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Recursive Gabor Filtering
Ian T. Young, Senior Member, IEEE, Lucas J. van Vliet, and Michael van Ginkel

Abstract—In this paper, we present a stable, recursive algo-
rithm for the Gabor filter that achieves—to within a multiplicative
constant—the fastest possible implementation. For a signal
consisting of samples, our implementation requires ( )
multiply-and-add (MADD) operations, that is, the number of com-
putations per input sample is constant. Further, the complexity is
independent of the values of and in the Gabor kernel, and the
coefficients of the recursive equation have a simple, closed-form
solution given and . Our implementation admits not only a
“forward” Gabor filter but an inverse filter that is also ( )
complexity.

Index Terms—Gabor filtering, Gabor wavelets, IIR filters, mul-
tidimensional filtering, recursive filtering.

I. INTRODUCTION—WHY GABOR FILTERING?

WHILE operators that focus on global information are es-
sential to describing a variety of physicalsystems, oper-

ators that focus on local information are essential to analyzing
physicalsignals. For example, linear, time-invariant (or shift-in-
variant) systems are usually analyzed with Fourier or Laplace
transforms, which are global operations, but as the examples in
Fig. 1 show, the information in a signal is usually local.

Alhtough there are many approaches to processing signals
in such a way as to examine the local character of structure,
the Gabor filter has a number of elegant properties that make it
highly suitable for this purpose. The complex, one-dimensional
(1-D) Gabor filter is given by [1]

(1)

It is clear that the Gabor filter is themodulationof a Gaussian
kernel by the complex term . The use of the complex term
means that we will be using complex arithmetic in all calcula-
tions.

To examine local structures, we seek a filter width intime
(or space) that is narrow. To obtain good frequency resolution,
we seek a filter width infrequencythat is similarly narrow.
The Gaussian envelope in (1) achieves the smallest possible
time-bandwidth product and, thus, allows us to perform “local”
spectral analysis [1], [2]. In the sense of simultaneous time and
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Fig. 1. (a) MRI image revealing (local) anatomical structures. (b) Leaning
tower of Pisa.

frequency selectivity, the Gabor filter is, therefore, an optimum
choice.

Further, a number of authors have pointed out the close re-
lationship between the neurophysiological processing of visual
and tactile stimuli and families of 1-D and two-dimensional
(2-D) Gabor filters [3]–[8]. In particular, Bakeret al., in re-
ferring to their observation of Gabor-type oscillations in neu-
rophysiological measurements [8, Fig. 9, p. 238], writes “these
oscillations are a pervasive feature of the nervous system.”

The possibilities for fast implementation of the Gabor
time-frequency spectrum (spectrogram) have been examined
by [9]–[11]. To our knowledge, the fastest algorithms that have
been described are in Qiu [11] and, for a signal consisting
of samples, the time–frequency spectrum has complexity

. Our implementation of an IIR Gabor filter (as
opposed to a complete determination of a Gabor spectrogram)
is based on our recursive Gaussian implementation. Because
of this, we summarize the salient aspects of the Gaussian
procedure.

II. REVIEW OF THE RECURSIVEGAUSSIAN

In two previous papers, we have developed [12] and refined
[13] a method to implement the convolution of signals with
Gaussian kernels through the use of two recursive filters of the
form:

forward ( increasing):[shown in (2) at the bottom of next
the page] andbackward ( decreasing): [shown in (3) at the
bottom of the next page].

Note that in this implementation, shown in Fig. 2, the forward
filter has an infinite impulse response (IIR), which we can call

, and the backward filter has the infinite impulse response
.

The concatenation of the two filters, as given in (2) and (3),
leads to a total filter , whose Fourier trans-
forms are related by . In other words, the re-
sulting filter is zero phase.
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Fig. 2. Gaussian filter as concatenation of two recursive filters.

We approach the Gaussian filtering through the complex fre-
quency domain and use a rational approximation to the Gaussian
spectrum given by [12] and [14, Eq. 26.2.20]:

(4)

where

(5)

Note our use of instead of , which is an issue that will be
discussed later. The sixth-order polynomial in the denominator
of has six roots that, due to the special structure of the
polynomial, only even powers of, can be written as shown in
(7), where

(6)

These three values are central to the Gabor
filter as well. They are solely determined by the values of

and if another choice of is made—for ex-
ample, to optimize the Gaussian fit with another criterion—then
the values of will change as well.

