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Abstract
Individuals with diabetes face rigorous demands
when it comes to managing their health, yet pa-
tients sometimes struggle to stay adherent to treat-
ment. CHIP is an AI-based conversational platform
that allows patients to report lifestyle factors and
receive personalized support for making healthy
lifestyle changes. However, detecting patient non-
adherence remains a significant challenge in this
system, as this can hinder treatment and complicate
decision-making for healthcare providers.
This study presents an anomaly detection system
designed to identify behavioral changes in dia-
betes patients through their chatbot interactions.
Such shifts have previously been shown to corre-
late with non-adherence. The approach extracts
temporal, frequency, and content features from
patient-chatbot conversations and quantifies behav-
ioral variability using entropy to detect deviations
from individual baseline patterns.
The approach was evaluated using synthetic
patient-chatbot conversations generated by a
locally-hosted large language model, with behav-
ioral shifts manually introduced in the simulated
users. The system detected these irregularities
with an accuracy of approximately 76% and a
recall of around 35%. However, the false positive
rate remained high, at around 15%, primarily
due to over-flagging in users with naturally high
variability. Future improvements could involve
machine learning-based personalization to better
distinguish between true anomalies and normal
variability. With refined detection thresholds,
integration into CHIP may enable timely support
for patients at risk of non-adherence.

1 Introduction
Regular glucose monitoring remains a persistent challenge
for individuals with diabetes, a condition that affects ap-
proximately 10% of the world population [1]. In a study
conducted in Brazil, more than 88% of patients with dia-
betes reported performing glucose self-monitoring to guide
insulin therapy [2]. However, research indicates that despite
the associated health risks, patients may misreport their glu-
cose levels when using self-reporting monitoring tools [3;
4]. Additionally, another study found that only around 56%
of participants with type 2 diabetes reported full adherence
to their prescribed medication regimen [5]. This lack of con-
sistent adherence and accuracy in self-reporting creates chal-
lenges for both patients and healthcare providers, who rely on
accurate data to guide treatment decisions.

To support lifestyle changes, the Hybrid Intelligence Cen-
tre (HI) [6] and the Netherlands Organisation for Applied Sci-
entific Research (TNO) have collaborated to develop CHIP,
an AI-based diabetes lifestyle management support system
[7]. Patients can interact with an AI chatbot to report glu-
cose levels, diet, and lifestyle habits, and receive personalized

feedback and advice. A key challenge in this system is iden-
tifying non-adherence, where patients fail to follow their pre-
scribed medication or lifestyle regimen, deliberately or not.

Research on patients of severe mental illness indicates that
behavioral shifts, defined as deviations from an individual’s
observed patterns, may be correlated with non-adherence [8].
In this study, we propose a method to model and analyze pa-
tient behavior over time to detect and flag such shifts, which
could be implemented into CHIP to flag potential issues and
offer timely support.

Anomaly detection is a data analysis method used to flag
data points that deviate from what is normally expected in
a dataset. In this study, we focus on contextual anomalies,
which are unusual only when interpreted in relation to nearby
data points. For example, if a highly organized patient typ-
ically interacts with the chatbot each morning and evening,
a sudden change to logging during the night would be con-
sidered a contextual anomaly because it deviates from their
established routine. By comparing behavior against each in-
dividual’s own baseline, the system adapts to personal habits
and avoids relying on predefined ground truths about what is
considered a normal pattern.

There is growing interest in modeling behavioral patterns
in healthcare contexts to predict mental state, treatment dis-
engagement, and treatment non-adherence. Recent studies
have successfully applied entropy-based behavioral modeling
to predict depression from smartphone screen-time data [9]
and variability in locations visited [10], the latter also being
applied to predict the emergence of symptoms in schizophre-
nia patients [11]. Furthermore, a study on patients with severe
mental illnesses such as schizophrenia, major depressive dis-
order, and bipolar 1 disorder, used an entropy-based anomaly
detection system to detect behavioral shifts, and found they
were associated with medication non-adherence [8].

There is currently a gap in the literature regarding the appli-
cation of entropy-based behavioral shift detection methods to
conversational data from diabetes patients. This study seeks
to address this by presenting a system that identifies behav-
ioral changes through entropy-based anomaly detection and
evaluating its performance using synthetically generated con-
versations.

The research question for this study is: “How effective
is entropy-based behavioral modeling in detecting anomalies
that indicate non-adherence among users of a chatbot-based
diabetes lifestyle management support system?”

Early detection of behavioral shifts, correlated with non-
adherence, could enable timely intervention from diabetes
lifestyle management support systems. Ultimately, this ap-
proach could be integrated into platforms like CHIP to en-
hance patient monitoring and support more proactive care.

