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Time-varying constrained proximal type dynamics
in multi-agent network games

Carlo Cenedese Giuseppe Belgioioso Sergio Grammatico Ming Cao

Abstract— In this paper, we study multi-agent network games
subject to affine time-varying coupling constraints and a time-
varying communication network. We focus on the class of
games adopting proximal dynamics and study their convergence
to a persistent equilibrium. The assumptions considered to
solve the problem are discussed and motivated. We develop
an iterative equilibrium seeking algorithm, using only local
information, that converges to a special class of game equilibria.
Its derivation is motivated by several examples, showing that the
original game dynamics fail to converge. Finally, we apply the
designed algorithm to solve a constrained consensus problem,
illustrating the theoretical results.

I. INTRODUCTION

Multi-agent decision making over networks: in multi-agent
decision making over networks, all the decision makers, in
short, agents, share their information only with a selected
number of agents. In particular, the agents’ state (or de-
cision) is the result of a local decision making process,
e.g. a constrained optimization problem, and a distributed
communication with the neighboring agents, defined by the
communication network. In many problems, the goal of the
agents is reaching a collective equilibrium state, where no
agent can benefit from changing its state. The local interac-
tion between the agents is exploited in opinion dynamics to
model the evolution of a population’s collective opinion as an
emerging phenomenon, see [1], [2], [3]. Another interesting
consequence of the network structure is that the agents keep
their own data private, exchanging information only with
selected agents. This characteristic is of particular interest
in, for example, traffic and information networks problems
[4] or in the charging scheduling of electric vehicles [5]. This
class of problems arises also in other applications, e.g., in
smart grids [6] and sensor network [7].

Multi-agent optimization and multi-agent network games:
in this work, we study a particular instance of the problem in-
troduced above, namely a multi-agent network game, where
the communication network and the constraints between the
agents are both time-varying. Multi-agent network games
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arise from the well established field of distributed optimiza-
tion and equilibrium seeking over networks. In the past years,
several results were proposed for optimization problems
subject to a time-varying communication network: in [8] the
subgradients of the cost functions are bounded and the com-
munication is described by a strongly connected sequence of
directed graphs, while in [9] the cost functions are assumed
to be continuously differentiable and a linearly convergent
algorithm is designed under the assumption of a time-varying
undirected communication network. Another approach, ex-
plored in [10], is to construct a game, whose emerging
behavior solves the optimization problems. In this case, the
cost functions are differentiable and the communication ruled
by an undirected time-varying graph connected over time.
The problem of noncooperative multi-agent games, subject
to coupling constrains, was firstly studied in [11], under the
assumptions of continuosly differentiable cost functions and
no network structure. In the past years, several researchers
provided results for games over networks, e.g., in [12], [13],
[5] where the communication network is always assumed
undirected. Moreover, some authors also focused on the class
of noncooperative games over time-varying communication
network, in particular on the unconstrained case. For exam-
ple, in [14] differentiable and strictly convex cost functions
with Lipschitz continuous gradient were considered, where
the sequence of time-varying communication networks was
repeatedly strongly connected, and the associated adjacency
matrices doubly stochastic.

Paper contribution: a complete formulation of multi-agent
network games, subject to proximal type dynamics, can be
found in [6] where the unconstrained case is studied for
a time-varying strongly connected communication network,
described by a doubly stochastic adjacency matrix. In [15],
[16], the condition on the double stochasticity of the adja-
cency matrix was relaxed. Notice that these types of games
can also be rephrased as paracontracions; in this framework,
the work in [17] provided convergence for repeatedly jointly
connected digraphs. Iterative equilibrium seeking algorithms
were developed for constrained multi-agent network games
in [6], [16] and a static communication network.

