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High-fidelity Greenberger-Horne-Zeilinger state generation within nearby nodes

Valentina Caprara Vivoli,* Jérémy Ribeiro , and Stephanie Wehner
QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

(Received 14 January 2019; published 6 September 2019)

Generating entanglement in a distributed scenario is a fundamental task for implementing the quantum
network of the future. We here report a protocol that uses only linear optics for generating Greenberger-Horne-
Zeilinger states with high fidelities in a nearby node configuration. Moreover, we analytically show that the
scheme is optimal for certain initial states in providing the highest success probability for sequential protocols.
Finally, we give some estimates for the generation rate in a real scenario.
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I. INTRODUCTION

Entanglement has revealed several interesting applications
in quantum networks. For example, bipartite entanglement
can be used for quantum cryptography tasks, i.e., quantum
key distribution [1,2], teleportation [3], superdense coding [4],
and bit commitment [5,6]. However, more and more interest
has been recently shown in the study of multipartite entan-
glement. Several uses are nowadays known, such as reduc-
ing communication complexity [7,8] and distributed quantum
computation [9–12]. Furthermore, there are multiple uses in
quantum cryptography, namely quantum secret sharing [13],
N-partite quantum key distribution, also known as conference
key agreement [14], and anonymous transfer [15]. Multipar-
tite entanglement could also be extremely useful for imple-
menting quantum repeaters of second and third generation
[16–19]. Finally, it has recently been pointed out that the use
of multipartite entanglement could be fruitful for synchroniz-
ing several atomic clocks [20]. Greenberger-Horne-Zeilinger
(GHZ) states [21] are particularly suitable for all these pur-
poses. It is, thus, an interesting question how we can best
generate such state in a distributed scenario, i.e., where the
qubits between which the entanglement is shared can interact
only through ancillary modes. In the case of two-qubit entan-
glement, there is already a protocol [22,23] (see Fig. 1), using
ancillary photonic modes, that works pretty well for generat-
ing maximally entangled states in matter systems and low-loss
regimes. However, it is still not very clear how this scheme can
be extended in the case of multipartite entanglement.

In the latter case, there have been some proposals as
well [24–28]. They all consist of two steps: (i) maximally
entangled states are generated between two nodes through
Bell measurements, and (ii) local probabilistic operations
inside the nodes or additional Bell measurements are realized,
generating multipartite entanglement all along the network.
Concerning the network structure, it can vary from long chains
of nodes to closed configurations with nearby nodes. Even
though the first structure allows long distances to be covered,
the second gives the possibility to make all the nodes interact
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with each other through a central station. So far, little effort
has been put into the study of fidelity and generation rate, and
for the most part without any study of the trade-off between
these two quantities.

Remark. From now on we loosely use the term Bell mea-
surement to refer to the measurement performed by interfer-
ence of two optical modes on a beam splitter followed by two
non-photon-number-resolving detectors, where the detection
of a photon on one detector determines the success.

A. Setup and motivation

The goal of this work is to study optimal ways of gen-
erating N-partite GHZ states with very high fidelity. The
setup that we have in mind is represented in Fig. 2. We want
to generate a GHZ state between N quantum nodes, each
constituted by a data qubit (subsystem A). To do so each node
can send an ancillary qubit to a central node (central station)
that can perform a measurement. We do not restrict our study
to any specific measurement, except that it have a binary
outcome, success or failure, and thus the measurement is
modeled by a positive-operator valued measurement (POVM).
When the outcome is labeled as success it means that a
GHZ state has been generated between the N nodes. When
the outcome is labeled as a failure, no GHZ state has been
generated. Restricting ourselves to binary outcomes reduces
in a realistic setting the number of steps, operations, waiting
times, and thus noise. As a result, the fidelity of the final state
is expected to be high. In this article we are going to answer
the following three questions.

(i) Constraining the final fidelity to be F = 1, what is the
highest probability of success psucc? And what is the POVM
that corresponds to such psucc?

(ii) Is there a simple way to experimentally implement the
POVM achieving the maximal psucc?

(iii) What is the rate that we can expect from such imple-
mentation in a realistic scenario?

B. Results and structure of the article

The article addresses and answers all three questions of
the previous section. Each question is answered in a separate
section.
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FIG. 1. Barrett-Kok scheme [22,23]. Two nodes constituted by
two-level systems are optically excited so that they generate matter-
photon entanglement, i.e., (|00〉 + |11〉)A j B j . The photons are sent
to a common station where a partial Bell measurement, which can
distinguish only two Bell states, is performed.

