

I

Deep Reinforcement Learning

for Ride-hailing Systems

An experimental study on optimising matching radius for ride-
hailing systems using Deep Reinforcement Learning

Master Thesis

Honghao Zhao

D
el

ft
 U

n
iv

er
si

ty
 o

f T
ec

hn
ol

og
y

Deep Reinforcement Learning

for Ride-hailing Systems

An experimental study on optimising matching radius for

ride-hailing systems using Deep Reinforcement Learning

by

Honghao Zhao

To obtain the degree of

Master of Science

in Civil Engineering
at the Delft University of Technology,

to be defended publicly on Friday September 20, 2024.

Cover: AI generated image of a city scene, obtained from openai.com/dall-e-3

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Student number: 5735289

Project duration: Nov 14, 2023 －Sep 20, 2024

Thesis committee: Prof.dr. Oded Cats, Delft University of Technology, Chair
Dr. Jie Gao, Delft University of Technology, Main Supervisor
Dr. Jie Yang, Delft University of Technology, Second Supervisor
Mr. Weiming Mai, Delft University of Technology, Daily supervisor

I

Acknowledgements

This thesis brings an end to my master program at the TU Delft. This work and my passion originate

from the interest I have in urban developments, especially transportation systems within them. China is

undergoing a rapid urbanism development, with various modes of transportation continuously emerging.

Over the past two decades, I have witnessed and experienced numerous traffic and transportation

changes in China, such as the construction of the high-speed rail network, the rapid development of

electric vehicles, and the popularity of ride-hailing services. In the midst of these changes, I began to

develop a strong interest in transportation and the knowledge behind it. The Traffic Technology and

Transport programme at TU Delft provided a path to knowledge for this passion of mine. Through my

master research project and various courses, I am able to explore the field of traffic and transport in

depth and further develop my interest. This thesis research project was enjoyable but also challenging.

I have encountered many difficulties in this research project, but I can now proudly say that all the hard

work has paid off. I could not have completed my research without the help and support from many

people, here I would like to take this opportunity to express my deepest gratitude to them.

First of all, I would like to thank my family, especially my parents for their support. It was you who

allowed me to study at TU Delft and paved the way for me to explore my interests in the field of transport

engineering. This master thesis report is dedicated to my family and I would like to express my deepest

gratitude for the unconditional support, encouragement and love you have given me. Without your

support and encouragement, I would not be able to achieve what I am today. Your guidance to me has

played an irreplaceable role in my life and educational journey, from the beginning of shaping my

personality to today's graduation from TU Delft. Thank you for supporting me unconditionally and

guiding me on how to achieve my dreams.

I would also like to thank the members of my thesis committee. I am grateful to Professor Oded Cats

for your meticulous guidance during my thesis research. Your advice has been invaluable in the

research and writing of this thesis. Dr. Jie Gao, thank you for introducing and guiding me to the field of

Reinforcement Learning. Your enthusiasm for Reinforcement Learning sparked my interest in exploring

its potential applications in transportation. Your daily guidance has helped me conduct my research in

the right direction. Weiming, I am grateful for your careful and patient guidance throughout the entire

research and master thesis, especially when I was confused about the simulation environment and

Reinforcement Learning algorithms. Your advice and guidance have continually assisted me in

smoothly conducting my research.

Finally, a million thanks to my buddies in the Netherlands for an amazing two-year time. I am grateful

that you are my excellent classmates and friends to help during the two years of master studies.

Countless nights and dinners with you have been weekly sources of entertainment, joy, and stress-

relief to take me away from the stress of studying and research. Thank you for all the support, happy

moments, and advice you have given me. I also want to thank my friends back in China. Your friendship

is like that of a family, making me feel the warmth of home even while far away from China. Despite the

distance, you can always find ways to help and uplift me.

Honghao Zhao

Delft, July 2024

II

Abstract

In the field of public transportation, environmentally friendly and convenient transportation modes are

the future trends. The ride-hailing services is an important component of them. However, current ride-

hailing systems, particularly the matching systems, still have issues related to low system efficiency

and bad user experience. Although existing ride-hailing rider-driver matching system can allocate travel

demands and drivers to a certain extent, they still have deficiencies in certain scenarios. For example,

they cannot ensure effective rider-driver matching during peak hours, or they cannot find a good balance

between pick-up distance and matching rate. As Reinforcement learning (RL) has been proven in many

studies to be applicable and effective in solving complex and dynamic optimization problems. This study

aims to explore how Reinforcement Learning (RL) can be adapted to the ride-hailing matching system

to optimize system efficiency and user experience through a dynamic matching radius policy. The

research objective of this study is to simulate an actual ride-hailing system and use RL to train a policy.

This policy can output an optimized dynamic matching radius in real-time based on real-time rider-driver

demand-supply relationship, hence achieving a higher matching rate, a shorter average pick-up

distance, and a higher driver utilization rate of the ride-hailing system.

Adapting Reinforcement Learning (RL) to optimize the ride-hailing system's matching radius has

several difficulties and challenges due to the uncertainties in the real-world rider-hailing market.

Traditional approaches are normally static, solving the matching problem at specific times through

mathematical models. However, these methods often perform inconsistently when dealing with

fluctuating ride-hailing supply-demand relationships, particularly during peak hours. On the other hand,

the dynamics and complexity of the ride-hailing market and the ride-hailing environment also make it

difficult to model the ride-hailing system. The ride-hailing market is easily affected by many variables,

such as weather conditions and local traffic conditions. When quantitatively optimizing the matching

radius of the ride-hailing matching system, it is critical to reasonably control irrelevant variables. To

address these challenges, this study models the ride-hailing matching problem as a Markov Decision

Process (MDP). Based on the defined MDP, a ride-hailing matching simulator is developed. Some

assumptions and simplifications are also made to ensure high realism while reasonably controlling

irrelevant variables and uncertainties. Multi-replay-buffer Deep Deterministic Policy Gradient (MDDPG)

algorithm is then applied to handle the optimization problem of the ride-hailing matching radius. Through

the interactions between the MDDPG agent and the developed simulator, feedback rewards are

received for the agent to improve the policy. The proposed method is then validated in a case study

showcasing the application of the developed simulator and the RL algorithm in a real-world scenario in

Austin, Texas. The case study includes an analysis of the current ride-hailing market in Austin, how to

apply the simulator based on it, the implementation details of the RL algorithm, and the resulting

performance improvements. The results of the case study show that the actions obtained from the

proposed method outperform all the baselines in multiple scenarios, highlighting the benefits of using

Reinforcement Learning to improve ride-hailing efficiency and user experience.

To conclude, the optimization method proposed in this study applies an advanced Reinforcement

Learning approach to the ride-hailing system, successfully improving overall efficiency and user

experience. The results of this research demonstrate the potential of Reinforcement Learning in

optimizing ride-hailing matching systems, offering a promising direction for further exploration. This

study lays a solid foundation for future research to build upon, encouraging the development of more

optimization methods with RL technologies that can enhance the effectiveness and adaptability of ride-

hailing system in increasingly complex and dynamic environments.

Contents
Acknowledgements ... I

Abstract .. II

List of Figures ... 1

List of Figures ... 2

List of Tables ... 3

Nomenclature .. 4

1 Introduction .. 5

1.1 Context ... 6

1.2 Research Question .. 9

1.3 Objective and Research Contributions .. 9

2 Literature Review ... 11

2.1 Ride-hailing Systems ... 12

2.1.1 Ride-hailing Definition ... 12

2.1.2 Ride-hailing Matching Strategy ... 14

2.1.3 Optimization Approaches .. 16

2.2 Reinforcement Learning ... 18

2.2.1 Reinforcement Learning Basics .. 18

2.2.2 Reinforcement Learning Approaches ... 19

2.2.3 Reinforcement Learning in Ride-hailing Optimizations .. 21

3 Problem Formulation ... 24

3.1 Problem Description ... 25

3.2 Markov Decision Process Definition .. 26

3.3 Model-free Approach .. 28

4 Simulator Design .. 29

4.1 Simulator Description ... 30

4.2 Data Usage of the Simulator .. 31

4.3 Input of the Simulator ... 32

4.4 Simulation of the Matching Process ... 33

4.5 Outputs of the Simulator .. 34

4.6 State Transition .. 37

5 MDDPG Algorithm .. 39

5.1 Algorithm Introduction .. 40

5.2 Description of the MDDPG ... 41

5.3 DNN Structure and Noise ... 44

5.4 MDDPG Algorithm Validation ... 47

6 Case Study .. 49

6.1 Introduction of Austin .. 50

6.2 Simulator Implementation and Validation ... 50

6.3 Experimental Design of Scenarios ... 55

6.4 MDDPG Training .. 57

6.5 Results ... 60

6.6 Sensitivity Analysis of Reward Weights ... 67

6.7 Results Discussion ... 73

7 Conclusion .. 75

7.1 Limitations .. 76

7.2 Method Adaptability .. 78

7.3 Answer to the Research Questions ... 79

7.4 Future Research and Outlook .. 81

References ... 83

Appendix .. 87

Appendix A. Simulator Working Flow ... 87

Appendix B. Developing Environment ... 88

Appendix C. Additional Results .. 89

0

1

List of Figures

Number Figure Title Page

1.1 An example of a ride-hailing system. 6

1.2 Uber’s gross ride-hailing bookings from Q1 2017 to Q1 2024. 7

1.3 Reasons and percentages of people use ride-hailing services. 7

2.1 Theoretical framework of the sharing economy. 12

2.2 Theoretical framework of the ride-haling system. 13

2.3 The process of batched matching in ride-hailing platform. 14

2.4 The influence of the matching time-window and the radius. 15

2.5 RL interaction framework between agent and environment. 18

3.1 Framework of the learning structure in this study. 26

4.1 An example of the action and the visualized action range. 32

4.2 A bipartite ride-hailing matching graph. 33

4.3 Plot of the penalty function for the matching radius. 36

4.4 An example of idling behaviours of drivers. 37

4.5 An example of relocating behaviours of drivers. 38

5.1 Relationship between different RL algorithms. 41

5.2 The working flow of the MDDPG algorithm in ride-hailing systems. 42

5.3 Customized structure of the actor network in this study. 45

5.4 Comparison between OU noise and Gaussian noise. 46

5.5 MDDPG test environment MountainCar-V1. 47

5.6 Performance plot between A2C, DDPG and MDDPG algorithms. 48

6.1 The OSM-based simulation environment of Austin. 51

6.2 Comparison between real demands and samples in the afternoon. 52

6.3 KS test for rider locations generated by the simulator. 53

6.4 KS test for driver locations generated by the simulator. 53

6.5 Time distribution of travel demands in the city of Austin. 54

6.6 KS tests for hourly demands generated by the simulator. 55

2

List of Figures

Number Figure Title Page

6.7 Training plot with unsuitable hyperparameters. 58

6.8 Reward plot of the MDDPG training process. 59

6.9 Training loss plot of the critic network. 60

6.10 Optimised matching radius for each cell at 15:00 PM. 61

6.11 Matching process with trained policy 61

6.12 Policy plot compared to the baselines in Balanced scenario. 62

6.13 Policy plot compared to the baselines in high demand scenario. 63

6.14 Policy plot compared to the baselines in high supply scenario. 65

6.15 Performance plot for the trained policy compared to the baselines. 66

6.16 Critic loss plot for a single weight combination (matching rate). 69

6.17 Average and 90% trust interval of obtained radius. 71

C.1 Radius, rider-driver plot with stable driver numbers. 89

C.2 Radius, rider-driver plot with fluctuating driver numbers. 89

C.3 Radius, demand-supply ratio plot. 90

C.4 Radius changing trend over few time-steps. 91

3

List of Tables

Number Table Title Page

2.1 Approaches for solving RH online matching problems with RL. 23

5.1 Validation feature comparison. 47

6.1 Variable settings for defined scenarios. 56

6.2 Hyperparameters for the MDDPG training 58

6.3 Weight combination for the MDDPG training. 58

6.4 Performance metrics comparison. 66

6.5 Weight combinations. 68

6.6 Sensitivity analysis results of performance metrics weights. 72

4

Nomenclature

Related abbreviations and their definitions.

Abbreviation Definition

RHS Ride-hailing System

ML Machine Learning

RL Reinforcement Learning

RQ Research Question

SRQ Sub-Research Question

MDP Markov Decision Process

V-RL Value-based Reinforcement Learning

P-RL Policy-based Reinforcement Learning

DRL Deep Reinforcement Learning

MARL Multi-Agent Reinforcement Learning

DBRAS Dynamic Broadcasting Radius Adjustment System

WESM Weighted Exponential Smoothing Multi-task learning

QL Table-based Q-Learning

DQN Deep Q-network Learning

AC Actor-Critic

A2C Advantage Actor-Critic

ACER Actor-Critic with Experience Replay

NN Artificial Neural Network

DNN Deep Neural Network

PG Policy Gradient

DPG Deterministic Policy Gradient

DDPG Deep Deterministic Policy Gradient

MDDPG Multi-replay-buffer Deep Deterministic Policy Gradient

MSE Mean Squared Exponential

ELU Exponential Linear Unit

Tanh Tanh activation function

MR Matching Rate

APD Average Pick-up Distance

DUR Driver Utilization Rate

5

1
1 Introduction

6

 𝟏: Dara Khosrowshahi, Uber: Making it easy to go green, 2023, https://www.uber.com/newsroom/go-get-zero/

1.1 Context

Ride-hailing services have changed urban mobility scenarios across the globe by offering a more

convenient and efficient alternative mode of transport for daily commuting than traditional modes. As

major cities target 2050 for net-zero emissions, ride-hailing systems, as a type of shared transportation,

become increasingly popular in public transportation, accompanied by the continuous expansion of the

ride-hailing market (Wu and Wang, 2022). The ride-hailing services not only reduce dependence on

private car ownership and simultaneously boost vehicle utilization which can significantly reduce carbon

emissions. However, against this backdrop of growth and due to the dynamic and imbalanced

characteristics of the ride-hailing market, optimizing the matching efficiency and enhancing the user

experience in the same time for the ride-hailing system remains challenging. This section will introduce

the context and motivation for optimizing ride-hailing matching systems, highlighting their importance in

achieving sustainable development goals, and propose specific research questions for this study.

Figure 1.1 shows what a ride-hailing system looks like.

Figure 1.1 An example of a ride-hailing system. 𝟏

To achieve the goal of net-zero emissions by 2050 as mentioned above, the transportation industry

needs transformation, including the adoption of new energy sources or low-emission transport modes

(Khosrowshahi, 2023). Ride-hailing services, as a form of shared transportation, play a crucial role in

this transition by reducing the frequency of private car use, thus contributing to carbon emission

reduction. Moreover, with the increasing process of urbanization, more and more people are willing to

use ride-hailing services. According to Uber's data, as shown in Figure 1.2, from the first quarter of 2017

to the first quarter of 2024, the total number of ride-hailing bookings nearly tripled. Several factors have

driven this rapid growth in ride-hailing services. There are several reasons that cause the booming

growth of the ride-hailing market, according to a survey (Alejandro and Wesley, 2019) of ride-hailing

users, as listed in Figure 1.3, main reasons include shortage of parking space in cities, growing demand

for convenient transport, low transportation cost and lack of car ownership. More specifically, ride-

hailing improves the comfort and security of riders for several types of trips and increases mobility for

car-free households and for people with physical and cognitive limitations. Ride-hailing has the potential

to be more efficient for rider-driver matching than street-hailing. Ride-hailing is expected to reduce

parking requirements, shifting attention towards curb management. These days, more and more people

are tending to choose ride-hailing services. This has led to a growing market for ride-hailing services,

and now ride-hailing has become a large part of citizens' daily travel modes and is still growing.

7

 𝟏: Brian Dean. Uber Statistics: How Many People Ride with Uber. 2024. https://backlinko.com/uber-users.

 𝟐: Alejandro and Wesley. Impacts of Ride-sourcing on VMT, Parking Demand, Transportation Equity, and Travel Behaviour. 2019.
https://rosap.ntl.bts.gov/view/dot/42496

Figure 1.2 Uber’s gross ride-hailing bookings from Q1 2017 to Q1 2024. 𝟏

Figure 1.3. Reasons and percentages of people use ride-hailing services. 𝟐

In recent urban public transportation modes, ride-hailing has become one of the primary choices for

urban citizens (Sikder, 2019). However, the supply-demand imbalance between drivers and riders

always causes extra stress to the ride-hailing system. It often faces challenges of uneven supply and

demand relationships both in time and in space. For example, riders may experience longer waiting

times during rush hours. Drivers may also find it difficult to receive ride requests in certain areas like

city outskirts or during off-peak hours. This issue is particularly exacerbated in high density urban

environments or during rush hours like evening peaks. Such imbalances can lead to decreased system

efficiency, reduced user experience for both drivers and passengers, and lower overall revenue for ride-

hailing companies. In the long term, it can also hinder the achievement of expected goals in reducing

8

carbon emissions. In this context, ride-hailing systems not only need to adapt to growing demand, but

also need to optimize the overall system efficiency to achieve the ultimate goal of environmental

sustainability, enhanced user experience, and economic benefits. It forms a multi-task optimizing

problem for stakeholders of users, ride-hailing company and municipalities. Users are primarily

interested in reduced waiting times and matching rate, while ride-hailing companies focus on

maximizing their revenue and maintaining a high level of service efficiency. Municipalities, on the other

hand, are concerned with increasing transport efficiency as well as reducing carbon emissions. These

interests can be summed up into two major aspects, ride-hailing system efficiency and user experience.

It is beneficial to optimize ride-hailing systems. From the environmental perspective, applying advanced

optimizing algorithms and data analysis to deal with the supply-demand relationship can reduce driver’s

idling times and detours, thereby significantly reducing the carbon footprint of ride-hailing systems. In

terms of user experience, optimizing ride-hailing systems can shorten wait times, increase matching

success rates, and enhance overall service reliability. From the economic perspective, improving the

efficiency of the ride-hailing systems can help lower operational costs for ride-hailing companies. Better

resource management in sharing economy and increased system efficiency can boost the number of

matched orders and enhance net profit from the ride-hailing system. Additionally, as more consumers

are willing to use ride-hailing services, companies that can provide a better user experience are more

likely to gain a larger market share. By optimizing these aspects, ride-hailing systems can better meet

the evolving market demands, provide a more stable and reliable service for both riders and drivers,

and play a more crucial role in achieving the goal of net-zero emissions in 2050.

In previous studies, the ride-hailing system was divided into four main modules, pricing, online ride

matching, driver-relocating and navigating with the online matching module being the most influential

on the user experience for both riders and drivers. The online matching module directly impacts waiting

times and the success matching rate for both riders and drivers. In the online matching module, there

are two critical variables that play an important role in determining the scale of the matching pool and

the matched pairs, which are the matching time-window and the matching radius.

Many recent studies have explored the optimization of ride-hailing matching systems from various

perspectives. Among these studies, many have used Reinforcement Learning (RL) to optimize ride-

hailing matching systems from different aspects. Reinforcement learning (RL) is a machine learning

paradigm that trains an agent to take optimal actions (measured by total cumulative reward) through

interaction with the environment and getting feedback signals. It is a class of optimization methods for

solving sequential decision-making problems with a long-term objective in a stochastic environment.

Thanks to the rapid advancement in deep learning research and computing power, the integration of

deep neural networks and RL has generated explosive progress in solving complex large-scale decision

problems attracting huge amount of renewed interests and studies in the recent years. As detailed in

Chapter 2, these studies have improved efficiency and user experience for the ride-hailing system in

several ways, including adjusting both the matching time-window and matching radius (Yang et al. 2020),

and exploring the impact of optimizing the matching time-window solely. The matching time-window is

the period during which the system only intakes travel demands and available drivers, and dynamic

adjustments to this time-window can increase matching rates and reduce waiting time (Qin et al. 2023).

Similarly, optimizing the matching radius has proven beneficial together with the optimized matching

time-window. Despite these advancements, there is a noticeable gap in the research: no studies have

focused solely on optimizing the matching radius. This study aims to address this knowledge gap by

introducing a dynamic matching radius that adjusts in real-time based on the ride-hailing environment’s

real-time circumstances.

9

1.2 Research Question

In the current ride-hailing platforms, both matching time-window and matching radius remain fixed over

location and time. The optimization direction of this research aims to apply dynamic matching radius to

the batched matching system for the ride-hailing platform to increase user experience and system

efficiency.

Hence, the main research question is defined as:

RQ: In a ride-hailing system, when the matching time window is fixed, what is the policy to
determine the optimal matching radius for riders and drivers with a goal of achieving a higher
matching rate, shorter pick-up distance and a higher driver utilization in different urban areas
with different supply-demand relationships?

The sub research questions (SRQ) to support the main research question are defined as:

SRQ 1: What are the current methods for determining the matches between riders and drivers in ride-
hailing systems, and what challenges do they face?

• SRQ 1.1: What strategies are currently utilized for optimizing the matching system?

• SRQ 1.2: Under what conditions do these methods encounter issues or limitations?

• SRQ 1.3: What are the requirements and constraints for implementing these methods?

SRQ 2: How effective is the ride-hailing simulator in replicating real-world scenarios for testing the
RL-based matching radius optimization?

• SRQ 2.1: What are the key features and parameters of the ride-hailing simulator, and how
accurately do they represent real-world conditions?

• SRQ 2.2: How is variability in urban environments handled by the simulator, including different
supply-demand relationships in different urban areas and traffic conditions?

• SRQ 2.3: What are the metrics used to assess the matching efficiency and the user experience
in ride-hailing simulator as well as real ride-hailing environment?

SRQ 3: How can the proposed RL framework be implemented to address the challenges in optimizing
the matching radius for ride-hailing systems?

• SRQ 3.1: What are the state-of-the-art RL algorithms applicable to this problem?

• SRQ 3.2: How to design the RL algorithm and how can the RL algorithm handle the dynamic
and complex nature of ride-hailing matching radius optimization?

• SRQ 3.3: What are the key parameters in the proposed RL algorithm and to what extend can
they affect the performance of the RL algorithm?

• SRQ 3.4: How does the proposed RL framework perform in various ride-hailing scenarios
compared to traditional methods?

1.3 Objective and Research Contributions

The ultimate goal of this study is to improve the ride-hailing matching system’s overall efficiency and

user experience by using Deep Reinforcement Learning (DRL) to dynamically optimize the matching

radius. This approach can promise better resource management in sharing economy (idling drivers),

particularly in urban areas and during rush hours, and ultimately enhancing the overall performance

and user experience for the ride-hailing system. In this study, the system manager’s decision of

determining the matching radius of each cell for the ride-hailing system is modelled as a Markov

Decision Process. The overall performance of the system is considered as the reward, this reward will

concern the matching rate, the average pick-up distance and driver utilization in the ride-hailing

matching system. To determine the optimal matching radius, a virtual learning environment (ride-hailing

simulator) is created, allowing agents to engage in online Reinforcement Learning interactions. Using

parameters learned from a real-world dataset named RideAustin, such as the idle drive arrival rate and

10

start locations of each ride, the learning is conducted using the map of Austin City in Texas to simulate

an online Reinforcement Learning environment that closely resembles the real-world setting.

The expected output of this research is a matching radius strategy (policy) that considers regional ride-

hailing supply-demand relationships and the its long-term effect. A policy defines the learning agent’s

way of behaving at a given time. Roughly speaking, a policy is a mapping from perceived states of the

environment to actions to be taken when in those states (Sutton and Barto, 1998). In ride-hailing system,

the policy can give the suitable matching radius which can determine the scale of the matching pool,

compared with fixed and static matching radius. The goal of this research is to optimize the overall

system performance and user experience. As a larger matching radius may cause a longer waiting time,

a conflict between system efficiency and user experience is inevitable, so there is a trade-off between

larger and smaller matching radius. To further simplify the model, it is also assumed that the demands

only vary in different times of the day. For the user experience of both drivers and riders, the research

ultimately contributes to the long-term development of ride-hailing systems.

In order to answer the research questions discussed in the last section, this study aims to contribute on

three major aspects to optimize the matching radius of the ride-hailing matching system. These

contributions of this study are:

• Ride-hailing matching modelled as a Markov Decision Process (Ride-hailing matching
MDP): The ride-hailing matching problem is modelled as a Markov Decision Process to
quantitatively solve the matching radius optimization problem. The state is defined as the
real-time supply-demand relationship, the action is the matching radius and the reward
function represents the overall system performance.

• Ride-hailing Matching Simulator: A realistic ride-hailing matching simulator is designed and
developed especially for studying the matching process of the ride-hailing system. It is based
on actual ride-hailing data and developed to control irrelevant variables in the ride-hailing
market, providing a basis for subsequent research on ride-hailing matching systems.

• Multi-replay-buffer Deep Deterministic Policy Gradient Algorithm (MDDPG): This study
extended the current DDPG framework with an additional replay buffer to optimize the ride-
hailing matching radius. Those extensions are made to improve the performance of the
Reinforcement Learning method in solving the ride-hailing matching radius optimization
problem. These extensions enable the agent to better handle the complexity and uncertainty
of the ride-hailing market, better understand what are the good actions and improve its
learning efficiency and overall learning performance. The results indicates that these measure
can improve the convergence and the learning performance compared to the original DDPG
algorithm.

11

2
2 Literature Review

12

The objective of this literature review includes two parts: reviewing the ride-hailing system and reviewing

Reinforcement Learning approaches. The first part is a summary of the existing approaches to optimize

the matching radius for the ride-hailing system, focusing on their different objectives, findings and

contributions. The second part mainly focuses on the Reinforcement Learning method with a brief

introduction to different types of Reinforcement Learning. Reinforcement Learning has already been

proven for its ability to handle complex, dynamic optimization problems with its adaptive and continuous

learning capabilities, it is well-suited for handling and solving various optimization problems in ride-

hailing systems (Qin and Zhu, 2022). The second part of this review also summarizes a number of

approaches to solve ride-hailing matching optimization problem with RL, aiming to investigate suitable

methods and Reinforcement Learning algorithms. Relevant research papers and literature will be

systematically searched and obtained from credible sources such as Google Scholar. The summary of

the literature review and the research gap identified addressing the matching radius optimization

problem is introduced in the remaining paragraph of this chapter.