In this work, we aim to address the problem of a con-
strained multi-agent network games subject to a time-varying
communication network. In particular, we first discuss the
convergence of the game and motivate the technical as-
sumption needed to ensure the existence of an equilibrium,
and then we develop an equilibrium seeking algorithm that
achieves global convergence for the game at hand. The
main difference with the work in [16] is the presence of
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both time-varying communication network and time-varying
constraints, and this generalization leads to several technical
challenges, requiring a more involved convergence analysis.

Notation: the notation adopted along the paper is the same
as the one in [5], while we refer to [18] for more properties
of operators of class I.

II. MATHEMATICAL SETUP AND PROBLEM FORMULATION

A. Mathematical formulation

We consider N players (or agents) taking part in a game.
A constrained network game is defined by three main com-
ponents: the constraints each players has to satisfy, the cost
functions to be minimized and the communication network.

The constraints can be divided in two types: local and
coupling. At every time instant k ∈ N, each agent i ∈ N :=
{1, . . . , N} adopts an action (or strategy) xi ∈ Rn belonging
to its local feasible set Ωi ⊂ Rn, i.e., the collection of those
strategies meeting its local constraints. We assume that this
set is convex and closed.

Standing Assumption 1 (Convexity): For every i ∈ N , the
set Ωi ⊂ Rn is non-empty, compact and convex.

The agents are also subject to M time-varying affine and
separable coupling constraints, that generate an entanglement
between the strategy chosen by player i and those of the
others. For an agent i ∈ N , at time instant k ∈ N, the time-
varying set of strategies satisfying the coupling constraints,
given the other agents’ strategies x−i, reads as

Xi(x−i, k) :=

{
y ∈ Rn |Ci(k)y +

∑N
j=1
j 6=i

Cj(k)xj(k) ≤ c(k)

}
where Cj(k) ∈ RM×n and c(k) ∈ RM .

In the following, we refer to the collective vector x :=
col((xi)i∈N ) ∈ RNn as the strategy profile of the game. All
the strategies profiles that satisfy both the local and coupling
constraints determine the collective feasible decision set,
defined as X (k) := Ω ∩

{
x ∈ RNn|C(k)x ≤ c(k)

}
, where

C(k) := [C1(k), . . . , CN (k)] ∈ RM×Nn and Ω :=
∏N
i=1 Ωi.

Standing Assumption 2: For all i ∈ N and k ∈ N,
the collective feasible decision set X (k) satisfies Slater’s
conditions.

All the agents are assumed myopic and rational, thus each
agent i ∈ N aims only at minimizing its local cost function
Ji(xi, z). In this work, we assume that the cost function have
the proximal structure, as defined next.

Standing Assumption 3 (Proximal cost functions): For all
i ∈ N , the function Ji : Rn × Rn → R is defined as

Ji(xi, z) := f̄i(xi) + 1
2‖xi − z‖

2, (1)

where the function f̄i := fi + ιΩi
: Rn → R is convex and

lower semi-continuous.

The cost function is composed of two parts, f̄i is the local
part and has a double role: describing the local objective of
agent i, via fi, and ensuring that the next strategy belongs to
Ωi, through the indicator function ιΩi . The quadratic part of

Ji works as a regularization term and penalizes the distance
of the local strategy from z. It is also responsible for the
strict-convexity of Ji, even though f̄i is only lower semi-
continuous, see [19, Th. 27.23].

Now we introduce the time-varying communication net-
work adopted by the agents. At each time instant k, it
is described by a strongly connected digraph, defined via
the couple (V, A(k)). The set V represents the nodes of
the graph, i.e., V = N , so this set does not vary over
time. The matrix A(k) denotes the adjacency matrix of the
digraph, at time k, where ai,j(k) := [A(k)]ij . For every
i, j ∈ N , ai,j(k) ∈ [0, 1] is the weight that agent i assigns
to the strategy of agent j. If ai,j(k) = 0, then agent i
does not communicate with agent j. The set of all the
neighbors of agent i is defined as Ni(k) := {j | ai,j(k) > 0}.
The following assumption formalizes the properties of the
adjacency matrix required throughout this work.

