membership function as in Mamdani FRBS was used, and a
similar procedure for the generation of the rules in the rule base was followed.

Tests were performed using the ARN and ZRH datasets. For the former, 11 independent variables were
considered while 15 for the latter. The TSK FRBS was compared with models based on: multiple linear re-
gression, least median squared linear regression, support vector regression, M5 model trees and the Mamdani
FRBS. A short explanation for the newly mentioned approaches follows below:

4.3. Approaches for taxi-time prediction 63

* Least Median Squared Regression: A linear regression (LR) approach which is more robust to outliers
than multiple linear regression. Instead of minimizing the square of error, the median of these squares
is minimized.

* Support Vector Regression (SVR): A supervised learning method which ignores training data above a
certain threshold of the model prediction. It can be extended to a non linear model by transforming
the training data into a higher dimensional space. The goal is to minimize the norm of the weights
of the independent variables including the error for the training data which is further away from the
prediction than the set threshold [81].

* M5 Model Trees: These are decision trees which store linear regression models in their leaves. The trees
are constructed through a split process which occurs when certain criteria regarding the independent
variables are met. The splitting process finishes when the standard deviation of the subset of training
data is below a certain threshold or when it is too small [62].

Accuracy Airport LinReg LMS SMOreg M5P Mamdani TSK
Accuracy within + 1 min ARN 5428% 56.02% 57.86% S461% 58.21% 58.80%
ZRH 58.38% 50.66% 64.05% 62.40% 62.97% 6333%
Accuracy within +2 min ARN 85.30% B5.18% 2401% B5.10% 8673% 86.81%
ZRH 86,12% B5.00% 88.08% 88.15% 88.55% 80.07%
Accuracy within +3 min ARN 095.40% 04 80% 04.32% 95.43% 95.72% 96.16%
ZRH 95.55% 0426% 06.,60% 96.46% 06.54% 96.89%
Accuracy within £ 5 min ARN 00,16% 08.81% 99,16% 99.18% 08.97% 99,08%
ZRH 99.21% 08.56% 00.45% 90, 46% 9953% 99.62%
Accuracy within <+ 10 min ARN 99.92% 99.92% 99.92% 99.92% 99.92% 99.92%
ZRH 00.02% 00 87% 00,097% 90,097% 99.98% 9007%

Figure 4.4: Comparison of the models’ predictive perfomance on ARN and ZRH data. Retrieved from [65].

The prediction accuracy for different time ranges is shown in Figure 4.4 after performing 15 repetitions of
10-fold cross validation. Highlighted in bold are the best results per performance measure for each airport.
The results indicate that the TSK FRBS outperformed in many cases the predictions of the other regression
approaches. This can be attributed to its ability of capturing non-linear relationships something which mul-
tiple linear regression, least median squared linear regression and M5 model trees can only do up to a certain
extend. The support vector regression although also capable of modeling non-linear relationships, returned
the worst results for the +2 and +3 minute accuracy in the ARN case.

4.3.5. Other machine learning methods

In a study performed by Lee et al. [53] various machine learning methods were used to estimate taxi times
for departing aircraft at Charlotte Douglas International Airport (CLT). Studying surveillance data from de-
partures performed in 2014, the authors identified the following features as the most influential for making
the predictions: terminal location, gate, spot, runway, departure fix, aircraft model, weight class, taxi distance
from gate to runway, scheduled pushback time, number of departures on the surface by runway, number of
arrivals on the surface by terminal and unimpeded taxi times. The machine learning methods tested were the
following:

1. Linear Regression (LR)

2. Support Vector Machine (SVM): Or SVR for regression tasks. The radial basis function was used to
transform the training data into a higher dimensional space.

3. k-Nearest Neighbors (KNN): A supervised learning algorithm used for both classification and regres-
sion tasks. It works by using a specified number (k) of training samples which are closest in the feature
space to predict the value of the output. In their research k was assumed to be equal to 5.

4. Random Forest (RF): Belongs to the category of ensemble methods. The idea behind ensemblinglearn-
ing is that results from multiple weak algorithms can be combined via a voting scheme, in order to
obtain better results on a specific task. For the case of a RE the multiple algorithms are decision trees
[10].

5. Neural Networks (NN): The NN architecture consisted on 18 nodes in the input layer, 3 hidden layers
with the sigmoid activation function at each neuron, and a linear function in the output node. Although

64 4. Learning Mechanisms for Surface Movement Operations

not specified, it is assumed that every hidden layer has the same number of neurons. The training was
set to 500 epochs.

According to the authors these are the most popular machine learning methods that have been used in es-
timating travel times for both aircraft and cars on road networks. For model training, the data was split into
4 categories based on traffic flow and weather condition: South/North-flow traffic and Good/Rain weather.
The test dataset consisted of a day’s operations. As a reference, a dead reckoning (DR) method where the
predicted taxi time is equal to the unimpeded taxi time was used and compared with the models’ predic-
tions. The distributions of the predictions error for each model are shown in Figure 4.5 and the + 5 minute
percentage accuracy is listed in Table 4.5.

w 20 South-flow traffic, good weather condition v 30 South-flow traffic, severe weather condition
g : - . i £ . . - :
c c

E * E w i
= 20 ; ¢ A = 20} i
g T 1 1 4 l 8 i 2 T ‘
] 3 [E i € i ! i |
T 10 o : 1 5 ! | 3 10 1 ! £ i

@ 1 I i 1 @ i i I | |

a] 1 | = H I |

° ®

X | {18 mE
3 - S '
g ! ' ! ! [] | I | i -+
c =-10}... -4 ! b ! 4 c =10} ' ' t b T

g ! - g _ -~ sl - —

g w e

= = $

8 20} 8 -20f

e ghers g g

F (=

% —30 - - % —30 -

o Ll

K R VM kNN RF NN DR k] R SYM kNN RF NN DR

North-flow traffic, good weather condition

30 30

20

-
} 20
|

10} ! 10

-
-
-

=10} - =101

=20 =20

Taxi Time Difference (Actual-Predicted) (minutes)
=)
T
}+

Taxi Time Difference (Actual-Predicted) (minutes)
o
T

=30 =30 L

IR svM KN RF NN R

Figure 4.5: Predicted taxi time error distributions for different traffic flows and weather conditions at CLT. Retrieved from [53].

Test dataset LR SVM kNN RF NN DR

(Slc’;to};f/l;(‘)"; 4?°°d weather o yoo 56.8% 65.8% 72.6% 48.9% 37.3%
(szult()};f/l;(‘)"; :;ainy day 67.6% 57.5% 64.4% 69.4% 53.1% 38.5%
g‘ér/to};f/l;‘)";’ 4(;’00‘1 weather oo b0 56.4% 62.1% 64.9% 52.9% 34.8%
gzr/to};f/l; (‘)"i’ gainy day 66.0% 55.6% 58.9% 66.3% 46.4% 35.3%

Table 4.5: Taxi time predictions within +5 minutes for departing aircraft in CLT. Retrieved from [53].

The results indicate that all models had a greater predictive perfomance than the DR method. Looking at
the distributions, the LR and RF show the smallest deviations from the actual taxi times. From Table 4.5 it can
be seen that LR was particularly good at predicting taxi time when the weather condition were good while the
RF predicted better on rainy days.

The fact that LR is one of the best performing methods can be attributed to a number of reasons. Non-
linear, time varying relationships which are typical of airport operations according to [4, 38, 64, 65] might have
not been present in the data. This can be a result of the choice of independent variables or the fact that aircraft

4.4, Conclusion 65

movements at CLT are not complex in nature. Another reason could be the absence of hyperparameter tuning
in the SVM, kNN and NN which would explain their low perfomance. The authors have not indicated if they
actually did perform it or not. All these model consist of parameters which specify their architectures and
consequently their behavior during the training process. For example, with neural networks one needs to
decide on the number of nodes on each layer, the number of layers and the activation function. Whether a
regularization method is used to avoid overfitting can also be considered a hyperparameter. Simple LR on
the other hand has no hyperparameters that require tuning.

Yin et al. [104] performed a study using both departure and arriving data from the Shanghai Pudong
International Airport. Their method consists of formulating the machine learning inputs using a macroscopic
network model. Such a model is able to describe the macroscopic resource flow at an airport. An example of
such a model is shown in Figure 4.6 taken directly from their paper.

Space
Runway Predictors Relevant aircraft Values
D-SIFI {d,,d,} 2
SIFIs
A-SIFI {ar} 1
D-SCFI {dy, dy,d;,d,} 4
SCFIs
A-SCFI {ay.a,,ay,ay,0,} 5
D-AQLI {d),dy} 2
AQLIs
A-AQLI {ay,a,,a5,a,} 4
. d
Gate SRDIs D-SRDI { z} :
A-SRDI {ag,ar} 2

*
Time
Figure 4.7: The values of the machine learning predictors based on
the macroscopic network topology model. Retrieved from [104].
Figure 4.6: An example of a macroscopic network topology model
of a taxi process. Retrieved from [104].

Departures dj, ..., ds and arrivals ay, ..., a4, have the following relationships with the reference departure
aircraft dy:

e d;: "Off-block Before and Take-off Before" * a;: "Landing Before and In-block Before"
e dy: "Off-block Before and Take-off After" * ap: "Landing Before and In-block After"

* d3: "Off-block After and Take-off Before" ° az: "Landing After and In-block Before"

* dy: Off-block After and Take-off After ° ay: Landing After and In-block After

A set of ML predictors divided in 4 categories and 8 indices, depending on whether departing or arriving
aircraft, were formulated (see Table 4.7). Surface instantaneous flow indices (SIFIs) denote the number of
departures and arrivals when dj is being pushed back from its gate, surface cumulative flow indices (SCFIs)
denote the number of departure and arrivals whose taxiing period coincides with the taxiing period of dp,
aircraft queue length indices (AQLIs) denote the number of take-offs and landing on the runway during the
taxiing period of dj and finally slot resource demand indices (SRDIs) denote the number of pushbacks and
landings in the departure slot [fy — 6, + 6].

A 1R, SVM and RF model were trained using one month taxi data and validated on a day’s of operations.
For error ranges of +1,+2, +3, +4, +5, the RF model demonstrated the greatest generalization performance.

4.4. Conclusion

Literature supporting the realization of the task of predicting link traversal times was presented in this chap-
ter. A study very close to this learning objective was performed by Claes [17]. His dMAS-based coordination
mechanism was able to adapt to the dynamic conditions present at a traffic network, and make predictions
regarding link traversal times. Route intentions which can be acquired from the users of the network contain
information regarding future states of the system. The dependencies between the users are captured indi-
rectly by a ML model which approximates a mapping function between current and historical intentions to
observed values of link traversal times. This concept will be tested in this study as well.

66 4. Learning Mechanisms for Surface Movement Operations

For this purpose, a few modifications will have to be made in order to match the properties of aircraft
agents as defined in [36]. More specifically in [17], the vehicle agents are responsible for sending the dMAS
messages. This would be infeasible from the aircraft agents’ side as new communication systems would have
to be installed on-board. The alternative is to assign this responsibility to the ATC agents. In fact, this is more
suitable and in-line with how the cooperative planning mechanism is currently implemented. ATC agents are
already responsible for making taxi-time predictions (via forward simulations) and find conflict-free routes
to aircraft agents. This means that only the properties of acquiring route intention information and using
these to make taxi-time predictions need to be defined.

Although ANNs are used in [17] other ML methods, especially those able to capture non-linear patterns
in the training data, might as well be suitable. A review on taxi-time estimation methods was performed.
The review did not result in any clear winning candidate. The studies were performed using various airport
layouts, modeling assumptions, types of features, amount of data as well as tuning methods. FRBS have
demonstrated to have a good generalization performance but one needs to determine appropriate fuzzy rules
first. Clustering and optimization methods can be combined to automatically generate those but this adds
complexity to the entire the process. Linear regression methods in general are well suited for capturing linear
relationships between variables. Other algorithms on the other hand like RFs, kNNs and SVRs seem more
suitable to implement.

In order to measure the ability of the learning model to make link traversal predictions, it will be com-
pared with the results obtained in [36]. The success of the learning algorithm, however, is correlated with the
amount of data used and how well these represent real-like conditions (e.g runway reconfigurations). The 8
days of data (flight and runway schedules) used in [36] might not be sufficient to perform the training, val-
idation and testing phases required for the successful training and evaluation of a ML model. Methods of
increasing the amount of data will thus need to be investigated. One solution would be to gather a new set of
track data from which a flight and runway schedule can be derived. These will be used for the training and
validation phases of the learning model. The 8 days of [36] can then be used for testing. In case this approach
is found to be infeasible, an alternative would be to create a synthetic dataset for training and validation, and
similarly use the dataset of [36] for testing. To achieve a good generalization performance on test set, the syn-
thetic data should contain flight schedules and runway configurations as realistic as possible. The statistical
properties of such realistic scenarios could be investigated using the data in [36].

Multi-Agent Path Planning

As previously mentioned, airports can be characterized as complex, dynamic and unpredictable environ-
ments. Multiple users like aircraft and ground vehicles have to reach their individual goals while sharing a
limited amount of resources such as runways, taxiways and gates. Some of these goals might even be con-
flicting with each other. To reach all individual goals in a safe and efficient manner it is important that the
activities of all users are well planned and coordinated with each other. This is especially true for a distributed
system aimed at providing conflict free and efficient paths along the airport’s surface. The field of multi-agent
systems (MAS) which deals with this problem is called multi-agent planning. Several algorithms have been
introduced over the years. It is known that the success of these is highly dependent on the scenario that
they are being used and that the applicability of every planning mechanism has its limits [27]. This chapter
begins by providing information regarding the theory of cooperative MAP (Section 5.1). Due to the inher-
ently distributed nature of tasks and systems in the problem of distributed airport taxiing operations, it is
assumed that agents should cooperate between one another. Cooperative agents share their decisions with
other agents and in the presence of a coordination mechanism, are willing to adapt their individual decisions
up to a certain degree [84]. In Section 5.2 algorithms based on the A* algorithm are reviewed followed by rule
based algorithms in Section 5.3. Next, in Section 5.4 hybrid mechanisms are discussed while in Section 5.5
reduction based approaches are presented. In Section 5.6 algorithms which are structured on two level are
discussed. Last but not least, in Section 5.8 a trade-off between the presented approaches is made and the
most suitable is chosen.

5.1. Background on Multi-Agent Planning

To properly define MAP, multi-agent coordination has to first be defined. Multi-agent coordination is defined
as the managing of interdependencies between agent activities [55]. An interdependency is defined as the
relationship between a local and a non-local task where carrying out one task affects the perfomance of the
other [14]. In a typical coordination problem, the agents must decide on an appropriate set of actions to
achieve their goals, in the presence of other agents’ goals, distribute the limited resources available between
them and execute their actions. Weerdt et al. [103] define the multi-agent planning problem as follows:

“Given a description of the initial state, a set of global goals, a set of (at least two) agents,
and for each agent a set of its capabilities and its private goals, find a plan for each agent
that achieves its private goals, such that these plans together are coordinated and the
global goals are met as well.”

Based on a study performed by Durfee [28], Weerdt et al. identified the following phases towards solving
a multiagent planning problem:

1. Global task refinement: Global goals and tasks are refined to the point where subtasks remain which
can be assigned to individual agents;

2. Task allocation: Allocating of these subtasks to the agents;

67

68 5. Multi-Agent Path Planning

3. Coordination before planning: Defining rules or constraints for the individual agents which prevents
them from producing conflicting plans;

4. Individual planning: Making a plan for each agent individually so that it reaches its goals;
5. Coordination after planning: Coordinating the individual plans of the agents;
6. Plan execution: Execution of the plans and generation of results;

Additionally, the authors stress that not all phases need to be completed in order for multi-agent planning
to be realized. For example phase 1 and 2 can be skipped if there is no common goal between the agents.

According to Durfee [27], three fundamental strategies in multi-agent planning problems are coordina-
tion before planning, coordination after planning and coordination during planning (i.e phase 4 and 5 run
simultaneously). Coordination before planning aims at resolving all possible conflicts between agents before
their local plans are constructed. This can be achieved in either of the three following ways:

1. Defining a set of rules that specify the allowed actions of the agents at specific scenario (social laws
[791).

2. Assigning tasks to agents that will not interfere with the goals of other agents (task assignment).

3. Adding constraints on the task assignment so that the resulting action will be conflict-free (coordina-
tion by design).

In coordination after planning the idea is to merge all local plans and schedules by taking into consid-
eration all possible combinations and orderings and subsequently use coordination mechanisms to resolve
the found conflicts, if any. The revised plans are then communicated to the agents. This approach yields in
a somewhat centralized way of planning as a dedicated agent is responsible of gathering the plans of other
agents and executing the coordination mechanism [78]. The CBS algorithm used by Fines belongs in this
category. Lastly, coordination during planning entails the sharing of plans between the agents and the con-
tinuous re-planning of activities when conflicts are found. The continuous exchange of information between
agents can be done in different levels of hierarchy (HTNs) [21]. Three directions are found in this coordination
approach [78]:

1. Centralized planning for decentralized plans: Plans are created in a centralized way (i.e one agent
creates sub-plans for each agents and monitors the progress). An example is the Partial Order Planning
algorithm [6].

