<]
TUDelft

Delft University of Technology

Correct Translation between Weak Memory Model Architectures

Sprokholt, D.G.

DOI
10.4233/uuid:8dc4a658-85bf-4243-993c-2bb511abe5f1

Publication date
2025

Document Version
Final published version

Citation (APA)

Sprokholt, D. G. (2025). Correct Translation between Weak Memory Model Architectures. [Dissertation (TU
Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:8dc4a658-85bf-4243-993c-
2bb511abe5f1

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.4233/uuid:8dc4a658-85bf-4243-993c-2bb511abe5f1
https://doi.org/10.4233/uuid:8dc4a658-85bf-4243-993c-2bb511abe5f1
https://doi.org/10.4233/uuid:8dc4a658-85bf-4243-993c-2bb511abe5f1

Correct Translation
between

Weak Memory Model Architectures

Dennis Sprokholt

Correct Translation
between
Weak Memory Model Architectures

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology
by the authority of the Rector Magnificus, prof. dr. ir. TH.J.]. van der Hagen;
Chair of the Board for Doctorates
to be defended publicly on
Friday 12 December 2025 at 10:00 o’clock

by
Dennis Guido SPROKHOLT

Master of Science in Computer Science,
Utrecht University, the Netherlands

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus chairperson
Prof.dr. K.G. Langendoen Delft University of Technology, promotor
Dr. S.S. Chakraborty Delft University of Technology, copromotor

Independent members:
Prof.dr.ir. G.N. Gaydadjiev Delft University of Technology

Prof.dr. PA. Abdulla Uppsala University, Sweden

Prof.dr. B. Dongol University of Surrey, United Kingdom
Prof.dr. S.B. Scholz Radboud University

Prof.dr. M. Huisman University of Twente

Prof.dr. M.M. de Weerdt Delft University of Technology, reserve member

Prof.dr. Eelco Visser (Delft University of Technology) was the original promotor of
this research until his untimely passing on April 5th, 2022.

The work in this dissertation has been carried out at the Delft University of Tech-
nology, under the auspices of the research school IPA (Institute for Programming
research and Algorithmics).

INSTIT,,
(%
77

r

]
TUDelft

WVHDOHH

—

/) o\~
”7/”(‘\ s <0

S
R

/rb
NDE gx NG

Copyright © 2025 Dennis Sprokholt — https://dennis.life
Cover image: Copyright © 2025 Dennis Sprokholt

Printed by: Gildeprint — https://gildeprint.nl

IPA Dissertation Series: 2025-16

ISBN 978-94-6518-172-1

An electronic version of this dissertation is available at https://repository.tudelft.nl

https://dennis.life/
https://gildeprint.nl/
https://repository.tudelft.nl/

Acknowledgements

Thank you to my supervisor, Soham, for your guidance, encouragement, and techni-
cal expertise, which were essential to produce the contents of this dissertation. You
taught me that finding collaborators to help solve research problems is equally impor-
tant to finding the problems themselves; this led to many collaborations with diverse
perspectives on interesting problems. Thank you to my promotor, Koen, for your
practical perspective, insightful questions, and for encouraging me to look at the big-
ger picture to shape the coherent narrative of this dissertation. Your guarding of the
process—particularly by insisting on deadlines—also helped finish it on time. Thank
you to my late promotor, Eelco, for founding the Programming Languages group and
for believing in me enough to offer me a PhD position in it.

Thank you to my collaborators Rodrigo, Redha, Pramod, Tom, Martin, Sebas-
tian, Theo, Krishna, Anish, and Yifan. Our frequent discussions and differing points
of view were essential for iterating on the ideas that led to our co-authored papers.
Thank you to my committee members, Parosh Aziz Abdulla, Brijesh Dongol, Sven-
Bodo Scholz, Marieke Huisman, and Georgi Gaydadjiev, for your time, effort, and
valuable feedback on this dissertation. Thank you to the countless anonymous con-
ference reviewers for providing feedback on the included papers.

Thank you to the members of the Delft Programming Languages group for the reg-
ular coffee breaks, where we could share our suffering. Thank you (in random or-
der) Luka for “singing” together, Xulei for the plants, Cas for sitting in the hallway
eggs, Lucas for the monitor box, Kobe for the whiteboard scribbles, Bohdan for “buy-
ing my car”, Jaro for the pure FP chats, and Max for being in my gym; thank you
Jeff, Andreea, Aron, Danny, Jasper, Casper, Peter, Alex, Elmer, Jesper, Gabri€l, Arjen,
Séra, and Daniel. Thank you to the interns: Arthur for taking my pictures, Thomas
for teaching me to climb, Ewen, Micol, and Houda. Thank you to the support staff
Roniet, Shelly, Sophie, Myrthe, and Marja. Thank you to my students, Pieter, Kuba,
and Einar; working with you helped me recognize the boundaries of my own under-
standing — both technical and non-technical. Thank you to all the other people I
have enjoyed spending time with while visiting conferences and summer schools.

Thank you to the people who made these PhD years more enjoyable outside
university walls. Thank you for the Brouwhuis visits and beach rituals, Maté, Jeffrey,
and David. Thank you, Kevin and Joris, for playing Among Us—especially during
lockdown. Thank you, Qiao and Labrinus, for the boat trip. Thank you, Thomas,
Cas, Max, Kobe, Luka, Jaro, and David, for climbing (and falling) with me.

Thank you to my father and mother, for always supporting and believing in me.
Thank you to my sister Laura, and Pieter. Finally, thank you to my girlfriend Dan (J})
for your encouragement, support, and patience throughout this journey.

English Summary

This dissertation is about translating concurrent programs between computer ar-
chitectures. Legacy programs—built-for and tested-on x86—behave differently on
newer architectures, such as Arm and RISC-V. Particularly, weak memory behaviors
emerge when two micro-architectural features interact: (i) concurrency, where multi-
ple CPU cores simultaneously execute parts of a program, and (i) out-of-order execu-
tion, where a CPU core reorders instructions to increase throughput. Programs can
non-deterministically show one of various weak memory behaviors, meaning it could
behave differently when executing again. Those behaviors differ between architec-
tures. When migrating programs from x86 to Arm or RISC-V, the same program
could non-deterministically show behaviors never observed on x86.

In part I, we look at binary translators, which are software systems that translate
compiled binary programs between architectures. We study the translation process
of three such real-world systems, identify errors in their translation of concurrency
primitives, and fix them. We propose mathematically-rigorous weak memory mod-
els for these translators. We then define mapping schemes to translate concurrency
primitives one-by-one from x86 to Arm and RISC-V. With the formal semantics, we
prove those mapping schemes correct in the Agda proof assistant.

In partII, we study the common structure of our weak memory proofs written in
Agda. As those proofs are often large, complex, and rigid, we identify their common
structures for which we identify domain-specific abstractions. We implement those
abstractions in our novel Agda proof framework BurRrow to greatly simplify writing
future weak memory proofs.

In part III, we use dynamic analysis to identify weak behaviors that were never
seen on x86 but could appear on Arm. Our analysis simulates the program’s execu-
tion with the formal weak memory semantics of x86 and Arm. This analysis identifies
only the new behaviors the program shows in practice. After finding any new behav-
ior on Arm, we judiciously modify the program to eliminate only that behavior.

Nederlandse Samenvatting

Deze dissertatie betreft het vertalen van gelijktijdige programma’s tussen verschil-
lende computerarchitecturen. Computerprogramma’s die zijn geschreven voor en
getest op x86 gedragen zich anders op nieuwe architecturen, zoals Arm en RISC-V.
Vooral weak memory gedrag verschilt, wat zichtbaar is wanneer twee eigenschappen
van microarchitecturen samen komen: (i) gelijktijdigheid, waar meerdere process-
esoren tegelijkertijd delen van hetzelfde programma uitvoeren, en (ii) out-of-order
programma-uitvoering, waar de processor instructies in een andere volgorde uitvo-
ert dan zoals ze in het programma staan. Een programma kan willekeurig één van
meerdere weak memory gedragingen laten zien, wat betekent dat het programma zich
anders kan gedragen wanneer het opnieuw wordt uitgevoerd. Daarnaast verschilt
het mogelijke weak memory gedrag per architectuur. Wanneer een programma wordt
vertaald van x86 naar Arm of RISC-V, kan het nieuw gedrag laten zien, dat nooit
eerder was waargenomen op x86.

Deel I gaat over binaire vertalers die binaire programma’s vertalen tussen comput-
erachitecturen. We bestuderen het vertaalproces van drie bestaande vertaalsystemen,
waarin we fouten identificeren en repareren in de vertaling van gelijktijdigheidsin-
structies. We introduceren rigoreuze wiskundige weak memory modellen voor die
vertalers. Daarna definiéren we vertaalschema’s om gelijktijdigheidsinstructies één
voor één te vertalen van x86 naar Arm en RISC-V. Met de formele modellen bewijzen
we die vertaalschema’s correct in de Agda bewijsassistent.

In deel II bestuderen we de structuur van weak memory bewijzen in Agda. Die
bewijzen zijn vaak groot, complex, en moeilijk aan te passen. Om die complexiteit
te verlagen definiéren we domeinspecifieke abstracties voor hun gemeenschappelijke
bewijsstructuur. We implementeren die abstracties in onze Agda bibliotheek BuRrROW
waarmee weak memory transformaties makkelijker zijn te bewijzen.

In deel III gebruiken we dynamische analyse om weak memory gedrag te identifi-
ceren dat niet op x86 zichtbaar is maar wel op Arm. Onze analyse simuleert de uit-
voering van het programma volgens de formele semantiek van x86 en Arm. Na het
vinden van een nieuw gedrag op Arm passen we het programma aan om dat gedrag
uit te sluiten. Onze analyse identificeert enkel de gedragingen die in de praktijk op
Arm zichtbaar zijn.

Contents

Acknowledgements

English Summary

Nederlandse Samenvatting

Introduction

1 Background
1.1 Axiomatic Weak Memory By Example
1.2 Axiomatic Weak Memory, Formally
1.3 Axiomatic Weak Memory Architecture Semantics
1.4 High-Level Theorem Statement

I Binary Translation

2 Static Program Translation with Mapping Schemes
2.1 Introduction
22 Background oo
23 Motivation Lo
2.4 OVErVIEW
2.5 LIMM Weak Memory Model
2.6 MappingSchemes L L L L L
2.7 Implementation o L
2.8 Evaluation
29 Conclusion L

3 Dynamic Program Translation with Mapping Schemes
3.1 Introduction
3.2 Background L L L oL
3.3 Motivation Lo
3.4 Overview
3.5 TIMM Weak MemoryModel
3.6 MappingSchemes. o L
3.7 Implementation
3.8 Evaluation
3.9 Conclusion L

4 Hybrid Program Translation with Mapping Schemes
4.1 Introduction
4.2 Background and Motivation oL L L
43 Overview
4.4 AIMM Weak Memory Model and Mapping Schemes
45 Evaluation L oo
4.6 Conclusion e

Binary Translation Related Work
Concurrency Semantics L L oo
Binary Translation

IT Proof Mechanization
5 Weak Memory Mapping Proofs in Agda

51 Introduction L oL o
52 Background o
5.3 Weak Memory Mechanization
5.4 Mapping Proof Mechanization
5.5 Case Study: Mapping x86to Arm
56 RelatedWork Lo ool
57 Conclusion L

III Dynamic Analysis

6 Porting Programs with Dynamic Analysis
6.1 Introduction L
6.2 Background L o
6.3 Operational-Axiomatic Weak Memory Model
6.4 Robustness Analysis
6.5 Robustness Enforcement
6.6 Experimental Evaluation
6.7 RelatedWork L
6.8 Conclusion
7 Conclusion
7.1 FutureWork L
Acronyms
Bibliography

Curriculum Vitae

85
85

88
88
89
91
97

101

104

105

106
106
107
109
113
120
123
127
128

129
132

133
134
145

Introduction

Modern computing is concurrent, where multiple CPU cores execute a specific task
together, while communicating through shared memory. Unfortunately, reasoning
about a concurrent program is challenging because it behaves non-deterministically
—which means its behavior could differ when executing again. Non-determinism ap-
pears when program threads interleave arbitrarily. In addition, when a program exe-
cutes on computer hardware, more weak behaviors may non-deterministically appear
that cannot be explained by thread interleaving. Those weak behaviors could occur
when instructions execute out-of-order—to increase throughput—or when changes
to shared program state do not immediate synchronize between threads.
Additionally, computer architectures differ, causing programs to show different
non-deterministic behaviors when executing on different architectures. If we naively
translate a program between two architectures without considering those weak be-
haviors, the resulting program could show unforeseen behaviors that never appeared
on the original architecture. That difference between architectures thus poses a chal-
lenge when translating any program written for one architecture to another, while
that translation is crucial to ensure the program’s longevity across changes in the
hardware landscape. This thesis addresses that challenge by formally reasoning about
translating concurrent programs between weak memory computer architectures.

Concurrency on Computer Architectures. The observable weak behaviors vary be-
tween architectures. For instance, the predominant x86 (Owens et al., 2009) and Arm
(Alglave et al., 2021) architectures show different weak behaviors, as illustrated in
Figure 1. Therefore, translating a program from x86 to Arm is prone to errors, as it
may unexpectedly introduce additional weak behaviors with new program outputs.

Figure 1: Problem Illustration. A concurrent program
written in a high-level language may show
one of many different behaviors, but only a
subset of those appears on x86. When recom-
piling to Arm, unforeseen behaviors —that
were not observed on x86— suddenly appear.

When we only have the compiled x86 program, but not the original source code,
we do not know which additional behaviors were allowed by that source. However,
even when we do have its source code in a high-level programming language, it could
implicitly rely upon characteristics specific to the computer architecture used during
development; for instance, when its developers only considered that one architecture
or never tested on others. Upon recompiling to another architecture, such as Arm,
that same program may suddenly show weak behaviors and outputs that were not
observed before on x86.

Introduction

Formal Reasoning. Although a program may behave non-deterministically, meaning
its behavior differs between executions, those behaviors are not arbitrary. Any archi-
tecture preserves some order among instructions, described in a formal semantics of its
memory consistency model. Those semantics mathematically describe the order among
operations on all program threads, when executed on its corresponding architecture.
Any processor implementing that architecture must follow its corresponding mem-
ory consistency model. With formal reasoning we refer to a mathematically rigorous
approach to specifying and analyzing those weak memory semantics.

Through rigorous inspection of semantics, we can ensure programs behave as
intended in all situations. By extension, analyzing program semantics often helps im-
prove program performance. When ignoring semantics, we cannot be certain whether
a particular transformation is correct. We might thus cautiously avoid it, hoping not
to introduce errors but also miss out on its optimization opportunities. In contrast,
when we know those semantics, we can judiciously pick any correct transformation,
among which we can select the optimal one.

WEAK MEMORY EXAMPLE

To illustrate the challenges of concurrent programming, consider the program below.
It has two threads, with global variables X and Y, initialized to 0 and shared between
the threads, while a and b are local to the right thread. The left thread passes messages
by writing 1 to X and Y, which the right thread reads in reverse order.

X=0, Y=0
X =13 ‘ a=Y;
Y=1; b = X; (Message-Passing)

When considering only thread interleaving, corresponding to sequential consistency
(Lamport, 1979), we perceive a global order between operations that preserves their
order within each thread; instructions do no execute out-of-order but threads inter-
leave arbitrarily. For instance, three such orders are shown with solid blue arrows:

X=0, Y=0] X=0, Y=0 X=0, Y=0
\ AN RN
\ ¥ / v /

X=1 a=1Y; XK=1——a=1Y; X=1; a=yY;
NN o l// l
Y =1; b = X; Y=1;,——>b =X; Y =1; b = X;
a=0,b=0 a=0,b=1 a=1,b=1

Depending on the interleaving at runtime, different assignments to X and Y precede
their observation by b and a. We relate those write and read operations to X and Y
with the reads-from (rf) dashed green arrows. For instance, in the first two execution, a
reads Y’s initial value 0 because it is not yet overwritten. In contrast, in the right-most
execution, a observes the value of Y after it is assigned 1.

Introduction

Weak Behavior. Most computer architectures show additional weak behaviors where
the order among operations within a thread is not preserved. For our Message-
Passing program, we could thus observe both threads executing its operations in
reverse, as the following diagram demonstrates with the solid blue arrows:

(MP-weak)

The rf arrows point from written values to subsequent reads from the same locations
along the global order. We thus reach the final assignment where a=1 and b=0. Cru-
cially, that outcome is impossible when threads only interleave. Only when instruc-
tions execute out-of-order can we observe this outcome, making it a weak behavior.
The MP-weak behavior is observable on Arm (Alglave et al., 2021), but not on
x86 (Owens et al., 2009). As these architectures have different weak memory mod-
els, they preserve different orders within each thread. Arm reorders the write-write
pair on the first thread and the read-read pair on the second; either reordering alone
could also produce the weak outcome. Those pairs cannot reorder on x86, making
this behavior impossible on x86. If we had naively translated the program from x86
to Arm, the MP-weak behavior with outcome a=1,b=0 could unexpectedly appear.

Robustness. Although Arm preserves the order among fewer memory operations
than x86, it provides memory primitives to explicitly order them. For instance, we
can place fences in our Message-Passing program as follows:

Arm
X=0, Y=0
X=1; a=yY;
DMBFF; DMBFF;
Y=1; b = X;

An Arm DMBFF fence, short for “Data Memory Barrier Full Fence”, explicitly prevents
memory operations from reordering across it. In particular, as operations no longer
reorder, the MP-weak outcome is not possible anymore. For this program, we have
restricted its behaviors on Arm to those on x86 — known as enforcing x86-Arm robust-
ness (Chakraborty, 2021; Bouajjani et al., 2013a). When executing an x86-Arm robust
program on Arm, it shows only those behaviors also observable on x86.

When migrating programs from x86 to Arm, we must enforce x86-Arm robust-
ness to prevent new weak behaviors from appearing. A simple approach inserts

11

Introduction

DMBFF fences between all adjacent memory accesses — thus enforcing sequential con-
sistency. However, fences incur a runtime overhead (Liu et al., 2020), which varies
with their location in the program and the complexity of CPU-specific bus architec-
ture. In any case, runtime performance benefits from placing them judiciously.

PROBLEM STATEMENT

Translating programs between architectures is important in practice, as the landscape
of computing hardware has evolved within the last decade, with a shift from the dom-
inating x86 architecture (Intel Corporation, 2025) to new Instruction Set Architectures
(ISAs), such as Arm (Arm Limited, 2024) and RISC-V (RISC-V International, 2024).
Arm CPUs are now widely deployed, on both consumer and enterprise hardware,
for instance, with Apple’s M3 (Apple Inc., 2023), Google Axion (Vahdat, 2024), AWS
Graviton (Stormacq, 2022), and Microsoft Cobalt (Kishan and Borkar, 2024). When
naively translating legacy x86 programs to Arm, they could unexpectedly show new
weak behaviors, of which MP-weak is an example. We thus ask:

Research Question

How can we correctly translate programs between weak memory model archi-
tectures while minimizing performance overhead?

We approach this problem from multiple angles, each with its own correctness and
performance characteristics. The primary contexts within which we consider this
problem are binary translation with mapping schemes and by dynamic program analysis.

Binary Translation with Proven Mapping Schemes. When the source code of the
legacy program -or a part of it— is no longer available or when it contains archi-
tectural intrinsics, it cannot simply be recompiled. Binary translation addresses this
problem by translating the compiled binary program (e.g., from x86) to another ar-
chitecture (e.g., to Arm). That translation process should be fast, as it takes place
shortly before executing the program and thus directly affects the time needed to ex-
ecute the program to completion. Hence, a binary translator often cannot afford to
thoroughly analyze the program. Instead, we aim to define mapping schemes, which
translate programs instruction-by-instruction. These mapping schemes should be
correct in general, for any program with any number of threads, but also minimize
performance overhead. In particular, our correctness criterion concerns robustness,
where the mapped program must not show additional weak behaviors on the new
architecture — about which we thus ask:

Sub-Question 1

How can we define performant mapping schemes between weak memory model
architectures and prove these preserve robustness?

12

Introduction

Dynamic Program Analysis. Although the mapping schemes are a general solution,
useful when we cannot analyze the program, they are often not optimal for a specific
program. However, when we know the program, we could analyze it to place fewer
fences that still enforce robustness. In particular, we can fix only those violations that
appear in program traces when simulating its execution — about which we ask:

How can we detect and fix robustness violations that appear in program traces?

’7 Sub-Question 2

DISSERTATION STRUCTURE

We answer our research questions in the main chapters of this dissertation, which are
based on five papers. The presentation within those papers differs from this disserta-
tion. Although the articles are internally complete, their background and formal def-
initions overlap considerably, and are thus extracted into “Chapter 1 — Background”.
We visualize the relation between the chapters as follows:

Chapter 1
Background
Part I Part IT l Part III
Binary Translation Proof Mechanization Dynamic Analysis
Chapter 2 | 3 Chapter 5 1 3 Chapter 6 1
LASAGNE ;! Burrow i ! ORriGaMI i

Static Translation ' “ oo oo oo v ____

3 Chapter 3
| RisorTo
i Dynamic Translation

Chapter 4
ARANCINI
Hybrid Translation

For the papers included in Part I, I am co-lead author and was responsible for the for-
mal semantic models, mappings, transformations, and mechanized proofs. Within
this dissertation, contributions of my collaborators are reduced.

13

Introduction

The remainder of this introduction summarizes the parts with their corresponding
chapters. In Part I we propose novel formal weak memory models for various binary
translation systems, with mapping schemes to translate from x86 to Arm and RISC-V,
each accompanied by mechanized proofs in Agda (Agda Team, 2025a). Through this
formalization, we identified errors in existing memory models and program transla-
tors. Notably, we propose a fix to the Arm memory model in Chapter 3. In Part II we
elaborate on the proof engineering challenges we faced when mechanizing the proofs
for our mapping schemes in Part I and propose a general approach to simplify writ-
ing such proofs in Agda. Finally, in Part III we introduce an alternative method to
enforce x86-Arm robustness by dynamically analyzing any program to fix only those
violations that it actually observes at runtime.

PART I. BINARY TRANSLATION

In part I we look at binary translation, where we translate compiled binary programs
from one architecture to another. The contained Chapters 2 to 4 present different
approaches to translate binary programs, each with its own challenges. Before going
into their individual challenges, we explain their shared context and background.

With binary translation we face the robustness challenges as explained above,
but additionally require the translation itself to be fast because it takes place shortly
before executing the program. That requirement rules out existing approaches that
thoroughly analyze the program to enforce robustness (Chakraborty, 2021; Bouajjani
et al., 2013a; Alglave et al., 2017), which are too computationally demanding within
binary translators.

Mapping Scheme. Our approach enforces x86-Arm robustness with mapping schemes
that translate x86 memory instruction-by-instruction to Arm with appropriate fences.
On page 11 we showed an example where we added full DMBFF fences between adja-
cent instructions for the Message-Passing program. However, that approach would
order many Arm programs stronger than the original x86 program, unnecessarily
harming the program’s runtime performance.

Instead, we can insert lightweight fences. While a full fence orders any mem-
ory accesses across it, Arm’s load fence DMBLD orders only preceding loads with any
succeeding accesses, while its store fence DMBST orders only stores across it. Those
lightweight fences incur a lower runtime overhead than full fences (Liu et al., 2020),
but can preserve x86-Arm robustness when placed correctly. We thus define a map-
ping scheme resembling the following, which is simplified" for presentation:

x86 Arm
1d — 1d; DMBLD
st — DMBST; st

1RMW and fence instructions are omitted.

14

Introduction

When translating from x86 to Arm, we place a load fence after every load instruc-
tion (1d) and a store fence before every store instruction (st). However, we can only
know the mapping scheme is correct by ensuring any behavior of the resulting Arm
program was also observable for original x86 program. Hence, we need to carefully
inspect the weak memory semantics of both architectures (Owens et al., 2009; Alglave
etal., 2021) to formally prove our mapping scheme correct. For the chapters in partI,
we developed mapping schemes for various binary translators, with corresponding
mechanized proofs in the Agda proof assistant (Agda Team, 2025a).

Static vs. Dynamic Binary Translation. In Chapters 2 to 4, we develop such map-
ping schemes for three different binary translators, whose system architectures dif-
fer. Binary translators are often either static, which translate the entire program before
running it, or dynamic, which translate it while running. Figure 2 illustrates those ar-
chitectural differences. Either approach has its own strengths and weaknesses. By
translating a program before execution, a static translator can apply whole-program
optimizations, benefiting performance. However, static translation is undecidable in
general (Rice, 1953) -meaning a static binary translator that can translate every pro-
gram cannot exist— because much semantic information was lost during compilation
(Andriesse et al., 2016). In contrast, by translating the program while executing, a dy-
namic binary translator does not need to recover all information beforehand—which
is impossible in general—and thus only recovers the information needed in its spe-
cific runtime context. Unfortunately, that runtime translation often incurs a greater
performance overhead than static translation. Finally, a hybrid binary translator has
characteristics of both static and dynamic, thus gaining benefits from both.

(Dynamic
Static Binary Translator

Binary Translator
____________________ Arm x86 . Code
Program Program Generator
h Jrunson —W/

Arm Machine Arm Machine

x86
Program

(a) Static Translator (b) Dynamic Translator

Figure 2: High-level Architectures of Binary Translators. In either case, the objective
is to execute an x86 program on Arm, but the approaches differ. A static
translator translates the entire program, which then executes on the Arm
machine. In contrast, a dynamic translator continuously translates program
fragments “just-in-time”, as they are encountered at runtime.

15

Introduction

We will now explain the individual contributions of the chapters in part I.

Chapter 2: Static Program Translation with Mapping Schemes

Based on “Lasagne: A Static Binary Translator for Weak Memory Model Architectures”
by Rodrigo Rocha®, Dennis Sprokholt*, Martin Fink, Redha Gouicem, Tom Spink,
Soham Chakraborty, Pramod Bhatotia, at PLDI 2022 (* = co-lead authorship)

Chapter 2 introduces our static binary translator LASAGNE, which builds upon the
LLVM compiler framework (Lattner and Adve, 2004) and mctoll lifter (Yadavalli and
Smith, 2019), which lifts x86 binary programs to the LLVM Intermediate Representa-
tion (IR). Lifting aims to reverse the compilation process from LLVM IR to x86 through
which the original x86 binary program was produced. After lifting the programs, it
naturally uses LLVM’s existing compilation backend to produce the final Arm binary
program. We identified robustness errors in the existing translation by LLVM and
mctoll, which we fixed in LASAGNE with our formally verified mapping scheme.

We first define a formal LLVM IR Concurrency Memory Model (LIMM), which
is intermediate within the mapping scheme. As an example, the simplified variant
of our mapping scheme becomes:

x86 LIMM Arm
1d — 1ld3;Fn — 1d;DMBLD
st — Fuw3st — DMBST;st

LIMM defines the semantics of our load fence Fry, which orders preceding reads with
any succeeding memory operation, and our store fence Fyy,, which orders preceding
Writes with succeeding Writes. Although this mapping goes through LIMM, the com-
posed x86-to-Arm mapping is unaffected. The modular mappings through LIMM
allow us to optimize the intermediate LLVM IR program before producing the final
Arm binary. Existing LLVM optimizations regularly remove false dependencies, such
as the peephole optimization ‘v X 0+ 0’. Removing v may affect the program’s re-
ordering behavior on Arm (Pulte et al., 2017), thus invalidating such optimizations.
To avoid those challenges, we do not order memory accesses based on dependencies
in LIMM, but only explicitly with fences. We proved several optimizations on LIMM,
such as reordering and elimination of various memory instructions, which are com-
monly used in existing LLVM optimizations.

Within our memory model and mappings we also carefully consider Read-Modify-
Write (RMW) operations, which atomically read and write to shared memory. An RMW
fails when another thread concurrently writes to the same memory location. The suc-
cess case may enforce subtly different orders from the failure case, depending on the
ISA. Additionally, while x86 has single-instruction RMW instructions, on Arm these
are often implemented with two separate -but connected- load-linked store-conditional
(I1/sc) instructions, which also order weaker (Pulte et al., 2017; Alglave et al., 2014).
Our mapping scheme correctly translates x86’s RMW to Arm’s corresponding instruc-
tions, for both the success and failure cases, by placing appropriate fences.

16

Introduction

Chapter 3: Dynamic Program Translation with Mapping Schemes

Based on “Risotto: A Dynamic Binary Translator for Weak Memory Model Architectures”
by Redha Gouicem®, Dennis Sprokholt®, Jasper Ruehl, Rodrigo Rocha, Tom Spink,
Soham Chakraborty, and Pramod Bhatotia, at ASPLOS 2023 (* = co-lead authorship)

Recipient of an ASPLOS Distinguished Artifact Award

Chapter 3 introduces our dynamic binary translator Risorto, which builds upon the
existing QEMU dynamic binary translator (Bellard, 2005; QEMU Team, 2003). QEMU
internally uses its Tiny Code Generator (TCG), with TCG IR language. QEMU does
not officially support strong-on-weak ISA execution, such as running x86 programs
on Arm.

We observed QEMU’s existing translation attempts to enforce a stronger order-
ing than x86 when executing on Arm, unnecessarily hurting performance (Liu et al.,
2020). Despite those attempts, it still fails to translate programs correctly, as we dis-
covered several translation errors. We eliminate those errors by defining the first for-
mal weak memory model of TCG IR, called TIMM, and proving the mappings correct
from x86 to TCG IR to Arm. We replaced the existing erroneous mappings in QEMU
with our verified mappings. Additionally, we proved several optimizations correct
on TCG IR, such as memory access eliminations, which commonly appear in TCG’s
constant propagation and folding passes, as well as various reordering optimizations.

We also proved our translations correct with respect to a newer Arm model (Al-
glave et al., 2021) than we did for LasaGNE (Chapter 2). This new model specifically
includes formal semantics for a new Arm “Compare and Swap Acquire Release” CASy
instruction, which is a single-instruction RMW operation, unlike Arm’s prior1l/sc pair.
That new CASy| aims to “act as a full barrier” (Alglave et al., 2021, p.18), like x86's
RMW. However, through our formal proofs we discovered that it orders weaker than
a full barrier! To correctly translate x86 programs, we thus must either (i) place strong
fences around the CASy, like we did with 11/sc pairs in Chapter 2, thus harming per-
formance; or (i) strengthen the Arm model. As the former option would invalidate
the advantage of CASy. over 11/sc, we prefer the latter, for which we propose a fix to
the Arm model. After reporting the error to the authors, they included an equivalent
strengthening (Alglave, 2022).

17

Introduction

Chapter 4: Hybrid Program Translation with Mapping Schemes

Based on “Arancini: A Hybrid Binary Translator for Weak Memory Model Architectures”
by Sebastian Reimers®, Dennis Sprokholt*, Martin Fink, Theofilos Augoustis,
Simon Kammermeier, Rodrigo Rocha, Tom Spink, Redha Gouicem,

Soham Chakraborty, and Pramod Bhatotia (* = co-lead authorship)

Chapter 4 introduces our hybrid binary translator ARANCINI. Static translators cannot
translate all programs (Andriesse et al., 2016) because semantic information was lost
when compiling the original program, which cannot be recovered in general (Rice,
1953). For instance, lifting compiled C++ programs is challenging as they commonly
use dynamic dispatch, where jump targets are known only at runtime, which we of-
ten cannot recover statically. In contrast, dynamic translation can translate any pro-
gram but incurs a performance overhead at runtime because the translation happens
during program execution. Through hybrid translation, ARANCINI gains the benefits
of both. ArRANCINI translates much of the program statically, thus avoiding the run-
time performance overhead, while resorting to dynamic translation whenever static
translation is impossible.

Again, we define and prove mapping schemes that extend upon LASAGNE (Chap-
ter 2) and Risorto (Chapter 3) in two ways: (i) by translating mixed-size accesses (Flur
et al,, 2017; Alglave et al., 2021) from x86 to Arm, which access memory in units of
multiple size (e.g., 1/2/4/8-byte units); and (ii) by translating x86 to RISC-V (RISC-V
International, 2024). For ArRaNcINI we define ARANCINIR, a custom IR with corre-
sponding weak memory model AIMM, resembling LASAGNE’s LIMM and RisoTTO’s
TIMM models but additionally includes semantics for mixed-size accesses.

During our proof efforts, we discovered splitting transformations are incorrect. For
instance, it is incorrect to split a 16-bit store operation into two separate 8-bit stores,
as the example demonstrates below. The 16-bit variable X —initially 0— consists of
two adjacent 8-bit variables Xy and X;, denoting X’s most and least significant byte,
respectively.

X 2 ox1234; || alx; X, 2 ox34; || alxg;
I:rm;8 -+ Xy g 0x12; Frm;
Xp; S OXFF; X 2 OXFF;

While the original program cannot show a terminal state with X=0x1234 and a=0x34,
the split erroneously introduces that unforeseen behavior; when the second thread
executes entirely in-between the instructions on the first thread. As the error al-
ready appears when only interleaving threads, it also appears in any weaker memory
model.

18

Introduction

PART II: PROOF MECHANIZATION

Part I has introduced the formal memory models for the languages inside our binary
translators, with mapping proofs between architectures and optimization proofs. As
the formal axiomatic weak memory models we used are often large and complex,
writing such proofs requires inspecting many cases with subtle complexities that are
often error-prone (Batty et al., 2016; Manerkar et al., 2016; Sarkar et al., 2012, 2011).
To avoid missing proof cases, we mechanized their proofs in the Agda proof assistant
(Agda Team, 2025a), significantly increasing their reliability.

The proofs for LasaGNE, RisoTtTo, and ARANCINI independently consist of thou-
sands of lines of Agda, making them large and especially rigid code bases. As with
any large computer program’s source code, there are many ways to structure the code,
some more maintainable than others. Throughout our proof engineering efforts for
mapping schemes, we tried numerous proof structures to reduce their complexity
and increase maintainability. Within part II, we present the results of those efforts.

Chapter 5: Weak Memory Mapping Proofs in Agda

Based on “Mechanizing Weak Memory Proofs in Agda”
by Dennis Sprokholt and Soham Chakraborty

Chapter 5 introduces our Agda proof framework BURROW to mechanize axiomatic weak
memory semantics and prove corresponding transformations correct. Although ex-
isting approaches bring significant theoretical contributions — for instance, by find-
ing errors in existing models (Chakraborty and Vafeiadis, 2016, 2017), repairing those
models (Lahav et al., 2017), or introducing new models (Batty et al., 2011; Kang et al.,
2017) — writing the corresponding mechanized proofs remains time-consuming for
proof engineers. BURROW reduces those proof mechanization challenges with custom
primitives and abstractions that are specific to the domain of weak memory transfor-
mation proofs.

Burrow leverages Agda’s specific strengths, which differ from those of other
proofs assistants. Whereas idiomatic Rocq (Bertot and Castran, 2010) favors extensive
use of tactics to automatically solve goals, Agda’s explicit term manipulation with
dependent pattern matching (Coquand, 1992; Cockx and Abel, 2018) and easy syntax
extension —-but lack of tactics— emphasizes using the right formalization abstractions.
In particular, we define domain-specific proof primitives, with which BURRow proves
large fragments of weak memory transformation proofs generally.

We first define the high-level theorem, which all our proofs follow. For the
Message-Passing example on page 10, we saw that a program may show one of mul-
tiple executions, depending on thread interleaving and out-of-order execution. How-
ever, Arm can show the MP-weak behavior, which x86 does not. If we had naively
translated the program from x86 to Arm, that additional behavior would suddenly
appear, which is incorrect. Instead, we must ensure that any behavior observed when

19

Introduction

executing the target program PA™, was also a behavior the source program P*%,
which we can visualize below. G*¥ denotes the set of behaviors of the source pro-
gram P8¢, while GA™ denotes the set of behaviors of the target program PA™,

Px86 m—ap) PArm

execute l l execute

Gx86 D GArm

After defining this proof structure in Agda, we define its components, which ensure
executions are well-formed and consistent with their architecture’s weak memory
semantics. This same structure applies when proving optimizations correct.