(i) In Sec. II, we work in a noise free model, where we first
show an upper-bound on the product F psucc as a function of
the initial state, where F is the fidelity between the N-partite
GHZ state and the final state conditioned on success, and
psucc is the success probability. We then explicitly show that
there exists a binary POVM that saturates the upper bound
for F psucc. Finally we search for initial states that allow us
to get a fidelity of F = 1 between the final output state and
the GHZ state. We conclude that there exists a measurement
(determined by the projector onto the N-partite GHZ state)
that allows for the creation of an N-partite GHZ state with an
optimal success probability of 2−N .

(ii) In Sec. III, we show how to implement the abovemen-
tioned optimal POVM with only linear optics and non-photon-
resolving detectors (see Fig. 5). It turns out that to perform
this measurement we only need measurements between each
two consecutive nodes. It means that a “central station” is not

A
B

Central Station

1
0

1
0

0 1

FIG. 2. Nodes-center scenario. The entire system is composed of
two subsystems: A (pink shell) and B (yellow shell). Each subsystem
is composed of N qubits. The qubits between A and B are entangled
in pairs; i.e., there are N entangled pairs (

√
1 − ε|00〉 + √

ε|11〉)A j B j .
The N qubits of subsystem B are analyzed together through a POVM
in a central station.

needed. This allows for more flexibility in the implementation
of the measurement, which can be used to reduce losses and
other sources of noise. This implementation is inspired by an
old work [29] in all photonic systems, and we show that it is a
natural extension of the scheme proposed in Refs. [22,23].

(iii) Finally in Sec. IV, we give some results in a scenario
that could be reasonable in the near future. We focus on
the entanglement generation rate, comparing it for different
numbers of nodes and internode distance.

II. NODES-CENTER SCENARIO

In this section we first show that there is an upper bound
for the product of the fidelity (F ) between the GHZ state
and the final state and the success probability (psucc) of the
POVM, depending on the initial state. Second, we derive the
map that allows the upper bound to be reached and we show
that only for psucc = 2−N is it possible to saturate the upper
bound and get F = 1. In order to do so, let us consider the
scenario represented in Fig. 2. The total system is composed
of two subsystems, A and B, each one composed of N qubits.
We take the initial state to be

|�in〉AB =
N⊗

j=1

(
√

1 − ε|00〉 + √
ε|11〉)Aj B j , (1)

where Aj (Bj) are qubits, and 0 � ε � 1. We assume that
in the central station it is possible to perform an arbitrary
POVM.

A. Optimal F psucc

Our goal, here, is to derive an upper-bound for F psucc =
Tr[(|GHZ〉〈GHZ|A ⊗ �succ

B )|�in〉〈�in|AB], when optimizing
our POVM elements �succ

B on B indicating success-
ful generation. Let us consider the following series of
inequalities,

F psucc � F psucc + Ffail pfail

= Tr(|GHZ〉〈GHZ|A ⊗ �succ
B |�in〉〈�in|AB)

+ Tr[|GHZ〉〈GHZ|A ⊗ (1 − �succ)B|�in〉〈�in|AB]

= F [TrB(|�in〉〈�in|AB), |GHZ〉A]

= 1
2 [(1 − ε)N + εN ]. (2)

Here, pfail is the probability that the measurement does
not succeed, and Ffail is the overlap between the GHZ
state and the state that would result from the fail outcome.
F [TrB(|�in〉〈�in|AB), |GHZ〉A] = F (�A

in; GHZ) is the fidelity
between the initial state in A and the GHZ state. The previous
upper bound can be interpreted saying that the maximal
amount of entanglement that can be extracted from subsystem
A does not depend on subsystem B. In the case when several
success events are considered, the proof follows the same
procedure for upper bounding the sum

∑
i F i pi

succ. One finds
a sum of terms of the same form of the one of the fourth line
of Eq. (2), where instead of the GHZ state there are several
different GHZ-like states.
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B. Optimal map �
succ, opt
B

For very small ε, the bound in Eq. (2) is close to 1
2 .

We now ask (i) whether this upper bound is attainable and
(ii) what is the maximal fidelity in this case?