The structure of this study is as follows: Chapter 2 out-
lines the methodology, including a summary of the system de-
sign and the rationale behind key choices. Chapter 3 presents
the experimental results, which are then interpreted and dis-
cussed in detail in Chapter 4. Chapter 5 summarizes the main
findings, addresses the study’s limitations, and outlines rec-
ommendations for future research. Chapter 6 reflects on the
ethical considerations of the study and provides instructions
to support the reproducibility of the experiment.



2 Methodology
2.1 Entropy
To quantify behavioral variability in this study, we used Shan-
non Entropy [12]. Entropy is a measure of uncertainty in a
probability distribution, and in this context, it reflects how
predictable or irregular a user’s behavior is within a given
time window.

Given a discrete distribution P = {p1, p2, . . . , pn}, repre-
senting the relative frequency of observed behavioral states
(e.g., time bins or log types), entropy is calculated as

H(P ) = −
n∑

i=1

pi log2 pi

For example, consider a feature such as the time of day
when a patient logs their glucose readings, divided into dis-
crete bins such as morning, afternoon, and evening. Here,
each xi corresponds to a time bin (e.g., morning), and pi is
the proportion of logs recorded in that bin during the time
window.

If a user almost always logs in the morning, then
pmorning ≈ 1, and pafternoon ≈ pevening ≈ 0, therefore
the entropy will be approximately 0, reflecting predictable be-
havior. Conversely, if logging times are spread evenly across
morning, afternoon, and evening, the pi values will all be
roughly equal to 1

3 , resulting in a higher entropy of about 1.6.
This formula yields higher values when behavior is more var-
ied and lower values when it is more repetitive or focused.

By tracking entropy over time across multiple features, we
aim to identify shifts that signal behavioral irregularities rele-
vant to treatment adherence. For example, a user with consis-
tent logging at the same time each day has highly predictable
behavior and therefore should have low baseline entropy. If
the logging of this patient suddenly became erratic, the en-
tropy would increase greatly above baseline, resulting in the
latest log being marked as an anomaly, prompting an inter-
vention by the diabetes lifestyle management support system.

Note that each probability pi is a real number in the in-
terval [0, 1]. For all pi > 0, the logarithm log2 pi is non-
positive, which means each term −pi log2 pi in the entropy
sum is non-negative. Additionally, when pi = 0, the expres-
sion pi log2 pi is conventionally defined as 0 in the context of
information theory, and is therefore omitted from the sum.

2.2 System design
Before diving into each component in detail, we briefly sum-
marize the system’s overall architecture. The system is or-
ganized into modular components to support the generation,
analysis, and visualization of synthetic user interaction logs
for behavioral research. It consists of four main modules:
data generation, feature extraction, entropy calculation, and
anomaly detection.

While these components are intended for eventual integra-
tion with the CHIP system, the current implementation is de-
veloped as a standalone prototype to enable faster develop-
ment, easier testing, and flexible experimentation.

2.3 Synthetic data generation
To evaluate the proposed method in a pilot experiment, we
generated synthetic patient conversations consisting of sta-
tus updates about glucose, diet, mood, activity, insulin, other
medication, sleep, and weight using a large language model.
These were stored in a structured JSON format to support
easy integration into other system modules. An example of a
prompt and its output can be found in Appendix A.

Due to time and resource constraints, conducting a longi-
tudinal user study with sufficient participants and responses
to reliably capture behavioral patterns was not feasible. Ad-
ditionally, access to real diabetes patient-chatbot conversa-
tions was unavailable, leading to synthetic data being used
instead. Synthetic data also avoids privacy concerns associ-
ated with real patient logs and allows for controlled insertion
of behavioral anomalies, which is essential for validating de-
tection performance. From these conversations, we extracted
a set of features correlated with engagement and treatment
adherence, described in more detail below.

Conversations were generated using a locally hosted
large language model, specifically the Mistral-7B-Instruct-
v0.2.Q4 K M model [13]. This model was chosen for its fast
inference, strong performance on conversational tasks, and
low resource demands, with weights quantized to 4 bits. The
model was run locally using llama.cpp [14], an open-source,
high-performance C/C++ implementation for running large
language models on consumer hardware, together with the
llama-cpp-python binding [15] that allows llama.cpp models
to be called from Python code. This also facilitates future
integration into the CHIP system, implemented in Python.

2.4 User persona traits
To support controlled testing of different user behavior pat-
terns, we define a set of simulated user personas character-
ized by three key behavioral traits, each framed as a binary
option. These traits were deliberately chosen to manipulate
the behavioral features described below in Section 2.6, allow-
ing us to test whether the prototype can differentiate between
distinct engagement styles.

In a real-world study, such predefined personas would not
be necessary, as patients naturally exhibit a wide range of be-
havioral variation. The matrix only provides a structured way
to simulate diverse user profiles during early-stage evaluation.

Each simulated user is defined by selecting one value from
each of the three behavioral traits. All possible combinations
are used, resulting in eight distinct personas. These users
are non-anomalous by design: they follow consistent patterns
that match their assigned traits, and no artificial behavioral
anomalies are introduced. As such, the system should not flag
any of their behavior as anomalous, making them useful for
validating that the anomaly detection logic does not produce
false positives in response to expected behavioral variability.