2. Distributed planning for centralized plans: Cooperative agents each contribute a part of their plan
such that a global plan can be formed.

3. Distributed planning for decentralized plans: Agents have partial representation of other agents’ plans
and use these information to update their plans in view of improving the global plan. An example
framework of this is the Generalized Partial Global Planning [24].

Multi-agent Path Planning (MAPP) is a sub-field of MAP which deals specifically with the planning of
non-conflicting paths. Applications can be found in various fields such as robotics [95], computer games
[80] and transportation [56]. The literature on MAPP contains a wide body of algorithms with varying perfo-
mance and complexity. Some of these algorithms are explicitly designed to solve for path finding (PF) prob-
lems which are a subset of MAPP. A distinction between agent path planning and robot path planning is
also often made. The following MAPP problems are found in the literature: Cooperative path finding (CPF)
[29, 54, 80, 82, 83, 87], Multi-agent path finding (MAPF) [5, 7, 9, 18-20, 25, 34, 49, 72-75], Multi-agent path
planning (MAPP) [16, 98, 99, 102] and Multi-robot path planning (MRPP) [68, 86, 96, 97, 105, 106]. Generally
speaking, these approaches trade solution quality, completeness and scalability [98]. A commonly made dis-
tinction is between decoupled (or distributed) and coupled (or centralized) approaches [75]. In the former
case the planning task is decomposed into independent problems for each agent and agents plan separately
for their path. It is a fast and scalable approach but leads to non optimal solutions and in most cases incom-
plete. Decoupled approaches usually solve the MAPP problem in three phases [15]. First, individual plans are
computed with respect to static obstacles and without considering the paths of other agents. In the second
phase, agents are prioritized with respect to when their plans are to be restructured. In the last phase, the
individual plans are restructured based on the priority list defined in phase two. In a centralized setting all
agents are planned together. This can result in complete and optimal solutions at the expense of computa-
tional power because finding a solution becomes exponentially hard with increasing number of agents.

5.2. A* based approaches 69

5.2. A* based approaches

Approaches which are based on the A* algorithm are discussed in this section.

5.2.1. Cooperative A* search

In his work on video game design, Silver [80] proposed three decoupled algorithms, all of which are based on
the famous A* algorithm. Although the algorithms are tested in grid like environments, he argues that their
applicability also extends in other path finding domains.

Firstly, he introduces the Cooperative A* (CA*) algorithm. In CA* single agent A* searches are first per-
formed. After the path of each agent is determined, the states along the path are written in a 3-dimensional
reservation table such that they are avoided in subsequent searches made by other agents. According to Sil-
ver, CA* is not able to solve certain classes of problems. The problem arises when a greedy solution of one
agent prevents a solution for another agent. A variation of CA* is the hierarchical CA* (HCA*). This algorithm
is similar to the CA* but uses the abstract distance heuristic to perform the A* searches. This algorithm ex-
ecutes a modified A* search in a reversed fashion. After a path is found the algorithm reserves the series of
points of the path in the reservation table. Conflicts are thus avoided by disallowing agents to use paths al-
ready reserved by previous agents. The order by which agents reserve paths in the reservation table is chosen
randomly [7]. The latter presents an issue in which the algorithm may not be able to find a solution for a given
prioritization scheme. This makes HCA* incomplete.

Both CA* and HCA* compute paths before plan execution using a full depth cooperative search. In a
scenario were the state space is large, their usability is limited. Silver introduced an online variant called win-
dowed HCA* (WHCA*) to shorten the global search and to limit the prioritization issue of HCA*. In WHCA*
cooperative path finding is performed within a limited user defined window (W), outside which all agents are
ignored. Within that window a partial path is calculated for each agent and filled in the W-sized reservation
table. Agents start following their partial paths and after a time interval, the window is shifted forward and
a new cycle of partial paths is calculated. WHCA* returns less optimal solutions than the HCA* but is more
applicable to real-time applications, since agents plan for the next W steps which significantly reducing the
size of the reservation table. A downside of WHCA* is that it does not consider conflicts that might occur
between agents. An agent might reserve W points without knowing whether these points are required by
another agent or not. Like HCA*, WHCA* also suffers from incompleteness [7].

Byana and Felner [7] continued the work of Silver and introduced a variant of the WHCA* which takes con-
flicts into account. The algorithm is called conflict orientation WHCA* (CO-WHCA*). A important feature of
the algorithm is that the reservations (or leftovers) of cycle i —1 are preserved in cycle i. CO-WHCA* has more
flexibility in placing the window where the paths of the agents are reserved. This allows agents to be at most
W /2 steps away from the conflict and agents who are not allowed to use the conflicting path have enough
time to find an alternative. This is in contrast to WHCA* where agents have to plan right before the conflict
occurs. The authors also presented a version of CO-WHCA* that uses a prioritization scheme (CO-WHCA*P)
which prioritizes the agents that use the reservation table. For a given conflict the winner determination
scheme, as they call it, considers all possible orders by which the reservation table can used. The agent that
resulted in the lowest sum of costs is chosen as the conflict master and has priority over other agents. Tested
on a map of Dragon Age Origin (DAO), a computer game used as a benchmark for testing path finding algo-
rithms, both algorithms showed higher performance than WHCA* in terms of success rate and solution cost.
CO-WHCA*P had the highest execution time since it needed to consider all possible combinations of agent
prioritizations.

5.2.2. Standley’s improvements

Standley [82] introduced two improvements to the standard A* algorithm for solving the CPF problem. Oper-
ator decomposition (OD) considers a representation of the state space in which each timestep is divided into
the number of agents, so that each agent is considered one at a time. This distributed approach allows the A*
search to reduce the amount of surplus nodes generated. These are nodes with f > C+* and which will never
be expanded during the search. The method is able to achieve up to an exponential reduction in computing
costs while determining conflict free paths but the technique is still exponential in the number of agents.
Furthermore, due to the admissibility and completeness of the A* algorithm, Standley argues that A* with OD
is also admissible and complete. The decomposition of every timestep, however, adds some complexity that
may result in sub-optimal solutions. More specifically, there are situations in which agents are not allowed
to move into spaces occupied by agents who have not yet been assigned a move in that state. The second

70 5. Multi-Agent Path Planning

technique aims at improving the perfomance of the OD. Independence Detection (ID) works as follows. The
algorithm first assigns each agent in a group and finds a path, using OD, for each agent independently. The
found paths are then simulated. If a conflict is found during the simulation, a new path is determined for
one of the conflicting agents which should not conflict with the original agent. If the process of finding a new
path fails, it is repeated for the other conflicting agent. In case both searches fail, the agents are merged into
a group and a path is planned for this group. All new paths are found using a conflict detection table which
is updated regularly. The approach is also to achieve an exponential reduction in costs since it reduces the
number of agents to be planned at any given time. Although both approaches reduce the computing costs,
the resulting optimal OD-ID algorithm, as Standley notes, has still a computing time that is expensive for
real-time applications [83].

The authors compared the performance of the OD-ID against the standard A* and Silver’s HCA* [80] on a
32x32 grid map with random obstacles. Agents were spawned at random locations and given random desti-
nations. The number of agents was chosen uniformly between 2 and 60 for a total of 10000 instances. They
indicate that the algorithm is able to increase the performance of the standard A* algorithm by a considerable
amount. However HCA* performs better than OD-ID on average in terms of both success rate and computa-
tional costs.

5.2.3. Approximate and optimal anytime algorithms

In a subsequent paper, Standley and Korf [83] proposed a complete algorithm, called MGS, that deals with
OD-ID’s drawback of having high runtimes. By dynamically removing the two constraints in the original OD-
ID specification which make it optimal, the algorithm is able to trade optimality for computing time. The
decision to drop the two constraints (or not) depends on a user defined parameter called maximum group
size (MGS). The authors tested the perfomance of the MGS with different group sizes in experiments similar
to the ones in [82]. For an experiment with 150 agents the results obtained are shown in Figure 5.1. MSG1
(MSG with group size equal to 1) solved 99.92% of the instances in under one second, while HCA* only 47.01%.
The OD-ID was not able to solve any instance.

Later on, MGS was adapted to an optimal anytime algorithm (OA-MSG) which is more suitable for real-
time applications. The anytime algorithm, as the name suggests, can be terminated at any time and the
best computed solution up to that point can be retrieved. This is performed via a method called Iterative
Deepening. The method enables the use of information computed in past iterations to be used in subsequent
iterations which results in lower runtimes. The algorithm was tested against its optimal alternatives: the
standard A* and the OD-ID. The performance curves are shown in Figure 5.2, The authors conclude that
the optimal anytime algorithm can achieve a similar perfomance to the OD-ID and return a good quality of
solution even when terminated earlier.

Optimal Algorithm Performance Curves
womeemeenes §A 65.6%

0A 67.0% (Time to find and verify a solution is optimal):
——————— 0DHD 67.3%
10000 1=——— QA (Time to arrive at an optimal solution)
VBA 72.7% (Best of any algorithm)

100000

Performance Curves by Algorithm
e — o

1000

]
e MGS2 (150) 58.91% X
- - - = MGS1(150) 99.92% '
....... HCA* (150) 47.01% |

100

CPU Time (ms)

.............

o 2000 4000 6000 8000 10000
Number of Solved Instances

1000 -+

CPU Time (ms)

=
=3
=3

10

4] 200 400 600 800 1000 1200 1400 1600 1800 ...
Number of Solved Instances

Figure 5.1: Performance curves for the approximate algorithms.

Retrieved from [83]. Figure 5.2: Performance curves for the optimal algorithms.

Retrieved from [83].

5.2.4. Other approaches

In another study, Felner et al. [33] worked on improving the performance of the standard A*. They developed
an algorithm that addresses the issue of surplus node generation present in A*. Standley’s OD [82] shares
a similar idea but his algorithm does not avoid all surplus nodes. Reducing the number of surplus nodes
increases the computational performance of the search substantially. The algorithm proposed is called the
Enhanced Partial Expansion (EPEA*) and is considered to be the best A*-based MAPF solver in 2014 [5]. Using

5.3. Rule based approaches 71

a mechanism called domain-dependent operator selection function (OSF), only the nodes with an f value
smaller or equal to the optimal cost are generated. The authors tested their approach on two grid maps with
sizes 3x3 and 8x8 and up to 8 and 12 agents respectively. Conflict avoidance was performed using a 2 level
OSE The results indicate that the runtime of EPEA* outperforms that of A* with OD by factor of up to a full
order of magnitude. In addition, the EPEA* outperforms the enhanced version of ICTS, a tree based algorithm
presented in Section 5.6.

Wang and Goh [102] introduced the guided iterative prioritized planning (GIPP) algorithm for solving a
version of the MAPP which focuses on makespan. Makespan is defined as the number of time step required
for all agents to reach their destinations [85]. The goal of GIPP is to move each agent at its destination in the
shortest time possible while avoiding static constraints (obstacles) and dynamic constraints (agents). GIPP
belongs to the category of local search algorithms. It analyzes every solution from a given solution space
and applies local changes in order to produce an improved solution (or an optimal) within a certain time
limit. The algorithm begins by running CA* searches to generate a series of optimal individual paths which
then tries to optimize with respect to a cost function aimed at minimizing makespan. The method although
shown to return makespan solutions similar in performance to WHCA*, it scales worse than WHCA* and Push
and Swap (explained in Section 5.5). This is because it runs a centralized A* search which searches the joint
agent space.

Choutan and Niyogi [16] presented a fully distributed complete multi-agent path planning (DiMPP) al-
gorithm. In the distributed setting there is no centralized agent computing plans. Their method plans the
agents’ activities in three phases. In phase 1, each agent plans a path to its destination using the Fast For-
ward (FF) planning framework [41] by considering only static obstacles. In contrast to classical planning
techniques such as the GPGP, FF incorporates heuristics in order to perform the search along possible states.
More specifically, an algorithm called Enforced Hill-Climbing (EHC) is used to perform breadth-first search
and find states with a better evaluation than the original state. The authors used the Euclidean distance be-
tween the current state and the goal state as means to evaluate the current state. EHC however is incomplete
and might fail to reach a goal state. In case this occurs, a complete greedy best-first search is performed in-
stead. Pruning techniques can also be used in order to reduce the search space of the algorithm. In phase
3, the possibly conflicting individual plans are restructured using a priority based decision making (phase
2). The decision making process is distributed among the agents and highest priority is given to agents with
the longest plans. Every agent has limited information about their environment and other agents, an as-
sumption commonly made in multi-agent systems. Through the exchange of messages, agent obtain full
knowledge with respect to each others’ plans. An example showing the priority decision making process is
shown in Figure 5.3.

{<a,257) (<d 30 <a,257} {<d 30~ <a,25>, <c,20%) (<d 30~ <a,25>, <c 20~ <b 10>}

{<d, 30>} {<b,10=} {=d,30= {=d,30=

{<d,30> {<d 30>
° ° s ° ° P 20 ° e e s ° e e
<c20%) <b,105} w10, o2 20>,

<b,10%}
<b,10%} 105},

{=c,20=} {=c,20= <b,10=} {=a,25= = 20> <b 10=} {<a,25> <a 25~ <c,20> <b,10-}

Round 0 After round 1 After round 2 After round 3

Figure 5.3: An example of the priority decision making. Agents (1,2,3,4) with identified paths (a,b,c,d) have lengths (25,10,20,30)
respectively. At each round agents update their knowledge of other agents’ paths.

The authors tested DIMPP on the brc202d DAO map which features similar properties to an airport’s taxi-
way environment such as narrow corridors and bottlenecks. The algorithm was compared to the EPEA* and
CBS. For small size problems DiMPP outperformed EPEA* in terms of both runtime and solution cost and it
had a similar performance to the CBS. For large number of agents however, EPEA* and CBS scale exponen-
tially whereas DiMPP scales polynomially.

5.3. Rule based approaches

Rule based approaches require certain rules in place in order to work. These rules are related to the properties
of the agents, their environment and/or the interaction between them. Unlike the algorithms in the previous

72 5. Multi-Agent Path Planning

section, rule based approaches usually do not involve an A* search to expand nodes. Typically, these methods
return a solution relatively fast but often suboptimal in nature.

5.3.1. Push and Swap

Luna and Bekris [54] introduced a suboptimal algorithm for solving the CPF problem and named it Push
and Swap (PS). The algorithm can be applied in problems with 7 — 2 agents in a graph with #n vertices. Two
operations are used in the algorithm. During a PUSH operation, an agent forces other agents to move away
from its shortest path (by "pushing" them) and then proceeds with following that path. Certain scenarios are
harder to solve and only pushing will not suffice. Such scenarios require agents to switch positions and this
is accomplished with the SWAP operation. SWAP brings the two agents in a location of the graph which
contains two empty vertices so that the swap can take place. While doing so other agents might have to move
locations as a response to this. All agents are returned to their original positions after the swapping has taken
place. Although the algorithm was initially shown to be complete on problems with 2 unoccupied vertices,
De Wilde et al. [23] later on showed that its completeness cannot be guaranteed in certain scenarios. The
algorithm was tested against Silvers’s WHCA* [80] (with window sizes of 8 and 16) on a number of scenarios
including a randomly populated grid with 20% obstacles. PS resulted in a higher success rate and lower
computation times.

5.3.2. Tree-based agent swapping strategy

Khorshid et al.[49] introduced a tree-based approach for solving MAPF problems. They call it the tree-based
agent swapping strategy (TASS). It is a rule based centralized algorithm which is shown to be complete only
for tree graphs. TASS guarantees finding a solution in polynomial time but suboptimal in nature. The ap-
proach shares some similarities with the PS [54] algorithm presented in the previous subsection. Firstly, both
of them perform a swapping operation, secondly they can solve only for certain graph topologies and thirdly
they return sequential paths where one agents is moved at a time.

5.3.3. Push and Swap variants

A PS variant which returns solutions in which agents are moved in parallel was introduced by Sajid et al.[69].
Parallel Push and Swap (PPS) was shown to find solutions as fast as PS and of quality similar to the optimal
anytime algorithm of Standley and Korf [83]. In a later research, DeWilde et al. [25] proposed Push and Rotate,
a PS variant which deals with the drawbacks of the PS as presented in [23] and guarantees completeness in
graphs with at least 2 unoccupied vertices. In the pre-processing phase of the algorithm, the graph is divided
into subgraphs in which agents are allocated to them. Agents belonging in the same subgraph are allowed to
perform swapping operations with each other. In the last step, agents are assigned a priority based on which
they are planned. During the moving phase, a shortest path is computed for the agent first in the priority
list and subsequently the agent is moved towards that path. At the event in which an agent is blocking the
moving agent’s path and the blocking agent has a lower priority, the latter is pushed to an empty vertex.
Otherwise, a swapping operation is performed. The algorithm is also able to detect and solve instances in
polygons something which PS failed to do. It does so using a rotate operation. Other rule based algorithms
are presented in [8, 86].