2.1 Ride-hailing Systems

2.1.1 Ride-hailing Definition

There are various definitions for ride-hailing services in the literatures, the most common definitions

define the ride-hailing services as a common kind of sharing economy. The concept of the sharing

economy was first proposed in 2008 and is defined as collaborative consumption through sharing,

exchanging, and renting resources without the need to own these items (Lessig et al., 2008). Then it is

further referring to the exchange of capital, assets and services between individuals using internet-

based platforms for the sharing of underutilised resources, usually with a low transaction cost and the

promise of increased efficiency, environmental benefits and economic growth (Avital et al., 2014). In

the background of digital economy, the sharing economy framework is shown in Figure 2.1, defined as

the interaction between the providers of shared items and users mediated by IT platforms, facilitating

access to items instead of ownership (Karobliene et al., 2021). Fielbaum and Tirachini (2020) defines

the ride-hailing as one of the sharing economy. With ride-hailing, a traveller who wants to take a specific

trip is matched through a mobile application with a driver willing to satisfy that demand in a private car.

Ride-hailing platforms can remove the exchange of cash and apply basic economics to match supply

and demand by dynamically adjusting prices.

Figure 2.1. Theoretical framework of the sharing economy. 𝟏

 𝟏: Karobliene et al. The Sharing Economy in the Framework of Sustainable Development Goals. 2021.

https://www.mdpi.com/2071-1050/13/15/8312

13

In this context, the ride-hailing is a form of sharing economy, as shown in Figure 2.2. It matches travel

demands (riders) with available vehicles (idle drivers) through a central ride-hailing platform, providing

on-demand ride-hailing services. This system leverages the core concept of the sharing economy,

which is to achieve better resource utilization through the sharing of available resources (idle cars)

without the need for the ride-hailing providers to actually own these resources. The ride-hailing platform

matches ride-demands and drivers via a central matching system, allowing riders to ride a vehicle when

needed and drivers to take orders during their idle time, thereby making full use of time, vehicles and

drivers. Ride-hailing not only improves resource utilization (vehicle vacancy) but also offers travelers a

flexible and convenient travel option. It also helps city municipalities to optimize transportation and

mitigate environmental pollution. In a word, ride-hailing adapts the concepts from the sharing economy,

efficiently utilizes resources, and is able to lower transportation costs for citizens.

Figure 2.2. Theoretical framework of the ride-haling system.

The ride-hailing system is the core of the ride-hailing service, encompassing various functionalities to

ensure the smooth operation of the entire service. In ride-hailing system, functional components are

generally classified into four distinct functional modules: the pricing module, online matching module,

vehicle reposition module, and navigation module (Qin and Zhu, 2022). When a potential passenger

submits a trip request, the pricing module offers a quote, which the passenger either accepts or rejects.

Upon acceptance, the matching module attempts to assign the request to an available driver.

Depending on driver pool availability, the request may have to wait in the system until a successful

match. Pre-match cancellation may happen during this time. The assigned driver then travels to pick

up the passenger, during which time post-match cancellation may also occur. The pick-up location is

usually where the passenger is making the request or he/she specifies. In some cases, it could be a

public designated area, e.g., outside an airport or train station. After the driver successfully transports

the passenger to the destination, she receives the trip fare and becomes available again. The

repositioning module guides idle vehicles to specific locations in anticipation of fulfilling more requests

in the future. Following the reposition recommendations is usually on a voluntary basis unless it is an

autonomous ride-hailing setting. Hence, it is common that the platform offers incentives to drivers for

completing the repositions. The navigation module provides drivers with optimal travel routes and traffic

information to ensure riders reach their destinations safely and on time. In recent studies, the online

matching module is the main optimization focus, it is critical for enhancing the ride-hailing system's

capability to provide a better user experience for both riders and drivers (Yan et al., 2019). The

optimization for each specific module is discussed in section 2.1.3.

14

2.1.2 Ride-hailing Matching Strategy

In the matching module of the ride-hailing system, the matching strategy determines the efficiency of

the matching process. Two main matching schemes are often utilized in ride-sourcing platforms:

broadcast and dispatch modes. In broadcast mode, ride-sourcing platforms merely serve as a

transaction intermediary; they collect the ride requests from passengers and broadcasts such requests

to idle drivers. Each idle driver aims to optimize his/her individual utility (reflected by the pick-up distance,

order value, and destination, among others) by selecting one of the broadcasted requests. In dispatch

mode, the platforms match idle drivers and waiting passengers to optimize overall system efficiency.

This mode is now widely adopted by many ride-sourcing TNCs, such as Didi and Uber. With the help

of advanced mobile technologies, online platforms can trace the status of each passenger request and

each idle driver, such as real-time location and cumulative waiting/idle time, and detect the current

supply–demand conditions, such as the numbers of idle drivers and waiting passengers (Yang et al.

2020). In other studies, Wang (2018) and Yang (2022) categorize ride-hailing matching strategies into

two main kinds: nearest matching (greedy matching) and batched matching (delayed matching). In

nearest matching strategy, a rider is immediately matched with the closest available driver (Shi et al.,

2023). This approach works well for most riders when demand is low, but it often leads to excessively

long wait times for other riders. Across an entire city, these extended wait times can accumulate to

extremely high levels, exacerbating issues such as queuing or inadequate driver availability. Therefore,

this matching strategy is no longer adopted by most ride-hailing platforms. Instead, the strategy named

batched matching is widely adopted by many ride-hailing platforms such as Uber, Didi, and Lyft (Uber's

marketplace website). Unlike the nearest matching strategy, which immediately matches riders and

drivers at the moment ride requests are created, batched matching allows the system to delay matching

for a short period. It groups multiple ride requests and assigns drivers simultaneously. The principle is

to model the matching problem between ride demands and available drivers as a weighted bipartite

matching problem, solving it to optimize for reduced overall waiting times or shorter pick-up distances

(Xu et al., 2018). By considering a broader range of potential matches cross the system, this method

can improve overall system efficiency. Figure 2.3 illustrates the operational principles of batched

matching.

Figure 2.3. The process of batched matching in ride-hailing platform.

In this context, online matching between available drivers and waiting riders is one of the most key

components and it is essential to be optimized. The success of these matching strategies is crucial for

ensuring platform profitability and influencing customer perceptions of service quality (Wang & Yang,

2019). Additionally, addressing negative externalities such as empty-car cruising (Wang et al., 2014),

the matching problem plays a significant role in overall system performance, user experience and profit

15

generation. Another research (Chen, 2023) has shown that driver engagement is one of the vital

components in a ride-hailing system. Driver engagement can be strongly influenced by driver income,

idling time and the number of matched rides. These can be summed up in two factors: the matching

rate and the driver utilization rate. However, due to the increasing popularity of ride-hailing services,

these two factors are not always satisfactory. This is because high demand for ride-hailing can lead to

additional pressure on city traffic, increasing competition between drivers and an imbalance between

supply and demand relationship of the ride-hailing market. This could result in a lower matching rate,

as well as longer waiting time and lower driver utilization rate, causing a lower reliability of the ride-

hailing system. For riders, in the daily use of ride-hailing system, they often encounter situations where

the wait time is too long or there are no cars available. This can also be summed up in the matching

rate and the average pick-up distance. Due to insufficient vehicles in the matching pool and an

imbalanced relationship between riders and drivers, this situation can lead to a poor user experience

or inconvenience for people. Therefore, developing and optimizing the ride-hailing matching process,

including optimizing variables or developing advanced matching strategies, are therefore essential for

improving the efficiency and user experience of ride-hailing services.

Current research is focused on optimizing variables for the batched matching method. The batched

matching method strategy involves two key spatiotemporal variables: matching time interval (matching

time-window) and matching range (matching radius) (Yang et al., 2020). The scale of the matching pool

is determined by these two factors. Figure 2.4 shows how these factors determine the scale of the

matching pool. The platform continuously adjusts these variables in real-time to enhance system

performance, focusing on optimizing rider wait times and minimizing driver idle times. Several optimized

matching strategies and matching time windows have already been developed, while the matching

radius is only considered a co-factor with the matching time window. To provide a comprehensive

understanding, the next subsection will discuss these studies in detail.

Figure 2.4. The influence of the matching time-window (up) and the radius (below). 𝟏

 𝟏: Yang et al. Optimizing matching time interval and matching radius in on-demand ride-sourcing markets. 2020.

 https://doi.org/10.1016/j.trb.2019.11.005

16

As one of the key components of the matching process, the matching radius directly influences the

scale of the matching pool, which can have a decisive effect on the matching rate. However, current

ride-hailing platforms use fixed and static matching radius to form the ride-hailing matching pool (Yang

et al., 2020), and only dynamic matching time windows have been studied as one of the effective

aspects (Qin et al., 2021). No research has been done on the matching radius in ride-hailing systems.

In summary, the effect of the matching radius is worthwhile to study in order to determine the optimized

matching radius.

2.1.3 Optimization Approaches

In recent studies, many approaches have been proposed to optimize the ride-hailing system. These

approaches have explored the possibility of optimization from different angles and have improved the

system in various aspects. This sub-section will discuss the differences between these optimization

approaches and how they have inspired this study.

Firstly, some studies on the structure and theoretical operating principles of ride-hailing systems have

laid the foundation for subsequent optimization approaches. These studies also attempted to model

and optimize the ride-hailing system from a theoretical perspective. For the ride-hailing system, in the

matching process, the ride-sourcing strategy is the most common strategy. Zha and Yin (2016) indicate

that the ride-hailing platform serves as an intermediary that matches customers with potential drivers.

It assigns order requests to idle drivers, and drivers cannot reject the assignment or they will be

punished by the platform. This is the common type that is mostly used by the current existing ride-

hailing service providers, such as Didi and Uber. In this type of system, the driver does not need to

consider which rider to pick up, and is able to only focus on driving. This type of platform reduces the

uncertainty in the system and ensures the system runs smoothly. This type of ride-souring strategy is

also used in this study, in order for the agent to better focus on optimizing the matching radius only.

Much academic research has explored this type of platform and many research are carried out based

on this type of system. The studies by Liu et al. (2022) and Qin (2022) present a thorough review of

these methodologies and tried to optimize the matching problem in this ride-souring market. Their

studies give a general overview of how a ride-hailing system works and what the potential variables

and components of such a system are. Many optimizations are inspired from their works. In their studies,

modelling and solving the batched matching process of the ride-hailing system as a bipartite matching

problem is studied, the efficiency of this approach is proved in their results. This bipartite matching

approach is very inspiring as many following researches are all based on this approach. This study also

uses this approach to model the batched matching problem in developing the ride-hailing matching

simulator. The matches are formed by solving the bipartite matching problem in this study.

With those theoretical foundations, different approaches have studied different optimizing problems of

the ride-hailing system. Many inspiring methods are used and managed to optimize the ride-hailing

system from different aspects. Xu et al. (2018) model the order dispatching process as a large-scale

sequential decision-making problem. The decision of assigning an order to a driver is determined by a

centralized algorithm in a coordinated way. They studied this decision process and developed an order

dispatching policy in order to optimize the ride-hailing matching system from the aspect of maximizing

drivers’ revenue. This method is inspiring as it is useful in dealing with driver and rider’s matching

problems. With the same settings, Özkan and Ward (2020) innovatively divided the study area into a

number of cells of the same size, so the large-scale matching problem is simplified into multiple small-

scale matching problems within the cells. Their approach is to use hierarchical Reinforcement Learning

method to maximize the number of matched pairs. The problem is solved by dividing and hierarchical

solving the overall matching problem into several sub-tasks of small-scale matchings. Another approach

is to treat the matching process as a Vehicle Repositioning Problem (VRP).

17

Some studies focus on optimizing the matching time-window of the ride-hailing matching module. It has

been demonstrated that dynamic matching time-window can improve the matching rate of the system

and reduce the average waiting time (Qin et al. 2023). This means that instead of using a static, fixed

time interval for matching, adjusting the time window dynamically based on real-time circumstances,

such as the supply-demand relationship, can lead to more efficient matches between riders and drivers.

Consequently, this approach not only increases the efficiency of the ride-hailing system but also helps

the users to have a better user experience. Another approach is to treat the matching time-window and

the matching radius at the same time and try to find a balance between them, Yang et al. (2020) studied

this topic in their research. They suggest that by appropriately extending the matching time interval, the

system can accumulate large numbers of waiting (or unserved) riders and idle drivers and thus match

the two pools with a reduced expected pick-up distance. Meanwhile, a short matching radius can reduce

the expected pick-up distance but may decrease the matching rate as well. Therefore, the matching

time-window and matching radius should be optimized to enhance system efficiency in terms of rider

waiting time, vehicle utilization, and matching rate. This approach considered the effect of both the

matching time-window and the matching radius, it clearly shows the trade-off between the them to

optimize the performance of the ride-hailing system. However, the effect of matching radius solely on

the system has not been studied in this paper. Also, the matching radius is studied in this paper as a

number of discrete values, and the dynamic continuous matching radius and its impact are not studied.

This leads to the knowledge gap addressed in this study.

Other researchers are also exploring the optimization problem of the matching system together with

other modules in the ride-hailing system. Yan (2019) tried to introduce dynamic pricing and matching

time-window into the ride-hailing system. His research shows that the pricing module combined with

the matching module can significantly affect the waiting time. This approach adjusts ride fares according

to supply-demand patterns in real-time, which encourages drivers to provide services when and where

the needs are surged, thereby reducing waiting time. By combining dynamic pricing with matching time-

window, the ride-hailing system can better adapt to uncertain supply-demand relationship, and improve

overall user experience. Daniels (2023) divided the matching area into blocks based on neighbourhoods

and introduced a Street Match Model (SMM). This approach combines the matching system with a

vehicle repositioning system to optimize the regional aspects of the matching system. By dividing the

service area into smaller, more manageable blocks, Daniels aims to improve the overall efficiency of

ride-hailing matching. This regional optimization means that riders are more likely to be matched with

drivers in a smaller area, thereby reducing waiting time, driver idling time, and improving service

reliability. The cell-based matching simulator developed in this study is inspired by his approach. Miao

et al. (2016) proposed the receding horizon control framework to maximize the matching ratio between

supply and demand with minimum idle taxi driving distance. Spatiotemporal passenger demand, real-

time GPS locations, and taxi occupancy are incorporated in the framework. Apart from these model-

based approaches, model-free approaches, such as the Markov decision process and reinforcement

learning, have been recently implemented in taxi and ride-sourcing vehicle dispatch systems (Xu et al.

2018; Ke et al. 2019; Wang et al. 2018).

In summary, many researchers have developed various approaches to optimize ride-hailing matching

systems from different aspects. These methods improve the matching efficiency and user experience

of the ride-hailing system. However, although some approaches have investigated optimizing the ride-

hailing matching system by adjusting the matching time-window combined with adjusting the matching

radius, as well as optimizing the matching time-window alone, no study has solely focused on optimizing

the matching radius and treat it as an independent variable. This research aims to address this

knowledge gap and develop a method to apply dynamic matching radius to the ride-hailing system in

order to improve its matching efficiency and user experience.

18

2.2 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning method, its principal base on interacting with the

environment to gather information and taking actions base on its observations to maximize long-term

rewards (Sutton and Barto, 1998). Reinforcement Learning applies its algorithm to the dynamic

environment, allowing the agent to learn the policy not only from existing transitions (off-line learning or

past experience) but also from its own interactions with the environment. Through learning, the agent

can determine which actions are good and which are not. Reinforcement Learning is widely used to

solve dynamic optimization and control problems. Through its interactive learning mechanism and

policy (strategy) optimization process, Reinforcement Learning is well-suited for solving dynamic

optimization and control problems in dynamic systems like cliff walking and lunar landing problems

(Sutton and Barto, 1998). This subsection will introduce the basic concepts of Reinforcement Learning,

Reinforcement Learning approaches, and their applications in ride-hailing optimization problems.

2.2.1 Reinforcement Learning Basics

Reinforcement learning differs from the more widely studied problem of supervised learning in several

ways. The most important difference is that there is no presentation of input/output pairs. Instead, after

choosing an action the agent is told the immediate reward and the subsequent state, but is not told

which action would have been in its best long-term interests. It is necessary for the agent to gather

useful experience about the possible system states, actions, transitions and rewards actively to act

optimally. Another difference from supervised learning is that on-line performance is important: the

evaluation of the system is often concurrent with learning. (Kaelbling et al., 1996). The object of this

kind of learning is for the system to extrapolate, or generalize, its responses so that it acts correctly in

situations not present in the training set. The agent adjusts the policy base on feedback from the

interactions. Reinforcement learning is also different from what machine learning researchers call

unsupervised learning, which is typically about finding structure hidden in collections of unlabelled data.

(Sutton and Barto, 1998). The RL algorithm includes two major components: the agent and the

environment. The agent is the decision-maker and the learner who is responsible for selecting which

action to take (or which policy to employ for actions). The environment, often referred to as the simulator,

encompasses everything surrounding the agent and with which it interacts. This includes all entities

other than the agent itself, both observable and unobservable within the system the agent operates in

(Sutton and Barto, 1998). Figure 2.5 illustrates the relationship between the RL agent and the

environment.

Figure 2.5. RL interaction framework between agent and environment. 𝟏

 𝟏: Swiss Cognitive. What Is Reinforcement Learning. 2019. https://swisscognitive.ch/2019/10/25/what-is-reinforcement-learning/

19

In Reinforcement Learning (RL), The environment is typically stated in the form of a Markov decision

process (MDP), because many reinforcement learning algorithms for this context use dynamic

programming techniques. MDP provides a mathematical framework for describing decision-making

processes in RL problems. When using RL to solve dynamic optimization problems, the problem is

typically first modelled as an MDP and then the suitable RL algorithm will be selected accordingly.

A Markov Decision Process (MDP) is a discrete-time stochastic control process. It provides a

mathematical framework for modelling decision-making situations where outcomes are partly random

and partly under the control of a decision-maker. MDPs are very useful for studying optimization

problems solved through dynamic programming (Bellman, 1957). Formulating the problem as a Markov

decision process assumes the agent directly observes the current environmental state; in this case the

problem is said to have full observability. If the agent only has access to a subset of states, or if the

observed states are corrupted by noise, the agent is said to have partial observability, and formally the

problem must be formulated as a Partially observable Markov decision process. In both cases, the set

of actions available to the agent can be restricted. For example, the state of an account balance could

be restricted to be positive; if the current value of the state is 3 and the state transition attempts to

reduce the value by 4, the transition will not be allowed. When the agent's performance is compared to

that of an agent that acts optimally, the difference in performance gives rise to the notion of regret. In

order to act near optimally, the agent must reason about the long-term consequences of its actions (i.e.,

maximize future income), although the immediate reward associated with this might be negative. Thus,

reinforcement learning is particularly well-suited to problems that include a long-term versus short-term

reward trade-off. It has been applied successfully to various problems, including energy storage

operation, robot control, photovoltaic generators dispatch, backgammon, checkers, Go (AlphaGo), and

autonomous driving systems. The reward function (𝑅) defines the immediate reward received after

taking a particular action in a specific state (Sutton and Barto, 1998). It is crucial in MDP and RL as it is

the signal that let the agent know what the good actions are, and guides it to learn a better policy.

The purpose of reinforcement learning is for the agent to learn an optimal, or nearly-optimal, policy that

maximizes the "reward function" or other user-provided reinforcement signal that accumulates from the

immediate rewards. This is similar to processes that appear to occur in animal psychology. For example,

biological brains are hardwired to interpret signals such as pain and hunger as negative reinforcements,

and interpret pleasure and food intake as positive reinforcements. In some circumstances, animals can

learn to engage in behaviours that optimize these rewards. This suggests that animals are capable of

reinforcement learning. As for the machines, through this iteration, the learning agent gradually

improves the policy to maximize rewards.

2.2.2 Reinforcement Learning Approaches

In Reinforcement Learning (RL) problems, the agent's goal is to maximize its accumulated reward,

which includes both immediate and long-term rewards. Therefore, it must find a policy or strategy that

allows it to choose actions maximizing long-term rewards. In Reinforcement Learning, the accumulated

reward is denoted as

𝐺𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 … = 𝑟𝑡 + 𝛾𝐺𝑡+1 (2.1)

where 𝐺𝑡 is the accumulated reward at time step 𝑡, 𝑟𝑡 is the immediate reward, and 𝛾 is the discount

factor. The discount factor, ranging from 0 to 1, influences the agent's current decision-making. It

determines how far the agent can see the future expected rewards (Sutton and Barto, 1998). For

example, if 𝛾 = 0, the agent only considers immediate rewards and acts greedily.

20

The value function is another important part that influence the agent’s action, which determine the

advantage of being in a specific state (state value function) or taking a specific action in a specific state

(action value function, also called state-action value function). The state value function is defined

mathematically as

𝑉𝜋(𝑠) = 𝐸𝜋{𝐺𝑡|𝑠𝑡 = 𝑠} = 𝐸𝜋 [∑ 𝛾𝑡𝑟𝑡+1

𝑇−1

𝑡=0
|𝑠𝑡 = 𝑠] (2.2)

Similarly, the state-action value function is defined as

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋{𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} = 𝐸𝜋 [∑ 𝛾𝑡𝑟𝑡+1

𝑇−1

𝑡=0
|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (2.3)

The goal of a Markov Decision Process (MDP) is to take optimal actions to maximize long-term rewards,

i.e., the value function. While the rewards for each state and action are typically unknown, achieving

maximum value is essentially about selecting actions that lead to the highest rewards, forming a policy.

However, since rewards are often unknown, the Bellman equation becomes crucial as it defines

necessary conditions for optimality. The Bellman equation reformulates the value function recursively,

expressing the reward of a state in terms of possible future rewards of successor states. Its recursive

nature allows initially unknown rewards to converge to actual values through iterative refinement (Sutton

and Barto, 1998). The Bellman equation is given by:

𝑉𝜋(𝑠) = 𝐸[𝐺𝑡|𝑆𝑡 = 𝑠] = 𝐸[𝑅𝑡|𝑆𝑡 = 𝑠] + 𝛾𝐸[𝐺𝑡+1|𝑆𝑡 = 𝑠] (2.4)

In Reinforcement Learning (RL), methods that estimate value functions are classified into value-based

Reinforcement Learning, whereas those that directly optimize the policy without using a value function

are referred to as policy-based Reinforcement Learning. Value function approaches attempt to find a

policy that maximizes the discounted return by maintaining a set of estimates of expected discounted

returns. Classic value-based RL includes DQN and Q-learning, which are both action-value-based

approaches. These methods derive a policy from the values of states and actions. The exploration in

this type of RL is always an additional step, not embedded in the method itself. An 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 with

random action is the most common exploration method. Value-based RL is considered indirect as it

derives an optimal policy from estimating the best value function. In contrast, policy-based RL are more

efficient, they directly derive a policy mapping the best actions for the corresponding states. This type

of RL includes policy gradient methods like PPO (Proximal Policy Optimization). Exploration is a part of

the algorithm in this type of RL, so it is not needed for additional explorations. There are also some RL

algorithms that combine ideas from both value-based and policy-based RL, such as DDPG (Deep

Deterministic Policy Gradient) and SAC (Soft Actor-Critic). They adapt advantages from both value-

based and policy-based RL. This property enables them to address the optimization problems with

continuous action space and high-dimensional state space.

The problem with using action-values is that they may need highly precise estimates of the competing

action values that can be hard to obtain when the returns are noisy, though this problem is mitigated to

some extent by temporal difference methods. Using the so-called compatible function approximation

method compromises generality and efficiency. Another difference lies in how the agent applies its

policy in Reinforcement Learning problems. On-policy methods evaluate or improve the policy used to

generate these responses and update the decision policy accordingly. Therefore, the same policy is

used for exploration and exploitation. Off-policy methods evaluate or improve the data collected by

other (or previous) policies, which means that the updated policy is different from the one used for data

collection, for example, DQN and DDPG (Fujimoto, Meger et al., 2019). An alternative method is to

search directly in (some subset of) the policy space, in which case the problem becomes a case of

21

stochastic optimization. The two approaches available are gradient-based and gradient-free methods.

Gradient-based methods (policy gradient methods) start with a mapping from a finite-dimensional

(parameter) space to the space of policies. Policy search methods may converge slowly given noisy

data. For example, this happens in episodic problems when the trajectories are long and the variance

of the returns is large. Value-function based methods that rely on temporal differences might help in this

case. In recent years, actor–critic methods have been proposed and performed well on various

problems.

Reinforcement Learning methods are further divided into online Reinforcement Learning and offline

Reinforcement Learning based on how Reinforcement Learning utilizes the environment and data.

Online learning is performed in real time, which means that the agent interacts with the environment in

real-time to generate transition data and continues to improve the policy with collected data (Levine et

al., 2020). The exploration vs. exploitation trade-off has been most thoroughly studied through the multi-

armed bandit problem and for finite state space Markov decision processes. Reinforcement learning

requires clever exploration mechanisms; randomly selecting actions, without reference to an estimated

probability distribution, shows poor performance. The case of (small) finite Markov decision processes

is relatively well understood. However, due to the lack of algorithms that scale well with the number of

states (or scale to problems with infinite state spaces), simple exploration methods are the most

practical.

More generally, RL algorithms can be classified as model-based or model-free, depending on whether

they employ a mathematical model for the environment and the function (Deisenroth and Rasmussen,

2011). The model-based RL do not necessarily require prior knowledge of real data or real variables of

the environment, which leads to a distinction between model-free methods. Model-based RL excel at

using mathematical model or train a model to describe the environment, predicting future states, and

analyzing the potential rewards of actions after updating the model parameters. These methods are

sample-efficient as the transition probability and value function are both known to the agent, making it

possible to be implemented in real-time. However, their performance often depends on the accuracy of

the defined model, which can contain varying degrees of imperfections, affecting real-world applicability.