The traits and their corresponding options are:

• Timing Consistency (Consistent – Erratic):
Reflects temporal regularity in user interaction patterns.
Consistent users engage at steady times, while erratic
users exhibit irregular, unpredictable timing.



• Interaction Frequency (Frequent – Infrequent):
Indicates overall interaction volume. Frequent users in-
teract often; infrequent users engage rarely.

• Content Diversity (Varied – Similar):
Captures the diversity of content produced. Varied users
generate a wide range of topics or types of messages;
similar users tend to repeat the same content.

By combining these traits, we define a comprehensive trait
matrix, allowing us to represent and analyze nuanced user
behavior patterns. Each combination corresponds to a distinct
persona reflecting a unique engagement style.

Table 1 lists all trait combinations and their corresponding
persona identifiers, which are used in the graphs below.

Table 1: User personas defined by the trait matrix combining Con-
sistency, Frequency, and Content Diversity.

ID Consistency Frequency Diversity
CFV Consistent Frequent Varied
CFS Consistent Frequent Similar
CIV Consistent Infrequent Varied
CIS Consistent Infrequent Similar
EFV Erratic Frequent Varied
EFS Erratic Frequent Similar
EIV Erratic Infrequent Varied
EIS Erratic Infrequent Similar

2.5 Anomaly injection
To evaluate the system’s ability to detect irregular behavioral
patterns, we introduced a set of users with controlled behav-
ioral anomalies. In addition to the eight baseline personas
described earlier, five additional transitional personas were
generated. These users maintain stable behavior until day 15,
after which they undergo a predefined behavioral shift that
continues through the remainder of the simulation at day 30.

These anomalies were not random but were deliberately
crafted to reflect meaningful transitions in user engagement,
simulating realistic disruptions or improvements in adher-
ence. Each transitional persona begins with a behavioral pat-
tern and then switches to a contrasting one, either indicating
a breakdown, improvement, or fluctuation in routine.

The five transitional personas are defined as follows:

• Adherence Breakdown: Switches from Consistent,
Frequent, Varied to Erratic, Infrequent, Similar, simu-
lating a decline in adherence.

• Gradual Improvement: Switches from Erratic, Infre-
quent, Similar to Consistent, Frequent, Varied, modeling
improved engagement over time.

• Selective Adherence: Switches from Consistent, Fre-
quent, Varied to Consistent, Infrequent, Similar, reflect-
ing reduced breadth and frequency of interaction while
retaining temporal regularity.

• Erratic Behavior: Switches from Consistent, Infre-
quent, Similar to Erratic, Frequent, Varied, simulating
an abrupt shift to chaotic behavior.

• Minimal-To-Detailed: Switches from Erratic, Infre-
quent, Similar to Consistent, Frequent, Varied, modeling
a user who becomes more structured and engaged over
time.

Each of these transitions was implemented by modifying
one or more of the user’s behavioral traits (i.e., logging con-
sistency, interaction frequency, and content variety) after the
midpoint of the simulation. This design enables a structured
test of whether the entropy-based anomaly detection method
can distinguish between stable and transitional users.

The anomalies were selected to produce measurable effects
in entropy across multiple features, such as time of day, fre-
quency, and semantic diversity. By comparing these transi-
tional users with the non-anomalous personas, we aim to as-
sess the sensitivity and specificity of the detection pipeline.

Due to time constraints, only these five transitional users
were included in this study. Nevertheless, this approach pro-
vides a concrete foundation for evaluating the detection of
temporal behavioral changes, and it opens the door for more
extensive simulation-based evaluation in future work.

2.6 Feature modeling
To analyze patient conversations, we selected behavioral fea-
tures that can be reliably extracted from patient-chatbot inter-
actions. These features have also shown relevance in digital
health monitoring, as supported by prior research described
later in this section.

Entropy requires a probability distribution over discrete,
mutually exclusive categories. Therefore, continuous or di-
verse inputs from user logs must be converted into such cat-
egories through a process called discretization. Discretiza-
tion involves grouping data into predefined bins or categories,
for example, dividing times of day into morning, afternoon,
evening, and night. This transformation enables us to repre-
sent the features as frequency distributions of observed be-
haviors within a given time window, which serve as the basis
for entropy calculation.

The choice of bin size is critical: having fewer, meaningful
bins is generally preferable to using very fine-grained bins
(e.g., one per minute), which can lead to sparse data, high-
variance probability estimates, and increased noise.

Selecting appropriate bin numbers involves balancing in-
terpretability with statistical robustness and depends on the
specific use case. In our current system, this process is
mainly based on domain knowledge and informed assump-
tions, such as natural divisions like times of day or response
categories. These assumptions are consistent with those used
in our synthetic data generation, maintaining methodologi-
cal alignment. However, because we are responsible for both
generating the synthetic data and designing the system, this
interplay may confound the results and limit the generaliz-
ability of our findings. We anticipate that more thorough tun-
ing and validation will be required before a fully operational
system can be deployed.