An important thing to notice is that these algorithms assume that the agents are flexible to move in every
direction. For example, in order to perform a swap operation agents must change their direction of movement
within one step. This in turn makes their applicability to airport surface movement operations challenging.
The infrastructure at a given airport might pose certain constraints in the movements that aircraft are allowed
to do. A swap operation would require aircraft to be able to perform U-turns which is only possible in certain
locations on the airport’s surface. Reaching those locations would potentially increase the total travel dis-
tances and times, resulting in less efficient overall operations. The ruled based approaches are not as flexible
as other approaches presented in this chapter and will therefore not be considered in the trade-off later on.

5.4. Hybrid approaches

Some approaches presented in the literature combine both searches and movement rules. These are charac-
terized as hybrid approaches [75] and will be discussed in this section.

5.5. Reduction based approaches 73

Figure 5.4: Example of an alternative path Q; to a precomputed path 7 (u) of an agent u.

5.4.1. Flow Annotation Replanning
Wang and Botea [98] introduced the Flow Annotation Replanning (FAR) algorithm, a decoupled method for
solving the MAPP problem by combining movement rules and independent A* searches. FAR abstracts a
given grid map into a flow-annotated graph. In the new graph paths are flow restricted allowing movements
only in single directions, just like in road networks. The directionality of paths is alternated between parallel
paths. In addition, the algorithm imposes certain rules such as that the connectivity of the nodes is preserved.
FAR is also an online algorithm meaning that planning and execution are interleaved. An optimal path for
every agent is found by performing single agent A* searches. The searches do not take into account other
agents on the map. Once an individual path is planned, the agent begins to follow it. The idea behind FAR
is that by maintaining as many straight (one directional) paths as possible, the chance of having head-on
and side-by-side collisions decreases. The algorithms favors straight paths by altering the standard A* search
such that it gives priority on expanding nodes which yield in continuing straight lines. Agents are coordinated
using temporal reservation tables similar to those found in Silver’s [80] approaches.

The authors compare FAR’s performance with an enhanced version of Silver's WHCA* algorithm [80] on
a collection of maps from Baldur’s Gate computer game. The experiments resulted with FAR having a better
computational perfomance and scalability. FAR however suffers from two drawbacks. Firstly, FAR assumes a
grid like structure which makes it not suitable for modeling an airport surface. Secondly, the approach does
not consider what the consequences of a chosen path is on the paths available to future agents and may thus
suffer from additional deadlocks [82]. Lastly, the approach suffers from incompleteness. It can not guarantee
that a solution will be found within a certain time period [99].

5.4.2. Multi-Agent Path Planning
In a later paper, the same authors presented MAPP [99], a MAPF algorithm shown to be complete on certain
types of instances which are named slidable. The algorithm begins by computing a path 7 (u) for each agent
to its target location while creating and caching alternate paths Q along the way. A representation of such a
situation is shown in Figure 5.4. Agents that are not slidable are placed last in a priority list. Based on their
priority, each agent is then moved to its target location by following 7 () and if necessary is pushed towards
its alternative path. The latter occurs when a conflict with a higher priority agent is bound to occur. Once
an agent reaches its destination, the algorithm moves the next agent in the priority list. The ordering of the
agents in the priority list is chosen heuristically. A possible heuristic is the distance to the target location,
giving a higher priority to agents that are closer to their goal nodes. By relaxing rule 1 and 3, the authors
created two variations of the MAPP which are shown to achieve a higher perfomance than the basic MAPP.
In experiments performed against FAR and WHCA* for a collection of maps, MAPP was able to solve on
average a higher amount of instances even for scenarios with 2000 agents. It did however require on average
more computing time than its alternatives. Whether MAPP is suitable for the distributed aircraft taxiing task
or not is difficult to say. Line 8 of Algorithm 1 in the paper requires agents to be able to move at any direction.
Aircraft can perform U-turns only at designated locations or with the help of towing vehicles. It is therefore
decided to not include this algorithm in the list of algorithms which will be compared later on.

5.5. Reduction based approaches

Approaches which aim to reduce the MAPF problem into a simpler problem which is then solved using other
techniques are called reduction based approaches.

74 5. Multi-Agent Path Planning

5.5.1. Constraint Satisfaction Problem

Real world maps typically are not built on random but usually contain underlying structures. Take an airport
map for example. Long taxiway segments are normally placed parallel to the runways, and intersections are
found in locations close to the terminals.

This what motivated Ryan [67, 68] into investigating a technique for reducing the size of search using
domain information. The work he presented falls within the MRPP context. His method consists of exploiting
the structure of a given problem and decomposing it in subgraphs such as stacks, cliques, halls and rings. A
search using these subgraphs allows for a more informed pruning of the search space without sacrificing
completeness. Subsequently, this new knowledge is encoded as a constraint satisfaction problem. Basically,
the problem is encoded in integer variables over finite domains, and constraints which describe the relations
between the variables that need to be satisfied. Variables are then assigned values and changes recorded are
used to limit the domains of other unassigned variables. A prioritization towards the variable assignment can
also be incorporated. This allows for more constrained variables to be dealt earlier in the search thus limiting
the amount of backtracking when the assignments fail to satisfy the constraints. A variable assignment which
satisfies all constraints presents a complete plan.

Ryan tested his approach on a map with 3 halls and 2 cliques. He reported the following. First of all, the
problem decomposition into subgraphs combined with the informed type of search resulted in the highest
rates of success. For easy problems the planner which considers map abstractions is 20-30 times slower than
the planner without any abstractions (concrete planner). For harder problems, the abstract planner takes
0.25-0.30 of the time of the concrete planner. A prioritized variable assignment always yields a higher success
rate but costs more to compute.

This approach can be considered suitable to be applied in airports as their lay-outs can easily be decom-
posed into subgraphs. However it has not been compared with other path planning algorithms. In addition,
knowledge of declarative programming is required. CSP will therefore not be considered as an alternative.

5.5.2. SAT based solvers

Surynek [87, 88] introduced a different approach for solving the cooperative path finding problem. His ap-
proach is based on reducing the CPF problem into a boolean (or propositional) satisfiability problem (SAT).
In such problems, the goal is to determine whether an interpretation that satisfies a given boolean formula
exists. If it exists, it means that replacing the variables in the boolean formula by TRUE and FALSE will re-
sult evaluating the formula as TRUE. Such a problem is called satisfiable. Once the boolean formula is con-
structed, a SAT solver is used to find the solution. The challenging part is how to effectively encode a given
CPF problem to a boolean formula F(X,7n). Surynek’s work aims to answer this question by investigating
several types of encodings [88]. To create a propositional representation of an agent’s trajectory over time,
Surynek uses Time Expansion Graphs (TEG). Put simply, a TEG is a graph representation in time where it
captures all available movements of agents over a graph, at all time steps, up until a time point goal. The
solution to the CPF is regarded as searching for non overlapping vertex disjoint paths in a TEG consisting of
7 layers. 1 is some makespan bound. An example of such a graph is shown in Figure 5.5.

An optimal makespan solution for CPF is obtained by querying F(Z,n) multiple times for different n and
checking whether the formula is satisfiable. Queries are submitted to a SAT solver. As Surynek points out,
a possible strategy for choosing makespan bounds is sequentially increasing 1 until an optimal makespan is
reached. Reduction based algorithms such as SAT, typically suffer from high running times. There is a large
overhead when reducing the CPF problem and the fact that the algorithm tries to return optimal solutions
adds to that.

In a later research, Surynek et al. [89] presented a method for reducing the computing time of SAT based
approaches. Their adapted SAT based approach, called MDD-SAT, focused on solving MAPF problems with
respect to the sum of costs objective. MDD stands for Multi-value Decision Diagram (MDD), a type of data
structure which was used to reduce the size of the TEGs. Instead of considering all states for all time steps as
done in the TEGs, only the vertices and edges which result to valid paths are considered in the MDDs. Ac-
cording to the authors, this can lead to a reduction of variables in the model of up to two orders of magnitude.
The approach was tested in grid maps and DAO maps against other optimal variants such as the EPEA*, ICTS
and ICBS. The two latter are discussed in the following section. As can be seen in Figure 5.6, MDD-SAT is
performing well both in terms of success rate and runtime when compared to its alternatives. In the brc202d
DAO map which has similar properties to an airport’s taxiway environment such as corridors and bottlenecks
(shown in Figure 5.7), MDD-SAT still suffers from large overheads when compared to ICTS and ICBS. How-
ever, given enough time the algorithm will eventually reach the perfomance level of its alternatives.

5.5. Reduction based approaches 75

CPF 3=(G=(V,E), {a1,a2}, ao,) Expr (G, 4)

sioAe|awn g

5 a0 ou a2 a3 0= A
a1 V2 V4 V3 V3 V3
A2 Ve Vs Vs V4 V2

Figure 5.5: An example of a CPF problem and its expansion graph Exp; (G, 4) consisting of 5 time layers. Retrieved from [88].

Solved instances ICTS
Success rate EPEA Solved instances Brc202d|32 agents ICBS
Grid 8x8 | 10 agents IcTs Grid 8x8|10 agents 300 - ; MDD-SAT
12 —o— ICBS 250 : : :
—o— MDD-SAT 250 oo Lo
1 8 !)
» 200])
3 c
g {200 f--------boooo—fflfm
08 g %
2 150 £
06 £ e il 4 o Trrrr e
5 100 @
04 e 100 oo S f
2 S
Z 5 z a
02 s Lo fi
0 A 0 4
Number of obstacles 0

Runtime (seconds) +
10 100 Runtime (seconds)
0,1 1 10 100

0 2 4 6 8 10 12 14 16 18 20 22 24 01 1

Figure 5.6: Success rate and number of solved instances on a 8x8

) . ; Figure 5.7: Number of solved as a function of runtime. Retrieved
grid map with 10 agents. Retrieved from [89].

from [89].

Continuing in this research line, Surynek et al. [90] later proposed two suboptimal variants of the MDD-
SAT, namely uMDD-SAT and eMDD-SAT. The former is the unbounded and the latter the bounded variant.
The bounded variant returns a solution with cost less than or equal to (1 —¢) - C*, where C* is the optimal so-
lution and € is a user defined parameter which specifies the degree of suboptimality. The unbounded variant
simply returns any solution. To convert from optimal to suboptimal the authors relaxed one the constraints
which makes up the original algorithm. eMDD-SAT was tested against the suboptimal Push and Swap [54]
and ECBS [5] algorithms. ECBS is a bounded suboptimal variant of Conflict Based Search, a two-level MAPF
solver presented in the next section. For tests on the brc202d DAO map, it was found that ECBS performed
the best in terms of both solution quality and execution time. The performance graphs retrieved from their
paper are shown in Figure 5.8. eMDD-SAT was compared with ECBS which is also bounded suboptimal for
a suboptimality factor of 1.01. The results indicate a similar performance between the two, with the ECBS
performing slightly better.

5.5.3. Integer Linear Programming

Yu and LaValle [105, 106] presented a method for optimally solving a multi-robot path planning problem
using Integer Linear Programming (ILP). In their MRPP formulation, the authors assume that the agents can
perform synchronized rotations in fully occupied cycles, something which is not assumed in the MAPE or
CPF definitions. The authors are motivated to use such a technique due the close relation of the MRPP with
the network flow problems. Furthermore they argue that, in comparison to traditional A* based approaches,
their ILP-based approach is capable of solving a greater range of problems and especially those with a high
agent-vertex ratios. The authors also looked at reducing the size of the models given to the ILP solver using
heuristics and therefore trade solution optimality to computing time. One of those heuristics divides the

76 5. Multi-Agent Path Planning

Brc202d | Sorted runtimes Brc202d | Instances Brc202d | Sorted sum-of-costs
1000 400 1000000

/

100

\

Number of instances

100000

w
=1
]

10

~

1
10000

0,1

Runtime in seconds

o
o
8
Sum-of-costs

0,01

-
o
<]

Instance 1000
0,001

0 80 160 240 320 .
Runtime Instance

e ECBS eMDD-SAT Push&Swap 1 20 400 0 80 160 240 320

Figure 5.8: The performance of uMDD-SAT and other suboptimal alternatives. Retrieved from [90].

problem in k sub-problems in time. The makespan version of the ILP-based approach was compared against
the Standley’s optimal OD-ID [82] and Silver’s suboptimal WHCA* [80]. On the worst test case, a 32x32 grid
with 20% obstacles, OD-ID and WHCA* could not return solutions for more than 20 agents within a time
bound of 600 seconds.

5.5.4. Answer Set Programming

Erdem et al. [29] used the technique of Answer Set Programming (ASP) to solve path-finding problems. Their
approach is centralized, complete and optimal. ASP is a knowledge representation and reasoning paradigm
which is based on logic programming. Using the so called answer sets (or programs), the solution space of a
given problem is represented with logic terms and is constrained to desired outputs. An ASP representation
of a problem is given to a solver just as done in ILP. The authors compared their approach to the ILP method
in 180 randomly generated instances of 25x25 grid graphs with 0-40% obstacles containing either 10 or 20
agents. They report that the ASP approach performed worse in terms of success rate, computing time and
cost of plans than the ILP approach presented earlier. However, the ILP approach demonstrated a larger
performance decrease with increasing amount of obstacles and the memory requirements were lower for the
ASP (<4GB) than the ILP (<10GB).

Although 4GB of memory usage is within the capabilities of most hardware these days, it confirms the
poor scalability of centralized methods. Furthermore, the fact that certain instances took more than 15 min-
utes to be solved shows that these methods are also prone to large overheads. This makes their suitability of
performing airport surface movement operation questionable. For this reason it is decided to not consider
these methods as candidates for this study.

5.6. Two-level based approaches

In this section algorithms which are structured in two levels will be discussed. Usually at the top level a global
search is performed and in the lower level the search is further refined. Algorithms from the M* and the CBS
families belong in these category and a discussion of these follows.

5.6.1. M* family

In the context of MRPP, Wanger and Choset [97] proposed the M*, an algorithm which combines the prop-
erties of both coupled and decoupled approaches. On the top level decoupled planning is used to compute
single agent paths using the A* algorithm. For the paths which are found to conflict at a later time point,
a joint state space search (coupled planning) is performed again using the A* but for the conflicting agents
only. So unlike A*, M* does not consider the regions of the spate space which have no conflicts. Further-
more, M* expands less nodes from the OPEN list than A* does. Similar to A* however, its computational cost
increases exponentially with the number of colliding robots. The authors also show that M* is both optimal
and complete. Following the idea of trading optimality for runtime, one can inflate the cost heuristic used in
the M* by a value € > 1 and end up with the so called Inflated-M*. Recursive M* (rM*) is an optimal variant
which improves M*’s perfomance when dealing with physically separated but simultaneously coupled sets of
robots, resulting in a computational cost which is exponential not in the number of colliding robots but in the
size of the largest set of mutually colliding robots. It does so by splitting the robot collision set maintained in
the original M* into independent subsets for which planning is performed separately. The method is similar
to the ID framework discussed in Section 5.2.2 but it does not keep the robots in the same set after a collision

5.6. Two-level based approaches 77

is resolved as is done in the ID [96]. Running experiments on a grid with a density of 104 cells per robot and
each cell having a 35% probability of being an obstacle, it was shown that inflated-recursive M* has the best
peformance in terms of success rate, runtime and scalability.

In [96] Wanger presented the ODM* and EPEM* by replacing the A* with M* in the OD and EPEA* algo-
rithms. When tested in a 32x32 grid with a maximum of 60 agents, the ODM* and EPEA* scored better in terms
of success rate and runtime than A*, OD, M* and EPEA*. Their recursive variants ODrM* and EPErM* scored
even better with the two of them having a very similar perfomance. Their suboptimal variants i-ODrM* and
i-EPErM* showed an even more promising perfomance yielding higher success rates and runtimes. In terms
of implementation i-ODrM* can be considered more straightforward to implement as opposed to i-EPErM*
which is built on the EPEA* and requires the definition of a domain specific operator selection function (OSF).

5.6.2. Increasing cost tree search
Sharon et al. [72] developed a centralized two level framework called Increasing Cost Tree Search (ICTS)
which solves MAPF optimally. An example of an ICT for three agents is shown in Figure 5.9.

The top level searches the ICT in a breadth-first manner. Every node s in the tree consists of a k vector of
individual agent costs. The root (1st level) of the ICT consists of the optimal costs of the agents’ paths which
are computed assuming that no other agent exist along their ways. The second level of the tree consists of
nodes (child nodes) in which a unit cost is added to the cost of one agent. An ICT node in which there is
a complete non-conflicting solution in which the agent’s a; individual cost is C; is considered a goal node.
The total cost of a node is simply the sum of the individual costs. The low level checks whether a node s is
a goal node. This is accomplished by storing all individual agent paths in a data structure called multi-value
decision diagram (MDD). The cross product of the MDDs returns k non-conflicting paths for the agents. The
ICTS was found to outperform Standley’s OD-ID [82] framework based on A* in terms of both success rate and
runtime when tested on the brc202d DAO map. The authors also presented a number of pruning techniques
aimed at removing non goal nodes already from the high level so that the activation of the low level search is
avoided. These techniques outperformed the basic ICTS in terms of runtime [73].

Figure 5.9: ICT for three agents. The dashed lines represent duplicate child node which can be pruned. Retrieved from [72].