Next, we identify and clarify ambiguities in general weak memory model defi-
nitions. Although they are formal models, much of their definitions are given only
implicitly. While pen-and-paper proofs may permit unspecific or ambiguous defini-
tions, mechanized proofs demand meticulous specification of all details. The mech-
anized Agda definitions thus precisely capture the weak memory semantics. Using
those definitions, BURROw provides several mapping primitives and abstractions with
which programmers only need to define the mapping between architectures and prove
that they preserve several simple properties. BURROw then produces large fragments
of the weak memory proofs generally, allowing proof engineers to focus only on the
interesting parts.

We demonstrate BURROW’s effectiveness by proving the conjectured mapping
from x86 to Arm by Alglave et al. (2021, §2.5), which is only true after fixing the Arm
model (Alglave, 2022), as discussed in Chapter 3. Their mapping differs from ours
(Chapters 2 to 4), as ours insert fences around memory accesses, while theirs annotate
accesses with memory orders — which is an alternative method to preserve memory
orders on Arm. We prove their alternative mapping as a case study to demonstrate
BUrRrROW's versatility.

PART III: DYNAMIC ANALYSIS

In part I and II we looked at mapping schemes to enforce x86-Arm robustness. The
advantage of mapping schemes is that they are correct for any program and require no
expensive program analysis to determine fence placement, which was crucial for the
binary translators in part I. However, their primary disadvantage is that they may
insert excessively many fences, which we could avoid when we know the specific
program. In part III we aim to analyze any program to enforce memory orders only
when needed.

20

Introduction

Chapter 6: Porting Programs with Dynamic Analysis

Based on “Porting Concurrent Programs between Weak Memory Architectures”
by Dennis Sprokholt, Anish Yogesh Kulkarni, Yifan Song, S. Krishna,
and Soham Chakraborty, under submission

Chapter 6 introduces our dynamic program analyzer OrRicami, which identifies x86-
Arm robustness violations by simulating programs step-by-step under both the x86
and Arm memory model, reporting mismatching steps. Consider again the Message-
Passing program, where the order of instructions is preserved on both threads in
x86, but on Arm they can reorder. We construct one execution step-by-step, where at
every step we select the next instruction to execute at random, shown after the first
two steps:

X=0, Y=0 X=0, Y=0 [X=0], Y=0

Unlike with the previous execution examples (on page 10), where we showed a global
blue order among events, we now only show the black program order (po) arrows
among operations within each thread. Upon appending the final read operation from
X, we must select a write operation that it reads-from (rf). As the preceding operation
on the second thread already observed the value 1 being written to Y, it established a
causal order between them on x86. On Arm, the operations on both threads can freely
reorder, making it possible to observe X=0 in the final read operation. In contrast, x86
cannot observe that value, as it is “hidden behind” the assignment X=1. Hence, we
have discovered a robustness violation, where Arm shows the additional behavior
where a=1,b=0, which is impossible on x86. That violation is the same as the MP-
weak execution seen before.

To analyze programs step-by-step, we first define an operational-axiomatic weak
memory semantics for x86 and Arm, based on existing axiomatic semantics (Owens
etal., 2009; Alglave et al., 2014, 2017). These semantics formally define the valid pro-
gram steps in both architectures. Using those semantics we define an x86-Arm ro-
bustness analysis algorithm, which repeatedly takes a step in both models at random.
We implement the analysis algorithm in OriGami, which builds upon C11Tester (Luo
and Demsky, 2021) to randomly explore program executions. Upon encountering a
robustness violation, C11Tester reports the program trace that produced it.

After discovering a robustness violation, we need to fix it. As part of OrRiIGAMI,
we define another robustness enforcement algorithm, which identifies all weak paths

21

Introduction

leading to the violation. For instance, in the above example, it identifies the black
po edges between the operations in both threads. As those operations are ordered in
x86 but not in Arm, the orders on both threads must be strengthened on Arm, for in-
stance, by inserting fences. To do that, our enforcement algorithm proposes minimal
strengthenings to prevent a given robustness violation from appearing again.

After several iterations of analysis and enforcement, ORriGamI finds no further
robustness violations. In contrast to existing model checkers (Abdulla et al., 2015a,b;
Bouajjani et al., 2013a; Oberhauser et al., 2021), whose exhaustive exploration of the
program’s state space often does not scale, ORIGAMI's random exploration makes it
very suitable for large programs. Unfortunately, either approach may miss violations:
Model checkers miss violations beyond their reachable scale, while OrRiGAMI misses
those unexplored by its random process. However, we experimentally demonstrate
that Oricamr identifies many x86-Arm robustness violations in existing benchmark
programs (Luo and Demsky, 2021; Chakraborty, 2021) while inserting fewer fences
than our mapping schemes (Chapters 2 to 4), benefiting the program’s runtime per-
formance.

22

Introduction

PAPERS

The work presented in this dissertation is also included in the following papers (not
all of which are published), listed in reverse chronological order:

Mechanizing Weak Memory Proofs in Agda
Dennis Sprokholt, Soham Chakraborty

Porting Concurrent Programs between Weak Memory Architectures
Dennis Sprokholt, Anish Kulkarni, Yifan Song, S. Krishna, Soham Chakraborty

Arancini: A Hybrid Binary Translator for Weak Memory Model Architectures
Sebastian Reimers*, Dennis Sprokholt*, Martin Fink, Theofilos Augoustis, Simon Kammer-
meier, Rodrigo Rocha, Tom Spink, Redha Gouicem, Soham Chakraborty, Pramod Bhatotia

Risotto: A Dynamic Binary Translator for Weak Memory Model Architectures
Redha Gouicem*, Dennis Sprokholt*, Jasper Ruehl, Rodrigo Rocha, Tom Spink,

Soham Chakraborty, Pramod Bhatotia (ASPLOS 2023)

b 4 Recipient of an ASPLOS Distinguished Artifact Award

Lasagne: A Static Binary Translator for Weak Memory Model Architectures
Rodrigo Rocha*, Dennis Sprokholt*, Martin Fink, Redha Gouicem, Tom Spink,
Soham Chakraborty, Pramod Bhatotia (PLDI 2022)

* = co-lead authorship

During my PhD research I have also collaborated on the following papers, which are
not included in this dissertation:

Distributing Time-Affected Compute-Intensive Programs
Dennis Sprokholt, Soham Chakraborty

Cage: Hardware-Accelerated Safe WebAssembly Programs

Martin Fink, Dimitrios Stavrakakis, Dennis Sprokholt, Soham Chakraborty, Jan-Erik Ekberg,
Pramod Bhatotia (CGO 2025)

23

Introduction

TOOLS AND PROOFS

All our tools and proofs are available as open-source software.

* LAsaGNE (Chapter 2)
— Proofs —) github.com/binary-translation/lasagne-proofs

RisorTo (Chapter 3)
— Proofs — €) github.com/binary-translation/risotto-proofs

ARANCINI (Chapter 4)
— Proofs —) github.com/sourcedennis/arancini-proofs

¢ Burrow (Chapter 5)
— BUurRrROW —) github.com/sourcedennis/agda-burrow
- Dobo —) github.com/sourcedennis/agda-dodo

— Case Study - €) github.com/sourcedennis/armed-proofs

Origami (Chapter 6)

- Robustness Analysis - © github.com/sourcedennis/c11tester-x86-arm
— Robustness Enforcement — €) github.com/sourcedennis/enforce-robustness
— Custom Fency Programs — € github.com/sourcedennis/fency-programs

24

https://github.com/binary-translation/lasagne-proofs
https://github.com/binary-translation/risotto-proofs
https://github.com/sourcedennis/arancini-proofs
https://github.com/sourcedennis/agda-burrow
https://github.com/sourcedennis/agda-dodo
https://github.com/sourcedennis/armed-proofs
https://github.com/sourcedennis/c11tester-x86-arm
https://github.com/sourcedennis/enforce-robustness
https://github.com/sourcedennis/fency-programs

Chapter 1

Background

In this chapter, we introduce weak memory consistency semantics, which we use in
the remaining chapters. First, in Section 1.1 we explain by example the subtle behaviors
that appear on weak memory architectures. Second, in Section 1.2 we introduce the
formal notations for axiomatic weak memory models, which we later use to formalize
weak memory behaviors. Third, in Section 1.3 we cover established weak memory
models of existing ISA architectures, such as x86, Arm, and RISC-V. Finally, in Sec-
tion 1.4 we give the high-level structure of the theorems we consider in the remaining
chapters, which captures the correctness criterion of transformations involving con-
currency primitives.

1.1 AXIOMATIC WEAK MEMORY BY EXAMPLE

We first introduce axiomatic weak memory semantics by example. On page 10 we
already showed the Message-Passing program, whose behavior differs between x86
and Arm. Here, we give another program, which shows the same weak behavior on
x86 and Arm. The program again has two threads, where X and Y are shared between
them and are initialized to 0, while a and b are thread-local to their respective threads:

X=0, Y=0
X =13 ‘ Y =13
a=Y; b = X; (Store-Buffering)

This program is commonly known as the Store-Buffering program because some ar-
chitectures buffer the stores (Sewell et al., 2010), thus not immediately communicating
written values to other CPU cores, resulting in weak behaviors. Before going into
those weak behaviors, we look at the behaviors that emerge only from interleaving,
which thus respect the instruction ordering within each thread. For instance, we may
non-deterministically observe one of the following interleaving orders, marked with
blue solid arrows:

X=0, Y=0 X=0, Y=0 X=0, Y=0
X=15—Y=1; X=1; / Y=1; X=1 " Y=1;
S Vo N
a=Ys——=b=X; a=1Yy; b = X; a=Y; b = X;
a=1, b=1 a=0, b=1 a=1, b=0

Although the order among instructions within each thread is preserved in the above

1.1 AXIOMATIC WEAK MEMORY BY EXAMPLE

executions, the threads interleave arbitrarily. The green dashed reads from (rf) arrows
relate write operations to the subsequent same-location read operation in the inter-
leaving order. Depending on the specific interleaving, those read operations observe
a value written by a different write operation, resulting in distinct assignments to a
and b upon termination. Note that the outcome a=0, b=0is impossible under sequential
consistency.

Grouping Behaviors. The previous examples explicitly showed a global runtime or-
der among instructions with the blue arrows. Such global orders are easily defined
when considering only interleaving. However, for weak behaviors on CPUs, defining
a total order among events becomes challenging — for instance, when an instruction’s
effects are not immediately observable to other threads. To avoid that challenge al-
together, we do not explicitly represent a global order among events, but group ex-
ecutions based on the runtime interactions between instructions. To illustrate that
grouping, consider the following interleaving executions for Store-Buffering:

X=0, Y=0 X=0, Y=0
X§1;—>Yf1; X51;—>Y/=1;

\\‘: :;’/rf \;: 1;/ l X=0, Y=0
a=Ys——b =X; a=Ys<——>b=

_ X; / \
a=1, b=1 a=1, b=1

group p
é po \\ ///
X=0, Y=0 X=0, Y=0 PR
\ \ a=yY; b = X;
X=l3<——Y=1 X=l3«——V=1; a=1l, b=1
a=VY;<b=X a=VY;">b=X;
a=1, b=1 a=1, b=1

We see four distinct interleavings, where reading from X and Y observes the value
written by the same respective write operation. Consequently, each results in the
same final state where a=1 and b=1. For our purposes of modeling weak memory
semantics, we need not distinguish between the specific interleavings, but only con-
sider the rf relations between the instructions, which the rightmost grouped execu-
tion shows. In that execution, we do not model the blue global order, but only the
thread-local program order (po) between the instructions and the reads-from (rf) edges
between them. The program order captures the runtime order among instructions as
they appeared in the program’s syntax.

26

1.1 AXIOMATIC WEAK MEMORY BY EXAMPLE

Architectural Intuition. For the Store-Buffering program we could observe weak be-
haviors when a microarchitecture has store buffers (Sewell et al., 2010). Conceptually,
a store buffers is a FIFO queue residing at each CPU core containing the pending
writes to main memory, as depicted in Figure 3. As writing to memory is time con-
suming, these buffers allow the CPU core to continue executing other instructions
while delaying the writes to main memory until later.

CPU CPU Figure 3: A depiction of store buffers. When a CPU
core writes a value, it initially remains in
alocal store buffer. Those buffered values
only later flush to main memory, mean-
ing other cores cannot immediately ob-
1 serve them. When reading a value, a CPU
Memory core only looks in main memory when
the value is absent in its local store buffer.

Buffer J—

Buffer

Store buffers illustrate why it is challenging to determine an order between instruc-
tions at runtime. Executing a write instruction is not immediately visible to other
threads, as a written value remains in a local buffer. Only at a later point does it prop-
agate from that buffer to main memory. Micro-architecturally, executing a write in-
struction and then propagating that value to memory are independent actions, while
they are a single instruction in the program syntax. If we had explicitly modeled
those actions, the global order would have gotten excessively complex. Instead, we
don’t model a global order, but only consider whether an instruction’s effects is ob-
servable to another — regardless of how that took place inside the CPU.

Weak Behavior. As a result of store buffers, we can observe a weak behavior for the
Store-Buffering program. Consider the two CPU cores writing the value 1to variables
Xand Y, but each remains locally in a store buffer. When the threads respectively read
the values from Y and X —which is only kept in the opposing thread’s store buffer— both
retrieve the value 0 from main memory. The corresponding execution is:

X=0, Y=0

/Ff\

X=1; ' Y=1;

pOl J
i Y
a=1y; b = X;

a=0, b=0 (SB-weak)

Note again that we do not model a global order among instructions, but only relate
the write instructions to read instructions that observe their values, regardless of how

27

1.2 AXIOMATIC WEAK MEMORY, FORMALLY

that happened within the microarchitecture. Crucially, observe that this behavior
where a and b read 0 from Y and X, respectively, is impossible when only interleaving
threads. That is, there exists no thread interleaving producing this behavior, meaning
it is a weak behavior.

Architecture Behaviors. The SB-weak behavior of the Store-Buffering program is
observable on both x86 (Owens et al., 2009) and Arm (Alglave et al., 2021). In contrast,
the MP-weak behavior (on page 11) of Message-Passing is observable on Arm but not
on x86. In general, Arm preserves fewer orders among regular memory accesses
than x86 within each thread, making Arm a strictly weaker architecture. Although
x86’s weak behaviors can fully be described as a consequence of store buffers (Owens
et al.,, 2009), Arm shows additional weak behaviors that cannot be explained only
by store buffers (e.g., the MP-weak). Those weak behaviors appear because Arm can
execute many instructions out-of-order (Alglave et al., 2014).

The memory consistency semantics of a particular architecture or language are
defined by the behaviors observable for any program. Although we gave several ex-
ample behaviors for two programs, which vary between architectures, we require a
more general mechanism to define behaviors for any program. We can only do that
with a mathematically rigorous definition of these semantics, which we explain next.

1.2 AXIOMATIC WEAK MEMORY, FORMALLY

The previous subsection gave intuitions and examples to illustrate the intricacies of
weak memory concurrency. In this subsection we expand on those idea with the
standard formal axiomatic weak memory semantics (Alglave et al., 2014; Batty et al.,
2011), which restricts program behavior with axioms.

Purpose of Semantics. The purpose of formal semantics is to mathematically —without
ambiguity— assign meaning to programs (Floyd, 1993). In particular, we consider ax-
iomatic semantics, as originally coined by Hoare (1969), where we describe a program’s
behaviors with logical predicates. Crucially, semantics only describe program behav-
iors, which is orthogonal to their computational characteristics. Rice (1953) famously
showed non-trivial semantic properties are undecidable, meaning we cannot deter-
mine whether a given property holds for any program. In this section, we intend only
to precisely describe the weak memory behaviors of programs.

1.2.1 Executions

Axiomatic weak memory semantics (Alglave et al., 2014; Batty et al., 2011) define the
behavior of any program with execution graphs, each consisting of events and various
relations. Each event is either a read (R), write (W), or fence (F) event. The R and W
events have a location and value, for instance, R(X, 2) reads the value 2 from location X.

2An example of a semantic property is whether a given program ever reads the value 1 from some location
X. It is impossible to decide that for all programs.

28

1.2 AXIOMATIC WEAK MEMORY, FORMALLY

Those memory locations are concrete values (e.g., 0x12345678), but we denote them
symbolically (e.g., X and Y) in the examples, for clarity of presentation3. Those sym-
bolic locations strictly represent distinct locations in memory (i.e., X and Y are strictly
different). Each event also has an identifier that is unique within the execution.

We capture various relations between events, of which we already gave po and
rf by example in Section 1.1. We distinguish between primitive and derived relations.
The latter follow entirely from the former, but serve as notational conveniences. The
typical primitive relations are:

* Program order (po), relating events by their syntactic order: the order among in-
structions in the program text carries over to execution graphs with po edges. It is
a total order per thread.

¢ Reads-from (rf), which relates a W event to the R event reading from it. Every R
event reads-from exactly one W event. For instance, when event ¢, : R(X, 1) reads 1
from location X, where that value was earlier written by e; : W(X, 1), then we have
an rf edge from e; to ey, alternatively denoted as rf(ey, e).

* Modification order (mo), which relates a W event with a W event overwriting it.
For instance, when event ez : W(X, 1) first writes 1 to location X, which event ey :
W(X, 2) then overwrites with 2, then we have an edge mo(es, e4). Both mo-related
write events access the same location. Additionally, mo is a total order per location.

¢ Read-modify-write (rmw), relating the R and W of a successful atomic read-modify-
write instruction (RMW). The RMW instructions are special instructions within archi-
tectures, where architectures can detect whether another thread modifies the writ-
ten value in-between the atomic operation. The generated R and W events access
the same location and are po-adjacent (i.e., there are no po-intermediate events).
We elaborate on these for various architectures in Section 1.3.

To illustrate those events and relations, we show two such execution graphs for the
Store-Buffering program, consisting only of primitive relations.

W(X, 0), W(Y,0) W(X, 9), V\{(Y, 0)
W(X,\']\) /,’ W(Y, 1) W(X, 1) \\\//’ W(Y, 1)
POl ;//\\ni‘ l l }//\\\‘ l
R(Y, 0) R(X, 1) R(Y, 0) R(X, 0)

Although the program syntax also contained thread-local variables a and b, those are
omitted* in our semantics. After all, these executions aim to capture only the order

3In contrast, in the mechanized proofs of Chapters 2 to 5 and analysis of Chapter 6, locations are concrete.
4If we had wanted to capture the thread-local variables in the graphs, we could introduce additional
shared variables A and B to which we write the values of the thread-local variables a and b.

29

1.2 AXIOMATIC WEAK MEMORY, FORMALLY

among operations communicating through shared memory, which are Xand Y for this
program. The left execution captures a sequentially consistent behavior, resulting in
a=0,b=1. The right execution captures a weak behavior, resulting in a=0, b=0.

The initial W events, which precede the start of all threads, capture the initial
state of memory. In reality, that initial state was established before the program
started —e.g., by preceding programs— and is beyond the program’s semantics. We
always initialize those values to 0 in visual execution graphs. Finally, note that we
omit transitive edges (e.g., for po and mo) in the graphs for presentational clarity.

With the events and primitive relations, we define an execution:

» Definition 1 (Execution). We denote an execution as X = (E, po, rf, mo, rmw),
where X.E is the set of events, X.po, X.rf, X.mo, X.rmw are the set of po, rf, mo, and
rmw relations, respectively, between events in X.E.

Derived Relations. We often use derived relations, which are notationally convenient
but follow entirely from the primitive relations. Common derived relations are:

¢ From-read (fr), relating a R with an overwriting W event. For instance, when first
reading 1 from X with es5 : R(X, 1), which is overwritten with 2 by es : W(X, 2), we
have an edge fr(es, e¢). This relation is derived as fr £ rf™1;
Notation®. rf~! is the inverse of f, i.e., rf~(x, y) = rf(y, x); while ‘;’ represents
composition of binary relations, i.e., (S1 ; S2)(x,y) £ 3z.51(x, z) A Sa(z, y).

e External relations are those between different threads. For instance, rfe consists of
all rf edges between threads; is external-mo and fre is external fr. Conversely,
internal relations are those within the same thread, such as rfi, , and fri. We
consider the initialization W events to be internal with events on any thread.

* Same-location relations, such as po,,., which relates only po-related (R and W)
events that access the same memory location.

Examples. We sometimes draw derived relations. As an example, we redraw the
above execution graphs with several such derived relations:

W(X,0), W(Y,0) W(X,0), W(Y,0)
WX, 1) L WY, 1) W(x, 1) w1
N // g 14 N g

pol ,\\rfe l l ~...//\\.‘.~ l
¥y VERETTIY
R(Y,0) fre R(X,1) R(Y,0) fre "R(X, 0)

5We give notations inline but also give an overview in Figure 7 at the end of this chapter.

30

1.2 AXIOMATIC WEAK MEMORY, FORMALLY

Observe that the fre edges always follow backwards up an rf edge and then forwards
along an edge (ie., fr = rf~1;mo), thus relating a R to a W overwriting it. For
instance, in the left execution we can only read 0 from Y before overwriting Y with 1.
All fr relations in both executions are external, producing fre arrows, while the

relations are internal, producing arrows.

Behavior. When executing a program, only the values in memory are externally ob-
servable. In contrast, store buffers and mechanisms to execute instructions out-of-
order are internal to a microarchitecture. We thus define the behavior of an execution
as the final values in all memory locations.
As mo relates all write events to any particular location, per location, the mo-final
event captures its final value in memory. An mo-final event is an event which has no
-successors. Formally, we thus define an execution’s behavior as:

» Definition 2 (Behavior). The behavior of an execution X is:
Behavior(X) = {(e.loc,e.val) | e € X.W A [{e}];X.mo = 0}

Note that X.W C X.E is the set of write events in X. The notation [P] represents the
identity relation of set P, for any set P; meaning [P](x,y) = P(x) A x=y °.

1.2.2 Program to Execution

An execution (Definition 1) states a particular runtime behavior of a program. When
running a program, it often non-deterministically demonstrates one of multiple exe-
cutions, which differs upon executing it again. The semantics of a program is the set
of all executions the program can show when running on an architecture.

An execution graph does not give the semantics itself, as it does not state whether
or not it is observable on an architecture. However, it provides a language (Alglave
etal., 2014) on which we can define semantics. For instance, although we can define an
execution for SB-weak, only a semantics—external to that graph—can tell us whether
the behavior is possible. In this case, sequential consistency semantics asserts SB-
weak is impossible, whereas x86 and Arm semantics assert it is possible.

While we define semantics over the execution graphs, these graphs connect to
the program’s syntax. The program generates the execution graph upon execution,
while its concurrency primitives (i.e., read, write, and fence instructions) generate
the events and relations between them. Within weak memory semantics, we capture
only the memory events and relations within a program; Other parts of the program’s
execution, such as arithmetic or thread-local computations, are omitted. The concur-
rency primitives vary subtly between architectures. However, any primitive can be
categorized as a read, write, or fence — or some combination thereof (e.g., RMs read
and write). We elaborate on the specific concurrency primitives for various architec-
tures in Section 1.3.

6We notationally distinguish between propositional equality ‘=’ and definitional equality ‘=’, which is
needed in proof assistants (Chapter 5); we must explicitly prove the former, while the latter holds trivially.

31

1.2 AXIOMATIC WEAK MEMORY, FORMALLY

1.2.3 Axiomatic Consistency Semantics

With semantics we prescribe which behaviors are observable when executing a pro-
gram. In particular, we precisely assert which executions are observable on a par-
ticular architecture and which are not. We do that with consistency axioms for any
particular model. Executions satisfying the axioms are observable, while executions
violating it are not. We alternatively call an execution that satisfies all axioms of a
model consistent with that model. Formally, we denote the set of executions of a pro-
gram P consistent with weak memory model M as [P]l;. Then the behavior of P under
M is the set of behaviors (Definition 2) exhibited by all executions in [P] ;.

Example: Sequential Consistency. We illustrate definitions above with the seman-
tics of sequential consistency (Lamport, 1979), where programs must satisfy”:

(po U rf U mo U fr) is acylic (SO

This SC axiom states that any execution consistent with sequential consistency must
not contain cycles consisting of po, rf, mo, and fr edges. As an example, we look at the
consistent executions for the Store-Buffering program, which are [[Store-Buffering]lg-:

W(X,0), W(Y,0) W(X,0), W(Y,0) W(X,0), W(Y,0)
W1 WY, 1) WD) W) WD) W)
po] R | j “?f“"'flr;" | | |
R(Y, 1) R(X, 1) R(Y, 0) R(X, 1) R(Y, 1) R(X, 0)

Those are all executions of Store-Buffering that are consistent with the SC axiom and
thus the sequential consistency model. Observe that we presented all po, rf, mo, and
fr edges; and that none of those edges together form a cycle, and therefore satisfy SC.
The behavior of all these executions is {(X, 1), (Y, 1)}, as 1is the mo-final value for both
X and Y in all executions. Unlike our prior presentations in Section 1.1, the formal
behavior does not include the final state of thread-local variable (i.e., @ and b).

Of course, weak behaviors are not allowed by sequential consistency, of which
SB-weak already presented an (informal) example. We now inspect the formal vari-
ant of that execution to see whether it actually violates the SC axiom.

W(X, 0), W(Y, 0)

/\rf/l
a: WX, 1) WY, 1)
V., ’ \\ 7
pO .“././ \\

7 N

£
: S
e RELE) T @R E) (SB-weak-formal)

7For presentational simplicity, we ignore RMW instructions here.

32

1.3 AXIOMATIC WEAK MEMORY ARCHITECTURE SEMANTICS

. . . . po fr po _fr
Indeed, this execution contains a ‘po;fr;po;fr’ cycle, which traverses a—b—c—d—a.

As it violates the SC axiom it is inconsistent with the sequential consistency model.

1.3 AXIOMATIC WEAK MEMORY ARCHITECTURE SEMANTICS

Although sequential consistency is a simple model, it is foo strong to describe the be-
havior of many architectures and languages. As the MP-weak behavior is observable
on Arm and the SB-weak behavior is observable on both x86 and Arm, their models
need different weak axioms to capture those behaviors. Before going into the specific
details of the architecture models, we look at their common axioms.

1.3.1 Common Axioms

Two primary axioms are shared between all models we consider, which are Coher-
ence® and Atomicity. We present those common axioms here.

Coherence. Coherence states that accesses to the same memory location are sequen-
tially consistent. That is a much weaker requirement than SC from before, as accesses
to different locations are nof sequentially consistent. Formally, we state this axiom as:

(pojoc U rf U mo U fr) is acylic (Coherence)
Observe that the SB-weak-formal execution contains no violating cycles, as all po-
edges are between events on different locations. That means the execution is allowed
by this axiom, which contrasts the stronger SC axiom that had disallowed it.

Atomicity. Atomicity captures the ordering behavior of RMW instructions that exist on
x86, Arm, and RISC-V. An RMW instruction atomically reads and writes from a memory
location. That instruction can fail when another thread simultaneously writes to the
same location, in which case the RMW only generates a R event. However, when it
succeeds, it generates both a R and W event, related by an rmw edge. In that case,
we know for certain that no other thread had simultaneously written to the same
location in memory. The atomicity axiom precisely captures that property:

rmw N (fre;) =0 (Atomicity)
The axiom requires the intersection between rmw and ‘fre; moe’ to be empty. To il-

lustrate what it disallows, consider a simple program with two threads, where a RMW
instruction on the first thread writes 1 while the second threads writes 2:

W)
f -
X=0 execute ’/‘/fre\‘
a = RMw(X,1); H X = 2; (impossible) a: R(X,O) (>C:W(X, 2)
rmw (l
b W(X, 1)

8Coherence is sometimes presented differently (e.g., in the Arm model we use in Chapters 4 and 5 (Alglave
and Maranget, 2025)), where it is refactored among other axioms. Coherence then still holds, but implicitly.

33

1.3 AXIOMATIC WEAK MEMORY ARCHITECTURE SEMANTICS

This execution is disallowed because it violates the Atomicity axiom. We have edges
fre(a, c) and (¢, b), which means (fre;)(a, b). Aswe also have the edge rmw(a, b),
the intersection between those is not empty, violating the axiom.

We also show the only two executions for the above program that satisfy Atom-
icity. In those executions we see no ‘fre; ’ paths between the rmw-related events.
Intuitively too, the R and W events generated by the RMW instruction are treated atom-
ically; no other event observes or interferes with them partially.

W(X, 0) W(X, 0)

rf, -~
RV// fre\‘ ‘/rfe\
(X, 0)-= W(X, 2) R(X,2) <"~ -W(X,2)
rmw L l rmw L l
W(X, 1) W(X, 1)

1.3.2 x86 Semantics

We now give the weak memory models for various architectures, where we start
with the simplest model, which is for x86. Although the ISA is called x86 (Intel Cor-
poration, 2025) its widely-accepted memory model is called x86-TSO (Owens et al.,
2009)-TSO stands for total store order. The behavior of x86-TSO can operationally be
described with local store buffers, whose values other threads cannot observe until
they propagate to memory (which we explained in Section 1.1).

An operational semantics (Plotkin, 1981) defines the steps taken by the machine —
often an abstract variant of it. For instance, the operational model of x86-TSO (Owens
et al., 2009) explicitly captures the machine’s internal state with store buffers in ev-
ery CPU. With that representation, the machine’s steps can precisely be described.
However, we work with axiomatic models, where we do not model those architec-
tural characteristics. Fortunately, the same paper introduces an equivalent axiomatic
model, which captures the same behavior, but is more convenient within our context.

The primary consequence of store buffers is that R—R, R—W, and W-W pairs
are ordered along po. In contrast, W—R pairs are not generally ordered, as we have
seen above with the SB-weak-formal execution of the Store-Buffering program. The
corresponding x86 global happens before axiom is as follows:

(implied U xppo U rfe U fr U mo) is acyclic (XHB)
where xppo = ((WXxW) U (RxW) U (RXR)) N po
implied = po;[At U F] U [At U F];po
At £ dom(rmw) U codom(rmw)
At a glance, its structure resembles that of SC, where implied and xppo order thread-
local events, while rfe, fr, and relations capture the order among inter-thread

events. Though, fr and mo, also include the thread-local fri and edges. The xppo
—-meaning x86 preserved program order— orders only the R—R, R-W, and W-W pairs

34

1.3 AXIOMATIC WEAK MEMORY ARCHITECTURE SEMANTICS

along po, as we expected. In some cases, we may want to order W—R pairs too, for
which we can place an intermediate ferice. The cases of implied describe that thread-
local order by stating that anything orders before and after a fence event F. Finally,
implied also orders events produced by RMW operations—CMPXCHG on x86—which
are ordered with all preceding and succeeding events, making those operations order
like a fence. In the related At definition, the ‘dom’ and ‘codom’ functions respectively
denote the domain and codomain of the relation they’re applied to — rmw in this case.
That means, when R(x,) then x € dom(R) and y € codom(R) for all R, x, and y.

Example. To illustrate x86’s XHB axiom, we again inspect the weak behaviors of the
Message-Passing and Store-Buffering programs — the latter we repeat from above.

W(X, 0), W(Y, 0) W(X, 0), W(Y, 0)
\\I’f\ \\\ /l
a: WX, 1) . c:R(Y,1) WK, 1) ¢ WY, 1)
v.fr o A v AN
XPPO() pOl RN l
=7 0,0 KT A
b:W(Y,Drfe d:R(X,0) R(Y,0) - R(X, 0)

(MP-weak-formal) (SB-weak-formal)

In the MP-weak-formal execution, the po edge in the left thread is between W-W
events, while it is between R—R events in the right thread. Following the definition of
xppo, we obtain those edges between the events in both threads. We thus observe a
‘xppo;rfe;xppo;fr’ cycle, traversing a XPRo,p e, c xppo, 1 Ir, 5 Because XHB explicitly dis-
allows that cycle, the weak behavior is impossible on x86.

In contrast, the SB-weak-formal execution, the po edges in both threads are be-
tween W—R events. Those pairs are explicitly excluded from the definition of xppo.
Hence, for that execution, there is no such cycle. As the XHB axiom disallows cycles
—and there is no cycle here- the axiom is satisfied meaning the execution is allowed
under the x86-TSO model and thus on the x86 architecture.

Note that in the x86-TSO model all three axioms Coherence, Atomicity, and XHB
must be satisfied. Although we only inspected the final axiom in the examples for
presentational simplicity, crucially, SB-weak-formal is only possible when it satisfies
all three. That is the case here, as it also satisfies Coherence and Atomicity.

1.3.3 Arm Semantics

The Arm model (Pulte et al., 2017; Alglave et al., 2014, 2021) is more complex than x86-
TSO, mostly because it is weaker, requiring a fine-grained specification of ordering
constraints. Among the several variations of the Arm model, we present a variant of
Alglave et al. (2021) adapted with the small fix? by Alglave (2022) —-marked green—
that is equivalent to the fix we will present in Chapter 3.

9The fix ensures Arm’s CASy| (i.e., Arm’s single-instruction RMW) orders like a full fence, like x86’s RM.
We later explain that ordering issue in Section 3.3.3.

35

1.3 AXIOMATIC WEAK MEMORY ARCHITECTURE SEMANTICS

ob is irreflexive (External)
where ob £ (obs U lob)™

obs £ rfe U U fre

lob £ (lws U dob U aob U bob)™*

dob £ addr U data U ctrl;[W] U (ctrl U (addr;po));[Fss];p0;[R]
U addr;po;[W] U (ctrl U data);lrs

aob = rmw U [codom(rmw)];rfi;[RAURG]

bob = [RAURq];po U po;[W.] U [W,];po[R,4]
U po;[Fl;po U [R];po;[Fipl;po U [W];pos[Fer];pos[W]
U [codom([R,];amo;[W.])];po

Irs = [W];(pojoc \intervening-write(po,));[R]

II>

1>

lws = pojoc;[W]

Here, ‘*’ is the transitive closure, meaning R*(x, y) = R(x, y) vV (3z.R(x, z)AR*(z, y)).
Like the x86 XHB constraint, we see a clear distinction between thread-local and inter-
thread relations; The ob (ordered-before) relation captures a full path, consisting of
inter-thread obs (observed-by) and thread-local lob (locally-ordered-before) edges.
Most complexity resides in the latter, as it captures many subtle ordering constraints,
which are:

* lws (local write successor) — This states that Arm preserves the order between
R-W and W—W pairs to the same location along po; but not R—R and W—R pairs.

* dob (dependency-ordered-before) — Dependencies capture some causality be-
tween po-related events that is otherwise absent from the execution graph. For
instance, a program ‘a = X; Y = a;’ reads a value from X and writes it to Y, re-
sulting in an execution with two po-related events R(X, 42) and W(Y, 42), assuming
that X contained 42 before. As those events should not execute out-of-order within
a thread, Arm’s semantics capture it with a data dependency between them.

Ra / Ro a W, a R W Ra
L O ! g i g | y ! amo |
b Wy Ra " F | Fip ! Fsr W,
I u bob ¢, |
b b W b
(a) bob for LDAR (Rp), LDAPR (RQ), (b) bob for fences (c) bob after CASy
and STLR (W)

Figure 4: Depiction of Arm’s bob relation

36

1.3 AXIOMATIC WEAK MEMORY ARCHITECTURE SEMANTICS

The addr, data, and ctrl dependencies each preserve various such orders within a
thread. All three are primitive relations for an Arm execution. However, we do not
rely on Arm’s dependencies in this dissertation and we will not discuss them in
detail; Pulte et al. (2017) cover dependencies in more detail. The dob-contained Irs
(local read successor) orders each R event after the po-preceding W event to the
same location, which Alglave et al. (2021) explain in greater detail.

aob (atomic-ordered-before) — This states how RMW instructions, regardless of their
memory annotation, order within a thread. In particular, the rmw case states that
an RMW—R event orders before the corresponding RMW—W event.

bob (barrier-ordered-before) — This relations captures the ordering rules of fences
and special read and write instructions, which Figure 4 also depicts. Arm’s regu-
lar load LDR and store STR instructions are not generally ordered within a thread.
However, Arm provides special concurrency primitives that do enforce an order:

— LDAR generates a R, event, which orders with po-successors.