Future work could incorporate data-driven methods such as
equal-frequency binning or clustering, the latter having been
applied in user profiling to identify customer personas [16].
Our current system is a proof of concept and does not yet im-
plement these data-driven or iterative refinement techniques.



However, the initial design allows for future fine-tuning as
additional data and insights become available. Validating bin
stability through entropy estimates and anomaly detection,
alongside iterative refinement, will be important next steps
to ensure bins effectively capture meaningful behavioral vari-
ation without sacrificing reliability.

Table 2: Selected behavioral features and their controlling persona
traits

Feature Controlling Persona Trait
Time of day Consistency
Logging frequency Frequency
Log type Diversity
Semantic similarity Diversity

Table 2 illustrates the behavioral features selected for anal-
ysis and the persona traits designed to control them. Below,
we describe these features and the discretization schemes ap-
plied in this study.

Time of day
This feature captures the time at which each log is made,
providing insight into the patient’s daily routine. To enable
entropy calculation, log times are discretized into four time-
of-day bins: morning from 5:00 to 11:59, afternoon from
12:00 to 16:59, evening from 17:00 to 21:59, and night from
22:00 to 4:59. These bins were selected as exploratory, ex-
perimental values intended to correspond roughly to natural
and commonly recognized periods of daily activity, reflecting
typical human circadian rhythms and social behaviors (e.g.,
waking hours, work periods, evening leisure, and nighttime
rest). However, these bin ranges remain tentative and require
further adjustment and validation in future work to confirm
their effectiveness in capturing meaningful behavioral varia-
tion in this context.

Consistent logging within a specific time window, such as
always in the morning, results in low entropy, indicating pre-
dictable behavior. If the patient logs at varying times, en-
tropy increases, signaling a potential behavioral shift. While
our measure focuses on temporal patterns of logging behavior
rather than physical movement, prior research using mobile
phone sensor data has shown that variations in the entropy
of circadian movement, defined as regularity in daily loca-
tion patterns, and daily activity rhythms are strongly associ-
ated with depressive symptom severity [10]. This suggests
that temporal behavioral features may be informative for pa-
tient monitoring, though further validation in the context of
patient-chatbot interactions is needed.

Logging frequency
Logging frequency can be binned into states based on the
number of logs per day (chosen here as 0–3, 4–6, 7–10, and
10 or more) to capture meaningful differences between low,
moderate, and high levels of engagement. These bins were
selected to provide a balance between granularity and inter-
pretability, while reflecting natural groupings of user activity
observed in preliminary data. In actual patient data, this pa-
rameter is expected to be highly volatile; therefore, adapting

the binning strategy to better reflect personalized patterns is
an important goal for future work.

To the best of our knowledge, entropy-based modeling of
logging frequency in the context of patient-chatbot interac-
tions has not been studied. However, prior work has suc-
cessfully used entropy to model variability in medication fre-
quency as an indicator of non-adherence among patients with
severe mental illness [8]. This suggests a promising direction
for our approach.

Log type
Each log message is categorized into one of several prede-
fined types: glucose, diet, mood, activity, insulin, medication,
sleep, weight, notes, or other. These categories were selected
to represent important areas of diabetes management and to
capture varying degrees of diversity in what users report dur-
ing their interactions, following their persona trait instruc-
tions. Entropy calculated over these categories reflects how
broadly a user engages with different aspects of diabetes man-
agement. High entropy suggests a varied and well-rounded
logging pattern, whereas low entropy may indicate a narrow
or repetitive focus.

Although not specific to diabetes, entropy has been suc-
cessfully applied to analyze food category distributions in
personal diets, helping to model adherence to dietary guide-
lines [17]. This suggests that this type of categorical diversity
may offer insight into behavioral variability.

Semantic similarity
This feature measures how similar each log message is to the
one immediately before it, capturing the degree of repetition
or variation in a user’s reporting style. High semantic similar-
ity between consecutive messages may indicate routine, for-
mulaic, or less engaged reporting, while lower similarity sug-
gests more varied, expressive, or thoughtful input. To com-
pute semantic similarity, each message is first converted into
a vector based on the frequency of each word it contains (a
bag-of-words representation).

The similarity between two consecutive messages is then
quantified using cosine similarity, a standard metric in natural
language processing. Cosine similarity calculates the cosine
of the angle between two word-frequency vectors, resulting
in a score between 0 and 1: a score of 1 means the messages
are nearly identical in word usage, while a score of 0 means
they share no common words. For analysis, these similarity
scores are grouped into the following categories:

• Identical (0.7–1.0): Messages are highly similar or
nearly the same.

• Similar (0.4–0.7): Messages share substantial overlap
but are not identical.