Standing Assumption 4 (Row stochasticity and self-loops):
At every time instant k ∈ N, the communication graph
is strongly connected. The matrix A(k) = [ai,j(k)]
is row stochastic, i.e., ai,j(k) ≥ 0 for all i, j ∈ N ,
and

∑N
j=1 ai,j(k) = 1, for all i ∈ N . Moreover,

A(k) has strictly-positive diagonal elements, i.e.,
mini∈N ai,i(k) =: ak > 0 .

For each agent i ∈ N , the term z in (1) represents an
aggregative quantity defined by

z :=
∑N
j=1ai,j(k)xj(k) ,

and hence it is the average of the neighbors’ strategies,
weighted via the adjacency matrix A(k). So, the actual cost
function of agent i at time k is Ji(xi,

∑N
j=1 ai,j(k)xj(k)).

As mentioned before, the agents are considered rational,
thus their only objective is to minimize their local cost
function, while satisfying the local and coupling constraints.
The dynamics describing this behavior are the myopic best
response dynamics, defined, for each player i ∈ N , as:

xi(k + 1) = argmin
y∈Xi(x−i,k)

Ji

(
y,
∑N
j=1 ai,j(k)xj(k)

)
. (2)

The interaction of the N players, using dynamics in (2), can
be naturally formalized as a noncooperative network game,
defined at k ∈ N, as

∀i ∈ N :

argmin
y∈Rn

fi(y) + 1
2

∥∥∥y −∑N
j=1 ai,jxj

∥∥∥2

s.t. y ∈ Ωi ∩ Xi(x−i, k) ,

(3)

where we omitted the time dependency of ai,j(k) and xj(k)
to ease the notation.

B. Equilibrium concept and convergence

For the game in (3), the concept of equilibrium point is non
trivial. A popular equilibrium notion for constrained game
is the, so called, generalized network equilibrium (GNWE).
Loosely speaking, a profile strategy x̂ is a GNWE of the
game, if no player i can change its strategy to another
feasible one while decreasing Ji

(
x̂i,
∑N
j=1 ai,j x̂j

)
. Notice
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that, if A does not have self-loops, an GNWE boils down to
a generalized Nash equilibrium, see [11].

This idea of equilibrium cannot be directly applied to (3)
and in fact every variation in the communication network
generates a different game, with its own set of GNWE.
Therefore, the equilibria in which we are interested are those
invariant to the changes in the communication; they take the
name of persistent GNWE (p–GNWE).

Definition 1 (persistent GNWE): A collective vector x̄ =
col((x̄i)i∈N ) is a persistent GNWE (p–GNWE) for the game
(3), if there exists some k > 0, such that for all i ∈ N ,

x̄i =
⋂
k≥k̄

argmin
y∈X (x̄−i,k)

Ji

(
y,
∑N
j=1 ai,j(k)x̄j

)
. (4)

We have defined both the game and the set of equilibria we
are interested in. Let us now elaborate on the convergence
properties of the game in (3), introducing three examples
highlighting different aspects of these dynamics. In [16,
Ex. 2] the authors show that the dynamics in (2) can fail to
converge to an equilibrium point, even in the case of a static
communication network, where the existence of a GNWE is
guaranteed by [6, Prop. 4]. Then, in Example 1 we highlight
that the existence of p–GNWE is not guaranteed. Finally, the
last example shows a case where the game in (3) converges.

Example 1 (equilibirum existence): Consider a 2-player
game without local or coupling constraints and scalar strate-
gies. The communication network can vary between the
two graphs described respectively by the adjacency matrices
A1 =

[
1/2 1/2
1/2 1/2

]
and A2 =

[
1/3 2/3
1/3 2/3

]
. The cost functions of

the agents are in the form of (1), where the local part is
chosen as f̄i(xi) = 1

2‖xi − i‖2, for i ∈ {1, 2}. For each
one of the communication networks, there exists only one
equilibrium point of the game, i.e., xA1 = [5/4 , 7/4]> and
xA2

= [4/3 , 11/6]>, when respectively A1 or A2 is adopted.
Therefore the set of p–GNWE of the game is empty, leading
the dynamics to oscillate between xA1

and xA2
.