In order to answer to these questions, it is necessary to find
the POVM that allows us to reach F (�A

in; GHZ). Suppose that
the bound (2) is attainable by F opt popt

succ and we look for the
element �

succ, opt
B of a POVM such that

popt
succ = TrB

[
�

succ, opt
B [(1 − ε)|0〉〈0| + ε|1〉〈1|]⊗N

B

]
(3)

is minimal and, hence, F opt is maximal. �
succ, opt
B can be writ-

ten as a 2N × 2N square matrix of elements elm. One has, then,

popt
succ = e11(1 − ε)N + e2N 2N εN (4)

and

F opt popt
succ = 1

2 [e11(1 − ε)N + e2N 2N εN

+ (e12N + e2N 1)
√

ε(1 − ε)
N

]

= 1
2

[
popt

succ + (e12N + e2N 1)
√

ε(1 − ε)
N]

. (5)

The minimization of popt
succ is subjected to five conditions. The

first condition derives from the bound (2), i.e.,
(i)

F opt popt
succ = 1

2 TrB
[
�

succ, opt
B (

√
1 − ε

N |0〉⊗N + √
ε

N |1〉⊗N )

× (
√

1 − ε
N 〈0|⊗N + √

ε
N 〈1|⊗N )B

]
= 1

2 [(1 − ε)N + εN ].

From the fact that �
succ, opt
B is an element of a POVM, we can

derive the condition 0 � �
succ, opt
B � 1. This leads us to the

following four necessary conditions:
(ii) 0 � e11 � 1,
(iii) 0 � e2N 2N � 1,
(iv) e12N = e∗

2N 1,
(v) e12N e2N 1 � min[e11e2N 2N , (1 − e11)(1 − e2N 2N )].

All the elements elm with l, m �= 1, 2N do not influence the
values of Eqs. (5) and (4). Hence, they can just be ignored.
In order to keep Eq. (5) constant to the optimal value while
we minimize popt

succ, e12N and e2N 1 must be real and, thus, equal
[see conditions (iv) and (v)]. Hence,

F opt popt
succ = 1

2

[
popt

succ + 2e12N

√
ε(1 − ε)

N]
. (6)

From condition (v), e2
12N is maximal when it reaches the max-

imum of min[e11e2N 2N , (1 − e11)(1 − e2N 2N )], that is, when
e11e2N 2N = (1 − e11)(1 − e2N 2N ). From this, it follows that
e11 + e2N 2N = 1 and e12N = √

e11e2N 2N . Putting Eq. (6) equal
to 1

2 [(1 − ε)N + εN ], one gets the final form of �
succ, opt
B , i.e.,

�
succ, opt
B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1−ε)N

(1−ε)N +εN 0 · · · 0
√

ε(1−ε)
N

(1−ε)N +εN

0 0
... 0

...

0 0
√

ε(1−ε)
N

(1−ε)N +εN 0 · · · 0 εN

(1−ε)N +εN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7)

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

of
su

cc
es

s

FIG. 3. Optimal success probability. The optimal success proba-
bility popt

succ is plotted as a function of ε in the [0,0.5] range for N = 3,
4, and 5 (solid, dashed, and dot-dashed curves, respectively). The
function assumes values from 1 to 1

2N . The function goes from 1,
when no operation is performed over system B, to 1

2N , when a perfect
GHZ projector is performed.

For this POVM the probability of success is

popt
succ = (1 − ε)2N + ε2N

(1 − ε)N + εN
, (8)

and the fidelity is

F opt = 1

2

[(1 − ε)N + εN ]2

(1 − ε)2N + ε2N
. (9)

Note that �succ
B = 1 always retrieves the bound of Eq. (2),

with psucc = 1 and F = 1
2 [(1 − ε)N + εN ]. Thus, the POVM

�succ
B = w�

succ, opt
B + (1 − w)1, i.e., an interpolation between

the optimal measurement and the identity, spans the threshold
for all values of F and psucc that optimize F psucc.

