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1 Introduction

The principle that the salinity intrusion into a tidal river can be described
to some degree of accuracy by a two-dimensional mathematical model provides
the basis for several theoretical studies of this phenomenon. To verify this
starting point the results of the systematic flume tests of the Delft Hy-
draulics Laboratory (see D.H.L.-publication nr. 72) are analysed as if they
were satisfying the two-dimensional tramsport equations of mass and momentum
approximated in a way as given in the equations | trough 4 in the next
section. This investigation is justified by the fact that the fluid motion
and salinity distribution of the flume tests are to a high degree two-
dimensional as a result of the application of resistance bars in the flume.
Considering the flume as a schematized hydraulic model of a prototype
estuary the resistance bars were introduced to create the additional (extra)
flow-resistance which is required in a distorted hydraulic model.

The investigation dealt with in this report shows that in the range of
variation of the systematic tests the most upstream end of the salt intrusion
cannot be described in an acceptable way by the above equations. The analyt-
ical considerations applied to the approximate equations reveals that unless
the vertical diffusion coefficient at the upstream end of the salt intrusion
tends to zero or infinite the solution of this problem formulation cannot
exist. These unbounded values of the diffusion coefficient in any part of
the flow region are considered here as non-realistic and practical comse-
quencies of locally unbounded diffusion are not studied further.

It must be borme in mind however that an infinite diffusion coefficient of
salt at the upstream end of the intrusion can be a direct consequence
resulting from the applied approximations in the starting differential
equations 1 through 4. In that case however the physical meaning of the
approach is lost and a physical more realistic description of the local flow
phenomena must be recommended.

The conclusions given above are derived under conditions restricted to the
range of parameter values underlying the systematic flume tests. The
question can be raised if these conclusions are still valid under more
general conditions and especially in the prototype situation.

A decisive answer to this question cannot be given. Flow conditions without
resistance bars are not considered and the mathematical methods used in

this paper are hard to apply to those cases as well as to the three-dimen-



sional prototype situation. All that can be said is that the conclusions

can be valid under less restrictive conditions.

It should be mentioned, however, that field data available for the partly
mixed Rotterdam Waterway estuary reveal a more or less well mixed behaviour

of this estuary at the tip of the salinity intrusion. This tip-behaviour

was not found in the flume tests using resistance bars.



2 Formulation of the problem

The fluid motion and salinity distribution in a two-dimensional tidal flume
are supposed to be described by the following equations:

the continuity equation for an incompressible fluid:

Ju 3v 0 1)

the continuity equation for salt:

dc ac 3c _ 9 ac
Srugrvg e O 30) (2)

f 9x 9y ¥ y

where the time-averaged effect of turbulence is described by a diffusion term.
Horizontal diffusive transport is neglected in comparison with the convective

transport.

The equations of motion are:

Ju Ju Ju 1 3p £

s s v =+ — £+ 88— ufu/ =0 (3)
3t ax ay p, 3% C2R

3

= = —pg (4)

ay

The friction term is expressed as a volume force brought about by resistance
bars. Molecular and turbulent shear effects are supposed to be small compared
with the last term in equation (3) and are neglected.

The Boussinesg-approximation has been applied i.e. the variation in density is
neglected except in the gravity term.

In the equation of vertical motion the hydrostatic shallow water approximation

is applied.

where
ad (1) u, v are velocity components in x, respectively y—direction
x, y coordinates directed horizontally in upstream direction

respectively vertically upward



ad (2) c¢ salinity

t  time

Dy vertical diffusion coefficient
ad (3) p pressure

p density

g acceleration of gravity

C coefficient of De Chezy

R hydraulic radius of the flume

The relation between density and salinity is approximated by:
o =p, (I +ac) (5)

where P, is density of fresh water

and ¢ is a given conversion factor

The resistance bars are vertically placed in a regular configuration on
the bottom of the flume. The spacing between two bars in a row is a, the
distance between the rows is denoted by b. So the number of bars per

unit area is L . Let the drag coefficient of such a bar perpendicular

a.b

to the flow direction being CD and the bar thickness measured perpen-

dicular to the mean stream denoted by d, then the relation between the

Chézy coefficient and the uniformly distributed external volume force is:

D
—%_ =3 a.b (6)

o]
~

3p 3p 30 _ 3 3p
Tt Y e Y Ve "3 Oy 3y (7)

Now we have four equations (1), (3), (4) and (7) for the following five

unknowns:
u (X, Vs t)
v (x, ¥y, t)
8] (1(, ¥ t)

p (x, v, t) and Dy



The Chézy coefficient and hydraulic radius are well defined and considered
to be known.
The vertical diffusioncoefficient however may a priori not be assumed as a
constant nor as a known function of local flow and salinity parameters.
Some information on the value of Dy in the absence of resistance bars is
available. In that case D is a decreasing function of the Richardson-
number defined by: 7

—p 2P

ay

Ri = 5

Ju
p(ay
In the case with resistance bars some assumption has to be made about the
vertical diffusion. This is one of the main problems in conmection with
the study on salt intrusion. We will delay this assumption as long as
possible waiting for an opportunity to base the assumption on results of

the systematic flume tests.

The inclination of the tidal flume is zero so the boundary conditions at the

bottom are:

dc

at =0: v=20 D =0
v y 3y
The water surface is denoted by:
y =n(x, t) +h
where hO is a mean waterdepth.
t =h + ( t)' =0: D a_ﬂ=0
at 'y =h_+n {x, tp S -
an an _ _ _
and dE-+ U o v =0

The discharge control at the upstream end of the flume is operated such
that the tidal motion in the flume coincides with that of a flume which

would have a length L, while

at x =1, u (L,t) (h0 +n L,t) ) = q,



where q. is a given constant river discharge
(note that u at x = L is independent of y)
The actual length of the flume exceeds the length of the zone with salinity

intrusion

At x=L, c =20

At the rivermouth:

n (0,t) = A cos 2~ %- + const.

where A is the tidal amplitude
and T the tidal period

Both are given constants

The required boundary conditions at the rivermouth with regard to the velocity
and salinity distr bution depend on the final analytical model being used.