• Moderately different (0.2–0.4): Messages have moder-
ate differences in content.

• Different (0.0–0.2): Messages are largely distinct in
their wording and content.

A user whose messages fall mostly into the “identical” or
“similar” categories may be providing repetitive or habitual
responses, possibly indicating lower engagement.



In contrast, a broader spread across categories, especially
with more “somewhat different” and “different” scores, sug-
gests the user is varying their reports and potentially putting
more thought and effort into their entries.

2.7 Entropy calculation
To quantify the predictability and stability of patient behavior
over time, we computed Shannon entropy over sliding win-
dows of 10 days. Within each window, we considered only
the data points that occurred during those 10 days to estimate
the probability distribution of the behavioral categories for
that specific synthetic user.

For example, if a 10-day window contained 30 log mes-
sages, and 27 were sent in the morning while 3 were sent
in the evening, the empirical probabilities would have values
pmorning = 0.9; pevening = 0.1. Categories not observed
in that window (e.g., afternoon, night) would have a proba-
bility of zero. These probabilities define a discrete distribu-
tion, which is then used to compute the Shannon entropy as
described in Section 2.1. The resulting value quantifies the
behavioral regularity within that time period: lower entropy
indicates more predictable patterns, while higher entropy re-
flects greater variability.

The choice of a 10-day window is inspired by related work
in behavioral anomaly detection using entropy [8], where a
10-day observation window was used to capture temporal pat-
terns in patient behavior. However, this choice is somewhat
arbitrary and may not be optimal for all contexts. Future work
should explore different window lengths and validate their ef-
fectiveness in capturing meaningful behavioral variations in
patient-chatbot interactions.

2.8 Anomaly detection
To identify unusual changes in user behavior, entropy values
computed over sliding 10-day windows were analyzed using
a moving average anomaly detection method. For each en-
tropy value starting after an initial set of observations, the
mean and standard deviation of the previous five entropy val-
ues were calculated. An entropy value was flagged as an
anomaly if it deviated from this moving average by more than
two standard deviations. Therefore, for each window, the sys-
tem returns a binary result that marks the window as either
normal or anomalous.

This approach allows for adaptive detection of signifi-
cant deviations relative to recent behavioral patterns, cap-
turing abrupt increases or decreases in entropy that may in-
dicate shifts in adherence or engagement. The output con-
sists of flagged anomaly points indicating potential behav-
ioral changes that warrant further investigation.

While this method provides a simple and interpretable
baseline, more sophisticated, personalized anomaly detection
techniques tailored to individual user patterns could substan-
tially enhance detection accuracy. Incorporating user-specific
models or machine learning approaches represents a promis-
ing direction for future improvement.

3 Results
This section presents the findings from evaluating the
entropy-based anomaly detection system using synthetic

patient-chatbot conversations across 13 distinct user per-
sonas. The analysis covers behavioral pattern differentia-
tion, entropy modeling effectiveness, anomaly detection per-
formance, and system behavior characteristics.

3.1 Behavioral pattern analysis
Baseline entropy characterization
The entropy-based system produced distinct baseline entropy
values across different user personas. Table 3 shows the base-
line entropy distributions across all 13 personas for all the
features.

Taking as an example the “time of day” feature, consistent
personas (CFV, CFS, CIV, CIS) exhibited baseline entropy
values around 1.9, while erratic personas (EFV, EFS, EIV,
EIS) showed baseline entropy closer to approximately 1.5.
Persona CIV was an outlier in the consistent group, having a
mean entropy of only around 0.9.

Figures 1, 2, and 3 present entropy values over time for the
“time of day” feature across three simulated users. Each plot
covers 21 sliding windows, representing 30 days of messages
with a window size of 10.

Figure 3 depicts a transitional user, with the anomalous pe-
riod following day 15 highlighted in orange to indicate the
windows that could catch the behavioral shift. The anomaly
detection system flagged 4 windows in Figure 1, 3 in Figure 2,
and 4 in Figure 3, marked by red indicators on each timeline.
Out of these, only three windows, the first 3 in the third graph,
were true anomalies, with the rest being false positives.

Table 4 shows the relevant metrics for anomaly detection.
Note that recall and F1 score are undefined for datasets with
no anomalies, and are therefore left blank.

From the table, we can also extract the false positive rate
as FPR = FP

FP+TN ≈ 15%, which is relatively high for an
anomaly detection system.

4 Discussion
This study demonstrates the feasibility of using entropy-
based behavioral modeling to detect anomalies that may in-
dicate non-adherence among users of chatbot-based diabetes
lifestyle management support systems. The proposed system
addresses a gap in digital health monitoring by providing an
automated approach to identify behavioral shifts that corre-
late with treatment disengagement.