Equation (8) is the optimal success probability as a func-
tion of ε and N when the bound of Eq. (2) is attained and F is
maximal. Let us analyze Eqs. (8) and (9). The two functions
are plotted as a function of ε for 3, 4, and 5 nodes in Figs. 3
and 4, respectively. Concerning the fidelity, it reaches the
value 1 only for ε = 1

2 , i.e., for an initial maximally entangled

0.0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1.0

Fi
de

lit
y

FIG. 4. Optimal fidelity. The optimal fidelity F opt is plotted as
a function of ε for N = 3, 4, and 5 (solid, dashed, and dot-dashed
curves, respectively). Since the function is symmetrical with respect
to ε = 0.5, the plot is represented only in the [0,0.5] range. The
function goes from 0.5, when no entanglement is generated, to 1,
when the final state is the maximal entangled |GHZ〉.
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state. For other values of ε, F opt is always smaller than 1. The
maximal success probability is obtained for ε = 0. However,
in this last case, the final state is |0〉〈0|⊗N

A and F = 1
2 , which

is clearly an uninteresting case since we are interested in
high-fidelity GHZ generation. We can then conclude that the
optimal case is ε = 1

2 . �
succ, opt
B reduces to a |GHZ〉 projector.

III. OPTICAL GHZ PROJECTOR

In this section we present a possible way of implement-
ing a |GHZ〉 projector. The envisioned setup is represented
in Figs. 5(a) and 5(b). Subsystem A is the actual quantum
network, composed of N nodes. Each node is constituted of
a quantum system with two long-lived spin states [30–33],
here called |0〉 and |1〉, that can be independently excited

B 1,1

B 1,0 B 2,1

B 2,0
C 1 D1

C 2
D2

B 3,1

B 3,0

B 4,1

C 3

D3

(a)

(b)

10

0

1 0
1

A
B

FIG. 5. Optical realization of a GHZ projector. (a) Entire setup.
Subsystem A (pink shell) is composed of N spin qubits on the exter-
nal circle. The spin qubits are excited so that they generate the state
|�+〉AB between them and N photonic qubits, composing subsystem
B (yellow shell). Each photonic qubit is converted in an optical-path
qubit through an optical switch and sent to the central station [green
(center) circle] where the projector is applied. (b) Central station.
Two optical-path modes coming from two neighboring matter qubits
impinge on the same beam splitter. A Bell measurement is performed
on the C and D modes coming out from each beam splitter.

through optical pulses. As a consequence, each node is able
to generate a maximally entangled spin-photon pair, i.e.,

1√
2
(|00〉 + |11〉)Aj B j , where |0〉Bj (|1〉Bj ) is a photon in the

0 (1) mode. The nodes interact with each other through the
photonic 0-1 modes regrouped in subsystem B. The degree of
freedom of modes in subsystem B depends on the nature of
the nodes. For example, for nitrogen-vacancy (NV) centers
[30,31] and trapped ions [32], the photonic qubits can be
encoded in time-bin, and polarization, respectively.

The jth 0 and 1 modes are converted into two different
spatial modes, Bj,0 and Bj,1, respectively. This can be done
through an optical switch [34], with both modes directed to the
central station [Fig. 5(b)] where Bell measurements between
modes Bj,0 and Bj+1,1 are performed. In order to close the
series of Bell measurements, a Bell measurement is performed
between modes B1,1 and BN,0.

Proof. In this subsection, we prove that, depending on
which set of detectors click, the setup in Fig. 5 allows us to
generate two GHZ-like states on subsystem A. Moreover, we
derive the success probability as a function of the losses and
we show that, in the ideal case, each one of the final states has
a probability of success 2−N , equivalent to the one one would
get for a GHZ projector. We split the proof into three steps.
In step 1, we focus on one successful combination of clicks
among the 2N successful combinations. We prove that the
event corresponding to this particular combination of clicks
happens with probability Psucc = 2

22N ηN , where η is the total
probability that a photon does not get lost in the transmission
and detected by a detector, and that a GHZ-like state is, thus,
produced in A. In step 2, we show that all the other successful
detector combinations project system A into a GHZ-like state
with the same probability Psucc. In step 3, we show that the
set of GHZ-like states that are generated is composed by only
two states that differ by a relative phase. We calculate the total
success probability for each GHZ-like state and show that it
is equal to PTot

succ = ( η

2 )N . For no losses, 2−N is the success
probability that a GHZ projector |GHZ〉〈GHZ|B would project
system A into a |GHZ〉A state.