At this moment we assume that sufficient boundary conditions at the rivermouth
are given and we postpome the formulation of conditions untill the moment we
need them.

The starting point of assuming conditions at the mouth being known indeed
seriously limits the predicting possibilities of the approach.

As a first step, however, the aim of this study is to get some imsight into
the susceptibility of the gross behaviour of salt intrusion of the various

parameters.

Resumé: The four functioms u, v, p and p are defined by the above set of
approximated conservation laws and sufficient boundary conditioms, provided

the vertical diffusion coefficient is given. The approximations applied to

the conservation laws are mostly hased on the shallowness of the flume i.e.,

on the fact that the longitudinal length scale is large compared to the
vertical length scale. The final solution depends on the special choice of
boundary conditions at the rivermouth and on the choice of the vertical
diffusion coefficient which have still to be made.

Note: Not all of the applied approximations are as convincing as they should be.
Particularly the condition that the turbulence should not too much deviate from
isotropic is a condition certainly not fullfilled in the case of a flow around
resistance bars. As a result we shouls bear in mind the possibility that the
horizontal turbulent transport mechanism is prematurely dropped out of the

equations.



3 Application of asymptotic methods

Applying asymptotic methods to the system of partial differential equations
- + » + + -
leads to the construction of approximations of functions ®( x, u) of variable

+ ’
x and parameter p for usmall, i.e. for p> O.

The particular functions % are u, v, p and p and the variable vector X has the
components X, y, t. The choice of the small parameter u is found by expressing
the entire problem in suitable dimensionless coordinates.

Cornsider the system of differential equations again. Integrating equation (4)
and using the boundary condition p = 0 on the free surface the pressure becomes

h +n

p=g y° pdy (8)

Substitution of equation (8) in (3) eliminates the pressure.

The remaining equations repeated for convenience are:

Ju av
. =L |
X * oy v (1)
ap ap 3 op
== == 4 A == —_—
ot " d M 3y dy (Dy 3y ) (7
+n By
a_d + u _8_.‘11. + v EE. E_ 40 39_ dy + ¥ hn +n a_n. +
t ax 3 [ Ix P, ax
+ 55— ‘ u | u =20 (9)
CR

We write these equations in dimensionless form.

Before doing so it is advisable to return for a moment to the non-approximated
problem to see if dimensional analysis reveals any controlling parameter being
lost in the simplified mathematical model. The flow— and salinity distribution

in the physical flume model is controlled by the following parameters:

. . . L 2
geometrical similarity parameters = g/C
)
initial- and boundary condition A/ho; hp/po; L/LR b / ho\’gh0
] g qr v jé-_‘
dynamical similarity Re = T Pr ='—? ; Ty o

o]



where LR is the resonance-length of the flume: LR = %-T Vgho

and vy the molecular diffusioncoefficient of salt

Based on the results of the systematic tidal flume tests Rigter E] stated
that for the tests with resistance bars the Reynolds—number was large enough

to neglect any effects due to variation in Re.

The Prandtl number as a controlling parameter will be rather unimportant

as the molecular diffusioncoefficient is extremely small as compared to

the coefficient of turbulent diffusion at this high Re—number flow.

Anyhow, as long as the physical model uses the same fluid and dissolved matter
as in the prototype the Prandtl number will be nearly constant and can be
omitted from the list of controlling parameters.

From these considerations it canm be concluded that the Chézy coefficient (or
drag coefficient on a resistance bar) is Reynolds independent, which is not
contradictory to our assumption C = constant. Further, the relation between
the diffusion coefficient Dy and the Prandtl number can be left out of
consideration,

So, no essential features are lost at this moment in the simplified mathemati-

cal model.



4 The zeroth order outer approxzimation

Introduce the following dimensionless coordinates

X

SR
LR

and the dimensionless variables:

o= u
u = :
;Egho"
and 5 = D:go
pz 0

p__bp

where ¢ = —2 °
o

;:L;E=.F_-.
ho il T
A
R S
h ﬁ:g T n
0 )
p— Po
Ep
Py = density of fresh water
P, = density of sea water

The variables may be expressed as a function of the controlling numbers and

the dimensionless coordinates,

du_ . av

ax 3y
2 4 grei
ot ax
Moy e
ot 8;

(1 +ep (h0 +n ,t))

The basic parameters

so for instance:

h
0

A
L ' h 2
0

equations become:

30 Lpoa i
vy e 22 - _r, 2
e s O
3y o ay o o}
3 a5 1 + ve ﬁ
Y e ‘—%?- + v e ;
ay y
= L
ij'2“*"F:zi"1‘{"/Eﬁ11/u/=0
o9x C

(10)

(1

(12)

are



The order of magnitude of these parameters have to be fixed in their mutual
connection based on data from systematic flume test series. The controlling
conditions in these test-series are systematically varied (one at a time)
around a given reference test (T 3) corresponding to a measured prototype
situation on the Rotterdam Waterway [?] . It will be obvious to consider
test T 3 in this study too as a reference situation on which the order of
magnlitude estimates are based.

From test T 3 it appears that the depéndent variables u, v, p and n are

made dimensionless in such a way that their order of magnitude can be
considered as unity.

The magnitude of ¢ is 0O (10 _2) hence small compared to unity.