— STLR generates a W, event, which orders with po-predecessors. Additionally, it
orders before R, events.

— LDAPR generates a R, event, which orders with po-subsequent events, like R,.
However, unlike R,, Ry does not order after W, events.

Arm provides several fences, alternatively called “Data Memory Barriers™:
— DMBFF generates a F event, which orders all predecessors with all successors.

— DMBLD generates a F,;, event, which orders preceding loads with all successors.

— DMBST generates a Fs; event, which orders stores across it.

Finally, Arm has various RMW instructions. Originally, it only had 11/sc instruc-
tion pairs, implemented with LX (load-exclusive) and SX (store-exclusive) instruc-
tions, that together read-and-write atomically. Within an execution, they gener-
ate a Ixsx € rmw relation between their events. Recently, Arm gained a single-
instruction CAS (Compare-and-Swap) instruction (Alglave et al., 2021), producing
another amo C rmw relation. These Ixsx and amo are primitive relations in an Arm
execution, together forming rmw. The CAS instruction can have one of several order
annotations, affecting how it orders with surrounding events. Notably, the CASy
(Compare-and-Swap Acquire-Release) orders with predecessors and successors,

like a full fence.

Any Arm execution must satisfy this External axiom, in addition to the general Coher-

ence and Atomicity axioms.

Example. With the Arm model, we again inspect the SB-weak-formal and MP-weak-
formal executions, shown above for x86. For the former, x86 does not include the
W—R pairs in its xppo definition, thus producing no cycles, meaning its model allows
that weak behavior for the Store-Buffering program. Similarly, Arm does not include

37

1.3 AXIOMATIC WEAK MEMORY ARCHITECTURE SEMANTICS

those pairs in its definition of lob either, producing no cycles, thus also allowing the
behavior. Hence, the behavior is observable on x86 and Arm, which both models
formally capture.

For the MP-weak-formal example, x86 includes the W—W and R-R pairs in its
xppo relation. The resulting ‘xppo;rfe;xppo;fr’ cycle disallows the weak behavior on
x86. In contrast, as Arm does not include those same events in its lob relation, a similar
cycle does not appear. That means this behavior is observable on Arm, while it is not
observable on x86. We could, however, explicitly order the instructions to disallow
the weak behavior on Arm, too; For instance, by placing fences in Message-Passing:

W(X, 0), W(Y, 0)
/rf\

X=0, V=0 QZWEX’D Y ok
X=1; a=1Y; execute b VoA
DMBST; DMBLD3 (impossible) ':'fre ‘)
Y=1; b = X; ob | Fer /)\’ Fip

i \

///."... z
b:W(Y, 1) d:R(X, 1) (MP-weak-Arm)

We placed lightweight fences in both threads, which preserve fewer orders between
instructions than full fences, but are sufficient for this program. The DMBST store fence
orders the W—W pair on the left thread, while the DMBLD load fence orders the R—R
pair on the right thread. When we look at the same weak execution as before, we
see the fence events in-between the memory accesses on both threads. In particular,
the store fence generates a Fs; event, producing a bob relation between the W—-W
pair on the left thread; While the load fences generates a F,;, event, producing a bob
relation between the R—R pair on the right thread. As a consequence, we now see
a ‘bob;rfe;bob;fre’ cycle, traversing through a200,b 1, ¢ bob, g fre, 5 That cycle implies
—following the definition of obs—a ‘bob;obs;bob;obs’ cycle that is disallowed by Arm'’s
External axiom. Hence, this particular weak behavior is not possible on Arm. Placing
those fences ensured the program cannot show the additional weak behavior on Arm,
enforcing x86-Arm robustness™’.

» Remark (Armv8 model variations) . Throughout the remaining chapters we use
various variations of the Armv8 memory model, differing subtly from the one pre-
sented here. In Chapter 2 we use the Arm model by Pulte et al. (2017), as that chap-
ter’s research precedes the release of the model by Alglave et al. (2021). We build
upon that later model in subsequent chapters. In Chapter 3, we propose our own
fix to it, which we use there. In Chapter 4 we use an equivalently-fixed model by

1°Proving x86-Arm robustness demands thatall behaviors on Arm are also observable on x86. Although we
showed only one behavior here, we could enumerate all Arm behaviors for this program and demonstrate
they also appear on x86. Intuitively, that is what we check in Chapters 2 to 5.

38

1.3 AXIOMATIC WEAK MEMORY ARCHITECTURE SEMANTICS

the original authors (Alglave, 2022; Alglave and Maranget, 2025) because we require
its newer features (i.e., mixed-size accesses). Finally, in Chapter 6, we use a similar
model as in Chapter 3 but with the smaller fix proposed by Alglave et al. (2021).
These variations are equivalent (but refactored), except for (i) added CAS se-
mantics (in Chapters 3 to 6) and (ii) added mixed-size semantics (in Chapter 4). In
Section 3.3.3 we explain Arm’s CASy| ordering issue; Section 3.5 explains our fix.

1.3.4 RISC-V Semantics

The RISC-V memory model (RISC-V International, 2024) is also weaker than x86s.
Like Arm, RISC-V has load-acquire and store-release instructions. However, RISC-
V has more instructions that give greater control over their ordering. In particular,
it supports ten distinct memory fences, each ordering different kinds of memory in-
structions across it, unlike Arm’s three memory fences.

(rppo U mo U rfe U fr) is acyclic (Model)
where
rppo £ poj,e;[W] U ([R];poloc-no-w;[R])\rsw U [WX];rfi
U fence U [Excol;po U pos[Erp] U [EXeqUER: 1ipos[EXcqUER:] U rmw
U addr U data U ctrl;[W]
U (addr U data);rfi U addr;po;[W]
poloc-no-w £ poac \ (pojec’;[W1ipojec)
rsw rf=Lrf
fence = [R];po;[Frel;pos[R] U
U [R];po;[Frul;pos[RUW] U
U
U

1>

13

[R];p0s[Frw];p05[W]
[W];po;[Fwr];po;[R]
U [W];pos[Fuwwl;pos[W] U [W];pos;[Fuwel;pos[R]
U [RUW];po;[Fur];pos[R] U [RUW];po;[Fyw];pos[W]
U [RUW];po;[Favm];po;[RUW]
U [W];pos[Frsol;pos[W] U [R];po;[Frso];pos[RUW]

Here, EX denotes an event generated by a special RM, load reserved (LR), or store-
conditional (SC*") instruction. Again, there is a clear distinction between thread-local
edges in rppo'* and inter-thread edges mo, rfe, and fr. Like for x86-TSO, the latter
also includes thread-local moi and fri relations. We explain the four categories in rppo
below, each corresponding to one of the four lines in the definition above, in order.

" Confusingly, both “Sequential Consistency” and “Store Conditional” conventionally abbreviate to “SC”.
Throughout this dissertation, we use a monospace font for the latter RISC-V instruction: SC, but will usu-
ally refrain from these abbreviations.

>We denote RISC-V’s preserved program order with rppo to avoid ambiguity with x86’s xppo.

39

1.3 AXIOMATIC WEAK MEMORY ARCHITECTURE SEMANTICS

Eaco a JEXo / ERL _-R W R/W
rppo | | Jl ! 0 S J o /// !
b Erer 4 Ei(cQ / EEEL ! Frm / Frso ' Fuw / Frso t Fau
\\ i \\ i \\-A lpO
SR/ W W R/W
(a) rppo for acquire/release instructions (b) rppo for fences. Note that Frso includes

the order of both Fry and Fyw.

Figure 5: Depiction of several cases of RISC-V’s rppo relation

* QOverlapping-Address Orderings — The first three cases capture same-location po-
related events. First, a write orders after any same-location R or W event. Sec-
ond, two same-location R events are ordered when (i) there is no intermediate
same-location write (captured by poloc-no-w) and (ii) the two R events read from
(rf) different W events. The **’ in poloc-no-w denotes a reflexive closure, meaning
R’(x,y) = R(x,y) V x=y. Third, a R orders after a same-location WX that it reads
from (rf).

RISC-V’s model separately considers events generated by special RMW, LR, and SC
instructions. A successful RMW generates rmw-related R* and WX events, while a
failing RMW generates only a R*. A load-reserved (LR) instruction and RMW generate
a R* event. LR and SC together operate as an atomic load-linked store-conditional
(11/sc) read-modify-write, generating a rmw in the execution (like Arm’s LX and
SX). We denote the combination with RX, WX c EX.

* Explicit Synchronization — Some instructions are explicitly ordered by fences or ac-
quire/release annotations, like in Arm — we depict some in Figure 5. In particular,
RISC-V has numerous fences (included in fence), each of which orders different
instructions across it. For instance, Frn (generating Fgy) orders like Arm’s DMBLD,
Fus (generating Fy) orders like Arm’s DMBST, and Fun (generating Fy,) orders like
Arm’s DMBFF. However, RISC-V additionally includes, for instance, a Fyr instruc-
tion (generating Fyx), ordering preceding writes with succeeding reads; or a Fts,
that combines the ordering constraints of Fry and Fyy, thus capturing the default
orders of x86-TSO.

In RISC-V, instructions can also have an acquire or release annotation, officially
following release consistency (Gharachorloo et al., 1990; RISC-V International, 2024).
Notably, it orders its special RMW, load-reserved, and store-conditional instructions
with each other, provided that both instructions have an acquire or release anno-
tation (or both). For instance, a store-conditional with release annotation orders
before a load-reserved with acquire annotation. Although RISC-V has multiple
single-instruction RMWSs, we primarily use RMW. throughout this dissertation,
which has both acquire and release annotations.

40

1.3 AXIOMATIC WEAK MEMORY ARCHITECTURE SEMANTICS

* Syntactic Dependencies and Pipeline Dependencies — The syntactic and pipeline de-
pendencies are two separate categories which both capture dependencies. Like
Arm, RISC-V has the primitive relations addr, data, and ctrl. As we do not rely upon
dependencies in the remaining chapters, we will not explain them here further.

Any RISC-V execution must satisfy this Model axiom, in addition to the general Coher-
ence and Atomicity axioms.

Example. With this RISC-V model, we again inspect the SB-weak-formal and MP-
weak-formal executions. Similar, to Arm, it does not order W—W and R—R pairs in
the former, nor the W—R pairs in the latter. Formally, that is because RISC-V does not
include those pairs in its rppo definition. However, to enforce x86-RISC-V robustness,
we must ensure the Message-Passing program cannot show the MP-weak behavior
on RISC-V - as it is also impossible on x86. As with Arm, we can again place fences
to ensure robustness.

W(X, 0), W(Y, 0)
/rf
%<0, ¥=0 W) R(Y,)

X=1; a=1Yy; execute A L IA
Fuu 5 Frr 3 (impossible) fr 1

V=11 b=X PPO | Fyw™)/ Fre
i

Wi, 1) RS D) (MP-weak-RISC-V)

We see that the F,, generates the rppo edge in the left thread between the W—-W pair.
The Frr generates the rppo edge in the right thread between the R—R pair. Between
the event in the thread, we thus obtain a ‘rppo;rfe;rppo;fr’ cycle, which is disallowed
by the RISC-V Model constraint, making this weak behavior impossible on RISC-V.

Particularly observe that we judiciously placed RISC-V’s lightweight fences. Al-
though the Fy, orders like Arm’s DMBST, the Frr orders weaker than Arm’s DMBLD be-
cause the Frr does not order R—W pairs. However, as this particular program does
not include such pairs, the Frr fence is sufficient to prevent the weak behavior.

1.3.5 Owverview of Architecture Primitives

We give an overview of the concurrency primitives in architectures with the events
they generate in Figure 6. Although the terminology of instructions overlaps between
architectures, instructions do not correspond one-to-one. For instance, x86’s regular
load (RMOV — R) orders stronger than Arm’s regular load (LDR - R) but similar to Arm’s
load-acquirePC (LDAPR - Ry). RISC-V’s load-acquire (LDacq — Raco) orders like Arm’s
load-acquirePC. The table highlights only the syntactic similarities between archi-
tectures, but only their formal models —as we have defined above- precisely capture
their semantic differences.

41

1.4 HIGH-LEVEL THEOREM STATEMENT

Instruction x86 Arm RISC-V
Type . . .

instr. event instr. event instr. event
Load RMOV R LDR R LD R
Load-acquire LDAR R, LDacg Raco
Load-acquirePC LDAPR R4
Store WMoV W STR W ST W
Store-release STLR W, STret Wea
Full fence MFENCE F DMBFF F Fm Fam
Load fence DMBLD F,, Fim [P
Store fence DMBST Fq; [Fom [
RMW CMPXCHG CASpL ar RMWap ~
11/sc LX/SX LR/SC

ar = [Ral; ;Wi ar = [Racl; J[Wadl

Figure 6: Concurrency primitives in architectures with their generated events and re-
lations; Not exhaustive, but covers all used throughout this dissertation.

1.4 HIGH-LEVEL THEOREM STATEMENT

To ensure that any weak memory transformation is correct, we must ensure it intro-
duces no additional behavior. In the previous subsections we have seen that pro-
grams may non-deterministically produce one of multiple execution graphs during
execution. For instance, when translating the Message-Passing program from x86 to
Arm, we take care not to introduce the MP-weak behavior. We visualize that correct-
ness criterion below:

map
e —

executel l execute
P51 s 2 [P T e

The source program P* executes under the source memory model M®, producing a set
of execution graphs, denoted with [IP*]l\ss. The ‘map’ function transforms the syntax
of the source program P* into the target program P*. That target program executes
under the target memory model M*, also producing 4 set of execution graphs, denoted
with [P*]lye. As the transformation must not introduce new executions, we strictly
require that [P*]lye € [P]ys. In other words, any executions shown by P* must also
have been shown by P*. We formally state that as:

42

1.4 HIGH-LEVEL THEOREM STATEMENT

» Definition 3 (Correct Transformation). Given mapping scheme that generates a
target program P* from the source program P* (for any P*), that scheme is correct if
for each Mt-consistent execution Xt € [Pt]\: there exists a MS-consistent execution
X5 € [P*]s such that Behavior(X') = Behavior(X®).

Correctness (Definition 3) applies to any transformation we consider, not only the x86-
to-Arm mappings. For instance, it also applies to optimizations (e.g., in Chapters 2
and 3), where both P and P* execute in the same memory model. Those optimization
must not introduce additional behaviors either. Other verification techniques should
use the same correctness criterion. We do that in Chapter 6, where we check whether
an execution observed at runtime satisfies this same theorem.

Precise Mappings. Although correctness is crucial, architecture mappings should
also be precise. Consider, for instance, the naive scheme inserting full fences in-
between any two adjacent memory accesses; That scheme is correct-meaning it sat-
isfies Definition 3-but enforces too much orders, harming performance. Hence, in
addition to correctness, mappings schemes must be precise. Intuitively, a precise map-
ping scheme inserts only as many fences as necessary. More formally, we state it as:

» Definition 4 (Precise Transformation). A correct mapping scheme is precise if for
each fence in the mapping, there exists a program where the fence is necessary and
sufficient to preserve correctness, i.e., no weaker fence is sufficient and no stronger
fence is necessary.

In contrast to correctness, which requires elaborate proofs over the axiomatic seman-
tics, precision can often be demonstrated by example. We must only show, inde-
pendently for every fence in the mapping, that there exists a program satisfying: (i)
with the fence it is correct and (ii) without the fence it is incorrect; That also requires
demonstrating no weaker fence exists for which the mapping is correct. For instance,
the fences inserted in the program producing MP-weak-Arm are precise. Indepen-
dently, removing either the DMBST on the first thread or the DMBLD on the second thread
would break the cycle, erroneously allowing the execution. As Arm has no weaker
fences that could substitute either, those inserted fences are precise.

43

NOTATIONS

NOTATIONS

Figure 7 contains an overview of the notations we use throughout this dissertation
for binary relations.

Name Symbol Definition

Composition ; (R1;R2)(x, y) = Fz.R1(x, z) A Ra(z,)
Identity Relation] [SI(x,y) = S(x, x) A x=y

Inverse = R7Y(x,y) £ R(y, x)

Transitive Closure * R*(x,y) = R(x,y) V (3z.R(x, 2)ART(z, y))
Reflexive Closure ’ R’(x,y) £ R(x,y) V x=y

Immediate AT Rimm(x,y) = R(x, y) A =3z.(R(x, z) A R(z, y))
Same-Location Rioc Rioc(x,) = R(x, y) A x.loc=y.loc

Figure 7: Overview of notations for binary relations

44

Chapter 2

Static Program Translation with Mapping
Schemes

ABSTRACT In this chapter, we propose LASAGNE, an end-to-end static binary transla-
tor with precise translation rules between x86 and Arm weak memory concurrency
semantics. First, we propose a concurrency model for LASAGNE’s intermediate repre-
sentation and formally proved mappings between the IR and the two architectures.
The memory ordering is preserved by adding fences in the translated code. Finally,
we prove several common transformations correct on that IR, which LASAGNE uses
to optimize programs while translating them from x86 to Arm. In practice, we ob-
serve our optimizations significantly reduce the number of fences and their runtime
overhead.

2.1 INTRODUCTION

Static Binary Translation (SBT) is a process for automatically rewriting, ahead-of-
time, a program’s machine code from the original architecture to a target architecture.
Because SBT works on the machine code itself, access to the original source-code is
not required. Crucially, the translation must preserve the semantics of the original
binary, as specified by the original architecture, while also optimizing the target bi-
nary. Although SBT tools have gained popularity (Guo et al., 2016; Fu et al., 2018),
their support of several advanced architectural features is often limited.

Furthermore, these SBT tools also cannot translate concurrent binaries (Yadavalli
and Smith, 2019; Trail of Bits, 2022; Avast Developers, 2022). This is because of the
mismatches of the weak memory consistency model in different architectures, which gov-
erns the valid orderings of memory accesses. To address this problem, the translation
tools must reason about the consistency models for correct and efficient translation.

In this chapter, we address the challenge of developing efficient translation be-
tween x86 and Arm concurrency semantics through LLVM’s IR. The x86 and Arm ar-
chitectures have different memory ordering semantics, which results in different mem-
ory ordering rules. Therefore, we need a concurrency model for the LLVM primi-
tives that enables precise mapping schemes between LLVM and these architectures,
while also allowing code transformations. We note that existing concurrency models
(Chakraborty and Vafeiadis, 2017; Lahav et al., 2017; Kang et al., 2017; Chakraborty
and Vafeiadis, 2019; Podkopaev et al., 2019), which were originally developed for
compilation of high-level languages, do not suffice to satisfy all these requirements.
Hence, to bridge this gap, we propose LIMM (LLVM IR Memory Model). We use this
model to design precise mapping schemes and prove them correct. We implement
these mapping schemes in LASAGNE, an end-to-end static binary translator.

45

2.2 BACKGROUND

Our primary contribution is the LLVM IR Memory Model, named LIMM (Section 2.5).
Based on LIMM, we design mapping schemes and transformations, which we prove
correct in the Agda proof assistant (Agda Team, 2025a) (Section 2.6). These transfor-
mations —.g., instruction elimination and reordering— are commonly used in existing
LLVM optimization passes. We implement our mappings in LASAGNE (Section 2.7).

22 BACKGROUND

Our approach is based on static binary translation. Similar to modern compilers, the
architecture of modern static binary translators have a 3-phases structure. In both
cases, their first phase (the compiler frontend and binary lifter) translate the input
program to an IR, e.g., LLVM IR. This IR code is then optimized and finally compiled
down to its final binary format for a given architecture. There are two key benefits
to this approach: First, the lifted code can be re-targeted to multiple architectures.
Second, existing optimizations can directly be used on the lifted code.

State-of-the-Art Binary Lifters. Lifting the source binary requires correctly map-
ping source to target instructions, discover global values, and reconstruct the control
flow graph. Several state-of-the-art binary lifters target an intermediate representa-
tion, e.g., LLVM IR, to ease this process (Bougacha, 2022; Trail of Bits, 2022; Yadavalli
and Smith, 2019; Avast Developers, 2022; Shen et al., 2012a; Bellard, 2005; Spink et al.,
2019; Hong et al., 2012; Cota et al., 2017). The existing lifting tools primarily target
sequential programs and do not handle concurrency, meaning they ignore the differ-
ences in memory consistency models altogether.

2.3 MOTIVATION

It is well-known that any transformation (i.e., mapping or optimization) written for
sequential programs may not be correct for concurrent programs (Sevéik, 2011; Moris-
set et al., 2013; Vafeiadis et al., 2015; Chakraborty and Vafeiadis, 2016). As state-of-
the-art SBT tools are written for sequential programs (Bougacha, 2022; Trail of Bits,
2022; Yadavalli and Smith, 2019; Avast Developers, 2022; Shen et al., 2012a), using
them to translate concurrent programs may lead to erroneous program behavior.
As a concrete example, consider the translation in Figure 8. mctoll (Yadavalli and
Smith, 2019) lifts the x86 program in Figure 8a to the LLVM IR in Figure 8b, where
it translates the shared variable accesses in x86 to non-atomic accesses. Next, LLVM
reorders the shared memory non-atomic accesses (na) and generates the optimized
IR in Figure 8c. Finally, LLVM generates the Arm program in Figure 8d that may
exhibit program outcomes that were originally not allowed in x86. The error results
from the lack of reasoning about concurrency at the IR level. To do so, the IR needs
a concurrency model. Thus, the combination of mctoll and LLVM raises a question:
What is the concurrency model of the IR?
To translate concurrent programs correctly and efficiently, we need a formal model

46

2.4 OVERVIEW

before we can formally phrase those criteria. That formal concurrency model for the
IR must fulfill the following desired properties:

* Precise mapping schemes. The concurrency model must facilitate precise map-
ping schemes from the source to the IR and from the IR to the target. In particular,
translating through the IR should not add more fences than when directly translat-
ing from x86 to Arm. In addition, that overall translation from x86 to Arm should
not add more fences than necessary to preserve the original x86 program’s mem-
ory orders — to avoid harming performance.

* Optimized. The IR should allow common transformations, including shared mem-
ory access reordering, elimination, and redundant fence elimination. Proving these
transformation correct ensures LLVM can safely apply common optimizations.

2.4 OVERVIEW

A key aspect of our static translator LASAGNE is strong-to-weak binary translation
by strategically placing memory fences to correctly emulate the memory ordering
behavior of the source architecture (i.e., x86) on the target architecture (i.e., Arm). Our
overarching goal is to support correct and optimized placement of fences, so that we
emulate the source architecture faithfully, without introducing run-time overheads.

#1: Binary Lifting. First we lift x86 binaries into LLVM bitcode. The main challenge
in binary lifting comes from reconstructing, from the machine code, higher-level ab-
stractions that have been lost in the compilation process. While lifting the binary
to LLVM IR, it is important to identify these abstractions to enable more aggressive
optimizations in the subsequent stages.

#2: LIMM: IR Concurrency Model. We introduce LIMM (LLVM IR Memory Model),
which acts as LASAGNE’s formal concurrency model. LIMM extends the concurrency
primitives in the LLVM IR. The semantics of LLVM non-atomic accesses differ from
their corresponding x86 and Arm load and store accesses. On x86, the order of

X=0, Y=0 o X=0, Y=0 _ X=0, ¥=0 . = X=0, Y=0
X=15 || a=Y; —— Xna=13 || @=Ynay — Yna=1; || a=Yna3 ———— Y=1; || a=VY;
Y=1; b=x; Yna=1; b=Xna; Xna=1; b=Xna; X=1; b=X;
(a) x86 (b) Unoptimized (c) Optimized (d) Arm
LLVM IR LLVM IR

Figure 8: Example of incorrect x86 to Arm translation by mctoll + LLVM. Suffix na
denotes the non-atomic accesses in LLVM IR. Outcome a = 1,b = 0 is dis-
allowed in the x86 program but allowed in the generated Arm program.

47

2.5 LIMM WEAK MEMORY MODEL

RMOV-RMOV, RMOV-WMOV, and WMOV-WMOV access pairs is preserved, whereas on LLVM non-
atomic load and store accesses are always unordered (on different locations). The
Arm concurrency model disallows the removal of false dependencies (Pulte et al.,
2017) as these dependencies enforce certain orders between memory accesses. In
contrast, LLVM regularly removes false dependencies in various optimizations. To al-
low these optimizations, LIMM does not order any accesses based on dependencies.
We describe LIMM in Section 2.5.

#3: Translation Correctness in LIMM. Based on LIMM, we define precise mapping
schemes for translating between architectures, and reason about the correctness of
the common transformations on LIMM. More specifically, we identify the safe/un-
safe reordering of independent shared memory accesses and fences. We also identify
safe elimination of redundant shared memory accesses. The main challenge is to for-
mally prove the correctness of the mapping schemes and the safe transformations.
We discuss the mapping schemes and the transformations in Section 2.6.

#4: Implementing LIMM Translations. We implement our mapping schemes in
LasaGNE, which inserts fences into the lifted LLVM IR. In particular, these schemes in-
sertleading or trailing fences for shared accesses in programs lifted from x86 to LLVM
IR. In Section 2.6, we describe reordering and elimination transformations, which
LLVM regularly performs; these remain correct under LIMM. We discuss further
details in Section 2.7.

2.5 LIMM WEAK MEMORY MODEL

In this section, we describe our LIMM formal weak memory model, which we later
use to prove LASAGNE’s mapping of weak memory primitives from x86 to Arm and
to prove optimizations on LIMM correct. We use the axiomatic weak memory con-
currency models as presented Chapter 1.

Syntax. As LASAGNE builds on LLVM, we define the formal model over concurrency
primitives in LLVM IR. In particular, we use LLVM’s non-atomic load (1dya) and store
(Stpa) instructions, and atomic RMWs¢ accesses (i.e., RMW with seq_cst order annotation).
To order non-atomic instructions, we use various LLVM fences. Fs¢ (i.e., fence with
seq_cst order annotation) is a full fence, like MFENCE in x86 and DMBFF in Arm. We add
Frn and F, instructions to LLVM IR, which are similar to the DMBLD and DMBST fences
in Arm, respectively. An Fry orders preceding loads with any succeeding memory
accesses — M refers to any memory access. Any write-write pair is ordered by an
intermediate F,, fence.

48

2.6 MAPPING SCHEMES

ghb is irreflexive where (GOrd)

ghb £ (ord U rfe U U fre)* where

ord = [R];po;[Frm];po;[R U W] (ord1)
U [W];pos[Fuwl;pos[W] (ordy)
U [Fsc U Rgc U codom(rmw)];po (ord3)
U po;[Fsc U Wge U dom(rmw)] (ordy)

Figure 9: LIMM Concurrency Model. Coherence and Atomicity also hold in LIMM.

Events. A LIMM program generates the following events upon executing:
e For the non-atomic load (1dp,) and store (Stpa) accesses, we generate Ry, (x, v) and
Wya(x, v) events, respectively.

e A successful RMWsc(x, v,, v;) generates a pair of Rec(x,v,) and Wsc(x, v) events
which are rmw-related. If it reads v” and fails, it generates a single Rqc(x, v’).

e The Fs, Frn, and Fy, fences generate fence events Fsc, Fry, and Fyy, respectively.

Finally, in LIMM, R = RyaURsc and W = Wy, UW,.

Relations. We define order (ord) and global-happen-before (ghb) relations in Figure 9.
The ord relation relates thread-local po-related events, while rfe, , and fre cap-
ture inter-thread communication. A pair of po-related events (4, b) are in ord relation
when:

(ordq) There is an intermediate Fgy event, a is a read, and b is a memory access;

(ordy) a and b are writes with an intermediate F,, event;

(ords) a is an Fs event or generated from a RMWsc (i.e., Rsc or codom(rmw)); or

(ordy) b is an Fyc event or generated from a successful RMWs (i.e., Wy or dom(rmw)).
Note that we do not define any ordering based on dependencies in the IR. This is

because LLVM may eliminate false dependencies. Such eliminations could introduce
disallowed behavior, which would render the translations incorrect.

Axioms. We can now formally define a ghb relation on events across threads, which
we show in Figure 9. In an execution graph, ghb(a, b) states that a path from a to b
exists, consisting of ord and external relations rfe, , fre. In addition to the LIMM-
specific GOrd axiom, consistency with LIMM requires the common Coherence and
Atomicity (from Section 1.3).

2.6 MAPPING SCHEMES

We use LIMM from the previous section to correctly reason about concurrency in the
IR. Our main objective is to define a precise mapping from x86 to Arm, which goes

49

2.6 MAPPING SCHEMES

through the IR. Additionally, we reason about the IR-to-IR optimizing transforma-
tions on LIMM. We mechanize the correctness proofs in Agda (Agda Team, 2025a).

x86 IR IR Arm
RMOV — ldpa; Frn lda — LDR
WMoV - Fww; Stna Stna — STR
CMPXCHG — RMll, RMWsc — DMBFF; RMW; DMBFF
MFENCE — Fgc Frm — DMBLD
Fuw — DMBST
Fse — DMBFF
(a) x86 to IR (b) IR to Arm
x86 IR Arm
RMOV — ldna;Frm — LDR; DMBLD
WMoV — Fu;Stha — DMBST; STR
CMPXCHG — RMWsc — DMBFF; RMW; DMBFF
MFENCE — Fg — DMBFF

(c) x86 to IR to Arm (combining (a) and (b))

Figure 10: Verified mappings from x86 to Arm through LAsSAGNE’s IR.

2.6.1 Mapping Correctness

We propose the mapping schemes of the concurrency primitives between x86 and
Arm through the primitives in the IR, shown in Figure 10. For each mapping scheme,
we prove it correct (Definition 3 in Section 1.4) in Agda and show it is precise (Defi-

nition 4).

x86 to IR (Figure 10a). The load and store in the IR are weaker than those of x86. So
we map an x86 load to an IR load with a trailing Fry. The Fry orders preceding loads
with any successor memory accesses. Similarly, an x86 store is mapped to an IR store
with a leading Fy,. The F,y, orders the store with any preceding store. An x86 RMW is

(a) x86

X=Y=0; X=Y=0;
N Xna=1; || a =Yna; R Y=1||la=Y;
Fuw; Frm; DMBST; (| DMBLD;
Yna=1 || b= Xna; X=1, [|b=X;

(b) IR (c) Arm

Figure 11: x86, IR, and Arm versions of the Message-Passing program in x86 to IR to
Arm translations by the proposed mapping schemes in Figure 10.

50

2.6 MAPPING SCHEMES

mapped to an RMWsc in the IR — a successful atomic-update acts as a full fence in both
x86 and the IR. Finally, an MFENCE maps to an Fs. fence.

» Theorem 1 (x86—IR Correct). The x86—IR mapping is correct (Definition 3).
We have proved Theorem 1 in Agda.

» Theorem 2 (x86—1IR Precise). The x86—IR mapping is precise (Definition 4).

To prove Theorem 2, we must demonstrate that the Fry and Fy, are required. In Fig-
ure 11a and Figure 11b, we show the x86 program and the generated IR, respectively.
The IR program disallows the outcome a=1,b=0, similar to the x86 program. Without
either of those two fences, that outcome would be allowed for the IR program, mak-
ing the mapping incorrect. In addition, the IR does not provide any weaker fences
than Fry and F,y. Hence, the x86—IR mapping scheme is precise.

IR to Arm (Figure 10b). We map an IR load to Arm LDR and IR store to Arm STR in-
struction. The IR RMWsc maps to an Arm RMW primitive, around which we insertleading
and trailing DMBFF fences. Here, Arm’s RMW operation refers to the load-linked store-
conditional (11/sc) instruction pair (i.e., LX / SX instructions). As those do not enforce
sufficient ordering by themselves, we surround them with the DMBFF full fences. Fi-
nally, we map Fry, Fyy, Fsc fences in the IR to DMBLD, DMBST, DMBFF accesses, respectively.

» Theorem 3 (IR—Arm Correct). The IR— Arm mapping is correct (Definition 3).
We have proved Theorem 3 in Agda.

» Theorem 4 (IR—Arm Precise). The IR—Arm mapping is precise (Definition 4).

To prove Theorem 4, we must demonstrate that all fences are required. For the DMBLD
and DMBST fences surrounding the accesses, we use a similar argument as for the
x86—1IR mapping above. In Figures 11b and 11c, we show the IR program and the
mapped Arm program, respectively. As the former disallows the outcome a=1,b=0,
the latter should disallow it too. If we had removed either the DMBST or DMBLD fence
from that program, that additional behavior would be observable, making the map-
ping incorrect. In addition, Arm does not have weaker fences than DMBLD and DMBST
to preserve the same ordering.

Finally, we must demonstrate that the DMBFF instructions surrounding the RMW
are necessary, which Figure 12 illustrates. Figure 12a shows that the DMBFF before RMU
is necessary. Without that fence, a preceding W would be unordered with the RMW-R
event. Figure 12b shows that the DMBFF after RMW is necessary. Without that fence,
the RMW-W would be unordered with a succeeding R. In both cases, the DMBFF fence
orders a W—R pair, for which no weaker fence exists in Arm - note that neither
DMBLD nor DMBST order W—R pairs. Both DMBFF fences surrounding the RMW are thus
necessary in Arm. As all fences in the IR— Arm mapping are necessary, the mapping
is precise.

51

2.6 MAPPING SCHEMES

X=Y=0;
X=Y=0; X=1; Y=1,;
Xna = 1; Yoa = 1; _R2AM™ DMBFF; DMBFF;
RMilsc(Y,0,2); || RMWsc(X,0,2); RMI(Y,0,2); || RMH(X,0,2);
DMBFF; DMBFF;

(a) Leading fences are necessary. Disallowed outcome X = Y = 2. Removing
a DMBFF before either RMW in Arm would erroneously allow that outcome.

X=Y=0;
X=VY=0 DMBFF; DMBFF;
RMlsc(X,0,2); || RMUsc(Y,0,2); —=—2™ Ruw(X,0,2); || RMU(Y,0,2);
a = Yna; b = Xna; DMBFF; DMBFF;
a=Yy; b=X;

(b) Trailing fences are necessary. Disallowed outcome a = b = 0. Removing
a DMBFF after either RMW in Arm would erroneously allow that outcome.

Figure 12: Role of DMBFF fences in IR to Arm mapping. In Arm, the intermediate DMBFF
fences restrict the outcomes. Any weaker (or no) fence would allow these
outcomes in Arm and the translations would be incorrect.

x86 to IR to Arm. In Figure 10c, we compose the x86—IR (Figure 10a) and IR—Arm
mapping (Figure 10b), which is correct:

» Theorem 5 (x86— Arm Correct). The x86— Arm mapping is correct (Definition 3).

Although we had to prove correctness of the mapping components in Agda, correct-
ness of its composition (Theorem 5) follows trivially.

» Theorem 6 (x86— Arm Precise). The x86— Arm mapping is precise (Definition 4).

Precision (Theorem 6) does not follow trivially'3, which we thus demonstrate sepa-
rately. We show precision by an argument similar to that of the mapping components.
Consider the x86 and Arm programs in Figure 11a and Figure 11c. Removing either
DMBLD or DMBST fence in Arm would erroneously allow the behavior a=1,b=0 thus both
those fences are necessary. To show the DMBFF fences are necessary, we can follow a
similar example as shown in Figure 12. Hence the overall x86— Arm mapping is also
precise.

3Precision does not always follow. Consider a x86—SC—Arm mapping. The x86—SC component must
order W—R pairs. The composed mapping unnecessarily orders those too, making it not precise.

52

2.6 MAPPING SCHEMES

2.6.2 Correctness of Optimizing Transformations

We also study the correctness of various transformations on LASAGNE IR programs.
We also prove these transformations correct (Definition 3). In contrast to the map-
ping, for the transformations, both the source and target program execute in the same
memory model, which is our LIMM model in this case.

Reorderings. We study the correctness of the reordering adjacent shared memory
accesses and fences a and b. In Figure 13, we mark the safe (v) and unsafe (X) re-
orderings. The non-atomic accesses can reorder freely with each other, which LLVM
frequently does in its existing optimization passes. Non-atomic accesses cannot re-
order with an RMWs. operation, as that would require reordering with the events it
generates upon success and failure. Upon RMWs¢ success, the accesses must reorder
with both rmw-related events (i.e., Rsc and Wsc), which is disallowed by the reorder-
ing rules in Figure 13 — in both directions, for both Ry, and Wy,, the reordering is
disallowed.