Model learning from the actual environment can also be challenging, requiring significant time and effort

with no guaranteed payoff. In contrast, model-free methods do not require any form of model, the policy

is improved by sampling transitions from interactions between agent and the environment. This type of

RL does not attempt to predict how the environment will react to actions. It is generally easier to be

implemented and finetuned, but sacrifices the potential sample efficiency than the model-based RL and

are primarily suitable for online learning.

The ride-hailing system is highly dynamic and complex, and is affected by real-time changes in travel

demands, driver location, traffic conditions and other factors. Optimizing the ride-hailing matching

system for drivers and rider is crucial to improve service quality, reduce waiting time, and improve user

satisfaction. The application of Reinforcement Learning method, especially the DDPG method, is

expected to improve the matching rate, matching system efficiency and user experience of online ride-

hailing matching system. The next subsection will review existing research on Reinforcement Learning

in online ride-hailing system.

2.2.3 Reinforcement Learning in Ride-hailing Optimizations

A number of optimizations have been done with Reinforcement Learning to address the online matching

problem. To study the effect of matching policy to the ride-hailing system, a widely adopted strategy is

to optimize matching time-window under a static matching radius policy (Qin et al., 2021). This method

accumulates a batch of potential passenger-driver matches and solve bipartite matching problems

22

repeatedly. The efficiency of matching can be improved substantially if the matching is delayed by

adaptively adjusting the matching time interval. The optimal delayed matching is subject to the trade-

off between the delay penalty and the reduced wait cost and is dependent on the system’s supply and

demand states. In addition, this work provides a solution to spatial partitioning balance between the

state representation error and the optimality gap of asynchronous matching. In this approach, a Markov

Decision Process is developed, the agent is the system, the state number of batched request, estimate

arrival rates of demand and supply, the action is matching the current batch or delay to the next batch.

The reward after taking the action is the negative total matching wait time for all batched requests. Then

the RL is applied to find the optimized policy. The optimized objective obtained from the policy is the

matching time-window, the method and MDP developed in this literature illustrates how online matching

problem can be optimized by adjusting matching time-window. But it only considers the matching time-

window and excluded the effect of matching radius. No study has been conducted on considering the

matching radius as the only effective factor.

To tackle the optimization problem, other inspiring method are also built with Reinforcement Learning.

First approach is to divide the large-scale matching problem into many small and continuous static

subproblems with an equal time interval (Zha et al. 2021), to fit the discrete decision MDP framework.

In this research, each request is matched with one idle driver by identifying the available vehicles near

the pickup point of the passengers within a pre-defined radius. The overall solution approach is proved

to be efficient in solving large-scale ride-hailing optimizing problems. The ride-hailing problem is also

modelled as a large-scale parallel ranking problem (Jin and Zhou 2019). They studied the joint decision-

making task of order dispatching and fleet management in online ride-hailing platforms. To deal with

unique challenges with this model, they treat each region zone as an agent and build a multi-agent

Reinforcement Learning framework to facilitate a huge number of vehicles to act and learn efficiently

and robustly. Researchers in Stanford University has also built a Reinforcement Learning based model

to improving taxi revenue for New York City (Wang and Lampert, 2014). They use reinforcement

learning in vehicle optimisation of a taxi route to maximised the revenue. Although the optimisation

process is set for one vehicle, if extended to a fleet of taxis, the overall fleet’s efficiency could be greatly

improved (less particles emitted), drivers would minimise their vacancy time and working hours, and

passenger could see better Taxi coverage. They employed an RL approach to improve taxi revenue but

only from taxi trip data (and not from taxi trajectory data). Due to learning from trip data, they are forced

to make many approximations on movement between trip end and trip start events. Another study

addressing a block matching system (Feng et al. 2022) also did the similar approach. They proposed a

block matching system which is a special type of matching mechanism, where the region of interest is

partitioned into blocks, and on-demand matching is separately and simultaneously conducted in each

block. A simpler single agent Reinforcement Learning based approach is studied by Liu and Wu (2022),

they proposed a single-agent deep Reinforcement Learning model for the vehicle dispatching problem

called deep dispatching, by reallocating vacant vehicles to regions with a large demand gap in advance.

The vehicle dispatching problem is translated in analogy with the load balancing problem in computer

networks. The problem of high concurrency of dispatching requests is addressed by sorting the actions

as a recommendation list, whereby matching action with requests. These studies demonstrate the

feasibility of breaking large-scale problem into small-scale subproblems, and using Reinforcement

Learning to address these matching and system optimization problems is also proved by Wang et al.

(2019) and their study. They showcase the efficiency of Reinforcement Learning in tackling optimization

problems that involve considerations of time and long-term impacts of each action taken by the learning

agent. These works inspire the use of Reinforcement Learning in this research proposal to address the

matching radius optimization problem for the ride-hailing system.

In summary, the crucial role of online matching in ride-hailing systems has been verified, but there are

only a few studies on optimizing the matching time window and matching radius using Reinforcement

Learning for ride-hailing systems. Table 2.1 summarizes all related approaches using Reinforcement

23

Learning to address online matching problems in ride-hailing systems. Optimizing the matching radius

with Reinforcement Learning can lead to higher efficiency in ride-hailing systems, resulting in a higher

matching rate, lower overall idling travel costs, and an improved user experience. However, unlike the

well-studied matching time window, there is still a gap in the in-depth optimization of the matching radius

as an independent factor in this field. Although the influence of the matching radius on system efficiency

and user experience has been demonstrated, questions remain unstudied regarding the extent of its

impact, the optimal matching radius, its impact if dynamic compared to a fixed radius, and how to

determine it. This research aims to investigate the matching radius as an independent factor in the

matching system, employing Reinforcement Learning methods to optimize it and explain how the

optimized dynamic matching radius influences the ride-hailing system's overall efficiency and user

experience for all stakeholders. The last row of the Table 2.1 shows a comparison of research topics,

MDP settings and research methods between this study and other approaches.

Table 2.1. Approaches for solving RH online matching problems with RL

Authors Research Topic State (S), Action (A) and Reward(R) of MDP Method

Feng et al., 2023
Optimize pricing, matching

framework

S: supply vertices
A: comparative ratio

R: match rate
Mathematical

Xu et al. 2018
Optimize single driver’s
decision in ride-hailing

matching process

S: driver and demand’s location and time
A: accept the ride or refuse the ride
R: total net profit for a time period

TD

Wang et al.,
2019

Optimize batched matching
process and its batch length

S: current batch size, current supply-demand pattern
A: batch length

R: summed weights of weighted edges in bipartite graph
Q-learning

Wang and
Lampert, 2014

Optimize ride-hailing system
revenue

S: drop-off zone at a corresponding time
A: remain location or reposition for each vehicle

R: average trip fair for a pickup zone
SARSA

Liu, Wu et al.,
2022

Optimising on-demand vehicle
dispatching process

S: current time, past satisfactory and demand locations
A: possible dispatching destination for vehicles in each grid

R: total net profit made from the system

Single agent
DRL

Wang et al.,
2018

Optimize single driver’s
decision in ride-hailing

matching process

S: driver and demand’s location, supply-demand pattern
A: accept the ride or refuse the ride
R: total net profit for a time period

DQN

Holler et al.,
2019

Optimize drivers’ behaviour in
ride-hailing matching process

S: locations of all drivers and demands
A: match the drivers and demands or reposition
R: total system revenue minus reposition cost

DQN

Ke et al., 2020
Optimize batched matching
process and its sequence

S: number of supply-demand and arrival rate in each cell
A: match supply-demand or delay the match in each cell

R: total trip price, pick-up distance and match time-window
A2C, PPO

Qin et al., 2021
Optimize delayed matching
process and time-window

S: vehicle number, rider and driver’s arrival rate
A: cell join the matching pool or delay the match

R: total pick-up waiting time
ACER

Jin, Zhou et al.,
2019

Optimize fleet management
base on hexagonal cells

S: rider and driver amount, trip duration and prices
A: match or reposition (cell), sub-goal (manager)

R: distance to sub-goal (cell), total net revenue (manager)

Hierarchical
MARL

Li et al., 2019
Optimize drivers’ behaviour in
ride-hailing matching process

S: driver and demand’s location, time and availability
A: accept the ride or refuse the ride

R: total system net profit for a time period
MARL, AC

Chen et al.,
2023

Optimize broadcasting radius
in ride-hailing DBRAS

S: number of supply-demand in each cell, time, arrival rate
A: broadcasting radius for each cell

R: matching rate, system performance WESM RL

Zhao, 2024 Optimize matching radius
S: number of riders and drivers in each cell

A: matching radius for each cell
R: overall performance and user experience score

MDDPG

24

3
3 Problem Formulation

25

This study aims to optimize the matching radius in ride-hailing systems by modelling the decision-

making process as a Markov Decision Process (MDP). The goal is to optimize overall system

performance and user experience by balancing the matching rate, pick-up distance, and driver

utilization rate. This section will discuss the formulation of this optimization problem, the definition of the

ride-hailing matching MDP, and the roles of RL agent and the environment.

3.1 Problem Description

The objective of this study is to maximise the overall system performance by modelling the radius-

deciding process in a ride-hailing system as a Markov Decision Process (MDP). The proposed policy

must meet real-time adaptability and computational feasibility. That is, the dynamic matching radius

policy must be quickly adapted to respond to changes in demand patterns, driver availability, and traffic

conditions to maintain high system performance. The solution should be implementable in real-world

scenarios, considering computational efficiency and practical deployment in existing ride-hailing

systems. The detailed settings of the defined Markov Decision Process (MDP) are discussed in the

following subsections, those settings include state, action and reward. As the problem is designed as a

model-free approach, the state transitions are simulated by defining a simulator.

Reinforcement Learning has already been proven for its ability to handle complex, dynamic optimization

problems due to its adaptive learning capabilities (Qin and Zhu, 2022), it is well-suited for handling and

solving the matching radius optimization problem in ride-hailing systems. To achieve this, a virtual

learning environment (simulator) was developed for RL, allowing agents to participate in online RL

interactions. Using parameters from the RideAustin dataset, such as idle driver arrival rates and ride

start locations, simulations were conducted on a map of Austin, Texas, to closely reflect real-world

conditions. Figure 3.1 shows the optimization framework developed in this study. It illustrates how the

simulator works together with the RL to optimize the real-world ride-hailing matching system. As shown

in the figure, the process starts from the actual ride-hailing market at the bottom of Figure 3.1. The

simulator simulates the ride-hailing market in reality by fitting the actual driver-rider supply-demand

relationship data and the actual driver-rider location data. In the entire RL process, the agent learns the

policy through interaction with the simulation environment. Specifically, the agent in this study is the

ride-hailing system operator. The operator outputs the matching radius of each cell based on the

observed state of the current ride-hailing simulator (supply-demand state). The ride-hailing simulator

receives this matching radius set, simulates a step of the matching process, and gives an immediate

reward based on the impact of the matching radius on the ride-hailing system (matching rate, average

pick-up distance, driver utilization), the overall performance score is used as this immediate reward. At

the same time, the simulator will also output the next state to the operator. This transition containing

state, action, reward, and next state will be transmitted to the RL optimizer in real-time, as shown in the

upper right corner of Figure 3.1. The RL optimizer uses these transitions through the RL algorithm to

adjust and update the operator's policy, thereby gradually optimizing its decision-making ability during

the continuous training iterations. Finally, after training, the operator will interact with the actual ride-

hailing market, as shown in the interactive loop between the operator and the real ride-hailing market

in Figure 3.1. The operator will dynamically output the optimized matching radius based on the real-

time supply and demand relationship between drivers and riders to improve matching efficiency,

improve user experience, and optimize driver utilization. This optimization framework for the ride-hailing

matching system developed in this study is one of the first models for improving the ride-hailing system,

proving a solid foundation for future studies.

26

Figure 3.1. Framework of the learning structure in this study.

3.2 Markov Decision Process Definition

State Definition

In this study, the decision-making process of determining the matching radius for each cell in the ride-

hailing system by the system agent is modelled as a Markov Decision Process (MDP). In a Markov

Decision Process (MDP), the state represents the observable signal from the environment that can

reflect the current system status to the agent (Sutton and Barto, 2018). In the ride-hailing system, the

system's state is defined by the real-time travel demand and the locations of idle vehicles in each region.

The observations in each cell at time 𝑡 is denoted as 𝑠𝑡. Let 𝐴 denotes the number of cells of the whole

studied area, then the sub-observation of cell i at time 𝑡 is denoted as 𝑜𝑖,𝑡. The state at time-step 𝑡 can

be derived as

𝑠𝑡 = {𝑜1,𝑡 , 𝑜2,𝑡, 𝑜3,𝑡 … 𝑜𝑖,𝑡 | 𝑖 ∈ 𝐴} (3.1)

The environment is further defined as the place where the agent interacts. It encompasses everything

surrounding the agent and with which it interacts. This includes all entities other than the agent itself,

both observable and unobservable within the system in which the agent operates (Sutton and Barto,

1998). In the case of the ride-hailing system, the environment is the local ride-hailing market. In the

ride-hailing market, the observation the agent can observe from the environment is the real-time supply-

demand relationship between drivers and travel requests. The implementation of the observations in

this study is discussed in detail in the next chapter.

Action Definition

The action is taken by the system operator, which is the matching radius for each cell. The action is a

collection of sub-actions of all cells at time step 𝑡. With this set of matching radiuses, a matching is

27

formed. A matching pool refers to a collection of all the riders with available drivers within their matching

radius. The matching radius of a matching area determines how many drivers will be included in the

matching pool. The larger the matching radius, the bigger the matching pool is. The matching radius

can be different across cells.

Let 𝑎𝑖,𝑡 denotes the matching radius (action) in cell 𝑖 at time-step 𝑡. All the riders in the same cell will

have the same matching radius, while riders in different cells can have different matching radius. The

action at time step 𝑡 can be derived as

𝑎𝑡 = {𝑎1,𝑡 , 𝑎2,𝑡, 𝑎3,𝑡 … 𝑎𝑖,𝑡 | 𝑖 ∈ 𝐴} (3.2)

Reward Definition

The reward signal is critical in MDP. A reward signal defines the goal in a Reinforcement Learning

problem. In each time step, the environment sends to the Reinforcement Learning agent a single

number, a reward. The agent’s sole objective is to maximize the total reward it receives over the long

run. The reward signal indicates what is good in an immediate sense (Sutton and Barto, 2018). In the

ride-hailing MDP of this study, the reward signal 𝑅𝑡(𝑠𝑡 , 𝑎𝑡) is an overall system performance score. This

performance score at time step 𝑡 is a weighted sum of three system performance indicators: matching

rate 𝑟𝑡
𝑚𝑟 at with weight 𝑤1, average pick-up distance 𝑟𝑡

𝑝𝑑
 with weight 𝑤2 and driver utilization rate 𝑟𝑡

𝑑𝑢

with weight 𝑤3. The reward is this MDP is then defined as

𝑅𝑡(𝑠𝑡 , 𝑎𝑡) = 𝑤1𝑟𝑡
𝑚𝑟 + 𝑤2𝑟𝑡

𝑝𝑑
+ 𝑤3𝑟𝑡

𝑑𝑢 (3.3)

In the reward function, 𝑤1 , 𝑤2 , 𝑤3 are the multitask optimization weights for each of the reward

components. Firstly, the initial ride-hailing weights are set by the feedbacks from ride-hailing users and

other stakeholders and their preferences. After that, a series of experiments with different sets of

weights are implemented on the simulator trying to find balance between each reward components, the

criteria include reward analyzing and sensitivity analysis.

By introducing a dynamic matching radius policy as well as a realistic data-based ride-hailing simulator,

the objective of Reinforcement Learning algorithm based on the defined ride-hailing MDP is to maximize

the expected long-term cumulative value 𝑄𝜋(𝑠, 𝑎) at each time step. Let 𝐺𝑡 denotes the action value of

action 𝑎 at time step 𝑡 under the state 𝑠 . The discount factor is denoted as 𝛾 , and 𝑅𝑡 denotes the

immediate reward as derived above. The objective value function is then derived as

𝑚𝑎𝑥 𝑄𝜋(𝑠, 𝑎) = max 𝐸𝜋{𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} = 𝑚𝑎𝑥 𝐸𝜋 [∑ 𝛾𝑡−1𝑅𝑡

𝑇

𝑡=1
|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

= 𝑚𝑎𝑥 𝐸𝜋 [∑ 𝛾𝑡−1(𝑤1𝑟𝑡
𝑚𝑟 + 𝑤2𝑟𝑡

𝑝𝑑
+ 𝑤3𝑟𝑡

𝑑𝑢)
𝑇

𝑡=1
|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (3.4)

The objective of the ride-hailing MDP defined in this study is to use Reinforcement Learning MDDPG

algorithm to optimize the policy 𝜋 in order to get the highest cumulative overall reward as shown in

equation 3.4. It is also noted that the reward function used in the ride-hailing matching simulator

developed in this study and the final training process of the MDDPG is further developed based on the

reward function 3.3. A new method of defining the reward function is used in the final training process,

this part is further discussed in Chapter 4.

28

3.3 Model-free Approach

In this research, a model-free approach is used to model the state transition of the ride-hailing system

for capturing the real-world dynamics without defining mathematical models. In reinforcement learning

(RL), a model-free algorithm (as opposed to a model-based one) is an algorithm which does not

estimate the transition probability distribution (and the reward function) associated with the Markov

decision process (MDP) (Sutton and Barto, 1998). The transition probability distribution (or transition

model) and the reward function are often collectively called the model of the environment (or MDP),

hence the name "model-free". A model-free RL algorithm can be thought of as an explicit trial-and-error

algorithm. Typical examples of model-free algorithms include Monte Carlo RL, Sarsa, and Q-learning.

The estimation of value function is critical for model-free RL algorithms. Unlike Monte Carlo (MC)

methods, temporal difference (TD) methods learn the value function by reusing existing value estimates.

If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly be

temporal difference. TD has the ability to learn from an incomplete sequence of events without waiting

for the final outcome. TD has the ability to approximate the future return as a function of the current

state. Similar to MC, TD only uses experience to estimate the value function without knowing any prior

knowledge of the environment dynamics. The advantage of TD lies in the fact that it can update the

value function based on its current estimate. Therefore, TD learning algorithms can learn from

incomplete episodes or continuing tasks in a step-by-step manner, while MC must be implemented in

an episode-by-episode fashion (Sutton and Barto, 1998).

In this research, state transition in a Markov Decision Process (MDP) is the process by which the system

transits from one state to the next state with only the impact of the actions performed by the agent. In

the simulator, state transitions are not expressed as mathematical functions. Instead, a data-driven

simulated environment is used. This developed simulator should able to capture different real-world

factors like time-varying travel demand, driver availability dynamics and spatial-temporal supply-

demand patterns. A description of the settings for the developed simulator can be found in Chapter 4.

In summary, the model-free approach is applied to the ride-hailing matching optimization problem in

this research. In the MDP, the transition function with properties that are inherent to real-life ride-hailing

matching systems is simulated by developing a simulator due to their complex and dynamic nature. The

method makes it possible to more flexibly and realistically simulate the ride-hailing matching

environment while allowing for unforeseen changes and uncertain properties of the ride-haling

environment in the real world. The next chapter will introduce a ride-hailing simulator built on the MDP

defined in this chapter.

29

4
4 Simulator Design

30

In Reinforcement Learning, a simulator is a virtual environment where the agent can interact and learn

without the need for costly or impractical real-world experiments. In ride-hailing optimization, the

simulator is a deep copy of the ride-hailing market in the real-world. It models travel demands, driver

locations, aiding algorithms in testing and refining dynamic matching radius. This chapter describes the

settings of the simulator and the details base on the proposed MDP. The pseudo code of the simulator’s

working flow is included in Appendix A.

4.1 Simulator Description

In this section, a Markov Decision Process (MDP)-based simulator is defined for modelling a realistic

ride-hailing market and providing an interactive environment for the Reinforcement Learning agent to

generate data for its learning. On the other hand, this simulator is also used to evaluate and optimize

the dynamic matching radius policy.

The MDP-based simulator was chosen because it is able to efficiently simulate the process of assigning

matching radius to multiple cell-based area by the system manager, as well as the complex interactions

between riders and drivers. In the same time, the simulator makes it possible for the agent to capture

the dynamic behaviours of the system at a micro level. The reason for defining a simulator is to make

the Reinforcement Learning environment more controllable and easier to obtain the data needed for

learning, as well as to make it possible to test and validate the trained policy in a controllable

environment. The simulator also makes it possible to be able to simulate the complex conditions of the

real world and to perform experiments in multiple scenarios without interfering with the actual operation

of the ride-hailing system in real world.

In order to simplify the system and effectively control irrelevant variables, this study made several

assumptions in the developed ride-hailing simulator:

• Cell-based map: It is assumed that the ride-hailing market consists of multiple independent, equally-

sized cell areas, each with fixed geographic boundaries. The matching process between travel

demands and drivers in each cell is independent. The matches can be made across the boundaries of

the cells. This assumption simplifies the matching process and reduces its systematic complexity.

• Cell-based matching radius: It is assumed that all riders in the same cell have the same matching

radius, while the matching radius between different cells can be different.

• Simplified ride-hailing behaviours: It is assumed that riders will not cancel orders after being

successfully matched, and it is also assumed that drivers will not refuse to accept orders after being

matched with travel demands. This assumption simplifies the complexity of the matching system and

makes the optimization goal of the system clearer.

• Distance-based preference: It is assumed that the order weight of the matching system is only related

to the pick-up distance, regardless of the length of the order trip. This assumption means that all

orders have the same value, and the weight is only negatively correlated with the pick-up distance.

• Controlling variables: It is assumed that all other environmental factors (such as traffic conditions and

weather) remain unchanged during the simulation. This assumption aims to control these complex

and irrelevant variables, hence reducing the impact of irrelevant factors on optimizing the ride-hailing

matching system.

With the discussed definitions and assumptions, a highly realistic ride-hailing simulator is proposed in

this study. The simulator consists of five parts: data, action, state-action interaction, reward, and state

transition. All those five parts are discussed in detail in the following subsections.

31

4.2 Data Usage of the Simulator

The data of this ride-hailing simulator is the most critical data in the simulator and the model-free

approach. It is the basis of all changes and internal variables in the simulator’s state transition. The

quality of the data directly affects the reliability of the simulator in estimating the real-world ride-hailing

environment, and also significantly affects the accuracy of the simulator in simulating the state transition

of the real ride-hailing environment. Therefore, the data must come from real and feasible ride-hailing

operation records in the real world, and appropriate methods must be selected to preprocess it to ensure

its quality. When selecting data, the reliability and representativeness of the data source should be

considered to ensure that it include information that can accurately reflect the actual operation of ride-

hailing service. The preprocessing process is also important, it includes steps such as data cleaning,

denoising, and normalization to eliminate outliers and noise and ensure data consistency and accuracy.

Part of the simulator's data is a comprehensive ride-hailing dataset from the study area. This dataset

should include detailed locations of idle drivers in the study area, the starting location of ride requests,

the ending location of ride requests, the start and end time of ride requests, and other relevant details.

This extensive dataset provides a real-world data source that is critical to the accuracy and reliability of

the developed ride-hailing simulator. In this ride-hailing simulator, the initial location of drivers and travel

requests are sampled from distributions fitted based on this part of the data. This approach ensures

that the simulation environment is highly realistic compared to the real-world operations of the ride-

hailing system observed in the dataset. Another part of the simulator's base data comes from

OpenStreetMap (OSM). OpenStreetMap (OSM) is a free, open geographic database updated and

maintained by a community of volunteers via open collaboration. Contributors collect data from surveys,

trace from aerial imagery and also import from other freely licensed geodata sources. (OpenStreetMap

official wiki). The simulator uses OSM data as the road network data and map data for modelling studied

area. The use of this data is crucial for generating cells in the simulator, enabling environment

visualization, significantly enhancing the realism of the simulator, and making it easier for simulator

users to observe the current state and the transitions in the simulator.

In the ride-hailing simulator developed in this study, the locations of all new travel demands and initial

locations of drivers are generated based on location models fitted from the real ride-hailing operating

dataset. General fitting methods, such as parametric models, may not capture the complex, multimodal

nature of travel demand distributions in urban environments. For instance, fitting a simple two-

dimensional gaussian distribution might fail to account for the multiple peaks corresponding to different

hotspots in a city, such as transportation hubs, residential areas, and the city center. This study employs

an advanced non-parametric fitting method to capture the locational characteristics of travel demands

and drivers, which is the Kernel Density Estimation.

Kernel Density Estimation (KDE) is a non-parametric method used to estimate the probability density

function for multi-dimensional variables. In statistics, adaptive or variable-bandwidth kernel density

estimation is a form of kernel density estimation in which the size of the kernels used in the estimate

are varied depending upon either the location of the samples or the location of the test point. It is a

particularly effective technique when the sample space is multi-dimensional. Using a fixed filter width

may mean that in regions of low density, all samples will fall in the tails of the filter with very low weighting,

while regions of high density will find an excessive number of samples in the central region with

weighting close to unity. To fix this problem, Terrell G. R., Scott D. W. (1992) vary the width of the kernel

in different regions of the sample space. There are two methods of doing this: balloon and pointwise

estimation. In a balloon estimator, the kernel width is varied depending on the location of the test point.