The magnitude of u is O (10+] ) =0 (e_i)

An estimate of the order of magnitude of § is not easy to make for the
following reason.

The verticaldiffusion coefficient Dy is hitherto an unknown function of one
or more of the controlling parameters already quoted and possibly alse of

the dimensionless coordinates. The value of DY has been derived in a rather
complicated way from the experimental data for a large amount of parameter
values.

An estimate of the order of magnitude of a suitable chosen norm on &8 has
therefore to be made. However, due to the enormous effect of inaccuracies

in the measurements on the so-derived Dy values this approach leads to
unacceptable results (maximum -+ «, mean tends to zero, L2 oY T.M.S.~ Nnorm
tends to infinite).

An impression based on a L2— norm (root mean square) after omitting Dy values
outside a certain band width leads to § 2 0 (e i).

In view of the uncertainties around § we will again delay a ruling on this
point and see how far we can get without such information.

Introduce € as the small parameter.

Note that the dependent variables are made dimensionless with the small
parameter. So, if € goes to zero, the discharge, tidal elevation, and friction-
coefficient tends to zero in a prescibed mutual relationschip. As will be shown
later on the salt intrusion in this formulation does not tend to zero if e =+ 0.

We assume an expansion of the following form

'l_l — U.(O) + f_E'_-'i U(l) + 0 (8)
e} o
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EE v = vgo) + Ve vél) + 0 ()

SRS G n§1)+0 (e) (12a)

- péo) + vV e pél) + 0(e)

oI

The zeroth-order approximation equations become

(o) (o)
Bua N an0 +u/€ﬁﬁ§0)l u§0)| =0 (13)
3t 3 x
and
Bu(o) av(0)

E + o_ =0 (14)
3 x 3y

Boundary conditions:

u
- L . . . - _ river
For x = T the horizontal velocity is u_ VEEE;_—

R
From test T3 it appears that Er= 0 (¥ )

Hence to the zeroth-order of approximation we have

l =

(15)

u =0 for x =

o
ol

P
(o)

The equation of motion as well as the boundary condition for u_ are

independent of the vertical coordinate. So uéo) ig independent of y and
equation (14) can be integrated over the depth. Using the boundary conditions;
véo) =0 at the bottom
@ g
and v' ‘= «e—=—  at the watersurface , equation (i4) integrated over the
3t

depth becomes

au(0) Bn(0)
o, o
9 X at

=0 (16)




- 12 -

With the boundary conditions (15) and

() _ A T = -
"o = VETE; cos E—-t forx =0 an

the equations (13) ans (16) can be solved.

In a study on salinity intrusion in estuaries Ippen and Harleman [#]calcu—
lated the tidal motion in a density homogeneous river.

The approach started with the introduction of a relation for the wave height
valid for a damped cooscillating linear tidal wave.

Such a relation satisfies the equation of motion (13) only if the friction
term is linearised, i.e. the approximation u| u| is linear proportional to
u has been applied. The factor of proportionality had to be determined em—
pirically.

It is worthwile to evaluate the same approximation in this case of a tidal
flow in a flume with resistance bars. Here the factor of proporticnality
can be related to known parameters. The relation is based on the approxi-

mation

where u_e is the root-mean-square value of u in the x - t domain, hence

a constant

L

u =1
rms L 5

T
é /GE‘ dt} dx

The linearised friction term in equation (13) becomes

1
T

2
(o) (o) & s (o) (o)
u, % | H 8 “rms Yo
The factor of proportiomality p—%g uiii can be determined after uéo)
has been solved as a function of this parameter. So uizi is given implicitly.

After some straight forward algebraic manipulations the following analytic

solution is obtained.
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o G- )

u(o) _ A / cos 2a L Ly -

0 ;Eho 2 cos 2R + 2 cosh 2y = cos (5 t+

L L
R — —
_ L y— {(x-T_)) _ _ L
0+ a- B x EEA+ BY - e L R cos ( %- t+ 0+ o +f x EB -8 )i} (18)
and
— ER_ t5ol

NCY A 1 N - "R (X% + o+

o v sho V2 cos 2B + 2 cosh 2y ° cos 2

L, . L.
) LR Yi"-(x—LR) Lo B LR
-Bx 7+ B) + e cos ( 7 t*O 48 x 8 ) (19)
where © 1is defined by tg © = tgB . tghy
with ~= T L  sin«a e C I S L cosc
1>ry LR Yeos 2ot 2 LR Jeas 2ut
where o is implicitly given as
2
_ KU C=) B/e

tg 2o = i Yms VE

and

o) E‘;‘_ L/LR : 4 (0)2 ~ ~
u =T i { =+ S fu dt} dx

Tms b 4 b o

Basically the solution is analogous to those of Ippen and Harleman.

The only difference is that whereas they need two coefficients both to

determine empirically, the above result is based only on the Chézy-

coefficient which can be considered as rather well-defined.

It is therefore possible to derive a relation between the two empirical
constants from Ippen and Harleman and the Ché&zy coefficient. The theoretical
result may be checked with the empirical relationship based on their experiments.

The elaboration is left to the reader.

To avoid any misunderstanding we recapitulate that the analytic solution

cannot be considered as the zeroth order solution of the outer approximation

equation (13)



It is a valuable practical approximation, but the accuracy does not

increase with diminishing value of e.

. . » . . T -
The higher harmonic contributions (terms in cos n 5 t) of the exact
solution of the non-linear equation (13) are omitted without a definition

of the order of accuracy of the approximation.
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5 The first order outer approximation

In the first order approximation the continuity equation for the salt comes
into play. Substituting the asymptotic expansions (12a) into the dimension-
less differential equations (10), (11) and (12) and equating terms of the
order of magnitude v €' the following first order approximation equations

are obtained.