5.6.3. CBS family

CBS

A state of the art algorithm for MAPF called conflict based search (CBS) was proposed by Sharon et al. [74, 75].
CBS can be considered as both a coupled and decoupled approach. It guarantees finding an optimal solution
while the path-finding is done via single agent searches just like other decoupled approaches. Coordination
in this context is performed through the merging of the individual plans.

CBS works on two levels. The high level searches the nodes of a constraint tree (CT) for conflicts via a
best first search. A constraint tree consists of a set of constraints which contain information which prevent an
agent from occupying a vertex at a specific time point, a solution which consists of all individual paths and a
total cost which sums all individual agent path costs. If a conflict is determined in the high level, the node is
declared as a non-goal node and is split into two child nodes, each having their own constraints. The nodes
are then processed by the low level which tries to find paths for individual agent that are consistent with the
newly assigned constraints. This is also done in a best first search manner. The new paths aim to avoid the
conflict point either by making the agent move to an adjacent node or by making it wait to a current node.
The authors used the A* algorithm to perform the single agent searches. After the node has been processed by
the low level, a high level search is run again in order to validate the node. If after the validation no conflicts
are found, the node is declared as a goal node and the solution is returned.

The authors tested the CBS on a number of DAO maps against other optimal algorithms. They con-
cluded that the performance of the CBS depends on the structure of the environment. More specifically

78 5. Multi-Agent Path Planning

in the brc202d map, shown in Figure 5.10, CBS was found to outperform both ODA* and ICTS with pruning
(ICTS+3E).

=-ICTS+3E \—

0 A*+0D

10 15 m ESY a0 a5 a0

Figure 5.10: The success rate (y-axis) of CBS in the brc202d DAO map for increasing number of agents (x-axis). Retrieved from [74].

Meta-Agent CBS

A CBS-based framework was introduced by Sharon et al. [75] as a first step towards dynamically adapting
algorithms. The authors note that the high level search of CBS is exponential with the number of conflicts
encountered as opposed to the number of agents in A*-based approaches. This makes CBS to perform poorly
in highly coupled situations. Meta agent CBS (MA-CBS) aims at improving this behavior by automatically
identifying agents which are strongly coupled and merging them into a single agent instead of performing a
split action. Once the merging is performed, the low level search is run for this meta-agent using any optimal
MAPF solver. The decision to merge or split is defined as the merging policy. The authors use the number
of conflicts parameter B to do this. If for example two agents have a B greater than a conflict bound, then
these agents are merged into a meta-agent. If the conflict bound is set to 0, then algorithm behaves similar to
Standley’s ID framework (subsection 5.2.2). If on the other hand B is equal to infinity, the algorithm behaves
like the basic CBS.

MA-CBS was tested under the same conditions as those which CBS was tested. The algorithm showed
the most improvement in maps with open spaces. In airport like maps (brc202d) the MA-CBS with a conflict
bound of 100, the framework had a slightly superior perfomance than the basic CBS. Figure 5.11 shows the
success rate of MA-CBS and other optimal algorithms when tested on the brc202d DAO map.

—m—MA-CBS(100)
—+—CBS

|| =—MA-CBS(10)
——ICTS
—e—MA-CBS(1)
——EPEA*

5 10 15 20 25 30 35 40

Figure 5.11: The success rate (y-axis) of MA-CBS(B) using EPEA* as the low-level solver on the brc202d DAO map for increasing number
of agents (x-axis). Retrieved from [75].

Improved CBS
Boyarski et al. [9] presented a variant of (MA-)CBS called Improved CBS (ICBS) by introducing three new
improvements to the basic implementation:

* Merge and restart (MR): When a merge decision is made for a set of agents inside a CT node, the CT
node is discarded and the search is restarted from the root node. In the new search however the agents
are merged from the beginning. This results in computational savings.

* Prioritizing conflicts (PC): The conflicts are classified in cardinal, semi-cardinal and non-cardinal and
are hierarchically solved based on their class.

* Bypassing conflicts (BP): The split action is not immediately performed on the conflict node. It can be
possible that the path of one of the agents is modified and therefore bypass the conflict. This reduces
the size of the CT and saves a significant amount of search from being performed.

5.6. Two-level based approaches 79

100 o
H—O—O—-H—hmw brc202d

- 3 a
% ",;' 15
o 1
56 2
N Solvers 2
1]
EJ" W 4 ICBS(25) g
3 L] o
3 "
7 a 1 EPEA . ﬂ:.’l 5t

| MA-CBS[25)+8P <

= MA-CBS(25)
L]] 1] [50 &0 70 E BT]] [E] 7 £}
Number Of Agents Number Of Agents

Figure 5.12: The success rate (left figure) and runtime perfomance (right figure) of several optimal algorithms when tested on the
brc202d DAO map. Retrieved from [9].

The authors tested ICBS(25) (= MA-CBS(25)+BP+PC+MR) on DAO maps against other optimal algorithms
like Sharon et al. [74, 75] did in their own work. The results for the brc202d map are shown in Figure 5.12. In
terms of success rate, ICBS(25) performs somewhat similar to the other approaches. The benefit of the three
improvements is well seen when examining the runtime performances. It takes less than 5 seconds in the
worst case of having 80 agents for the algorithm to return a solution, outperforming by almost a factor of 3
the next best performing algorithm.

In a more recent study, Felner et al. [34] introduced ICBS-#, an enhanced version of ICBS. In the high
level of CBS a best-first search on the CT is performed where the nodes are ordered by their cost. Nodes to be
expanded and processed by the low-level are therefore prioritized based on their costs. The authors wanted
to add admissible heuristics to the priority of the best-first search in order to make it more informed. Out of
the four heuristics introduced, the ICBS-h4 was found to perform the best. When tested on the brc202d map
against the basic ICBS, both resulted in a similar performance in terms of success rate. The former however
had up to 2-3 times better performance in terms of runtime and number of nodes expanded.

Suboptimal variants

Barer et al. [5] introduced a number of suboptimal CBS variants. Optimality in CBS is guaranteed by running
optimal best-first searches in both levels. The high level searches for the CT goal-node with the lowest cost,
and the low level searches for an optimal single agent path that satisfies the agent’s constraints. Nodes which
have solutions very close to the optimal but not optimal are disregarded. This causes scalability and runtimes
issues when the number of agents is high (see Figure 5.10).

Greedy-CBS (GCBS) is an unbounded suboptimal variant in which the high- and/or low level searches are
relaxed, favoring the expansion of nodes which yield valid solutions fast. The degree of suboptimality is not
specified, hence the term 'unbounded’. The high level search is relaxed by prioritizing CT nodes that seem
closer to the goal node. To do so the authors developed a number of conflict heuristics /. which allow the
high level search to select a less conflicting nodes. Although the authors experimented with all the developed
heuristics, results were only provided for the number of pairs heuristic which counts the number of pairs
of agents that have at least one conflict between them. To relax the low level search a similar method was
used. In the basic CBS the lowest level search return the shortest individual path that satisfies the agent’s
constraints. The authors adapted the low level search by using a best-first search instead, A* in this case, that
prioritizes paths based on the value of the heuristic /.. A path with a minimal value of /. with previously
assigned agents is then returned.

Three variants of GCBS were tested, namely GCBS-H which uses k. on the high level and standard A* on
the low level, GCBS-L where CT nodes are prioritized according to their cost in the high level and /. is used
in the low level and GCBS-LH which uses h. for both levels. The success rate of the GCBS variants and the
optimal CBS is shown in Figure 5.13. The GCBS-LH is shown to perform the best with solutions within 5% of
optimal. No results in terms of its runtime performance are provided.

In addition two complete bounded suboptimal variants were introduced, namely Bounded-CBS (BCBS)
and Enhanced-CBS (ECBS). Both algorithms use focal searches to return bounded suboptimal solutions. A
focal search contains two lists of nodes: OPEN which the regular OPEN list of A* and FOCAL which contains
a subset of nodes from OPEN. The FOCAL list uses two functions f; and f>. f; is used to determine which

80 5. Multi-Agent Path Planning

% SOLVED INSTANCES
wn
-]

5 10 15 20 25 30 40 50 70 100 130 150 200 250
AGENTS

Figure 5.13: Success rate comparison between GCBS variants and optimal CBS. Retrieved from [5].

nodes are in FOCAL. Using a suboptimality factor w, all nodes n from OPEN which satisty f1(n) < w- fi,min
are contained in FOCAL. f, is used to determine which node from FOCAL to expand. If f; is admissible the
returned solution is guaranteed to be at most w - C*, where C* is the optimal solution.

In BCBS focal searches are used in both levels of CBS. In the high level a focal-search(g,h,.) is used to
search the CT. g(n) is the cost of node n and h, is the conflict heuristic as described earlier for the GCBS. In
the low level, a focal-search(f,h,) is performed to find an individual agent path with satisfies the imposed
constraints. f(n) is the regular f(n) = g(n) + h(n) which A* strives to minimize and h.(n) is the conflict
heuristic. The authors prove that BCBS(wpy, wy) is guaranteed to return a solution at most w - C* for any
values of wy and wy aslongas wy - wy = w.

The ECBS deals with the issue of how to best distribute w between wy and w;. ECBS is a w-suboptimal
variant of CBS whose both levels are also focal searches. When a high level node n is generated, ECBS(w)
performs a low-level focal search with OPEN list OPEN’ (1) and FOCAL list FOCAL' (n) for the agent i affected
by the constraint added in the high level [20]. FOCAL searches in ECBS are defined as follows:

FOCAL={n|n€ OPEN,cost(n) <LB-w} (5.1)

Where LB is the lower bound of the optimal solution C*. Since all nodes in FOCAL are within w from
the optimal solution, once a solution is found it is guaranteed to be at most w - C*. The advantage of ECBS
over BCBS as authors explain is its additional flexibility in the high level once the low level finds low cost
solutions. When compared to other bounded suboptimal CBS versions on the brc202d map (Figure 5.14,
ECBS was able to maintain a success rate of 100% even with 70 agents while CBS could not solve any of
the tested instances. This shows that relaxing the optimality of CBS and bounding it with a certain factor
and additionally incorporating focal searches, significant improvements in success rates can be obtained.
ECBS was also compared with previous introduced bounded suboptimal path finding algorithms, including
M* variants and A*-based approaches. Figure 5.15 shows the success rates of the algorithms as a function
of the number of agents when tested on a map of 32x32 grids, 20% obstacles and a suboptimality factor of
1.1. ECBS outperformed all algorithms. The authors did not provide any figures related to their respective
runtimes but made the following conclusion in terms of the GCBS and ECBS. If the goal is to achieve solutions
as fast as possible which can potentially be of high cost then GCBS is an ideal candidate. If on the other
hand stability, reliability and solutions guaranteed to be bounded are of importance then ECBS is a more
appropriate candidate. For surface movement operations where global goals include the reduction of the
environmental footprint and taxiing delays, solutions not far from optimal are preferred.

In [18, 19] Cohen et al. introduced the ECBS with highways algorithm, ECBS(w;) + HWY(w,), which
is particularly good when applied in Kiva-like domains. The algorithm works by finding paths for agents
from user specified edges, called highways. Using an inflated heuristic with parameter w, in the low level
search, the search is biased towards paths belonging to the user defined set of highways. As the authors
state, the algorithm is w; - w, suboptimal. In experiments performed with 150 agents in a Kiva-like domain,
ECBS+HWY outperformed ECBS in terms of both runtime and solution cost. In a later paper Cohen et al. [20]
developed iECBS(w). Similar to ECBS(w;) + HWY(w») it uses a focal search with a highway heuristic but has
only one parameter which makes tuning easier. When compared in a Kiva-like domain to ECBS with the same
suboptimality factor, iECBS was found to have lower runtimes. In addition, two algorithms for automatically
generating highways were introduced.

5.6. Two-level based approaches

81

a0
B0
70
&0
50
40
30
20
10

% SOLVED INSTANCES

—4—CBS

| —m—BCBRS|w,1)
e CBS-LH| v,]

== BCES{1,w)
== ECRS

%% SDLVED INSTANCES
cos8885838588

5 10 15 20 25 30 40 50 70 100 130 150 200 250

W AGEMTS

Figure 5.14: Tested on the brc202d DAO map. w = 1.01

e

Y

——ECHS
8- EPERM*
== ODRM™
=i RN
== 1™
- EPEA"
e QDA
— WS

5 10 15 20 30 40 50 &0 70 B8O S0 100 110

AGENTS

Figure 5.15: 32x32 grid with 20% obstacles. w=1.1

Figure 5.16: Success rate of ECBS compared to bounded CBS versions (a) and other bounded suboptimal algorithms (b). Retrieved

from[5].

82 5. Multi-Agent Path Planning

5.7. Sampling based approaches

Sampling based algorithms are a class of motion planning algorithms that find conflict free paths by sampling
points from a state space. Their ability of finding solutions quickly in high dimensional motion planning
problems has made them quite popular in the motion planning community [12]. Among the most famous
sampling based algorithms are algorithms based on rapidly exploring random trees (RRTs) [51].

The RRT algorithm iteratively builds a tree of states by randomly sampling states from the state space.
When a new state is sampled, an attempt is made to connect the newly sampled state to the nearest vertex
of the tree. If such connection is not possible, a new state is then randomly sampled. The algorithm runs
until the goal vertex is reached. Once its reached, the edges of the tree are backtracked and the path from
start state to goal state is returned. RRTs have been proven to be probabilistically complete, meaning that
the probability of not finding a solutions tends to zero as the number of samples increases. A disadvantage
of RRTs is that they do not make any guarantees regarding the optimality of the solutions. The problem
was addressed by Karaman and Frazzoli [48] by introducing RRT*, an adapted anytime version of RRT which
instead is proved converge to optimal solutions. The main difference with the RRT* is that when a solution
is found, the algorithm does not stop but continues to draw new samples from the state space. The tree is
therefore extended, new regions of the state space are explored and new low-cost paths are discovered.

Cép et al. [12] introduced the multi-agent version of RRT* (MA-RRT*) which is able to solve CPF prob-
lems. MA-RRT* builds on top of Graph-RRT*, a modified version of RRT* suitable for motion graphs where
agents move along. MA-RRT* samples the agents’ joint state space in a uniform manner. The authors note
that for sparse instances of CPF problems, the global solutions consist of paths which are usually similar to
the optimal paths of the individual agents. To further increase the perfomance of MA-RRT* they proposed
the informed-sampling MA-RTT* (isMA-RRT*) algorithm in which the sampling strategy is biased towards re-
gions of the agents’ state space which are close to the optimal single-agent paths. The isMA-RRT* algorithm
works as follows: Single agent paths are first found using Graph-RRT*. Once the paths are found, MA-RRT* is
run using a sampling function which draws samples from the Gaussian neighborhood of these single-agent
paths.

The performance of MA-RRT* and isMA-RRT* was compared with A* and Standley’s OA algorithm (intro-
duced in Section 5.2). Tests were performed for varying grid sizes and numbers of agents. For these experi-
ments a runtime limit of 5 seconds was set. The results indicated that MA-RRT* versions did not only solve
instances quicker but were able to solve far more instances than the A* and OA algorithms. In particular,
isSMA-RRT* was able to solve 77% of the instances. The authors also looked at the suboptimality of the first
valid solutions and best valid solutions, for the instances were either A* or OA found solutions. It was ob-
served that when the algorithms were left to run, the best solutions converged to suboptimality factors very
close to the OA.

Sampling based approaches form an alternative to the traditional search based approaches introduced
earlier. iSMA-RRT* in particular was demonstrated to perform well on grid-like maps when compared to
the basic A* and Standley’s OA. However, its performance is not yet quantified in maps which resemble an
airport’s environment like the brc202d DAO map nor has it been compared to other state of the art algorithms
for multi-agent path-finding. For this reason it will not be considered when performing the trade-off between
the approaches presented in this chapter.

5.8. Trade-off

The algorithms which are considered relevant for this research are listed in Table 5.1. An initial comparison
is performed between them using the findings in the literature indicating their performance compared to the
algorithms which they were tested against. Since not all algorithms are compared directly with one another,
as a first step we select the best performing ones and compare these at a later stage of the trade-off process.
The table is divided according to the tests performed in the literature. For comparisons between three algo-
rithms a scoring system of [-1,0,1] was used, whereas for two algorithms [0,1] was used. In certain cases a
comparison with respect to one of the criteria was not possible due to the lack of data in the respective pa-
pers. The algorithm with the highest score is selected and considered at a subsequent step of the trade-off
process. The criteria selected to assess the suitability of the methods are performance and subjective based.
These are:

* Success rate: Relates to the ratio of agents for which the algorithm was able to find valid conflict-free
paths. An algorithm with a high success rate is able to successfully plan conflict-free paths for most of
the agents in a considered simulation.

5.8. Trade-off 83

° Runtime: Relates to the computational time it took for the algorithm to produce a valid solution. Al-
gorithms with low runtimes are more suitable for real-time applications such as distributed airport
control and are thus scored the highest.

* Solution cost: Relates to how close the solution of a given algorithm is to the optimum. The lower the
solution cost, the less steps are involved in an aircraft’s paths and the lower the taxi distance and/or taxi
time. Algorithms which produce low cost solutions are scored the highest.