The expression is then factored into theproductof two
terms : with poles in the left-half
plane and with poles in the right-half plane

(7)

For reasons discussed in [12], we use the backward difference
technique and the forward difference technique [2] to transform
the two, stable, analog filters characterized by and
into two, stable, digital filters and . The backward
technique is used to transform into , and the for-
ward technique is used to transform into . These

filters then have -transforms given by

(8)

(9)

Algebraic manipulation of the various terms using Mathematica
[15] yields

scale

scale

scale

scale
(10)

The five coefficients scale are real and are func-
tions of just four numbers , as given in (10).
The first three of these are given in (6). The last numberrep-
resents the value that must be used in(8) and (9) to achieve
a desired standard deviation. Using a new analytical formula
that is a significant improvement to the empirical one presented
in [12], the relationship betweenand for recursive Gaussian
filtering is given by

(11)
The details of the development of this formula are given in the
Appendix . For , the Gaussian envelope in (1) is too
narrow and, consequently, undersampled and, in general, to be
avoided. The accuracy, speed, and guaranteed stability of this
recursive Gaussian implementation are discussed extensively in
[12] and [13], as is the choice of optimal values for the coeffi-
cient set from (5).

III. GABOR ALGORITHM

A. From Gauss to Gabor

Our recursive Gabor filter uses a combination of our recur-
sive Gaussian implementation plus a well-known property that
relates modulation at a frequency in the (discrete) time do-
main and shifting in the frequency domain. To be specific, if the
signal has -transform , then from [2, pp 650–651],
we have

(12)

(2)

(3)
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Note that the replacement ofwith represents a rota-
tion of angle around the point in the complex
-plane. The direct consequence of this is that the Gaussian filter

pair and become the Gabor filter pair and

(13)

(14)

where and are polynomials in . The Gabor filter
transfer function is thus given by

(15)

The coefficient of each term in in [see (14)] is just the
complex conjugate of the term in in [see (13)].

The resulting Gabor recursive equation pair is
forward ( increasing):

in

(16)

backward( decreasing):

out

out

out

out (17)

where

scale
(18)

B. Implementation Issues

The expression for, which is described in (11), was derived
for the Gaussian filter. For the Gabor filter, the problem is much
more complex. A simple, closed-form solution as in (11) does
not seem possible. Based on the approach we used in [12], we
have performed a regression analysis on to determine
their relationship. This has led to the empirical result

(19)
Further, let us assume that the 1-D signal that is to be filtered
is of length , that is, . In the forward (causal)
direction, it is important to use proper values for the first three
values of (16). These are given by

in
(20)

The recursion then starts at and proceeds to . In
the backward (anti-causal) direction, it is equally important to
use proper values for the “first” three values of (17). These are
given by

out out out

(21)

The recursion then starts with and continues to
.

Applying this algorithm to a simple impulse input to achieve
the discrete time equivalent of (1) produces the impulse re-
sponse shown in Fig. 3 for several values of and

.
The last example in Fig. 3 shows an interesting effect. The

total signal width is , and is 20.0. For the impulse
response to be sufficiently small at the boundary of the signal,
we usually require a Gaussian to be down by about. For pur-
poses that will become clear later, we will require the Gaussian
impulse response to be down by . This must occur at both
ends of the signal, that is, at and . This means that

and should satisfy the constraint . This constraint
is not satisfied in the example, and that explains the
truncated ends of the Gaussian.

Extending this argument to the frequency domain means that
to avoid distortion of the frequency spectrum, we must have a
such that the Gaussian spectrum has also decreased by the same
amount at the maximum frequency . This implies that

. This translates into the constraint given in (11). Putting
these two constraints together—the avoidance of spatial aliasing
and spectral aliasing—leads to

(22)

C. Accuracy of Approximation

Although Fig. 3 and (22) give an indication of how the choice
of can produce obvious distortions in the final result, it is also
important to examine the error that occurs due to the recursive
Gabor approximation itself. To do this, we use the error mea-
sures that were used for evaluation of the recursive Gaussian
approximation: the maximum absolute error and the root-square
error. These are defined as [12], [13]

(23)

where is the complex difference between the ideal
Gabor impulse response gabor and the result of the
recursive approximation from (17). Thus,