NN ¢h
0 0

— + — =20 (20)
3 % 3 ¥y
(o) (o) (o) (N
auo . u(o) 5 (o) . (0) Buo . | 30 iy ano .
3t 9% © 3y o B ax
/e ) - (21)
(8] o

This procedure can only be applied to the continuity of salt after the
question about the order of magnitude of the diffusionparameter § in terms
of ¢ is settled.

As mentioned already, we will try to proceed as far as possible without an
estimate of 8. With this lack of information however we have to leave the
attempt to solve part of the problem within the region of salt intrusiom.
Only integrated effects can be studied if enough boundary conditions are
given.

Integration of equation (20) over v between bottom and water surface yields

(n (o) (1 (o)
} du’ o +n(0) 3u, . ang . (0 ang Y
o 9x © 3 x 3t © 3%
or
(N
an
L S - B (22)
ox o = © 0 3t

The tidal motion is considered to be periodic with period T.

Time averaging over one tidal period T yields

3 (D) .

1 to v
(notation — { fdt = £)
o

o
I
o

3t T
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or
1 ~—
—
5 u(l) dy + u(o) (0) = const.
o o o
For x = L. u(o) 0 and u(l) u .
L o o} riv
R
S0
f ﬁf( ) dy + u(O) n(O) = u_. {23)
o O o 0 riv
Because uéo) is independent of y it follows from equation (21) that outside
the region of saltintrusion, where 39(0; 0, the first order approximation uél)
X

is as well independent of y.

Hence, outside the region of saltintrusion equation (23) becomes

IO O N
s} riv (8] [s]

Integrating the equation of motion over x between 0 and x as well as over the

waterdepth and taking the time average values we obtain

—~ ——— ~— ~ A

2 2 11
Doy -0 + 100l -l 1 v 0PG5
y
o x Wy - SRS
o (o,y) l1dydy + 2u /_E\é [ & ‘ { S g T s Yax = o (24)

The last term contains a slight inaccuracy admitted here for the sake of
simplicity, namely the approximation ulu| = 2| ul u similar to the ome al-
ready mentioned earlier.

From equation (24) it follows that the mean water elevation

(o)

St e
K

N -

can be calculated outside the region of salt intrusion, where pgo) (;, }) =0,

using the zeroth order solution ugo) and the given boundary condition for the

density distribution at x = 0
A sketch of the contributions of the wvarious terms in (24) to the mean

water elevation as a function of X is shown below



_17_

density term

f
I ! friction term

~2 ~ 2
’ 4 wl® 6o -l o))

X, —= X L/

LR

The region 0<x< X, is the region of salt intrusion, where not enough
information is available to determine the mean water level.

Note that the slope of the waterlevel due to the tidal waves is an order
of magnitude higher than the slope in waterlevel due to the discharge
alone. The contribution of the latter does not appear in this order of
approximation.

The mean-water level increase which has been found numerically by
Stigter and Siemons, publ. no. 52 WL for one special case is compatible

with equation (24) outside the region of salt intrusion.



6 Near field equations

Near the river mouth the densityin the flume varies in x-direction over a
distance equal to the length of the salt intrusion. In this region density
currents occur.
Thereforeto describe the flow and density phenomena near the river mouth,
the longitudinal coordinate must be compared with a length scale of the
order of the salt intrusion length Li'

= X
So xi = 6?315

From the systematic flume tests it appears that

L.
— =0 (e

R

So the x-coordinate will be stretched according to

- .4

X. =7'=\
1 €

Let us introduce now a coordinate system moving in the longitudinal direction
with a representative velocity of the tidal motion.
We choose for this representative value the zeroth order outer approximation

(o)

of the horizontal velocity u_ (0,t) at the river mouth x = 0.
The idea of the approach is suggested by the well-known fact that the flow
velocity in the region of salt intrusion is composed of two contributions, omne

contribution due to the tidal wave , the other due to density currents.

=u_+u

So u(x,y,t) = Yiide * udensity curr, t d

From the results of the systematic flume tests an estimate can be obtained of
the magnitude of both contributions compared to each other.

Due to the use of resistance bars in the experiments the tidal velocities

are nearly independent of y in contrast with the density currents and hence
a distribution between both contributions can be made from the measured

velocity profiles. It appeared that as a rule
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So the density currents have an order of magnitude in between the discharge
velocity and tidal velocity.

Note that the tidal velocity u, actually varies as a function of x in the
region of salt intrﬂﬁion. However, the variable part is order ¥ €

because the region fi = 0 (Ye ) and therefore can be incorporated into

R
u. defined as u, = u (x,y,t) - u(o)
i i o

(0,t)

Denote the coordinates in the moving system by £, y and 1

T

x = VeE+Ve '/ uéo) (O,E) dt

t =

so i =Ve 2 A 8 = B +/e (o) {(0,1) s

3 9x T 9t e 9x

The differential equaticns (10}, (11) and (12) transform in this stretched

coordinate system into:

du 9V,
L+ L =0 (25)
VeaE dy
3,5 2 .58 _ L sy - (26)
ar Yoo ooy 3y 3y
- = — - -
du, _au, _ gu 1 +ven 3dp ani
—2 s u, =2+ ve—= + | — dy + + (27)
3t b3 oay y 3E Veag

g N AR A S R

where u, = u (E,;,E) - uéo) (O,E)
Vi:pi
and
ﬁi =7 - néo) (O,E) are the inner variables

o is the dimensionless density at water surface.
s

Equation (27) is derived from the difference between equations (12) and (13).
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7 The zeroth order inner approximation

In the development of the inner approximation the following asymptotic ex-

pansions are introduced

u, = ugo) + ﬂ;-ugl) + 0(e)

Ye v, (based on equation 25)
= (o) — (1)

n. ns + /eni + 0(e)

- _ (o) - (1)

p; =8, + /epi + 0(e)

From equations (27) it follows at once that

(o)
an;
T = 0 = ngo) = ngo)(t)

The zeroth order approximation equatlons become:

aul® 3v{0)
1 + L _ 0
3E 3y
(o) (o) (o) (o) (n
du. au, du, 1 dp. an.
* + ugo) -1 VSO) + + J = dy + + we .
a1 t 3E * dy y % 3
Eugo) o ul®y (W6 4 e o)), () [:l = 0
i 1 o] 1 8] a] 0

For the continuity equation of salt we have to introduce an order of magnitude
estimate of 3 in terms of e,

As mentioned already, it is hard to derive a decisive answer to this question
from the experimental flume test results.