A store can safely reorder with a succeeding Fry, a load can safely reorder with
a preceding and succeeding Fy,. In both cases, the reordering is possible because the
fence does not enforce any ordering with the corresponding event. We also observe
any pair of fences can reorder safely, as fences do not enforce any order among each
other. We prove these reorderings correct (Definition 3) in Agda. In those proofs,
we show that a reordering does not remove any ‘ord’ relation from the target while
defining the corresponding source execution.

Memory Access Eliminations. Figure 14 lists the safe access elimination transfor-
mations for Read-After-Read (RAR), Read-After-Write (RAW), and Write-After-Write
(WAW). A RAR or RAW transformation eliminates a read access by reusing a previ-
ously read or written value. In the WAW transformation, the first write is redundant
-because it is overwritten by the second- and can safely be eliminated. In these three
transformations, the shared memory accesses are po-adjacent. In the subsequent

la\b—>
RNA
WNA
RSC

RSC : WSC

FRM

Py
Z
>

Py
wn
0

RSC) WSC

T
[9]
0

FWW

FSC

S ENEVEENENEN
xxxxx\\f
T ENE PV ENEN
AN ENEN R PP
\\u\\\xg
-
SURRRERE
RSN AR RS

Figure 13: Reorderings a-b ~» b-a in LIMM. Correct reorderings are marked with v
All reorderings are between events on different locations. a -b denotes that
a and b are the labels of events related by po;,,,,. Rsc on its own represents
a failed RMWs¢ read, while ‘Rsc - Wse’ corresponds to a successful RMUs.

53

2.6 MAPPING SCHEMES

three transformations, the memory accesses are separated only by a fence. Those
same eliminations are not correct across every kind of fence. We primarily consider
these transformation for IR programs obtained by lifting x86 programs with our map-
ping schemes (Figure 10a).

e F-RAR — We can sometimes eliminate a read after another read from the same
location, with a fence in-between, for instance:

‘a=X; Frn3 b=X;" — ‘a=X; Frn; b=a3’

The Frp fence is the only fence that can occur between two R events, for programs
obtained with our x86—IR mapping. We thus prove this transformation across
a Frp fence for a x86-lifted program. In particular, for this proof we specifically
require every R event to be followed by a Fgy event —which our mappings produce
(Figure 10a). To prove this, we construct a source execution where the R events
generated by assignments to 4 and b read from (rf) the same W event; then we
show that source execution is well-formed and LIMM-consistent (i.e., it satisfies
Coherence, Atomicity, and GOrd).

A Fyy fence cannot occur in-between R events, as our x86—IR mappings never
produce such programs. Surprisingly, this transformation is correct in general,
i.e., also for programs not lifted from x86. We do not need to prove this explicitly,
as it follows from one of the reordering rules (Figure 13) followed by the regular

RAR elimination:
reorder RAR

‘a=X3 Fyy3 b=X;" ——— ‘a=X; b=X; Fyy3’ — ‘a=X; b=a; Fy,3’

For a Fs. fence this transformation is incorrect. We first note that our x86—1IR map-
ping can never produce a program with a Fsc fence in-between two read accesses,
making it of limited use for LASAGNE in its current x86-to-Arm context. However,
we could attempt to prove this optimization correct in general - for any IR pro-
gram, including those not lifted from x86. Unlike with the F, fence, Fsc cannot
safely reorder with non-atomic memory accesses (Figure 13). In particular, we
discovered the RAR elimination across a Fs¢ is not correct in general, of which
Figure 15 shows a counterexample.

R(X,0) -R(X,0") R(X,0) (RAR)
W(X,) R(X,0) W(X,) (RAW)
W(X,v) - W(X,v") W(X,v") (WAW)

R(X,v) -F,-R(X,v)
W(X,v) - F;:-R(X,0)
W(X,v)-F, - W(X,v)

R(X,v) -F, (F-RAR)
W(X,v)-F, (F-RAW)
Fo-W(X,0") (F-WAW)

¢ ¢ ¢ ¢

Figure 14: Eliminations where 0 € {rRM, ww} and T € {sc, ww}. a - b denotes that a
and b are the labels of po;,,,-related events.

54

2.6 MAPPING SCHEMES

¢ F-RAW - We can sometimes eliminate a read after a write to the same location,
with a fence in-between, for instance:
‘X=a3 Fsc3 b=X;’ — X=a3 Fsc3 b=a3’
To prove this in Agda, we assume every R is followed by a Fr fence and every W
event is preceded by a F, fence — which our mappings produce (Figure 10a). We
construct the source such that the R always reads-from (rf) the W. In the target,
we have diverted any GOrd cycle from the eliminated R to the preceding W.
A Fyy fence cannot occur in-between two W—R events following our mapping,

but we can prove this transformation in general with a reordering rule:

reorder RAW
K=a3 Fas b=X5" —— X=a; b=X; Fu3” —— K=a3 b=a3 Fy3’

The read-after-write elimination across a Frp fence, which cannot appear following
our mapping, is also not correct in general.

e F-WAW - Finally, we can eliminate a write after a write to the same location, with
a fence in-between, for instance:
X=ay Fuus X=b3” — ‘Fuus X=bs’
To prove this in Agda, we assume every R is followed by a Fr fence and every W
event is preceded by a F,, fence — which our mappings produce (Figure 10a). Our
proofs divert any GOrd cycle from the first W to the second W, which we restrict
to be mo-related in the source, meaning the second overwrites the first.

X=0, Y=0 X=0, Y=0 W(X, 0), W(Y, 0)
X=1: 1Y =13 X=1: 1Y =13 e -
F., b:Xf F.) b:Xf ‘\\I’f/’\A
1) > Fsc > WX, 1) v A wW(Y, 1)
a=1Y; |l Fscs a=1Y; |l Fscs lb AN l

c=X; c=h; ERC N
ord | Fsc £ N R(X/ 0)

l »/ i l ord
R(Y,0) fre .\ Fy

W
R(X, 0)

(a) Example program in LASAGNE IR on which we (b) The corresponding execution graph.
apply the F-RAR transformation. Removing the final R in the right
thread breaks the ‘ord;fre;ord;fre’ cycle,

erroneously allowing a=0,c=0.

Figure 15: Counterexample for read-after-read elimination across a Fs¢ fence in
LasacNE IR. By assuming both reads observe the same W event, we im-
plicitly make an incorrect assumption about their memory ordering.

55

2.7 IMPLEMENTATION

Again, although a Frp cannot occur in-between two W-W events following our
mapping, we can prove it in general with a reordering rule:

reorder WAW
‘X=a; Frn3 X=b3" —— ‘Frn3 X=a3 X=b3" —— “Frp; X=b3’

Finally, the write-after-write elimination across a Fs¢ fence, which cannot appear
following our mapping, is also not correct in general.

Fence Merging. We can safely merge a fence with an adjacent same or stronger fence.
It is also safe to strengthen an Fry or Fy, fence to a full fence Fsc. So given a pair of
adjacent Fry and Fyy fences, we can strengthen and merge them to create one Fs, i.e.,
Fem - Fww — Fsc - Fse = Fsc. Note, however, that merging fences may break the
assumptions that we rely upon in the elimination proofs (i.e., in F-RAR, F-RAW, and
F-WAW) as some R events may no longer be followed by a Fgy nor some W events
preceded by a Fyw event. In general, the fence elimination optimization should be
applied before merging (or reordering). Sometimes we can chain eliminations with
merging fences:

F-RAR merge
R;Frm;R;Frm —— RiFruiFru — RjFgum
F-RAW merge
Faw;WiFso;R;Fem —— Fuw;WiFsciFru —— Fuw;WiFsc
F-WAW merge
Fuw;W;Fyw;W — Fuw;Faww;W — Faw;W

2.6.3 Proof Strategy

We mechanize the correctness proofs (Definition 3) for the non-trivial transforma-
tions in Agda (Agda Team, 2025a), totaling roughly 12,000 lines. We follow the gen-
eral proof structure from Section 1.4, where our implementation adheres to the fol-
lowing steps: Given a M®-consistent execution X; of P*, we (1) define a source exe-
cution X; from P°. Following the mapping scheme, the memory accesses in X; have
corresponding accesses in X;. Then, we (2) relate the X; and X; relations that are used
in M® and M* and show that the X, is well-formed. Similarly, we (3) then show that
X, satisfies the axioms in M®. Finally, we (4) show the terminal value of X;.mo and
Xs.mo match, for each memory location, meaning X; and X, have identical behaviors.
In mapping schemes the source and target models differ and for the transformations
on the IR both M® and M! are LIMM model.

2.7 IMPLEMENTATION

LAsAGNE is implemented on top of Microsoft’s mctoll binary lifting tool (Yadavalli
and Smith, 2019) and the LLVM compiler framework (LLVM Team, 2025; Lattner and
Adve, 2004), both open-source projects. We enforce x86 to IR mapping from Fig-
ure 10a on the lifted code, for which we insert fences in two steps:

56

2.8 EVALUATION

1. For every load and store, we explore the use-def chain of their pointer operand.
In this exploration, we ignore bitcast and getelementptr operations, looking for
a potential stack allocation. If the operations are thread-local, e.g., by addressing
the stack, then no fence is inserted. Otherwise, the access is conservatively treated
as a shared memory access and fences are inserted following the mapping scheme
from Figure 10a.

2. We merge pairs of fences in the same basic block if there are no memory-access
instructions in between.

After placing fences, we apply the existing LLVM optimizations. These optimizations
are essential to eliminate unnecessary code produced while lifting. We implement
the IR— Arm scheme (Figure 10b) in the LLVM backend that generates Arm code.

2.8 EVALUATION

We evaluate LasaGNE with the Phoenix benchmark suite (Ranger et al., 2007) on a
16-core Arm Cortex-Ay2 with 32 GiB of RAM. We expect the x86— Arm translated
programs to perform worse than natively-compiled Arm programs, as the translation
incurs overhead. After lifting the program, correctly inserting the fences (Figure 10a),
and compiling it to Arm (Figure 10b) the programs take 1.67X of the native execu-
tion time, on average. After applying lifting-specific refinements and optimizations
—enabled by our translation rules from Section 2.6.2— we observe only 1.51x the native
execution time, on average. Our paper (Rocha et al., 2022) further details LASAGNE’s
implementation and experiments*+.

2.9 CONCLUSION

In this chapter, we presented LASAGNE, a static binary translator for weak memory
model architectures. LASAGNE can lift x86 binaries to LLVM IR and then compile it
to Arm while enforcing the x86-TSO weak memory model. We provided formally
verified mappings from x86 to LLVM IR—which follows our LIMM model—to Arm
and transformations on the IR, which include transformations occurring in existing
LLVM optimizations. LASAGNE’s mapping schemes enforce x86-Arm robustness in
general without inserting unnecessary fences.

Future Work. As a static translator, LASAGNE cannot translate all programs. Some in-
formation was lost when compiling the original x86 program (Andriesse et al., 2016),
which we cannot always recover statically (Rice, 1953). Dynamic binary translation
is an alternative approach, which avoids this limitation by translating programs dy-
namically. In Chapter 3, we present our dynamic binary translator RisotTo.
LASAGNE’s x86— Arm mappings translate x86’s RMW instruction to an Arm 11/sc
instruction pair. As those order weakly, our mappings had to insert expensive DMBFF

4 As my collaborators worked on LASAGNE's system and experiments, I omitted them from this dissertation

57

2.9 CONCLUSION

fences before and after them. Recently, Alglave et al. (2021) proposed a new Arm model
with single-instruction CAS operations. In particular, the CASy variant aims to order
like x86’s RMW, meaning it does not need the surrounding DMBFF fences, benefiting
performance. We also study those new instructions in Chapter 3.

The same paper by Alglave et al. (2021) proposed a mixed-size memory model
(Flur et al., 2017), where memory is accessed in units of multiple sizes (e.g., 1/2/4/8-
bytes). LASAGNE’s mappings do not consider those models, meaning we cannot guar-
antee correct translation of mixed-size accesses. We study those in Chapter 4.

Finally, LASAGNE’s proofs were mechanized in Agda, resulting in a code base of
roughly 12,000 lines. Those mechanized proofs are very rigid, where making changes—
e.g., to add features—is very time-consuming. As much structure is shared between
proofs, they would benefit from a general framework capturing that structure. Then
programmers would not spend countless hours on domain-irrelevant mechanization
details, but only inspect the proof cases relevant to their domain. In Chapter 5 we ad-
dress that challenge.

58

Chapter 3

Dynamic Program Translation with Mapping
Schemes

ABSTRACT Dynamic Binary Translation (DBT) is a powerful approach to support
cross-architecture emulation of unmodified binaries. However, DBT systems face
correctness challenges when emulating concurrent binaries from strong to weak memory
consistency architectures. We show that QEMU, a state-of-the-art emulator, contains
several translation errors, when emulating x86 binaries on Arm hosts.

To address that challenge, we propose an end-to-end approach that correctly
and efficiently emulates weak memory model architectures. Our contributions are
twofold: First, we formalize QEMU’s intermediate representation (TCG IR) memory
model, and use it to propose formally verified mapping schemes bridging the strong-
on-weak memory consistency mismatch. Second, we implement these verified mappings
in Risotto, a QEMU-based DBT system that optimizes memory fence placement while
ensuring correctness.

3.1 INTRODUCTION

Dynamic Binary Translation (DBT) systems emulate the program’s guest ISA on the
host machine, by translating the code at run time (QEMU Team, 2003; Bellard, 2005;
Spink et al.,, 2019). A major challenge for DBT systems is correct and performant
emulation of concurrent binaries (Cota et al., 2017; Lustig et al., 2015).

Performance. In contrast to Static Binary Translation (SBT), which necessarily fails
to translate some programs, as we saw with LAsaGNE (Chapter 2), DBT can translate
any program because it does not recover semantic information statically (e.g., dy-
namic jump targets). A dynamic translator naturally encounters that information for
any specific program context at runtime. Although dynamic translation techniques
can translate any program, they often incur a significant performance overhead in
comparison to static translation. Hence, a primary challenge is to reduce that perfor-
mance overhead.

Correctness. Another challenge is ensuring that the translation between architec-
tures is correct, which is particularly problematic when translating from a strong
memory model, e.g., x86 (Owens et al., 2009), to a weaker model, e.g., Arm (Al-
glave et al.,, 2021). Like our static translator LASAGNE (Chapter 2), a dynamic trans-
lator must ensure that the behavior of the guest ISA is correctly reproduced on the
host machine, for instance, by placing memory fences. The state-of-art DBT system
QEMU (QEMU Team, 2003; Bellard, 2005) does not officially support strong-on-weak

59

3.1 INTRODUCTION

emulation (QEMU Team, 2021) but still inserts fences to preserve the stronger mem-
ory orders. In particular, it attempts to enforce a stronger order than x86’s when
emulating on Arm, which would be correct but may harm performance (Liu et al.,
2020). However, despite its attempt at enforcing a strong ordering, it fails to do that
correctly—we discover and report several translation errors in QEMU caused by in-
correctly placed fences that may lead to errors at run time. Further, while proving
mapping correctness, we discover and report that the Arm memory model (Alglave
etal.,, 2021) orders its new CASy| instruction too weakly.

Solution. To address the above issues, in this chapter, we propose an end-to-end
DBT approach based on QEMU that executes concurrent x86 binaries correctly and
efficiently on Arm architectures by combining: formal verification of translation cor-
rectness for strong-on-weak architecture and a DBT system for runtime binary trans-
lation based on those verified translation rules.

More specifically, we propose the first formal concurrency memory model of QEMU’s
intermediate representation (TCG IR). We use that model to define and prove correct
the mapping schemes from (1) x86 to TCG IR and (2) TCG IR to Arm. We mecha-
nize the proofs for these mapping schemes in the Agda proof assistant (Agda Team,
2025a). In contrast to LASAGNE’s mappings (Chapter 2), which used Arm’s older 11/sc
RMW instruction pair, these new mappings target Arm’s new single-instruction CASy
(“Compare and Swap Acquire Release”) instruction.

Another aspect of QEMU’s Tiny Code Generator (TCG) is its intermediate op-
timizations on concurrency primitives, which may affect translation correctness, as
transformation for sequential programs may be not be correct for concurrent pro-
grams (Morisset et al., 2013; Vafeiadis et al., 2015; Chakraborty and Vafeiadis, 2016).
Only ensuring the memory model mismatches in architectures (Cota et al., 2017;
Lustig et al., 2015) does not guarantee correct translation in QEMU. Therefore, we
prove the correctness of various transformations that are commonly used by TCG’s
optimizations—these are similar to those used by the LASAGNE’s LLVM optimizations
(Chapter 2). These verified transformations, along with verified mappings, facilitate
the development of our end-to-end DBT system RisorTo, based on QEMU. Overall,
this chapter makes the following contributions:

¢ Concurrency analysis in QEMU and the Arm memory model. We discover and
report several translation errors in QEMU due to incorrectly placed memory fences.
We also report undesired behavior in the Arm memory model (Alglave et al., 2021)
—herein referred to as Armed-Cats— for efficient x86-to-Arm translation, and pro-
pose revisions to the model for verified mappings. An equivalent revision was
accepted for that model (Alglave, 2022).

* TCG IR memory model: Formalization, verified mappings and optimizations.
We formalize the memory model of QEMU’s TCG IR. Based on this formal model,
we propose mapping schemes from x86 to TCG IR and TCG IR to Arm, which we

60

3.2 BACKGROUND

verify to be semantically correct. We implement those mapping schemes in our
Risorto DBT system. We also prove the correctness of various optimizations on
TCG IR model that are performed by QEMU.

3.2 BACKGROUND

3.2.1 Dynamic Binary Translation

DBT systems typically operate as follows: they (1) translate the instruction currently
pointed at by the emulated Instruction Pointer (IP), and (2) execute the translated
instruction, updating the IP to either the following instruction or the target of a jump.
Most DBTs implement translation granularities of at least a basic block, and employ
classic compiler optimizations to improve generated code quality (and hence run time
performance). Basic blocks are often cached to avoid repeating translations.

3.2.2 TCG: QEMU’s Dynamic Binary Translator

QEMU is a state-of-the-art emulator capable of cross-ISA emulation, which trans-
lates code through its TCG. Basic blocks are translated via an IR called the TCG IR.
Architecture-independent optimizations are applied on basic blocks at the IR level.

TCG IR. The TCG IR is an assembly-like instruction set, containing basic arithmetic,
logic, and control flow instructions. However, floating-point arithmetic is emulated
via integer-based computations.

Memory fences. The TCG IR provides fences for all types of pairs of accesses. For
example, the Fy, fence orders a store-store pair, while Fy, orders a load-store pair.
When generating fences in the IR, TCG takes the guest memory model into account
to choose the fence accordingly. Section 3.3 provides a more detailed discussion.

Atomic read-modify-write (RMW). RMW accesses are currently translated into calls to
helper functions in QEMU. Therefore, even if the host ISA has an equivalent atomic
instruction, execution is still transferred from the emulated binary to QEMU. We dis-
cuss these primitives in Section 3.5.

Optimizations. TCG performs various optimizations on the translated basic blocks
at the IR level. Some of the well-known optimizations are dead code elimination,
constant propagation and folding, and consecutive fence merging.

3.2.3 Concurrency Primitives in Architectures

In Section 1.3 we have already explained the concurrency primitives and semantics
of x86 and Arm. Here, we briefly elaborate on the subtleties of RMW instructions. In
particular, Arm provides two kinds, which we denote by CAS and RMI*.

CAS represents the newer single-instruction read-modify-write instruction (Arm, 2016;
Alglave et al., 2021), which has multiple variants that order differently. For instance,

61

3.3 MOTIVATION

Access type x86 TCGIR Arm

Load RMOV 1d LDR

Store WMoV st STR
Full-fence MFENCE Fsc DMBFF
WW-fence Ei DMBST
RM-fence Frn DMBLD
MR-fence For

MW-fence Eaw

Atomic-update CMPXCHG RMW CAS, RMW?
Rel.Acq. atomic-update CASaL, RI"IW%L

RMW? 2 ¢ LX; cmp; bc €’; SX; bc ¢; ' :
RMN%L 2 {: LXa; cmp; bc &’; SX; becl; ¢

Figure 16: Concurrency primitives in x86, TCG IR, and Arm that appear in the map-
ping schemes. For fences, ‘R’ = read, ‘W’ = write, ‘M’ = memory —e.g., an
RM fence orders preceding reads with succeeding reads and writes.

CASaL orders with predecessor and successors. RMW? consists of two instructions: load-
exclusive (LX) and store-exclusive (SX) instructions. Arm provides variants of it that
order differently, for instance, RMN%L consists of acquire-load-exclusive (LXa) and release-
store-exclusive (SX|) instructions. A release access is ordered with its predecessors
and an acquire is ordered with its successors. We can thus construct several variants
with those instructions: RMW?, RMW3, RMW?, RMN%L. Similar to RMW?, CASaL accesses can
also have release/acquire combinations. In x86, a successful CMPXCHG acts as a full
fence, whereas in Arm only a successful CASy| acts as a full fence. Figure 16 includes
an overview of concurrency primitives in x86, TCG IR, and Arm.

33 MOTIVATION

We expose correctness and performance problems that arise when QEMU emulates
concurrent programs. We also expose an error in an existing Arm mapping.

3.3.1 Emulation of Concurrent Programs in QEMU

QEMU does not officially support the emulation of strongly ordered ISAs, e.g., x86,
on weakly ordered ones, e.g., Arm. However, in user mode emulation, the program
runs without triggering any warning or error message to users, one may therefore
think that support is available.

QEMU mapping schemes. Figure 17 shows QEMU’s mapping schemes for translat-
ing memory-related x86 instructions to Arm. An Fyr fence is inserted before loads

62

3.3 MOTIVATION

x86 TCGIR Arm

RMOV — Fpr;1d - — DMBLD; LDR
WMoV — Fpy; st — DMBFF; STR
RMW — call — BLR; RMW; RET
MFENCE — Fgc — DMBFF

Figure 17: QEMU’s existing mappings from x86 to Arm, which are incorrect.

(1d), ordering the load with its preceding memory access. Since store-load reorder-
ing is allowed in x86, TCG demotes this fence to Frr, only ordering the load with a
preceding load. This is an attempt to match the x86 memory model. An Fy, fence
is inserted before stores (St), ordering the store with its preceding memory access.
These fences are then lowered to Arm’s DMBLD and DMBFF fences.

RMW operations. QEMU translates RMWl operations as calls to helper functions. These
helper functions rely on GCC built-ins for the atomic accesses. As a result, depending
on the GCC version, the instructions differ. For example, the helper function emulat-
ing the x86 CMPXCHG instruction uses an LXa-SX| pair (RMW%L) with GCC 9, but a CAS,,
instruction (RMN,&L) with GCC 10. Both are correct from GCC’s standpoint since they
both comply with the C/C++ memory model, but order differently on x86 (i.e., CASy
is stronger).

3.3.2 Correctness: Errors in QEMU

We found several errors in QEMU’s x86 to Arm translation, more specifically in han-
dling RMW access (both CAS and RMW?). We demonstrate these errors with the trans-
lations of the MPQ and SBQ programs where CAS and RMU? accesses are generated,
respectively. We also show that using a Fyr fence in TCG IR may also result in an
erroneous read-after-write transformation as demonstrated by the translation of the
FMR program.

Error in mapping scheme with CASy . Consider the x86 to Arm mapping by QEMU
for the following program.

X=Y=0; X=Y=0
X=11a=V; DMBFF; || DMBLD;
Y=1; | if(a==1) ~ X=1 ||a=Y; (MPQ)
RMW(X, 1, 2); DMBFF; || if (a == 1)

Y=1; CASaL(X, 1, 2);
In x86, a=1 implies that all writes in the first thread are completed. Since reads are

not reordered, the RMW always reads the X=1 and successfully updates X=2. As a re-
sult a=1,X=1 is never possible. In Arm, however, a read and a read-acquire pair can

63

3.3 MOTIVATION

be reordered. This means that even though the first thread’s writes are ordered by
fences, the read of CASy| can be speculatively executed before the a=Y instruction as
they are unordered. In that case, the CASy| will not observe X=1 and fail, but the result
will still be committed after a=Y sets a to 1. It results in the outcome a=1, X=1, which
is disallowed in x86, thus demonstrating that the translation is incorrect.

Error in mapping scheme with RMW%L. Consider the following x86 to Arm translation.

X=Y=2=U=0; X=Y=2=U=0;
X=1; Y=1, DMBFF; DMBFF;
RMU(Z, 0, 7); || RHM(U, 0, 1); X=1; V=1,
sB
a=Y; b=X ™ ORMEZ0,1); || RMEU,0,1; Y
DMBLD; DMBLD;
@ =\ b=X;

The behavior in question is Z=U=1, a=b=0. In x86, successful CMPXCHG accesses order
store-load access pairs across it. On the other hand, neither successful RMW%L accesses
nor DMBLD fences can order the store-load access pairs. Thus, the mapping results in
a new outcome in the generated Arm program and, therefore, the overall translation
is incorrect.

Error in RAW transformation in TCG IR. QEMU performs various constant prop-
agation optimizations on TCG IR such as read-after write (RAW), e.q., ‘Y=2;a=Y;~>
Y=2;a=2;". In the presence of Fyr, the RAW transformation is incorrect as it introduces
a new outcome. Consider the following example:

X=Y=272=0; X=Y=2=0;
X=3; if(Z==2){ X=3; if(Z==2){
Far; Fru; For; Fru;
Y =2 X = 4; W y=2 X = 4; (FMR)
a= \g c=X; a=2; c=X;
Fr; } Fru; }
1=2; l=12;

Consider the outcome a=2, c=3. In the source TCG program, the Fyr and Fy, fences
in the first thread establish dependency-based ordering from X=3 to Z=2 via a=Y. In

the second thread, F., orders the read of Z with the successor accesses on X. As a re-
sult, the outcome a=2,c=3 is disallowed. The RAW transformation in the first thread
removes the read of Y and hence X=3 and Z=2 are not ordered anymore. As a result,
the a=2, c=3 outcome is allowed in target program, making the RAW transformation
incorrect.

64

3.3 MOTIVATION

x86 Arm
RMOV — LDAPR
WMoV — STLR
CMPXCHG — CASaL
MFENCE — DMBFF

Figure 18: Arm mapping of Armed-Cats (Alglave et al., 2021, §2.5), which is incorrect.

3.3.3 Correctness: Error in “Desired” Arm Mapping

We consider the x86 to Armed-Cats mapping by Alglave et al. (2021, §2.5). While they
do not explicitly give a mapping, we infer:

* LDAPR(LDRg)and STLR (STR|) enable efficient emulation of x86-TSO on Armed-Cats (Al-
glave et al., 2021, p.6)

* amo in Armed-Cats exclusively models CAS operations, e.g., CASp, which should act
“as a full barrier” (Alglave et al., 2021, p.18).

¢ In x86, a successful RMW (i.e., CMPXCHG) also behaves like a full barrier (Owens,
2010; Alglave et al., 2021).

We interpret that mapping as shown in Figure 18. While examining it, we discover the
mapping is incorrect following the memory models Alglave et al. (2021). Consider
the following example:

X=Y=0; X=Y=0;
CHPXCHG(X,0,1); || CMPXCHG(Y,0,1); T, cas, (X,0,1); || CASL(Y,0,1); (SBAL)
a= Y,‘ b= XQ,‘

b=X; a=VYq;

The notation ‘Xq’ means we read from X with the LDAPR (LDRq) Arm instruction. The
source x86 program disallows X=Y=1,a=b=0 as outcome, while the Arm program al-
lows it. Therefore the mapping is wrong.

Fixing this error. There are two options to fix this error in the model:
* Keep the current model and accept CASy| is insufficient to model x86 CMPXCHG; or
e Strengthen the formal model slightly, so CASy. behaves like x86 CMPXCHG.

We choose the second option that we detail in Section 3.5.2. We hypothesize that
hardware may already be consistent with our model. We contacted the authors of
Armed-Cats, but they could not confirm hardware behavior with regards to our SBAL
example in the new model. However, they still decided to strengthen the memory
model (Alglave, 2022).

65

3.4 OVERVIEW

3.3.4 Performance: Fence placement

QEMU’s mapping schemes in Figure 17 prevent any reordering of memory accesses,
even though the guest ISA (x86) allows some reorderings to happen. However, the
CPU performs these reorderings to maximize its utilization. Not taking advantage
of the CPU'’s instruction scheduling hurts performance. Additionally, having fences
before every access makes it impossible to merge them.

3.4 OVERVIEW

We propose an end-to-end approach to improve the performance of strong-on-weak
architecture DBT while maintaining semantic correctness.

3.4.1 Verified Mapping Schemes and Optimizations

We reason about the end-to-end translation steps: (1) x86 to TCG IR mapping (2) TCG
IR to TCG IR optimization (3) TCG IR to Arm mapping.

TCG IR formalization. To reason about these steps formally, we use existing formal
models of x86 and Arm (Alglave et al., 2021), and propose a formalization of TCG IR.
Based on this formalization, we ensure the translations in all three steps are correct.

Mappings in steps (1) & (3). We map the load, store, RMW, and fence accesses from the
source to the corresponding accesses in the target models. The orderings between the
accesses vary based on the consistency models. To ensure orderings between weaker
accesses, we introduce additional leading or trailing fences along with the memory
accesses. As fences are costly, our goal is to introduce only the minimal fences that
are required to ensure correctness.

Moreover, we note that some TCG optimizations perform read-after-write (RAW)
transformations, which can introduce errors around Fy or F,- fences (see FMR). Hence,
we avoid generating any Fpr or Fyr fence in the x86 to TCG IR mapping scheme so that
RAW transformations remain correct on the generated TCG IR programs. Using all
three formal models, we prove the mapping schemes correct.

IR transformations in step (2). Risotto performs several optimizations on the TCG IR
before generating the Arm code. To ensure correctness, we analyze common trans-
formations performed on concurrency primitives. We show that the proposed TCG
IR formalization allows the transformations performed by Risotto’s optimizations.

More specifically, we reason about elimination of redundant shared memory ac-
cesses and reordering of shared memory accesses. We also reason about fence merg-
ing optimizations which can be performed when there are adjacent fences. Our x86
to TCG IR mapping scheme creates such adjacent fences which can be merged to
improve performance.

66

3.5 TIMM WEAK MEMORY MODEL

3.4.2 Risotto: A Dynamic Binary Translator for Strong-on-Weak Architectures

We build Risotto upon the widely used emulator QEMU. We improve over the ex-
isting work through three contributions: (i) the implementation of formally verified
memory mappings and (i) a fast and correct translation of Compare-and-Swap (CAS)
instructions.

Memory mappings. We first replace the memory mapping schemes used by QEMU
with our schemes presented in Section 3.5, which are formally verified to enforce
the x86 memory model (Owens et al., 2009; Owens, 2010; Alglave et al., 2021). We
implement these mapping schemes in QEMU. We also implement fence merging op-
timizations at the TCG IR level to minimize the cost of inserted fences.

Fast and correct CAS. As previously stated, RMW primitives are emulated through a
call to a helper function in QEMU and not translated. In addition to the performance
hit, this can also trigger erroneous behaviors.

In Risotto, we aim at preserving correctness while maximizing performance. For
atomic operations, we propose to translate the x86 atomic instructions, e.g., CHPXCHG,
directly into Arm assembly, e.g., using the new CASy| instructions. This allows us to
fix the errors in QEMU’s current scheme as well as improve performance. We also
implement this in the TCG (Section 3.7.2).

3.5 TIMM WEAK MEMORY MODEL

In this section, we propose an axiomatic concurrency model for the TCG IR (TIMM).
Based on this model, we propose formally verified mapping schemes from x86 to
Arm via the TCG IR. Our axiomatic concurrency models build upon the semantics
introduced in Chapter 1.

3.5.1 Arm Model

We use the Arm model from Section 1.3.3, but modify'> it subtly, as shown in Fig-
ure 19. We propose our fix to the Armed-Cats model (Alglave et al., 2021), where we
explicitly po-order the domain and co-domain of the CASy -generated amo relation be-
tween R, and W, events. That resolves the CASy problem described in Section 3.3.3
— we now ensure the CASy instruction acts as a full barrier, like CMPXCHG does in x86.

3.5.2 Formalizing TCG IR Concurrency

We begin with the TCG primitives with its generated events and relations.

Load and store accesses. TCG provides load (1d) and store (St) operations that read
and write shared memory locations, respectively, generating R and W events.

'5The model presented in Section 1.3.3 does not include the ‘po;[dom([R,];amo;[W,])]’ case of bob. When
we initially proposed our fix, we were not sure whether it was necessary. However, we later discovered that
case was not necessary for our mappings (in Chapter 4) and for the Armed-Cats mappings (in Chapter 5).
In this chapter, we keep it in the model as it remains in our corresponding Agda proofs.

67

3.6 MAPPING SCHEMES

ob is irreflexive (External)
where ob £ (obs U lob)™
obs = rfeU U fre
bob = po;[F];po U [R];po;[Fipl;po U [W];pos[Fsr];po;[W]
U po;[dom([Ra];amo;[Wi])] U [codom([R,];amo;[W,])];po
U ...

Figure 19: Armed-Cats Arm model (Alglave et al., 2021), corrected (marked green).

Fence accesses. TCG provides different types of fences: Frr, Fry, Fuu, Fur, Facq, Fretl,
and Fsc. These fences generate Frg, Frw, Fww, Fwr, Faco, Frer, and Fsc events respec-
tively. They can be combined to define stronger fences, e.g., we combine Frr and Fry, to
define Fry, that generates an Fry, event for the proposed mapping schemes. All these
fences order certain memory accesses which we capture in order (ord) relations. For
instance, a pair of po-related events (4, b) are in ord relation if 4 and b are W events
with an intermediate Fy. event following the ‘[W];po;[Fww];po;[W]’ rule. While TCG
contains both Fsc and Frr fences, they order identicallyw. Finally, the F,co and Fgg
fences do not enforce any order but remain for legacy reasons.

RMW accesses. TCG also provides a number of atomic read-modify-write (RMW) oper-
ations. These atomic RMW accesses follow Sequential Consistency (SC) semantics and
do not allow reordering with other accesses. A successful RMW generates a rmw-related
Rsc and Wi event pair, i.e., [Rsc];rmw;[Wsc]. A failed RMW generates only a single Rc
event. Finally, Rsc € R and Wse € W hold in the model. Events generated from RMW
accesses also enforce ord relation as shown in the ord definition.

Finally, we define global-happen-before (ghb) relation to order events across different
threads. On an execution graph, ghb(a, b) implies that there is a path from a to b by
ord and external relations rfe, , and fre.

Axioms. Based on these relations, we define the consistency constraints. Similar to
x86 and Arm, the TCG IR model also includes the Coherence and Atomicity axioms.
The GOrd axiom in Figure 20 ensures a global order between events.

3.6 MAPPING SCHEMES

Based on the proposed IR model, we verify the correctness of the transformations
(mappings and transformations). In particular, we again prove them correct (Defini-
tion 3 from Section 1.4) in the Agda proof assistant (Agda Team, 2025a).

6Their ordering rules (in ord) differ syntactically, but they order identically.

68

3.6 MAPPING SCHEMES

ghb is irreflexive (GOrd)
where ghb £ (ord U rfe U U fre)*
ord = [R];po;[Frel;pos[R] U [R];po;[Frw];pos[W]

[
U [R];po;[Frm];po;[R UW] U [W];po;[Fwz];po;[R]
U [W];po;[Fuwl;po;[W] U [W];po;[Fwml;pos[R U W]
U [RUWI;pos[Fux];po;[R] U [RUW];po;[Fyw];pos[W]
U [RUW];po;[Fuu];pos[R U W]
U po;[Wse U dom(rmw)] U [Rgc U codom(rmw)];po
U po;[Fsc] U [Fscl;po

Figure 20: Proposed TCG IR memory model (TIMM). TCG also satisfies the Coherence
and Atomicity axioms, like x86 and Arm.