* Scalability: Relates to how well the algorithms scale with increasing number of agents. It is usually a
product of how well the algorithm’s success rate and runtime is with increasing number of agents.

* Implementation: Relates to the complexity of a given algorithm. Complexity in this case is based on
criteria such as the number of step needed to implement the algorithms and the ease at which they can
be programmed. The lower the score the more difficult it is to implement it.

Approach Successrate Runtime lution cost Scalability p ion | Total Test enviro
WHCA*(16) -1 -1 0 1 -2
7] CO-WHCA* 0 1 0 1 -1 1 | 32*32 grid, 20% obstacles
CO-WHCA*P 1 -1 0 1 -1 -2
*
[102] \gg(;A (16) (; (IJ 3 2 é ; 32*32 grid, 20% obstacles
DiMPP - 1 0 1 0 2
[16] EPEA* - -1 1 1 1 0 | brc202d DAO map
CBS - 0 1 0 0 1
MDD-SAT -1 -1 - -1 -3
[89] ICTS 0 0 1 1 | brc202d DAO map
ICBS 0 1 0 1
190] ;’CI‘\Q;DSAT 2 (IJ (1) 2 2 g brc202d DAO map
1901 gggDSAT) (1]) . (1) g brc202d DAO map
EPEA* -1 -1 -1 1 -2
[74,75] | ICTS + pruning 0 0 0 0 0 | brc202d DAO map
CBS 1 1 1 0 3
ICTS -1 - -1 1 -1
[75] CBS 0 0 0 0 | brc202d DAO map
MA-CBS(100) 1 1 -1 2
[5] (l;]z;S-LH (1) 2 3 [1) ‘1) ; brc202d DAO map
[5] géanlsL(I;{ (1))) (I) (1) g 32*32 grid, 20% obstacles
EPErM*(1.1) 0 - - 0 -1 -1
5] ODrM*(1.1) 0 - - 0 0 0 | 32*32 grid, 20% obstacles
ECBS(1.1) 2 - - 2 -2 2
CBS -1 0 1 0 1 1
[5] BCBS(1.01) 0 1 0 1 0 2 | brc202d DAO map
EBCS(1.01) 1 1 0 1 0 3
MA-CBS(25) 1 -1 - -1 0 -1
[91 ICTS -1 0 - 0 1 0 | brc202d DAO map
ICBS 0 1 - 1 -1 1
ECBS -1 -1 -1 -1 0 -4
[20] ECBS+HWY 0 0 1 0 0 1 | Kivalike domain
i-ECBS 1 1 0 1 -1 2
CBS -1 0 -1 0 1 -1
[34] ICBS 0 -1 0 0 0 -1 | brc202d DAO map
ICBS-H4 1 1 1 1 0 4

Table 5.1: Quantitative trade-off of multi-agent path planning algorithms.

For the best performing A* based approaches the following things can be said. Both CO-WHCA* and GIPP
produce suboptimal solutions. The former is an distributed online algorithm while the latter is centralized.
Although there has not been a direct comparison between the two in the literature, CO-WHCA* is considered
to be more suitable since distributed methods scale better than centralized approaches. In addition, GIPP
is more complex, since an optimization mechanism is applied after a solution to the path finding problem
has been found. When comparing ICTS with ICBS, their scores based on [89] are equal. In [9] however ICBS
scored higher than both ICTS and MA-CBS. However, ICBS scored lower than its most recent variant ICBS-
H4 when tested on the same map. Taking these facts into account a qualitative trade-off on the remaining
algorithms is performed in Table 5.2.

It can be seen that the two suboptimal variants of CBS, ECBS and iECBS have the best qualities among
the compared algorithms. iECBS is a better choice if its applied to Kiva-like domains and makes more sense
to choose if the introduction of highways is of interest. The concept of introducing highways however, adds
an additional dimension to the learning task presented in Chapter 4. The reason is that the ML model would
have to be trained on scenarios which include the existence of highways. In [36] highways are automatically

84 5. Multi-Agent Path Planning

Approach Advantages Disadvantages
- Tested in grid maps
- Scalability - Not complete
- Worse performance than GCBS, ECBS @ 32*32 grid, 20% obstacles
- Scalability
- Fully distributed - Success rate worse than GCBS, ECBS @ brc202d, >20 agents
- Complete
- Optimal R
- Higher success rate than GCBS @ 32*32 grid, 20% obstacles | Tested in grid maps
- Low runtimes

- Always returns a solution - Unbounded suboptimal

- Good success rate up to 100 agents @ brc202d
ECBS - Degree of suboptimality can be specified. - Runs faster than CBS but no exact figures are available.
- C++ code available on GitHub

- Runs faster than ECBS in Kiva-like domains

IECBS - Same suboptimality factor as ECBS
ICBS-H4 - Low runtimes, 120-380 ms for 100 agents @ brc202d - No implementation online
- Better memory requirements than CBS - @ 60 agents has lower success rated on brc202d than ECBS

Table 5.2: Qualitative trade-off of multi-agent path planning algorithms. Red color is assigned to the unsuitable algorithms. Orange
color is assigned to less suitable algorithms. Green color is assigned to the most suitable algorithms.

generated when certain conditions are in place. This can happen anywhere in the taxiway network. It is more
logical to first assess the perfomance of the learning mechanism in the basic case where no highways are
used. If the predictions are found to have a positive influence to the performance of the MAPP algorithm,
then a subsequent step would be to expand the learning mechanism by adding the dimension of highways.
Possibly in combination with one of the highway generation mechanisms found in [36] or one of the learn-
based highways mechanisms introduced in [20]. For this reason the ECBS algorithm will be used in this
study.

Research Proposal

In this chapter the research proposal for this MSc thesis is presented. In Section 6.1, the research objective
and research question are outlined followed by a description of the tasks that need to be performed and
relevant sub-question to be answered. In Section 6.2 the research scope is defined.

6.1. Research Objective & Questions

Previous research in the department of Air Transport Operation at TU-Delft has demonstrated that distributed
control is a viable approach for managing the complex, dynamic and unpredictable nature of airport surface
movement operations. Distributed control has been achieved by distributing the responsibility of controlling
an aircraft to local controllers placed at multiple locations of the taxiway network. A more recent research in-
vestigated the contribution of a distributed system, based on multi-agent planning mechanisms, to handling
aircraft traffic during and after runway reconfigurations. This MSc thesis aims to carry on with this research.

Two ways of improving the current implementation have been identified in this literature study. Firstly,
the multi-agent path planning algorithm that the current system is based on can be extended. An enhanced
version found in the literature, has been shown to outperform its predecessor in terms of scalability, solu-
tion quality and runtime. Secondly, the accuracy with which the conflict detection and resolution activities
are being performed in the path planning algorithm can be improved. Currently, the prediction of the time
point at which a collision might occur is performed by a simple forward simulation. This approach consid-
ers the amount of straight and turn segments along an aircraft’s path as predictors. However, calculating the
taxi time to any location deterministically serves only as an approximation of real ground operations, which
are far more stochastic in nature. Factors such as variable aircraft kinematics and dependencies with other
taxiing aircraft and agents, can affect the accuracy of these predictions. A prediction technique combining
delegated multi-agent systems and supervised learning will be used to address these shortcomings. The re-
search objective of this MSc is defined as follows:

To analyze the performance of a distributed airport control system consisting of a learning
based cooperative multi-agent planning mechanism in managing airport surface move-
ment operations.

The research question linked to the research objective is the following:

To what extent can a distributed control system, consisting of a supervised learning-based
cooperative multi-agent planning mechanism, improve the performance of airport sur-
face movement operations with respect to indicators such as taxiing time and distance?

1. How can existing ABM specifications be extended to incorporate learning abilities

The first step towards answering the research question consists of implementing the learning based
mechanism to the existing solution. This means that the conflict detection and resolution proper-
ties of the distributed CBS algorithm presented in [36] have to be adapted. The prediction of conflict

85

86

6. Research Proposal

time-points will no longer rely on forward simulations of aircraft kinematics. Machine learning mod-
els trained online and maintained by the ATC agents will be used for this purpose. ATC agents will
be able to perform predictions as well as query predictions from other agents. The means by which
these queries will be handled is through a dMAS. To accommodate this aspect into the current model,
the dMAS properties need to be specified and the ATC agents properties need to be adapted. Relevant
sub-questions are the following:

(a) What changes in the original ABM specifications need to be made in order to incorporate the
dMAS?

(b) What are the ABM specifications of the dMAS?

. How will the learning task be effectively executed?

An important thing to note is that the learning phase of the machine learning model will be executed
online, meaning that the model will be trained during simulation time. In addition, a decision needs
to be made as to whether the prediction will be made by a single, centralized ML model maintained by
all ATC agents simultaneously, or via a distributed version where each ATC agent trains its own model.
After adapting the agent properties and defining the dMAS specifications, the next step involves the
formulation of the learning strategy. This consists of three steps, namely data preparation, feature se-
lection and model selection. In terms of data preparation, flight and runway schedules, which currently
are the inputs of the ABM simulator, have to be prepared and formed in the required format. Regarding
training data, two alternatives need to be investigated. Model training will either be performed using
new data from which flight schedules and runway schedules will be derived, or using synthetic data re-
sembling actual scenarios as close as possible. It is decided to use the 8 days of data in [36] to perform
the tests required to measure the performance differences between the new model, the previous model
and the real operations. The second step involves the feature extraction. According to [17], the main
inputs to the ML model are intention level information which capture the future states of the system.
This information will be transmitted via the dMAS. Besides current and past intention levels, more fea-
tures such as those used in the taxi prediction literature (Chapter 4) can be used. If a centralized ML
model is used, then the locations at which target values are observed also need to be distinguished.
The last step involves the selection of a machine learning model. NNs, RFs and SVMs are among the
algorithms commonly used in the literature to make travel time predictions in both airport and road
related scenarios. The means by which the hyperparameters of the selected algorithm will be tuned,
also needs to be investigated. Relevant sub-questions are:

(a) Will the data be acquired or generated?

(b) Which data will be used for training, validation and testing?

(c) Which predictors are of importance when predicting link traversal times?
(d) Which machine learning algorithm is suitable for this learning task?

(e) Which hyperparameter tuning strategy is going to be used?

. What is the contribution of the supervised learning mechanism to the performance of the distributed

CBS mechanism?

To answer this question, the performance of the supervised learning based mechanism will be com-
pared to the current implementation. The comparison will be performed using the same data and
performance metrics as used in [36]. More specifically, the average taxi time and taxi distance of the
flights will be evaluated before, during and after the occurrence of runway reconfigurations. Direct
comparison with the results in [36] will give an indication as to whether the predictions made by the
machine learning model outweigh or not, the predictions made by the forward kinematic simulations.
Additionally, the new method has to be evaluated in terms of its runtime and ability to make predictions
in real time. Relevant sub-questions are:

(a) How do the predictions of the machine learning algorithm compare to the predictions made by
the simple forward simulation?

(b) What effect does the machine learning algorithm have on the runtime of the system?

6.1. Research Objective & Questions 87

(c) How does the learning mechanism affect the performance of the CBS under steady state condi-
tions?

(d) How does the learning mechanism affect the performance of the CBS when runway reconfigura-
tions take place?

4. To what extent can the learning-based CBS mechanism match the performance of the centralized
air traffic control?

The ability of the learning-based CBS mechanism to perform airport surface movement operations
will be compared with the real-world. Similar to the previous question, performance will be measured
with respect to how well operations are handled before, during and after the occurrence of runway
reconfigurations. Relevant sub-questions are:

(a) What is the performance difference under steady state conditions?

(b) What is the performance difference when runway reconfigurations take place?

5. To what extent can the ECBS improve the performance of the learning-based CBS mechanism?

Once the learning-based system is implemented and evaluated, the next step will be to extend the CBS
algorithm to its enhanced variant, the ECBS. To do so, the ATC agents’ specification will have to be
adapted. A key difference between the two algorithms, is that ECBS uses focal searches in both of its
levels. Focal searches process nodes from the OPEN list of the A* and return solutions which are w-
suboptimal. This is different from how optimal CBS is defined which returns the shortest individual
agent path consistent will all imposed constraints [5]. This aspect needs to be addressed in the current
ABM specification, since the distributed version of CBS uses Dijkstra’s algorithm which has no heuristic
evaluation. Once the ECBS algorithm is implemented, the resulting distributed control system will
be trained on a number of simulation runs using a flight and runway schedule. The performance of
the learned model will be compared with the real-world. Once again, performance will be measured
with respect to how well operations are handled before, during and after the occurrence of runway
reconfigurations. Relevant sub-questions are:

(a) What changes in the ABM specifications need to be made in order to incorporate a distributed
version of ECBS?

(b) What is the performance difference under nominal conditions?

(c) What is the performance difference when runway reconfigurations take place?

6. To what extent can the learning-based ECBS mechanism handle aircraft traffic with variable kine-
matics?

The last aspect to address in order to answer the research question is to evaluate the model’s behavior
under uncertainty. The models built so far have not been evaluated under variable aircraft kinematics.
It would be interesting to know whether a learning based system is able to capture variability in aircraft
kinematics when making its predictions. Of course, this poses a more difficult learning task in which
the generalization performance is expected to degrade. The question is whether this decrease in per-
formance is within a range acceptable for such a system to continue to produce non-conflicting paths
for the aircraft. The first step is to define which aspects of the aircraft kinematics will be considered (Ta-
ble 3.1). Looking at available track data one can derive distributions for these variables and use these
as inputs to the simulator. For instance, larger weight category aircraft might have a lower accelera-
tion than medium-sized jets. Such aspects can be reflected on the training data and the generalization
performance of the model subsequently be tested. It is not certain whether an analysis with regard to
all parameters is feasible as, at this moment, the duration of the system’s training phase is not known.
Relevant sub-questions are:

(a) How will variability in aircraft kinematics be incorporated in the model?

(b) How do the two taxi time prediction mechanisms compare under these circumstances?

(c) What changes could be made to the architecture or training process of the learned model such
that variability can be captured?

88 6. Research Proposal

6.2. Research Scope

The focus of this MSc thesis is two-fold. First a learning-based cooperative multi-agent planning mechanism
will be implemented and its performance will be compared to an existing implementation and to the real-
world. The second step involves the extension of the existing cooperative multi-agent planning mechanism
to an enhanced version and perform the associated comparisons. The behavior of the mechanism when
coupled with the learning mechanism will also be investigated. To assist with the timely execution of the
above, the following scope has been defined.

* The research considers a simplified lay-out of Schiphol airport;

* Airport surface movement operations are limited to the taxiway infrastructure;
* Only aircraft movements will be considered;

* Aircraft are assumed to carry out their plans perfectly including no delays;

* Arriving aircraft are assumed to require a route from the point at which they vacated the runway to the
apron exit/entry point. Departing aircraft are assumed to require a route from the exit/entry point to
the holding point of the active departure runway;

e Aircraft are assumed to follow the Rules of Air as published by ICAO [43];
* The agent-based model specification presented in [36] will be used as a baseline for this study;

* PM and CB highways as presented in [36] will not be considered;

89

Supporting work

Model Elaboration

A.1. Modelling assumptions

AAS has the characteristic of being an airport with a complex taxiway system consisting of 6 runways and sees
multiple runway reconfigurations during the day. The latter often presents capacity concerns. The airport
has to decrease its operational limit to facilitate safe operations because the change in runway directions
creates varying, often opposing, traffic flows. This makes AAS an ideal candidate to consider when studying
airport surface movement operations, aiming to provide answers to these types of situations. However, some
scoping is deemed necessary; otherwise, the problem can quickly increase in complexity. For this reason,
several assumptions have been made.

From an operational perspective, only the air-side operations are modelled. That is, from the apron exit
until the runway entry and vice versa. Ground vehicles such as shuttles, tow tugs are not considered, and the
only users of the runway and taxiway system are the aircraft. This also means that traffic within the apron
area will not be modelled. Other types of operations, such as aircraft de-icing and remote holding at parking
locations, are also left out of this study. Gates are assumed to always be available for arriving traffic.

In terms of traffic control, arriving aircraft can be controlled as soon as they vacate the runway. It is
assumed that they cannot change their speed immediately after runway exit as they are travelling at a higher
speed, making it more challenging to slow down or stop. Arriving aircraft are assumed to require a route from
the runway exit node to the apron exit/entry point. Departing aircraft are assumed to require a route from
the exit/entry apron to the active departure runway’s holding point. In reality, these are aircraft that have
completed their push back and are ready to taxi. These can remain stationary and move only when they are
commanded to do so.

Regarding the aircraft, they all are assumed to have identical properties and are therefore treated similarly.
Each aircraft aims at taxiing at its maximum taxi speed v,,,x unless it enters a turn segment larger than a
specified threshold, in which case, it slows down to the maximum allowed turn speed v;,,,. Or when it is in
the vicinity of another aircraft. Aircraft have to maintain a minimum separation distance between each other.
This distance is set to a constant value (Table A.1) for all aircraft. Next, all aircraft adhere to the commands
given by the planning mechanism. Their execution is assumed to occur without any delay. Additionally,
aircraft can change their heading and acceleration instantaneously.