In a pointwise estimator, the kernel width is varied depending on the location of the sample. For example,

in a ride-hailing demand distribution, there are often multiple peaks corresponding to different demand

32

hotspots. Using KDE can better reflect these multimodal demand characteristics rather than relying on

simple parametric models. Mathematically, a kernel is a positive function 𝐾(𝑦; ℎ) controlled by the

bandwidth parameter ℎ. Given this kernel form, the density estimates at a point 𝑦 within a group of

points 𝑥𝑖; 𝑖 = 1 … 𝑁 are provided by

𝜌𝐾(𝑦, ℎ) =
1

𝑁ℎ
∑ 𝐾 (

𝑦 − 𝑥𝑖

ℎ
)

𝑁

𝑖=1

(4.1)

The kernel function used in this study is the gaussian kernel. The gaussian kernel is defined as

𝐾(𝑦, ℎ) =
1

√2𝜋
𝑒−

1
2(

𝑦−𝑥𝑖
ℎ)

2

(4.2)

The bandwidth acts as a smoothing parameter, controlling the trade-off between bias and variance in

the result. A large bandwidth leads to a very smooth (i.e., high-bias) density distribution, while a small

bandwidth leads to an unsmooth (i.e., high-variance) density distribution.

4.3 Input of the Simulator

The action is the input to the simulator, its value is decided by the system operator (agent), which is the

matching radius of each cell. The action is a collection of sub-actions of all cells at time step 𝑡, it can be

written as 𝑎𝑡 = (𝑎1,𝑡 , 𝑎2,𝑡 , 𝑎3,𝑡 … 𝑎𝑖,𝑡|𝑖 ∈ 𝐴), where 𝑎𝑖,𝑡 is the sub-action in cell 𝑖 at time-step 𝑡. The action

has an action space with a lower bound of 50 meters and an upper bound of 3000 meters. All the riders

in the same cell will have the same matching radius, while riders in different cells can have different

matching radius. A matching pool is a collection of all the riders with available drivers within their

matching radius. Available drivers are indicated by drawing a rider-centered matching range with the

corresponding matching radius as illustrated in Figure 4.1. The matching radius of a matching area

determines how many drivers will be included in the matching pool. The larger the matching radius, the

bigger the matching pool is. The matching radius can be different across cells.

Figure 4.1. An example of the action and the visualized action range.

Lower bound

Upper bound

33

4.4 Simulation of the Matching Process

The matching process of the ride-hailing simulator is based on the real-time observation and the input

matching radius at each time-step 𝑡. In the ride-hailing market, the observation the agent can observe

from the environment is the real-time supply-demand relationship between drivers and travel requests.

In the ride-hailing simulator, as defined in the MDP, the state is defined by the real-time travel demand

and the locations of idle vehicles in each region. However, using the specific coordinates of vehicles

and travel demand as the state is too cumbersome and not conducive to large-scale computations.

Therefore, the real-time supply-demand relationship of traveling demands and idling vehicles in each

region is concretized as the number of traveling demands and idling drivers in each cell, to reflect the

current system state. Let 𝑁𝑖,𝑡
𝑟 denotes the number of riders (travel demands), and 𝑁𝑖,𝑡

𝑑 denotes the

number of idle drivers in cell i at time 𝑡. Then, the sub-observation in cell i at time 𝑡 can be derived as

𝑜𝑖,𝑡 = {𝑁𝑖,𝑡
𝑟 , 𝑁𝑖,𝑡

𝑑 | 𝑖 ∈ 𝐴} (4.3)

With the definition 4.3 of sub-observations, the state at time-step 𝑡 can be extended as

𝑠𝑡 = {{𝑁1,𝑡
𝑟 , 𝑁1,𝑡

𝑑 }, {𝑁2,𝑡
𝑟 , 𝑁2,𝑡

𝑑 }, … {𝑁𝑖,𝑡
𝑟 , 𝑁𝑖,𝑡

𝑑 } | 𝑖 ∈ 𝐴} (4.4)

With current state 𝑠𝑡 and 𝑎𝑡, the state is updated when time-step moves from time interval 𝑡 to time

interval 𝑡 + 1. The state is updated according to the interactions between system operator’s action and

the environment. After system operator takes the action, all the riders will have a matching radius based

on which cell they are in. With the given matching radius, they will each form a matching pool. All the

drivers within the matching radius will be included in the corresponding matching pool. To be specific,

the matching pool is rider centered, so one matching pool can only have one rider, while one driver

could be included in several matching pool, and only one ride can be formed within one matching pool.

When all the possible matching pools are formed, the matching process begins. This matching process

is a global match, which means riders and idle drivers can be matched across cells. This type of

matching problem is solved by abstracting it into a bipartite matching problem, this approach has been

proved efficient and feasible in previous studies (Xu et al., 2018). Figure 4.2 illustrates the bipartite

graph of this matching problem. In the graph, 𝑜1, … 𝑜𝑖 are riders (travel demands) and 𝑑1, 𝑑2, … 𝑑𝑖 are

available drivers. The solution with the maximum matching rate and the minimum summed edge

weights of this bipartite matching problem can be found by using Hungarian Matching Algorithm with

weighted edges of pick-up distance based on equation 4.5 with constraints 4.6, 4.7 and 4.8.

Figure 4.2. A bipartite ride-hailing matching graph.

34

The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in

polynomial time and which anticipated later primal–dual methods. It was developed and published by

Harold Kuhn (1955), who gave it the name Hungarian method because the algorithm was largely based

on the earlier works of two Hungarian mathematicians. James Munkres (1957) reviewed the algorithm

and observed that it is (strongly) polynomial. Since then, the algorithm has been known also as the

Kuhn–Munkres algorithm or Munkres assignment algorithm. In this algorithm, the drivers and riders will

be matched according to the basis to achieve the lowest average pick-up distance, this is the principle

of batched matching. Let 𝑐𝑖𝑗 denotes the weight (the pick-up distance) of the match between rider 𝑖 and

driver 𝑗 , 𝑥𝑖𝑗 is binary variable, 𝑥𝑖𝑗 = 1 if rider 𝑖 and driver 𝑗 are matched, otherwise 𝑥𝑖𝑗 = 0 . Let 𝑅

denotes the rider collection, 𝐷 denotes the driver collection. Then the objective function is then derived

as

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑗∈𝐷𝑖∈𝑅

(4.5)

This objective function represents the principle of the batched matching method and the bipartite

matching method with weighted edges. The goal is to reach the minimum summed weights of edges

between all matched pairs, in order to minimize the average pick-up distance in the ride-hailing system.

This objective function also has some constraints. The first constraint is that one rider can only be

picked-up by one driver. In contrast, the second constraint is that one driver can only pick up one rider

at a time step. These constraints are formulated as

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑥𝑖𝑗 ≤ 1

𝑗∈𝐷

 ∀𝑖 ∈ 𝑅 (4.6)

 ∑ 𝑥𝑖𝑗 ≤ 1

𝑖∈𝑅

 ∀𝑗 ∈ 𝐷 (4.7)

𝑥𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑅, ∀𝑗 ∈ 𝐷 (4.8)

4.5 Outputs of the Simulator

The reward and the next state observation are the outputs of the ride-hailing simulator. As defined in

the MDP, the reward signal indicates what is good in an immediate sense. In this ride-hailing simulator,

the reward signal is combined from two parts: the penalty signal and the performance metrics. This

subsection will discuss in detail the reward function of the defined MDP adapted to this simulator,

including how it is calculated and how it reflects the performance of the ride-hailing system.

The most important part is the ride-hailing performance metrics, it reflects the optimization objective of

this research. In the ride-hailing simulator, a good action is determined when it can lead to a better

trade-off between matching rate, average pick-up distance and driver utilization. The matching rate

defines the percentage of ride requests that are successfully matched with a driver within the optimal

radius. Let 𝑁𝑚 denotes the number of matched rides and 𝑁𝑟 denotes the number of traveling demands.

Then, the matching rate 𝑟𝑡
𝑚𝑟 at time-step 𝑡 can be derived as

𝑟𝑡
𝑚𝑟 =

𝑁𝑚

𝑁𝑟

(4.9)

The average pickup distance is the average distance a driver travels to a rider's location, affecting

operating costs and user experience. Let 𝑐𝑖𝑗 denotes the pick-up distance between between rider 𝑖 and

35

driver 𝑗, 𝑥𝑖𝑗 is a binary variable. Let 𝑥𝑖𝑗 = 1 if rider 𝑖 and driver 𝑗 are matched, otherwise 𝑥𝑖𝑗 = 0. Let 𝑁𝑚

denotes the number of matched rides. Let 𝑎𝑚𝑎𝑥 denotes the upper bound of the action space, which is

the maximum pick-up distance, this is used to normalize the average pick-up distance into a scale

between [0, 1]. Then the average pick-up distance 𝑟𝑡
𝑝𝑑

 at time-step t is derived as

𝑟𝑡
𝑝𝑑

=
(

∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑗∈𝐷𝑖∈𝑅

𝑁𝑚
)

𝑎𝑚𝑎𝑥

(4.10)

The driver utilization rate reflects the efficiency with which drivers respond effectively to ride requests,

affecting overall system efficiency and driver satisfaction. Let 𝑁𝑚 denotes the number of matched rides,

𝑁𝑑′ is the number of available drivers within matching radius. The driver utilization rate 𝑟𝑡
𝑑𝑢 at time-step

t can be derived as

𝑟𝑡
𝑑𝑢 =

𝑁𝑚

𝑁𝑑′
(4.11)

The performance metrics at time-step 𝑡 is represented by a score summed form three weighted reward

components. Let 𝑤1 , 𝑤2 , 𝑤3 denotes the multi-task optimization weights for each of the reward

components, the performance score 𝐶𝑡(𝑠𝑡 , 𝑎𝑡) at time-step t with a state 𝑠𝑡 and the input matching

radius set 𝑎𝑡 can be derived as

𝐶𝑡(𝑠𝑡, 𝑎𝑡) = w1 𝑟𝑡
𝑚𝑟 + w2 𝑟𝑡

𝑝𝑑
+ w3 𝑟𝑡

𝑑𝑢 (4.12)

= w1
𝑁𝑚

𝑁𝑟
+

w2 (
∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑗∈𝐷𝑖∈𝑅

𝑁𝑚
)

𝑎𝑚𝑎𝑥
+ w3

𝑁𝑚

𝑁𝑑′
(4.13)

The importance of match rate, average pick-up distance, and driver utilization rate is clear to

researchers, but these optimization goals can be difficult for a machine (the agent) to understand. The

original reward function straightly includes those performance metrics are tested in this research, the

training performances such as cumulative reward convergence and learning speed are not always

satisfying. Therefore, reward shaping is employed in this study to help the agent learn more effectively.

Reward shaping in reinforcement learning is a technique used to guide an agent toward desirable

behaviors by modifying the reward function (Laud A. D., 2004). By carefully designing the shaping

function for the rewards, the agent can learn more effectively and efficiently, especially in complex

environments such as the ride-hailing matching environment. There are many types of reward shaping

approaches. Potential-based reward shaping, for example, is a particular type of reward shaping, it

uses the expected value of the immediate reward that the agent will ultimately receive for taking a

particular action to reshape the reward function (Wiewiora, 2003).

In this study, a reward shaping method inspired by the potential-based approach is employed. The

reward signal is normalized to a binary value to help the agent better understand which matching radius

is considered optimal for the system's performance and user experience. A threshold is set to determine

the binary value: if the overall system performance score exceeds the threshold, the reward is

normalized to 1; otherwise, it is normalized to 0. This threshold is determined through a series of tests

called random exploration conducted before the training process. During random exploration, the

matching radius is randomly input into the simulator, and all output performance scores are recorded.

The threshold is then set at a value higher than 95 percent of all the output rewards, which is 0.6 in this

case study.

36

Let 𝑅𝐶(𝑠𝑡 , 𝑎𝑡) denotes the reshaped reward, it is a binary to demonstrate the quality of the action 𝑎𝑡

under the given state 𝑠𝑡. This approach helps the agent to better understand whether the action is good

or not. The 𝑅𝐶(𝑠𝑡 , 𝑎𝑡) is explained as

𝑅𝐶(𝑠𝑡 , 𝑎𝑡) = {
 1, 𝐶𝑡(𝑠𝑡, 𝑎𝑡) ≥ 0.6

 0, 𝐶𝑡(𝑠𝑡, 𝑎𝑡) < 0.6
(4.14)

In reward shaping, it is also important for the reshaped reward function to guide the agent away from

actions that are likely to lead to poor rewards (Miller T., 2022). In this study, a penalty is applied to the

matching radius value to eliminate poor or deceptive actions that the agent might take during the

learning process. While these tricky actions might yield higher rewards in certain steps, they are not

beneficial for the overall long-term discounted return, as formulated in Equation 3.4. The objective of

this research is to optimize the matching radius. The agent should manage to control the matching rate,

pick-up distance and driver utilization rate within a reasonable level. This means that both very large

and very small matching radius should be penalized. To achieve this goal, a sigmoid-shaped penalty is

added. Let 𝑎𝑚𝑖𝑛 denotes the lower bound of the action space (the minimum matching radius), 𝑎𝑖,𝑡

denotes the matching radius of cell 𝑖 at time-step 𝑡, 𝐴 is the collection of all the cells. The matching

radius penalty 𝑃𝑡(𝑎𝑡) with action 𝑎𝑡 at time-step 𝑡 can be derived as

𝑃𝑡(𝑎𝑡) = (∑[(1 + 𝑒−0.05(𝑎𝑖,𝑡−𝑎𝑚𝑖𝑛))(1 + 𝑒0.05(𝑎𝑖,𝑡−𝑎𝑚𝑎𝑥)) − 1]|𝑖 ∈ 𝐴) (4.15)

The plot of this penalty function is illustrated in Figure 4.3.

Figure 4.3. Plot of the penalty function for the matching radius.

Let 𝑅𝑡(𝑠𝑡 , 𝑎𝑡) denotes the instant reward of action 𝑎𝑡 in state 𝑠𝑡 , 𝑅𝐶(𝑠𝑡 , 𝑎𝑡) is the normalized overall

performance binary, 𝑃𝑡(𝑎𝑡) is the penalty given to the action. The overall reward function at time-step t

can be derived as

𝑅𝑡(𝑠𝑡 , 𝑎𝑡) = 𝑅𝐶(𝑠𝑡 , 𝑎𝑡) − 𝑃𝑡(𝑎𝑡)

= 𝑅𝐶(𝑠𝑡 , 𝑎𝑡) − (∑[(1 + 𝑒−0.05(𝑎𝑖,𝑡−𝑎𝑚𝑖𝑛))(1 + 𝑒0.05(𝑎𝑖,𝑡−𝑎𝑚𝑎𝑥)) − 1]|𝑖 ∈ 𝐴) (4.16)

37

For the Reinforcement Learning agent, the objective is to find a policy that maximizes the long-term

cumulative reward, known as the discounted return. This discounted return can be viewed as the sum

of the function in Equation 4.16 over all time steps, with each term multiplied by the discount factor at

its respective time step, derived as

𝑚𝑎𝑥 𝐸𝜋 [∑ 𝛾𝑡−1𝑅𝑡(𝑠𝑡 , 𝑎𝑡)
𝑇

𝑡=1
|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (4.17)

4.6 State Transition

Those unmatched idle drivers and demands are marked as match failed. When matching process is

done, successfully matched idle drivers and demands are marked as successful rides and removed

from the map. Unmatched demands will be checked if they exceed the threshold Δ𝑡𝑚𝑎𝑥 (tolerance

matching time defined as maximum matching time-steps), if so, they will be moved out from the

matching pool, if not, they will be kept in the matching pool and join the matching process at the next

time-step 𝑡 + 1. Those unmatched idle drivers have two possible behaviours of staying in the same cell

(idling within 300 meters) or travel to the nearest adjacent cell (relocating, only if already idled for more

than 5 minutes), they are included in matching pools of the corresponding cells at the next time-step

𝑡 + 1 . New demand and idle drivers enter the matching pool at time-step 𝑡 + 1 are determined by

generating rate 𝜆𝑟(𝑖, 𝑡) and 𝜆𝑑(𝑖, 𝑡). Let 𝑛𝑖,𝑡
𝑑,𝑜𝑢𝑡 denotes the number of drivers that are no longer in cell 𝑖

after time-step 𝑡 (matched or relocated), 𝑛𝑖,𝑡
𝑑,𝑖𝑛 denotes the number of drivers come to cell 𝑖 from other

cells. Similarly, let 𝑛𝑖,𝑡
𝑟,𝑜𝑢𝑡 denotes the number of riders who left the matching pool in cell 𝑖 after time-step

𝑡 (matched or quit the queue). The observations are updated as:

𝑁𝑖,𝑡+1
𝑑 ⟵ 𝑁𝑖,𝑡

𝑑 − 𝑛𝑖,𝑡
𝑑,𝑜𝑢𝑡 + 𝑛𝑖,𝑡

𝑑,𝑖𝑛 + 𝜆𝑑(𝑖, 𝑡)Δ𝑡 (4.18)

𝑁𝑖,𝑡+1
𝑟 ⟵ 𝑁𝑖,𝑡

𝑟 , − 𝑛𝑖,𝑡
𝑟,𝑜𝑢𝑡 + 𝜆𝑟(𝑖, 𝑡)Δ𝑡 (4.19)

Figure 4.4 and Figure 4.5 shows the difference between the driver idling behaviours and driver

relocating behaviours in the state transition process of the ride-hailing simulator.

→

Figure 4.4. An example of idling behaviours of drivers.

38

→
Figure 4.5. An example of relocating behaviours of drivers.

The pseudo codes of this state transition can be found in Appendix A. Although this simulator simplifies

driver behaviour for the sake of computational efficiency and optimization effectiveness, it still manages

to approximate driver behaviour in the ride-hailing market to a certain extent. The limitations arising

from these simplifications and assumptions will be discussed in the final section.

39

5
5 MDDPG Algorithm

40

After building the simulator, it is needed to define a Reinforcement Learning agent to interact with the

environment. With the inspiration of human learning behaviour, several Reinforcement Learning

algorithms are developed. In this study, a customized DDPG algorithm for the ride-hailing environment

is introduced, named MDDPG (Multi-replay-buffer Deep Deterministic Policy Gradient).

5.1 Algorithm Introduction

Reinforcement Learning algorithms can be classified into value-based and policy-based methods

according to the optimization objects. Value-based RL calculates the estimated action-value or state-

action value for each action with the current a state, selecting the highest value action as the next action

to take. Q-learning is the simplest one of value-based Reinforcement Learning approaches. It uses a

Q-value table to determine the values for all state-action pairs, offering good learning efficiency and

convergence. However, it is only suitable for the problems with finite state and observation space and

discrete, finite action space, making it unsuitable for the ride-hailing environment.

A more advanced value-based method is Deep Q-Network (DQN) learning. Reinforcement learning is

unstable or divergent when a nonlinear function approximator such as a neural network is used to

represent Q. This instability comes from the correlations present in the sequence of observations, the

fact that small updates to Q may significantly change the policy of the agent and the data distribution,

and the correlations between Q and the target values. The method can be used for stochastic search

in various domains and applications. The technique used experience replay, a biologically inspired

mechanism that uses a random sample of prior actions instead of the most recent action to proceed.

This removes correlations in the observation sequence and smooths changes in the data distribution.

Iterative updates adjust Q towards target values that are only periodically updated, further reducing

correlations with the target (Li et al. 2023). These techniques are critical to the successful of DQN in

playing Atari games and many other applications, due to the deadly triad issue (Sutton and Barto, 2018)

of reinforcement learning when one tries to combine bootstrapping (i.e., TD-learning and Q-learning),

off-policy training (i.e., Q-learning), and function approximations (i.e., neural networks), which may lead

to instability and divergence. The algorithms introduced so far are all value-based methods, which focus

on learning the value function, and the policy is derived from the learned value function. Neural network-

based value function approximation is important to ride-hailing applications because the state is often

high dimensional. Tabular methods suffer from the curse of dimensionality and are not tractable in this

case.

Model-free reinforcement learning algorithms can start from a blank policy candidate and achieve

superhuman performance in many complex tasks, including Atari games, StarCraft and Chinese Go.

Deep neural networks are responsible for recent artificial intelligence breakthroughs, and they can be

combined with reinforcement learning to create something astounding, such as DeepMind’s AlphaGo.

Mainstream model-free RL algorithms include Deep Q-Network (DQN), Dueling DQN, Double DQN

(DDQN), Trust Region Policy Optimization (TRPO), Proximal Policy Optimization (PPO), Asynchronous

Advantage Actor-Critic (A3C), Deep Deterministic Policy Gradient (DDPG), Twin Delayed DDPG (TD3),

Soft Actor-Critic (SAC), Distributional Soft Actor-Critic (Li et al. 2023).

MDDPG (Multi-replay-buffer Deep Deterministic Policy Gradient) is the algorithm that is applied in this

research based on the DDPG framework. DDPG (Deep Deterministic Policy Gradient) is a model-free

off-policy reinforcement learning algorithm for learning continuous actions. It combines ideas from DPG

(Deterministic Policy Gradient) and DQN (Deep Q-Network). The development of deep deterministic

policy gradient (DDPG) was inspired by the success of DQN and is aimed to improve performance for

tasks that requires a continuous action space. DDPG incorporates an actor-critic approach based on

DPG. The algorithm uses two neural networks, one for the actor and one for the critic. Deep

41

Deterministic Policy Gradient (DDPG) is an algorithm which concurrently learns a Q-function and a

policy. It uses off-policy data and the Bellman equation to learn the Q-function and uses the Q-function

to learn the policy. DDPG also uses target critic and target actor networks to stabilize training by

preventing direct updates of network outputs on the network itself. Unlike DQN, DDPG uses a soft

update approach for the target networks, gradually adjusting their parameters towards the source

networks. The DDPG method has the following advantages, it has high sampling efficiency, it is suitable

for multi-dimensional continuous action space and its policy is stable. In this study, an extended DDPG

algorithm is developed using two replay buffers (MDDPG) to help the agent to better train the policy

during the learning process, this algorithm is discussed in detail in the next subsection. Figure 5.1

illustrates the relationships between different Reinforcement Learning algorithms.

Figure 5.1. Relationship between different RL algorithms.

The coding environment of the RL algorithm is Python 3.9.13 with packages listed in Appendix B.

5.2 Description of the MDDPG

The DDPG algorithm is suitable for continuous action spaces, working by combining the ideas of deep

Q-learning, policy gradients, and the actor-critic method. This section discusses the customised DDPG

algorithm proposed in this study named Multi-replay-buffer Deep Deterministic Policy Gradient

(MDDPG). Two sets of deep neural networks are used in the MDDPG algorithm, which are source and

target critic networks 𝑄𝜔 and 𝑄𝜔′, source and target actor networks 𝜇𝜃 and 𝜇𝜃′ respectively.: The actor

network decides the actions to take given a state; and the critic network evaluates these actions by

estimating the expected reward. To stabilize the training, target networks are employed for both the

actor and critic. Additionally, the MDDPG algorithm in this study uses two replay buffers: one for storing

all experiences and another specifically for storing high-reward transitions. This ensures higher learning

efficiency and accelerates convergence.

The workflow of the algorithm is illustrated in Figure 5.2, with the entire training process starting from

the bottom right. In Reinforcement Learning, the main entity that learns and makes decisions is called

the agent. The agent interacts with the environment to learn how to take actions base on the policy that

maximize a long-term reward. Figure 5.2 shows the process by which the MDDPG agent interacts and

learns with the developed ride-hailing simulation environment.

42

F
ig

u
re

 5
.2

. T
h

e
 w

o
rk

in
g

 flo
w

 o
f th

e
 M

D
D

P
G

 a
lg

o
rith

m
 in

 rid
e

-h
a

ilin
g

 s
y

s
te

m
s

.

4
2

43

The first step of the entire training process is initializing the simulation environment (simulator) for each

episode. The green boxes represent methods related to the simulation environment within the algorithm.

First, the simulator is reset to obtain initial state, including the number of idle drivers and ride requests

in each cell. Then, the noise generation function is reset. In each step within an episode, the current

state (number of idle drivers and ride requests) is passed to the actor network to obtain an action. This

action, after being output by the actor, is added with a noise generated by the noise function to form the

final action for the current step. Finally, this action is rescaled (min-max rescale) to the corresponding

matching radius range, and the radius is passed to the simulator for interaction. In the simulator, the

input matching radius for each cell is used to form a matching pool, then the rides are formed by solving

the matching pool as a bipartite matching problem with weighted edges of pick-up distance. The

immediate reward is then calculated with the current state-action pair based on the reward function

mentioned earlier. Then, the simulator updates the environment, determines the behaviour of

unmatched riders and drivers, and generates new ride requests based on the driver-rider location model,

thus completing the state transition. The simulator then observes the new state, checks whether the

current state meets the episode termination criteria, and normalizes the states before outputting them

along with the reward and done status to the agent. This set of information, including the current state,

action taken, reward, next state, and done status, is called a state transition. One such interaction

process is named as a step in RL training. In Reinforcement Learning, a series of consecutive steps

from resetting the environment to the next reset is called an episode. After each step of interaction

between the agent and the simulator, the agent first checks whether the current episode has ended

based on the done status (done status is True). If the episode ends, the entire environment is reset,

and the next episode begins. If the episode has ended, the agent also checks whether the training

termination criteria is met. For example, in this study, the training terminates when the number of training

episodes reaches the maximum training episode threshold. If not, the above process is repeated for

training.