The total state |�+〉AB generated between subsystems A
and B can be written in terms of creation operators as

|�+〉AB = 1
√

2
N �N

j=1(a†
j,0b†

j,0 + a†
j,1b†

j,1)|0〉, (10)

where |0〉 is the vacuum, a†
j,k is the creation operator of the

|k〉Aj state on the jth spin qubit, and b†
j,k is the jth creation

operator of the photonic mode |k〉Bj . Each photonic mode Bj,k

is converted into a sum of modes Cm and Dm when it impinges
on a beam splitter. The equations that transform the operators
b†

j,k are b†
j,0 = 1√

2
(ic†

j + d†
j ) and b†

j,1 = 1√
2
(c†

j−1 + id†
j−1).

Hence, the state becomes |�〉ACD, i.e.,

|�〉ACD = 1

2N
�N

j=1[a†
j,0(ic†

j + d†
j ) + a†

j,1(c†
j−1 + id†

j−1)]|0〉.
(11)

Step 1. Let us first focus on one single successful com-
bination of detections, which is when we get a detection on
all detectors on modes C and none on modes D. The total
detectors operator, composed of the no-click (click) operator

032310-4



HIGH-FIDELITY GREENBERGER-HORNE-ZEILINGER … PHYSICAL REVIEW A 100, 032310 (2019)

DD
nc (DC

c ) on modes D (C), is DD
ncDC

c = �N
j=1(1 − η)d†

j d j [1 −
(1 − η)c†

j c j ] [35]. Let us analyze this operator in more detail.
Let us consider first the click operator on a single mode Cj ,

D
Cj
c = 1 − (1 − η)c†

j c j = ∑+∞
n=1[1 − (1 − η)n]|n〉〈n|Cj , where

|n〉Cj is a Fock state of n photons. The effect of the operator c†
j

applied l times on the right side of D
Cj
c is

D
Cj
c c†l

j =
+∞∑
n=l

[1 − (1 − η)n]

√
n!

(n − l )!
|n〉〈n − l|. (12)

Note that in the previous equation if l = 0 there is no term in
the sum with 〈0|Cj . The previous remark implies that, in order
to have a detection in mode Cj , there must be at least a c†

j in the
detected state; i.e., there must be at least one photon in mode
Cj . Let us consider, now, the operator D

Dj
nc = (1 − η)d†

j d j =∑+∞
n=0(1 − η)n|n〉〈n|Dj . In this case, if there are no losses, the

application of several d†
j gives a success only with no photon

on mode Dj ; i.e., there are no d†
j in the detected state. If losses

occur, then there is a non-null probability of not having any
detection in mode Dj and, as a consequence, a successful Bell
measurement. Let us come back to the protocol. The N modes
generate a photon each. We need N detections, each one in
one of the N C modes. This implies two things. First, the only
states that have successful outcomes do not have photons in
any mode D; i.e., they do not have any one of the operators
d†

j s. Second, in each mode C there is only one photon; i.e.,

in the final state each c†
j appears only once. We can, now,

continue the calculations. We have

TrCD
(|�〉〈�|ACDDD

ncDC
c

)
= 1

22N
TrC

{
�N

j=1[1 − (1 − η)c†
j c j ]

×�N
j=1(ia†

j,0c†
j + a†

j,1c†
j−1)|0〉〈0|

×�N
j=1(−ia j,0c j + a j,1c j−1)

}
=

( η

22

)N(
�N

j=1ia†
j,0 + �N

j=1a†
j,1

)|0〉〈0|
× [

�N
j=1(−i)a j,0 + �N

j=1a j,1
]

=
( η

22

)N
(iN |0〉N + |1〉N )[(−i)N 〈0|⊗N + 〈1|⊗N ]A

= 2
( η

22

)N
|GHZ-like〉〈GHZ-like|A. (13)

The prefactor in front of |GHZ-like〉〈GHZ-like|A in the last
passage is the success probability of the set of Bell measure-
ments Psucc = ηN 21−2N . Hence, the final state is

|GHZ-like〉A = 1√
2

(iN |0〉⊗N + |1〉⊗N )A, (14)

which is a GHZ state except for a phase factor that can be
easily corrected.

Step 2. There are other 2N − 1 detector configurations that
result in the success of the set of Bell measurements. If we
choose other click-no click configurations, we have to invert
the creation and annihilation operators for all modes where
the success Bell measurement combination has been changed,

i.e., d (†)
m ↔ c(†)

m . It follows that the final states |�final〉A are of
the same form, i.e.,

|�final〉A = 1√
2

(ik|0〉⊗N + il |1〉⊗N )A, (15)

but the relative phase between |0〉⊗N and |1〉⊗N can change
and depends on the specific combination.