Example 2 (convergence): Once again, consider the a 2-
player game, where for a player i ∈ {1, 2} the local feasible
set is Ωi = [−1, 1] and fi(xi) = 0. The collective feasible
decision set is defined as X (k) := {x ∈ [−1, 1]2 |m(k) ≤
x1 + x2} where m(k) ∈ [−1,−0.25]. We choose A(k)
satisfying Standing Assumption 4 and it is doubly stochastic,
for every time instant k ∈ N. If the strategy profile belongs to
the consensus subspace C, both agents achieve the minimum
of their cost function, and therefore all those points are
equilibria of the unconstrained game. Furthermore, for the
set Ĉ = {u ∈ R2 |u = α1>, α ∈ [−0.25, 1]}, it always
holds that Ĉ ⊆ C ∩ X , and hence they are p-GNWE of
the game. Assume that at k̄ > 0, m(k̄) = −0.25, then, for
all k > k̄, the dynamics reduce to x(k + 1) = A(k)x(k),
therefore the profile strategy will converge to a point in Ĉ,
i.e., to a p–GNWE of the game.

C. Primal–dual characterization

As illustrated in [16, Ex. 2], the dynamics in (2) can
fail to converge, to restore convergence we recast them as

pseudo collaborative ones. The idea is that each player will
minimize its own cost function, while at the same time
coordinate with the others to satisfy the constraints. With
this approach, we aim to achieve asymptotic fulfillment of the
coupling constraints. As a first step, we dualize the dynamics
introducing, for each player i ∈ N , a dual variable λi ∈ RM≥0.
The arising problem is an auxiliary (extended) network game,
see [20, Ch. 3]. The collective vector of the dual variables is
denoted by λ := col((λi)i∈N ). The equilibrium concept is
adapted to this modification in the dynamics, so we define
the persistent Extended Network Equilibrium (p–ENWE).

Definition 2 (persistent Extended Network Equilibrium):
The pair (x,λ), is a p–ENWE for the game in (3) if there
exists k̄ > 0 such that, for every i ∈ N ,

xi =
⋂
k≥k̄

argmin
y∈Rn

Ji

(
y,
∑N
j=1 ai,j(k)xj

)
+ λ
>
i Ci(k)y,

λi =
⋂
k≥k̄

argmin
ξ∈RM

≥0

−ξ>(C(k)x− c(k)) . (5)

In the following, we assume the presence of a central
coordinator facilitating the synchronization between agents.
The central coordinator broadcasts an auxiliary variable σ ∈
RM to each agent i, that, in turn, uses this information to
compute its local dual variable λi. Specifically, at every time
instant k, the agent scales the received variable σ(k), by a
possibly time-varying factor αi(k) ∈ [0, 1], attaining in this
way its local dual variable, i.e., λi(k) := αi(k)σ(k). The
scaling factors αi describe how the burden of satisfying the
constraints are divided between the agents, hence

∑N
i=1 αi =

1. If αi = 1/N , for all i ∈ N , then the effort to satisfy the
couplying constraints is fairly splitted between the agents,
this case is considered in several works, e.g., [5], [12], [21].
This class of problems was introduced for the first time in the
seminal work by Rosen [22], where the author formulates the
concept of normalized equilibrium. We adapt this idea for the
problem at hand, defining the persistent normalized extended
network equilibrium (pn-ENWE).