In the MDDPG algorithm, after each step of interaction, the current step's state transition is stored in

the replay buffer, as shown in the bottom left corner of Figure 5.2. If the reward in this state transition is

higher than a given threshold, this transition is also stored in a separate replay buffer called the good

action buffer. Continuing with the MDDPG process in the figure, after storing the state transition, the

agent checks the number of state transition data in the replay buffer. Once it exceeds a given threshold

(in this study, the threshold is three times the mini-batch size), it indicates that the replay buffer has

warmed up, which means the replay buffer has accumulated enough transitions for the agent to learn

from. The MDDPG algorithm then begins updating the weights of the neural networks to learn from the

replay transitions. Next is the neural network updating part in the MDDPG algorithm. When the agent

starts learning, it samples a mini-batch of transitions from both replay buffers, as shown in the bottom

left corner of Figure 5.2. After sampling, these data are passed to the critic and actor networks for

updating their weights. The specific update process is detailed below, with the process referenced in

the upper half of Figure 5.2. The source actor network is then used with the current step's state to output

actions for the next interaction, as shown in the top right of the figure. This step’s training process cycles

continuously until the done status is True. This cycle of exploration with noise, transition storage, and

network updates continues until the maximum number of episodes is reached, gradually improving the

policy to optimize the ride-hailing system's matching radius. The finally trained source actor network

represents the optimal dynamic matching radius policy.

As for the method for updating the weights in the deep neural networks, the optimizer applied to the

MDDPG algorithm is the Adam optimizer, it uses an incremental update method to update the weights

for the neural networks. The weights of critic network are updated by minimizing the loss

𝐿 =
1

𝑁
∑ (𝑞𝑖

𝜔′
− 𝑄𝜔(𝑠𝑖 , 𝑎𝑖))

2𝑁

𝑖=1
(5.1)

44

where 𝑞𝑖
𝜔′ is an expected state-action value, defined as 𝑞𝑖

𝜔′ = 𝑟𝑖 + 𝛾𝑄𝜔′(𝑠𝑖+1, 𝜇𝜃′(𝑠𝑖+1)). The weights

of actor network are updated by a policy gradient, its function is to increase the probability of selecting

actions with higher values, the policy gradient is calculated as

𝛻𝜃𝐽 = ∑ 𝛻𝜃

𝑁

𝑖=1
𝜇𝜃(𝑠𝑖)𝛻𝑎𝑄𝜔(𝑠𝑖 , 𝑎)|𝑎=𝜇𝜃(𝑠𝑖) (5.2)

After that, the parameters of target critic network 𝜔 and target actor netork are soft-upadted as

𝜃′ = 𝜏𝜃 + (1 − 𝜏)𝜃′, 𝜔′ = 𝜏𝜔 + (1 − 𝜏)𝜔′ (5.3)

where 𝜏 is the soft-update rate. The pseudo codes of the MDDPG algorithm are shown below.

Algorithm 1 Deep Deterministic Policy Gradient (MDDPG)

1. for episode = 1: E, do
2. reset the ride-hailing simulator and get initial observation 𝑁𝑡

𝐷, 𝑁𝑡
𝑅

3. reset done statue to False
4. calculate noise factor 𝑝 = 𝑒𝑝𝑖𝑠𝑜𝑑𝑒/max_epiosde
5. for t = 1: T, do
6. pass 𝑁𝑡

𝐷, 𝑁𝑡
𝑅 to actor get primal action 𝑎𝑡 = 𝑝 ∗ 𝜇𝜃(𝑠𝑡) + (1 − 𝑝) ∗ 𝒩

7. re-scale action 𝑎𝑡 to radius set 𝑎𝑡
′ and pass radius 𝑎𝑡′ to simulator

8. forming a matching pool base on the matching radius set 𝑎𝑡
′

9. execute ride matching by solving the bipartite matching problem
10. state transition, determine behaviours for unmatched riders and drivers
11. observe next state 𝑁𝑡+1

𝐷 , 𝑁𝑡+1
𝑅 , reward 𝑟𝑡, done statue 𝑑𝑡

12. normalize states 𝑠𝑡 and 𝑠𝑡+1 (state contains two parts, rider and driver)
13. store transition (𝑁𝑡

𝐷, 𝑁𝑡
𝑅 , 𝑎𝑡 , 𝑟𝑡,𝑁𝑡+1

𝐷 , 𝑁𝑡+1
𝑅 , 𝑑𝑡) in replay buffer R

14. If 𝑟𝑡 > threshold of good action:
15. store transition (𝑁𝑡

𝐷, 𝑁𝑡
𝑅 , 𝑎𝑡 , 𝑟𝑡,𝑁𝑡+1

𝐷 , 𝑁𝑡+1
𝑅 , 𝑑𝑡) in good action replay buffer R’

16. If memory > warm up size:
17. sample a random minibatch from R and R’ as

N*(𝑁𝑡
𝐷, 𝑁𝑡

𝑅 , 𝑎𝑡 , 𝑟𝑡,𝑁𝑡+1
𝐷 , 𝑁𝑡+1

𝑅 , 𝑑𝑡)|𝑖=1, 2..𝑁

18. update critic by minimizing target loss
19. update actor by calculating the policy gradient
20. soft update the target networks:

𝜃′ = 𝜏𝜃 + (1 − 𝜏)𝜃′, 𝜔′ = 𝜏𝜔 + (1 − 𝜏)𝜔′
21. if done:
22. break
23. episode += 1
24. reset random noise 𝒩
25. end for
26. end for

5.3 DNN Structure and Noise

The applied MDDPG algorithm uses a deep neural network framework developed. The defined neural

network is a 4-layer linear fully connected neural network. The input layer and hidden layer use the

exponential linear unit (ELU) activation function, and the output layer uses the tanh activation function.

ELU is the most common activation function used by most of the NN networks, while the tanh activation

function ensures output value is between -1 and 1. This feature can ensure the stability of neural

network training, making it easier for the algorithm to be rescaled to the action space.

45

When optimizing the matching radius for the ride-hailing matching system, the deep neural network

structure in the MDDPG is modified to better adapt to the needs and complexity of practical applications

of the ride-hailing simulator. Taking the actor network as an example, the specific modifications include

splitting the input layer and the first hidden layer into multiple parts, and the output layer and the last

hidden layer into multiple parts accordingly, each corresponding to a cell. In this structure, the state of

each cell (number of travel demands and drivers) is used as input and first processed by its own first

hidden layer. Then, these preliminarily processed inputs are aggregated to the middle fully connected

hidden layer. In the fully connected layer, the hidden layer outputs of all cells are processed

comprehensively to capture the mutual relationship and overall pattern between different cells. Finally,

the processed information is distributed to the independent last hidden layer and output layer of each

cell for output, and the matching radius of each cell is obtained. Figure 5.3 shows such a deep neural

network structure, in which the middle fully connected hidden layer is simplified. The figure shows only

one fully connected layer, and the number of fully connected layers used in actual applications is 4,

which constitutes a deep neural network structure.

Figure 5.3. Customized structure of the actor network.

By dividing the network's input layer and the first hidden layer into multiple parts, each corresponding

to a cell, the state of each cell can be processed separately when input, so that the neural network can

better capture the unique supply-demand relationship and characteristics of each cell. The fully

connected hidden layer ensures that the relationship between cells can be fully understood and

integrated by the neural network, capturing the complex relationship between cells. In this way, the

deep neural network can not only process the state and supply-demand relationship within a single cell,

but also understand and utilize the interdependence between different cells, thereby optimizing the

performance of the overall ride-hailing matching system. This method also effectively reduces the

redundant weight updates in the neural network and improves the training efficiency. Since each cell

has an independent input and the first hidden layer, this structure avoids redundant calculations of the

entire network when processing high-dimensional state and action data. Each cell has its own input and

output layers, so that the network can flexibly adapt to changes in supply-demand relationships in

different cells. Through such a neural network design, the MDDPG algorithm used in this study can

make full use of the unique information of each cell while maintaining efficient calculation, thereby

improving the optimization efficiency and optimization effect of the matching radius of the ride-hailing

matching system.

46

The MDDPG algorithm includes a random noise, which is added to the action output by the policy

network. This noise is used by the MDDPG agent to explore the action space. Common stochastic

processes for generating random noise include Gaussian noise and the Ornstein-Uhlenbeck (OU)

process. In this study, we use the Ornstein-Uhlenbeck process. Compared to the commonly used

Gaussian noise, the OU process describes a mean-reverting stochastic process. The definition of the

OU process is as follows:

𝑑𝑋𝑡 = 𝜃(𝜇 − 𝑋𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 (5.4)

where 𝑋𝑡 is the value of the process at time t, 𝜃 is the rate of mean reversion, indicating how quickly

the process back to the mean value, 𝜇 is the long-term mean, around which the process fluctuates.

𝜎𝑑𝑊𝑡 is the random part, where 𝜎 is the diffusion coefficient, representing scale of the randomness,

𝑑𝑊𝑡 is the increment of a standard Brownian motion (Wiener process). With the definition, it is clear to

find that the OU random process is a time-correlated random process, which means the random state

has correlation with the previous state.

By using this OU noise, it allows the RL agent to explore more steps in one direction in the ride-hailing

matching simulator. This feature can help the agent find more optimal actions and make the training

process more stable. Especially because the action in this study is the matching radius. The matching

radius has a continuous effect on the time sequence and affects the supply and demand relationship

among several time steps. Therefore, applying OU noise to this RL learning process can better help the

agent find the optimal matching radius policy, speed up the learning speed of the agent, and enhance

the stability of the system. Figure 5.4 shows the different pattern between OU noise and simple

Gaussian noise.

Figure 5.4. Comparison between OU noise and Gaussian noise.

47

5.4 MDDPG Algorithm Validation

After completing the MDDPG algorithm code, it is necessary to test its effectiveness in a simple

environment. The testing environment used in this study is MountainCar-V1, which was developed by

the OpenAI team. This environment has been validated under various Reinforcement Learning

algorithms as a benchmark testing environment. The goal of the MountainCar-V1 environment is to

drive the car to the top of the hill. The observation space and action space are as follows: This is

considered as a suitable validation because it has similar setting of the ride-hailing environment but

with lower dimension of action and observation space. Figure 5.5 visualizes the basic settings of the

MDDPG validation environment MountainCar-V1.

Table 5.1. Validation feature comparison.

Figure 5.5. MDDPG test environment MountainCar-V1.

Speed of convergence to optimality is used to test the performance between algorithms in this research.

Optimality is usually an asymptotic result, and so convergence speed is an ill-defined measure. More

practical is the speed of convergence to near-optimality. This measure begs the definition of how near

to optimality is sufficient. A related measure is level of performance after a given time, which similarly

requires that someone define the given time (Kaelbling et al., 1996). The test results are shown in Figure

5.6. Compared to the A2C algorithm and the original DDPG algorithm, it can be observed that MDDPG

is more stable during training and the learning performance is also better. After 200 episodes of training,

the reward stabilizes at a higher level, which is faster than the original DDPG algorithm. The results

show that the policy trained by MDDPG converges faster than A2C and original DDPG, demonstrating

higher training efficiency. The MDDPG algorithm is validated by this experiment because it is based on

an already proposed Reinforcement Learning framework and the validation environment has the similar

but simpler setting than the ride-haling environment. It can be seen from the result that the trained

outcome reaches the same level compared to two validated algorithms (A2C and DDPG) and the

trained policy is more stable and also reasonable (straightly push the car to the flag). The training

process is repeatable and shows similar characteristics also is evidence showing that the proposed

MDDPG algorithm is valid. In summary, the effectiveness of MDDPG in continuous action space

environments is validated base on the validation environment.

48

(A2C)

(DDPG)

(MDDPG)

Figure 5.6. Performance plot between A2C, DDPG and MDDPG algorithms.

49

6
6 Case Study

50

6.1 Introduction of Austin

After developing the ride-hailing simulator and validating the effectiveness of the MDDPG algorithm, it

is essential to apply the simulator to a real case and systematically design various scenarios to train

the MDDPG agent in order to get the optimal dynamic matching radius policy. The designed scenarios

can also be used to assess the effectiveness of the trained policy. This section introduces a case study

setup and comprehensively evaluates the impact of various factors on performance metrics of matching

rate, average pick-up distance, and driver utilization under various of scenarios with the proposed

dynamic matching radius policy. Key independent variables include variations in matching radius

adjustment methods (static baseline or dynamic radius), fluctuations in rider demand, and changes in

driver availability (reflected in rider-driver demand-supply ratio), while control variables (matching time

window etc.) remain constant within each scenario. The decision variable is straightly the matching

radius for each cell obtained from the trained dynamic matching radius policy. This approach makes it

possible for the researchers to train, test the proposed dynamic matching radius policy and validate the

applicability of the dynamic matching radius policy for its application in the real ride-hailing market with

a higher level of complexity.

The study area for this case study is Austin, the capital of Texas, USA. The city was chosen as the study

area for this case study is because its densely populated downtown area and the well-developed ride-

hailing service managed by the municipal authority (the RideAustin Company). The city's rapid

population growth, coupled with a fast-growing economy and numerous recreational activities that

attract large crowds, has led to a booming developed ride-hailing market. Currently, many online ride-

hailing platforms consider Austin as an important market, including Uber, Lyft, and RideAustin. However,

this growth has also brought challenges such as traffic congestion, supply-demand imbalance, and

inefficient allocation of drivers and travel demands. By applying the developed simulator to the ride-

hailing environment in Austin and combining it with the proposed customized MDDPG Deep

Reinforcement Learning algorithm, this case study aims to optimize a dynamic matching radius policy

suitable for the Austin’s ride-hailing market. The goal of this case study is to verify the effectiveness of

the developed simulator and MDDPG RL algorithm. Their feasibility in the actual ride-hailing market is

also verified by applying them to the case study subject.

6.2 Simulator Implementation and Validation

In this case study, the first part of the data for the simulator comes from the OpenStreetMap (OSM)

project. OSM is a free and open-source global map project created and maintained by a volunteer

community (OSM official website). By collecting, filtering and documenting the geographic data of the

city of Austin, OSM provides the simulator with a detailed and easily accessible map dataset to generate

the basic simulation environment of the study area. The simulator uses OSM data to get useful

information about Austin's road network data and map data. The OSM data makes it possible for the

built-in algorithms of the developed simulator to generate geographical information for the ride-hailing

cells. The locations of travel demand in the simulator are also partly based on this OSM data. On the

other hand, the visualization part of the simulator relies heavily on the OSM data. It significantly

enhances the realism of environment visualization, helps the users of this simulator to observe the state,

action and the state transitions in real-time. Figure 6.1 is a simulation environment of the study area

generated based on the OSM map.

51

Figure 6.1. The OSM-based simulation environment of Austin.

Another important part of the data used in the developed simulator for this case study comes from the

RideAustin dataset. The RideAustin dataset is an open-source dataset that can be retrieved from the

internet on a data storage website named Data World. The license is given by the website administrator

to the users for any non-commercial use. The dataset contains comprehensive information including

locations of idle drivers and travel demands, destinations of matched trips, start and finish time of

matched trips, service vehicle types, and other relevant details. This dataset provides a rich source of

real-world data that reflects characteristics of the ride-hailing market in the city of Austin. It is critical for

the application of the developed simulator to accurately simulate the ride-hailing matching process in

the city of Austin. In this simulator, both the initial locations of drivers and travel demands are sampled

from distributions fitted based on the RideAustin data. With these fitted location distributions, the

simulator can generate realistic and representative locations of driver locations and ride request

locations to achieve a realistic simulation. This approach ensures the simulation’s stability and reliability,

making it very similar to the real ride-hailing market that represented by the RideAustin dataset.

Figure 6.2 shows a heat map of real demand locations sampled from the RideAustin data. In addition,

it shows 10,000 demands randomly sampled from one of the fitted distributions, compared to the real

demand locations. The heat map highlights areas of high and low demand, visually showing where ride

requests are most and least frequent. The randomly sampled demands show how effectively the fitted

distributions replicate the spatial patterns of real-world ride requests, thus validating the sampling

method. By using this data, the simulator provides the users with a simulation environment of a high

degree of realism and accuracy. This, in turn, enables users to run more effective and valid simulations

that can be used to test and optimize various ride-hailing strategies under conditions that closely

resemble the real world. The generated data of riders and drivers is also mathematically tested using

Kolmogorov-Smirnov (KS) test method to further validate the effectiveness of the developed simulator

in this case study

52

Figure 6.2. Comparison between real demands and samples in the afternoon.

The Kolmogorov-Smirnov (KS) test is a non-parametric test used to compare the differences between

two sample distributions or between a sample distribution and a reference distribution (such as the

normal distribution). It evaluates whether they come from the same distribution by calculating the

maximum difference between two cumulative distribution functions (CDFs), known as the KS statistic.

The KS test is particularly suitable for cases where the sample size is large, and the distribution type is

unknown. The steps of the KS test include calculating the cumulative distribution function (CDF),

computing the maximum difference between the two CDFs (KS statistic), and determining the p-value

corresponding to the KS statistic to test the null hypothesis. The simulator developed in this study also

uses the KS test to assess the accuracy of its simulation compared to real-world scenarios.

In the ride-hailing simulator, the KS test can be used to evaluate whether the spatial and temporal

distributions of riders (travel demand) and drivers (supply) generated by the simulator are consistent

with data obtained from real-world operation. This is a crucial step in validating the accuracy and

effectiveness of the simulator. For the spatial distribution of riders and drivers, this study tests the

longitude and latitude coordinates of the generated data against the coordinates from the original data.

The goal is to ensure that the positions of riders and drivers generated by the simulator match the

distributions in the actual data. This is vital for the effectiveness of the simulator since the spatial

distribution directly impacts whether the simulator can realistically reflect the actual ride-hailing market.

The null hypothesis defined in this experiment is that there is no significant difference between the

spatial distribution (or the temporal distribution of demand) of the simulated riders or drivers and that of

the actual data (i.e., they come from the same distribution). The alternative hypothesis is that the two

samples come from different distributions. In terms of test results, if the p-value is greater than the

significance level (set as 0.05 in this study), it means that the null hypothesis cannot be rejected,

meaning there is no significant difference between the distributions sampled from simulated ride-hailing

data and the real ride-hailing data. This indicates that the data generated by the simulator is consistent

with the actual data in terms of distribution, thus validating the simulator. If the p-value is less than the

53

significance level, the null hypothesis is rejected, meaning there is a significant difference between the

sample distributions. This indicates that the data generated by the simulator is not consistent with the

actual data in terms of distribution, rendering the simulator ineffective. Figure 6.3 shows the KS test of

the latitude and longitude of rider location coordinates generated by the simulator from different time-

steps compared to the original data. Figure 6.4 shows the KS test of the latitude and longitude of driver

location coordinates generated by the simulator compared to the original data.

Figure 6.3. KS test for rider locations generated by the simulator.

Figure 6.4. KS test for driver locations generated by the simulator.

In the rider location test, the KS statistic for latitude is 0.029 with a p-value of 0.097, and the KS statistic

for longitude is 0.028 with a p-value of 0.182. These results indicate that the latitude and longitude

distributions of the rider locations generated by the simulator do not significantly differ from the actual

data distributions, as the p-values are both greater than 0.05, thus failing to reject the null hypothesis.

In the driver location test, the KS statistic for latitude is 0.061 with a p-value of 0.063, and the KS statistic

for longitude is 0.039 with a p-value of 0.132. These p-values are also greater than 0.05, so the null

hypothesis cannot be rejected as well, meaning the latitude and longitude distributions of the driver

locations generated by the simulator do not significantly differ from the actual data's distributions.

54

Therefore, these results indicate that the data generated by the simulator is consistent with the actual

data in terms of spatial distribution, validating the effectiveness of the simulator.

As for the hourly distribution of the number of travel demands. The demand for ride-hailing services in

the city of Austin, Texas, shows a distinct pattern related to people’s daily activities. The significant

differences can also be identified between weekends and weekdays. First of all, high travel demand

hours are particularly pronounced on weekends, from 0 to 1 am, 4 to 6 am, and 8 to 10 pm, which are

closely associated with dining and entertainment activities. 8 to 10 pm coincides with dinner time,

prompting many people to dine out or socialize. Travel demands for ride-hailing services are increased

as people are planning to go to the restaurants or bars. From 8 pm to 1 am, nightlife activities (such as

going to bars, clubs, and other entertainment venues) come to an end, and a surge in ride-hailing

demands appears as those people need a vehicle to drive them home. In contrast, off-peak hours on

weekends are generally from 9 am to 12 am. During these hours, people are often having brunch, going

shopping, visiting the park, or are more likely staying at home and engaging in leisure activities. It is

reasonable that travel demands for ride-hailing services are decreased during that time.

Figure 6.5 shows the distribution of ride-hailing demand on weekends and on weekdays in the city of

Austin. The upper figure shows the distribution of ride-hailing demand on weekends, and the lower

figure shows the demand on weekdays. The horizontal axis represents the time interval, and the vertical

axis represents the proportion of travel demand in the whole day.

(weekend plot)

(weekday plot)

Figure 6.5. Time distribution of travel demands in the city of Austin.

The peak hours on weekdays are significantly different from those on weekends. The peak hours on

weekdays are mainly concentrated in the three periods of 5 to 8 am, 3 to 5 pm, and 10 pm to 1 am of

the next weekday. The morning peak (5 to 8 am) corresponds to the morning rush hour period when

people go to their workplaces. People who do not want to drive themselves or do not have private cars

will engage in increasing the demand for ride-hailing services. The afternoon peak (3 to 5 pm) reflects

55

the end of the workday and the time when commuters return home. The late-night peak (10 pm to 1

am) may be due to people's social activities, leisure activities apart from their working hours, or even

the need to return home after overtime working. The off-peak hours on weekdays are similar to that on

weekends, usually from 9 am to 12 am. Although the off-peak time periods are very close to that on

weekends, the reason is different. The reason for the off-peak hours on weekdays is that people are

working at their workplaces, and the demand for ride-hailing services is naturally lower.

These trends reflect the varied travel habits and needs of ride-hailing services at different times in Austin.

Weekends highlight a preference for evening entertainment, with dining and nightlife as primary drivers

of travel. Weekdays show a stronger influence from work and commuting schedules, with fluctuations

in demand during lunch and afternoon hours reflecting a blend of work and leisure activities. For the

hourly distribution of travel demands, this study also conducted a KS test on the hourly demands

generated by the simulator compared to the actual data. The purpose of this test is to verify whether

the time distribution of demand generated by the simulator is consistent with the actual demand. The

defined null hypothesis is that the time distribution of the simulated demand does not significantly differ

from the actual data (i.e., they come from the same distribution), while the alternative hypothesis is that

the two samples come from different distributions. Figure 6.6 shows the results of the two KS tests for

the hourly demand distributions, ensuring the validity of the test results. The results indicates that the

null hypothesis is accepted, meaning that there is no significant difference between numbers of hourly

demands generated by the simulator and the real operating data. The effectiveness of the simulator

developed for this study is validated.

Figure 6.6. KS tests for hourly demands generated by the simulator.

6.3 Experimental Design of Scenarios

In this case study, in order to effectively train the dynamic matching radius policy and evaluate its

validation and performance, it is necessary to design a number of experimental scenarios in the

developed ride-hailing simulator. These scenarios are designed to simulate the different driver-rider

supply-demand relationships mentioned in previous sections in a timely manner. It particularly focuses

on the differences between different travel demand patterns, such as oversupplied or undersupplied.

There are three distinct scenarios designed for this case study in the city of Austin: a balanced supply-

demand scenario, a high-demand scenario, and a high-supply scenario. This subsection will discuss

56

the practical meaning and significance of the settings of the three designed scenarios, as well as specify

their differences and distinct variables.

The balanced supply-demand scenario is used as the normal scenario for this case study. The dynamic

matching radius policy is trained based on the interactions between the agent and the environment in

this scenario. The design of this scenario aims to simulate a normal and typical off-peak operational

environment of ride-hailing services in the city of Austin. Therefore, this scenario is then used to train

the dynamic matching radius policy and evaluate its effectiveness in handling the daily operational

conditions of the ride-hailing market in the city of Austin. In this scenario, the travel demands are

generally equal to the number of drivers, with a small scale of fluctuations in the demand-supply

relationship. For example, during mid-day in the city of Austin when the travel demand number is more

predictable. The environment under this setting can provide the agent with less extreme information for

the agent to learn how to effectively change the matching radius. A training set that contains too much

extreme data will make the training process more unstable and may even lead to non-convergence, so

this scenario is selected to ensure the stability of the training process. On the other hand, the basic

performance and validation of the defined baselines are also assessed in this normal scenario in order

to test their effectiveness under normal operational conditions.

As for the high-demand scenario, it represents one of the extreme operating conditions for ride-hailing

services in the city of Austin, Texas. This scenario simulates a surge in travel demand due to abnormal

reasons. For example, during peak hours in metropolitan areas, during the openings of big events like

concerts or sports games, or during extreme weather conditions. In this scenario, a significant increase

in travel demand can be identified in the supply-demand ratios. As a consequence, there is a relatively

shortage of idle vehicles compared to the ride demands. The setting of this high-demand scenario aims

to test how the trained policy can manage the surged travel demands and shortage of idle drivers. It

can effectively validate the performance of the trained policy under extreme conditions, as it is very

important for a policy designed to deal with extreme operational conditions in the ride-hailing system.

The third scenario is the high-supply scenario, in contrast to the second scenario, representing another

extreme operational condition of the ride-hailing service in Austin. The number of idle drivers is higher

than the travel demands. The travel demands in this scenario are far less than those of the high-demand

scenario, and even less than the normal scenario. This scenario is designed to simulate the ride-hailing

market during holidays or in some regions where there is a surplus of drivers, such as city outskirts. It

focuses on evaluating the trained policy's capability to meet demand when there is a relatively high

availability of drivers.

Table 6.1 shows the detailed settings of the variables in designed experimental scenarios. Each of these

three designed scenarios assesses and validates the trained dynamic matching radius policy from

different aspects. The varied operational challenges presented in the designed experimental scenarios

mirror the complexity and uncertainty of the real-world ride-hailing system, not only in Austin but also in

other major cities around the world. By training the policy under the normal scenario and testing the

policy under all scenarios, this case study can gather a comprehensive insight into the robustness,

adaptability, and effectiveness of the dynamic matching radius policy.