The entropy-based anomaly detection system achieved ap-
proximately 76% accuracy and 35% recall in detecting behav-
ioral irregularities in synthetic patient-chatbot conversations.
These results demonstrate that on the test data, Shannon en-
tropy can effectively quantify behavioral variability across
multiple dimensions of patient engagement, including tem-
poral patterns, interaction frequency, content diversity, and
semantic similarity of communications.

The system’s ability to establish individualized behavioral
baselines proves particularly valuable, as it adapts to personal
habits rather than relying on predefined universal patterns.
This personalized approach addresses the inherent variabil-
ity in patient behaviors and preferences, making the system
more suitable for diverse patient populations. The modu-
lar architecture of the system, consisting of data generation,



Figure 1: Entropy evolution graph calculated by the system for conversations of the synthetic user with traits Consistent, Frequent, Varied.
Anomalies are marked by red dots.

Figure 2: Entropy evolution graph calculated by the system for conversations of the synthetic user with traits Erratic, Infrequent, Similar.
Anomalies are marked by red dots.

Figure 3: Entropy evolution graph calculated by the system for conversations of the synthetic user with transitional profile ”Adherence
Breakdown” (shifting from traits Consistent, Frequent, Varied to Erratic, Infrequent, Similar). Anomalies are marked by red dots. Anomalous
windows (windows that could catch the injected behavioral shift) are highlighted in orange.



Table 3: Baseline entropy values (mean ± standard deviation) by persona and feature

Persona Time of Day Log Frequency Log Type Semantic Similarity
CFV 1.95 ± 0.01 0.98 ± 0.01 3.01 ± 0.03 0.82 ± 0.05
CFS 1.98 ± 0.01 0.89 ± 0.09 2.99 ± 0.11 0.89 ± 0.14
CIV 0.88 ± 0.00 0.00 ± 0.00 2.62 ± 0.17 0.72 ± 0.00
CIS 1.91 ± 0.01 0.47 ± 0.00 2.59 ± 0.07 0.42 ± 0.10
IFV 1.47 ± 0.06 0.97 ± 0.05 3.06 ± 0.08 1.11 ± 0.16
IFS 1.55 ± 0.02 0.99 ± 0.01 2.87 ± 0.08 1.14 ± 0.05
IIV 1.52 ± 0.06 0.00 ± 0.00 2.79 ± 0.15 0.69 ± 0.09
IIS 1.52 ± 0.03 0.67 ± 0.10 2.69 ± 0.07 0.81 ± 0.09
(Transitional) Adherence Breakdown (CFV to EIS) 1.33 ± 0.03 0.85 ± 0.06 3.10 ± 0.01 0.64 ± 0.08
(Transitional) Gradual Improvement (EIS to CFV) 1.61 ± 0.06 0.00 ± 0.00 2.87 ± 0.02 0.88 ± 0.01
(Transitional) Selective Adherence (CFV to CIS) 1.41 ± 0.04 0.77 ± 0.16 3.10 ± 0.03 0.69 ± 0.07
(Transitional) Erratic Behavior (CIS to EFV) 1.39 ± 0.03 0.00 ± 0.00 2.67 ± 0.14 0.72 ± 0.08
(Transitional) MinimalToDetailed (EIS to CFV) 1.59 ± 0.10 0.00 ± 0.00 2.54 ± 0.14 0.65 ± 0.02

Table 4: Anomaly detection metrics (true positives, false positives, false negatives, true negatives, accuracy, precision, recall, F1 score) for
all personas and features

Persona TP (total) FP (total) FN (total) TN (total) Acc (total) Prec (total) Rec (total) F1 (total)
CFV 0 13 0 74 0.85 0.00 0.00
CFS 0 15 0 69 0.82 0.00 0.00
CIV 0 6 0 77 0.93 0.00 0.00
CIS 0 11 0 73 0.87 0.00 0.00
IFV 0 10 0 78 0.89 0.00 0.00
IFS 0 19 0 69 0.78 0.00 0.00
IIV 0 7 0 63 0.90 0.00 0.00
IIS 0 13 0 68 0.84 0.00 0.00
Adherence Breakdown 12 9 28 35 0.56 0.57 0.30 0.39
Gradual Improvement 17 5 23 39 0.67 0.77 0.42 0.55
Selective Adherence 19 6 21 38 0.68 0.76 0.47 0.58
Erratic Behavior 10 10 30 34 0.52 0.50 0.25 0.33
Minimal To Detailed 13 8 27 36 0.58 0.62 0.33 0.43
Total 71 132 129 753 0.76 0.35 0.35 0.35

feature extraction, entropy calculation, and anomaly detec-
tion components, provides a flexible framework that can be
adapted for integration with existing digital health platforms
like CHIP.