Lastly, in terms of runway usage, runway occupancy times have been included. This forbids succeeding
aircraft from taking off within a specified time period from each other. Instead, they have to form queues
on the taxiway network around the runway holding point while maintaining their separation distance and
waiting for their turn to take off. To add to this, no runway schedule is specified in the simulation. Instead,
the runway usage depends on the flight’s origin-destination pair as defined in the flight schedule used as
input to the simulation.

A.2. Relevant agent properties
Agent properties that have been excluded from the Thesis paper are elaborated in this section.

Entry/Exit Agents:

91

92 A. Model Elaboration

Check Flight Schedule: This property involves an interaction between the Entry Agents and the environment.
The Entry Agents check the flight schedule at each time point to determine whether an Aircraft Agent’s release
time matches the current simulation time point. If so, the Aircraft Agent is added to the Entry Agent’s release
list. Subsequently, the Entry Agent proceeds with the execution of the Route Generation and Release property.

Route Generation and Release: This property involves an interaction between:
- Entry Agents and the environment,

— Entry Agents and Aircraft Agents,

- Entry Agents and ATC Agents

At first, the Entry Agent uses graph information to generate a route for the Aircraft Agent using the A* al-
gorithm. In case of inbound traffic, the Entry Agent coordinates with the ATC agent located at the runway exit
to determine the runway exit’s availability. If the runway exit is available, the Aircraft Agent is then released.
In case of outbound traffic, the Entry Agent coordinated with neighbouring ATC agents to the gate’s locations
and is informed of any traffic in the adjacent links to the gate. If the neighbourhood around the gate is free,
then the Aircraft Agent is released. Otherwise, the release is delayed for a subsequent time point.

Remove Aircraft Agent: This property involves an interaction between ATC and Exit Agents. When an Air-
craft Agent reaches its destination, it is handed over from the ATC Agent to the Exit Agent. The Exit Agent
then removes it from the simulation environment. Upon doing so, the Exit Agent triggers an occupancy time,
during which no other Aircraft Agent can use the relevant runway or make use of a gate.

ATC Agents:

Change Runway Crossing Edge Property: This property defines interactions between the ATC Agents and the
Airport Operation Status Agent. The ATC Agent is responsible for closing and re-opening particular runway
crossing segments. The information is received by the Airport Operation Status Agent, who keeps track of the
Runway Mode of Operations (RMO).

Handover Property: This property defines interactions between ATC Agents. It is executed whenever an
aircraft reaches the location of the ATC agent. Once this happens, the Aircraft Agent receives a final set of
instructions and the ATC Agent who controls the aircraft hands the responsibility over to the next ATC Agent.

A.3. Simulation Parameters

93

A.3. Simulation Parameters

Table A.1: ATC related simulation parameters.

Symbol Description Value

dsep Minimum separation distance between aircraft 150 m

tg"ffte Gate occupancy time 30s

iy Runway occupancy time 30s

Fwycross Runway crossing occupancy time 120 s
Table A.2: Aircraft agent related simulation parameters.

Symbol Description Value
Vinax Maximum taxi-speed 154 mls
Viurn Maximum taxi-speed in turn segments 5.14 m/s
acceomforsr Magnitude of comfort acceleration 0.26 m/s?
deccomforr Magnitude of comfort deceleration 0.77 m/ s?
decmax Magnitude of maximum deceleration 5.14 m/s?
Radarrange Radar range within which other aircraft can be detected 250 m

Table A.3: Other parameters used in the simulations.

Symbol Description Value
dat Timestep in simulator ls
degno,turn Turn degree limit for which no braking is needed 5.14 m/s
Twindow,CBS CBS conflict time-window 15s
AT Cmemory Duration in which conflicts are stored in ATC Agent’s memory 20s
Uncertainty time window - 20s

IR Relevance function threshold 0.8

94

A. Model Elaboration

A.4. Forward simulation algorithm

Algorithm 1 Forward Simulation of the Aircraft Agents route

N N = = e e e e e e e e

© ® NPT W

: route — route of the Aircraft Agent

. Nindex — index of current node in route

. Myoral — total number of nodes in route

. Nremain — Nrotal — Nindex NUMber of remaining nodes

: T — empty list

: D — empty list

: Vhow — velocity of Aircraft Agent at the current time point
: AT Cgapp < ATC Agent which Aircraft Agent is approaching
: d — distance to ATCgpp

: [« current time point

: wasturn — None

: tdelay —0

: O¢urn — turn angle of route segment

. if V> 0 then

V —Viow

: else

V—26m/s

: end if

: tnex[‘— t+d/V
22:
: for node from n; 4., until n;z;,4i, — 1 do

d<—d+dnode

if wasturn = True then
tdelay - tdelay + 1Vhow = Viurnll/ @ace

end if

wasturn — False

ifOrurn 2 Omaxiurn and V = Vi, then
tdeluy - tdelay + 1 Viurn = Vaowll/ @ gec
wasturn <~ True

end if

tnext — t+d! Vyow + Z'alelay

T < tnext

D—d

: end for

A.5. Bayesian optimisation algorithm

Algorithm 2 Bayesian optimisation

1:

2
3
4
5:
6
7:

forn=1,2,...do
optimise acquisition function a to get x,1;
Xp41 = argmax, a(x; Dy)
evaluate objective function to obtain y,;
store data Dy+1 = Dy, (Xp+1, Yn+1)
update statistical model
end for

A.6. Input flight schedule details 95

A.6. Input flight schedule details

Arrivals per hour

55
—e— 01-05-16
50 1 —o— 02-05-16
45 —e— 04-05-16
—e— 07-05-16
40 4 —e— 09-05-16
P —e— 10-05-16
£ 35 —s— 12-05-16
£ —e— 13-05-16
$ 301
=]
E
s 25
e
£ 20
E
3
= 15
10 1
5 4
o
S N I I I T T T TR S ~ S S S - S G S S S R R o)
SR SO SO S Y ~ M S SN S N S L S M ~ M M~ wE S~ S M SO S M S)
S F T FFE T F DG PF P E QPGS g
Time of day
Figure A.1: Arrivals per hour for the 8 days of real world flight schedule.
Departures per hour
55
—e— 01-05-16
50 —o— 02-05-16
—e— 04-05-16
451 —e— 07-05-16
20 | —e— 09-05-16
9 —e— 10-05-16
T 35 - —— 12-05-16
£ —o— 13-05-16
> 301
o
E
5 25
C
£ 204
E
=}
= 15 4
10 4
5 4
0
O O] 0 O O 8] O) 0 o O O O o] o o D O] 0 O O
SIS S P T I R T G M P R P P e
& & & SRR I AR N S N R S s (A

Time of day

Figure A.2: Departures per hour for the 8 days of real world flight schedule.

96 A. Model Elaboration

A.7. Input flight schedule details for conflict analysis

Arrivals per hour

55
—e— 04-05-16
50 —e— 13-05-16
45 -
40 -
35 -
30 1
251

207

Number of movements

154

10 1

T T
L S T TS~ SR~ S R Yl S S S ~ SR ~ SR S VR Y 0 8 & P P & @
& o o o o o o o o o o AT F AT E S)
¢ & F§F & g RSN A RPN S S T U - S B L
Time of day

Figure A.3: Arrivals per hour for 4th and 13th of May 2016.

Departures per hour

55 A
—— 04-05-16
50 —&— 13-05-16
45 4
40 4
351
30 4
25

204

Number of movements

15 A

10 4

— T T T T — T — T

BBDBDDBBDGQQQQQQQQQQDBDD

c:c:oooooooaaoooaboo.a.c)._osb.?:.?:

I F S E YIS PGNP NS DD
Time of day

Figure A.4: Departures per hour for 4th and 13th of May 2016.

97

A.7. Input flight schedule details for conflict analysis

Movements per hour: 04-05-16

60 1

s o o o o o O
W = ™M ™~ —~ .fﬂro

SlusWzA0W Jo JaquinN

70

Time of day

05-16.

Figure A.5: Number of movements (blue) and runway configuration occurrences (red) for 04

Movements per hour: 13-05-16

.
o o o o ©o o o9
(=] [Ta] = m ™~ — ﬂﬂrg

SJUIWzAOW 10 Jaquinn

Time of day

-05-16.

Figure A.6: Number of movements (blue) and runway configuration occurrences (red) for 13

Simulation results

B.1. Taxi-time results for individual days

Taxi time per day of operations
A: CBS_no_adaptive
B: dmas_offline_no_sampling

ol 8
1 o] o}
17.5 s 3
- o o < 4+
? 8
15.0 1 & 3 é é
12.5 A
€
E 100
o
E
'z
7.5

2.5+

0.0 o -+

T T T T T T T T T T T T T T T T
01-05A 01-05B 02-05A 02-05B 04-05A 04-05B 07-05A 07-05B 09-05A 09-05B 10-05A 10-05B 12-05A 12-05B 13-05A 13-05B

Figure B.1: Taxi-time distributions per flight day between Baseline and dMAS CBS.

99

100 B. Simulation results

Taxi time per day of operations
A: CBS_no_adaptive
B: dmas_offline_sampling_200

o} o)
17.5 A o

15.0 4 é
12.5
10.0 ﬁ

10
L

00 00
0000
o

2.5+
0.0 A - -
0105A O0105B 0205A 02058 O07-05A 07058 0905A 09058 1005A 10058 1205A 12058 1305A 1305B
Figure B.2: Taxi-time distributions per flight day between Baseline and dMAS-U(200) CBS.
Taxi time per day of operations
A: CBS_no_adaptive
B: dmas_offline_sampling_300
20.0 o
¢ o)
i o]
17.5 ® 8
° o
(o} ©
15.0 4 o)) g
12.5 4
£
£
E 10.0 4
=
E
7.5 1
¢ * o ° ° 0 * g ® ° ° o 0 0
fo] [e]
2.5
0.0 | -+ —+

T T T T T T T T T T T T T T T T
01-05A 01-05B 02-05A 02-05B 04-05A 04-05B 07-05A 07-05B 09-05A 09-05B 10-05A 10-05B 12-05A 12-05B 13-05A 13-05B

Figure B.3: Taxi-time distributions per flight day between Baseline and dMAS-U(300) CBS.

B.1. Taxi-time results for individual days 101

Taxi time per day of operations
A: CBS_no_adaptive
B: dmas_offline_sampling_400

17.5 A o

15.0

12.5

H

=

o
L

Taxi time [min]

~
n
|

5.0 4

2.5 1

0.0

T T T T T T T T T T T T
0105 A 01-05B 02-05 A 02-05B 04-05 A 04-05B 07-05 A 07-05B 12-05 A 12-05B 13-05A 13-05B

Figure B.4: Taxi-time distributions per flight day between Baseline and dMAS-U(400) CBS.

102 B. Simulation results

B.2. Taxi-distance results for individual days

Taxi distance per day of operations
A: CBS adaptive
B: CBS no_adaptive

12 4 o

00

apo
aD

{omo gD @
|omp anED © ©

Taxi distance [km]

Z_ -' %W 10l N

T T T T T T T T T T T T T T T T
01-05A 01-05B 02-05A 02-05B 04-05A 04-05B 07-05A 07-05B 09-05A 09-05B 10-05A 10-05B 12-05A 12-05B 13-05A 13-05B

e |
L=

Figure B.5: Taxi-distance distributions per flight day between Baseline and dMAS CBS.

Taxi distance per day of operations
A: CBS_no_adaptive
B: dmas_offline_sampling_200

12 4

00—©0
0o

an
ano

@O

o apEn © O

Taxi distance [km]

' Lt

| [] Il

T T T T T T T T T T T T T T
01-05A 01-05B 02-05A 02-05B 07-05A 07-05B 0905A 0905B 10-05A 10-05B 12-05A 12-05B 13-05A 13-05B

Figure B.6: Taxi-distance distributions per flight day between Baseline and dMAS-U(200) CBS.

B.2. Taxi-distance results for individual days

103

Taxi distance [km]

Taxi distance [km]

Taxi distance per day of operations

A: CBS no_adaptive

B: dmas_offline_sampling_300

@O

¥
L

[] I

T T T T T T T T T T T T T T T T
01-05A 01-05B 02-05A 02-05B 04-05A 04-05B 07-05A 07-05B 09-05A 09-05B 10-05A 10-05B 12-05A 12-05B 13-05A 13-05B

Figure B.7: Taxi-distance distributions per flight day between Baseline and dMAS-U(300) CBS.

Taxi distance per day of operations

A: CBS no_adaptive

B: dmas_offline_sampling 400

12

10 4

[I T 1]

I T T 11

T T T T T T T
01-05 A 01-05 B 02-05 A 02-05B 04-05 A 04-05 B 07-05 A

T T T T T
07-05 B 12-05 A 12-05 B 13-05 A 13-05B

Figure B.8: Taxi-distance distributions per flight day between Baseline and dMAS-U(400) CBS.

104 B. Simulation results

B.3. Taxi-speed results for individual days

Average taxi speed per day of operations
A: CBS no_adaptive
B: dmas_offline_no_sampling

“1s =8 g o 8§ 8 § 8
2] T i NERE
. N EE NN EM IR MR RERR SRR RER RS

dE ok i : LI g :

| g g g Z o) o)

01-05A 01-05B 02-05A 02-05B 04-05A 04-05B 07-05A 07-05B 09-05A 09-05B 10-05A 10-05B 12-05A 12-05B 13-05A 13-05B
Figure B.9: Taxi-speed distributions per flight day between Baseline and dMAS CBS.
Average taxi speed per day of operations

A: CBS_no_adaptive
B: dmas_offline_sampling_200

1 ¢ 8 2 o 8 8 E ﬁ
el T nEREREN
ELLCT L L e e b o] B e L
< T ° | T F "f T
°] g g é i i [o] (0]
. 8 g g

T T T T T T T T T T T T T T
01-05A 01-05B 02-05A 02-05B 07-05A 07-05B 0905A 0905B 10-05A 10-05B 12-05A 12-05B 13-05A 13-05B

Figure B.10: Taxi-speed distributions per flight day between Baseline and dMAS-U(200) CBS.

B.3. Taxi-speed results for individual days

105

Average taxi speed [m/s]

Average taxi speed [m/s]

Average taxi speed per day of operations
A: CBS_no_adaptive
B: dmas_offline_sampling_300

18
o] o} (o] o}
o] o}
16 A
g 8 g ° i 0§ 8
14 A
12 A
B " T
LJ LJ ° ° ° g 0 o o L ° ° LJ LJ
L]
a8
N L S I -
s 8 8
g & o ° o
4 g g g o
o}
o} o]
01-05A 01-05B 02-05A 02-05B 04-05A 04-05B 07-05A 07-05B 09-05A 09058 10-05A 10-05B 12-05A 12-05B 13-05A 13-05B
Figure B.11: Taxi-speed distributions per flight day between Baseline and dMAS-U(300) CBS.
Average taxi speed per day of operations
A: CBS _no_adaptive
B: dmas_offline_sampling_400
18
o} o} o} o]
o} o}
16 A
£ 8 1 g 8
14 A
12 A
L] L] R
LJ LJ o 0 ® ° ° [LJ LJ
10 A
8
v 7 v T
) o]]
o B
& & o] o]
2
o} o}
01-05 A 01-05 B 02-05 A 02-05 B 04-05 A 04-05 B 07-05 A 07-05 B 1205 A 12058 13-05 A 13-05 B

Figure B.12: Taxi-speed distributions per flight day between Baseline and dMAS-U(400) CBS.

106 B. Simulation results

B.4. Link participation per sampling strategy

Landing: [Mong', 'Nong’] 42621 8
Departing: [R36L", 'No ne’] 11:50:21
baseline CBS

1

S

Figure B.13: Link participation when no undersampling was applied.

B.4. Link participation per sampling strategy 107

Landing: [Mo ne', 'No ng’] 42737 s
Departing: [R3EL", "No ne’] 11:62:17
baseline CBS

1

A

Figure B.14: Link participation when undersampling ratio of 200 was applied.

108 B. Simulation results

Landing: [Mone', 'None’] 42601 8
Departing: [R3EL", 'No ne’] 11:50:31
baseline CBS

1

-

Figure B.15: Link participation when undersampling ratio of 300 was applied.

B.4. Link participation per sampling strategy 109

Landing: [Mo ne', 'No ng’] 42818 5
Departing: [R3EL", "No ne’] 11:60:18
baseline CBS

1

A

Figure B.16: Link participation when undersampling ratio of 400 was applied.

110

B. Simulation results

B.5. Absolute prediction error for Scenarios B and D

ACCAE [S]

ACOAE [S]

CBS 4k [s]

CBS Variant Nconflicts
Adaptive CBS 2808
Baseline CBS 117
dMAS-CBS 108
U(200) 97
U(300) 79
U(400) 105

pn=24.980 =53.73
u=47.66 0 =50.46
pu=>51.920 =34.76
u=67.840=37.70
H=64.77 0 =38.30
p=>55.440=30.32

11 =45.36 0 = 65.82
1=77.340 =60.16
[L=72.44 0 =57.42
[1=169.93 0 =33.36
1=74.13 0 =36.16
[1=68.23 0 =34.33

1 =34.48 0 =35.66
1 =>59.050=56.14
1 =31.38 0 =40.98
©1=33.390=25.16
pu=39.470=30.37
pu=37520=28.10

Table B.1: Statistics of the absolute prediction error for prediction made in Scenario B.