Therefore we put § = 0 (e k/2) and derive the approximation equation belonging

to various integer values of k.

The main part of the study has been devoted to the question which choice of the
diffusion coefficient has to be made in order to get differential-equations
which can describe the main physical properties of the salt intrusion.

The extensive computations needed to judge the value of the applied approxi-

mations will not be reproduced for reasons to be described in the following

chapter.
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8 On the existence of a solution of the problem

The main part of this study has been devoted to the problem how general
aspects of the salt intrusion depend on the specific choice of the diffusion
coefficient being made.

The answer to this question turned out to be rather disappointing.

Provided that no essential mistakes have been made in the argumentation

the final conclusion of this study is as follows:

The problem of salt intrusion in a tidal flume as formulated by the differen-
tialequations (1), (7) and (9) with sufficient boundary conditions is not well-
posed; a solution does not exist for practical values of the diffusion-
coefficient.

This farreaching conclusion is a result of lengthy and cumbersome algebraic
calculations.

However, the methods involved as well as the attention paid to elaboration
cannot lay claim to the mathematical rigour which is needed for a proof of
existence.

Therefore, instead of giving a tiresome explanation of the applied method we
prefer to make the conclusion acceptable by physical arguments.

Due to the lack of stringency in the mathematical approach the following
physical explanation lacks a rigid background and therefore must be considered
with care.

Let us formulate the conclusion in more detail.

No solution exists for the set of differential-equations (1), (7) and (9)
with sufficient boundary conditions periodically repeated in time for values
of the diffusioncoefficient unequal to zero or infinity in some neighbourhood
of the saltwedge tip.

The additional information means that a value zero nor infinite is considered
as a practical value for a diffusioncoefficient.

The definition of the saltwedge tip is as follows:

The saltwedge tip is that region where y = 0" and x (t) follows from

d x (t)

= lim u(x{(t), 0, t) or
dt e
t
x(t) - x(t) = lim Jou(x(t), 0, t) dt
e t =+ @ to

where x and t, are initial conditions chosen in such a way that

x(t) = 0 for all values of t.
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Dependent on the choice of X5 b the relation

t
x(t) - x(to) = [ u(x(t), 0, t) dt
t

describes the pagh of the infinitesimal particle (xo, to) on the bottom

of the flume inside or upstream the salt wedge.

The limit for t + = is independent of the initial conditions, and describes
by definition the position and motion of the saltwedge tip. The allegation

that lim x(t) is independent of the initial conditions has still to be proved,
tE > o

At this point, the restriction is made, that any solution of the mathematical
model which is meaningless in a physical sense is disregarded.

This restriction implies that a distinect fluid particle moves or is at rest
in the physical plane only, i.e. sources or sinks or movements in non-physi-
cal planes in the fluid domain under consideration are excluded.

Due to this restriction we may state that if a physical solution exist, the

[

integral J u{x(t), 0, t) dt exists alsc for all values of t, The integral
to

is unique because y = 0% is a streamline (v(x,0,t) = 0) and depends on the

initial conditions only. (Fluid particles on a streamline do not pass each

other in the physical plane). That the solution lim x(t) if it exists is
t 5+ x

unique independent of the initial conditions will be amplified in the following:
From the formulation of the mathematical problem it can be derived that if

D # 0 the time-mean velocity of a fluid particle over one tidal cycle on the
bgttom streamline is directed upstream as long as ¢ # 0.

The derivation of this statement is omitted, only the physical arguments are
given. Consider the equilibrium of time mean forces on a fluid particle on

y = 0", The density force which is proportional to %%-must be balanced by the
fr%gsjon force due to the density stream alone, i.e. a term proportionally

to E-L—l-(in case of resistanc%ﬁggrs). Because EE—S 0 while Dy # o, the vertical

ay ax
g q g Ju ., S f
time mean velocity gradient —— is also <€ 0. The continuity equation throught

d
a vertical requitres zero tranzport of salt during one tidal cycle. So T bottom
2 0 if czO,hence a fluid particle on the bottom streamline coming from the sea
moves to the front of the salt wedge. Consider now a fluid particle on the
bottom streamline coming down from the riverside. Due to the fact that the
horizontal diffusive salt transport has been neglected, the salt concentration
of this f£luid particle is zero and remains zero at least up till that moment

it reaches some position X where somewhere on the vertical the concentration of

salt is unequal zero.
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If it can be shown that this somewhere is located on the bottom of the flume,

than the position and motion of the salt wedgetip is defined.

Consider therefore the most upstream particle with salt concentration unequal

zero. Again due to neglection of horizontal diffusion this special particle

contains perhaps a small but still a finite amount of salt, unless the

particle has been exposed to diffusion with sweet water during an infinite

amount of time. (An infinite wvertical diffusion coefficient is considered

as unrealistic and therefore omitted in these considerations).