Step 3. Let us focus, now, on the calculation of the relative
phase depending on the detector configuration. Each c†

m gives
an i phase term to |0〉⊗N , while each d†

m gives an i phase term
to |1〉⊗N . Therefore, the states generated by the measurement
are of the form

1√
2

[iN−m|0〉⊗N + im|1〉⊗N ], (16)

with m ∈ [0, N − 1]. The set of states given by Eq. (16) is
composed of only two states, up to global phases, i.e.,

1√
2

[iN |0〉⊗N + |1〉⊗N ] and
1√
2

[iN |0〉⊗N − |1〉⊗N ].

Each state recurs the same number of times. Therefore, we
have only two final states, each one arising from 2N−1 configu-
rations each. Per each final GHZ-like state the total probability
is, then,

PTot
succ = 21−2N 2N−1ηN = 2−NηN , (17)

which is the maximal probability of success that we can
achieve. The envisioned protocol generates, thus, two GHZ-
like states, each one with a PTot

succ that in the ideal case is 2−N .
This probability corresponds to the success probability for a
GHZ projector.

With this the proof is complete. As a last remark, since
depending on which detectors click there are two different
GHZ-like states, one can gain an extra factor 2 in the total
success probability for some applications.

IV. PERFORMANCE

In this section, we give some estimates of the performance
of our protocol. Since NV centers are promising candidates
for quantum information tasks [36], we consider values [37] of
the involved quantities suitable for this system. Let us remind
you that for NV centers the photonic qubits can be encoded in
time-bin. The quantity that can be compared between different
protocols is the entanglement generation rate. The expression
of the generation rate rGHZ for GHZ states is

rGHZ = PTot
succ

tTot
, (18)

where PTot
succ is given by Eq. (17), and tTot is the total time for

each protocol trial. Hence, two factors influence the gener-
ation rate, namely the overall transmission η [see Eq. (17)]
and the time necessary to perform each task involved in the
protocol. Let us focus on deriving tTot. It is given by the
sum of three quantities, i.e., the time necessary to generate
all the spin-photon pairs, the time necessary for the photons
to travel half the distance between two nodes, and the time
necessary for communicating to each node the outcome of the
measurements.
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FIG. 6. Bell measurement synchronization. (a) Three-nodes pro-
tocol. In the figure the scheme in the case of three nodes as an
example of an odd number of nodes is represented. For an odd
number of nodes it is necessary to perform three rounds for gen-
erating all the spin-photon pairs: early, late, and “asynchronous.”
(b) Temporal scheme showing the time line for an odd number of
nodes. Three rounds are necessary for generating all the spin-photon
pairs. Afterwards, the photons have to travel half d to reach the
measurement station. Finally, the nodes have to wait till when the
communication of the Bell measurement outcome comes back.

For the sake of simplicity, for odd nodes the generated
qubit pairs are 1√

2
(|0e〉 + |1l〉)AB, while for even nodes the

generated qubit pairs are 1√
2
(|0l〉 + |1e〉)AB, where |e〉B (|l〉B)

is an early (late) photon. The expression for the photon-spin
generation time has a different expression depending whether
the number of nodes is odd or even. Indeed, in the case of an
even number, each early (late) mode is coupled with another
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FIG. 7. GHZ generation rate rGHZ. In the figure the generation
rate for different values of N (2, 3, 4, and 5) is plotted as a function
of the distance d . The values of the experimental parameters are
L0 = 20 km, ηBS = 10−0.03 [38], ηD = 0.86 [39], pfc = 0.3, pout =
0.3, and c = 0.2 × 106 km/s. The total time tTot for each attempt is
given by Eqs. (19) and (20).
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FIG. 8. Fast-use GHZ rate rGHZ. In the figure the fast-use GHZ
rate for different values of N (2, 3, 4, and 5) is plotted as a function
of the distance d . The values of the experimental parameters are
L0 = 20 km, ηBS = 10−0.03 [38], ηD = 0.86 [39], pfc = 0.3, pout =
0.3, and c = 0.2 × 106 km/s. The total time tTot is given only by the
spin-photon pair preparation time.

early (late) mode. On the contrary, in the case of an odd
number of nodes, in order to close the circle (see Fig. 5),
there will be one branch, an “asynchronous” branch, where
an early mode would be coupled with a late mode (see Fig. 6).
This means that in the case of an even number it is sufficient
to consider only two rounds (early and late mode) of photon
generation per trial, while in the odd case we consider a third
round for the “asynchronous branch.”