Definition 3 (persistent normalized-ENWE): The pair
(x, σ), is a pn–ENWE for the game in (3), if it exists k̄ > 0,
such that for all i ∈ N it satisfies

xi =
⋂
k≥k̄

argmin
y∈Rn

Ji

(
y,
∑N
j=1 ai,j(k)xj

)
+ αi(k)σ>Ci(k)y,

σ =
⋂
k≥k̄

argmin
ς∈RM

≥0

−ς>(C(k)x− c(k)), (6)

with αi(k) > 0.
The following lemma shows that a pn–ENWE is also a p–
GNWE, and vice versa.

Lemma 1 (p–GNWE as fixed point): The following state-
ments are equivalent:

(i) x is a p–GNWE for the game in (3);
(ii) ∃σ ∈ RM and k̄ > 0 such that col(x, σ) ∈ E , where E

is the set of all the pn–GNWE of the game (3).
We omit the demonstration of the lemma, since it is analo-
gous to that in [6, Lem. 2].
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This reformulation of the problem addresses the criticism
highlighted in Example 1. In the following, we develop a
distributed iterative algorithm converging to a p-GNWE of
the original game in (3).

D. On the existence of persistent equilibria

We devote the remainder of the section to a more in depth
analysis of the problem of the existence of a p–GNWE
for the game in (3). In general, there is no guarantee that
such an equilibrium exists. The literature is split on how to
handle this problem. Namely, two possible assumptions can
be adopted. The first one supposes a priori the existence of
at least one p–GNWE in the game. It does not restrict the
problem at hand, since it is a necessary condition to establish
convergence. However, it may be difficult to be checked. This
approach is the one chosen in this work and it is usually
adopted when authors focus more on theoretical results, see
[19, Cor. 5.19], [23, Prop. 3.1], [6, Ass. 3] and [16, Ass. 6].

Standing Assumption 5 (Existence of a pn-ENWE): The
set of pn-ENWE of (3) is non-empty, hence E 6= ∅ .

On the other hand, the second assumption considers only
those games in which the N local cost functions share at
least one common fixed point. This implies that at least one
point in the consensus subspace is an equilibrium invariant
to the change of the communication network. If, at the same
time, this point is also feasible, then it is a p–GNWE of the
game. This assumption is clearly stronger than the previous
one. Nevertheless, it is easier to verify in practice, since it
only requires the analysis of the cost functions of the agents,
as shown in Example 2. Mainly for this reason, it is widely
spread throughout the literature, where it is either implicitly
verified as in [24] or explicitly required [17, Ass in Th. 2] .

III. CONVERGENCE RESULT

Next, we propose the main result of this paper, an iterative
and decentralized algorithm converging to a pn-GNWE of the
game in (3). We call it TV–Prox–GNWE and it is reported
in (7a)–(7d), while its complete derivation is described in
the Appendix. To provide the bounds for the choices of the
parameters in the algorithm, let us redefine the matrix A(k)
via a diagonal matrix, an upper and a lower triangular matrix,
i.e., A(k) = Aut(k) +Ad(k) +Alt(k), where Aut and Alt
always have zeros diagonal elements. For each time instant
k ∈ N, the parameters in TV–Prox–GNWE are set such that,
the following inequalities hold:

min
i∈N

(δ−1
i + ai,i) ≥ ‖A−Ad‖+ ‖C> −ΛC>‖ (8a)

max
i∈N

(2qi(δ
−1
i + ai,i)) < R+ γ−1 (8b)

R := 2‖QAut +AQlt‖+ ‖Q(C> −ΛC>)‖
β ≥ 1

2‖C −CΛ‖ (8c)

β < 1
2

(
γ−1 − ‖C −CΛ‖

)
(8d)

where Λ(k) := diag((αi(k))i∈N ) ⊗ In and Q(k) :=
diag((qi(k))i∈N ) ⊗ In, with qi being the i-th element of
the left Perron-Frobenius eigenvector of A(k). Also in this

case, we omitted the time dependency of the matrices to ease
the notation. The bounds in (8c) – (8d) implicitly lead to a
condition on the maximum value of the step size γ, namely
γ ≤ 1

2‖C −CΛ‖−1.
The main technical result of the paper is the following

theorem, where we establish global convergence of the
sequence generated by the TV–Prox–GNWE to a p-GNWE
of the game in (3).