Correct mapping schemes. We translate concurrency primitives from x86 to Arm
in two steps: (1) x86 to TCG IR and (2) TCG IR to Arm. We prove these mapping
schemes correct (Definition 3) in Agda, and also show they are precise (Definition 4).

x86 to IR mapping scheme. We give the mapping scheme in Figure 21a, which intro-
duces fences with the load and store accesses to enforce the same restrictions as x86.

» Theorem 7 (x86—IR Correct). The x86—IR mapping is correct (Definition 3).
We have proved Theorem 7 in Agda.
» Theorem 8 (x86—IR Precise). The x86—IR mapping is precise (Definition 4).

We prove Theorem 8 by showing each fence is necessary in some program. In x86
load-load and load-store accesses are ordered (formally by xppo) unlike that of IR.
To enforce these orderings (formally ord) in the generated programs we require the
trailing and leading fences with load and store respectively as shown in Figure 22.
Notably, although weaker fences are available in the IR, only a Frr or Fry is insufficient
to order the accesses, meaning the Fry is necessary after a load.

IR to Arm mapping scheme. We give the mapping schemes in Figure 21b.

» Theorem 9 (IR—Arm Correct). The IR—Arm mapping is correct (Definition 3).
We have proved Theorem g in Agda.

» Theorem 10 (IR—Arm Precise). The IR— Arm mapping is precise (Definition 4).

To prove Theorem 10, we analyze the fences in this mapping. If a TCG RMW gener-
ates RMW? access then it introduces leading and trailing DMBFF fences. These fences

69

3.6 MAPPING SCHEMES

x86 TCG IR TCGIR Arm
RMOV — ld;Frp 1d — LDR
WMOV — Fuu;st st — STR
CMPXCHG — RMW RMW — DMBFF;RMW?;DMBFF or CASy,
MFENCE — Fg Fre/Fru/Frm — DMBLD
Fuw — DMBST
Fur/Fan/Fsc — DMBFF
Facq/Frel = °
(a) x86 to TCG IR (b) TCG IR to Arm
x86 TCG IR Arm
RMOV — 1d;Frq — LDR;DMBLD
WMoV — Fuu;st — DMBST;STR
CMPXCHG — RMW — DMBFF;RMW?:DMBFF or CASaL
MFENCE — Fgc — DMBFF
(c) x86 to Arm via TCG IR
Figure 21: Verified mapping schemes for x86 to Arm via TCG IR
LB-IR MP-IR
X:Y:, X:Y:,‘ XZYZO, XZYZO,
a=Xb=Y, - a=X|b=V; X=%Llla=Y, — . a=Yy;
Y=1|X=1 e || R Y="1b=X% K=1;| Fre;
2 3 Fww} b=X
Y=1,||X=1; Y=1;
Disallowed outcome a = b = 1. Disallowed outcome a =1,b = 0.

Figure 22: Two examples to show the Fry and Fy, fences in the x86—IR mappings are
precise. Although weaker fences are available (e.g., Fry and Fyr), they are
too weak for some programs; LB-IR shows we need at least a Fy, after a
load, while MP-IR shows we need at least a Fyr, which we combine into
a trailing Fry for any load access in our mapping. The leading F,y fence
orders st-st in MP-IR. Hence we introduce a leading F,, with a store access

in the x86 to IR mapping.

3.6 MAPPING SCHEMES

are required'” to preserve the mapping correctness. The mapping scheme generates
a DMBLD from a Frr/Fry/Frn fence in the IR to preserve the order of a load with its
successor memory accesses. A Fyr/Fun/Fsc fence in the IR generates a DMBFF fence to
preserve the order between store-load pair on different locations. The Facq and Fre1
fences do not generate any instruction in Arm.

x86 to IR to Arm mapping. In Figure 21c, we combine the translations from x86 to
TCG IR and from TCG IR to Arm to obtain x86 to Arm translation.

Optimizing transformations. We prove various transformations correct on concur-
rency primitives in TCG IR correct (Definition 3) in Agda. The verified transforma-
tions ensure the correctness of the translations in Risotto.

Memory access eliminations: TCG performs constant propagation and folding on the
IR. These transformations may also be performed on shared memory accesses. Hence,
we prove the correctness of the following transformations on executions, where 4 - b
denotes po;,,m-related events with the labels a and b. These are the same eliminations
as those for LASAGNE, explained in Section 2.6.2, given in Figure 14. We had to sig-
nificantly rework their corresponding proofs from LIMM (in Chapter 2) to TIMM, as
these languages provide different concurrency primitives.

Fence merging: It is correct to merge a fence to a same or stronger fence. We can also
strengthen a fence to a stronger fence. We can combine these transformations as fol-
lows:
Foa - Fan S Fo - Foc T Fg

Reordering: The plain memory accesses are unordered in TCG IR unlike in x86, and
hence can be reordered freely. The proposed TCG IR model allows the reorderings of
independent memory access pairs on different locations. Moreover, dependencies do
not enforce any ordering in TCG IR unlike that of Arm, and hence TCG can remove
false dependencies. These transformations are formally correct as the TCG IR model
does not order accesses based on dependencies.

We prove that reordering a - b ~» b - a is correct where a and b are the labels
of non-RMW memory events which are independent and access different memory lo-
cations. The specific reorderings are the same as those for LASAGNE in Section 2.6.2,
given in Figure 13. Again, we had to significantly rework their corresponding proofs
from LIMM (in Chapter 2) to TIMM, as they provide different concurrency primi-
tives.

Mechanized Proofs: We prove the correctness of our transformations (Definition 3) —
from some source program P* to a target program P* — in three steps in Agda. First,
given a M®-consistent execution X; of P*, we define a source execution X, from P*.
Secondly, we relate the relations in M* and M* to show that X; satisfies the axioms
in M, because X; satisfies those of M*. Finally, we show that the X;.mo and X;.

7Chapter 2 illustrates this in Figure 12 — these are similar here.

71

3.7 IMPLEMENTATION

relations match, which means X; and X, have identical behaviors. The mechanized
proofs consist of roughly 14,000 lines of Agda (Agda Team, 2025a).

3.7 IMPLEMENTATION

Risotto is based on QEMU 6.1.0 (QEMU Team, 2003; Bellard, 2005). In Risotto, we
implement our verified mapping schemes with fast and correct translation of the x86
RMW instructions.

3.7.1 Formally Verified Memory Mappings

We implement the formally verified memory mappings from Section 3.5.2 in Risotto.
More precisely, we implement the mapping schemes from Figure 21. We obtain the
following performance benefits compared to the existing QEMU implementation.

Lightweight fences. Compared to QEMU that generates Fy- and Fyy, fences before load
and store operations, we generate Fry and Fy, fences in the TCG IR. While QEMU’s
fences end up as a DMBLD or DMBFF fence, our scheme produces either a DMBLD or a
DMBST fence. These fences are less costly in terms of performance than full fences Liu
et al. (2020).

Newly allowed reorderings. Enforcing the proper x86 model also allows for reorder-
ings of memory operations that were not possible with QEMU. Indeed, in our map-
ping scheme, there is no fence between a store and a load access. This allows store-
load access pairs to be freely reordered by the processor if there is no dependency
between them.

Fence merging optimizations. We implement an optimization pass over the TCG IR
to merge fences that have no intermediate memory access. We merge the fences as a
stronger one that suffices, and place it where the earliest fence was. As an example,
we show the translation of a program from x86 to Arm: (1) x86 to TCG IR following
Figure 21a, (2) fence merging, and (3) TCG IR to (4) Arm following Figure 21b.

a=X gom A=K merge 45 X; a =K
V=1 Fnd [— Fy; IR—Arm DMBFF;
R
Fopus V=1 Y=1;
Y=1;

False dependency elimination. We eliminate false dependencies (e.g., ‘X=a*0 ~»
X=0") on the TCG IR. It is trivially correct as the TCG IR model does not use depen-
dency relations for any ordering, unlike in Arm.

72

3.8 EVALUATION

3.7.2 Fast and Correct CAS Instructions

As previously detailed, QEMU translates CAS operations as calls to helper functions
that in turn rely on GCC built-ins. In order to avoid the correctness problems this
creates, as well as the performance degradation due to unnecessary jumps, we design
a direct translation of CAS instructions. In particular, we target the translation of the
x86 CMPXCHG instruction to Arm.

Risotto directly translates the x86 CMPXCHG instruction to the Arm CASy instruc-
tion, without using a helper function. We do this by adding a new instruction to the
TCG IR, CAS. Instructions implementing a CAS semantic in the guest ISA are trans-
lated to this new TCG IR instruction if the host supports native CAS. Otherwise, the
usual call to the helper function is generated. When translating back from TCG IR to
the host ISA, the CAS instruction is translated to the corresponding host CAS instruc-
tion. More specifically, in Arm, we translate it to a CASy| instruction.

Correctness. We follow the mapping schemes from Figure 21 for the RMW transla-
tion. An x86 CMPXCHG acts as a full fence, and only a successful CASy in Arm does the
same (see Section 3.2.3). Hence, we specifically map that CMPXCHG instruction from
x86 to Arm’s CASy.. As both have the same ordering semantics, their translation is
correct, as we have separately proven in Agda (Section 3.6).

3.8 EVALUATION

We evaluate Risorto with the Phoenix benchmarks (Ranger et al., 2007) and various
PARSEC 3.0 benchmarks (Bienia, 2011). First, we observe that dynamic translation is
inherently slower than native execution, by roughly 5-10x, which Risorto improves
upon. We first translate the programs without inserting fences, to understand their
effect on performance—this is clearly incorrect. After inserting the fences, we observe
they account for 48% of the execution time, on average. Those results highlight the
importance of reducing the overhead of fences. Our fence optimizations from Sec-
tion 3.6 account for an average improvement of 6.7% over baseline QEMU. Finally,
we observe that CASy outperforms baseline QEMU by 14.5% on average when there
is no contention for the accessed variable. However, when increasing the number
of threads and thus increasing the contention on shared variables, the performance
benefits of CASy diminish. Our paper (Gouicem et al., 2022) further details RisorT0’s
implementation and experiments'®.

3.9 CONCLUSION

We presented an end-to-end approach to provide correct and efficient execution of
legacy x86 software on the weak memory Arm architecture. To achieve this, we for-
malize QEMU’s TCG IR memory model, and use it to propose formally verified map-
ping schemes. We implement these schemes in Risotto, a QEMU-based DBT system

18 As my collaborators worked on RisoTT0’s system and experiments, I omitted those from this dissertation.

73

3.9 CONCLUSION

that optimizes fence placement while ensuring correctness. In contrast to our static
translator LasaGNE (Chapter 2), RisorTo uses Arm’s newer CASy| instruction for fast
and correct translation of x86 CMPXCHG instructions; whereas LASAGNE required an
11/sc instruction pair surrounded by two expensive DMBFF fences. Through our proof
mechanization, we observed Armed-Cats does not order CASy| instructions strongly
enough, for which we proposed a fix to the Arm model. An equivalent fix was later
accepted by the Armed-Cats authors (Alglave, 2022).

Future Work. While our static translator LasaGNE (Chapter 2) cannot translate all
programs, as recovering semantic information statically is undecidable, this chap-
ter’s RisoTTo avoids that limitation by recovering the information at runtime. Un-
fortunately, RisoTTo is roughly 5-10x slower than native execution, while LASAGNE
was only 2—3% slower. That performance gap could be bridged by combining the
strengths of both: By translating much of the program statically, while only dynami-
cally translating the few remaining parts. We address that challenge in Chapter 4.

Finally, two of LASAGNE’s limitations (Section 2.9) remain: (i) Risorto does not
consider mixed-size models (Flur et al., 2017; Alglave et al., 2021), where instructions
access memory in units of multiple sizes (e.g., 1/2/4/8-bytes); and (i) RisorTro’s 14,000
lines of Agda took significant proof engineering effort, which could be reduced by ab-
stracting away domain-irrelevant mechanization detail in a general proof framework.
We address the first limitation in Chapter 4 and the second in Chapter 5.

74

Chapter 4

Hybrid Program Translation with Mapping
Schemes

ABSTRACT The current landscape of binary translation systems is fundamentally lim-
ited in terms of completeness for static systems and performance for dynamic ones. To
address these limitations, we propose ARANCINI, a hybrid binary translator system
designed and implemented from the ground up that strives for correct, complete, and
efficient emulation for weak memory model architectures. ARANCINI makes three
foundational contributions to achieve these design goals: ARANCINIR, a unified in-
termediate representation for static and dynamic binary translators; a formalization
of ARANCINIR’s memory model and formally verified mapping schemes from x86
to Arm and RISC-V, to ensure strong-on-weak correctness; and ARANCINI, a com-
plete and performant hybrid binary translator, implementing the verified mapping
schemes for correctness. To our knowledge, ARANCINT is the first hybrid binary trans-
lator whose implementation is guided by formal proofs, to ensure correct execution
of strong memory guests on weak memory hosts. It is also the first translator to ad-
dress mixed-sized accesses for Arm targets.

4.1 INTRODUCTION

Binary translators effectively port applications across diverse architectures, partic-
ularly in the absence of source code. Given an application binary, such translators
may generate a binary for the new ISA statically —as seen in Chapter 2— or dynamically
execute the guest binary on the new host—as seen in Chapter 3. Despite significant
advancements, state-of-the-art binary translators suffer from challenges in (i) tackling
the complexities of modern concurrency primitives, (ii) statically translating certain
features without runtime information, and (iii) achieving good performance.
Concurrency poses subtle complexities in translating between ISAs. Architec-
tures such as x86, Arm, and RISC-V follow different architectural rules, such as their
memory hierarchy and out-of-order execution, and consequently, their memory con-
sistency models differ. The mismatch between the consistency models may result
in incorrect translation, particularly when translating from a stronger (e.g., x86) to a
weaker architecture (e.g., Arm or RISC-V). Because QEMU (QEMU Team, 2003; Bel-
lard, 2005), a state-of-the-art binary translator, sometimes translates programs irncor-
rectly (as explained in Chapter 3), it has to disable concurrency altogether, severely
affecting performance. To address this scenario, it is important to reason about the
memory consistency models of these architectures and the translations between them.
The consistency models of x86, Arm, and RISC-V, and correct translations be-
tween weak memory architectures have been widely explored (Lustig et al., 2015;

75

4.1 INTRODUCTION

Cota et al., 2017; Chapter 2; Chapter 3). However, the existing approaches do not
suffice for emerging properties such as mixed-size concurrency (Alglave et al., 2021;
Flur et al., 2017), resulting from the interplay between concurrency and mixed-size ac-
cesses (e.g., the Linux kernel’s Lockref structure explored by Alglave et al. (2021) and
Flur et al. (2017)). Hence, it is imperative to overhaul the reasoning about translation
correctness under the mixed-size concurrency models of architectures.

Besides correctness, existing binary translators face limitations in completeness
and performance. SBTs (Fu et al., 2018; Guo et al., 2016), including LasaGNE (Chap-
ter 2), bring performance but lack completeness as they cannot translate all features
ahead-of-time since static disassembly in itself is undecidable (Rice, 1953). In con-
trast, DBTs (QEMU Team, 2003; Spink et al., 2019), including Risorto (Chapter 3),
are complete but come with a significant performance penalty due to both runtime
compilation latency, and reduced optimization opportunities.

Modern hybrid systems (Shen et al., 2012b; Yang et al., 2024; Wang et al., 2019;
Microsoft, 2024), such as Apple’s Rosetta (Apple Inc., 2021), combine both to achieve
complete and performant translation, but do not provide any correctness guarantees,
require proprietary hardware to cope with the different memory-models (Jha, 2020),
or simply do not allow strong-on-weak translation.

To address these challenges, we propose ARANCINI, an end-to-end Hybrid Bi-
nary Translation (HBT) system, designed and implemented from the ground up, for
correct and efficient strong-on-weak binary translation with mixed-size accesses.

We address the correctness challenges by defining a weak memory model for
ARANCINT's intermediate language ARANCINIR, using which we prove memory access
mappings correct, from the strong guest to the weak host models. In particular, our
mappings correctly translate mixed-size accesses (Flur etal., 2017; Alglave etal., 2021)
from x86 to ARANCINIR to Arm. We implement those correct mappings in ARANCINL

Mixed-size extensions to weak-memory models introduce subtle complexities in
program behavior and translation correctness (Marmanis et al., 2025; Sato et al., 2025).
Although we developed mapping schemes from x86 to Arm in Chapters 2 and 3,
those did not consider mixed-size concurrency models. The mapping schemes from
x86 to Arm in this chapter address that challenge, which required extensive proof
mechanization efforts. Moreover, we discovered common access-splitting optimiza-
tions are incorrect under mixed-size concurrency. Finally, translating to RISC-V with
mechanized proofs is a new contribution over those earlier chapters.

We implement ArRaNcINI with an x86 frontend and two backends: Arm and
RISC-V. Our verified translation rules correctly enforce the x86 ordering on Arm and
RISC-V, even for subtle mixed-size accesses (on Arm).

Contributions. Our foundational contribution is a formal memory model for our
ARANCINIR and correctness proofs of memory mappings between x86, ARANCINIR,
Arm and RISC-V, mechanized in the Agda proof assistant (Agda Team, 2025a). These
translation rules direct the correctness of the translations (Section 4.4).

76

4.2 BACKGROUND AND MOTIVATION

42 BACKGROUND AND MOTIVATION

4.2.1 Weak Memory Concurrency

In Chapter 1 we already covered the general challenges of weak memory concurrency.
Here, we expand on a recent feature, being mixed-size concurrency.

Mixed-size concurrency. Recently, memory models started supporting mixed-size
accesses in units of multiple sizes (e.g., 1/2/4/8-byte units) (Flur et al., 2017; Al-
glave et al., 2021). For example, lockref and read-copy-update (RCU) implemen-
tations in the Linux kernel, Arm v8.0 ticketed spinlock, and the implementation of
FreeBSD/i386 PAE page tables perform mixed-size accesses in concurrent programs.
In addition, state-of-the-art architectures such as x86 and Arm provide instructions to
perform mixed-size accesses to optimize programs. These mixed-size accesses affect
concurrency behaviors, as shown in the following example:

Y is a 16-bit variable shared by the two concur-
Y = 0x01 || Y = 0x0203; rently running threads, initially 0. Y, and Yy
t=Y;) denote the least and most significant byte, re-
(iFee) spectively. The outcome Y=0x0203, t=0x0201

is forbidden in both x86 and Arm.

Correctness of binary translation. Ignoring the differences in weak memory models
across architectures can cause errors when translating between them. Correctly trans-
lating concurrent programs demands paying close attention to these formal memory
models. However, unlike our earlier approaches (Chapters 2 and 3), we also need
to reason about the mixed-size concurrency models to correctly translate mixed-size
accesses. Finally, while LAsaGNE and RisorTo translated only to Arm, we now also
target RISC-V, demanding separate formal examination.

4.2.2 Static Binary Translation

Binary translators traditionally classify as either static, translating binary programs
ahead of time, or dynamic, translating them at runtime. Each approach offers unique
strengths, which we incorporate in our solution.

Since a Static Binary Translation (SBT) translates programs before execution, it
can spend some time optimizing the code before generating the final program. To
do so, state-of-the-art SBTs often [ift binary programs to a higher-level IR (Bougacha,
2022; Trail of Bits, 2022; Yadavalli and Smith, 2019; Avast Developers, 2022; Shen et al.,
2012a), such as LLVM IR (LLVM Team, 2025; Lattner and Adve, 2004). After lifting,
these programs benefit from numerous optimizations implemented in LLVM. Addi-
tionally, as LLVM is a compiler infrastructure, it naturally generates code for the target
architecture. As LLVM handles much of the complexity, the primary challenge in
static translation is lifting the source binary program to an IR.

77

4.2 BACKGROUND AND MOTIVATION

Completeness of binary translation. SBTs are necessarily incomplete (Rice, 1953; An-
driesse et al., 2016), meaning they cannot translate all programs. When compiling
a program written in a high-level language, much information is lost. In particular,
control flow structures and jump targets are removed. Reconstructing that informa-
tion from a binary is difficult in practice and impossible in general (Rice, 1953). Addi-
tionally, lifting binary programs brings issues that do not exist in the source language,
such as distinguishing between pointers and constants, or between data and instruc-
tion bytes (Andriesse et al., 2016). Consequently, state-of-the-art SBTs (Trail of Bits,
2022; Kim et al., 2025) —including our LasaGNE (Chapter 2)- fail to lift many binary
programs.

4-2.3 Dynamic Binary Translation

In contrast, a DBT can be complete, since it only translates program fragments at
runtime within their local execution contexts. For instance, the state-of-the-art DBT
QEMU (QEMU Team, 2003; Bellard, 2005) translates a binary program at basic-block
granularity to its TCG IR QEMU Team (2025). State-of-the-art DBTs (QEMU Team,
2003; Spink et al., 2019; Hong et al., 2012; Cota et al., 2017) —including our Risorto
(Chapter 3)-distinguish themselves by emulating different fragments of the host ma-
chine, such as different RMW instructions and floating-point operations.

TCG IR. Static and dynamic translators operate at different levels of abstraction, and
thus their IRs embody different design decisions. While LLVM IR was designed to
compile high-level languages, where control flow is known, TCG operates on smaller
local fragments together with runtime information.

Performance of binary translation. Unfortunately, while local translation ensures
completeness, it lacks a global program view, preventing many optimizations. To
showcase the performance gap between DBT and SBT, we compare our'? cross-ISA
binary translators, LasaGNE (Rocha et al., 2022) and RisorTto (Gouicem et al., 2022),
against native host binaries for the Phoenix (Ranger et al., 2007) benchmark suite,
which both translators use in their evaluation.

While RisoTTO is 5-10X slower than native, LASAGNE manages to generate bina-
ries that are only 2-3x slower. LASAGNE performs so well for two reasons: (i) it relies
on the LLVM compiler and its function-level optimizations, and (ii) it doesn’t need to
fully emulate the x86 CPU state (unlike DBTs). This performance overhead makes
DBTs unappealing, it’s completeness is valued more in practice. In the current land-
scape of binary translation, one has to choose between completeness and performance.

9 Although Chapters 2 and 3 present the formal memory models and mappings of LASAGNE and RisoTToO,
their corresponding publications include the experimental results — as those were not my personal contri-
bution.

78

4.3 OVERVIEW

4.2.4 Proposal: A Correct Hybrid Binary Translator

While formal reasoning over memory models grants correctness, and DBT grants com-
pleteness, we can take advantage of SBT as much as possible to gain performance. Hence,
to address performance, completeness, and correctness, we propose an end-to-end
hybrid binary translation system that: (i) statically generates performant binaries; (i)
provides dynamic capabilities to achieve completeness; and (iii) relies on formally
verified translation rules for concurrent programs.

43 OVERVIEW

In this section, we present ARANCINI, an end-to-end hybrid binary translation system
that can translate a binary compiled for one ISA into an equivalent binary that will run
on another ISA, especially targeting weak memory model architectures. ARANCINI
statically lifts as much of the program as possible, like LASAGNE (Chapter 2). However,
unlike LasaGNE, which aborts upon encountering fragments it cannot lift statically,
ARANCINI translates those dynamically, like Risorto (Chapter 3).

4.3.1 Design Challenges and Key Ideas

Combining static and dynamic translation presents several challenges, arising from
their conflicting requirements. We identify three core challenges that must be over-
come to effectively implement a hybrid translation scheme.

Challenge #1: Bridging the gap between static and dynamic binary translation.
IRs like TCG IR or LLVM IR, used by different translators, are designed for a single
translation scheme only. While TCG IR is low-level and designed to efficiently encode
guest hardware state, its small translation units prohibit global optimizations. LLVM
IR provides high-level constructs, such as functions, to perform such optimizations.
However, the aggressive optimizations that it can perform are often time-consuming
and memory-heavy, making it too slow for use in dynamic translation.

We design ARANCINIR to facilitate both high-performance static translation and
low-overhead dynamic translation, using a single frontend to reduce translation mis-
matches.

Challenge #2: Ensuring architectural correctness. Any translation system needs to
honor the semantics of the guest architecture, in the generated translated code. We
particularly consider the memory ordering semantics, which can be vastly different
between two architectures, as we already explained in Chapters 1 to 3. However, we
must again now the translation from x86 to ARANCINIR to Arm, which differs from
our mapping schemes in Chapter 1, which used LIMM as intermediate model; and
Chapter 3, which used TIMM as intermediate model. In addition, those prior map-
pings do not give any formal guarantees for mixed-size accesses, which is a primary
challenge we address in this chapter.

79

4.4 AIMM WEAK MEMORY MODEL AND MAPPING SCHEMES

x86 ARANCINIR Arm | RISC-V
RMOV — 1d; Frp — LDR; DMBLD | LD; Frp
WMoV — Fyw; St — DMBST; ST | Fuu; ST
CMPXCHG — RMW — CASpL | RMWsc
MFENCE — Frnm — DMBFF | From
Frr/Fru - DMBLD | Errﬁrw/
Fur /Fun/ | Fur/Fum
Frr/Fru - DHBFF | For/Fmou

Figure 23: Verified mapping from x86 to Arm and RISC-V via ARANCINIR.

4.4 AIMM WEAK MEMORY MODEL AND MAPPING SCHEMES

In this section, we propose the formal ARANCINIR memory model (AIMM). In par-
ticular, we prove mapping schemes between those architectures correct, using existing
architecture semantics that describe their weak memory behavior. We show those re-
sulting mapping schemes in Figure 23, whose implementation in ARANCINI formally
guarantees correct translation of weak memory behaviors from x86 to Arm and RISC-
V. Specifically, our mapping restricts the weak behaviors on Arm and RISC-V to those
observable on x86. In this section, we formally define AIMM and give a high-level
explanation of our proofs for those mappings, which we mechanized in the Agda
proof assistant (Agda Team, 2025a).

4.4.1 Mixed-Size Accesses

We build upon the semantics introduced in Chapter 1, but extended with another
primitive “same instruction” relations si to capture semantics for mixed-size accesses
(Flur et al., 2017; Alglave et al., 2021). In the prior non-mixed models, every load
instruction generates one R event and every store instruction generates one W event. In
mixed-size models, either instruction can generate multiple events of the same type.
For instance, a 16-bit load generates two R events, one for each byte read, connected
by a si edge; similarly, a 32-bit store generates four W events, all connected by a si
edges. Hence, si is an equivalence.

We use existing mixed-size x86 and Arm models from Alglave et al. (2021), where
latter uses updated definitions by Alglave and Maranget (2025), particularly those
including the CASy fix (Alglave, 2022) (from Section 1.3.3). Note that RISC-V does
not currently have a formal mixed-size model.

Example. Consider the Mixed execution in Figure 24. Contrary to models without
mixed-size accesses, the program order (po) is 1ot total per thread, as si-related events
occur simultaneously in po. Observe that accessing 16-bit location Y produces two si-
related 8-bit accesses. The outcome is disallowed by the rfe;si;fre;si cycle in all models.
However, observe that splitting either 16-bit access instructions of Y into two 8-bit

8o

4.4 AIMM WEAK MEMORY MODEL AND MAPPING SCHEMES

[YH Y =0]

Ny

W(Yr, ®x01) W(YH, 0x02)<—>W(YL, 0x03)

£ rfe i
R(Ye, 0%02) «— ZR(YL, 0x01)
Sl

Figure 24: Execution of the Mixed program, with outcome Y=0x0203,=0x0201, which
is forbidden in x86 and Arm. Observe that, without the si edges, there are
no cycles — which means the executions would be allowed if we had not
modeled si edges.

accesses (to Yy and Y;) discards the corresponding si edge, thus breaking the cycle
and allowing the outcome.

4-4.2 Concurrency Model: AIMM

We define the ARANCINI concurrency primitives and their corresponding generated
ARANCINIR events and relations in an execution.

Memory accesses. ARANCINI provides load (1d) and store (St) operations that respec-
tively read from and write to shared memory locations. 1d and st accesses generate
R and W events. It also provides an atomic read-modify-write (RMW) operation, which
orders with surrounding events, like x86’s CMPXCHG, Arm’s CAS, and RISC-V’s RMWsc.
To ensure it also orders upon failure, we define the ARANCINIR to generate a distinct
Rsc event and, if successful, a subsequent rmw-related W event.

Fence accesses. ARANCINI provides different types of fences: Frr, Fry, Frn, Fur, Fuu,
Fun, For, Fnu, and Fpp. These fences generate Frr, Frw, Frm, Fwrs Fww, Fwm, Furs Faws
Fum events, respectively. All these fences order certain memory accesses which we
capture in order (ord) relations. For instance, a pair of po-related events (a,b) are
in ord if 2 and b are R events with an intermediate Fgz event, which follows the
[R];po;[Frr];po; [R] case of ord.

Relations. Next, to capture mixed-size accesses, we compose rfe, , and fre rela-
tions with the si relation, denoted by rfe;si, ;si, fre;si respectively. For example, if
(w,r) € rfeand (r, e) € si then w and e are ordered by rfe;si, which can happen when
reading 16 bits from two distinct 8-bit stores. Finally, we define global-happens-before
(ghb) order using ord, and rfe;si, ;si, fre;si relations to order events across different
threads.

Axioms. Similarly to all the architectures, our AIMM model also satisfies the Co-
herence and Atomicity axioms (from Chapter 1). In addition, the GOrd axiom below
ensures acyclicity of the ghb order in an AIMM execution.

81

4.4 AIMM WEAK MEMORY MODEL AND MAPPING SCHEMES

ghb is irreflexive (GOrd)
where ghb = (ord U (rfe;si) U (moessi) U (fre;si))®
ord = [R];po;[Fre];po;[R] U [R];po;[Frwl;po;[W]

U [R];po;[Frm];po;[R U W]

U [W];po;[Fww];pos[W] U
U [RUW];po;[Fur];pos[R] U
U [RU W];po;[Fyum];pos[R U W] U
U [Rsc];po;[R U W] U

U [W];pos[Fur];po;[R]
[WI;po;[Fwml;pos[R UW]
[RUW];po;[Fuwl;po;[W]
[codom(rmw)];po;[R U W]
[RUW];pos[Wec]

The ord relations captures the preserved thread-local orders between instructions,
like xlob in x86, ob in Arm, and rppo in RISC-V (from Section 1.3). Notably, ARANCINI's
nine fences give fine-grained control over ordering behavior, unlike Arm. In addition,
RMW-generated Ry and Ws. events order with many surrounding events — together
with the rule with ‘codom(rmw)’, those rules ensure a rmw orders like a full fence. Fi-
nally, because ghb includes the si edges, the Mixed execution in Figure 24 is disallowed
in AIMM, like in x86 and Arm - it has a ‘(rfe;si);(fre;si)’ cycle.

4-4.3 Mappings and Optimizations

We define the mapping schemes in Figure 23 and prove them correct.

Correct mapping schemes. We translate concurrency primitives from x86 to Arm
and RISC-V in two steps: (1) x86 to ARANCINIR and (2) ARANCINIR to Arm/RISC-V.
We prove them correct (Definition 3 in Section 1.4) in Agda (Agda Team, 2025a). The
mappings are also precise (Definition 4), meaning each fence in the mapping is needed
for at least one program.

Figure 23 also contains the full composed mappings, combining their respective
components. We need not explicitly prove correctness (Definition 3) again, as the
components trivially compose. From x86 to Arm, the guarantees extend to mixed-
size accesses. However, as RISC-V does not have a mixed-size model, the proofs of
its corresponding mappings do not consider them either. As a consequence, the com-
posed x86— AIMM —RISC-V mapping does not guarantee correctness of mixed-size
accesses.

Optimizations. Although ARANCINIR allows optimizations (like LIMM and TIMM
in Section 2.6.2 and 3.6), through our proof efforts we observed that splitting memory
accesses is invalid. For instance, it is incorrect to split a 16-bit store to X into two
separate 8-bit stores to its most-significant Xy and least-significant X; byte (with X
initially 0):

82

4.5 EVALUATION

X 2 ox1234; || aZx; X, 2 oox34; || alxg;
I:rm;s -+ Xy g 0x12; Frm;
Xy 2 OXFF; Xy 2 OxFF;

In the original program (left), producing X = 0x1234 at the end means that 2 = 0
because the right thread completed before the left starts. However, by splitting the
16-bit store to X, we incorrectly introduce the additional outcome X=0x1234, a=0x34.
This is not merely a consequence of AIMM’s decisions, as splitting accesses is also
incorrect in x86, Arm, and RISC-V. In general, correctly splitting accesses requires
globally locking the split instructions.

4-4-4 Proofs

We mechanize all our proofs in Agda (Agda Team, 2025a). Regarding mixed-size
accesses, we model the si relation as an equivalence relation between a pair of R-R or
W-W accesses. Our particular proof mechanization challenges include:

¢ The definitions of the mixed and non-mixed architecture models for x86 and Arm
are structured very differently, making our novel mechanized proofs very different
from our previous non-mixed proofs between x86 and Arm (Chapters 2 and 3).

¢ As the RISC-V model differs significantly from Arm, it required additional proof
efforts.

* Modeling the si relation and related lemmas affects significant parts of the other
proof components.

4.5 EVALUATION

We evaluate®® ARANCINI around three dimensions: performance, completeness, and
correctness. First, we observe that the programs we translated with ARANCINI are, on
average, 8.01x slower than native for Arm and 4.52X slower for RISC-V. In particu-
lar, we observe ARANCINI often performs better than our dynamic translator Risorto
while sometimes performing similarly. Second, we observe that ARANCINI is more
complete than our static translator LASAGNE, as it can translate all programs in the
Phoenix benchmark suite (Ranger et al., 2007), which is two more than LASAGNE. Fi-
nally, we note that both LasaGNE and RisorTo did not provide any formal guarantees
for translating mixed-size accesses, which ARANCINI does with its mapping schemes
proved over the newer mixed-size models.

29 Asmy collaborators worked on ARANCINI’s system and experiments, I omitted them from this dissertation.

83

4.6 CONCLUSION

4.6 CONCLUSION

In this chapter we presented our hybrid binary translator ARANCINI. Contrasting our
prior static translator LAsaGNE (Chapter 2), which cannot lift all programs, ARANCINI
seamlessly switches to dynamic translation whenever static translation is impossi-
ble (e.g., for dynamic jump targets). However, contrasting our dynamic translator
Risorto (Chapter 3), the hybrid approach translates many program fragments before
executing the program, benefiting performance.

Most notably, we defined another memory model AIMM for ARANCINI which
captures the subtle semantics of mixed-size accesses, unlike LIMM (Chapter 2) and
TIMM (Chapter 3). Consequently, ARANCINI guarantees correct translation of weak
memory behaviors from x86 to Arm through AIMM. In addition, unlike our prior
mapping schemes, we defined and proved a mapping scheme to RISC-V.

Future Work. A primary limitation of the proofs of LasaGNE (Chapter 2) and Risorto
(Chapter 3) remains with ARANCINI: They are a large and rigid code base. In Chapter 5
we address that limitation by defining a general proof framework for mechanizing
axiomatic weak memory proofs in Agda, allowing future proof engineers to ignore
domain-irrelevant mechanization details when writing such proofs.

With ARANCINI we improved performance over dynamic translation (Chapter 3),
getting closer to static translation (Chapter 2). However, binary translation has inher-
ent overheads, largely originating from the compilation process that produced the
x86 binary, where information was lost that cannot fully be reconstructed. Instead,
we could take an alternative approach from binary translation when: (i) we have the
program source code, and (ii) we have time to thoroughly analyze the program. Un-
der those conditions we expect to insert significantly fewer fences, which we explore
in Chapter 6.

84

Binary Translation Related Work

Here we give the related work shared by Chapters 2 to 4, primarily on concurrency
semantics and binary translation.

CONCURRENCY SEMANTICS

High-Level Languages. Compiling concurrency primitives in programming lan-
guages is well-studied by Batty et al. (2012); Sarkar et al. (2012); Alglave et al. (2014);
Petri et al. (2015); Podkopaev et al. (2019). However, compiling a program written
in a high-level language (e.g., Java or C/C++) to low-level machine code differs from
our context of translating between low-level languages in two primary ways:

* Weak memory models of high-level languages often contain elaborate inter-thread
synchronization sequences (Batty et al., 2011; Lahav et al., 2017), while the archi-
tecture models we consider capture reordering locally per thread.