Table 6.1. Variable settings for defined scenarios

variable balanced high demand high supply

Initial driver number 100 50 150

Initial rider number 100 100 100

Match time window 15 sec 15 sec 15 sec

57

6.4 MDDPG Training

MDDPG algorithm contains a number of sensitive hyperparameters. The performance of the MDDPG

algorithm depends significantly on its hyperparameters. The convergence and final performance of the

MDDPG algorithm can be significantly affected by these hyperparameters. While running the MDDPG

optimization, it is important to empirically adjust and finetune the hyperparameters. By fine-tuning and

empirically selecting the hyperparameters, the MDDPG agent can better learn from the interactions with

the simulator. This subsection discusses the process of running the MDDPG algorithm and the impact

of each hyperparameters and their values selected for the training process of this case study.

The first parameter is discount factor 𝛾 , this hyper-parameter determines the importance of future

rewards. It is a factor by which future rewards are multiplied at each time step. A large discount factor

makes the agent pay more attention for long-term rewards, whereas a relatively small discount factor

makes the agent very short-sighted to the immediate reward. The learning rate 𝜆 determines the

performance of the actor and critic network. In this research, learning rates for actor and critic are

finetuned separately. The learning rate of the actor 𝜆𝑎𝑐 is the step size for the gradient descent

optimization algorithm used in updating the actor network. The learning rate of the critic 𝜆𝑐𝑟 is the step

size for the loss minimising method for updating its weights. A higher learning rate can speed up the

training but may cause instability, while a lower learning rate can make the training more stable but

slower. The soft-update speed 𝜏 controls the rate at which the target networks (actor and critic) are

updated towards the source networks. In the replay buffer, the memory size 𝑀 determines how many

past transitions can be stored in it. A larger memory size allows the agent to learn from a more extensive

history of experiences, which can improve training. The batch size 𝑁 is the number of samples drawn

from the replay buffer to perform a single update of the network. A larger batch size can provide more

stable updates but requires more computational resources. In the exploration function, the OU

(Ornstein-Uhlenbeck) noise generator, the noise regression speed 𝜃𝑛𝑜𝑖𝑠𝑒 determines the rate at which

the noise regresses to its mean. A higher value makes the noise revert to the mean faster, affecting the

exploration-exploitation balance. The noise variance value 𝜎𝑛𝑜𝑖𝑠𝑒 is the scale of the noise. A larger

variance leads the agent to do more explorations by adding more significant noise, while smaller 𝜎𝑛𝑜𝑖𝑠𝑒

values enable less exploration but can ensure a more stable training process. Additionally, the

maximum training episode 𝐸𝑚𝑎𝑥 determines the length of the whole training process. It defines the

extent of the agent's learning experience and ensures computational efficiency. This hyperparameter

defines the quantity of experiences from which the agent learns and the duration of the learning process.

If set appropriately, it ensures a good computational efficiency. However, if this hyperparameter is set

too small, the agent may not be able to gather enough transitions, failing to learn a good policy.

Conversely, if it is set too large, it may, in some cases, lead to a deterioration in the policy or even cause

it to become non-convergent again.

In summary, each of the hyperparameters can significantly affect the stability and efficiency of the

MDDPG algorithm during training, determiners how well the agent learns. An example of result with

convergence issue is shown in Figure 6.7, this problem is tackled by adjusting the hyperparameters.

58

Figure 6.7. Training plot with unsuitable hyperparameters.

In the hyperparameter fine-tuning process of this case study, all hyperparameters are selected based

on practical considerations. The values of these hyperparameters were tested and adjusted before the

final training. Each hyperparameter's value is determined by its impact on the MDDPG training

performance, including convergence, convergence speed, learning speed, result quality, and neural

network loss. Figure 6.7 illustrates the training reward plot with unsuitable hyperparameter values. After

the fine-tuning process, the suitable hyperparameters for MDDPG algorithm in ride-hailing simulator

with a good performance is listed in Table 6.2. Figure 6.8 is the training plot with those hyperparameters.

Table 6.2. Hyperparameters for the MDDPG training

Hyper-parameter Value

Discount factor 𝛾 0.96

Learning rate actor 𝜆𝑎𝑐 1e-4

Learning rate critic 𝜆𝑐𝑟 8e-4

Soft-update actor 𝜏𝑎𝑐 5e-4

Soft-update critic 𝜏𝑎𝑐 1e-3
Memory size 10000
Batch size 𝑁 250

Noise regression speed 𝜃 0.15

Noise variance value 𝜎 0.6

Maximum episodes 800

The ride-hailing multitask optimization weights are also important pre-defined parameters for the

training process. The used weight set is selected based on the feedback from the ride-hailing users and

other stakeholders. The weights are determined by the percentage of their preferences. After that, a

series of analysis with different sets of weights is implemented on the simulator trying to find balance

between each component. The weights are selected based on the results of the analyses, the

combination with the best overall performance compared to the baselines is used in the training process

of the case study. The criteria include a reward analysis and some performance checks compared to

the baselines. The weight set selected for the final training of this case study is listed in Table 6.3.

Table 6.3. Weight combination for the MDDPG training

𝑤1 𝑤2 𝑤3

0.4 0.4 0.2

59

The policy is trained in the normal scenario where the supply number is approximately equal to the

demand number. Each episode represents a time period of one hour, the fixed time-window is 15

seconds. The maximum number of steps in one episode is 240 steps. The platform used to train the

policy is equipped with AMD Ryzen-9 5900HX CPU @ 3.3 GHz 8 Logical cores, 32 GB RAM and a 16

GB NVIDIA GeForce RTX 3080 GPU. The average computation time is 30.23 seconds per episode.

The total training time is 6 hours 43 minutes. The reward plot of the training process is shown in Figure

6.8. From the figure, it can be seen that in the later stages of training, the agent exhibits good

convergence. In the figure, the fluctuations observed are partly due to the noise added to the actions

and partly due to the uncertainty in the environment, specifically the stochastic nature of the supply and

demand locations.

Figure 6.8. Reward plot of the MDDPG training process (equal supply-demand).

In RL, in addition to observing the cumulative reward changes, the numerical changes in the loss

function can also be used to evaluate the performance of the RL algorithm. The decrease in the loss

function value and its stabilization at a low level indicates that the policy learned by the agent has

converged. By observing the changes in the loss function, researchers can evaluate the stability and

convergence of the training process. The practical meaning of a lower loss is that the critic network can

effectively and accurately estimate the action value of the current state-action pair and can effectively

evaluate the output of the actor network. Whether this policy is an optimal policy needs to be analysed

in combination with the reward plot and the validation of the results. This will be discussed in detail in

the next subsection. It is worth noting that if the loss function value is observed to fluctuate greatly or

increase exponentially during the training process, it indicates that the training result is unreliable. When

using Gradient Descent and Gradient Backpropagation methods to update weights of DNN, gradient

vanishing and gradient explosion are two major problems that can lead to unstable loss values. Gradient

vanishing occurs when the gradient becomes zero during updates, leading to an extremely slow update

speed for the network. Conversely, gradient explosion refers to the exponential increase in the gradient,

which can render the network unreliable and unstable, causing fluctuations in the loss function. Both

issues stem from the same underlying cause: the cumulative gradient, which can become either too

60

large or too small due to the chain rule when calculating gradients and during gradient backpropagation

when updating network weights. This case study also encountered the problem of gradient explosion

during the training process. Upon further investigation, the causes were identified as the input data,

unsuitable hyperparameters, and network structure. To address these issues, several measures were

taken. First, the input data of transitions was normalized. Data that is not normalized can cause a

significant discrepancy between the estimated value and the actual value when updating the weights

of the neural network. Second, the soft-update rate of the neural network was decreased. This

hyperparameter controls the speed at which the target network updates from the source network; the

original value was too high, causing rapid changes in the target network and resulting in unstable weight

updates. Lastly, the number of hidden layers in the deep neural network was reduced. Although more

hidden layers can improve the critic neural network's ability to estimate the value function, the

accumulation effect becomes more pronounced with more neurons that need to be updated through

gradient backpropagation and the chain rule. Therefore, the final structure chosen consists of three

hidden layers along with an input layer and an output layer. Figure 6.9 shows the changes in the loss

function of the critic network during the training process of this case study. It can be observed that as

the training progresses, the loss of the critic network gradually decreases and stabilizes at a low level.

This indicates that the MDDPG agent has made good progress in learning.

Figure 6.9. Training loss plot of the critic network.

6.5 Results

Figure 6.10 shows the matching radius of each cell output by the trained policy at a certain time-step in

the normal scenario. The real-time number of riders (travel demands) and drivers in each cell is marked

in the upper left corner of each cell. It can be seen that the trained dynamic matching radius policy can

reasonably give the optimal matching radius based on the supply and demand relationship. The trained

policy can well handle the changes in the supply-demand relationship between drivers and riders in the

ride-hailing matching system, and can manage to adjust the matching radius accordingly.

61

Figure 6.10. Optimised matching radius for each cell at 15:00 PM.

Figure 6.11 shows a real-time matching process with matching radius obtained from the trained policy

at one time-step. The additional results showing the matching radius compared with numbers of riders,

drivers and supply-demand ratios are illustrated in Appendix C. An example of a series of continuous

states and corresponding matching radius can also be found in Appendix C.

Figure 6.11. Matching process with trained policy.

In the previous research addressing matching radius conducted by other researchers, static and fixed

matching radius is used as baseline to evaluate the performance of matching radius policy (Chen et al.,

2023). In this case study, this baseline approach is used as a reference to define the baselines. To

validate the trained policy, four baselines are designed for this case study, denoted as FR 500, FR 1000,

FR 1500 and FR 2000. The "FR" in the baseline code means that the baseline is a static fixed matching

radius, the number in the baseline code indicates the value of the respective matching radius. For

example, FR 1000 represents a fixed matching radius baseline of 1000 meters. In this subsection, the

trained policy is validated in a test environment similar to the training environment. As mentioned earlier,

(over-supplied scenario) (under-supplied scenario)

62

this study designed three different experimental scenarios to evaluate the dynamic matching radius

policy trained using the Multi-replay-buffer Deep Deterministic Policy Gradient (DDPG) algorithm. A test

environment is built to validate the trained policy. The logic and settings of the test environment are

exactly the same as the simulator, and the performance of the trained policy is tested using the overall

system performance score 𝐶𝑡(𝑠𝑡 , 𝑎𝑡) as derive in the simulator introduction compared to the baselines.

This ensures a better validation of the trained policy compared to the baselines. This subsection tests

the trained dynamic matching radius policy against the defined baselines (static matching radius) in the

defined experimental scenarios, comparing the performance differences between the baselines and

optimized policy in the test environment to validate the effectiveness and robustness of the trained

policy.

The balanced scenario represents a normal ride-hailing operational condition where the travel demands

are generally equal to the number of drivers, with a small scale of fluctuations in the demand-supply

relationship. A comparison of the performances between the trained policy and the baselines among

30 random episodes (steps in an episode is continuous) is illustrated in Figure 6.12. It can be seen from

the figure that the trained policy effectively optimizes the matching radius. The score obtained from the

trained policy is the highest compared to baselines. This result indicates that the dynamic matching

radius policy can improve overall performance of the ride-hailing system in Austin compared to the

baselines by balancing the performance metrics. The performance metrics, as mentioned in previous

sections, include the matching rate, the average pick-up distance and the driver utilization rate. This

demonstrates that the trained policy is valid and effective in the normal scenario.

Figure 6.12. Policy reward plot compared to the baselines in Balanced scenario.

In this case study, the effectiveness of the trained policy is evaluated under extreme operational

conditions to test its robustness and adaptability. The extreme scenarios discussed in Section 6.3

encompass both high-demand and high-supply environments. Specifically, the high-demand scenario

tests the dynamic matching radius policy when the demand for ride-hailing services far exceeds the

available drivers. The high-supply scenario tests the policy when there are more drivers available than

63

the number of travel demands. These scenarios are designed to test the policy's performance and

adaptability under conditions of extreme demand and supply, respectively.

Figure 6.13 illustrates the results of the policy evaluation in the high-demand scenario. The result shows

that the dynamic matching radius policy outperforms all baseline and demonstrates a good stability.

Unlike the baselines, which exhibit significant fluctuation in performance under high-demand conditions,

the dynamic matching radius policy maintains a more consistent level of overall performance. This

reduced fluctuation highlights the policy's capacity to handle fluctuating demand more effectively,

providing a more reliable and efficient ride-hailing service. The results underscore that, even in extreme

scenarios where traditional static matching radius may have bad performance, the dynamic matching

radius policy can still optimize the ride-hailing system’s overall performance and user experience. It is

important to note that Figure 6.13 focuses on the overall reward comparison between the dynamic

policy and baselines. This figure provides a high-level view of performance but does not delve into

specific performance metrics. Detailed analyses of each performance metric, including matching rate,

average pick-up distance, and driver utilization rate, are listed and discussed in Table 6.4. This

comparisons can offer a more comprehensive understanding of how the dynamic matching radius policy

influences the overall matching efficiency and user experience in ride-hailing environment.

Figure 6.13. Policy reward plot compared to the baselines in high demand scenario.

Some differences were also noted compared to the balanced scenario. Although the trained policy

performs well, the overall accumulated reward is lower than that in the balanced scenario. This is due

to the bottleneck of available drivers during the undersupplied periods in the high-demand scenario.

The reason for this phenomenon is that there are fewer available drivers compared to the balanced

scenario, and therefore a much lower overall achievable maximum matching rate. In more detail,

increased demands cause available drivers to be matched quickly, leaving fewer idle drivers to satisfy

subsequent travel demands. The scarcity of available drivers during periods of high demand inherently

forms a bottleneck for the maximum reward. However, it is also noticed that the reward is less volatile

than the balanced scenario. This phenomenon can be attributed to several reasons. First, sustained

high travel demands make the ride-hailing environment more predictable. As a result of consistently

64

high demand, drivers are matched with riders as soon as they finish the previous ride, keeping match

rates at the highest achievable level. This matching phenomenon makes the batched matching system

under high demand more similar to the nearest matching method. The constant incoming of ride

requests also means that the agent can apply a more consistent (larger) matching radius without the

need for large-scale adjustments, resulting in less volatility in the reward. On the other hand, during

periods of high demand, the supply of drivers is rapidly matched, resulting in most drivers not being

available. This saturation effect reduces fluctuations in driver utilization rate and the corresponding

fluctuations in the overall reward. From the perspective of micro-transportation, a natural queuing effect

may occur in the high-demand scenario, where riders are matched with drivers as soon as they are

available. This makes the ride-hailing matching system even more like the nearest matching system.

The reduction in these fluctuations highlights the stability of the trained policy under high levels of travel

demand pressure. This observation suggests that the trained dynamic matching radius policy is

effective in optimizing the ride-hailing matching system even under extreme conditions. Although some

fluctuations can still be found in the reward plot, which indicates that there is still room for improvement

in the trained policy, the trained policy can be more flexible and robust to balance the increase in

matching rate in the high-demand scenario with the efficiency of the matching system and the user

experience, which may lead to even better results. Possible improvements include combining neural

networks with real-time data analytics to better predict demand patterns and strategically deploy drivers

in anticipation of these patterns (cooperating with the vehicle repositioning module). In addition, defining

a more sophisticated reward function that takes into account short-term matching success and long-

term system stability may also help to reduce volatility and improve overall performance under such

extreme conditions.

In the high-supply scenario, the performance of the dynamic matching radius policy is depicted in Figure

6.14. Compared to the settings in the balanced supply-demand scenario, the dynamic matching radius

policy shows better performance in this context. The policy can more effectively utilize the surplus driver

resources, adjusting the matching radius to reduce driver idle rate and maintain lower average pick-up

distances and higher matching rate. The test result indicates that the dynamic matching radius policy

significantly outperforms the baseline policy in the high-supply scenario by successfully balancing the

matching rate, pick-up distance and driver utilization rate. This shows that the trained policy is able to

adapt to changing supply conditions and achieve the best matching performance of the system under

excess supply conditions. By outputting a set of reasonable matching radius, the excess supply of

drivers is effectively managed. The dynamic matching radius strategy ensures better utilization of

available driver supplies and improves the overall efficiency of the ride-hailing system while maintaining

a higher user experience. This further verifies the adaptability and performance of the trained policy

under high supply conditions.

65

Figure 6.14. Policy reward plot compared to the baselines in high supply scenario.

In summary, through an in-depth test of the trained policy under three experimental scenarios, the

results show that the dynamic matching radius policy trained using the Multi-replay-buffer Deep

Deterministic Policy Gradient (MDDPG) algorithm outperforms the baselines in all designed scenarios.

The results indicate that the trained policy successfully optimizes the ride-hailing matching system to a

certain extent under various operational conditions. This trained policy demonstrates a good

adaptability and efficiency by dynamically adjusting the matching radius in response to real-time supply

and demand fluctuations. Table 6.4 shows an average performance comparison of matching rate 𝑹𝒎,

average pick-up distance 𝐷𝑃 and driver utilization rate 𝑅𝑢𝑙𝑡 between the trained policy and the baselines

among 40 random episodes under the balanced scenario. The results show that the trained policy can

achieve a good balance between multiple performance indicators and achieve the highest overall

performance score. However, it is worth noting that the trained policy does not perform best in each

individual system performance indicator. On the contrary, the trained policy finds a good balance among

the three system performance indicators, thereby optimizing the overall efficiency of the system and

user experience, ensuring the highest overall reward. Specifically, there are many reasons why the

trained policy cannot perform best in each system performance indicator. First, expanding the matching

radius to improve the matching rate may lead to a longer pick-up distance and may also lead to a

decrease in driver utilization rate. Conversely, reducing the matching radius to shorten the pick-up

distance may reduce the matching rate. The trained policy can find the best balance between these

conflicting goals instead of focusing on optimizing a single indicator. As for driver utilization, maximizing

driver utilization may require giving priority to the nearest travel demands to reduce the number of

unmatched drivers within the matching radius and improve driver utilization. This will make the system

more similar to a nearest matching system rather than a batched matching system, resulting in a

significant increase in the average pick-up distance. The results show that the trained policy can

maintain a good balance between these system performance indicators. The policy can ensure an

acceptable average pick-up distance while maintaining a higher driver utilization rate and a higher

matching rate, hence achieve the highest overall system performance score.

66

Table 6.4. Performance metrics comparison

policy 𝑅𝑚 𝐷𝑝 (𝑅𝑃) 𝑅𝑢𝑙𝑡 𝑅

FR-500 0.21 458.72 (0.85) 0.67 0.558

FR-1000 0.61 896.67 (0.70) 0.52 0.601

FR-1500 0.75 1326.44 (0.56) 0.45 0.614

FR-2000 0.79 1678.38 (0.44) 0.27 0.546

Dynamic radius 0.71 993.34 (0.69) 0.63 0.670

In addition, Figure 6.15 compares the overall reward of the trained policy with baselines over a 24-hour

period in Austin, based on the real supply-demand patterns retrieved from real operating data as

illustrated in Figure 6.5. The figure shows that the dynamic matching radius policy outperforms the

baselines in overall performance. This indicates that the trained policy successfully finds a balance

between performance metrics, leading to improved overall system efficiency and user experience. This

balance is achieved by adjusting the matching radius for each cell based on the real-time supply-

demand relationship in each cell of the ride-hailing market. The figure also reveals that the performance

of the baselines fluctuates over time, suggesting that the performance of the static matching radius is

highly unstable when facing different levels of supply-demand imbalances in the ride-hailing system. In

contrast, the trained policy not only performs better but also demonstrates better stability compared to

the baselines. This highlights the trained policy's ability to reasonably and effectively adjust the

matching radius to enhance system efficiency and user experience based on real-time supply-demand

relationships. This finding underscores the potential of improving the ride-hailing matching system

through the adoption of a dynamic matching radius policy. Additionally, the results affirm the

effectiveness of the optimization framework using the ride-hailing matching simulator and the MDDPG

algorithm developed in this study. Furthermore, this study's findings provide a strong foundation for

future research in applying advanced reinforcement learning techniques to optimize various aspects of

ride-hailing systems.

Figure 6.15. Performance plot for the trained policy compared to the baselines.

67

In conclusion, in the high-demand scenario, characterized by substantial increases in travel demand

during events or peak hours, the policy continues to outperform the baselines but with slightly less

optimal metrics than in the normal scenario due to system constraints. In the high-supply scenario and

the normal scenario, the policy also performs better than the baselines by optimizing matching rate,

driver utilization and maintaining low average pick-up distances, effectively using surplus resources

(available drivers) and demonstrating good adaptability and efficiency over the baselines. The results

in this case study suggest that the dynamic matching radius policy trained with the MDDPG algorithm

is highly effective under various ride-hailing operational conditions. However, there is still room for

improvement. Future research could focus on enhancing the policy's stability and robustness under

more complex conditions that consider more variables in the ride-hailing system, such as the driver’s

rejection rate and different weather conditions. More advanced technologies could also be involved,

such as integrating advanced predictive analytics, in order to better predict demand surges and

investigate the possibility to combine the online matching module with the driver relocating module.

Additionally, refining the reward function to balance immediate matching reward with long-term system

stability could also help to reduce fluctuations and improve overall training performance. By further

optimizing these aspects, the trained dynamic matching radius policy can enhance its effectiveness,

making it even more reliable and efficient for real-world applications in the ride-hailing market. The

continued development and refinement of this policy can help to elevate the operational efficiency and

user experience in dynamic and varying supply-demand environments of the ride-hailing services.

6.6 Sensitivity Analysis of Reward Weights

Reward Weight Factors (𝑤1, 𝑤2, 𝑤3) are weights assigned to the components of the reward function

(matching rate, average pick-up distance, driver utilization). The summed value of all weights is always

equal to 1. Their different combinations represent different system optimization objectives. In real-world

ride-hailing systems, these weights are determined by the goals of various stakeholders. In this

experiment, to comprehensively assess the impact of these weight factors on the characteristics and

performance of the trained policy, 13 different weight combinations are defined, categorized into

balanced weight class and single weight class.

Weight combinations of the balanced weight class are designed to consider multiple performance

metrics, testing the system's performance under comprehensive conditions typical of most operational

scenarios. Taking three typical balanced weight combinations as an example. The fully balanced weight

combination 𝐶1
𝑏𝑎𝑙 contains the averagely balanced weights between the matching rate, the average

pick-up distance, and the driver utilization rate. This combination is designed as the normal weight

combination. The policy is trained, tested, and validated under the normal scenario using this set of

weight combinations. The matching priority combination 𝐶2
𝑏𝑎𝑙 focuses more on optimizing the matching

rate. The rider priority combination 𝐶4
𝑏𝑎𝑙 pays more attention to optimizing the average pick-up distance.

The weight for the average pick-up distance is slightly increased to hopefully reduce the average pick-

up distance to a higher extent. The system priority 𝐶6
𝑏𝑎𝑙 combination adds value to the weight for the

driver utilization rate. This causes a bias in the reward function toward the direction of a higher driver

utilization rate. The weight combinations 𝐶8
𝑏𝑎𝑙 to 𝐶10

𝑏𝑎𝑙 respectively test the policies trained under each

two completely balanced weights. The rest of the balanced weight combinations are designed to test

how the trained policy is affected by minor changes in those weights.

The full matching rate, full pick-up distance, and full driver utilization weight combinations are classified

into the single reward weight class. The performance and behaviour of the MDDPG algorithm to

dynamically optimize the ride-hailing matching radius will be tested with these weight combinations.

The effectiveness of the MDDPG algorithm and the validation of the trained policy, especially the

effectiveness and stability of the algorithm under extreme optimization goals, are tested with this type

68

of reward weight combination. This type of weight combination is an important part of the sensitivity

analysis of this case study. In terms of specific weight combinations, the full matching rate combination

𝐶1
𝑠𝑖𝑛 focuses entirely on the matching rate. This extreme combination of weights focuses on improving

the matching rate, which is crucial for evaluating the performance of the MDDPG algorithm in improving

the overall matching rate during the period of extremely peak demand in Austin. At the same time, this

combination of weights also verifies the rationality of the designed reward function. If the reward function

is not properly designed, the agent will not be able to learn an effective policy under this extreme reward

bias. In contrast, the full driver utilization combination 𝐶3
𝑠𝑖𝑛 gives the full weight on maximizing driver

utilization rate. The driver utilization rate refers proportion of successful matched drivers among

available drivers. It is essential for enhancing overall system operational efficiency.

The Table 6.5 shows the weight combinations used in this sensitivity analysis for weight factors of three

reward components in the reward function. Those weights are specially designed for this case study of

Austin.

Table 6.5. Weight combinations

combination 𝑤1 𝑤2 𝑤3

𝐶1
𝑏𝑎𝑙 0.4 0.4 0.2

𝐶2
𝑏𝑎𝑙 0.5 0.3 0.2

𝐶3
𝑏𝑎𝑙 0.5 0.2 0.3

𝐶4
𝑏𝑎𝑙 0.3 0.5 0.2

𝐶5
𝑏𝑎𝑙 0.2 0.5 0.3

𝐶6
𝑏𝑎𝑙 0.2 0.3 0.5

𝐶7
𝑏𝑎𝑙 0.3 0.2 0.5

𝐶8
𝑏𝑎𝑙 0.5 0.5 0.0

𝐶9
𝑏𝑎𝑙 0.5 0.0 0.5

𝐶10
𝑏𝑎𝑙 0.0 0.5 0.5

𝐶1
𝑠𝑖𝑛 1.0 0.0 0.0

𝐶2
𝑠𝑖𝑛 0.0 1.0 0.0

𝐶3
𝑠𝑖𝑛 0.0 0.0 1.0

The purpose of designing different weight combinations for sensitivity analysis is to test and evaluate

the characteristics and performance of the dynamic matching radius policy under various reward weight

combinations, and to observe the impact of changes in reward weights on the trained policy. The first

goal is to test the flexibility and adaptability of the trained policy. This is measured by observing how the

output action of the policy changes under different optimization objectives through various weight

combinations. Robustness is another testing objective in the sensitivity analysis. If the algorithm can

maintain a high level of performance when the weights change, it indicates that the algorithm has good

robustness in optimization performance. In addition, sensitivity analysis also tests the robustness of the

training. It is tested by observing whether small perturbations of the weights will lead to significant

fluctuations in the learning or whether the trained policy can converge effectively. The generalization

robustness of the method proposed in this study will also be verified. It refers to whether the method

can maintain effective under different optimization objectives.