The findings suggest that automated behavioral monitoring
through entropy analysis could enhance patient care through:

• Early detection: Identifying potential non-adherence
before clinical outcomes deteriorate

• Personalized monitoring: Adapting to individual pa-
tient patterns rather than using one-size-fits-all ap-
proaches

• Timely interventions: Enabling healthcare providers to
offer targeted support when behavioral changes are de-
tected

• Reduced clinical burden: Automating the monitoring
process to free up healthcare resources for direct patient
care

4.1 Limitations
While the system demonstrated promising accuracy, the high
false positive rate of approximately 15% indicates room for
improvement. This over-flagging primarily occurred in users
with naturally high behavioral variability, suggesting that
more sophisticated personalization techniques are needed to
distinguish between genuine anomalies and normal individ-
ual variation.

Another key limitation lies in the discretization process.
The bin sizes used to convert continuous behavioral data
into categorical values—such as fixed divisions of the day
into morning, afternoon, evening, and night—were selected
heuristically and not empirically validated. These manually
defined categories may not optimally reflect the nuances of
individual user behavior, potentially contributing to inaccu-
rate entropy calculations and misclassification of normal pat-
terns as anomalies. Future work should explore data-driven
or adaptive binning strategies that better capture the structure
of user-specific behavior.

Additionally, the system was evaluated entirely on syn-



thetic data. While synthetic conversations allow for con-
trolled insertion of behavioral anomalies and eliminate pri-
vacy concerns, they inherently lack the complexity, noise, and
variability found in real-world clinical interactions. This lim-
its the generalizability of the findings and may lead to an over-
estimation of system performance in practical deployments.
Nevertheless, the use of synthetic data enabled systematic
testing and provided a valuable first step in evaluating the fea-
sibility of entropy-based anomaly detection in this domain.

5 Future Work
5.1 Integration with CHIP
Integrating the entropy-based anomaly detection system into
the CHIP conversational support platform could enhance its
ability to identify early signs of patient disengagement or
non-adherence. This would enable more timely and proac-
tive interventions by healthcare providers.

The system’s modular Python-based architecture supports
seamless integration with CHIP’s infrastructure. Its sliding-
window analysis enables near real-time monitoring, while the
entropy-based metrics provide interpretable signals clinicians
can act on. By continuously tracking entropy across behav-
ioral features, the system can help maintain engagement and
support responsive diabetes care.

5.2 Advanced Anomaly Detection Algorithms
The current threshold-based method serves as a proof of con-
cept but lacks adaptability. Future work should explore more
advanced techniques to improve accuracy and personaliza-
tion.

Dynamic Binning. Static bin sizes may not capture in-
dividual behavioral variation. Adaptive methods like equal-
frequency binning and clustering [16] could better reflect nat-
ural behavioral groupings. Cross-validation and performance
metrics could guide optimal bin selection.

Personalized Thresholds. Global thresholds overlook in-
dividual baselines. User-specific thresholds informed by his-
torical data, performance feedback, and clinical context could
reduce false positives.

Machine Learning Approaches. Algorithms such as Iso-
lation Forests offer robust alternatives, identifying anoma-
lies based on data separability. Isolation Forest is a widely
used anomaly detection technique that functions by recur-
sively partitioning the dataset using random splits. The un-
derlying intuition is that anomalies are easier to isolate and
therefore require fewer splits on average during the partition-
ing process. Other candidates include One-Class SVMs, au-
toencoders, and ensemble models.

Feature Expansion. Incorporating linguistic sentiment,
interaction timing, or other patterns could improve detection.
Temporal and emotional patterns may offer additional behav-
ioral insight.

Feature Selection. As features grow, dimensionality re-
duction methods like PCA and correlation analysis will be
key to maintaining model efficiency and interpretability.

5.3 Clinical Validation
Real-world validation is essential to assess the system’s prac-
tical utility in healthcare settings.

Data Collection. Future studies should involve longitudi-
nal interaction data from actual diabetes patients using plat-
forms like CHIP. Collaborations with healthcare providers
and adherence to ethical data governance will be crucial for
responsible data use.

Outcome Correlation. Detected anomalies should be
evaluated against real adherence lapses, clinical metrics (e.g.,
HbA1c, hospital visits), and patient outcomes. Additionally,
the effectiveness of system-triggered interventions should be
measured to assess clinical relevance.

5.4 Final Remarks
This study presents an initial implementation of entropy-
based behavioral anomaly detection using synthetic diabetes
patient data. While useful for controlled testing, clinical val-
idation is necessary to assess real-world effectiveness.

The methods proposed—particularly sliding-window en-
tropy and simple anomaly flagging—offer a baseline for in-
tegrating behavioral monitoring into digital care platforms.
With further refinement and real-world testing, such systems
could support earlier detection of disengagement and improve
chronic disease management through more adaptive and per-
sonalized care.

6 Acknowledgements
I would like to express my sincere gratitude to Prof. C.M.
Jonker, J.D. Top, MSc., Dr. H.A. de Weerd, and Prof. L.C.
Verbrugge for their guidance and support throughout this
project. Their insights, feedback, and mentorship were es-
sential in shaping the direction of this research. This work
would not have been possible without their continued help
and expertise.