Hence there are two possibilities.

a) the most upstream end of the salt intrusion contains a finite amount of
salt i.e., the density distrubution in x-direction is discountinuous

b) the most upstream end of the salt intrusion contains an amount of salt
tending to zero below every fixed bound. In that case the upstream end
is build up of always the same particles i.e. the upstream end is a
stagnation point.

ad a) If the boundary of the upstream end is not a stagnation point the
tangent to this boundary must be vertical. Due to the contact requirement
between neighbouring fluid particles, the horizontal water velocity com-
ponents on both sides of this boundary must be equal. Hence the frictionterm
over the boundary is continuous and the discontinuity in pressure must
be balanced by a discontinuity in acceleration. Again due to the require-
ment of contact, the pressure difference can be build up by vertical acce-
leration alone but these contributions have been neglected. Hence the only
possible shape of the upstream end of the salt intrusion in this mathema-
tical formulation is a stagnation point.

ad b} If the upstream end of the salt intrusion is a stagnation point, pressure
distribution in x-direction can be continuous under certain conditions. The
stagnation point is on the lowest possible situation i.e. on the bottom of
the flume because the time mean horizontal velocities of the water particle
on the bottom streamline within the saltwedgetip are maximum due to the

non—-decreasing value of the term

y
ap . ap
ﬂ = dy with vy ( e S 0.

The position of the salt wedge tip as well as an indication of its shape is
defined now. The angle between the tangent plane at the tip and the bottom

must be equal or smaller than 90°.
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Consider next the continuity equation of salt

ac dCc ac 9 dc
Fr L v 57 B (D §;)

The behaviour of ¢ in the neighbourhood of the salt wedge tip on some

moment is schematically shown in the next figure

ac ’ 4=
c(x,0,t) - — X

;
]
(=]

Denote yc(x) as some measure of the salt wedge thickness

£.1. c(x,yc (x), £ty =1 e(x,0,t) or else

C(K,YC(X), t) = % (C(X,O,t) + c(x,ho,t)

where 7 0 at the tip

The singular behaviour of the right hand side of the continuity equation

of salt at the wedge tip must be balanced by one or more of the other terms
in this equation. Because the angle between the tangent at the salt wedge
tip and the bottom is equal to or smaller than 900, the flow velocities u
and v within the wedge tends to zero at a faster rate than r£ where r is

the distance from the point under consideration to the stagnation point.
Equating the singular behaviour of the diffusion term to the remaining terms
at the salt wedge tip leads to:

A solution of the stated salt intrusion problem can exist only if Dy tends

to zero at a faster rate as the thickness of the salt wedge tends to zero.

The fulfilment of this condition leads to values of the vertical diffusion
coefficient which are considered as unrealistic.

In the physical situation it is well-known that the diffusion attains a
maximum at the front of the salt wedge contrary to the requirements imposed
by this mathematical formulation. Values of the diffusion coefficient larger
than every fixed bound however are Omitted in the foregoing, because such

values are again considered as physically unrealistic.
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From a mathematical point of view, the singular behaviour of the diffusion
coefficient in special points of the fluid domain is to be expected (and there-
fore realistic) when the approximations applied to the continuity equations
of mass and momentum are based on overall properties of flow and salinity
distributions, as has been done in this case. The physical interpretation
of such a coefficient, largely defined by the mathematical approximation
procedure, cannot be given. Therefore it was decided not to extent the
investigation in this direction.

During this study several assumptions were tried on the value of Dy or its
functional relatioship with the local Richardsonnumber. All assumptions
excluded the value Dy = 0 except in the limit for Ri + =, For the reasons
as pointed out the computation procedures led to non-convergent series
expansions of the unknown functions, in the region around the salt front at
least as far as the expansions were carried out.

These computations are very tedicus and are omitted on account of their

slight practical value,
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9 Some results of the inner approximation

A short description will be given of those partial results emerging from
the work done, which may have some practical value or may be of some im-

portance for an extended study on this subject.

One of the assumptionsabout Dy has been:

D =D for Ri g5 a
v o
al
Dy = ETE for Ri 2 a where a is a constant 0 (1)

Only the time-mean differential equations over one tidal cycle in a with the tidal
motion moving coordinate system has been considered, i.e. the coordinate system

(o)

moves with the velocity u (0,t) of the zeroth order outer approximation.
The fluid domain containing the salt wedge is devided into 3 regions as shown
in the next sketch based on the magnitude of the Ri-number.

(All variables introduced from now on must be considered as time-mean values

in the moving frame).

y=h
I Ri £ a
II Ri z a
111 Ri € “a~
¥y =0

The boundary curves between the regions I and II and between II and III are
defined by the condition Ri = a,

The order of magnitude of DO is chosen from the systematic test series

as:
LR.D
§ = —I = 0 (1) for Dy attaining its maximum value D0

2
h \/gho

The friction coefficient as before:
ELR

L
C2R

= 0(e’5)

A G E——
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or in terms of inner dimensions

o Li 1 5
L co@ =0 h
u
r o o
The solution up to order £ has been calculated.
The relation of the solution u{x,y), v(x,v), c(X,y), Ri(x,y) with the
vertical coordinate appeared to be:

in region TII:

uy (6,¥) = ug (0 EX ug,(x) + 0 (si)
0

nen = vy, +%§ vy 0+ 0 (eh)
X
ey (,y) = g () + et cyy0) € log, G0+ ié ey, O+ _ig eys (0]
v o0 (7Y
Riy(x,y) = LRy G0 + ié R,, () +0 (ed)

The upper boundary of region IIL is y = ya(x) and follows from Ri3 (x,ya) = a.
In region I, the same differential -equations as in region III apply for the
succesive order terms.