Regarding the expected results of the sensitivity test, for the balanced weight class combinations, it is

expected that the policy can perform well across multiple reward metrics. Particularly, 𝐶1
𝑏𝑎𝑙 should

achieve a good balance among the three optimization objectives, performing well on all three indicators,

matching rate, average pick-up distance and driver utilization rate. In the combination 𝐶2
𝑏𝑎𝑙, 𝐶4

𝑏𝑎𝑙and

𝐶6
𝑏𝑎𝑙, the policy should perform better in terms of matching rate, average pick-up distance and driver

utilization rate, respectively. Compared to 𝐶1
𝑏𝑎𝑙 , the matching radius should increase and decrease

69

appropriately in each of them to achieve higher rewards in the respective metrics. For the rest of the

balanced weight combinations, the trained policy should be relatively stable and large fluctuations are

not expected to be observed. For the single weight class combinations (𝐶1
𝑠𝑖𝑛, 𝐶2

𝑠𝑖𝑛, 𝐶3
𝑠𝑖𝑛), the trained

policy is expected to perform optimally on the corresponding single reward metric. Although it may

sacrifice other metrics, the reward for the metric with a weight of 1.0 should be significantly higher than

the corresponding reward in the balanced weight class combinations. The policy is expected to provide

matching radius concentrated at boundary values, such as consistently giving the maximum or

minimum matching radius.

The training process of the single weight combination shows a slightly different pattern than the

balanced weight combinations. By examining the loss plot shown in Figure 6.16, compared to the loss

plot of the balanced weight combinations presented in Figure 6.9, it can be seen that the loss of the

single weight combination converges to a smaller level much earlier. This is because the agent

discovers that the optimal actions are concentrated at the boundary values shortly after training begins.

As a result, the agent increasingly outputs boundary value actions during subsequent training.

Figure 6.16. Critic loss plot for a single weight combination (matching rate).

The results of sensitivity analysis are shown in Figure 6.17. This figure shows the example of cell 4 (cell

of the city center area). It illustrates the average value range (colored area in the plot) and the 90

percent confidence interval for the matching radius (lower and upper bound in the plot) obtained from

policies trained with different reward weight combinations. These data were obtained under the normal

scenario (balanced supply-demand condition), with each reward weight combination tested over 40

episodes. From the graph, it can be observed that under balanced weight combinations, the matching

radius fluctuates within the range of 600-1400 meters. The system's decision in balancing the

performance metrics of the matching rate, the average pick-up distance, and the driver utilization can

be observed in the figure. For the 𝐶2
𝑏𝑎𝑙 combination, it is the balanced weight combination with a bias

toward optimizing the matching rate. An increase in the matching radius can be found compared to that

of 𝐶1
𝑏𝑎𝑙 . In order for the agent to enhance the overall matching rate reward, this observation is

reasonable as a larger matching radius can bring a bigger matching pool, hence a higher probability for

travel demands to be matched with available drivers. As the agent pays less attention to the driver

utilization rate, the optimization goal becomes simpler between the matching rate and the average pick-

up distance. This is the reason that the fluctuation of the matching radius becomes smaller. In contrast,

the 𝐶4
𝑏𝑎𝑙 combination has a larger bias towards the average pick-up distance, and a significant decrease

70

in the matching radius can be found in the plot compared to the previous weight combinations. As for

the 𝐶6
𝑏𝑎𝑙 combination, it can be seen that the fluctuation becomes higher. By comparing the result with

the single weight combination 𝐶3
𝑠𝑖𝑛, which only focuses on optimizing the driver utilization rate, it can be

concluded that optimizing the driver utilization rate as the single objective is a complex task. The driver

utilization rate has a large variance between different ride-hailing supply-demand relationships. Only

when it is optimized together with the other two performance indicators, and only when its weight is

reasonably set, can a better optimization performance be achieved by the RL agent. The rest of the

balanced weight combinations are used to test the impact of slight changes in reward weights on the

trained policy. These combinations test the robustness of the policy to small changes in the optimization

objective. The results of 𝐶3
𝑏𝑎𝑙, 𝐶5

𝑏𝑎𝑙 and 𝐶5
𝑏𝑎𝑙 show that slight changes in weights cannot cause large

fluctuations in the matching radius output by the trained policy. More specifically, take 𝐶3
𝑏𝑎𝑙 as an

example. Compared with 𝐶2
𝑏𝑎𝑙, the bias on optimizing the average pick-up distance is slightly reduced,

the mean matching radius output is slightly increased, and the confidence interval does not change

significantly, which is consistent with expectations. For those weight combinations with two completely

equal weights of 0.5, the results meet the expectations. 𝐶8
𝑏𝑎𝑙 forms a relatively simple optimization goal,

the agent only needs to find the balance between the matching rate and the average pick-up distance

without considering the driver utilization rate. As a result, the fluctuation of the matching radius output

by the trained policy is significantly reduced, and the confidence interval is narrower. There is a

contradiction between the optimization of the matching rate and the driver utilization rate in 𝐶9
𝑏𝑎𝑙, so the

matching radius fluctuation increases and the confidence interval is wider. The two optimization goals

of 𝐶10
𝑏𝑎𝑙, the average pick-up distance and the driver utilization rate, have the same optimization direction,

so the confidence interval is still relatively narrow. The output matching radius is significantly reduced,

as a smaller matching radius ensures a shorter average pick-up distance, as well as a higher driver

utilization rate. The results are consistent with expectations, indicating that the method proposed in this

study and the RL algorithm used in this study have good robustness and reliability.

As for the weight type of single weight combinations, those weight sets focus solely on one of the ride-

hailing performance metrics. The sensitivity analysis result shows that the trained policy with this type

of weight combinations outputs a set of matching radiuses concentrated at boundary values to

maximize reward in one of these metrics. The policy trained with the weighted combination of 𝐶1
𝑠𝑖𝑛 and

𝐶2
𝑠𝑖𝑛 constantly outputs the maximum matching radius and the minimum matching radius respectively.

The single driver utilization combination 𝐶3
𝑠𝑖𝑛, however, due to its dependency on both the matching

radius and the exact locations of drivers and riders, reflects a higher uncertainty in assessing action

value under the reward function with a fully biased driver utilization rate and the current observation

definition. To deal with this issue, future studies could be carried out on the additional observation from

the system, providing the agent with more information to better understand the ride-hailing environment.

This topic of possible adjustments and next-step studies is further discussed in Chapter 7.

71

Figure 6.17. Average and 90% trust interval of obtained radius.

The average performance metrics and the average performance score of each weight combination

tested over 40 episodes are listed in Table 6.6. The table shows the specific performance metrics of the

policies trained under each weight combination. The performance metrics include the matching rate,

average pick-up distance (the normalized performance score is in brackets), and driver utilization rate.

The last column of the table is the average total weighted performance score. The specific weight of

each performance metric is also listed in the table, right after each performance metric. The weight

combinations that have zeros actually violate the principle of multitask optimization for the ride-hailing

system. It is not reasonable to completely ignore one stakeholder in the ride-hailing system. However,

these sets are still tested in order to demonstrate the validation of the proposed DDPG algorithm and

the developed simulator under extreme setting.

72

Table 6.6. Sensitivity analysis results of performance metrics weights.

set 𝑅𝑚 𝑤1 𝐷𝑝 (𝑅𝑃) 𝑤2 𝑅𝑢𝑙𝑡 𝑤3 𝑅

𝐶1
𝑏𝑎𝑙 0.71 0.4 993.34 (0.69) 0.4 0.63 0.2 0.670

𝐶2
𝑏𝑎𝑙 0.73 0.5 1131.27 (0.62) 0.3 0.50 0.2 0.651

𝐶3
𝑏𝑎𝑙 0.75 0.5 1236.41 (0.59) 0.2 0.48 0.3 0.637

𝐶4
𝑏𝑎𝑙 0.42 0.3 638.25 (0.79) 0.5 0.65 0.2 0.651

𝐶5
𝑏𝑎𝑙 0.36 0.2 616.32 (0.78) 0.5 0.66 0.3 0.660

𝐶6
𝑏𝑎𝑙 0.57 0.2 898.96 (0.70) 0.3 0.68 0.5 0.664

𝐶7
𝑏𝑎𝑙 0.59 0.3 911.58 (0.69) 0.2 0.67 0.5 0.649

𝐶8
𝑏𝑎𝑙 0.55 0.5 901.19 (0.70) 0.5 0.59 0.0 0.626

𝐶9
𝑏𝑎𝑙 0.49 0.5 892.93 (0.70) 0.0 0.65 0.5 0.577

𝐶10
𝑏𝑎𝑙 0.18 0.0 404.33 (0.86) 0.5 0.79 0.5 0.825

𝐶1
𝑠𝑖𝑛 0.80 1.0 1945.31 (0.35) 0.0 0.81 0.0 0.830

𝐶2
𝑠𝑖𝑛 0.03 0.0 47.12 (0.98) 1.0 0.87 0.0 0.980

𝐶3
𝑠𝑖𝑛 0.73 0.0 1175.90 (0.55) 0.0 0.67 1.0 0.665

The sensitivity analysis results are consistent with the expected results, proving the effectiveness and

adaptability of the MDDPG algorithm in optimizing the matching radius of the ride-hailing matching

system. The realism and effectiveness of the simulator developed in this study are also verified. First

of all, this table demonstrates a validation of the proposed DDPG algorithm, the 𝑅 is the overall reward

of system performance. The reward value all outperform the baselines and can reach a high level.

Between each of these weigh sets, it demonstrates the reason why the current weight set is selected.

In weight sets that pay attention to all three of the performance metrics, the current weight set has the

highest overall score. In the sets that only focus on two of the metrics, two of them performs worse than

the selected set. The set 𝐶10
𝑏𝑎𝑙 is worth to be mentioned, although the 𝑅 looks higher, the matching rate

is not acceptable, which means this weight set is unreasonable. The reason behind this is that there is

no trade-off between optimizing the matching radius and the driver utilization rate, a smaller matching

radius can bring shorter distance and higher rate in the same time. So, this trained policy actually is a

nearest matching, which is apparently not what this research wanted to study. The reason why this

driver utilization rate is still needed is that this performance metric represents an important stakeholder

in the ride-hailing system, the system operator. Together with the Figure 6.17, it can be seen that when

only optimizing the driver utilization rate, the trained policy has a relatively higher uncertainty in

outputting the actions. The matching rate, the average pick-up distance and the driver utilization rate

form a solid triangle that has limitation and affection on each other in the ride-hailing system. It is the

same as the real ride-hailing system as riders, drivers and system operators are three main

stakeholders in the system. To Conclude, for balanced weight combinations, the trained policy manages

to maintain good performance on multiple indicators, adjusting the matching radius to optimize the

balance between the matching rate, the average pick-up distance, and the driver utilization rate. For a

single weight combination, the policy is able to effectively focus on the optimization of the only

performance metric and output a set of reasonable matching radius in a targeted manner. By adjusting

the matching radius to the boundary value, good rewards were achieved in the ride-hailing simulator of

Austin. The sensitivity analysis in this case study confirms that the policy can adapt to different

optimization objectives that may exist in the ride-hailing market in Austin, verifying its applicability and

effectiveness in a real operating environment. The result 𝐶3
𝑠𝑖𝑛 also meets the expectation, it indicates

that optimizing the driver utilization rate as the single objective is a complex task. The driver utilization

rate has a large variance between different ride-hailing supply-demand relationships. Only when it is

optimized together with the other two performance indicators, a better optimization performance be

achieved by the RL agent. The results also show that the method proposed in this study exhibits good

robustness and stability. First, the results show that the algorithm can maintain a high level of

73

performance when the weight setting changes. The change of reward weights does not lead to

significant fluctuations in the trained policy or overall performance, it indicates that the algorithm has

good robustness and stability in optimization performance under small disturbances. In addition, the

reinforcement learning process of the method proposed in this study can converge effectively under

different weight combinations, indicating that the training process has good robustness. Finally, the

performance of the algorithm under different weight combinations is in line with expectations, indicating

that the algorithm can be well generalized to a variety of conditions, and its generalization robustness

is verified.

In summary, the sensitivity analysis will help researchers comprehensively evaluate the characteristics

of the dynamic matching radius policy and verify its effectiveness and flexibility in practical applications.

It can also provide readers with deeper insights into the behavioural differences of the obtained policy

trained under different optimization objectives and offer valuable insights for the application of ride-

hailing systems. On the other hand, this sensitivity analysis also helps readers better observe the

performance differences of the MDDPG algorithm in handling dynamic matching radius optimization

problems with different objectives and verify its stability and robustness under various conditions.

6.7 Results Discussion

In this case study, the proposed customized MDDPG algorithm was used to optimize the ride-hailing

system in the city of Austin, Texas. The purpose of the optimization is to improve the system’s operating

efficiency and user experience of the ride-hailing matching system from multiple aspects. In order to

achieve this optimization goal, this case study designed several ride-hailing operational scenarios,

corresponding to different supply and demand situations in the ride-hailing market in Austin at different

times. When using the MDDPG algorithm to train the policy, good convergence was achieved as

discussed in subsection 6.5. The trained policy can stably optimize the ride-hailing matching system in

Austin in these scenarios. This subsection will discuss the optimization results of the ride-hailing

matching system in Austin, as well as the logic of the actions output by the trained policy, and analyse

the feasibility and effectiveness of the optimization method proposed in this study in actual scenarios.

The dynamic matching radius policy is trained under the supply-demand relationship of the normal

scenario. The reason is that this scenario can provide the agent with relatively stable training data,

which is conducive to the updating of the deep neural network (actor and critic). The policy trained in

this scenario can also better dynamically adjust the matching radius to adapt to the fluctuating supply

and demand relationship between drivers and travel demands in the ride-hailing market in Austin. This

is also verified during the actual training process. In the normal scenario, the loss of the critic network

changes more evenly and can be reduced to a lower level. The agent can also optimize the cumulative

reward of each episode from -150 to about 160 by optimizing the policy. This reflects the good learning

ability and learning efficiency of the proposed algorithm in the ride-hailing matching system. The trained

matching radius policy also performs well in the test environment. In scenarios with different supply and

demand conditions, the trained dynamic matching radius policy shows strong adaptability. Especially

under extreme supply and demand relationships, the dynamic matching radius strategy significantly

improves the overall performance of the matching system compared to the static baselines. For

example, in the high-demand scenario, the strategy can dynamically adjust the matching radius to

increase the overall matching rate as much as possible while ensuring an acceptable average pick-up

distance. The trained policy improves the overall performance score of the system by about 20%

compared to the best performance of the baselines. In the low-demand scenario, the trained matching

radius can flexibly adjust the matching radius, reduce the driver's idle driving distance, and improve

operational efficiency. This flexible adjustment capability enables the dynamic matching radius strategy

to maintain high performance in various supply and demand conditions of the ride-hailing market.

74

More specifically, the trained policy increases or decreases the matching radius according to the

changing trend of the supply and demand relationship between drivers and riders in each cell. When

the number of available drivers in a cell is much larger than the number of travel demands, the cell

constitutes an oversupplied local ride-hailing market. The corresponding action given by the strategy is

a smaller matching radius, as shown in cell 7 in Figure 6.10 and Figure 6.11. A smaller matching radius

is reasonable in this case because the probability of riders being successfully matched within a smaller

range is higher. At this time, the optimization space for the matching rate is relatively smaller than other

situations. By reducing the matching radius and optimizing the average pick-up distance, a higher

overall system performance score can be obtained for the agent (system operator). This is also the

policy learned by the agent in the learning process by continuously interacting with the ride-hailing

matching simulation environment. In the real ride-hailing system, when the number of idle drivers is

much larger than that of travel demands, a smaller matching radius will significantly reduce the pick-up

waiting time of riders and improve the user experience. When the number of drivers in some cells is

less than that of travel demands, an undersupplied ride-hailing market is formed locally in the ride-

hailing matching system of Austin. In this case, the trained policy responsively increases the matching

radius, as shown in cell 1 and cell 8 in Figure 6.7. By expanding the matching radius, the agent in this

case focuses on increasing the probability of riders being successfully matched and achieves a higher

overall system performance score by increasing the overall matching rate. In the real ride-hailing market,

such a strategy is also reasonable. When the travel demand is far greater than the number of available

vehicles, riders are more concerned about whether they can be successfully matched, and are relatively

unconcerned about the longer waiting time. This is consistent with the matching radius adopted by the

trained policy when demands exceed supplies. It proves that the trained policy can reasonably and

effectively optimize the ride-hailing matching system in a targeted manner. A more normal situation is

that when the number of drivers in some cells is not much different from that of travel demands, this

indicates that these areas are in a relatively balanced local ride-hailing market, that is, a relatively

balanced supply and demand relationship. In this case, the matching radius output by the trained policy

is relatively maintained at a medium to small level. The specific value of the matching radius also

fluctuates with the value of the supply and demand relationship for the agent (system operator) to find

a good balance between the matching rate, the average pick-up distance, and the driver utilization rate

to achieve a higher system performance score, as shown in cell 4 in Figure 6.11. This policy helps ride-

hailing system operator to find a more ideal balance between system efficiency and user experience,

ensuring a relatively high matching rate, controlling the pick-up distance within a reasonable range, and

maintaining the efficient operation of the ride-hailing matching system. In actual ride-hailing systems,

when the number of drivers is close to the number of riders, dynamically adjusting the matching radius

can avoid oversupply or undersupply in the long run and maximize the system's operating efficiency.

In summary, the trained dynamic matching radius policy has shown good feasibility, flexibility, and

applicability in Austin’s ride-hailing market. Through continuous interactions and learnings with the

simulated ride-hailing matching environment, the ability to dynamically adjust the matching radius

according to the changing supply-demand relationship between drivers and riders is achieved. In the

actual ride-hailing system, the advantages of such a dynamic policy are obvious. In the case of

oversupplied drivers, a smaller matching radius can significantly reduce the waiting time of passengers,

thereby improving the user experience and system efficiency. On the contrary, when there is an

insufficient supply of drivers, an appropriate increase in the matching radius can effectively improve the

matching rate of riders, hence improving the user experience. In normal scenarios, this policy can also

reasonably optimize the overall system efficiency of the ride-hailing matching system. The shortcomings

of the proposed optimization method and its application potential in the ride-hailing markets of other

cities are discussed in the next chapter.

75

7
7 Conclusion

76

In recent urban public transportation modes, ride-hailing has become one of the primary choices for

urban citizens. However, the supply-demand imbalance between drivers and riders always causes extra

stress to the ride-hailing system. It often faces challenges of uneven supply and demand relationships

both in time and in space. Therefore, it is necessary to optimize the ride-hailing matching system.

Traditional mathematical optimization and static optimization methods have certain limitations in the

long-term effects of strategies. Therefore, using Reinforcement Learning to optimize the ride-hailing

matching system is a better choice.

The goal of this study is to optimize the overall operating efficiency and user experience of the ride-

hailing system. In order to achieve this optimization goal, this study has made contributions in the

following three aspects:

－ Markov Decision Process: Since the ride-hailing matching problem is relatively complex,

this study forms it as a Markov Decision Process and conducts following studies based on

it.

－ Ride-hailing Simulator: Due to the complexity and uncertainty of the actual ride-hailing

system, it is unlikely to directly use the original operation data from the actual ride-hailing

system to train the agent. In order to achieve the optimization purpose, a ride-hailing

matching simulator is developed to simulate the ride-hailing matching system in a targeted

manner.

－ Deep Reinforming Learning: RL algorithms have been proven to be effective in optimizing

ride-hailing systems. This study selects a suitable Reinforcement Learning method and

uses the MDDPG algorithm to optimize the matching radius for the ride-hailing matching

system.

In terms of optimization performance, this study designs different experimental scenarios for a case

study of the ride-hailing market in Austin, and analyzes the effectiveness and applicability of the

proposed method under a variety of different driver-rider supply-demand relationships. The results show

that the method proposed in this study can effectively balance the three performance indicators of the

ride-hailing matching system: matching rate, average pick-up distance, and driver utilization rate. The

policy trained in this study can optimize the overall operating efficiency of the ride-hailing matching

system to a certain extent and improve the user experience. However, the method proposed in this

study still has some limitations. This chapter will discuss and summarize these limitations and possible

future improvements.

7.1 Limitations

The optimization method proposed in this study to optimize the matching radius of the ride-hailing

matching system with the MDDPG algorithm has achieved good performance and results. However,

there are still some limitations in the implementation of the proposed method in real ride-hailing markets

apart from the city of Austin. The limitations of this method mainly come from the simplifications and

assumptions made when simulating the actual ride-hailing market to improve the simulation effect,

improve the simulation efficiency, and ensure the stability of the Reinforcement Learning algorithm. This

section will discuss these assumptions and simplifications, as well as the limitations brought by them of

the method proposed in this study.

First of all, this study simplified the ride-hailing market when developing the ride-hailing simulator. It is

assumed that it consists of multiple independent, equally-sized grid areas named cells. Each of these

cells has a fixed geographical boundary. The matching process of travel demands and drivers in each

77

cell is independent, but the matching can be carried out across the cell boundaries. This assumption

simplifies the matching process and reduces the complexity of the system. However, real cities are not

composed of equally-sized areas, and the demand and supply relationship of riders and drivers

between regions may vary greatly. This assumption may allow the model to perform better in training,

but a worse performance can also be caused in actual applications in real ride-hailing markets. At the

same time, the simulator defines the matching radius of all ride demands in the same cell as the same,

while the matching radius between different cells can be different. The matching time-window in each

cell remains the same in all time-steps. The length of each matching time-window in the actual ride-

hailing system can be adjusted dynamically, and many studies have already been carried out to discuss

this topic. The ideal matching radius also needs to be adjusted according to the specific circumstances

of each travel demand. This approach may oversimplify the real dynamics of the actual ride-hailing

system. The urban traffic environment is inherently complex, and the assumptions made to optimize

the simulator performance may result in the trained policy not being able to fully consider these complex

scenarios.

Another assumption is about the behavior of riders and drivers. It is assumed that riders will not cancel

orders after successful matching, and drivers will not refuse orders after matching with travel demands.

For specific travel demands, the simulator does not consider the end location of each travel demand

and assumes that the order weight in the matching system is only related to the pick-up distance, not

the length of the ride. This means that all rides have the same price, and their value and weight are

only negatively correlated with the pick-up distance. This assumption ignores the difference in

importance between long-distance rides and short-distance rides in actual operations, which creates a

difference between the simulator and the actual ride-hailing system. It may cause the trained policy to

be biased when applied in the actual ride-hailing market. Although the assumption that the ride

destination is not considered in the model reduces the complexity of the model and helps reduce the

size of generated data, it may deviate from the actual distribution of vehicles in the actual ride-hailing

system. Although these assumptions about rider and driver behavior simplify the complexity of the

matching system, in actual operation, the behavior of riders and drivers is highly uncertain, which may

also lead to model deviations. This assumption also ignores the individual differences between travel

demands and driver behavior, which may affect the accuracy of the matching policy and cause certain

limitations in the specific implementation of this approach.

When simulating the behavior of unmatched drivers looking for travel demands, a Gaussian distribution

(normal distribution) is used for sampling. This method assumes a certain degree of predictability and

consistency in driver behavior. However, this assumption can cause a large deviation in predicting driver

behaviours in the real world. Theoretically, the Gaussian distribution is a symmetric distribution that is

often used to describe fluctuations in natural phenomena or predictable behaviours that are

concentrated around a certain value (mean). However, the behavior of drivers is not that predictable. In

looking for riders, the driver’s behavior may be affected by many factors and real-time circumstances,

such as personal preferences, road conditions, fuel conditions, time, weather conditions, and so on.

The variability and unpredictability of driver’s behavior with the impact of these factors are difficult to be

fully captured by a Gaussian distribution. Driver behavior in the real world is often more complex and

unpredictable. For example, in some cases, drivers may prefer to stay in a specific area in the hope of

being matched with travel demands more quickly. This is because these areas tend to have higher

travel demand, such as transportation hubs such as airports or train stations. In other cases, drivers

may prefer to move to a certain area or certain specific locations. For example, at night, drivers may be

more inclined to move to the area where the driver's home is located. Therefore, the use of a Gaussian

distribution to capture and simulate the behavior of drivers may be oversimplified, resulting in a deviation

between the simulated behavior and the actual situation. This deviation will not only affect the accuracy

of the trained policy and reduce the optimization effect of the ride-hailing matching module, but also

have an adverse effect on the ride-hailing dispatching system in practical applications.

78

During the simulation process, in order to reduce the impact of irrelevant variables on the optimization

of the ride-hailing matching system, it is assumed that all other environmental factors (such as traffic

conditions and weather) remain unchanged during the simulation. This assumption is intended to

control these complex and irrelevant variables so that the simulation results can more directly reflect

the effects of the input radius to the ride-hailing simulator. However, these factors in the urban traffic

environment often change in reality, and this treatment method may reduce the model's applicability in

practical applications. First, traffic conditions are changing in real-time at different times and locations,

and the efficiency of the ride-hailing matching system will also be affected. For example, the traffic flow

during peak hours and off-peak hours varies greatly, and temporary road construction, traffic accidents,

and other events can also cause traffic congestion in a short period of time. Ignoring these changes

and assuming that traffic conditions remain the same may lead to inaccurate calculations of the model

for passenger waiting time and driver pick-up distance, thereby reducing the optimization effect of the

method proposed in this study on the ride-hailing matching system. Secondly, weather factors are also

important variables that affect travel behavior. Severe weather (such as heavy rain, heavy snow, etc.)

will not only lead to a decrease in road capacity but also significantly change passengers' travel needs

and drivers' willingness to accept orders. For example, on rainy days, passengers may be more inclined

to choose ride-hailing travel, while drivers may reduce the number of trips due to slippery roads. If these

weather changes are ignored in the simulation and assumed to be unchanged, the prediction and

optimization effects of the model under severe weather conditions will be greatly reduced. Although the

influence of irrelevant factors on the simulation results can be reduced by controlling variables, in actual

applications, this simplified treatment of assumptions may not accurately reflect the complex and

changeable real environment, thereby affecting the actual optimization effect of the ride-hailing

matching system. Therefore, future research and model design should consider how to better

incorporate these dynamically changing environmental factors to improve the accuracy and practicality

of the proposed approach and trained policy. These contents will be discussed in the subsection of

recommendations for future research.