7 Responsible Research
7.1 Ethical concerns
While the ability to detect behavioral anomalies can support
timely interventions and improve patient outcomes, it also in-
troduces ethical risks if misused. In particular, identifying
moments of vulnerability—such as disengagement, stress, or
emotional instability—could be exploited to manipulate be-
havior rather than support it. For instance, commercial ac-
tors might use such insights to target individuals with per-
suasive messaging when they are most susceptible, or in-
surers could discriminate based on inferred patterns of non-
adherence. These risks underscore the importance of imple-
menting strong safeguards, including transparency about data
use, strict access controls, and clear boundaries that prevent
behavioral data from being repurposed for non-clinical or co-
ercive ends.

7.2 EU AI Act
Under the European Union’s AI Act, systems that monitor
health-related behaviors—particularly those used in medical
contexts—may fall under the category of high-risk AI sys-
tems. The anomaly detection system proposed in this project,
when integrated into a platform like CHIP and used to influ-
ence clinical decision-making or trigger interventions, would



likely be subject to these high-risk requirements. This in-
cludes obligations around transparency, robustness, human
oversight, and risk management. Although the current imple-
mentation uses synthetic data and is not deployed in a clinical
setting, future work involving real patient data and integration
into healthcare workflows must comply with the AI Act’s pro-
visions. This entails conducting impact assessments, ensur-
ing data quality and security, documenting model behavior,
and maintaining human control over final decisions. Proac-
tively aligning the system with the AI Act will be essential to
ensure legal compliance and to uphold patient trust in data-
driven healthcare tools.

7.3 Reproducibility
Due to constraints related to time and available resources, this
study utilizes a large language model (LLM) to generate syn-
thetic patient-chatbot conversations instead of collecting real
clinical data. While synthetic data enables the exploration
and validation of analytic methods in a controlled setting, it
does not fully capture the complexity and variability of real-
world patient interactions. Therefore, findings based on these
simulated conversations should be interpreted with caution
and validated with clinical studies in the future to ensure gen-
eralizability and clinical relevance. This approach reflects a
pragmatic balance between rigorous research and ethical con-
siderations during early-stage development.

In order to ensure the reproducibility of this study, the
codebase and prompts used for the project can be found inside
a code repository that is publicly accessible [18].

In order to ensure the synthetic conversations generated of
the large language model are reproducible, we set the tem-
perature value of the local model to 0, and the model seed
number was fixed to “2025”.

A Data generation prompt example
A.1 LLM prompt
As an example of the prompts given to the locally-hosted
large language models, the following is the full prompt for
generating the conversations for the user persona with traits
Consistent, Frequent, Varied. This was generated programat-
ically by combining multiple parts, each corresponding to a
different trait or feature:

“You are a diabetic patient using a chatbot to log health
data.

Your behavioral characteristics:
- Maintains strict adherence to logging schedule
- Uses precise timestamps and regular intervals
- Shows high attention to timing details
- Rarely deviates from established patterns
- Logs multiple times throughout the day
- Provides frequent updates on status
- Maintains detailed daily records
- Shows high engagement with logging
- Uses diverse log types
- Provides varied and detailed content
- Shows interest in multiple aspects of health
- Maintains comprehensive records
Based on these characteristics, you should:

- Adjust your language and tone accordingly
- Match the expected logging frequency
- Use appropriate level of detail
- Maintain consistency with your trait patterns
It is 08:00 (morning), and you want to log a glucose update.
Guidelines for glucose logging:
Report your current blood glucose level:
- Include the exact value in mg/dL
- Specify if it’s fasting, pre-meal, post-meal (how many

hours after), or random
- Mention any factors that might have affected the reading
- Note if the reading is within your target range
Example: ’My fasting glucose this morning was 95 mg/dL,

which is within my target range.’
Generate a natural, conversational message as if you’re

talking to your healthcare provider. Be specific and include
all relevant details. Keep your message concise but informa-
tive. Use appropriate medical terminology where relevant.

Your message:”

A.2 LLM response
The following are three example messages generated by the
large language model based on the previously stated prompt:

“Good morning, doc! It’s 11:32 AM, and I’ve just finished
my breakfast. I had a bowl of oatmeal with 1 banana, 1 tbsp
of honey, and a handful of almonds. I estimate the total car-
bohydrate intake to be around 75g. I’m sticking to my meal
plan as usual.”,

“Hi there, it’s 12:04 PM, and I just took my metformin
1000mg with my lunch. No side effects to report today. I’ve
been maintaining my schedule consistently, and my blood
sugar levels have been stable. I’ll keep you updated on any
changes. Let me know if you need any additional informa-
tion.”

“Hi there, just wanted to log my sleep from last night. I
managed to get a full 8 hours of sleep, but the quality wasn’t
great, I’d rate it a 5/10. I woke up twice during the night, but
overall I feel okay this morning. My morning glucose reading
was 135 mg/dL.”
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