. However

gabor gauss (24)
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Fig. 3. Complex impulse responseg[n] and Fourier spectrumG(
) for various values of
 and�. Signal length isN = 100. Gaussian envelopes have been
drawn for purposes of comparison.

where gabor and gabor are the true Gabor and Gauss fil-
ters, respectively, and

out out (25)

where out and out are our recursive approximations to
the Gabor and Gauss, respectively. The fact that this last result
(25) can be factored is a direct consequence of ourconstruction
of the Gabor approximation as given in (12). Using these two
results we see that

gabor out

gauss out

gauss out (26)

The last term is simply the error associated with the recursive
Gaussian approximation: an error that was studied in [12]. Eval-
uation of these error measures over the range yields
the results shown in Fig. 4: a result that is independent of.

D. Inverse Filtering

Our procedure also admits a direct implementation of the in-
verse filter. If the forward transform represented by (16) and
(17) is given (in the -domain) by the equation

OUT

(27)

then the inverse filter is simply:

Inv (28)

The filters and are all-pole filters, which means
that their inverses are all-zero filters that are nonrecursive and
stable. The difference equations are given by

Fig. 4. Error measures as a function of� and
. Both curves are independent
of 
.

forward ( increasing):

out out

out out (29)

backward( decreasing): [see (30) at the bottom of the next
page].

E. Computational Complexity

Use of this recursive Gabor implementation then becomes a
matter of using the following “recipe”:

1) Choose and based on the desired goal of the filtering.
2) Use (19) to determine.
3) Use (10) and (18) to determine the various coefficients.
4) Use (20) and (21) to initialize the procedure.
5) Apply the forward filter with (16).
6) Apply the backward filter with (17).
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Fig. 5. Gabor filtering of a real image produces a complex result. We show here the absolute value of that complex result. The value of
 in the last two rows
is based on a neurophysiological model and is given by
 = �=�.

As (16) and (17) require a total of seven complex multiplies
and six complex additions for each output point, the complexity
of the Gabor filtering algorithm for input data points is

, where is the constant associated with one complex
MADD. The complexity per input point is thus a constant .
This means that to within this multiplicative constant, this is
the fastest possible implementation as every input pointmust
be “visited” at least once. If we were to use an implementation
based on an FFT for the Gabor filtering, which assumes that

is a composite number, then the complexity per input point
would be . While thiscouldbe less than , this
would only be for trivially small values of . For example, for

, Gabor filtering with the recursive procedure is
already faster than an FFT procedure.

F. Two-Dimensional Filtering

Gabor filtering is frequently used in multidimensional signal
processing. By applying the recursive Gabor procedure previ-
ously described along each dimension of the signal, it is possible
to implement the class ofseparableGabor filters. We show in

Fig. 5 the effect on three images of Gabor filtering applied in
several directions. The 2-D Gabor filter kernel is defined as

(31)

In Fig. 5, we use . This filter can then be applied
at various orientations through variation of the frequencies as

and . We also show in Fig. 5
the results of Gabor filtering for specific choices ofand for
the images shown in Fig. 1. In the last two rows of these results,
we have imposed a constraint suggested by Lee [7, eq. (10)] that

. As explained in his excellent paper, the inverse rela-
tionship between and is based on neurophysiological data
for the visual cortex. The exact choice ofis not critical, and
for the examples in Fig. 5, we have chosen . This brings

(30)
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us to a consistent representation with respect to (22). Automatic
contrast scaling has been applied to the resulting images.

IV. GABOR WAVELETS

With one addition, the technique described previously can be
used to produce a Gabor wavelet representation of a signal. A
requirement for a family of signals to be admissible as wavelets
is that they have zero mean, that is, a dc component of zero
[7, eq. (10)]. From the results shown in Fig. 3 as well as the
form of (1), it is obvious that although the imaginary part of the
Gabor impulse response has zero mean because it is an odd
function, the real part of is even and does not have zero
mean. The following well-known result gives us a mechanism
to explicitly determine the value of the dc component

(32)

The result is quite complicated but is presented here for the sake
of completeness:

Numerator
Denominator

(33)

where

Numerator

Denominator

(34)

For a specific set and specific choices for and , the value
of can be determined. For the example shown at the top of
Fig. 3, where and , . By
subtracting this value from the total transfer function