In addition, the implementation of the proposed method also faces a series of challenges, which

themselves constitute limitations. Most importantly, designing the reward function poses a challenge

and a source of limitation. Whether the reinforcement learning model can successfully converge and its

learning effect depends largely on the quality of the reward function. In the reward function, the agent

obtains the real-time weighted performance score as the immediate reward in the ride-hailing matching

system, but this may oversimplify the actual impact of matching decisions on the long-term profitability

of the system. The design of the value function also needs to be carefully considered because the

design of the value function directly affects the learning effect of the reinforcement learning agent.

7.2 Method Adaptability

The policy trained by the method proposed in this study are highly applicable and can adapt to different

supply-demand scenarios and different optimization goals. However, when adapting and applying it in

other cities, it is necessary to fully consider the limitations mentioned above and make appropriate

adjustments to parameters. Only on the basis of fully understanding the optimization goals of ride-

hailing systems in different cities and reasonably selecting parameters to reflect the actual operation of

the ride-hailing market, can the proposed optimization method effectively improve the operating

efficiency of the actual ride-hailing system and optimize the user experience.

The successful application of this method from Austin to the ride-hailing market in other cities depends

on multiple factors. The most important of these is the adjustment of the parameters of the reward

function, which plays a vital role in the effectiveness and convergence of the reinforcement learning

model. The quality of the reward function directly affects the model's ability to learn and optimize

79

matching decisions in the actual ride-hailing system. Appropriate parameter settings can better reflect

the optimization goals of the local ride-hailing system. For example, if the matching success rate of the

ride-hailing system in a certain city is low, it is necessary to increase the weight of the matching rate in

the overall performance score to focus on optimizing the matching rate.

The geographical specificity of different cities and the different supply-demand relationships in the ride-

hailing market mean that in-depth evaluation and adjustment are needed when adapting the proposed

method to different cities. For the developed simulator, data needs to be acquired from local real ride-

hailing system operation data. The real local ride-hailing system operation data can make the simulator

better reflect the actual market and operation environment of the local ride-hailing system, so that the

algorithm can optimize it in a targeted manner. The availability and quality of real-world ride-hailing data

are crucial to the effectiveness and practicality of the trained policy. If incomplete or biased data is used,

the optimization effect of the proposed method on the local ride-hailing matching system may be

reduced. On the other hand, the traffic characteristics, population density, traffic flow, and demand-

supply relationship of different cities may be significantly different. For example, large cities may have

higher demands and supplies, while small cities are the opposite. Therefore, adjusting the supply-

demand relationship parameters in the simulator accordingly is also the key to successfully adapting

the method proposed in this research to the actual ride-hailing market.

7.3 Answer to the Research Questions

This section answers the research questions raised in this study.

RQ: In a ride-hailing system, when the matching time window is fixed, what is the policy to

determine the optimal matching radius for riders and drivers with respect to a higher

matching rate, shorter pick-up distance, and a higher driver utilization in different urban

areas with different supply-demand relationships?

Answer to RQ: This study develops a dynamic matching radius optimization method for the ride-hailing

matching system, which specifically optimizes the matching rate, pick-up distance, and driver utilization.

A policy is trained using the MDDPG algorithm. This policy can dynamically output the optimal matching

radius based on the real-time driver-rider supply-demand relationships in different urban areas of the

ride-hailing system. The effectiveness of this method has been verified in a case study based on the

city of Austin. The overall structure of the method is shown in Figure 3.1.

SRQ 1: What are the current methods for determining the matches between riders and drivers

in ride-hailing systems, and what challenges do they face?

Answer to SQR 1: The existing methods include the nearest matching method and the batched

matching method. At present, the optimization of these matching methods mainly focuses on static

planning, optimization based on mathematical models, and optimization of matching time-windows. The

challenges encountered by these studies include suboptimal matching due to fixed parameters,

inefficiency in handling changing supply-demand dynamics, and scalability issues. At the same time,

these methods are usually limited in adapting to the changing supply-demand dynamics, and may not

be able to optimize the operating efficiency and user experience of the ride-hailing system at the same

time. When optimizing the ride-hailing matching system, the evaluation of an optimization method needs

to consider the calculation efficiency, optimization performance, real-time processing capability of the

optimization method, and ability to adapt to the dynamic ride-hailing market. A good policy can adjust

the matching radius in a targeted manner according to the supply-demand patterns of the ride-hailing

market in real-time to achieve the purpose of optimizing the overall system efficiency and user

experience.

80

SRQ 2: How effective is the ride-hailing simulator in replicating real-world scenarios for
testing the RL-based matching radius optimization?

Answer to SQR 2: The ride-hailing simulator uses functions such as demand distribution, driver

behaviour model, and travel demand generation model to replicate real-world conditions. The main

parameters include reward performance weight, travel demand generation rate, and supply-demand

relationship ratio. In response to changes in the urban environment, in order to control uncertainties

and irrelevant variables in the ride-hailing matching system, a series of simplifications and assumptions

were made for the ride-hailing system during simulator development. These simplifications and

assumptions and their impact are discussed in Section 7.1. A performance score of the ride-hailing

matching system is used to evaluate the operating efficiency and user experience of the ride-hailing

system under an optimized matching radius. The evaluation indicators included in this score include

matching rate, average pick-up distance, and driver utilization rate. The ride-hailing simulator effectively

replicates real-world scenarios by simulating real-time supply and demand relationships, driver

behaviour, and simulating the generation of travel demand. It uses matching efficiency and user

experience-related indicators to evaluate the effectiveness and performance of the optimization method

proposed in this study.

SRQ 3: How can the proposed RL framework be implemented to address the challenges in

optimizing the matching radius for ride-hailing systems?

Answer to SQR 3: Reinforcement Learning is suitable for the optimization of the ride-hailing matching

systems because it can adapt to dynamically changing supply-demand relationships and optimize long-

term benefits in a dynamic system. This advantage is beyond the reach of traditional dynamic planning

algorithms and mathematical optimization algorithms. Reinforcement Learning algorithms are able to

handle complex decision-making processes and continuously improve the policy through continuous

interactive learning and experience replay mechanisms. In addition, Reinforcement Learning can

handle continuous action spaces and achieve more refined policy adjustments, thereby improving

matching efficiency, shortening pick-up distances, and increasing driver utilization rate in the dynamic

ride-hailing environment. Multi-replay-buffer Deep Deterministic Policy Gradient (MDDPG) is the most

suitable RL algorithm for this study. This RL algorithm is suitable for problems with continuous action

spaces. MDDPG combines policy gradient methods with deep learning to optimize decisions through

deterministic strategies. MDDPG uses a deterministic policy network to select the best action in a given

state, rather than sampling discrete actions from a distribution like DQN. This algorithm also uses the

experience replay buffer in DQN to store past experience to break the correlation between samples and

improve learning efficiency. MDDPG can handle continuous action spaces, making it particularly

suitable for the matching radius optimization of the ride-hailing system that needs to be adjusted

dynamically. It can dynamically adjust the matching radius according to the real-time supply-demand

relationships to improve matching efficiency. It can handle the complex and dynamic environment of

the ride-hailing system, including the supply-demand relationship in different urban areas. The key

parameters of the MDDPG algorithm are mainly the hyperparameters of the algorithm, including

learning rate, decay coefficient, experience replay pool size, etc. Their role and impact are discussed

in detail in the case study section. The performance of the policy trained by the MDDPG algorithm is

better than the baselines in a variety of different supply-demand scenarios. This policy can find a good

balance between the system performance indicators to maximize system operation efficiency and user

experience.

81

7.4 Future Research and Outlook

The method proposed in this paper shows its high adaptability under different driver and passenger

supply and demand scenarios and optimization objectives through a case study in Austin. However,

when applying it to other cities, it is necessary to fully consider the above limitations and adjust the

parameters appropriately. In order to achieve computational efficiency and optimization effect, this

paper makes some trade-offs in the simulation degree of the model. This study has made a series of

simplifications to the actual ride-hailing market and also proposed some targeted assumptions, so that

factors such as weather are not considered in this study. In view of the shortcomings and limitations of

this study, this section will discuss future research work and prospects from the following specific

aspects.

The simulator developed in this study divides the ride-hailing market into cells. The cells used in the

case study is relatively rough, and only 9 rectangular cells of equal area are used. Future research

needs to increase the number of cells and divide the study area according to practical circumstances.

It is suggested to consider using cells of different sizes or different shapes, for example, according to

the attributes of the area, such as commercial areas, transportation hub areas and residential areas.

This method of dividing cells can make the division of the area more distinctive and better adapt the

matching radius to different ride-hailing demand patterns of different type of urban regions. In this way,

the method proposed in this study can more accurately capture the supply-demand characteristics of

different regions, thereby improving the accuracy and effectiveness of the trained policy. It is helpful to

increase the applicability of this method.

On the other hand, this study mainly relies on existing data, which is time-sensitive and may not

accurately reflects the future supply-demand relationship of the ride-hailing market. Further research is

needed on the better prediction method of future ride-hailing demand-supply relationships. Introducing

other advanced technologies, such as deep learning, big data cloud and blockchain, can better predict

the supply-demand relationship of the ride-hailing market in time and space. It can improve the realism

of the simulator used in this study. By deeply analysing historical data, combined with accurate

prediction of future supply-demand patterns, a more accurate supply-demand model can be established.

Such a model can provide more reliable data support for the developed simulator and improve the

overall optimization effect of the system. In practical applications, real ride-hailing market data is an

important guarantee for the effectiveness of optimization strategies. Future research should also focus

on obtaining and utilizing higher-quality real-time data to further enhance the realism and applicability

of the simulator. Future research can cooperate with ride-hailing platforms to obtain more detailed

operational data, so as to more accurately reflect the actual operation of the market and adjust the

optimization strategy in a targeted manner.

In addition, more in-depth research on the behaviour of drivers and riders is needed in the future. In

this study, the driving behaviour of drivers and the ride-hailing behaviour of riders are simplified, ignoring

the randomness and heterogeneity of their behaviour. Future research needs conduct more detailed

analysis on the driver's order decision, route selection, and service willingness (rejection probability and

rejection reason) and other behaviours. Modelling driver behaviour with a more realistic random model

can better simulate the real situation and improve the realism, adaptability and effectiveness of the

proposed method in this study. At present, there have been modelling analyses of pedestrian behaviour,

and these studies can serve as a reference for future research in this aspect.

In summary, by increasing the sophistication of urban divisions, applying more accurate prediction

models, and conducting more in-depth research on behavioural modelling, the optimization effect of the

matching radius of the ride-hailing matching system can be further improved. These future studies and

82

improvements will help to apply the methods proposed in this study to different ride-hailing markets, to

meet the specific needs of different cities, and to improve the operational efficiency and user experience

of ride-hailing systems in a targeted manner. Future research will continue to improve the methods

proposed in this study in these directions, in order to achieve a more efficient and intelligent ride-hailing

matching system.

83

References

[1] Sikder S. (2019). Who Uses Ride-Hailing Services in the United States. Transportation Research

Record: Journal of the Transportation Research Board, 2673(12), 40-54.

https://doi.org/10.1177/0361198119859302

[2] Levine S., Kumar A., Tucker G. (2020). Offline Reinforcement Learning: Tutorial, Review, and

Perspectives on Open Problems. Computer Science, Education, 2005.01643.

https://arxiv.org/abs/2005.01643

[3] Deisenroth M., Rasmussen C. (2011). PILCO: A Model-Based and Data-Efficient Approach to Policy

Search. ICML'11: Proceedings of the 28th International Conference on International Conference on

Machine Learning, Pages 465–472.

http://www.icml-2011.org/papers/323_icmlpaper.pdf

[4] Fujimoto S., Meger D., Precup D. (2019). Off-Policy Deep Reinforcement Learning without

Exploration. 36th International Conference on Machine Learning, PMLR 97:2052-2062.

http://proceedings.mlr.press/v97/fujimoto19a.html

[5] Wu T., Wang S., Wang L., Tang X. (2022). Contribution of China’s ride-hailing services to its 2050

carbon target: Energy consumption assessment based on the GCAM-SE model, 160, 112714.

https://doi.org/10.1016/j.enpol.2021.112714

[6] Feng Y., Niazadeh R., Saberi A., Saberi A. (2023). Two-Stage Stochastic Matching and Pricing with

Applications to Ride Hailing. Operations Research.

https://doi.org/10.1287/opre.2022.2398

[7] Xu Z., Li Z., Guan Q. (2018). Large-Scale Order Dispatch in On-Demand Ride-Hailing Platforms: A

Learning and Planning Approach. Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining. Pages 905–913.

https://doi-org.tudelft.idm.oclc.org/10.1145/3219819.3219824

[8] Wang Y., Tong Y., Long C., Xu P. (2019). Adaptive dynamic bipartite graph matching: A reinforcement

learning approach. 2019 IEEE 35th International Conference on Data Engineering (ICDE)’, IEEE, pp.

1478–1489.

https://ieeexplore-ieee-org.tudelft.idm.oclc.org/8731455

[9] Wang J., Lampert B. (2014). Improving Taxi Revenue with Reinforcement Learning. Stanford

University. CS229, Project 2014.

https://cs229.stanford.edu/proj2014/

[10] Mao C., Liu Y., Shen Z. (2020). Dispatch of autonomous vehicles for taxi services: A deep

reinforcement learning approach. Transportation Research Part C: Emerging Technologies, 115,

102626.

https://doi.org/10.1016/j.trc.2020.102626

84

[11] Liu Y., Wu F., Lyu C., Li S., Ye J., Qu X. (2022). Deep dispatching: A deep reinforcement learning

approach for vehicle dispatching on online ride-hailing platform. Transportation Research Part E:

Logistics and Transportation Review, 161, 102694.

https://doi.org/10.1016/j.tre.2022.102694

[12] Wang Z., Qin Z., Tan X., Ye J., Zhu H. (2018). Deep reinforcement learning with knowledge transfer

for online rides order dispatching, in ‘International Conference on Data Mining’, IEEE.

https://doi-org.tudelft.idm.oclc.org/10.1109/ICDM.2018.00077

[13] Holler J., Vuorio R., Qin Z., Tang X., Jiao Y., Jin T., Singh S., Wang C., Ye J. (2019). Deep

reinforcement learning for multi-driver vehicle dispatching and repositioning problem. 2019 IEEE

International Conference on Data Mining (ICDM)’, Institute of Electrical and Electronics Engineers,

Washington, DC, pp. 1090–1095.

https://ieeexplore-ieee-org.tudelft.idm.oclc.org/stamp/stamp.jsp?tp=&arnumber=8970873

[14] Ke J., Xiao F., Yang H., Ye J. (2022). Learning to Delay in Ride-Sourcing Systems: A Multi-Agent

Deep Reinforcement Learning Framework. IEEE Transactions on Knowledge and Data Engineering,

34(5), 2280-2292.

https://doi.org/10.1109/tkde.2020.3006084

[15] Qin G., Luo Q., Yin Y. (2021). Optimizing matching time intervals for ride-hailing services using

Reinforcement Learning. Transportation Research Part C Emerging Technologies. Volume 129, 103239.

https://doi.org/10.1016/j.trc.2021.103239

[16] Jin J., Zhou M., Zhang W., Li M. (2019). Co-Ride: Joint Order Dispatching and Fleet Management

for Multi-Scale Ride-Hailing Platforms. 28th ACM International Conference. Pages 1983 – 1992.

https://doi-org.tudelft.idm.oclc.org/10.1145/3357384.3357978

[17] Li M., Qin Z., Jiao Y., Yang Y., Wang J., Wang C., Wu G., Ye J. (2019). Efficient Ride-hailing Order

Dispatching with Mean Field Multi-Agent Reinforcement Learning. The World Wide Web Conference

(WWW '19). 983–994.

https://doi-org.tudelft.idm.oclc.org/10.1145/3308558.3313433

[18] Chen X., Bai S., Wei Y., Jiang H. (2023). How income satisfaction impacts driver engagement

dynamics in ride-hailing services. Transportation Research Part C. Volume 157, 104418.

https://doi-org.tudelft.idm.oclc.org/10.1016/j.trc.2023.104418

[19] Alejandro H., Wesley M. (2019). The impact of ride hailing on parking (and vice versa). Journal of

Transport and Land Use, Volume 12, No. 1, 39.

https://www.jstor.org/stable/26911261

[20] Yan C., Zhu H., Kuroko N., Woodard D. (2019). Dynamic pricing and matching in ride-hailing

platforms. Naval Research Logistics, Volume 67, Issue 8, Pages 705-724.

https://doi.org/10.1002/nav.21872

[21] Zha L., Yin Y., Yang H. (2016). Economic analysis of ride-sourcing markets. Transportation

Research Part C: Emerging Technologies, Volume 71, Pages 249-266.

https://doi-org.tudelft.idm.oclc.org/10.1016/j.trc.2016.07.010

[22] Qin Z. (Tony), Zhu H. (2022). Reinforcement Learning for Ride-hailing: An Extended Survey.

Transportation Research Part C: Emerging Technologies, Volume 144, 103852.

https://doi-org.tudelft.idm.oclc.org/10.1016/j.trc.2022.103852

85

[23] Yang H., Qin X., Ke J., Ye J. (2020). Optimizing matching time interval and matching radius in on-

demand ride-sourcing markets. Transportation Research Part B: Methodological, Volume 131, Pages

84-105.

https://doi-org.tudelft.idm.oclc.org/10.1016/j.trb.2019.11.005

[24] Liu Y., Jia R., Ye J., Qu X. (2022). How machine learning informs ride-hailing services: A survey.

Communications in Transportation Research, Volume 2, 100075.

https://doi-org.tudelft.idm.oclc.org/10.1016/j.commtr.2022.100075

[25] Özkan E., Ward A.R. (2020). Dynamic Matching for Real-Time Ride Sharing. Stochastic Systems,

10(1), 29-70.

https://doi.org/10.1287/stsy.2019.0037

[26] Gao J., Li X., Wang C., Huang X. (2020). Learning-based open driver guidance and rebalancing

for reducing riders’ wait time in ride-hailing platforms. In 2020 IEEE International Smart Cities

Conference (ISC2), pp. 1-7.

http://dx.doi.org/10.1109/ISC251055.2020.9239059

[27] Zhan X., Szeto W.Y., Shui C.S., Chen X. (2021). Transportation Research Part E: Logistics and

Transportation Review. Volume 150, 102124.

https://doi-org.tudelft.idm.oclc.org/10.1016/j.tre.2020.102124

[28] Feng S., Ke J., Xiao F., Yang H. (2022). Approximating a ride-sourcing system with block matching.

Transportation Research Part C: Emerging Technologies, Volume 145, 103920.

https://doi-org.tudelft.idm.oclc.org/10.1016/j.trc.2022.103920

[29] Liu Y., Wu F., Lyu C., Li S., Ye J., Qu X. (2022). Deep dispatching: A deep Reinforcement Learning

approach for vehicle dispatching on online ride-hailing platform. Transportation Research Part E:

Logistics and Transportation Review, 161, 102694.

https://doi-org.tudelft.idm.oclc.org/10.1016/j.tre.2022.102694

[30] Feng G., Kong G., Wang Z. (2021). We Are on the Way: Analysis of On-Demand Ride-Hailing

Systems. Manufacturing &Amp; Service Operations Management, 23(5), 1237-1256.

https://doi.org/10.1287/msom.2020.0880

[31] Arulkumaran K., Deisenroth M., Brundage M., Bharath A. (2017). Deep Reinforcement Learning: A

Brief Survey. IEEE Signal Processing Magazine, 34(6), 26-38.

https://doi.org/10.1109/msp.2017.2743240

[32] Terrell G. R., Scott D. W. (1992). Variable Kernel Density Estimation. The Annals of Statistics, 20(3),

1236–1265.

http://www.jstor.org/stable/2242011

[33] Wiewiora, Eric (2003). Potential-based shaping and Q-value initialization are equivalent. Journal of

Artificial Intelligence Research 19, 205-208.

https://www.jair.org/index.php/jair/article/download/10338/24713/

[34] Laud A. D. (2004). Theory and application of reward shaping in reinforcement learning. Ph.D.

Dissertation, University of Illinois, Urbana-Champaign IL, USA.

https://www.ideals.illinois.edu/items/10802

86

[34] Miller T. (2022). Mastering Reinforcement Learning. Web Educational Book, The University of

Queensland.

https://gibberblot.github.io/rl-notes/single-agent/reward-shaping.html

[35] Miao F., Han S., Lin S. (2016). Taxi Dispatch with Real-Time Sensing Data in Metropolitan Areas:

A Receding Horizon Control Approach. IEEE Transactions on Automation Science and Engineering,

13(2), 463-478.

https://doi.org/10.1109/tase.2016.2529580

87

Appendix

Appendix A. Simulator Working Flow

Let 𝑇 denotes the maximum number of time-steps in an episode. Let 𝑆𝑡 denotes the state, 𝐴𝑡 denotes

the action and 𝑅𝑡 denotes the reward at time-step 𝑡. Let 𝑟𝑡 denotes the matching radius set re-scaled

from the action, 𝑟𝑡
𝑖 is the matching radius for cell 𝑖 at time-step 𝑡. Let 𝑁𝑡

𝑟 denotes the total number of

riders (travel demands), 𝑁𝑡
𝑑 denotes the number of available drivers (driver supplies) at time-step 𝑡. Let

𝑑𝑖𝑗 denotes the distance between rider 𝑖 and driver 𝑗 . The working flow of the ride-hailing simulator

developed in this study is shown below.

Algorithm 2 Ride-hailing Simulator

1. Input: the action 𝐴𝑡 at time-step 𝑡
2. Output: next-state 𝑆𝑡+1 and reward 𝑅𝑡
3. initial matching pool 𝑃𝑡
4. re-scale the action 𝐴𝑡 to matching radius 𝑟𝑡
5. for rider = 1: 𝑁𝑡

𝑟, do:

6. assign 𝑟𝑡
𝑖 to the rider based on which cell the rider is in

7. for driver = 1: 𝑁𝑡
𝑑, do:

8. calculate distance 𝑑𝑖𝑗 between rider and driver

9. If 𝑑𝑖𝑗 > 𝑟𝑡
𝑖:

10. continue

11. If 𝑑𝑖𝑗 ≤ 𝑟𝑡
𝑖:

12. store {rider, driver, 𝑑𝑖𝑗} in the matching pool 𝑃𝑡

13. end for
14. end for
15. use Hungarian algorithm to find matches 𝑀𝑡 within 𝑃𝑡
16. calculate matching rate 𝑟𝑡

𝑚𝑟

17. calculate average pick-up distance 𝑟𝑡
𝑝𝑑

18. calculate driver utilization rate 𝑟𝑡
𝑑𝑢

19. drop matched riders and drivers
20. sample new travel demand locations from KDE function

21. update 𝑁𝑡
𝑟 , 𝑁𝑡

𝑑 to 𝑁𝑡+1
𝑟 , 𝑁𝑡+1

𝑑
22. for rider = 1: 𝑁𝑡+1

𝑟 , do:
23. if 𝑡𝑖 > 𝑡𝑚𝑎𝑥, do:
24. drop the rider from the rider queue

25. for driver = 1: 𝑁𝑡+1
𝑑 , do:

26. check and update availability
27. sample their re-locating behaviours
28. update driver’s location
29. get and normalize the observe of the next state 𝑆𝑡+1
30. calculate reward 𝑅𝑡

88

Appendix B. Developing Environment

Python: Version 3.9.13 available at:

https://www.python.org/downloads/

Here lists all the needed packages for developing and running the Ride-hailing simulator. The

distribute source and their versions are also attached alongside the packages.

gym: pip install gym==0.26.2
datetime: already installed with Python from version 2.6
FoliumMap: pip install folium==0.14.0
NumPy: pip install numpy==1.24.2
Pandas: pip install pandas==0.20.3
GeoPandas: pip install geopandas==0.14.0
matplotlib: pip install matplotlib==3.8.2
Scikit-learn: pip install scikit-learn==1.3.2
SciPy: pip install scipy==1.9.1
PyPROJ: pip install pyproj==3.6.1

Here lists all the needed packages for developing and running the MDDPG algorithm with the

developed ride-hailing simulator. The distribute source and their versions are also attached

alongside the packages.

argparse: already installed with Python from version 3.2
gym: pip install gym==0.26.2
random: already installed with Python from version 3.6
copy: already installed with Python from version 2.6
NumPy: pip install numpy==1.24.2
collections: already installed with Python from version 2.6
Pytorch: pip install torch==2.3.0
matplotlib: pip install matplotlib==3.8.2

The source code of the simulator is available at:

https://github.com/zhh05/RL_ride-hailing_radius

89

Appendix C. Additional Results

Figure C.1. Radius, rider-driver plot with stable driver numbers.

Figure C.2. Radius, rider-driver plot with fluctuating driver numbers.

90

(over-supplied)

(under-supplied)

Figure C.3. Radius, demand-supply ratio plot.

91

Figure C.4. Radius changing trend over few time-steps.

92