Theorem 1: For all i ∈ N and k ∈ N, set αi(k) = qi(k),
with qi(k) the i-th element of the left Perron–Frobenius
eigenvector of A(k), and choose δi(k), β(k) and γ satisfying
(8). For any initial condition, the sequence (x(k))k∈N gen-
erated by (7) converges to a p-GNWE of the game in (3).

IV. SIMULATION

In this section, we adopt TV–Prox–GNWE to solve a
problem of constrained consensus. We consider a game
with N = 15 agents, where the strategy of every agent
i is xi ∈ R5, and its local feasible decision set is Ωi ∈
[mi, Mi], with mi and Mi randomly drawn respectively from
[−100,−5] and [5, 100]. The local cost function is equal
to fi(xi) = ιΩi

(xi). The adjacency matrices, descibing the
communication network at every time instant k, are randomly
generated and define digraphs of the type small-word, satis-
fying Standing Assumption 4. The coupling constraints are
used to force the strategies towards the consensus subspace
and are in the form |xi(k) − xj(k)| ≤ s(k)1, for every
i, j ∈ N , where s(k) > 0 and it is decreasing over time.
Notice that in this case the multiplier graph is complete, see
[12]. Finally, the parameters of the algorithm are chosen such
that they always satisfy (8).

The trajectory of the profile strategy generated by TV–
Prox–GNWE converges to the consensus subspace, this is
shown in Fig. 1a, by means of the Laplacian matrix L of the
multiplier graph. The initial strategy profile x(0) is randomly
chosen in Ω. As expected from the result in Theorem 1, the
constraints are satisfied asymptotically, see Fig. 1b.

V. CONCLUSION AND OUTLOOK

In multi-agent network games, subject to time-varying
coupling constraints and time-varying communication net-
work, described by strongly connected digraphs, agents can
fail to converge when they adopt proximal dynamics. Nev-
ertheless, it is developed an iterative equilibrium seeking al-
gorithms (TV–Prox–GNWE) that ensures the global conver-
gence of the agents’ strategies to an normalized equilibrium
of the game, when it exists.

One of the most important open question in these type
of problems regards the existence of an equilibrium point.
This work can be improved with a new assumption for the
equilibrium existence, which is general and easy to check.

APPENDIX

A. Algorithm derivation

1) Equilibria reformulation: the set of pn-ENWE, defined
by the two equalities in (6), can be equivalently rephrased
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∀i ∈ N : x̃i = prox δi(k)
δi(k)+1 f̄i

(
δi(k)
δi(k)+1

(
1

δi(k)xi +
∑N
j=1ai,j(k)xj − αi(k)C>i (k)σ

))
(7a)

σ̃ = projRM
≥0

(
σ + 1

β(k) (C(k)x− c(k))
)

(7b)

∀i ∈ N : x+
i = xi + γ(k)qi(k)

[
δi(k)(x̃i − xi) +

∑N
j=1ai,j(k)(x̃j − xj)− αi(k)C>i (k) (σ̃ − σ)

]
(7c)

σ+ = σ + γ(k)
[
β(k)(σ̃ − σ) + C(k)(x̃− x)

]
(7d)

(a) (b)

Fig. 1: (a) Convergence of the strategy profile x(k) to the
consensus subspace. (b) Asymptotic satisfaction of the time-
varying affine coupling constraints Cx(k) ≤ c(k).

as the set of fixed points of a suitable mappings. First, we
introduce the block-diagonal proximal operator

proxf (z) := col
(
(proxfi(zi))i∈N

)
. (9)

In (6), the first equality is equivalent to

x = ∩k>k̄ proxf (A(k)x−Λ(k)C>(k)σ) ,

where A(k) := A(k)⊗ In and Λ(k) = diag((αi(k))i∈N )⊗
In. The second equality holds true if and only if σ =
projRM (σ +C(k)x− c(k)).