[7, eq. (14)], we create a new (Gabor wavelet) transfer
function whose value is zero for . This transfer
function will have both zeroes and poles

(35)

The actual implementation of (35) as a recursive filter requires
an alternative approach. Each of the polynomials and

is a third-order polynomial and, thus, has three complex

roots. The expression can therefore be rewritten as a
parallel operation instead of the series one illustrated in Fig. 2:

(36)

where are the roots of , and
are the roots of . The various ’s

are constants that must be determined by standard partial
fraction expansion techniques. The actual subtraction of
need only be associated with one of the six terms, for example

(37)

The wavelet filtering from (35) can thus be implemented as six
parallel operations that are then added together. If our purpose
is wavelet analysis, then the presence of zeroes will not be a
problem, but if our intent is to reconstruct the original signal
from the wavelet representation, then the inverse technique in-
volving recursive filtering described previously will not work
due to the guaranteedinstabilityof . We are currently
exploring a recursive procedure for signal reconstruction from
the wavelet representation that will avoid this problem.

V. CONCLUSIONS

This approach to Gabor filtering described here provides an
accurate and fast algorithm that is appropriate when the values
of and are known. When a range of’s must be investigated
(as, for example, in a Gabor time-frequency spectrum), then the
more general approach, such as that in [11], should be consid-
ered. As presented in Section III-C, the accuracy is the same
as the results we achieved for recursive Gaussian filtering: re-
sults that are sufficient to the task. We will, however, continue to
seek an analytical solution to replace the empirical result in (19).
As shown in Section III-E, the computational complexity for
input samples is , which is faster than an FFT approach.
In every case, the avoidance of aliasing requires a constraint on
the choice of for a given signal length , as given in (22):

.
The algorithm can be applied to multidimensional signals

when one is interested in the class of separable filters such as
, as shown in (31). While this

limits the domain of applicability, there are still sufficient ex-
amples that fall into this category as to warrant its description.
Examples include the detection of lines and edges in man-made
objects.

We have developed an inverse to the Gabor filter as well as
an algorithm for Gabor wavelet representation. It should be ap-
parent that we do not (as yet) have a mechanism for producing a
recursion based on eitheror . This means that a signal must
be filtered for eachand everyvalue of to produce the
desired result. In certain application domains, however, when a
relationship, such as , is known, an evaluation over
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all ’s is unnecessary when a search over the desired range of
’s is performed.

APPENDIX

There is a well-known relationship between the calculation of
the second moment of a distribution and its exponential trans-
form. We will assume for this discussion that we are dealing
with even, Gaussian-shaped distributions or their even approxi-
mations that are everywhere non-negative. If the distribution is
continuous, then the variance is given by

(38)

where is the Laplace transform of . If the signal is
discrete, then

(39)

where is the -transform of . To treat the second mo-
ments as the variances of distributions, we have normalized (38)
and (39) with and and used the assumption
of an even distribution (e.g., ), meaning that the
average is zero.

Applying (38) to (4) implies that if we were implementing
Gaussian filtering by differential equations and not difference
equations, we would then have the result in [13], namely

(40)

This is a clear indication that there is a deterministic transfor-
mation of the parameterto the width . We are dealing, how-
ever, with difference equations that provide a recursive method
to produce a Gaussian impulse response. Applying (39) to the
product of (8) and (9) yields

(41)

where the coefficients are defined in (10). Substituting these
values gives

(42)

Equation (42) is quadratic in, leading to a straightforward ex-
pression for determining starting from . Before proceeding,

however, let us first examine the value of this expression for the
specific values of given in (6). Substitution leads to

(43)

The first term is recognizable from (40) as being due to the poly-
nomial approximation in (4). The second term in (43) (the term
that is linear in ) is due to the finite difference approximation.
At this point, we can solve the quadratic (43) to determine ,
as given in (11). Considering the general case as defined in (42),
however, allows us to develop an expression for that can
be used with other optimization criteria that lead to another set

.
To determine the requiredcorresponding to a desired, we

use the standard quadratic equation and then
write one of the solutions as

(44)

Mathematica [15] easily identifies the terms in (42),
giving the general solution

(45)

The values of the coefficients are given in (6), and this gives,
on substitution in (45)

(46)

This leads immediately to (11). Should we desire to use another
optimization criterion to choose the set, then this will lead to
another set and, eventually, to new values for (46).
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