Let us define the time necessary to generate one photon-
spin pair as tPS. For the sake of simplicity, we consider that
the distance d between two neighboring nodes is fixed. Given
the speed of light in an optical fiber c, the total generation time
for an even number of nodes is, then,

tTot
even = 2tPS + d

2c
+ d

2c
, (19)

while for an odd number it is

tTot
odd = 3tPS + d

2c
+ d

2c
. (20)

Note that there is a factor 2, given by the fact that the photons
have to travel only half the distance between the nodes in
order to reach the Bell measurement station. Note also that
the second d

2c factor is due to the classical communication
that has to be transmitted from the measurement stations to
the nodes. Note also that there are some applications for
which it is not necessary to wait for the measurement and
the arrival of the communication of the outcome. In these
cases the measurements on the nodes can be realized straight
away after the photonic qubits have been sent to the Bell mea-
surement stations, and the results are kept (discarded) after
the communication of the success (failure) of the set of Bell
measurements. As a consequence, the total time tTot can be
written for this case as just the spin-photon pairs preparation
time. We call this rate the fast-use GHZ rate. Concerning the
overall transmission η, it is given by the formula [37]

η = ηBSηD pfc pout10− αd
L0 , (21)

where L0 is the attenuation length of the fibers, α =
0.2 dB/km, pfc is the frequency conversion efficiency, pout
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is the NV outcoupling efficiency, and ηBS and ηD are the
beam splitter and detector efficiencies, respectively. In Figs. 7
and 8, we present the results for the rate as a function of
the distance between two nodes for N = 2, 3, 4, and 5. In
Fig. 7 there are the plots for the case tTot, which is given
by Eqs. (19) and (20), while in Fig. 8 the plots are made
for tTot only equal to the spin-photon preparation time. As
one might expect from Eq. (17), the curves decrease one
term η

2 per each added node. However, while in Fig. 7 the

curves are proportional to d−110− αNd
L0 , in Fig. 8 they are

proportional only to the exponential term 10− αNd
L0 . This results

in an improvement of 2 orders of magnitude more in the
second case for d = 100 km.

V. CONCLUSION

The protocol that we have presented here is an adaptation
for matter systems and an arbitrary number of nodes of a pro-
tocol [29] meant for fully optical systems and only three par-
ties. We consider the protocol interesting for several reasons.
First, it is a natural extension for N nodes of the well-known
Barrett-Kok scheme [22,23] and so it is particularly suited for
achieving high fidelities. Second, we have proven that in the
ideal case, i.e., in the case of no loss, the success probability
is optimal. This is, indeed, quite surprising since the scheme
is based only on linear optics. Nonetheless, there are some
aspects that deserve some attention. Indeed, in a real scenario
all the causes of loss and noise have to be taken into account.
Unfortunately, optimizing a scheme in a real scenario, where
such kinds of processes are involved, is a challenging task.
However, it seems to us that the required resources and causes
of decoherence and depolarization in our case are minimal.
Thus, the protocol is likely optimal also when losses and
noise occur. Our scheme presents two intrinsic drawbacks,
in that it can only be implemented between nearby nodes
and the performance showed in the previous section is quite
low. It is, then, of interest to evaluate other protocols that
combine distillation procedures with Bell measurements. In
this case the parameter of reference would be the generation
rate and not anymore the success probability. However, all
these protocols would intrinsically be affected by decoherence
that would inevitably lower the fidelity. They are not, then,
competitive in the high-fidelity regime that we have explored
in this article. It is still interesting to investigate if procedures
exist for both nearby and distant nodes that allow appealing
trade-offs between generation rate and final fidelity.
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APPENDIX: NUMERICAL OPTIMIZATION

In the main text, we analytically optimize F psucc and show
how to experimentally retrieve this value. In this Appendix,
we explain how to perform numerical optimizations over

POVMs in order to optimize F psucc for arbitrary input states.
One can retrieve the previous expressions for F psucc and psucc

in terms of a map � acting on system B. The expression for
F psucc becomes

F psucc = Tr{[|GHZ〉〈GHZ|A ⊗ (|GHZ〉〈GHZ|�)B]

× |�in〉〈�in|AB}, (A1)

where we have substituted �succ
B = (|GHZ〉〈GHZ|�)B, �B

being an arbitrary map. In a similar way the success proba-
bility psucc takes the following form:

psucc = Tr{[1A ⊗ (|GHZ〉〈GHZ|�)B]|�in〉〈�in|AB}. (A2)

Our goal is to find the optimal �B, subject to a fixed psucc,
such that the product F psucc is maximal.