In order to describe via operators these two relations, we
define the static mappings

R := diag(proxf , projRM
≥0

) (10)

and the time-varying affine one Gk : RnN+M → RnN+M as

Gk(·) :=

[
A(k) −Λ(k)C>(k)
C(k) I

]
· −
[

0
c(k)

]
. (11)

As a result, the dynamics of the game result equal to[
x(k + 1)
σ(k + 1)

]
= R ◦ Gk

([
x(k)
σ(k)

])
. (12)

We exploit this new compact form to describe the set of
pn–ENWE via the fixed points of R ◦ Gk. In particular, by
Definiton 3, a pair (x̄, σ̄) is a pn–ENWE of the game in (3)
if and only if col((x̄, σ̄)) ∈ ∩k>k̄fix(R ◦ Gk). Furthermore,
from Lemma 1, we also know that a pn–ENWE is a p–
GNWE of the original game. So, we focus on the design of
an algorithm converging to the subset E for which we can
take advantage of this new formulation.

We reformulate the fixed point seeking problem as a zero
finding problem, see [19, Ch. 26].

Lemma 2 ([19, Prop. 26.1 (iv)]): Let B := F × NRM
≥0

,

with F :=
∏N
i=1 ∂f̄i. Then, fix (R ◦ Gk) = zer (Ak) , where

Ak := B + Id− Gk.

2) Modified proximal point algorithm: we describe the
passages to develop the iterative algorithm solving the zero
finding problem associated to the operator Ak, and, as a
consequence, the original one of finding pn–ENWE of (3).
We adopt a modified version of the proximal point algorithm
(PPP) (see [19, Prop. 23.39] for its standard formulation).
In particular, the update rule is a preconditioned version of
the PPP algorithm proposed in [25, Eq. 4.18], after defining
$ := col(x(k), σ(k)) and $+ := col(x(k+ 1), σ(k+ 1)),
it can be rewritten as

$̃ = JΦ−1(k)Ak
$ (13a)

$+ = $ + γ(k)Q(k)Φ(k)($̃ −$) (13b)

where and γ(k) > 0 is the step–size of the algorithm

and Q(k) := diag(Q(k), I). The preconditioning matrix is
chosen as

Φ(k) :=

[
δ−1(k) +A(k) −Λ(k)C(k)>

C(k) β(k)IM

]
(14)

where β(k) ∈ R>0 and δ(k) := diag((δi(k))i∈N )⊗ In. The

self-adjoint and skew symmetric components are defined as
U(k) := (Φ(k)+Φ>(k))/2 and S(k) := (Φ(k)−Φ>(k))/2.
Due to the non symmetric preconditioning the resolvent
operator takes the form

JΦ−1(k)Ak
:= JU−1(k)(Ak+S(k))(Id + U−1(k)S(k)) .

The parameters δ(k) and β(k) in the preconditioning have
to be chosen such that U(k) � 0 and ‖Q(k)U(k)‖ ≤
γ−1(k). The resulting bounds are reported in (8).

Using a reasoning akin to the one in [25, Proof of Th. 4.2],
one can show that the set of fixed points of the mapping
describing the update in (13a)–(13b) coincides with zer(Ak).

We focus on (13a) , so $̃ = JU−1(A+S)(Id + U−1S)$
leads to 0 ∈ Φ($̃ − $) + A$̃. Focusing on each row
block, the update rules of (x̃, σ̃) are attained and, combining
them with (13b), we complete the derivation of (7a) – (7d),
see [26] for a step by step computation.