* Data races result in undefined behavior in C/C++ (Batty et al., 2011; Chakraborty
and Vafeiadis, 2017, 2019; Kang et al., 2017; Lahav et al., 2017), while in LLVM a
read-write race has defined behavior where the racy read returns undef and write-
write races result in undefined behavior (Chakraborty and Vafeiadis, 2017). In
contrast, the architecture models we consider do not have undefined behavior.

Hence, those existing language models and their corresponding compilation correct-
ness results do not apply when translating between architectures. Our models are
closer to hardware memory models and have no undefined behavior.

Intermediate Languages. Similar to our LIMM (Chapter 2), TIMM (Chapter 3), and
AIMM (Chapter 4) memory models, which are intermediate between architectures,
Podkopaev et al. (2019) propose an “intermediate memory model” IMM, which is in-
termediate between high-level languages and architectures. As IMM is primarily
used to compile C++ to various architectures, it captures semantics for many C++
concurrency primitives (Lahav and Margalit, 2019), while mappings from promising
semantics (Kang et al., 2017) to IMM are also proven correct. Finally, they proved
mappings to various architectures, including x86-TSO, Armv8, and RISC-V, which
we also consider.

Unlike our models, IMM orders memory accesses with dependencies, which ex-
isting LLVM optimizations do no preserve. As a consequence, adapting IMM to our
context while preserving correct compilation requires to either (i) restrict or disable
those optimizations, which would reduce performance of the resulting program; or
to (i) explicitly check IMM-specified dependencies during compilation and adapt
existing optimizations to use that information, which would require extensive com-
piler modifications. Instead, we explicitly developed our models to enforce no such
ordering, meaning we can safely apply existing optimizations.

85

BINARY TRANSLATION RELATED WORK

Transformations. Program transformations under weak memory models have been
studied extensively. Morisset et al. (2013); Chakraborty and Vafeiadis (2016); Vafeiadis
et al. (2015) have identified errors in existing C++ compilers, while Sev¢ik and As-
pinall (2008) identified errors when compiling Java. Kang et al. (2017); Lee et al.
(2020); Vafeiadis et al. (2015) propose general memory models on which common
optimizations are correct, as we do for binary translation with LIMM, TIMM, and
AIMM. Sevéik (2011) proves common transformations correct for a C++-like model,
as we do for our models.

Differences between Memory Models. Similar to our examination of weak memory
model differences between x86, Arm, and RISC-V, others have also studied differ-
ences between weak memory models. Adve and Hill (1993); Adve and Gharachorloo
(1996); Higham et al. (1997); Steinke and Nutt (2004); Higham et al. (2007); Alglave
(2012) introduce formal frameworks to express characteristics of different memory
models, while Mador-Haim et al. (2010); Alglave et al. (2010); Wickerson et al. (2017)
propose automatic approaches to identify differences between models. In contrast,
we developed intermediate formal memory models that are intermediate between
architectures. We used a proof assistant to establish that behavior is preserved when
translating between architectures with our mapping schemes.

Similar to how our mapping schemes enforce a strong model on a weaker ar-
chitecture, Shasha and Snir (1988); Sura et al. (2005); Lee and Padua (2001) propose
program analysis algorithms that identify where fences (and synchronization) must
be inserted to enforce a stronger model. Vafeiadis and Zappa Nardelli (2011); Elhorst
(2014); Morisset and Nardelli (2017) propose algorithms to eliminate excessive fences;
as we do with our local fence elimination and merging rules. Unlike those other ap-
proaches, our context of (dynamic) binary translation has little runtime computation
budget for program analyses. Our mapping schemes thus always insert fences with
memory accesses, while we separately define local fence optimizations. Although
our approach does not minimize the total number of fences, it works well in our
resource-constrained settings. Regardless, any approach—even with unlimited com-
putation budget—would insert too many fences, in general, as optimal fence place-
ment is undecidable (Atig et al., 2012).

Robustness Enforcement. Robustness (or stability) based approaches check, by ex-
ploring executions, if a given program is SC-robust against weaker models, inserting
fences otherwise (Bouajjani et al., 2013a; Liu et al., 2012; Alglave et al., 2017; Lee and
Padua, 2001; Shasha and Snir, 1988; Linden and Wolper, 2011, 2013; Abdulla et al.,
2015b; Margalit and Lahav, 2021; Lahav and Margalit, 2019; Oberhauser et al., 2021;
Chakraborty, 2021). In contrast, our schemes require no program analysis, e.g., model
checking, as they are correct for any program. While our mappings often insert more
fences than needed, they are easily applied to large programs, unlike expensive anal-
ysis approaches.

86

BINARY TRANSLATION RELATED WORK

Recently, Beck et al. (2023) proposed AtoMig to migrate large programs from x86 to
Arm, like our binary translators. AtoMig analyzes LLVM IR programs to identify
x86-TSO robustness violations on Arm. As it has access to program source code,
it preserves more of the original program written in a high-level language, making
its produced programs perform better than our LASAGNE’s (Beck et al., 2023, §4.3).
However, unlike our mapping schemes, AtoMig is not formally correct, meaning it
may insert too few fences.

BINARY TRANSLATION

Static Binary Translation. Static translators translate instructions one-by-one from
one ISA to another (Andrews and Sand, 1992; Sites et al., 1993). More recently, several
static translators have adopted intermediate representations (Bougacha, 2022; Trail
of Bits, 2022; Yadavalli and Smith, 2019; Avast Developers, 2022; Shen et al., 2012a),
enabling the lifted code to be further optimized and more easily compiled to different
targets. These existing works cannot translate concurrent programs from strong to
weak architectures.

Dynamic Binary Translation. Many dynamic binary translators precede our RisorTo,
such as those by Cota et al. (2017); Guo et al. (2016); Hong et al. (2012); Wang et al.
(2011); Ding et al. (2011); Lustig et al. (2015). Particularly, Rosetta 2 is a commer-
cial tool for Apple Silicon (Apple Inc., 2021) that translates x86 programs to the Arm
ISA. However, Apple Silicon implement both Arm and x86-TSO models in hardware.
Rosetta 2 thus handles the memory model mismatch by enabling the latter model
when translating legacy x86 programs (Jha, 2020). In contrast, our mapping schemes
are entirely software-based.

Various QEMU-based DBTs emulate multi-threaded programs. Most of them do
not address mismatches among memory consistency models (Ding et al., 2011; Wang
et al,, 2011; Hong et al., 2012). Lustig et al. (2015) propose ArMOR where a specifi-
cation format defines the ordering of memory accesses in architectures, allowing it
to identify the required fences during a program execution. However, they do not
handle the subtle semantics of RMW accesses and dependency based orderings. We
handle these features while reasoning about the translation rules. Moreover, for x86
to Armv8 translation, ArMOR uses release-acquire accesses and enforces SC seman-
tics on Arm. Pico (Cota et al., 2017) follows ArMOR rules in its mappings, but does
not provide any formal guarantee of correctness. Moreover, they focus on translation
from PowerPC to x86, which is different from our schemes.

87

Chapter 5

Weak Memory Mapping Proofs in Agda

ABSTRACT Writing correct transformations for concurrent programs on weak mem-
ory architectures is challenging, particularly because architectures show various weak
behaviors. To ensure those transformations are correct, one must prove them correct
by thoroughly inspecting the subtle weak memory semantics of the relevant archi-
tectures. Writing such proofs is often time-consuming and prone to errors.

To address this challenge, we propose the domain-specific proof framework Bur-
ROW to mechanize axiomatic weak memory semantics and prove the corresponding
transformations correct in the Agda proof assistant.

First, we identify challenges in mechanizing weak memory proofs, which are
often overlooked in pen-and-paper proofs. Second, we explain our domain-specific
proof primitives, with which we prove large fragments of weak memory mapping
proofs generally, allowing programmers to focus only on the interesting parts of their
proofs. Finally, we use BURROW to prove a conjectured mapping from x86 to Arm.

5.1 INTRODUCTION

Formal proofs can that show transformations in weak memory models (Alglave et al.,
2014, 2021) are correct. These proofs are complex, involving many subtle cases, and
are often error-prone (Sarkar et al., 2011, 2012; Batty et al., 2016; Manerkar et al., 2016).
To avoid missing cases, we can mechanize these proofs in a proof assistant, such as Agda
(Agda Team, 2025a), to significantly increase their reliability.

Existing approaches (Podkopaev et al., 2019; Alglave et al., 2014; Batty etal., 2011;
Doko and Vafeiadis, 2016) often bring significant theoretical contributions. For in-
stance, by finding errors in existing models (Chakraborty and Vafeiadis, 2016, 2017),
repairing those models (Lahav et al., 2017; Chapter 3), or introducing altogether new
models (Podkopaev et al., 2019; Batty et al., 2011; Kang et al., 2017). However, mech-
anizing such theoretical results in a proof assistant is an orthogonal problem, which
few solutions address. Primarily, IMM (Podkopaev et al., 2019) proposes an inter-
mediate memory model for compiler correctness proofs, accompanied by significant
mechanized proofs in Rocq (Bertot and Castran, 2010).

A remaining issue is that writing mechanized proofs is time-consuming, as was
the case for our proofs in Chapters 2 to 4. Proof assistants simplify mechanization
in various ways; for instance, idiomatic Rocq favors extensive use of tactics to auto-
matically solve goals. In contrast, Agda’s explicit term manipulation with dependent
pattern matching and easy syntax extensions — but lack of tactics — emphasizes using
the right formalization abstractions (Agda Team, 2025¢c). While proving the mapping
schemes in the previous chapters, we discovered commonalities in their proof struc-

88

5.2 BACKGROUND

tures, which benefit from abstractions to reduce their proof complexity.

We propose the domain-specific proof framework BuRrROw, to mechanize weak
memory transformation proofs in Agda. BurRrow includes primitives and abstrac-
tions, addressing formalization patterns commonly appearing when proving axiomatic
weak memory transformations by contradiction. BURROW greatly reduces the mecha-
nization effort and “boilerplate code” needed for weak memory transformation proofs.

Contributions. We make the following contributions:

* Clarify Weak Memory Definitions — Although weak memory semantics (Alglave
etal., 2014) are formal models, many of its definitions are given only implicitly; par-
ticularly, various definitions needed for proof mechanization are missing. While
pen-and-paper proofs may permit unspecific definitions, mechanized proofs de-
mand meticulous specifications. We identify and clarify several such definitions
(Section 5.3).

* Relation Proof Library Dopo — Axiomatic weak memory semantics are defined
over predicates and binary relations. While Agda’s standard library (Agda Team,
2025b) includes many relevant definitions, many more are needed for weak mem-
ory proofs. As those definitions are not specific to weak memory, we develop these
from the ground up in a proof library Dopo.

¢ Transformation Proof Framework Burrow — We identify several domain-specific
abstractions for weak memory transformations proofs, while also proving large
fragments generally. We develop, from the ground up, the Agda proof framework
Burrow for weak memory transformation proofs (Section 5.4).

¢ Case Study: x86=Arm Mapping Proof — We demonstrate BURROW'’s effectiveness
by proving a conjectured mapping from x86 to Arm correct (Alglave et al., 2021).
Crucially, the mapping was originally incorrect —as we explained in Chapter 3—but
would be correct after fixing the model (Alglave, 2022). To the best of our knowl-
edge, we are the first to prove it correct under that fixed Arm model (Section 5.5).

52 BACKGROUND

We have already thoroughly explained the intricacies of weak memory semantics in
Chapter 1. In this chapter, we build on those same models and definitions; we start
by looking at the structure of the theorems we prove with BURROw.

5.21 High-Level Theorem Statement

To ensure that a weak memory transformation is correct, we must guarantee that it
introduces no additional behavior. In Chapter 1 we saw that programs may generate
any of multiple executions. From those intuitions we can visualize the correctness
criterion as follows (corresponding to Definition 3 from Section 1.4):

89

5.2 BACKGROUND

—_—
Ps map]P’t

l execute

GS 2behavior Gt

execute l

The source program P* executes under the source memory model, producing a set of
executions G®. The source program’s syntax ‘map’s to a target program P*. P* executes
under the target model, also producing a set G'. For each graph set, we consider its
set of behaviors (from Definition 2); as the transformation must not introduce new
behaviors, we require ‘{ behavior(X!) | Xt € G! } C { behavior(X®) | X® € G* }.

Program 1: Mechanized Theorem Statement (Agda)

proof :
-- Given a target execution
{dst : Execution}
-- Which is well-formed
(dst-wf : WellFormed dst)
-- lWlhich is consistent with the target language's memory model
(dst-ok : IsDstConsistent dst)
-- and produced by a program whose syntax was mapped by the mapping scheme
(dst-res : MappingRestricted dst)
»-- lle produce a source execution
i[src]
(-- Which is well-formed
WellFormed src
x —— llhich is consistent in the source language's memory model
IsSrcConsistent src
x —— and produced by the source program mapped to produce ‘dst‘
SyntaxMapped src dst
x —— Terminating with the same memory as ‘src'
behavior src ¢, behavior dst)

We selected Agda (Agda Team, 2025a) as our proof assistant, within which we mech-
anize the high-level theorem statement in Program 1. We aim to keep our Agda no-
tation close to mathematical notation. Agda is a dependently-typed functional pro-
gramming language, where types are theorems. We prove a weak memory mapping
correct by finding an inhabitant of proof. For each particular target execution X' € G,
we produce a source execution X® € G®. In the subsequent Sections 5.3 and 5.4 we ex-
pand on the definitions, but give an overview here:

e WellFormed — Well-formed executions “make sense”, which is formally captured
with properties about events and primitive relations (e.g., ff € WxR, rmw C po,
and memory being initialized once at the start). We expand on its many intricacies
in Section 5.3.2.

90

5.3 WEAK MEMORY MECHANIZATION

e IsDstConsistent / IsSrcConsistent — Capturing the axiomatic semantics of the
target and source languages, respectively.

 MappingRestricted - Although we do not model the program syntax, we must re-
strict the target execution to those produced from mapped programs; for instance,
if a mapping does not produce fences, there is no way for its corresponding event
to appear in the target execution.

* SyntaxMapped — Similarly, we must capture the instruction mapping over the ex-
ecution graphs. Intuitively, we “lift” the mapping from syntax to semantics. For
instance, it captures every x86 R mapping to an Arm Rg event (i.e., acquirePC-
load).

* behavior — Capturing the terminal state of program memory, which must be un-
affected by the transformation.

53 WEAK MEMORY MECHANIZATION

When writing pen-and-paper proofs, many subtle details can be ignored, often to
prioritize interesting parts. In contrast, proof mechanization demands meticulous
specification of all details. In this section, we identify and clarify issues in mechaniz-
ing weak memory models.

These challenges are independent from transformation proofs (Section 5.4) and
appear regardless of the chosen proof assistant. We thus present them generally,
but give our Agda solution as reference. We use mathematical definitions for unary
predicates and binary relations, which we mechanized in our separate Agda proof
library Dopo.

5.3.1 Implicit Definitions
First, we inspect definitions that existing works (e.g., by Alglave et al. (2014); Pod-
kopaev et al. (2019)) give only implicitly in writing.

Locations and Values are Natural Numbers. The R and W events access memory
locations and the values contained within them. In computer hardware, an (32-bit)
x86 CPU can address at most 232 bytes of memory, requiring memory addresses to
be 32 bits in size. Additionally, the values are individual bytes (i.e., 8 bits) that are
individually addressable. That would imply locations are 32-bit integers while values
are 8-bit integers for x86 CPU’s.

Following the same line of reasoning, x86-64 and AArch64 CPUs would have
64-bit locations —or 48-bits (Intel Corporation, 2025; AMD, 2024)- with 8-bit values.
However, when formalizing weak memory semantics, such details are largely irrel-
evant. The proofs consider the structure of the execution graph, rather than the ter-
minal memory state (i.e., we prove graph robustness rather than state robustness, as

91

5.3 WEAK MEMORY MECHANIZATION

defined by Lahav and Margalit (2019)). Thus, locations and values should be mod-
eled as natural numbers, abstracting away from architectural bit widths.

Tag RMW events. When an atomic RMW instruction succeeds, an rmw relation relates its
R and W. However, the RMW fails when an another thread writes to the same location
in-between the atomic read-and-write; in that case the RMW does not write its value,
the W event is not generated, and the rmw remains absent from the execution graph.

As weak memory semantics represent only the execution graph — but not the
program syntax —we cannot know whether a given R event was produced by a regular
read instruction or a RMW. However, that difference matters for mapping proofs. For
instance, their instructions may map differently (e.g., in Section 5.5). In that case, we
must distinguish between regular and RMW-produced events, which we explicitly tag
with the generating instruction’s type:

data Tag : Set where tmov trmw : Tag

Initialization Events. Execution graphs often contain the initial values of memory
locations at the start. The intuition is that memory has some value before the program
starts. Of course, some earlier instruction has produced that value — perhaps it was
another earlier program or the operating system kernel. However, when modeling
program semantics, such details are irrelevant because those earlier writes cannot
reorder with the program’s instructions. They still behave like W events, because they
produce values, but do not order like them. We separately denote them as Wipjt.

In contrast to regular W events, which occur in a particular thread, Wiyt events
precede all other events in all threads. Additionally, they order stronger than other
W events. For instance, while x86 does not order W—R pairs, it should order Wijni:—R
pairs. To account for that difference, Wiyt events must explicitly be distinguished
from regular W events, on any architecture.

Internal vs. External. In Section 1.2 we defined external relations as those between
different threads, aligning with Alglave et al. (2014, 2021) and Batty et al. (2012). In
contrast, internal relations are within a thread. Naively, we could claim the internal
relations are po-related, while the external are not. To clarify what that means, con-
sider the following execution (which is not well-formed):

@ W(X, 0) ®
/ \

W(X,1) »W(X,3)

@ l rfe léfr@

W(X,2)-"5% R(X,2)
®

92

5.3 WEAK MEMORY MECHANIZATION

Clearly, (2) is internal, because it follows along po in the same thread. Also, rfe
@ is clearly external, because it is between different threads. However, for mo (1) it is
less clear, because the initialization event W(X, 0) is not on any thread — it precedes
the threads. The source event is thus not the same thread as the target, making it
external by the prose definition. However, the events are po-related, meaning it could
be considered internal.

The fr (4)is ambiguous for a different reason. Clearly, it related events within the
same thread, making it internal by the prose definition. However, it relates the events
by po~!, making it ambiguous whether they are therefore also po-related. Finally,

relates an event to itself (which is not well-formed), meaning it is not po-related
to itself, introducing ambiguity.

Whichever choice we make does likely not affect proof validity, as mo (5) is dis-
allowed by well-formedness, while fr (4) violates Coherence on most architectures. It
does, however, affect proof internals as it determines the proof cases within which
we handle them. We decide on internal:

int £ poUpo ' UEg

where Eq is propositional equality

Conversely, external is its inverse: ext(x, y) £ —int(x, y). As a consequence, moi (1), fr
@, and @ are all internal.
5.3.2 Well-formedness

Well-formedness formally captures an execution “making sense”. It formally defines
properties of an execution, many of which we list below (where E is the set of events).
We discuss complicated properties separately below.

* Every event has a unique identifier. That is, ‘x.uid = y.uid — x = y’, for any
x,y€E

o ‘rf CWXR’, ‘mo C WxXW’, ‘rmw € REMxwy/trm:
e f, mo, and rmw are between same-location events
¢ f is between same-value events

® rmw € POimm

e ‘codom(rmw) = (ENW'™)’ _Stating any RMW-marked W event within the execution
is in the the co-domain of rmw. Note that an RMW-marked R event is nof necessarily
in codom(rmw), because the RMW instruction does not generate rmw upon failure.

e ‘udr(po) = E’ — any event in the execution occurs in po, and any event in po is in
the execution (i.e., in E).

Notation. udr is the union of domain and range, i.e., udr(R) = dom(R) U codom(R).

93

5.3 WEAK MEMORY MECHANIZATION

e ‘udr(rf) € E’ and ‘udr(mo) C E’, stating any event in rf, respectively mo, is part of
the execution (in E).

¢ Every R event reads from a exactly one W:
- ‘(RN E) C codom(rf)’ — it reads from at least one W.

— ‘“functional(rf~1)’ — it reads from at most one W.

Notation. functional(R) 2 R(x,y) AR(x,z) >y =z

* All memory locations are initialized exactly once
- ‘Yloc — Ax.(init(x) A x.loc = loc A x€E)’ — at least once

- ‘init(x) Ainit(y) A x.loc = y.loc — x =y’ forall x,y € E — at most once

Some additional properties may be derived from those listed above. For instance, as

fr is derived (i.e., fr rf~1; mo), its properties can also be derived (e.g., fr € RXW).
Finally, we address several challenging properties below.

Strict Total Orders. Intuitively, po is a strict total order per thread and mo is a strict total
order per location. A challenge for po is that Wiyt events are not in threads. A challenge
for both is that they are only total over events in E. A strict total order is transitive and
trichotomous™", where trichotomy states ‘x<y vV x=y Vv x>y’ (for any x and y), of which
the cases are additionally mutually exclusive.
We separately define transitivity and trichotomy for orders. Clearly, ‘transitive(po)’

and ‘transitive(mo)’, but mo is only trichotomous over same-location write events (W)
in E; po is only trichotomous over events in E within a given thread, or when either
is an initialization event. We mechanize these properties in Agda as:

po-tri : V (tid : ThreadId)
» Trichotomous _=_
(filter-rel ((EvInit uq HasTid tid) n1 events) po)
co-tri : V (loc : Location)
» Trichotomous _=_
(filter-rel (EvW nq HasLoc loc nq events) co)

Primarily, the filter-rel produces a subset of po satisfying the predicate. It cru-
cially differs from intersection, which retains trichotomy over any event, regardless
of whether it satisfies the predicate. Instead, our definition of filter-rel lifts the
predicate to the type, ensuring trichotomy only holds for those events satisfying the
predicate; we mechanized its definition in our separate proof library Dopo, as it is
independent from weak memory.

21Observe that trichotomy implies asymmetry and irreflexivity.

94

5.3 WEAK MEMORY MECHANIZATION

Initialization First. Within both strict total orders over po and mo, initializations
occur strictly first in the order. We formalize this with T-Precedes-1 axiom included
in Dopo, formally stating ‘R(x, y) — (P(y) — P(x))’ (for any x, y):

po-init-first : T-Precedes-1 EvInit po
co-init-first : 7-Precedes-1 EvInit co

Constructive Logic. Agda implements a dependent type theory (Bove et al., 2009),
corresponding to a constructive (or intuitionistic) logic (Martin-Lof, 1982) —e.g., like
Rocq (Bertot and Castran, 2010). Consequently, it lacks the Law of the Excluded Middle
(LEM, i.e., P v =P). While that guarantees computability of proofs, it makes working
with set-theoretic (i.e., non-constructive) axiomatic weak memory models challeng-
ing. Instead of postulating LEM in general, we introduce it strategically for defini-
tions that can constructively satisfy it, thus retaining computability (and proof check-
ing with --safe flag®?).

Concretely, we use it to decide whether an R event originates from an RMW in-
struction. After all, regular reads may order differently from successful RMW-R events
or order by a different rule. Additionally, we use it to decide whether an event with
unique ID exists in E or not (i.e., decide whether ‘Jx . x.uid=uid A x€E’ for any uid).

Splittable Orders. Another property related to strict total orders is decidability of
POimm- While po is both strictly total and transitive, proofs often also need to “peel off”
a po-adjacent event. Consider the example below, with arbitrary po-related events.

p
po |
q

Ne— [R

Clearly, po is decidable for x and z, as we can establish po(x, z) by totality of po. How-
ever, that does not mean —po;,,,(x, z) is decidable, as it requires knowledge of inter-
mediate event y; or, for p and g, where po(p, q), knowing po;,(p,) demands know-
ing no such intermediate events exists. Unfortunately, we cannot assurme its existence
or nonexistence in a constructive logic (as it requires LEM). Instead, we can define it:

Po = (POimm)" (SplittablePo)

It states that for any po edge, we can always decompose it into a chain of po;,,,,, edges.
For any instantiation of a finite execution, we can constructively provide SplittablePo.
This definition allows us to “peel off” individual po;,,,, edges in our proofs. For in-
stance, given po(x, z), we can now obtain y satisfying po(x, y) A poi,m(y, z). We also

22>The --safe flag prohibits postulations (among other things), meaning a reader can trust that no postu-
lations occur throughout the proof.

95

5.3 WEAK MEMORY MECHANIZATION

mechanized this generalized definition and related properties in Dopo — i.e., gener-
ally, as SplittableOrder, where SplittablePo = SplittableOrder(po). One such property
states SplittableOrder is strictly stronger than transitivity, which is required for po’s
strict total order.

5.3.3 Architecture Definition: Armv8

While the well-formedness definitions from the previous subsection are shared be-
tween models, various architectures and languages additionally include their own
events, primitive relations, and consistency axioms. Here we elaborate on our process
of mechanizing the Armv8 model* by Alglave et al. (2021); Alglave and Maranget
(2025). However, we do not include the full Armv8 model here because of its large
size, but instead highlight some of its mechanization challenges below.

While all architectures have R, W, and F events, architectures provide different
variants. Of course, all read instructions read and write instructions write, but their
variants order differently. On Arm, W is a unordered write; W|_ is a store-release, which
orders with preceding events; R is a unordered read; Ra is a load-acquire, which orders
with subsequent events and preceding W, events; and Rq is a load-acquirePC, which
also orders with subsequent events, but not with preceding W, .

In our Agda mechanization we similarly annotate the events with those labels.
The Armv8 R/W labels are:

data LabR : Set where
lab-r : Tag- LabR -- A regular read
lab-a : Tag -+ LabR -- A acquire read
lab-q : LabR -- A acquirePC read

data LabW : Set where
lab-w : Tag - LabW -- A regular write
lab-1: Tag - LabW -- A release write

The labels explicitly store their Tag (from Section 5.3.1). We cannot store those tags
externally from the labels, as some do not have them; for instance, an Rq (i.e., lab-0)
cannot be generated from a RMW and is thus always tmov.

Of course, the events themselves do not enforce the ordering, which is enforced
by the axioms. Similarly to x86’s XHB constraint, Arm orders some po edges. We mech-
anize those constraints in Agda as follows (abbreviated):

23Here, we use a differently refactored variant of the model by Alglave et al. (2021) presented in Chapter 1,
taken from the author’s GitHub repository (Alglave and Maranget, 2025).

96

5.4 MAPPING PROOF MECHANIZATION

-- | Barrier Ordered Before

data Bob (xy : Event) : Set where
bob-acq : ((EVAu1EvQ) gpo) xy-Bobxy
bob-rel : (pog CEvL)) Xy-+>Bobxy
bob-1a : C(EvL) gpog CEVA)) xy-Bobxy

-- | Locally Ordered Before (immediate)
data Lob; (xy : Event) : Set where
lobi-bob : Bobxy -+ Lob; xy

-- | Ordered Before (immediate)
data Ob; (xy : Event) : Set where
obi-lob : (TransClosure O0b;) Xy -+ 0b; xy

record IsArmv8Consistent : Set where
field
ax-external : Irreflexive _=_ (TransClosure 0b;)

Observe we use predicates for types of events — e.g., EVA — which are inhabited for
events with the corresponding label, e.g., 1ab-a. The architecture consistency rules
are included in IsArmv8Consistent, within which we only show the “external visibil-
ity” constraint (Alglave et al., 2021; Alglave and Maranget, 2025) in ax-external.

5.4 MAPPING PROOF MECHANIZATION

In the previous section, we addressed general mechanization challenges for axiomatic
weak memory, which we solve in our proof framework Burrow. However, BURROwW
solves a bigger problem: It provides domain-specific abstractions and primitives for
weak memory transformation proofs!

With those abstractions we can prove fragments generally. In Section 5.2.1 we saw
that proving a transformation correct requires at least (1) constructing a source execu-
tion, (2) proving well-formedness, (3) proving consistency, and (4) proving behavior
preservation. While constructing an execution and proving consistency is specific to
a mapping, the others are largely similar. In particular, well-formedness consists of
27 properties, which is time-consuming to prove for every new mapping. However,
if we select the right abstractions, we can prove properties generally.

97

5.4 MAPPING PROOF MECHANIZATION

5.4.1 Mapping Primitives

When mapping between two executions, we often translate properties. For instance,
if x* in the target is a R event, then after mapping it to x® in the source, x® is also a
R event; the property remains preserved. Similarly, those properties must also be
preserved in the other direction, from source to target. Proving that properties and
relations remain preserved along the mapping is a significant part of proving well-
formedness and consistency. In the mechanization, we thus expect definitions resem-
bling the following:

ev[<] : DstEvent » SrcEvent
ev[>] : SrcEvent » DstEvent

R[«] : {xt : DstEvent} - EVR xt - EVR (ev[<] xt)
R[>] : {xs : SrcEvent} - EVR xs - EVR (ev[>] x*)

With such definitions we can translate properties between the source and target exe-
cution. However, ev[¢] and ev[*] must be inverses of each other, meaning they define
each other. In other words, after defining one, we can derive the other. As we are given
a target execution, from which we produce the source, users need only define ev[¢].

Another problem remains: The mapped events are not necessarily in the execu-
tion (i.e., in E). If we produce our source execution with the ev[<] definition above,
arbitrary events could appear. Instead, we need to restrict the ev[¢]-mapped events
to those actually contained in the target:

ev[<] : {xt : DstEvent} » xt € events dst » SrcEvent

R[«] : {xt : DstEvent}
+ (x€dst : xt € events dst) - EVR xt
+ EVR (ev[«] x€dst)

This allows users to define ev[¢], only over events in the target execution, from which
we derive ev[3] generically.

Deriving Properties. R[¢] proves ev[¢] preserves that the mapped event is a R.
While we can derive ev[>] from ev[<], we cannot derive R[>] from R[<]; because it
is not generally true; for instance, consider our read-after-write elimination from Sec-
tion 2.6.2, where the target has one R event less. In contrast, for mappings between
architectures, R-events remain R-events (e.g., in Section 5.5). As the preservation of R
along ev[»] varies between mappings, we must prove it separately for each.

A formalization issue appears when we define R[>]: “green slime”** (McBride,
2012), where a function argument is not in constructor form; e.g., given f(x) as ar-
gument, where ‘f : N — Bool’, Agda does not know which of true and false are
possible without knowing x. In our case, that issue appears when mirroring R[¢]:

24green slime is a metaphor, commonly used by Agda developers.

98

5.4 MAPPING PROOF MECHANIZATION

R[>] : {xs : SrcEvent}
+ (X€src : xs € events src) -» EVR xs
» EvR (ev[>] x€src)

The problem is that x€src — which is a proof for X¢ being in the source execution —
is also derived along ev[«] and is thus based on some unknown event in the target.
Implementing R[>] becomes cumbersome, as we must pattern-match on all target
events that could potentially produce our event x* along the function ev[¢]. Instead,
we implement a variant of R[>] that is defined over the target event:

R[$>] : {xt : DstEvent}
+ (x€dst : xt € events dst) » EvR (ev[«] x€dst)
- EvR xt

That definition is much easier to implement, as it avoids the above issues. Surpris-
ingly, we can obtain R[#] from it, using our definition of well-formedness.

Generalization. As we map many properties, whose mapping types follow a similar
structure, we can define mapping types generally:

Pred[<] : RELo Preds Predt Pred[$=] : REL, Preds Predt
Pred[«] Ps Pt =¥ {xt} Pred[$>] Ps Pt =V {xt}
+ (x€dst : xt € events dst) + (x€dst : xt € events dst)
» Pt xt + Ps (ev[«] {xt} x€dst)
+ Ps (ev[«] {xt} x€dst) + Pt xt

Observe that applying those definitions gives the types of RL¢] and R[$] from before:

R[$2] : Pred[$>] EvR EvR
R[<] : Pred[«] EvR EVR

We use this same idea to map relations. For instance, if mo(x®, ¥°) holds in the source,

(x%, ¥') should hold in the target, after mapping x® to x' and y*® to y*. Our proofs
also include types for relations, e.g., satisfying ‘co[¢] : Rel[«] (co src) (co dst)’.
The advantage of these [¢]/ [$2] variants is that the programmer implements them
over target events. Their implementation pattern matches over the same constructors
as the definition of ev[¢]. Fortunately, the programmer can use the [>] variant in
their proofs, which is defined over source events. Concretely, BURRow can translate be-
tween these variants — implemented using our strategically picked decidable proper-
ties (from Section 5.3.2) — thus avoiding the “green slime” from above.

5.4.2 Deriving Definitions
When writing a mapping proof, a BURROw user first defines the mapping of events
with ev[¢], according to their intended transformation. Subsequently, for architec-

ture mapping proofs (which do not remove events), users prove ev[«] preserves the
following properties back-and-forth: uid, tid, loc, val, Wiyit, tagged W, and tagged R.

99

5.4 MAPPING PROOF MECHANIZATION

In contrast, F is not needed, because it does not appear in well-formedness. From
those definitions, BURROW can derive large parts of the mapping proofs generally:

* The source execution (X, mo®, rfS, rmw®) — Note that po, mo, rf, rmw can be fully pre-
served along ev[<], provided that the relevant event properties are. For instance,
if W, loc, and val are preserved, we can also preserve mo. Other details need not
be preserved (e.g., the difference between regular- and release-stores on Arm).

» Well-formedness of the source — For the produced source execution, we can prove its
well-formedness generally, covering all its 27 properties.

* Behavior — We can generally prove that the behavior, which is the terminal memory
state, is preserved. This is because the user preserved Ws with their loc and val,
while our constructed source execution preserves

Removing Boilerplate. We can thus produce three out of four fragments of the proof
generally. We cannot, however, prove consistency generally, as it is specific to the par-
ticular transformation and often the most interesting part of the proof. After all, an
important design criterion of BURROW is avoiding proof “boilerplate code” for its un-
interesting proof fragments.

Optimizations. As architecture mapping proofs do not remove instructions — and
thus events — well-formedness can be proven over the derived mapping of po, mo,
rf, and rmw. However, for optimizations that remove instructions — and thus events
— we cannot generally derive the mapped relations. For instance, consider the read-
after-write elimination from Section 5.1, which discards a R event in the target. Thus,
producing the source execution and establishing its well-formedness is more chal-
lenging than before.

Because the read-after-write elimination discards a R event, its proof must re-
move its corresponding rf edge from any cycle. In contrast, as all W events remain,

remains too. Additionally, the discarded R events is a non-RMW event, meaning all
rmw edges also remain. So, although we cannot produce the source execution and its
well-formedness as easily as before, still much of the proof internals remain usable
(i.e., for po, mo, rmw, and most well-formedness properties).

This is similarly true for other elimination proofs, which preserve most of the
source structure; e.g., a write-after-write elimination discards a W event while pre-
serving all R events. To simplify the proofs, BURROW exposes several such defini-
tions generally, whereas the programmer can adapt others to their specific elimination
proof.

Skip Events. An elimination proof removes an event x from the graph, which is thus
absent from the target execution. While the source execution is constructed from that
target execution, there exists no event in the target producing x in the source. For
instance, consider producing the eliminated R in the source in read-after-write elim-
ination (in Section 5.1). The eliminated event x must thus be produced in the source

100

5.5 CASE STUDY. MAPPING X86 TO ARM

by another mechanism than ev[«]. Similarly, source relations must be defined such
that they contain x, which is particularly cumbersome for the orders (i.e., po and mo),
where transitivity and totality /trichotomy must explicitly consider x.

To avoid all that complexity, we use skip events, which are distinct from R, W (and
Winit), and F events. Intuitively, they behave as-if generated by a “no-op” instruction.
They appear in the execution but do not read, write, nor enforce any ordering. Conse-
quently, they appear only in the set of events (i.e., E) and in po. However, skip events
significantly simplify elimination proofs when included in the target execution. The
eliminated source event x then maps to a skip event. All (rf/mo/rmw) relations must
still divert from x, but orders passing through them can often ignore them.