1. Choi-Jamiolkowski isomorphism

One can realize the previous optimization using the Choi-
Jamiolkowski isomorphism. Let us assume to have two sys-
tem, S and S′, of the same dimension |S|. Given the positive
map �S′ , acting on S′, the Choi’s theorem states that the
matrix

τSS′ = 1S ⊗ �S′ (|�+〉SS′ ), (A3)

where |�+〉SS′ = 1√|S|
∑|S|

m=1 |mm〉ss′ is a maximally entangled
state between systems S and S′, has the properties

(i) τSS′ � 0,
(ii) Tr(τSS′ ) = 1, and
(iii) τS = TrS′ (τSS′ ) = 1S

|S| .
Given the above-listed first two properties, τSS′ is a density
matrix and it is called the Jamiolkowski state.

2. Initial maximally entangled state

In the case of an initial maximally entangled state, for
example, |�in〉AB = |�+〉AB = ⊗N

j=1
1√
2
(|00〉 + |11〉)Aj B j , the

map 1A ⊗ �B applied to |�in〉AB is a Jamiolkowski state; i.e.,
1A ⊗ �B(|�+〉AB) = τAB is a state. The quantities F psucc and
psucc can be rewritten in terms of the Jamiolkowski state, i.e.,

F psucc = Tr[(|GHZ〉〈GHZ|A ⊗ |GHZ〉〈GHZ|B)τAB] (A4)

and

psucc = Tr[(1A ⊗ |GHZ〉〈GHZ|B)τAB]. (A5)

Hence, the optimization becomes Max F psucc such that
(i) τAB � 0,
(ii) Tr(τAB) = 1,
(iii) τ̃A = TrB(τAB) = 1A

2N , and
(iv) psucc is fixed.
The first three conditions are equivalent to the ones of

Sec. 1, while the last is necessary for deriving F psucc as a
function of psucc.

3. Initial nonmaximally entangled state

Consider now the case when the initial state is
nonmaximally entangled, for example, |�in〉AB =⊗N

j=1(
√

1 − ε|00〉 + √
ε|11〉)Aj B j . Let us put system S

(S′) equal to the initial (final) system AB. One can apply the
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FIG. 9. Numerical optimization of the product F psucc as a func-
tion of psucc for N = 2. The curves represent different values of
ε = 0.5, 0.4, 0.3, 0.2, and 0.1 (solid, dashed, dotted, dot-dashed, and
marble curves, respectively).

Choi-Jamiolkowski isomorphism to F psucc and psucc. Indeed,
we have

F psucc = 22N Tr
[|�in〉〈�in|inAB ⊗ (|GHZ〉〈GHZ|A

⊗|GHZ〉〈GHZ|B)finτ̃AB
]

(A6)

and

psucc = 22N Tr
[|�in〉〈�in|inAB ⊗ (1A ⊗ |GHZ〉〈GHZ|B)finτ̃AB

]
,

(A7)

where τ̃AB = 1in
AB ⊗ τ fin

AB. Here, 22N is the dimension of one
of the two subsystems initial and final. Hence, we want to

FIG. 10. Numerical optimization of the product F psucc as a func-
tion of psucc for N = 3. The curves represent different values of
ε = 0.5, 0.4, 0.3, 0.2, and 0.1 (solid, dashed, dotted, dot-dashed, and
marble curves, respectively).

perform the following optimization:
Max F psucc such that
(i) τ fin

AB � 0,
(ii) Tr(τ fin

AB) = 1,
(iii) τ̃ fin

A = TrB(τ fin
AB) = 1A

2N , and
(iv) psucc is fixed.
The above explained optimization has been performed for

two and three nodes, providing results in perfect agreement
with the analytical upper bounds derived in the main text
(Figs. 9 and 10).
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