B. Convergence proof of TV–Prox–GNWE

In the following, we use the two scalars Lk and mk, the
former is the Lipschitz constant of S(k) and the latter is such
that mk‖x‖2 < 〈U(k)x, x〉, so ‖U−1(k)‖ ≤ m−1

k . Next,
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we define K(k) := QkU(k) and the scalars ρ := m−1
k Lk,

qm := mini[Qk]ii and Mk ≥ ‖U(k)‖. We always choose the
normalized version of the left Perron Frobenius eigenvector
q(k) of A(k), so maxi[Qk]ii ≤ 1. The proofs follow similar
steps to the ones in [25, Prop.2.1 and 4.2].

Lemma 3: For all k ∈ N, consider the time-varying
operator

TΦ := JΦ−1A + U−1S(JΦ−1A − Id) , (15)

then the following hold:
(i) TΦis quasi-nonexpansive in the space HK ,

(ii) if Lk ≤ mk, then fix(TΦ) = zer(A) .
Proof: Refer to [16, Lem. 3].

Proof of Theorem 1

Consider TΦ, as in (15), then it holds

QU(Id− TΦ)(x) = QΦ(x− JΦ−1A) . (16)

Lemma 3 implies that TΦ is quasi-NE in HK , hence S :=
(Id + TΦ)/2 belongs to I, [18, Prop. 2.2(v)]. From [25,
Prop. 4.1] and (16), we defineWΦ := Id−‖K‖−1K(Id−S)
belonging to I in H and fix(WΦ) = fix(TΦ) = zer(A),
from Lemma 3. The update in (13) is equal to $+ =
$+2γ‖K‖(WΦ$−$), where γ‖K‖ < 1 for all k, due to
the choice of δi and β. Thus, from [18, Th. 4.2(ii) and 4.3],
we have that (‖$−WΦ$‖2)k∈N is summable and converges
in H to an element $ ∈ Ec, if and only if every sequential
cluster point of sequence belong to Ec.

Due to the choice of δ and β in Φ(k), it holds

‖$ − TΦ$‖2K ≤ 4m−1
k M2

k‖$ −WΦ$‖2 → 0 . (17)

Let us define x$ := Jγ̄A($ − γ̄U−1S$), Moreover, from
Lemma 3, it follows

(1− ρ2)‖$ − x$‖K ≤ ‖$ −$∗‖K − ‖TΦ$ −$‖K
≤ −‖TΦ$ −$‖K − 2Mk‖TΦ$ −$‖K‖$ −$∗‖

The above inequality leads to

(1− ρ2)mkqm‖$ − x$‖ ≤ −‖TΦ$ −$‖K (18)
− 2Mk‖TΦ$ −$‖K‖$ −$∗‖

The sequence (‖$(k)−$∗‖)k∈N is bounded and from (17)
and (18), we deduce that $ − x$ → 0. Notice also that

‖QΦ($ − x$)‖ ≤ (Mk + L)‖$ − x$‖ → 0 .

From the definition of x$, it follows uk := QΦ($− x$) ∈
Axω . Thus, since uk → 0, we conclude that x$ → x$ ∈
zer(A).
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[14] J. Koshal, A. Nedić, and U. Shanbhag, “Distributed algorithms for
aggregative games on graphs,” Operations Research, vol. 64, no. 3,
pp. 680–704, 2016.

[15] C. Cenedese, Y. Kawano, S. Grammatico, and M. Cao, “Towards time-
varying proximal dynamics in multi-agent network games,” in 2018
IEEE Conference on Decision and Control (CDC), Dec 2018, pp.
4378–4383.

[16] C. Cenedese, G. Belgioioso, Y. Kawano, S. Grammatico, and M. Cao,
“Asynchronous and time-varying proximal type dynamics multi-agent
network games,” arXiv e-prints (submitted to IEEE-TAC), Sep 2019.

[17] D. Fullmer and A. S. Morse, “A distributed algorithm for computing
a common fixed point of a finite family of paracontractions,” IEEE
Transactions on Automatic Control, vol. 63, no. 9, pp. 2833–2843,
Sep. 2018.
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