ACCAE [S]

ACOAE [S]

CBS4g [s]

CBS Variant Nconflicts
Adaptive CBS 781
Baseline CBS 29
dMAS-CBS 36
U(200) 17
U(300) 26
U(400) 21

1=23.96 0 =39.69
p=>50.21 0 =56.39
pu=41.86 0 =32.04
pu=38.350=26.93
pn=43.77 0 =28.90
pn=38290=24.34

©=34.09 0 =47.17
©=>59.14 0 =76.91
©=62.33 0 =43.85
H=59.24 0 =25.45
U="72.650=42.92
1 =66.57 0 =34.69

1=32790=32.14
11 =50.66 0 = 40.28
1L=33.250 =24.69
11 =30.65 0 = 29.07
11=36.150 = 25.82
[L=42.57 0 =39.58

Table B.2: Statistics of the absolute prediction error for prediction made in Scenario D.

B.6. Absolute error distributions for all mechanisms and scenarios 111
B.6. Absolute error distributions for all mechanisms and scenarios
Adaptive CBS Baseline CBS dMAS CBS
350 Nconflfcts=2692 8 350 Nconﬂicts=267 350 Nconﬂicts=82
o § o g
S 4
300 { 300{ 8 5 300
g e § 0
© a Py 1
— 250 250 250
o
g 8 o)
[
£ 2001] 20010 200 -
S g o
el
g
g 150 - 150 - 150 -)
§ o o
< 1001 100 A 100 1 §
A o)
0]
50 - 50 50 %
O 1 T T T 0 1 T T T 0 1 T T T
ACc, ACo,, CBSpe ACc,, ACo,, CBSpe ACc,, ACo,, CBSpe
Figure B.17: Conflict prediction error distributions of Adaptive, Baseline and dMAS CBS in Scenario A.
dMAS-U(200) dMAS-U(300) dMAS-U(400)
N, icts=101 N icts=143 N, icts=110
350 conflicts 350 conflicts 350 conflicts
8
300 A 300 300 A
o)
o)
— 250 A 250 250
L g o)
S
] o] o] Jo) jy g
5 2001 5 200 5 200 g
= o o
£ 150 ¢ 150 9 150 3
8
[
5 g o o g o
2 3 8 8 & 8
2 1001 b 100 100 2 o
o)
50 50 50
O A T T T 0 A T T T O A T T T
ACc.. ACo,. CBSae ACc,. ACo,. CBSar ACc,. ACo,. CBSne

Figure B.18: Conflict prediction error distributions of dMAS-U(200), dMAS-U(300) and dMAS-U(400) CBS in Scenario A.

112

B. Simulation results

Absolute prediction error [s]

Absolute prediction error [s]

Adaptive CBS Baseline CBS dMAS CBS
Nconflicts=2808 Neonflicts=117 Neonflicts=108
350 o) 350 350
o 8 ®
o) o 8
300 A ° 300 A 300 4
(0] (0]
¢ 8)
25018 250 1 o 8 250 -
é o o] g 0
o) o o]
2004 © E 20049 6 200 o
0
8 o e
150 A 150 A 150 A (0] O
100 A 100 A 100 A g
g
50 A 50 4 50 A é
O A T T T 0 L T T T 0 A T T T
ACc,. ACo,, CBSae ACc,. ACo,. CBSae ACc,. ACo,, CBSae
Figure B.19: Conflict prediction error distributions of Adaptive, Baseline and dMAS CBS in Scenario B.
dMAS-U(200) dMAS-U(300) dMAS-U(400)
Neonflicts=97 Nconfiicts=79 Nconfiicts=105
350 350 350
300 A 300 A 300 A
250 A 250 A 250 A
200 A 0] 200 A 200 A
o o]
(0] ?_ o (0] (o]
150 A T = 150 4 T 150 4 (0] =
(0]
100 1 0 100 1 100 1
50 A 50 1 50 1
L[]
0t ——= - : 01— 2 : 01 : : .
ACc,. ACo,, CBSae ACc,. ACo,. CBSae ACc,, ACo,, CBSae

Figure B.20: Conflict prediction error distributions of dMAS-U(200), dMAS-U(300) and dMAS-U(400) CBS in Scenario B.

B.6. Absolute error distributions for all mechanisms and scenarios

113

Adaptive CBS
Neonflicts=754

Baseline CBS

dMAS CBS
Neonfiicts=21

Nconflicts=58

350 T 350 350
o] o] 8
IO (o]
300 A 300 A 300 A
o 8 E
— 250 250 - o 250
KA [0]
5) E 8
IS
()
c 200 A o 200 o 200 4
o
B (0]
1]
R
° -
2 150 A 150 A . 150 A [0}
g 8
=3
©
g
< 100 - 100 - A A 100 -
T o)
50 4 50 50 A 8
ACc,. ACo,, CBSae ACc,, ACo,. CBSae ACc,. ACo,. CBSae
Figure B.21: Conflict prediction error distributions of Adaptive, Baseline and dMAS CBS in Scenario C.
dMAS-U(200) dMAS-U(300) dMAS-U(400)
Nconflicts=35 Neonflicts=21 Neonfiicts=24
350 350 350
300 4 300 1 300 A
[o]
(0]
— 250 1 250 A 250 A
AiA
2 3 ¢ o
o o
c 200 A 200 1 200 +
£ o o)
o
o
[
& 150 o 150 1 8 150 1 ®
2
=3
©
w
Q
< 100 A 100 A 100 A
0]
(0]
0] A
50 4 50 50
[]
O A T T T 0 L T T T 0 A T T T
ACc,. ACo,, CBSae ACc,, ACo,. CBSae ACc,, ACo,, CBSpe

Figure B.22: Conflict prediction error distributions of dMAS-U(200), dMAS-U(300) and dMAS-U(400) CBS in Scenario C.

114

B. Simulation results

Adaptive CBS
Neonfiicts=781

Baseline CBS
Nconflicts=29

dMAS CBS
Neonfiicts=36

350 350 350
30010 30010 300 -
— 250 1 250 A 250 A
A
=
o
=
9} (o]
c 200 A 200 A 200 A
.2 8
S
5 8 o
g 8 o
2 150 A 0] 150 A 150 A
e o ¢ E o
=
2 (o}
Qo
<C 100 A 100 A 100 A
<)
50 1 50 50 %
O A T T T 0 L T T T 0 A T T T
ACc,. ACo,, CBSae ACc,. ACo,. CBSae ACc,. ACo,, CBSae
Figure B.23: Conflict prediction error distributions of Adaptive, Baseline and dMAS CBS in Scenario D.
dMAS-U(200) dMAS-U(300) dMAS-U(400)
Neonflicts=17 Nconfiicts=26 Neonflicts=21
350 350 350
300 A 300 A 300 A
— 250 A 250 A 250 A
2
s
5]
5 200 A 200 A 200 A
£
A%
o
2 150 4 150 4 150 4
8
=)
©
w
Q
< 100 A 100 4 100 4
® 8
50 1 50 50 L]
o @
O A T T T 0 L T T T 0 A T T T
ACc,. ACo,, CBSae ACc,. ACo,. CBSae ACc,, ACo,, CBSae

Figure B.24: Conflict prediction error distributions of dMAS-U(200), dMAS-U(300) and dMAS-U(400) CBS in Scenario D.

(1]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

Bibliography

Airports Council International (ACI). Preliminary world airport traffic rankings released. URL https:
//aci.aero/news/2019/03/13/preliminary-world-airport-traffic-rankings-released/.
Accessed: 14-01-2020.

J. A.D. Atkin, E. K. Burke, and S. Ravizza. The airport ground movement problem: Past and current
research and future directions. Research in Air Transportation, pages 131-138, 2010. doi: 10.1.221.4402.

JAD Atkin, EK Burke, and S Ravizza. A Statistical Approach for Taxi Time Estimation at London
Heathrow Airport. Cs.Nott.Ac.Uk, pages 61-63, 2011. URL http://www.cs.nott.ac.uk/{~}smr/
share/11{_}MAPSP{_}Ravizza.pdf.

Poornima Balakrishna, Rajesh Ganesan, and Lance Sherry. Application of reinforcement learning al-
gorithms for predicting taxi-out times. Proceedings of the 8th USA/Europe Air Traffic Management Re-
search and Development Seminar, ATM 2009, pages 255-261, 2009.

Max Barer, Guni Sharon, Roni Stern, and Ariel Felner. Suboptimal variants of the conflict-based search
algorithm for the multi-agent pathfinding problem. Proceedings of the 7th Annual Symposium on Com-
binatorial Search, SoCS 2014, 2014-Janua(SoCS):19-27, 2014.

Anthony Barrett and Daniel S Weld. Partial-order planning: evaluating possible efficiency gains. Artifi-
cial Intelligence, 67(1):71-112, 1994.

Zahy Bnaya and Ariel Felner. Conflict-oriented windowed hierarchical cooperative a*. In 2014 IEEE
International Conference on Robotics and Automation (ICRA), pages 3743-3748. IEEE, 2014.

Adi Botea, Davide Bonusi, and Pavel Surynek. Solving multi-agent path finding on strongly biconnected
digraphs. Journal of Artificial Intelligence Research, 62:273-314, 2018.

Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betzalel, and Eyal Shimony.
ICBS: Improved conflict-based search algorithm for multi-agent pathfinding. IJCAI International Joint
Conference on Artificial Intelligence, 2015-Janua(ljcai):740-746, 2015. ISSN 10450823.

Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

Lucian Buoniu, Robert Babuska, and Bart De Schutter. Multi-agent reinforcement learning: An
overview. Studies in Computational Intelligence, 310:183-221, 2010. ISSN 1860949X. doi: 10.1007/
978-3-642-14435-6_7.

Michal Céap, Peter Novdk, Jiri Vokrinek, and Michal Pechoucek. Multi-agent RRT*: Sampling-based
Cooperative Pathfinding. CoRR, abs/1302.2,2013. URLhttp://arxiv.org/abs/1302.2828.

Jun Chen, Stefan Ravizza, Jason A.D. Atkin, and Paul Stewart. On the utilisation of fuzzy rule-based
systems for taxi time estimations at Airports. OpenAccess Series in Informatics, 20:134-145, 2011. ISSN
21906807. doi: 10.4230/OASIcs.ATMO0S.2011.134.

Wei Chen and Keith S Decker. Managing Multi-Agent Coordination , Planning, and Scheduling. 2004.

Satyendra Chouhan and Rajdeeep Niyogi. DMAPP: A Distributed Multi-Agent Path Planning Algorithm.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), 9457(December), 2015. ISSN 16113349. doi: 10.1007/978-3-319-26350-2.

Satyendra Singh Chouhan and Rajdeep Niyogi. DiMPP: a complete distributed algorithm for multi-
agent path planning. Journal of Experimental and Theoretical Artificial Intelligence, 29(6):1129-1148,
2017. ISSN 13623079. doi: 10.1080/0952813X.2017.1310142. URL http://dx.doi.org/10.1080/
0952813X.2017.1310142.

115

https://aci.aero/news/2019/03/13/preliminary-world-airport-traffic-rankings-released/
https://aci.aero/news/2019/03/13/preliminary-world-airport-traffic-rankings-released/
http://www.cs.nott.ac.uk/{~}smr/share/11{_}MAPSP{_}Ravizza.pdf
http://www.cs.nott.ac.uk/{~}smr/share/11{_}MAPSP{_}Ravizza.pdf
http://arxiv.org/abs/1302.2828
http://dx.doi.org/10.1080/0952813X.2017.1310142
http://dx.doi.org/10.1080/0952813X.2017.1310142

116

Bibliography

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

[33]

(34]

(35]

Rutger Claes. Anticipatory vehicle routing, 2015. URL $https://lirias.kuleuven.be/retrieve/
319948thesis.pdf$[freelyavailable].

Liron Cohen and Sven Koenig. Bounded suboptimal multi-agent path finding using highways. IJCAI
International Joint Conference on Artificial Intelligence, 2016-Janua:3978-3979, 2016. ISSN 10450823.

Liron Cohen, Tansel Uras, and Sven Koenig. Feasibility Study: Using Highways for Bounded-
Suboptimal Multi-Agent Path Finding. Proceedings of the 8th Annual Symposium on Combinatorial
Search, SoCS 2015, 2015-Janua:2-8, 2015.

Liron Cohen, Tansel Uras, T. K. Satish Kumar, Hong Xu, Nora Ayanian, and Sven Koenig. Improved
solvers for bounded-suboptimal multi-agent path finding. IJCAI International Joint Conference on Ar-
tificial Intelligence, 2016-Janua:3067-3074, 2016. ISSN 10450823.

Daniel D. Corkill. Hierarchical planning in a distributed environment. In Proceedings of the 6th Inter-
national Joint Conference on Artificial Intelligence - Volume 1, JCAI79, page 168175, San Francisco, CA,
USA, 1979. Morgan Kaufmann Publishers Inc. ISBN 0934613478.

W.H. Dalmeijer. Schiphol gebruiksprognose 2020, 2019.

Boris de Wilde, Adriaan W. ter Mors, and Cees Witteveen. Push and rotate: Cooperative multi-agent
path planning. In Proceedings of the 2013 International Conference on Autonomous Agents and Multi-
agent Systems, AAMAS 13, pages 87-94, Richland, SC, 2013. International Foundation for Autonomous
Agents and Multiagent Systems. ISBN 978-1-4503-1993-5. URLhttp://dl.acm.org/citation.cfm?
1d=2484920.2484938.

Keith S Decker and Victor R Lesser. Generalizing the partial global planning algorithm. International
Journal of Intelligent and Cooperative Information Systems, 1(02):319-346, 1992.

Boris DeWilde, Adriaan W. Ter Mors, and Cees Witteveen. Push and Rotate: A complete Multi-agent
Pathfinding algorithm. Journal of Artificial Intelligence Research, 51:443-492, 2014. ISSN 10769757.
doi: 10.1613/jair.4447.

K. Dresner and P. Stone. Multiagent traffic management: Opportunities for multiagent learning. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 3898 LNAI:129-138, 2006. ISSN 03029743. doi: 10.1007/11691839_7.

Edmund H Durfee. Scaling Up Agent Coordination Strategies Coordination Strategies. Computer,
(July):39-46, 2001.

Edmund H Durfee. Distributed problem solving and planning. In ECCAI Advanced Course on Artificial
Intelligence, pages 118-149. Springer, 2001.

Esra Erdem, Doga G. Kisa, Umut Oztok, and Peter Schiiller. A general formal framework for pathfinding
problems with multiple agents. Proceedings of the 27th AAAI Conference on Artificial Intelligence, AAAI
2013, pages 290-296, 2013.

EUROCONTROL. Airport collaborative decision-making (a-cdm) implementation manual, 2017.

EUROCONTROL. European aviation in 2040, challenges of growth, annex 1, flight forecast to 2040,
2018.

Aviation Intelligence Unit EUROCONTROL. Atfm regulation: a power for good, 2019.

Ariel Felner, Meir Goldenberg, Guni Sharon, Roni Stern, Tal Beja, Nathan Sturtevant, Jonathan Schaef-
fer, and Robert C. Holte. Partial-expansion A* with selective node generation. Proceedings of the 5th
Annual Symposium on Combinatorial Search, SoCS 2012, pages 180-181, 2012.

Ariel Felner, Jiaoyang Li, Eli Boyarski, Hang Ma, Liron Cohen, T. K.Satish Kumar, and Sven Koenig.
Adding heuristics to conflict-based search for multi-agent path finding. Proceedings International Con-
ference on Automated Planning and Scheduling, ICAPS, 2018-June:83-87, 2018. ISSN 23340843.

K Fines. Decentralized control for resilient airport surface movement operations, 2018.

$https://lirias.kuleuven.be/retrieve/319948thesis.pdf$ [freely available]
$https://lirias.kuleuven.be/retrieve/319948thesis.pdf$ [freely available]
http://dl.acm.org/citation.cfm?id=2484920.2484938
http://dl.acm.org/citation.cfm?id=2484920.2484938

Bibliography 117

[36]

(37]

(38]

(39]

(40]

(41]

[42]

[43]

(44]

(45]

(46]

[47]

[48]

(49]

(50]

(51]

(52]

[53]

(54]

K Fines. Decentralized Control for Resilient Airport Surface Movement Operations. 2019.

European Organization for the Safety of Air Navigation. Eurocontrol specification for a-smgcs services,
2018.

Rajesh Ganesan, Poornima Balakrishna, and Lance Sherry. Improving quality of prediction in highly
dynamic environments using approximate dynamic programming. Quality and Reliability Engineering
International, 26(7):717-732, 2010. ISSN 07488017. doi: 10.1002/qre.1127.

Chester Gong. Kinematic airport surface trajectory model development. 9th AIAA Aviation Technol-
ogy, Integration and Operations (ATIO) Conference, Aircraft Noise and Emissions Reduction Symposium
(ANERS), (September):1-11, 2009. doi: 10.2514/6.2009-7076.