E%Z instead of %u The lower
boundary of region I is y = Yy (x) and follows from Ri] (x,ya) = a,

The solutions in region I is analogous reading
In region II:
1f solutions with a periodic character (standing wave solutions) are excluded,

the remaining solution in this region is:

u, (%,5) =u,,(x} +u,, % + 0 (s%)

cz(x,y) = c2](x) + ¢y, %- + 0 (si)
where U,y and c,, are independent of x and y
v, Gy) = vy vy, Lo+ 0 (eh
Riz(x,y) = a + 0 (Ei)

The next sketch shows graphically the obtained results for some value of x.



h R h T h
y y }
> bl
Ya T~ =~/ AT T T __-—\*_ya
i \ y
, f
|
o ]
a [a] o]
— e Ri(x,y) — = o(x,7) ——  ulx,y)

As mentioned already the various x—dependent functions showed a singular
behaviour at the salt wedge front. The strength of the singularity increased
with increasing order of perturbation in such a way that the power series in
¢ did not converge (at least as far as the expansions has been carried out).
From these results however some still valid conclusions can be drawn.
1) The thickness of the shear-layer Yy T Y, as calculated appeared to increase
in seaward direction contrary to the results of the systematic test series.
2) The thickness of the shear-layer as calculated is much smaller than in the
experiments unless a is order 10 instead of order unity.
Based on these observations it may be concluded that if the vertical diffusion
coefficient is really only dependent on the Richardsonnumber in such a way that
a=0 (1) than vertical diffusion plays only a minor part along most of the
salt intrusionlength. The most important mixing occurs in that case at the fromt
of the salt wedge and the diluted mixture in the shear layer is mainly origi-
nating from that front region alone. The shear layer thickness decreases in

downstream direction due to the converging streampattern.

The analytic considerations made in this study showed only the shortcomings

of the mathematical description of the two-dimensional salt intrusion problem
based on the concept of vertical salt transport of a diffusive type.

Indeed in most of the problems in nature where turbulence plays a part in the
spreading of a substance the description by Fick law of diffusion is appropriate.
In this special case however where mixing is predominant at the saltwedge-front
where the flow pattern is complex but still more deterministic than stochastic
such a conception like Fick second law is not necessary appropriate.

In fact the periodic breaking of internal waves into a fluid region which is
continuously renewed leads to a vertical local time mean salt transport which
is better described by a proportionality with the concentration itself than
with the vertical concentration gradient.

Remark: The shortcomings in the mathematical description of the salt intrusion
problem can be removed by adding a vertical, "diffusive" transport term propor-
tional to ¢ being dominant at the head of the salt intrusion to the already

existing term
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10  Some observations on the form and motion of the head of the density

fronts in flume experiments.

Motion pictures made of the moving density front in the flume with resistance
bars experiments showed head shapes with at least two different basic features
dependent on the external conditions. In case of lock exchange flow and perhaps
also in the case of salt intrusion under tidal conditions with high river

—

discharge the shape %; the head of the density current is shown in Fig. a.

B

E".’"‘““‘* ~ +— Y% Fig.a

P77 PP PP PP PPl Al PP RPerTI 777777777777

Under tidal conditions and river discharges usually met in the systematic flume

tests, the head of the density front is shown in Fig. b.

\
- u Fig.pb
('\_Ar:__.
- VTSNS
PF777777 77777 Vs

The difference in the flow pattern is apparent.

ad a) The height of the head in the lock exchange flow case is nearly equal to
half the water depth. The front boundary is a sharp well-defined and smooth
stable curve. After about a distance from the stagnation point comparable
to the waterdepth a highly turbulent wake region develops bounded below by
a stable layer containing salt water still moving to the front.
The flow pattern as estimated from the motion pictures is as shown in the
fig. a.

ad b) Under conditions usually met in the systematic test series, the height of
the density front appeared to be much smaller. Unstable waves are travel-
ling downstream along the surface of the salt wedge. The amplitude of this
overtopping waves has the same order of magnitude as the thickness of the
saltwedge. About three wave tops are clearly visible after which this pattern

faded away by turbulence.

The no slip condition on the bottom of the flume leads to an overhang at the leading
edge. This overhang however was small, apparently because bottom-friction is of

minor importance compared to effect of the resistance bars.
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Observations in literature made by Simpson (1969) [Ej] and Allen (1971) [E]
have shown that the frontal flows are not two-dimensional and that the front
of the density current is broken into regularly spaced lobes and bridges over
clefts.

As was noted by Simpson the transverse spacing between the regular clefts was
comparable to the vertical height of the overhang, which in turn appeared to
be between 20 and 50 percent of the total head height of the density current.
This shape could not be discoverd in our motion pictures. Due to the presence
of resistance bars the ovérhang was small compared to these literature values.

The lobes and clefts were if present in both cases not distinctable.

From these physical pictures it will be obvious that the vertical transport

of salt by "turbulent" diffusion has nothing to do with the vertical concen-
tration gradient at the head region of the salt wedge.

A vertical transport of salt on the time-mean interface proportional to the

local concentration itself seems in this region more appropriate. The factor
of proportionality will bear resemblence with the growing velocity of an

unstable disturbance resulting from stability theories,
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11 A proposed model of the salt intrusion problem

Based on the experience gained during this study the following three layer
model of the salt intrusion problem is proposed.
Again time mean values are considered in a with the tidal motion moving

coordinate system.

1 =]
hal T g Y%
9~ —streamline y = Yy
2, 4 streamline Sedy
y Ia3 : ’_%4
, ’ A
0{ q_3r-5' q3 _!qul 4\‘__q1- .
x =1L y

The fluid domain bounded by the bottom of the flume and the watersurface

is divided into four regions. The regions denoted by 1, 2 and 3 in the above
sketch are separated by the streamlines y = Y. and y = Yy Across these
lines the normal time mean velocities are zero. The last region G contains
the salt wedge tip. The horizontal dimension of region G is small compared

to the length of the salt intrusion.