Consistency. Although BURROW cannot prove consistency generally, it can make it
easier to prove. It does so by providing mapping primitives of type Pred[s] and
Rel[*], which are convenient when mapping a cycle from the source to the target
execution, which is the primary challenge when proving consistency. Additionally,
Burrow contains functions to lift mappings over common structures. For instance,
[] lifts a mapping of a relation R to a mapping of its transitive closure R*, while
nz[>] lifts a mapping of two relations R and Q to a mapping of their intersection
RN Q. In our case study we use BURROW to prove consistency for a mapping.

5.5 CASE STUDY. MAPPING X86 TO ARM

To evaluate the effectiveness of Dobo and BURROW, we prove an existing conjectured
mapping from x86 to Armv8 (Alglave et al., 2021, Section 2.5). Crucially, the map-
ping was originally incorrect and subsequently fixed by changing the Armv8 model
(Alglave, 2022) (as we explained in Section 3.3.3). To the best of our knowledge, our
formal result of proving that mapping correct on the fixed Arm model is novel. The
instruction-level mapping is given as follows:

x86 Armv8
RMOV — LDAPR
WMoV — STLR
MFENCE — DMBFF
CMPXCHG — CASa.

We previously explained those primitives in Section 1.3.3. We can only prove the
mapping correct with the weak memory semantics of both x86 and Armv8. The x86-
TSO model (Owens et al., 2009), which we already gave in Section 1.3.2, is simple.
It consists of the Coherence, Atomicity, and XHB axioms. The Arm model (Alglave
etal., 2021; Alglave and Maranget, 2025), however, is more complex. In particular, itis
structured differently from the x86 model and refactored definitions from the previous
Armv8 model (Alglave et al., 2021) we explained in Section 1.3.3; however, we use
the new model because it includes semantics for the new CASy instruction, which

101

5.5 CASE STUDY. MAPPING X86 TO ARM

ob is irreflexive (external)
where ob £ (obs U lob U [R];pojyc;fre)*
obs = rfe U fre U
lob £ (bob U poj,;[W] U ...)F
bob = po;[Fsc];po U [RyURq];po U pos[W,]
U [W.[;pos[Ra] U [codom([R,];amos[Wi])];po

U...
([R;p010c;[W];rfis[R]) is irreflexive (internal-rw)
([W1;p0joc;[WI;mois[W]) is irreflexive (internal-ww)
(W];pojoc;[RI;fris[W]) is irreflexive (internal-wr)

Figure 25: Arm model (Alglave etal., 2021; Alglave and Maranget, 2025), abbreviated.
Arm additionally satisfies Atomicity (from Section 1.3).

generates an [R,];amo;[W,] relation, where amo € rmw. We give the subset of the
Arm model that is relevant for our proofs in Figure 25.

The Arm model factors internal and external relations differently from x86. In
particular, x86’s Coherence constraint includes both internal and external rf, mo, fr
events. Those include rfi edges, which are an W—R pair that is not otherwise ordered
in x86 (i.e., not in xppo). In contrast, Arm’s internal-rw/ww/wr constraints exclusively
contain internal relations. Similarly, unlike x86’s Coherence, Arm’s external constraint
is strictly external as it does not include rfi, fri, or edges. Those mismatches be-
tween the model structures makes writing the mapping proofs challenging.

Fortunately, BURROw simplifies constructing the source execution. Through Bur-
ROW’s domain-specific primitives and abstractions, it proves well-formedness and be-
havior preservation as instances of general proofs. Only the proofs for the consistency
axioms remain. We follow the typical proof structure from Section 5.2.1, proving con-
sistency of the source execution, given that the target execution is consistent. Thus,
we demonstrate that any violation of an x86 axiom violates an Arm axiom.

As both architectures satisfy Atomicity, its proof is a trivial mapping. What re-
mains is x86’s Coherence and XHB, of which we give a proof outline to illustrate its
complexities. Naturally, our artifact includes the full mechanization in Agda, on
whose implementation we reflect below.

Coherence. For x86’s Coherence axiom, we are given a ‘poj,. U rf U fr U mo’ cycle. To

follow along with the proof, consider the example cycle in x86 below, starting at (1).
We omit events and edges of the graph that are outside the cycle.

102

5.5 CASE STUDY. MAPPING X86 TO ARM

‘///<rf \\\
MR(X,1) W(X 23
POjoc l l POjoc ,/

o fr
@RK0) WX, D@
The proof sketch steps are then as follows:

1. Rotate the chain to start at a W event. Note that such a W event always exists.
Every rf, fr, and mo edge has at least one W event. If the entire cycle were only
POjoc, it is not well-formed because po is irreflexive.

P @5 06)

POloc POjoc

Example: (3) — @ @

2. Convert it to ‘poj,. U rfe U fre U ". We can split off the rfi, fri, and edges.
If they are po-forward, we include them in poy,.. If they are po-backward (i.e.,
po~1), we have internal cycles, which trivially map to Arm and are disallowed by
internal-rw/ww/wr.

POjoc rfe poloc fre

Example: (3) — (4) > @O — @ — (3)

3. We now have a ‘[RUW];(po,, UrfeUfreU)";[W]’ chain, from which we produce
“(poioc;IW]) U ([R];pooc;fre) U UrfeUfre’. In particular, we require the terminal
W (from step 1) when poy,. is the final edge, producing ‘poj,.;[W]'".
poloc![w] [R] polom

Example: (3) ——— @ @ @

4. Now it maps to Arm’s ob and is forbidden by external.

XHB. For x86’s XHB axiom, we are given a ‘xppo U implied U rfe U fr U mo’ cycle. To
follow along with the proof, consider the following cycle in x86, starting at @

E)W(X, 1)
implie W(Y, 1) ©
<pA|> d q: .".x'v D <ppo
implied d fr W(X,Z)@

R(Y,0)

The proof sketch follows the following steps:

103

5.6 RELATED WORK

1. Rotate it to start at a R or W event. Only the implied relation may end in a F, which
is necessarily followed by another implied. Hence, a R or W eventually appears, or
is entirely in po which well-formedness disallows.

l@ﬂ@%@ implied @ implied

2. Convert it to ‘xppo U [RUWT];implied*;[RUW] U rfe U fre U ’. The RUW bounds
on implied necessarily exist, for the same reason as in step 1.

Fr—e> @ ip_pg) @ moe, @ [RUW];implied™;|[RUW]

3. Now it maps to Arm’s ob and is forbidden by external. The RUW-bounded implied™
maps to bob™, as it either has an intermediate F or a CASy -produced event.

ORMCEIORBIGRIO

Mechanization Challenges. Although the above proof sketch is short, the entire con-
sistency proof is much larger (over 700 source lines). The remaining mechanization
complexity resides in matching on many nested cases of the x86 relations. In partic-
ular, step 3 of the Coherence proof requires traversing arbitrary poy,. chains, followed
by any of the other cases, each interaction requiring attention. Similarly, step 2 in the
XHB proof requires traversing arbitrary implied chains, followed by any other case.
Finally, step 3 of the XHB proof is conceptually simple, but covers many cases. Addi-
tionally, the chain may traverse through a Win;;, which is not well-formed because no
implied, rfe, fre, or can target it. Only xppo can target it from another Wiy;; event,
merely shifting the problem to that event, eventually reaching one of the other cases.
Demonstrating that no such Wiyt event exists requires inspecting all cases.

Q.E.D. Burrow simplified the proof mechanization efforts greatly. In particular, Bur-
rROW reduces the “boilerplate” code needed to prove well-formedness and behavior
preservation, by proving it generally. For this mapping we only specifically defined the
mapping and proved consistency — while relying on BuRROw for the remaining parts —
formally proving the mapping under the fixed Arm model. m|

5.6 RELATED WORK

Semantics & Proofs. Much work on formal weak memory semantics precedes ours.
For instance, Alglave et al. (2014) propose axiomatic semantics for Arm, which their
Herd tool extensively tests on Arm hardware. While they do not write mapping proofs,
they prove the equivalence of their axiomatic and operational models in Rocq.

Later work proposes formal weak memory semantics for C++ (Batty et al., 2011),
mechanized in Isabelle/HOL (Nipkow et al., 2002), but parts of their proofs are only
on pen-and-paper. Some of their results were later found incorrect and fixed by Lahav
et al. (2017), along with more pen-and-paper proofs.

104

5.7 CONCLUSION

The intermediate memory model (IMM) by Podkopaev et al. (2019) has mechanized
proofs. IMM reduces the proof burden as an intermediate model; given N source and
M target languages, only N+M mapping proofs are needed instead of NxM. Unlike
our Burrow, IMM does not address the mechanization challenges inherent in writing
those (N+M) proofs. Separately, IMM uses their Rocq library Hahn (Vafeiadis, 2018)
with lemmas and tactics for binary relations, mirroring our library Dopo.

Tools. ArMOR by Lustig et al. (2015) detects ordering violations on Arm at runtime,
but does not provide formal guarantees and cannot capture all semantics. Chakraborty
and Vafeiadis (2016) validate that LLVM optimizations for C11 programs do not incor-
rectly reorder weak memory primitives. GenMC by Kokologiannakis and Vafeiadis
(2021) is a model checker that detects reordering violations by exhaustively explor-
ing a program’s state space under weak memory. Similarly, Dartagnan by Gavrilenko
et al. (2019) is a bounded model checker that checks assertions under weak memory
with an SMT solver. Recently, the FDR4 model checker by Gibson-Robinson et al.
(2014) has been used for bounded refinement checking (Raad et al., 2024). C11Tester
by Luo and Demsky (2021) explores many executions to detect violations under weak
memory. Kokologiannakis et al. (2023) propose Kater to automatically decide whether
a mapping is correct, among other things. Model definitions must often be reformu-
lated beforehand to support automation; for instance, to allow rotating a sequence
of events or to map one source axiom to multiple target axioms (as we did in Sec-
tion 5.5). In contrast, mechanized proofs ensure even those initial reformulations are
correct, as part of the full mapping proof.

5.7 CONCLUSION

We propose BurRrROwW, a domain-specific Agda proof framework for weak memory
transformation proofs. We identified and clarified several challenges in mechaniz-
ing axiomatic weak memory models and their corresponding transformation proofs,
which we addressed in BURRow. Additionally, we developed Dopo, which is an Agda
proof library for predicates and binary relations, independent from weak memory
proofs but internally used by Burrow. Finally, BuRrROw contains domain-specific ab-
stractions and primitives for weak memory proofs, with which it proves large frag-
ments of weak memory proofs generally. We demonstrate its effectiveness by proving
a conjectured mapping from x86 to Arm. The proved mapping differs from our earlier
mappings (Chapters 2 to 4) because it relies upon specific load and store primitives,
whereas our mappings inserted fences.

While Burrow’s development succeeds our proofs for LasaGNE (Chapter 2) and
RisorTo (Chapter 3), we believe it would have significantly reduced their required
proof engineering effort. We did use an early version of BuRrRow for the develop-
ment of the ARANCINI (Chapter 4) proofs, significantly reducing their implementation
effort. We expect BurrRow will similarly simplify the mechanization of other weak
memory transformation proofs.

105

Chapter 6

Porting Programs with Dynamic Analysis

ABSTRACT In this chapter, we propose a dynamic analysis technique to automatically
check if the program would exhibit any additional execution on the new weaker ar-
chitecture Arm, compared to x86. Upon finding such an execution, we transform the
program to forbid such executions. We implemented our algorithm in our ORIGAMI
system. We evaluate on several real-life concurrency benchmarks to demonstrate the
effectiveness of our approach. ORicamr identifies cases where new executions are
possible on Arm compared to x86 while being more precise than state-of-the-art ap-
proaches, all while not reporting spurious errors. Our approach generates more ef-
ficient programs that show, on average, 1.8x performance improvement (up to 8x)
compared to existing approaches.

6.1 INTRODUCTION

To forbid unanticipated weak memory behaviors in Arm, programs must be trans-
formed by strengthening memory accesses or inserting fences. These transforma-
tions must be performed judiciously, as the reinforced memory accesses and fences
are costly to performance (Liu et al., 2020). In Chapters 2 to 4 we defined mapping
schemes that are correct in general, for any program. However, for a specific program
they often insert too many fences, meaning we could do better by using what we
know about that program. In particular, when porting a concurrent program from
strong-to-weak concurrency models, we could analyze which additional executions the
program demonstrates on Arm, and then transform the program to avoid only those
observed executions.

Exploring many executions following a weak memory model poses a key chal-
lenge to analysis techniques. Existing approaches apply various analysis and verifi-
cation techniques (Chakraborty, 2021; Oberhauser et al., 2021; Beck et al., 2023; Boua-
jjani et al., 2013a; Abdulla et al., 2015a,b; Shasha and Snir, 1988; Lee and Padua, 2001;
Linden and Wolper, 2011, 2013; Alglave et al., 2017) which face tradeoffs between
precision and scalability. Static analysis-based approaches (Chakraborty, 2021; Ober-
hauser et al., 2021; Shasha and Snir, 1988; Lee and Padua, 2001; Linden and Wolper,
2011, 2013; Alglave et al., 2017) may over-approximate possible executions and, in
turn, insert additional fences that result in suboptimal solutions. Some approaches
(Oberhauser et al., 2021; Bouajjani et al., 2013a; Abdulla et al., 2015a,b) use model
checkers to explore executions. However, model checkers do not scale to large con-
current applications. Thus, any approach will inherently miss violations, for instance,
because they emerge beyond the reachable scale. However, we need a pragmatic ap-
proach that scales to larger programs, even when it cannot guarantee completeness.

106

6.2 BACKGROUND

Contributions. This chapter addresses the problem of porting concurrent programs
written for x86 to Arm. We model the problem as robustness analysis and enforce-
ment (Chakraborty, 2021) and use dynamic analysis to obtain a solution that scales to
larger programs.

* Operational-Axiomatic Semantics for x86 and Arm — We define an operational-
axiomatic weak memory semantics for x86 and Arm (Section 6.3), based on exist-
ing axiomatic semantics by Owens et al. (2009) and Alglave et al. (2014, 2021).

* Dynamic Analysis Algorithm — Following those operational-axiomatic seman-
tics, we develop our dynamic analysis algorithm to detect x86-Arm robustness
violations (Section 6.4). To do so, it constructs an execution under x86’s consis-
tency model and checks if it has any potential step that violates the stronger x86
model while remaining consistent under Arm’s weaker model.

* Program Repair Algorithm — Second, we propose an algorithm that locates the
program operations that resulted in the x86-Arm mismatch, allowing us to mini-
mally strengthen these operation to forbid the additional executions (Section 6.5).

¢ Oricami Implementation — Third, we propose OriGami, which implements both
these algorithms to dynamically detect violations and propose fixes on real pro-
grams.

¢ Experimental Evaluation — Finally, we evaluate OrRiGaMI on several concurrency
benchmarks and compare with state-of-the-art approaches Fency by Chakraborty
(2021) and our LasaGNE and Risorto (Chapters 2 and 3) mapping schemes (Sec-
tion 6.6). Our analysis identifies several programs that exhibit more executions in
Arm than in x86, which we subsequently fix.

Thus OriGamI is (1) more precise in several cases compared to existing approaches,
(2) scales to larger programs, (3) demands fewer concurrency primitives while trans-
forming the program, and therefore (4) produces programs that are significantly
faster than those generated by other approaches.

6.2 BACKGROUND

We use the same syntax and weak memory semantics for x86 and Arm programs as
introduced in Chapter 1. Here we highlight some challenges specific to our approach.

6.21 Challenges in Porting Concurrency

Consider the program in Figure 26, which is extracted from the concurrent mpmc-
queue benchmark, where X and Y are shared locations initialized to zero. Suppose the
program was written for x86. While the high-level source language (i.e., mpmc-queue
implemented in C++) may include weakly-annotated primitives, they are compiled
to their only corresponding variant available on x86 and Arm. For instance, a C++

107

6.2 BACKGROUND

a =RMW(X, 0, 1); || ¢ = RMU(Y, 1, 0); a =RMUWp (X,0,7); || ¢ =RMW4(Y,1,0);
b =RMW(Y,0,1); || d =X; b =RMUR4(Y,0,1); || d =Xq;
(a) x86 (b) Arm

Figure 26: x86 and Arm versions of the program extracted from mpmc-queue. The out-
come ¢ = 1,d = 0 is allowed in Arm but not in x86. Strengthening the
access from RMW1y to RMWA in the second thread will forbid the outcome in
Arm as well. The resulting program has the same concurrent behaviors in
x86 and Arm.

RMWy1x compiles to a RMWrx on Arm but to a stronger RMW on x86. So, when the same
source program is compiled to Arm, it suddenly executes more instructions out-of-
order —in this case, the two accesses in the second thread.

In particular, the accesses in the first thread are ordered on x86 and Arm, but
those in the second thread are only ordered on x86 but not on Arm. Consequently, the
additional outcome ¢ = 1 and d = 0 appears when recompiling to Arm, which was
impossible before on x86. Hence, naively recompiling an existing source program,
which was only run or tested on x86 may show additional unforeseen behavior after
recompiling to Arm.

Challenges and our approach. Porting programs from a stronger architecture (e.g.,
x86) to a weaker one (e.g., Arm) presents two main challenges. The first challenge is
identifying whether the ported program has more behaviors than the original (as in
the example above). These additional behaviors must be eliminated, as they violate
the programmer’s (intended) invariants and threaten program correctness. This is
achieved by inserting fences and/or strengthening certain memory accesses. How-
ever, such transformations slow down program execution. Thus, the second chal-
lenge is applying such transformations with minimal impact on performance.

In our example in Figure 26b, the Arm program can be transformed in several
ways to forbid the outcome ¢ = 1, d = 0. In particular, the code of the second thread
can be transformed into either of the following two cases, (i) RMWq1x(Y); DMBFF; LDRq(X),
and (ii) RMWaL (Y); LDRq(X), as each case independently orders the first and last instruc-
tion. Such access strengthenings are expected to slow down program execution,
which is generally inevitable. However, different transformations might incur dif-
ferent slowdowns. Our algorithm selects a strengthening following a performance
cost model, selecting transformation (i) in this case.

Unlike the mapping schemes in Chapters 2 to 4, an important benefit of this
approach is that it does not always strengthen Arm’s primitives like x86’s. Instead,
we strengthen accesses only when necessary within their particular program con-
text, benefiting performance. For instance, the final x86 RMW on the first thread orders
stronger than the corresponding Arm RMWx, in general. However, within this partic-

108

6.3 OPERATIONAL-AXIOMATIC WEAK MEMORY MODEL

ular program, the preceding RMWy (on Arm) already orders that subsequent RMWrx.
Hence, knowing the full program allows judicious strengthening of Arm primitives
only when required to preserve the order, while many primitives independently re-
main weaker than those in the corresponding x86 program.

6.2.2 Adapted Arm Model

We use the same Arm model as presented in Section 1.3, except for one additional re-
quirement for our analysis. In addition to those conventional definitions, we enforce
Aporf in Arm to avoid (po U rf) cycle in an execution (Lahav et al., 2017; Geeson and
Smith, 2024; Lee et al., 2023), which formally is:

(po U rf) is acylic (Aporf)

Finally, the definition of bob we use in this chapter includes the small CASy, fix, i.e.,
‘bob = [codom(rmw,)];po U ..., making the write event of a CAS, instruction order
with subsequent events. That corresponds to the model presented in Section 1.3 but
differs from the fix we proposed in Chapter 3.

6.3 OPERATIONAL-AXIOMATIC WEAK MEMORY MODEL

We define a combined operational-axiomatic semantics for the weak memory models
of x86 and Arm. While an axiomatic model (Section 1.2) defines consistency of an
existing execution graph, an operational-axiomatic model describes how to construct
that graph by executing the program instruction-by-instruction. We thus define the
operational-axiomatic model as a Labeled Transition System (LTS) £ = (S, 6) where
S is the set of states and 0 is a set of labeled transitions. Each state s € S is an
execution graph X = (E, po, rf, mo, rmw) consistent with (axiomatic) model M. Given
two states X1 and X5, we have a labeled transition X 5 X, iff both:

e Event ¢ is obtained by executing the next instruction on execution graph Xi, or a

pair of read /write events (e, ey) for a successful RMW instruction; and
e the result of this execution is the execution graph X,.

Intuition. Intuitively, we restrict the resulting execution to any extension of the source
execution X with e, provided that graph remains well-formed and consistent in its
corresponding architecture.

E'=X.EU{e} po” = X.po U {(Xpre, €) | Xpre € X.E A Xpre.tid = e.tid}
Xorf C rf’ X.mo € mo’ X.rmw € rmw’
X" =(F’, pd’, rf’, mo’, rmw’)
X' is well-formed X’ is consistent in M
INTUITION

X ————— X
Me{x86,Arm}

’

This definition explicitly extends X and po with the new event, while only implicitly
extending mo, rf, and rmw to anything — axiomatically constrained by well-formedness

109

6.3 OPERATIONAL-AXIOMATIC WEAK MEMORY MODEL

and consistency. Although this definition axiomatically captures everything we need,
it does not state how to construct the resulting X’ (and corresponding mo, rf, and rmw
relations). Instead, we refine this definition below to avoid explicit well-formedness
and consistency checking at every step.

Specifically, we compute the visible writes for the reads and write events. When
adding an event ¢, they write to the same location as e, and ¢ can select any to ex-
tend from — with mo when e is a write or with rf when e is a read. We consider an
RMW instruction to generate two separate read and write events, which are handled
differently from non-RMW read /write events.

Visible Writes. When appending a new read/write event ¢, those visible writes differ
between x86 and Arm, because they have different consistency axioms. Their primary
difference is that x86 enforces irreflexivity of hb while Arm enforces irreflexivity of
ob. In x86, a write w is visible to the new event e if either:

e w and e are concurrent — In this case, w and e appear on different threads and they
are not ordered by hb. Formally, (w, e) ¢ (hb U po,,.); or

* w e W, o is an immediate ‘[W, joc];(hb U po)’ predecessor of e, which means w is
a (hb U po)-predecessor of e and there is no other same-location W event (hb U po)
in-between.

The intuition is that any such visible write may be observed by the new event e —
either by reading from it (rf) or overwriting it (mo). However, there are additional
challenges when either ¢ or w originates from an RMW instruction, which we explain
below. First, we give the above prose definitions of visible writes formally. While
the above definitions concern only x86 (with hb), it also mirrors to Arm (with ob),
resulting in:

VWM(X/ 6) = {w € X-vve‘loc | (ZU,E) ¢ X-(SMUpoloc)V(w/ 6) € x'([We‘Ioc];(SMUpo))imm}

When M is ‘x86, then Sp; = hb; when M is ‘Arm’, then Sy; = ob.

Read. When ¢ is a read events that was not produced by a RMWinstruction, its extension
simply selects any visible write w and reads-from (rf) it. Formally, we define this
extension as:

E'=X.EU{e} po” = X.po U {(Xpre, €) | Xpre € X.E A Xpre.tid = e.tid}
X' =(F’, po’, X.rf, X.mo, X.rmw) w € VWp (X', e) rf’ = Xuf U{(w, e)}

READ

X — 5 (E/, po’, rf’, X.mo, X.rmw)
Me{x86,Arm}

Unlike our intuitive definition above (INTUITION), we do not include the explicit well-
formedness and consistency checks, because we ensure those by construction of the
resulting execution.

110

6.3 OPERATIONAL-AXIOMATIC WEAK MEMORY MODEL

Write. When ¢ is a write event produced by a non-RMW instruction, we can take a
similar approach as with reads. We select a preceding visible write to the same lo-
cation, which e will overwrite. Observe that we can insert e in-between two existing

-related events, where it overwrites the first and is itself overwritten by the second.
Although this scenario appears similar to a read instruction, it differs because we need
to account for the situation where e overwrites an existing RMW-write. To illustrate this
situation, consider the following program and corresponding execution:

w1 : WX, 0)
T
X=0; Ve l v ‘ \
e:W(X,3) R(X,0))
X=3; || RMW(X,0,1); || RMW(X,1,2); l x‘ 7 l \ rmw
»‘ ///r/f v‘
W s WK, 1)=" > ws : W(X, 2)

To e, all the writes wy,w,,w3 are visible: wy is pojy¢;m-Preceding, while w, and w3
are concurrent. Hence, e appears capable of overwriting any of those existing writes.
However, for instance, if we decide to overwrite w, with e, then e should also occur
after r, which observed w,. Then, when e occurs after r, it needs to also occur after w3
to avoid violating Atomicity. The primary observation here is that (rf;rmw)* chains
must be considered as atomic entities, where e can only overwrite the final write in
such chains — being w3 in the above example. Formally, we select w € VW (X, e) \
dom(rf;rmw), which does not select the starting or intermediate writes in such chains.
Unlike with read events — where we modified rf — when e is a write, we modify
instead, resulting in the following operational-axiomatic rule:

E' = X.EU {e} po’ = X.po U {(xpre, €) | Xpre € X.E A Xpre.tid = e.tid}
X" =(F’, po’, X.rf, X.mo, X.rmw) w € VW (X, e) \ dom(X.rf;X.rmw)
"=X. U{(w,ey)} U {(wprerew) I (wpre/w) € X.mo}
U{(ew/wpost) | (wrwpost) € X.mo}

P WRITE
X ———— (E/, po’, X.rf, mo’, X.rmw)
Me{x86,Arm}
In the construction of mo’, e explicitly “inherits” the mo-edges of w, placing e directly
after w in its existing mo chain.

Update (RMW). We handle RMW differently from regular read and write instructions,
as RMW behavior is much more subtle. A RMW instruction atomically reads and writes.
Some RMW variants use the read value to obtain the written value, such as a compare-
and-swap operation, which only writes if the read value matches a desired value.
Hence, a RMW fails whenever that read value does not match, and thus does not gen-
erate the rmw relation in the execution. A RMW may also fail whenever another thread

111

6.3 OPERATIONAL-AXIOMATIC WEAK MEMORY MODEL

modifies the memory location in-between atomically reading and writing (i.e., violat-
ing Atomicity in Section 1.3). When specifying the operational-axiomatic semantics,
we need to account for all those cases, in addition to the concerns we listed for regular
read and write instructions.

In the semantics, we must describe the validity of both the success and failure
steps. In some executions, the RMW necessarily fails, e.g., when the read value mis-
matches. In other executions, the RMW necessarily succeeds, e.g., when the read value
matches and no other thread can overwrite its memory location. In most other cases,
both success and failure are possible, e.g., when the read value matches but another
thread does not necessarily (but possibly) modify the location in memory in-between
the atomic read and write. We thus describe those cases separately, where success si-
multaneously adds a (e, ey) pair of read and write events, while failure includes
only the read e,.

For the success case, ¢, reads from a pre-existing write w, like we saw for non-RMW
reads. Suppose we thus selectw € VW(. . .). If another successful RMW had already read
from w, that other RMW necessarily overwrites w. Hence, if e also were to read-from (rf)
w, its corresponding write e, would violate atomicity, which the following program
and corresponding execution demonstrates:

rf?__w: W(X,0)_ _rf

X=0;) N
RMW(X, 0, 1); || RMUW(X, 0, 2); u/ *

(T R(X/ 0) fi R(X, 0)
The RMWs cannot both be success- } :W(X,1)4 ...BW(X, 2)
?

ful in x86 and Arm

Both RMW writes are mo-after w, but must also order with each other, in either direction
— violating Atomicity in both cases. Hence, a RMW-read cannot read from a write event
(w) that another successful RMW had already read from. The RMW can only succeed
when selecting w € VW (X, e) \ dom(rf;rmw). Then, we simply add both the e, and
ew events to the execution simultaneously, while including them in rf, mo, and rmw:

E'=X.EU{e} po’ = X.po U {(xXpre, €/) | Xpre € X.E A Xpre.tid = ¢,.tid}
po” = po’ U {(Xpre, €w) | Xpre € X.E A Xpre.tid = ey.tid} U {(e;, €5)}
X" =(E’, po”, X.rf, X.mo, X.rmw) w € VW (X, e,) \ dom(X.rf;X.rmw)
rf” = Xrf U {(w, e,)} rmw’ = Xormw U {(ey, ew)}
"=Xmo U {(w,ew)} U {(wprerew) | (wpre/w) € X.mo}
U{(ew/wpost) | (wrwpost) € X.mo}
(er, ew)

Me{x86,Arm}

RMW-ox
(E’, po”, rf’, mo’, rmw’)

Although this rule appears complex, its definition merely combine those of READ and
WRITE, with some minor additions. Here, po’ includes ¢, into the execution’s po, while

112

6.4 ROBUSTNESS ANALYSIS

po” also includes e,. Finally, rf” ensures e, reads-from the correct write, which is e;,’s
predecessor in mo’.
In contrast, a failing RMW largely mirrors the definition of a regular READ:

E'=X.EU{e} po’ = X.po U {(Xpre, €r) | Xpre € X.E A Xpre.tid = e;.tid}
X" =(F’, po’, X.rf, X.mo, X.rmw) w € VW (X', er)

e,.desired # w.val V Jv.mo(w, v) rf’ = Xrf U {(w, er)}
RMW-FaIL

X —o (E’, po’, rf’, X.mo, X.rmw)
Me{x86,Arm}
The only difference between a regular READ and a failed RMW-read (RMW-FaIL) is the
additional failure condition. After all, a RMW can only fail if the desired value mis-
matches —i.e., when e,.desired # w.val — or whenever there exists another write v that
may occur in-between the atomic read and write — i.e., when Jv.mo(w, v).

Fence. Whenever e is a fence, inserting it into the execution is trivial because it does
not modify any of the rf, mo, rmw relations. The corresponding rule is:

E'=X.EU{e} po” = X.po U {(Xpre, €) | Xpre € X.E A Xpre.tid = e.tid}

. FENCE
X ——— (FE/, po’, rf, mo, rmw)
Me{x86,Arm}

MPMC-Queue example (Figure 26). The execution in Figure 27 demonstrates the
robustness violation of the program in Figure 26b. The execution is forbidden in x86
as xppo(m, n) holds, creating a hb cycle, whereas Arm allows this execution, as m and
n are unordered. Now consider the strengthened program with RMWqx(Y) ~> RMWa
in the second thread and its execution ¢ = 1,d = 0 in (b). Then, bob(m, n) holds,
resulting in an ob cycle that forbids this execution in Arm as well.

6.4 ROBUSTNESS ANALYSIS

In this section, we check if an execution of a program is allowed in Arm but not in
x86. We formulate this question as a robustness analysis problem and propose our
approach.

6.41 Robustness Violation

A program violates (x86, Arm)-robustness if the program has an Arm-consistent exe-
cution which is not x86-consistent (i.e., it violates Definition 3).

Example. The executions in Figures 28a and 28b demonstrate robustness violations
of the MP and 2+2W programs, respectively, while adding event e4.

X=1;
W = g

@ =\ X=1;

Y=1;
p=x MP V=2

X =2 (2+2w)

113

6.4 ROBUSTNESS ANALYSIS

i [X=Y=0]
— \ S
RA(X, @) \\ m : RRLX(Y 1)
i
WL(X, 1) \rf rmw
v fr/ Waex(Y, 0
Rewx(Y, 9) RL)l()
\ L
WRLX(YI 1 n:Ro(X,0)

(a) Violation

ii[X=Y=0]
— T
Ra(X, 0) - m o Reex(Y, 1)
1 "
vrf o0 | rmw i:[X=Y=0]
WL(‘LX J) \\/// — .v T~
/\ WRLX(Y/ 0) RA(X/ 0) \\ m: RA(Y/ 1)
RRLX(Y @) ¢ \ /1
l \\ WL(X, 1) \\rf, rmw
Waax(Y, 1) LR b w6
\\ bob RRLX(Y 0) \ L()
n : Ro(X, 0) WRLX(Y, 1) n: RQ(X, 0)
(b) Fix (i) (c) Fix (i)

Figure 27: MPMC-Queue (x86, Arm)-robustness violation from Figure 26 and the pos-

sible fixes (all in Arm).

i:[X=Y=0] i:[X=Y=0]
—— \\ —
e1:Wrix(X, 1) Y 33 :Reex(Y, 1) e :WR% e3:Wrix(Y, 1)
, T |
e :Weix(Y, 1) €q: RRLX(X 0) g
e2:Wrix(Y, 2) e4:Wrix(X, 2)
Visible writes for ey4:
x86: {e1}, Arm: {i,e1} Visible writes for ey:
x86: {e1}, Arm: {i,eq}
(a)
(b)

Figure 28: Examples of robustness violation steps. For both examples, an additional
write is visible in Arm. That write is invisible on x86 because ey is hb-

intermediate between i and e4 (separately in either example).

114

6.4 ROBUSTNESS ANALYSIS

In Figure 28a, we append the read event e, to the graph consisting of {i, e1, 2, e3}. In
x86, the only write visible to ey is e;. Particularly, the initial write in i is not visible to
e4, because e is hb-intermediate between them. On the other hand, in Arm the visible
writes are {7, e1} as ej is not an ob-intermediate between i and e4. Hence, on Arm, we
can insert e4 in-between i and e, producing both mo(i, e4) and mo(es, e1). However,
that is impossible on x86. This mismatch, produced from additional visible writes on
Arm, results in the robustness violation.

Figure 28b demonstrates a robustness violation without read events. After ap-
pending write event e4 to the graph consisting of {7, e1, 2, e3}, the sets of writes visible
to e4 are {e1} in x86 and {i, e1} in Arm. These mismatch since e; is a hb-predecessor
in x86 (thus making i invisible) but is not a ob-predecessor in Arm. In this case it is
possible to create mo(i, e4) and mo(es, e1) in Arm, but not in x86.

6.4.2 Analysis Algorithm

The (x86, Arm)-robustness analysis algorithm constructs an execution following the
operational-axiomatic model in Section 6.3 such that the execution remains both x86
and Arm consistent. If an execution’s construction steps diverge, the algorithm raises
a robustness violation. For efficient analysis, we keep track of the coherence order on
the same-location events and global orders for both models.

e For x86, we only keep track of hb ordering.

e For Arm, we combine the ob and the coherence ordering on same-location events

to define coherence-ordered-by: cob 2 (ob U [R];pojoc;[RUW] U [W];pojc:[W])F.

Algorithm 1: (x86, Arm)-robustness analysis.

Input: execution X = (E, po, rf, mo, rmw, (hb, cob)) and event e in thread .

1 casee€ R VeeWdo

2 let X; « append(X, t,e);

3 let Xy « updatelntraOrder{X86,Arm}(Xl, t,e);
4 let (Vx, Va) < VW g6 Arm) (X2, €);

5 if (V; \ Vi) # 0 then

6 ‘ return (X, (V; \ Vy), e);

7 casee € Rdo
8 let w « random(V,);
9 let X! « Xo[rf = Xp.rf U{(w,e)}];

10 casee € W do
11 let X3 < updateMO(X5, e);
12 let X’ « updatelfRMW(X3, ¢);

13 let X « updateOrd g6 arm} (X, €);

Full Algorithm. The algorithm consists of several components, which we explain
top-down. Algorithm 1 performs the (x86, Arm)-robustness analysis for an execution

115

6.4 ROBUSTNESS ANALYSIS

step. The large helper functions are included below (Algorithms 2, 4 and 5), while

we describe the smaller helper functions within the text. Given an execution X with

additional orderings and a newly appended event ¢ in the thread ¢ the analysis steps
are as follows.

e (Lines 1 to 6) When e is either a read or write event — possibly originating from
RMW — we append it to the execution. Line 2 appends event ¢ to the thread ¢, while
on line 3, updatelntraOrder(...) updates the intra-thread hb and cob orderings in
x86 and Arm, respectively, within thread t. Next, line 4 computes the visible writes
in x86 and Arm by VW(. .. .), corresponding to the operational-axiomatic semantics
(Section 6.3). Line 5 detects whether more writes are visible in Arm than in x86,
reporting a robustness violation if so, returning these additional writes on line 6
(which are later fixed — Section 6.5.1). Otherwise, the event ¢ behaves similarly in
x86 and Arm, and can be added to the execution graph. As read and write events
affect the execution differently, we handle them separately below

e (Lines 7 to 9) When ¢ is a read event, we randomly select a visible write w on line
8, from which we append the corresponding rf edge on line 9.

e (Lines 10 to 12) When e is a write, we invoke updateMO(...) to add e after a ran-
dom write event w € V,. Unlike the semantics (i.e., WRITE — Section 6.3), we
select w € VW(...) instead of w € VW(...) \ dom(rf;rmw). If we have selected
w € dom(rf;rmw), we place it either before or after the entire rf;rmw-chain with
updateMO(. . .), which we explain in more detail below (Algorithm 2). If e was gen-
erated by a RMW instruction, we add an rmw edge from its corresponding R event to
e (on line 12).

e (Line 13) Finally, after constructing a well-formed execution X’, we update our view
of hb and cob with updateOrd(...).