Schiphol Group. Noise. URL https://www.annualreportschiphol.com/our-results/
people-environment-and-community/noise. Accessed: 22-01-2020.

Jorg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research, 14:263-312, 2001. ISSN 10769757. doi: 10.1613/jair.
855.

Aerodromes ICAO and I Volume. Aerodrome design and operations, annex 14 to the convention on
international civil aviation, 2018.

International Civil Aviation Organization (ICAO). Annex 2: Rules of the air, 2005.

Husni Idris, John-Paul Clarke, Rani Bhuva, and Laura Kang. Queuing Model for Taxi-Out Time Estima-
tion. Air Traffic Control Quarterly, 10(1):1-22, 2002. ISSN 1064-3818. doi: 10.2514/atcq.10.1.1.

Bunpei Irie and Sei Miyake. Capabilities of three-layered perceptrons. In IEEE International Conference
on Neural Networks, volume 1, page 218, 1988.

Jyh-Shing Jang. Anfis adaptive-network-based fuzzy inference system. Systems, Man and Cybernetics,
IEEE Transactions on, 23:665 - 685, 06 1993. doi: 10.1109/21.256541.

Yu Jiang, Zhihua Liao, and Honghai Zhang. A collaborative optimization model for ground taxi based
on aircraft priority. Mathematical Problems in Engineering, 2013, 2013. ISSN 1024123X. doi: 10.1155/
2013/854364.

Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion planning. The
international journal of robotics research, 30(7):846-894, 2011.

Mokhtar M. Khorshid, Robert C. Holte, and Nathan Sturtevant. A polynomial-time algorithm for non-
optimal multi-agent pathfinding. Proceedings of the 4th Annual Symposium on Combinatorial Search,
SoCS 2011, pages 76-83, 2011.

Matthew S. Kistler and Gautam Gupta. Relationship between airport efficiency and surface traffic. 9th
AIAA Aviation Technology, Integration and Operations (ATIO) Conference, Aircraft Noise and Emissions
Reduction Symposium (ANERS), (September 2009), 2009. doi: 10.2514/6.2009-7078.

Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning. 1998.

Hanbong Lee and Hamsa Balakrishnan. Fast-time simulations of Detroit Airport operations for eval-
uating performance in the presence of uncertainties. AIAA/IEEE Digital Avionics Systems Conference -
Proceedings, 2012. ISSN 21557195. doi: 10.1109/DASC.2012.6382349.

Hanbong Lee, Waqar Malik, and Yoon C. Jung. Taxi-out time prediction for departures at charlotte
airport using machine learning techniques. 16th AIAA Aviation Technology, Integration, and Operations
Conference, (June):1-11, 2016. doi: 10.2514/6.2016-3910.

Ryan Luna and Kostas E. Bekris. Push and swap: Fast cooperative path-finding with completeness
guarantees. IJCAI International Joint Conference on Artificial Intelligence, pages 294-300, 2011. ISSN
10450823. doi: 10.5591/978-1-57735-516-8/1JCAI11-059.

https://www.annualreportschiphol.com/our-results/people-environment-and-community/noise
https://www.annualreportschiphol.com/our-results/people-environment-and-community/noise

118

Bibliography

(53]

[56]

[57]

(58]

(59]

(60]

(61]

(62]

(63]

(64]

[65]

(66]

[67]

[68]

[69]

[70]
[71]

[72]

[73]

Thomas W Malone, Kevin Crowston, et al. Toward an interdisciplinary theory of coordination. 1991.

Robert Morris, Corina S Pasareanu, Kasper Luckow, Wagar Malik, Hang Ma, TK Satish Kumar, and Sven
Koenig. Planning, scheduling and monitoring for airport surface operations. In Workshops at the Thir-
tieth AAAI Conference on Artificial Intelligence, 2016.

Luchtverkeersleiding Nederland. Aip netherlands: Aircraft parking / docking chart schiphol cen-
tre chart, . URL https://www.lvnl.nl/eaip/2020-01-16-AIRAC/html/index-en-GB.html. Ac-
cessed: 16-01-2020.

Luchtverkeersleiding Nederland. = Runway use, . URL https://en.lvnl.nl/environment/
runway-use. Accessed: 22-01-2020.

Luchtverkeersleiding Nederland. =~ Weather conditions, . URL https://en.lvnl.nl/safety/
achieving-safety/weather-conditions. Accessed: 22-01-2020.

T.E.H. Noortman. Agent-Based Modelling of an Airport’s Ground Surface Movement Operation. PhD
thesis, 2018.

International Civil Aviation Organization. Amofsg/10-sn no.14 - aerodrome meteorological obser-
vation and forecast study group (amofsg). URL https://www.icao.int/safety/meteorology/
amofsg/AMOFSGY%20Meeting,20Material /AMOFSG.10.SN.014.5. en. pdf. Accessed: 22-01-2020.

John R Quinlan et al. Learning with continuous classes. In 5th Australian joint conference on artificial
intelligence, volume 92, pages 343-348. World Scientific, 1992.

David B. Rappaport, Peter Yu, Katy Griffin, and Chris Daviau. Quantitative Analysis of Uncertainty
in Airport Surface Operations. 9th AIAA Aviation Technology, Integration, and Operations Conference
(ATIO), (September):1-16, 2009.

S. Ravizza, J. A.D. Atkin, M. H. Maathuis, and E. K. Burke. A combined statistical approach and ground
movement model for improving taxi time estimations at airports. Journal of the Operational Research
Society, 64(9):1347-1360, 2013. ISSN 01605682. doi: 10.1057/jors.2012.123.

Stefan Ravizza, Jun Chen, Jason A.D. Atkin, Paul Stewart, and Edmund K. Burke. Aircraft taxi time
prediction: Comparisons and insights. Applied Soft Computing Journal, 14(PART C):397-406, 2014.
ISSN 15684946. doi: 10.1016/j.as0c.2013.10.004. URL http://dx.doi.org/10.1016/j.asoc.2013.
10.004.

Paul Roling. Ae4445 airport operations: Runway design. Lecture slides, 2008.

Malcolm Ryan. Exploiting subgraph structure in multi-robot path planning. Journal of Artificial Intel-
ligence Research, 31:497-542, 2008. ISSN 10769757. doi: 10.1613/jair.2408.

Malcolm Ryan. Constraint-based multi-robot path planning. pages 922-928, 2010.

Qandeel Sajid, Ryan Luna, and Kostas E. Bekris. Multi-agent pathfinding with simultaneous execution
of single-agent primitives. Proceedings of the 5th Annual Symposium on Combinatorial Search, SoCS
2012, pages 88-96, 2012.

Schiphol. Traffic review 2018, 2018.
Schiphol. Schiphol airport cdm operations manual, 2019.

Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. The Increasing Cost Tree Search for Opti-
mal Multi-Agent Pathfinding. Proceedings of the 4th Annual Symposium on Combinatorial Search, SoCS
2011, 2(i):150-157, 2011.

Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. Pruning techniques for the increasing
cost tree search for optimal multi-agent path finding. Proceedings of the 4th Annual Symposium on
Combinatorial Search, SoCS 2011, pages 150-157, 2011.

https://www.lvnl.nl/eaip/2020-01-16-AIRAC/html/index-en-GB.html
https://en.lvnl.nl/environment/runway-use
https://en.lvnl.nl/environment/runway-use
https://en.lvnl.nl/safety/achieving-safety/weather-conditions
https://en.lvnl.nl/safety/achieving-safety/weather-conditions
https://www.icao.int/safety/meteorology/amofsg/AMOFSG%20Meeting%20Material/AMOFSG.10.SN.014.5.en.pdf
https://www.icao.int/safety/meteorology/amofsg/AMOFSG%20Meeting%20Material/AMOFSG.10.SN.014.5.en.pdf
http://dx.doi.org/10.1016/j.asoc.2013.10.004
http://dx.doi.org/10.1016/j.asoc.2013.10.004

Bibliography 119

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

[83]

(84]

[85]

(86]

(87]

(88]

[89]

(90]

[91]
[92]

[93]
[94]

Guni Sharon, Roni Stern, Ariel Felner, and Nathan Sturtevant. Conflict-based search for optimal multi-
agent path finding. Proceedings of the 5th Annual Symposium on Combinatorial Search, SoCS 2012,
pages 97-104, 2012.

Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. Conflict-based search for optimal
multi-agent pathfinding. Artificial Intelligence, 219:40-66, 2015. ISSN 00043702. doi: 10.1016/j.artint.
2014.11.006. URL http://dx.doi.org/10.1016/j.artint.2014.11.006.

Alexei Sharpanskykh. Lecture 1: Introduction to agents and multiagent systems. specification of mul-
tiagent systems. University Lecture, 2018.

Alexei Sharpanskykh. Week 5: Learning and adaptation in multiagent systems. University Lecture,
2018.

Alexei Sharpanskykh. Week 5: Multiagent planning and scheduling. University Lecture, 2019.

Yoav Shoham and Moshe Tennenholtz. On the synthesis of useful social laws for artificial agent soci-
eties (preliminary report). pages 276-281, 01 1992.

David Silver. Cooperative pathfinding. AIIDE, 1:117-122, 2005.

Alex] Smola and Bernhard Scholkopf. A tutorial on support vector regression. Statistics and computing,
14(3):199-222, 2004.

Trevor Standley. Finding optimal solutions to cooperative pathfinding problems. Proceedings of the
National Conference on Artificial Intelligence, 1:173-178, 2010.

Trevor Standley and Richard Korf. Complete algorithms for cooperative pathfinding problems. IJCAI
International Joint Conference on Artificial Intelligence, pages 668-673, 2011. ISSN 10450823. doi: 10.
5591/978-1-57735-516-8/1JCAI11-118.

Jan Renze Steenhuisen. Coordinated Multi-Agent Planning and Scheduling. Delft University of Tech-
nology, 2013. ISBN 9789461084408.

Roni Stern, Nathan R Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T Walker, Jiaoyang Li,
Dor Atzmon, Liron Cohen, TK Satish Kumar, et al. Multi-agent pathfinding: Definitions, variants, and
benchmarks. In Twelfth Annual Symposium on Combinatorial Search, 2019.

Pavel Surynek. A Novel Approach to Path Planning for Multiple Robots in Bi-connected Graphs. 2009.

Pavel Surynek. On propositional encodings of cooperative path-finding. Proceedings - International
Conference on Tools with Artificial Intelligence, ICTAI 1:524-531, 2012. ISSN 10823409. doi: 10.1109/
ICTAI.2012.77.

Pavel Surynek. Makespan Optimal Solving of Cooperative Path-Finding via Reductions to Proposi-
tional. pages 1-40, 2016.

Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. Efficient SAT approach to multi-agent path
finding under the sum of costs objective. Frontiers in Artificial Intelligence and Applications, 285(2012):
810-818, 2016. ISSN 09226389. doi: 10.3233/978-1-61499-672-9-810.

Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. Modifying optimal SAT-based approach to
multi-agent path-finding problem to suboptimal variants. Proceedings of the 10th Annual Symposium
on Combinatorial Search, SoCS 2017, 2017-Janua:169-170, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Karl Tuyls and Gerhard Weiss. Multiagent Learning: Basics, Challenges, and Prospects. pages 41-52,
2012.

Heiko Udluft. Decentralization in Air Transportation. 2017. ISBN 9789055841745. doi: 10.4233/uuid.

Iowa State University. [eham] amsterdam/schiph windrose plot. URL https://mesonet.agron.
iastate.edu/sites/windrose.phtml?station=EHAK&network=NL__ASOS. Accessed: 22-01-2020.

http://dx.doi.org/10.1016/j.artint.2014.11.006
https://mesonet.agron.iastate.edu/sites/windrose.phtml?station=EHAK&network=NL__ASOS
https://mesonet.agron.iastate.edu/sites/windrose.phtml?station=EHAK&network=NL__ASOS

120

Bibliography

[95]

(96]

(97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

Manuela M Veloso, Joydeep Biswas, Brian Coltin, and Stephanie Rosenthal. Cobots: Robust symbiotic
autonomous mobile service robots. In IJCAI page 4423, 2015.

Glenn Wagner. Subdimensional Expansion: A Framework for Computationally Tractable Multirobot
Path Planning. 2015. doi: 10.1016/j.artint.2014.11.001.

Glenn Wagner and Howie Choset. M*: A complete multirobot path planning algorithm with optimality
bounds. Lecture Notes in Electrical Engineering, 57 LNEE:3260-3267, 2011. ISSN 18761100. doi: 10.
1007/978-3-642-33971-4_10.

Ko Hsin Cindy Wang and Adi Botea. Fast and memory-efficient multi-agent pathfinding. ICAPS 2008 -
Proceedings of the 18th International Conference on Automated Planning and Scheduling, (Icaps):380-
387, 2008.

Ko Hsin Cindy Wang and Adi Botea. MAPP: A scalable multi-agent path planning algorithm with
tractability and completeness guarantees. Journal of Artificial Intelligence Research, 42:55-90, 2011.
ISSN 10769757. doi: 10.1613/jair.3370.

L.. Wang. Fuzzy systems are universal approximators. In (1992 Proceedings] IEEE International Con-
ference on Fuzzy Systems, pages 1163-1170, March 1992. doi: 10.1109/FUZZY.1992.258721.

L. . Wang and J. M. Mendel. Fuzzy basis functions, universal approximation, and orthogonal least-
squares learning. IEEE Transactions on Neural Networks, 3(5):807-814, Sep. 1992. ISSN 1941-0093. doi:
10.1109/72.159070.

Wenjie Wang and Wooi Boon Goh. Time optimized multi-agent path planning using guided iterative
prioritized planning. 12th International Conference on Autonomous Agents and Multiagent Systems
2013, AAMAS 2013, 2(3):1183-1184, 2013.

Mathijs De Weerdt, Adriaan Mors, and Cees Witteveen. Multi-agent Planning An introduction to plan-
ning and coordination. pages 1-32, 2005.

Jianan Yin, Yuxin Hu, Yuanyuan Ma, Yan Xu, Ke Han, and Dan Chen. Machine learning techniques
for taxi-out time prediction with a macroscopic network topology. 09 2018. doi: 10.1109/DASC.2018.
8569664.

Jingjin Yu and Steven M. Lavalle. Planning optimal paths for multiple robots on graphs. Proceedings
- IEEE International Conference on Robotics and Automation, pages 3612-3617, 2013. ISSN 10504729.
doi: 10.1109/ICRA.2013.6631084.

Jingjin Yu and Steven M. LaValle. Optimal Multirobot Path Planning on Graphs: Complete Algorithms
and Effective Heuristics. IEEE Transactions on Robotics, 32(5):1163-1177, 2016. ISSN 15523098. doi:
10.1109/TRO.2016.2593448.

	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	I Scientific Paper
	II Literature Study previously graded under AE4020
	Introduction
	Airport Surface Movement Operations at Schiphol Airport
	Schiphol Collaborative Decision Management
	The Milestone Approach
	Pre-departure Sequence
	Collaborative Management of Flight Updates

	Summary of surface movement operations at Schiphol
	Schiphol socio-technical system
	Agent types
	Interaction between agents

	Runway configurations
	Runway configurations at Schiphol
	Factors influencing runway configurations
	Planning and execution of reconfigurations

	Uncertainty factors in surface movement operations

	Previous Research in ATO
	Decentralization in Air Transportation - Udluft (2017)
	Agent-Based Modelling of an Airport’s Ground Surface Movement Operation - Noortmans (2018)
	Decentralized Control for Resilient Airport Surface Movement Operations - Fines (2019)
	Research gap

	Learning Mechanisms for Surface Movement Operations
	Opportunities for Learning
	Modelling Incoming Traffic
	Predicting Future Traversal Times
	Highway Generation
	Speed Profile Assignment
	Conclusion

	Anticipatory vehicle routing
	Approaches for taxi-time prediction
	Queuing models
	Reinforcement learning
	Multiple linear regression
	Fuzzy rule based systems
	Other machine learning methods

	Conclusion

	Multi-Agent Path Planning
	Background on Multi-Agent Planning
	A* based approaches
	Cooperative A* search
	Standley's improvements
	Approximate and optimal anytime algorithms
	Other approaches

	Rule based approaches
	Push and Swap
	Tree-based agent swapping strategy
	Push and Swap variants

	Hybrid approaches
	Flow Annotation Replanning
	Multi-Agent Path Planning

	Reduction based approaches
	Constraint Satisfaction Problem
	SAT based solvers
	Integer Linear Programming
	Answer Set Programming

	Two-level based approaches
	M* family
	Increasing cost tree search
	CBS family

	Sampling based approaches
	Trade-off

	Research Proposal
	Research Objective & Questions
	Research Scope

	III Supporting work
	Model Elaboration
	Modelling assumptions
	Relevant agent properties
	Simulation Parameters
	Forward simulation algorithm
	Bayesian optimisation algorithm
	Input flight schedule details
	Input flight schedule details for conflict analysis

	Simulation results
	Taxi-time results for individual days
	Taxi-distance results for individual days
	Taxi-speed results for individual days
	Link participation per sampling strategy
	Absolute prediction error for Scenarios B and D
	Absolute error distributions for all mechanisms and scenarios

	Bibliography