It is assumed that the diffusive type of vertical salt transport is valid
everywhere outgide the region G.

Within region G the laws describing the salt transport are not sufficiently
known.

Therefore we have to recourse to assumptionson relations between integral

in- and out-flow—quantities.

According to literature studies on the structure of the front of a density
current f£.1. Allen [ﬁl an amount of fresh river water enters the front region
with a rate proportional to the averageheight and the velocity of advance

of the head relative to the river stream. The rate of mixing depends on the
mean local internal Froudenumber based on the height and the relative density
of the head of the salt wedge

u
T

i Egajhead

So, the salt water discharge dq with the local mean concentration c, (x = Li)

3
mixes with the fresh water discharge q. to give a mixture 4, =3 * q.
entering the shear layer. The wvalues 5 and q  are proportional to the local

internal Froudenumber and have the same order of magnitude.
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The horizontal dimension of G may be set equal to zero hbecause it is small
compared to the salt intrusion and because detailed information within G
is missing.
The vertical dimension is
2
u
r

)
g eLi

y, (L) =0 (

Some assumptionsof minor importance have to be made on the concentration

and velocity distribution of the water entering the intermediate layer.

As regards the diffusion outside the region G we observe that the systematic
flume tests show a low degree of mixing of salt and fresh water, i.e. highly
stratified conditions are prevailing.

So the order of magnitude of the diffusion coefficient in region 2 must be
small compared to the values in region I and 3, because the vertical salt
transpotrt vec - D%%— must be continuous crossing the boundary streamlines.
In fact, from the exp%rimental results it appeared that in

region 1 D 2 0 (ql flJ
i

a')

region 2 D = 0 (q2 Lﬁ )
i
%3

region 3 D >> 0 (q3 i:‘)
i

The meaning of the symbols used can be obtained from the foregoing sketch.
From these order of magnitude estimations together with the equations of
continuity of volume and momentum the essential features of the vertical
density and velocity distributions can be obtained. Specific assumptions made
within the scope of this proposed model appeared to affect the overall

result only marginally.
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12 An estimate of the salt intrusion length based on the proposed model

As an indication for this statement we give here an estimate of the salt
intrusion length based on this model. For this purpose the following

information 1s sufficient.

e q . q c . . .
17) The advective terms in the time mean equation of motion in the moving
coordinate system can in general be neglected.
R

. . c : 4 q c
Together with the approximation u |u | = T Y, v the equation of motion

reduces to

8 , 9u
C%oo 3y

27) Only sufficiently stratified conditions as prevailing in the systematic

g 3 _ &
i

test series are considered.
This restriction together with the equation of continuity leads to the

: . Ju . .
following estimate of -— as a mean value over the salt intrusion

ay
length.
(22 _ 2uriv
dy “mean h0

So the mean slope of the depth—averaged salt concentration becomes

(BL = = u u
9x ‘mean T CZ hi o riv
or 1in dimensionless form
ac/
( ax/co ) = %‘ EQ Fo Fr
homean C

37) Hitherto the effect on the vertical velocity gradient of the water

circulation due to diffusion and mixing at the head of the salt wedge

. . d
15 not taken into account. A correction term must be added to (BE—D
y ‘mean
s0
( du_ o 2 Yriv (1 +a )
dy fmean —_—
ho

The correction term © must be small compared to unity and increases

with increasing Froudenumber (Fr).

In the systematic test program the depth mean salt concentration as a function

of x is evaluated for various time steps during one tidal ecycle.
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That part of the concentration distribution remote from the rivermouth is

not directly influenced by the varying boundary conditions at the seaside,

and can be used for comparison with the above relation after the longitu-

dinal salt distributions are averapged over one tidal cycle in a coordinate
system moving with the tidal motion. The agreement appears surprisingly good,
despite the crudeness of the applied approximations.

The salt intrusion length can be determined now if an estimate could be made of
the mean boundary conditions at the rivermouth. Because no special study has
been made to this latter subject, we turn our attention directly to the
experimental results. Figure 1 shows the measured values of EEi plotted
against Fo Fr: hOC2

Here Li is the minimum sali intrusion length. The data corresponding to variation
in tidal amplitude A, in Chézy coefficient C, in riverdischarge q. in river-
depth ho and in density difference Ap are concentrated in one single curve.

As can be observed from the figure the line given by the equation

gL,

i T
h C 16 F F
] ot

fits these data quite well.

This empirical relation is backed by theoretical evidence. The factor %B im-
plies that ( Es%ean takes the value 0,5 at the mean mouth position in the moving
coordinate sysgem. It is curious that the integration constant should be a real
constant. Based on physical reasoning a somewhat different relationship seems
more approplate namely:

ng . ' / u T.B
m = « (1- BF ) - E_ . SO N
r C2

V
h0C2 16 FoFr 2, 2

21 h
0

wher& % is a constant > 0 such that B8 Fr << ]

and ~%¥ is equal to half the flood travel distance.

and B the width of the flume

(the two-dimensional distance u T must be compared with the three-dimensional
radius! _EE:E b] °

The laéterﬂrelation can fit the experimental data as well.

Only data of the salt intrusionlength as found in the flume tests with a flume
length L = 0,884 LR (1 # 0 (10%) are used for comparison. By variation of the
flume length, part of the driving force is contributed to hydrostatic pressure

due to the mean slope of the watersurface. This effect is negligible for

%— & 0,9, as can be calculated from the homogeous tidal theory.
R

"ah. L

— — — o= — _ﬁ

(ax x =0 0 for I 1 0 ( > Fo)

R c
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