A step either performs a state-transition by updating the execution graph or reports

the first robustness violation.

UpdateMO. Our updateMO function, which we used above in Algorithm 1, places
the new write event e behind an existing write w € V — we include it in Algorithm 2.
Particularly, it ensures mo remains total per location, by adding mo-edges between ¢
and all existing writes — in either direction. The loops and conditions on lines 2-4
iterate over all existing same-location write events.

Crucially, we must specifically consider the scenario where w is on a rf;rmw-
chain, as e can only be before or after the entire chain — never in the middle, as that
would violate Atomicity. Whenever w is on such a chain, we specifically take the start
Wstart and end wenq of that chain (lines 5-6); When not on a chain, then w=wstart=Wenq.
When e is hb/cob-after w (or its entire rf;rmw-chain), then the if-case on lines 7-8
places e mo-after w. When e is hb/cob-before w (or its entire rf;rmw-chain), then the
elseif-case on lines 9-10 places e mo-before w. Finally, when e is hb/cob-concurrent
with w, we can attach the mo edge in either direction on line 12.

Note that those updated orders may restrict the mo-order of the writes in the

116

6.4 ROBUSTNESS ANALYSIS

next loop iterations, as the created edges are included in hb/cob on lines 13-16.
After iterating over all writes, e connects to all prior same-location writes, while
is again total per location.

Algorithm 2: updateMOy,(): Update the mo relation.
Input: Execution graph X = (E, po, rf, mo, rmw), a new write event e = W(t, x).
If M = x86 then Sp; = hb and if M = Arm then Sy, = cob.

1 let X' « X;

> foreach t € Threads do

3 foreach w € events(t) do

4 if w € W, then

5 let wstart < rmwChainStart(w); -- equals w when not on a rf;rmw-chain
6 let wepngq < rmwChainEnd(w); -- equals w when not on a rf;rmw-chain
7 if (Wstart, €) € X'.Sps then

8 | letX’.mo «— X".mo U{(w,e)};

9 else if (¢, w,,4) € X'.Spr then

10 ‘ let X’.mo « X".mo U {(e, w)};

11 else

12 ‘ let X’.mo « X".mo U random({(w, e), (e, w)});

13 if M = x86 then

14 | updateXHB(X".hb, e);

15 else

16 ‘ updateCOB(X’.cob, e);

17 return X’;

Compute visible writes. Here, we give the algorithm to compute the visible writes
VW(...), which we already included declaratively with the operational-axiomatic se-
mantics (Section 6.3). Algorithm 3 computes those visible writes under the x86 and
Arm model for an event ¢ that is appended to an execution graph X, on thread t and
location x. We accumulate the visible writes in two phases. First, on lines 1-11, we
accumulate a set of writes VW, that are possibly visible to the appended event e. Sec-
ond, on lines 12-20, we filter VW, to those that are actually visible, collected in VW.

In the first phase, we traverse the events in each thread ¢ in reverse to identify
the latest write or RMW event ¢’ on the same location as e (lines 3-11). If a write event
¢’ on the same location x is hb in x86 or cob in Arm, or immediate po,. predecessor of
event e, then we accumulate ¢’ in VW (lines 5-8). Note that we do not need to look
further in the thread f, as only one event is immediately hb/cob/po,,.-preceding —
hence the break on line 8. Otherwise, ¢ is hb/cob-concurrent to e, making it possibly
visible (lines 9-11)

In the second phase (lines 12-20), we iterate over the accumulated writes in w €
VW and check whether it is visible to e. In particular, when another write w’ € VW,
is in-between w and e (by hb/cob), then w is not visible (lines 15-18).

117

6.4 ROBUSTNESS ANALYSIS

Algorithm 3: VW) (): Compute Visible-Writes in M € {x86, Arm}.
Input: Execution graph X = (E, po, rf, mo) and a new event e = R(f, x).
If M = x86 then Sy; = hband if M = Arm then Sy, = cob.

1 let VW1 — 0,’
2 foreach t € Threads do

3 foreach ¢’ € events(t).rev() do

4 if ¢ € W, then

5 if (¢/,e) € X.Sy V t = e.tid then

6 /! SpmUpoj..-preceding on the same thread
7 let VW1 « VW7 U {¢};

8 break;

9 else

10 // Concurrent

11 let VW; « VW7 U {e’};

12 let VW «— () ;

13 foreach w € VW; do

14 let visible « T ;

15 foreach w’ € VW A w’ # w do

16 if (w, w’) € X.Sy then
17 let visible «— 1 ;

18 break;

19 if visible then

20 | let VW « VW U {w};

21 return VW;

6.4.3 Arm Relations

In Arm, we update cob in two ways. We update the intra-thread order (i.e.,cob within
po) with updatelntraOrderarm — used in Algorithm 1 — while we updated the external
cob in updateMO (Algorithm 2). We explain these updates to cob separately.

Intra-thread. Given an event e, we compute the intra-thread cob relation in Algo-
rithm 4 as follows. Line 1 computes the aob case of cob. Lines 2 to 9 computes the bob
case of cob targeting e. We factored out the first three cases (lines 2-4), each of which
starts at a specific event v. Hence, we can obtain that specific event with lastEv(. . .),
which returns the last event of a specific type in the given thread. Those do not need
to look further backwards, as any preceding events v’ of the same type would already
be ordered before it (i.e., cob(v’, v))

The final bob cases (lines 5-9) order through an intermediate event with any pre-
ceding event. For instance, with an intermediate Fy,,, we must cob-order all R events
preceding the fence before e. When implementing the algorithm, one could memo-

118

6.4 ROBUSTNESS ANALYSIS

ize those read events at fence f and prune transitive redundancies; e.g., if cob(x, f),
cob(y, f), and cob(x, y) we need not memoize x at f when it already knows y.

External. Given an event e, we extend the cob in Algorithm 5 as follows: When e
is a write event, lines 1-5 add incoming fre edges from all other threads into cob.
When e is a read event, lines 6-11 either includes rfe into cob (line 9) or the spe-
cial ‘[codom(rmw)];rfi;[RAURo]’ case of aob (line 11). Finally, on line 12, propagate(. . .)
propagates the cob edges to and from e to the other events in the graph, establishing
cob’s global transitive closure.

Algorithm 4: updatelntraOrderarm(): Update intra-thread cob in Arm.

Input: Execution X = (E, po, rf, mo, rmw, cob) and event e appended in thread t.

1 let cob « cob U {(v, e)} where rmw(v, e); // aob

2 let cob « cob U {(v, e)} where v = lastEv(RA,URq, t); // bob (2)
3 let cob « cob U {(v,e)} where v = lastEv(W_,t) Ae € Ry; // bob (4)
4 let cob « cob U{(v,e)} where v = lastEv(codom([RA];rmw;[WL]), t); // bob (8)

5 let cob « cob U {(v,)} where v,eeRUW A 3feFym.[po(v, f) A po(f,e)]; // bob (1)
6 let cob « cob U {(v,e)} where veRAeeRUWATf€eFry.[po(v,f)Apo(f,e)]; // bob (3)
7 let cob « cob U {(v, e)} where v,eeW A AfeFyw.[po(v,) A po(f,e)]; // bob (5)
8 let cob « cob U {(v,e)} where (v,e) € po Aee W; // bob (6)
9 let cob « cob U{(v,e)} where JweW, .[po(v, w) A po(w,e)] Ae € W; // bob (7)

Algorithm 5: updateCOB(): Update global Arm cob relation.

Input: Execution X = (E, po, rf, mo, rmw, cob) and event e appended in thread ¢.

1 casee € Wdo
2 foreach t’ € (Threads \ {t}) do

3 let 7 « lastEv(R, joc, t');
4 if (¢, 7) ¢ cob then
5 ‘ let cob « cob U {(r,e)} // fre edge;

6 casee € Rdo
7 letw,s = rf71(e);
8 if w¢.tid # e.tid then

9 ‘ let cob «— cob U {(w,f,e)} // rfe edge;

10 else if w s € codom(rmw) A e.ord € (R4 U Ry) then
11 ‘ let cob « cob U {(w,f,e)} // aob edge;
12 propagate(cob, e);

6.4.4 x86 Relations

The approach for x86 is much easier, as its model has fewer and simpler cases. Par-
ticularly, we update the intra-thread relations of hb (i.e., xppo) and its external cases.

119

6.5 ROBUSTNESS ENFORCEMENT

Intra-thread. For each thread we memoize the last read (LR) and last write (LW) within
the thread, from which we extend the xppo edges. Then, given an event e we update
the xppo orders as shown in Algorithm 6. Contrasting Arm’s cob, xppo edges may
directly originate from or target fences, making it easier to add the edges. When
e is a read event, Lines 1 to 3 add edges from any preceding read event to ¢, and
update LR. Observe that write-read pairs are unordered in x86 (by xppo). Whenever
e is either a write or fence event, we add edges from any preceding event to e in 4-8.
Note that when e is fence, we still mark it as “last read” and “last write” because it
has in incoming xppo-edge from the actual last preceding read and write events; This
approach allows us to preserve the order of write-read pairs (by xppo™) when there
is an intermediate fence.

Algorithm 6: updatelntraOrderygs(): Update xppo in x86 execution.

Input: Thread t with newly appended event e.

1 casee € Rdo

2 let xppo < xppo U {(f.LR, e)};

3 lett.LR «—¢;

4 casee e WUF do

5 let xppo < xppo U {(t.LW, ¢), (t.LR,¢)} ;
6 lett.LW «—¢;

7 casee € Fdo

8 ‘ lett.LR «—e

External. Finally, to update the global hb order (used in updateMO) for a new event
e, we add the incoming fre and rfe from other threads, shown in Algorithm 7. The
approach resembles Arm’s updateCOB (Algorithm 5). When e is a write, Lines 1 to 5
include fre edges into hb from reads on all other threads. Note that lastRead(. . .) re-
trieves the last read on a particular location for a specific thread — it thus differs from
LR, containing any event that observed the last read to any location. When e is a read,
Lines 6 to 9 include the rfe edge into hb. Finally, propagate(...) on line 10 propagates
the hb edges to and from e to the other events in the execution graph, establishing
hb’s global transitive closure.

6.5 ROBUSTNESS ENFORCEMENT

Algorithm 1 returns a robustness violation (X, W, ¢). In this case there exists an ex-
ecution graph Xy which is consistent in both x86 and Arm and X po-extends graph
Xo by event e. In X, W is the set of writes visible in Arm but not in x86 to event
e. We enforce robustness for the event pair (w, e) where w is selected from the set
W. In this case, (w, e) is in X.hb relation in x86, but not in X.cob relation in Arm.
It implies there exists a path from w to e consisting of a nonempty set of X.po and

120

6.5 ROBUSTNESS ENFORCEMENT

Algorithm 7: updateXHB(): Update x86 global hb relation.

Input: hb relation and event e

1 casee € W(t,x) do
2 foreach t’ € Threads At # e.tid do

3 let r < lastRead(t’, x) ;
4 if (¢,7) ¢ hb then
5 | lethb —hbU{(r,e)} // fre edge;

6 casec € R(f,x) do

7 letw, = rf~1(e);

8 if w,s.tid # e.tid then

9 | lethb —hbU{(wy,e)} // rfe edge

10 propagate(hb,e);

(X.rfe U X.fre U X.moe) edges that enforces X.hb but does not enforce X.cob. It results
due to the weak po-edges on this path where the po is unordered in Arm but ordered
in x86, since (X.rfe U X.fre U X.)-enforce hb and ob orders in both x86 and Arm
respectively.

Fixing the violation. Given such a pathw — e; — e;... — ¢, an enforcement
strengthens the weak po-edges on that path to also order w and e in Arm. To this end,
we strengthen the memory order of certain accesses involved in the weak po-edges
or insert fences. Each weak edge can be strengthened in multiple ways based on its
context. Given all possible strengthenings with respective costs following a given cost
model, an optimal robustness enforcement strategy selects the transformation strategy
that incurs minimal cost among all cases.

6.51 Strengthening Algorithm

Algorithm 8 strengthens accesses, eliminating a violating path from being reported

again.

e The outer loop (line 2-17) iterates over all (po U rfe U U fre) paths in X between
w and e, looking for the cheapest path to fix. Observe that the number of paths
(obtained by allPaths) may be exponential in the trace/graph length. We prune that
space by first identifying events that occur on any path (in O(n)) and then enu-
merate only the paths including those. While this enumeration is still exponential,
violating events are often close together (<100 events apart), and this approach is
sufficient to analyze our benchmark traces.

e Given a path, we extract its maximal po-edges (line 3) 2 ——" b, which are maximal
sequences of po-related events, where 2 and b are on different memory locations.
Suppose our edge is of the form (Xstart, ¥Smid, Xend), Where Xgtart = 4, Xend = b, and
there is an intermediate sequence of po-related events xsmiq. In the inner loop, we
fix this one edge a ——" b (line 7-12). However, to fix the entire path, we strengthen

121

6.5 ROBUSTNESS ENFORCEMENT

Algorithm 8: Robustness enforcement.

Input: Program P, Execution X, Event w, Event e
1 let bestFix <« ¢, bestFixCost «— oo;

> foreach p € allPaths(X, w, e) do

3 let pos « extractPOs(p);
4 let pathFixes <« @, pathFixCost < 0;
5 foreach (Xstart, XSpid, Xend) € pos do
6 let poFix « &, poFixCost «— oo;
7 foreach x,,;; € {¢} Uxs,,;;do
8 let fixOpts « strengthen(Xstart, Xmid, Xend);
9 foreach f € fixOpts do
10 if cost(f, P) < poFixCost then
1 poFix « f;
12 poFixCost « cost(f, P);
13 pathFixes « pathFixes U { poFix};
14 pathFixCost «— pathFixCost + poFixCost;
15 if pathFixCost < bestFixCost then
16 bestFix «— pathFixes;
17 bestFixCost < pathFixCost;

all maximal po edges on that path (line 5-14).

An individual edge 2 ——" b, may be fixed by multiple ways. For instance, for an
unordered Ry x — Wg.x pair, we could either strengthen the R to R, or the W to W,.
strengthen (line 8) returns all options that apply:

(LDR, _,) — (LDRq,_,) (_,RMW,) — (_, RMWp,)
(L, _,STR) = (L, _, STRy) (RMU(R), _,) — (RMWA, _,)
(STR, _, LDR) — (STR, _, LDRA) (RMW, _,) — (RMWp, _,)
R)= GFD) (_,_, RMU(W)) = (_, _, RMW,)

(_,STR, LDR) — (_, STR,, LDR,) (,_ RHW) = (_, _, RMllp,)
(STR, LDR, _) — (STR,, LDRA,)

The instructions on the left-hand side imply any memory order. Applying any one
of these options put the po-edge in Arm’s bob, thus strengthening it in Arm. Note
that a path sometimes only considers a RMW’s R or W event; e.g., an rf reaching a
RMW targets its R, which we denote with RMW(R). The middle event represents an
intermediate event (e.g., a F or RMW), whose strengthening may also order the chain
(line 7).

Among all options, we select the cheapest fix for the chain (line 10). Our cost model
follows an intuitive hierarchy between memory-orders and instruction rlx < {A,L} <
AL and {LDR, STR} < RMW; That is, for instance, strengthening mm is more expensive
than rlx, and an RMW is more expensive than strengthening a LDR. Additionally,

122

6.6 EXPERIMENTAL EVALUATION

we consider the cost within context of the instruction in the program. For instance,
strengthening an RMWa to RMUWy| is cheaper than strengthening an RMW 1 to RMWy, .

e Finally, after fixing all po-edges, we found the cheapest way of fixing the full path.
If it is the cheapest path to fix overall (line 15-17), we select the current path.

This algorithm can fix the errors in Figure 27 (MPMC-Queue) and Figure 28 (both a

and b) by establishing the bob relation.

6.6 EXPERIMENTAL EVALUATION

We implemented the robustness analysis on Cl1Tester by Luo and Demsky (2021), a
state-of-the-art C/C++ testing tool. Cl1Tester constructs execution graph of C/C++
programs. At each step, it computes the relations and orders for the C11 concur-
rency model by Lahav and Margalit (2019). In contrast, our OrRiGamMI computes those
of the x86 and Arm models while constructing the execution graph for the analyses.
OriGaM1 keeps a vector clock (Lamport, 2019) for every event, containing its last ob-
served read and write events per-memory location. When event e, observes another
event e (e.g., with updateMO or updateOrd), e;’s Arm vector clock includes e; and
everything observed by e;. Hence, we can obtain mo explicitly by following same-
location writes in the vector clocks.

Experimental Setup. We compare against state-of-the-art x86 to Arm translation ap-
proaches: Fency by Chakraborty (2021), and our mapping schemes from (Chapters 2
to 4). Fency is a static analysis tool for checking and enforcing robustness for several
weak memory models, including between x86 and Arm (Chakraborty, 2021). We
compare with ORIGAMI on their respective benchmarks, where we compare the num-
ber of strengthenings and the performance of the generated Arm programs on an
AWS c7gd.metal instance (with a 64-core Graviton3 CPU). We fix programs until
OriGcami finds no more violations for 1,000 runs. While this may not find all errors
in general, we expect it finds all realistic errors for our benchmarks.

The Cl1Tester and Fency benchmarks are popular concurrent data structures
and algorithms with C/C++ concurrency primitives. LASAGNE used a subset of the
Phoenix benchmark suite Ranger et al. (2007), consisting of shared memory MapRe-
duce programs, widely used to benchmark concurrent executions.

6.6.1 Research Questions

We address the following research questions to evaluate our approach:

e RQ1 Can Oricami identify program executions in the C11Tester benchmarks that
violate (x86, Arm)-robustness and fix them?

¢ RQ2 How does OriGaMI compare against the static robustness analysis and en-
forcement techniques in Fency?

e RQ3 How effective is OrRIGAMI in translating concurrent programs written for x86
to Arm compared to RisoTT0’s mapping scheme?

123

6.6 EXPERIMENTAL EVALUATION

name |trace| # name |trace| #
chase-lev-deque 62 0 mcs-lock 58 0
spsc-queue 19 2 mpmc-queue 47 3
barrier 53 0 ms-queue-tsan 116 6
dekker 35 0 linuxrwlocks 26 0

Figure 29: C11Tester Benchmarks. Trace lengths of the final successful execution are
averaged over 1,000 runs. # is the number of strengthenings.

6.6.2 C11Tester Benchmarks (RQ1)

We identified and fixed several (x86, Arm)-robustness errors in the C11Tester bench-
mark programs. We ran each program 1,000 times, or fewer if that identified the
errors. Given a set of erroneous traces, we computed the cheapest fix and manually
strengthened the accesses in the corresponding program. We repeated these steps
until no more errors were found, upon which we reported the number of strength-
enings and average final trace lengths in Figure 29.

Observe that only three of the programs needed robustness enforcement, the oth-
ers ORIGAMI reported as (x86, Arm)-robust (for our adapted Arm model from Sec-
tion 6.2.2). In spsc-queue, we found po-chains between the events generated from
the Wi and RMW,qx accesses. Its unordered accesses are fixed in two steps RMW,1x ~»
RMWL_ ~> RMW,.. For the first violation, we identify the resulting pair of write events or-
dered in x86, but not in Arm. To fix the violation, our algorithm transforms RMWq1x ~»
RMWL. In the next step, we identify the unordered po-edge from rlx. to Ryx events
generated from the same accesses. These are ordered in x86 but not in Arm. Hence,
we perform the transformation RMW_. ~> RMWy.. We already showed a violation in
mpmc-queue in Figure 26 and its transformed version. We found several errors in ms-
queue-tsan11, one of which Figure 30 illustrates.

Finally, we observed OriGami often suggests similar strengthenings for the same
program, but because of its random nature may suggest a different fix with equal
cost. Consequently, depending on the order, we may obtain an altogether different
set of fixes for the same program, both independently fully fixing it. Unfortunately,
sometimes this process results in redundant strengthenings, which is a strengthening
that is no longer required in the fully fixed program. This is a consequence of the
random nature of OrRiGaMI where it ends up at a local minimum.

6.6.3 Comparison with Fency (RQ2)

Figure 31 compares our OriGaMI against Fency (Chakraborty, 2021) on the Fency bench-
marks. Fency inserts fences after static analysis, thus overapproximating the neces-
sary fence locations. Note that Fency inserts fences between events (i.e., F, Fip, Fsr),
whereas we strengthen accesses with acquire and/or release. We modified Fency’s orig-
inal benchmarks because the original variants could not run; Fency’s static analysis

124

6.6 EXPERIMENTAL EVALUATION

tp ... t3 ty ts
init_queue(..) dequeue(..) enqueue(..) dequeue(..)
Weix(h, v1) - - - =T Ra(h, v2) e RMWAL(L, 03, 04) - - - - - - > Rrux(L, v4)
Reux(1, v3) fr f Reux(h, ?)

Figure 30: Violation in ms-queue-tsan11 (simplified), spanning five threads. The final
read event on h in t5 is ordered after the write in 1 on x86, but not on Arm.
This violation only showed up in two of the 1,000 traces and was at least
84 events apart in those traces. (Thread 2 with an RMW on h omitted)

trace ORIGAMI Fency RisorTo
name length # rt # rt # ort
barrier 19 0 - o - 4 -
barrier-ext 67 2 23 2 23 3 23
dekker 30 0 - 4 - 20 -
peterson 28 2 - 4 - 10 -
peterson-ext 251 3 38 6 49 5 48
lamport 184 3 63 8 63 13 63
spinlock 39 0 31 o 31 3 31
ticketlock 57 0 32 1 32 2 32
seqlock 233 6 31 8 32 8§ 32
rcu-offline 1,283 8 13 12 29 19 28
cilk 1,879 3 70 8 98 17 129

Figure 31: Fency Benchmarks. Trace lengths averaged over 1,000 runs. # is the num-
ber of strengthenings, and ‘rt’ is the runtime in ms. The missing runtimes
were dominated by process spawning overhead.

never needed executable programs. However, we need to execute programs to ob-
tain traces. We also executed Fency on these modified programs. To ensure a fair
runtime comparison, we compiled all variants of these programs with Fency’s Clang
version (~10.0.0).

Figure 31 shows the comparison with our Oricamr. Observe that Fency strength-
ens at least as much as our ORIGAMI. Fency reports robustness violations in dekker
and ticketlock benchmarks, which are false positives as it overapproximates memory
aliasing with its static analysis. In contrast, our approach analyzes concrete traces and
identifies these benchmarks as robust. For the other benchmarks, Fency inserts equal
or more fences than our approach. Moreover, observe that programs obtained with
ORIGAMI run at least as fast as those produced by Fency. The programs whose run-
time is missing include only a few accesses across two threads; Their process spawn

125

6.6 EXPERIMENTAL EVALUATION

trace ORIGAMI RisotTO
name length # runtime # runtime
histogram 8,778) 134 18 193
linear_regression 7,786 0 128 22 151
pca 3,233 0 847 38 931
string_match ©6,191) 295 25 2,349
kmeans 9,225 0 410 53 670
matrix_multiply 2,486 o] 2,442 32 2,740
word_count (partial) ¢10,524 o] 386 80 896

Figure 32: Phoenix Benchmarks. Most trace lengths are averaged over 1,000 runs, but
¢ marks smaller sample sizes of 100 for more expensive programs. # is the
number of strengthenings, and the runtime is given in ms.

cost eclipses their runtime and thus doesn’t give any meaningful result. Finally, we
observe that OriGamr often produces and analyzes traces within seconds; However,
when scaling this up significantly, we observe a dynamic analysis time of 31 minutes
per trace. So, to answer RQz, we produce fewer (or equal) strengthenings to Fency
and have better (or equal) runtimes of the generated Arm programs.

6.6.4 LasaGNE/Risorro Comparison: Phoenix (RQ3)

Finally, we compare against Risorto’s mapping scheme. LASAGNE and RisoTTO are
binary translators, which translate binary x86 programs to Armv8. That translation
incurs overhead (~51% for LAsaGNE and much more for RisorTo) compared to the
native LLVM compilation to Arm, rendering direct comparison unfair. Instead, we
manually apply its mapping scheme to the Phoenix (Ranger et al., 2007) programs, thus
avoiding the lifting overhead. We compare the number of strengthenings and pro-
gram runtimes (compiled with LLVM 18.1.8), shown in Figure 32. For ORriGamr’s
dynamic analysis, we reduced inputs significantly (e.g., reducing histogram’s image
from ~35M pixels to 500), but used the original large inputs to measure the final pro-
gram runtimes. Besides the Phoenix benchmarks, we also applied RisotrTo’s scheme
to the Fency benchmarks in Figure 31. As Fency does not support various features
present in the Phoenix benchmarks, we could not analyze them with Fency.
Interestingly, OriGAaMI indicates none of the Phoenix programs require strength-
ening. The threads don’t concurrently modify the same variables, implying that all
Phoenix programs are embarrassingly parallel. For the Phoenix programs, RisotTo’s
scheme requires more fences than Oricamr and produces slower (or equal) programs.
Observe that string_match and word_count particularly slow down (8x and 2.3x re-
spectively) due to fences inserted in frequently called standard library functions, such
as strlen and strcmp. We observe similar results on the Fency benchmarks in Fig-
ure 31, where RisoTTO’s scheme inserts more fences and is slower than (or equal to)

126

6.7 RELATED WORK

both Fency and Oricamr. However, note that RisoTTo’s scheme is correct in general
and thus works without program analysis. We observe that ORIGAMI runs particu-
larly slowly on histogram, as it has 3 - 256 memory locations per thread, observed by
all subsequent events.

6.7 RELATED WORK

State-of-the-art compilers such as LLVM (LLVM Team, 2025; Lattner and Adve, 2004),
GCC, and binary translators follow respective mapping schemes Sewell (2011). These
mapping schemes ensure correct translation for all contexts. However, as our ex-
periments noted, in many scenarios, these schemes introduce additional fences or
stronger memory accesses, which are unnecessary and detrimental to performance.

Various approaches identify the differences in behaviors for a given program
based on static analysis (Alglave and Maranget, 2011; Chakraborty, 2021; Alglave
et al.,, 2017; Beck et al., 2023), model checking (Lahav and Margalit, 2019; Lahav and
Boker, 2022; Oberhauser et al., 2021; Bouajjani et al., 2013a,b), and solvers (Ponce de
Leon et al., 2017; Wickerson et al., 2017). The static analysis approaches derive ab-
stract graphs from a program for analyzing possible executions (Alglave and Maranget,
2011; Alglave et al., 2017; Chakraborty, 2021; Beck et al., 2023). Musketeer by Alglave
and Maranget (2011); Alglave et al. (2017) checks if the program has any non-SC exe-
cution. Fency by Chakraborty (2021) also check the differences between weak models
including x86 and Arm. However, these tools overapproximate the program behav-
iors to perform sound analyses and as a tradeoff, suffer from false positives as noted
for Fency. AtoMig by Beck et al. (2023) adopted a static analysis yet unsound ap-
proach to port programs written for x86 to Arm, and thus also lacks completeness.
We could not compare with AtoMig as it is not publicly available.

There are model-checking-based approaches that check SC-robustness under
weak memory models (Lahav and Margalit, 2019; Lahav and Boker, 2022; Oberhauser
etal., 2021; Bouajjani et al., 2013a,b). Unlike these, we check the differences between a
pair of weak memory models. Moreover, while model checkers can precisely explore
all executions, they are costly in usage and performance. PORTHS by Ponce de Leén
et al. (2017) uses an SMT solver for bounded portability analysis from Power to TSO.
Memalloy by Wickerson et al. (2017) uses the alloy solver to identify an execution that
differentiates between memory models. However, it does not scale to large programs.
Moreover, these existing approaches do not perform any required transformations.

Although several model checkers listed above build on an operational seman-
tics, sometimes implicitly, other operational-axiomatic semantics were explicitly de-
veloped before. Particularly, Doherty et al. (2019) propose an operational semantics
for RC11 (Lahav etal., 2017) that disallows poUrf-cycles, as we do. In contrast, another
operational RC11 model by Wright et al. (2021) accurately allows those cycles.

127

6.8 CONCLUSION

6.8 CONCLUSION

We presented OR1GAMLI, a robustness analysis and enforcement approach to port con-
current applications written for x86 to Arm. Our approach simulates the program'’s
execution under both the x86 and Arm memory models and detects whether the lat-
ter shows additional behaviors. If so, OrRIGAMI assists programmers by suggesting ac-
cess strengthenings that eliminate those additional behaviors. We evaluated OrRIGAMI
on several benchmarks and compare against state-of-the-art approaches — the Fency
static analyzer and the mapping schemes from Chapters 2 to 4. We showed that our
approach inserts fewer fences than those existing approaches, producing programs
that are 1.8x faster, on average.

128

Chapter 7

Conclusion

We conclude this dissertation by answering our research questions, for which we
revisit the primary contributions of the chapters. We also discuss several key obser-
vations and future work, but start by repeating our research question:

Research Question

How can we correctly translate programs between weak memory model archi-
tectures while minimizing performance overhead?

To answer this question, we explored two mechanisms to translate programs between
weak memory model architectures. In Part I we proposed mapping schemes, which
we proved correct. The corresponding proof challenges and techniques we explained
in Part II. In Part IIl we proposed an alternative algorithm to insert fences after detect-
ing violations while simulating the program under its semantics. We can visualize
those solutions as follows:

no fences ORIGAMI ideal mapping schemes fences everywhere
(Part III) (Parts I and 1II)
| | | | |
| | | | 1
- —
least fences incorrect correct most fences

The “ideal” solution is a hypothetical perfect solution ordering exactly those instruc-
tions needed in any possible execution of the program. Unfortunately, obtaining such
a solution is impossible (Rice, 1953), meaning an algorithm producing that solution
cannot exist. On the left extreme, we insert no fences at all, which is clearly incor-
rect. On the right extreme, we insert full fences between any two adjacent memory
instructions, which is clearly correct but significantly harms performance.
In-between those extremes, we have our own solutions, improving upon the ex-
tremes and approaching the ideal from both sides. Our mapping schemes (Part I)
are correct in general, for any program with any number of threads. These schemes
from x86 to Arm and RISC-V place significantly fewer fences than the naive approach,
benefiting performance. However, these schemes cannot consider the exact set of or-
ders needed at runtime, for instance, because of specific interactions between threads.
Hence, the mapping schemes over-approximate the ideal solution, sometimes inserting
too many fences. In contrast, our dynamic analysis OriGamr (Part III) exactly orders
those instructions needed, for any execution explored during random analysis. That
analysis under-approximates the ideal, as it will fail to explore many of the infinitely-
many executions. However, it inserts significantly fewer fences than the mapping

129

7 CONCLUSION

schemes. Neither of our mechanisms can be ideal but approach it from both sides.
We elaborate on those approaches while addressing the sub-questions, highlighting
their respective key observations.

Sub-Question 1

How can we define performant mapping schemes between weak memory model
architectures and prove these preserve robustness?

Mapping Schemes. In Part [we defined formal mapping schemes between memory
accesses from x86 to Arm and RISC-V. Besides proving them correct, we demonstrate
their usability in three binary translators. Although the resulting mappings between
architectures were similar, they supported different architectural features and trans-
lated through various intermediate representations, specific to each translator.

In Chapter 2, we defined mapping schemes for LASAGNE, our static binary trans-
lator, which internally uses LLVM IR. After identifying errors in the existing trans-
lation of LLVM and lifter mctoll, we defined our own intermediate memory model
LIMM, through which LASAGNE’s mapping schemes translated from x86 to Arm.
LIMM supports various transformations that existing LLVM optimizations rely on,
such as instruction reordering and fence elimination, which we also proved correct.

In Chapter 3, we addressed a similar challenge for our dynamic binary trans-
lator Risotto that builds upon QEMU. There too, we identified robustness errors
in QEMU’s existing translation, which we fixed with new mappings over our own
TIMM model. The primary challenge was supporting Arm’s new CASy instruction
(i.e., single-instruction RMW), whose semantics were only described in a newer Arm
model (Alglave et al., 2021). Targeting those new semantics required significant re-
working of LASAGNE's proofs to target the new Arm model for Risorto. Through these
extensive proof efforts, we identified an issue in those semantics as CASy ordered
weaker than it should, which we fixed in the Arm model. This discovery particularly
highlights the value of proof mechanization.

Finally, in Chapter 4 we again faced a similar challenge for our hybrid binary
translator ARANCINI. ARANCINI was built from the ground up, meaning we could
control its semantics and implementation. We again defined an intermediate model
AIMM, resembling the prior models. That model and its proofs addressed two new
primary challenges: (i) supporting mixed-size accesses and (ii) targeting RISC-V. The
first we address by including mixed-size semantics in our AIMM model and prov-
ing a corresponding mapping correct from x86 to Arm through AIMM, with mixed-
size accesses. Those proofs also required significantly overhauling the existing proof
structure to support those mixed-size models. Finally, the mapping to RISC-V re-
quired its own separate mechanized proofs.

130

7 CONCLUSION

Proof Challenges. Through the challenges we faced while mechanizing the numer-
ous proofs for the mappings in Part I, we discovered various common proof struc-
tures, which we discussed in Chapter 5 (in Part II). In particular, we discovered that
most mappings preserve well-formedness—consisting of 27 properties—in a similar
way. Repeatedly proving those properties is very time-consuming. To address that,
we identified several simpler properties and relations which imply that a mapping
preserves well-formedness — we can thus prove it generally, saving much proof engi-
neering efforts.

Additionally, we identified common mechanisms with which the proofs mapped
properties and relations between execution graphs. That allowed us to define abstrac-
tions with corresponding primitives, capturing that proof structure. For instance,
primitive relations (i.e., po, rf, mo, and rmw) often map in similar ways; while de-
rived relations are often composed in similar ways (e.g., with *;’, ‘U’, or ‘N’), which
our mapping primitives capture. While we use those primitives in our general well-
formedness proof, their primary value is their role in simplifying the mechanization
of the mapping-specific proof fragments (e.g., consistency). We have implemented
these general proofs and mapping primitives in our Agda proof library BURROW.

Summary. We have defined various practical mapping schemes that correctly trans-
late weak memory primitives from x86 to Arm and RISC-V, supporting various archi-
tectural features. We demonstrated their usability by implementing them in binary
translators, while proving their correctness with mechanized proofs. Finally, we de-
veloped a general proof framework to simplify proofs mechanization for future map-
ping schemes.

How can we detect and fix robustness violations that appear in program traces?

|* Sub-Question 2

In Part III we approach the x86-Arm robustness challenge from the other side. Al-
though our mapping schemes consider an over-approximation of the program’s be-
havior to ensure robustness, they often insert too many fences. In particular, they
must be correct in general, thus assuming unknown threads communicate arbitrar-
ily; We had to consider all possible behaviors when defining the mapping schemes.
In contrast, when we know the specific program, we can simulate it under the for-
mal semantics to detect and fix program-specific violations, which Oricamr did in
Chapter 6. OriGAaMI analyses the runtime behavior of programs by simulating them
step-by-step under both the x86 and Arm weak memory models to detect x86-Arm
robustness violations. It thus under-approximates the set of behaviors; Though it often
correctly fixes violations, its randomized analysis could miss violations. We demon-
strate programs fixed using ORrRIGAMI are on average 1.8X faster than those using the
mapping schemes, across the benchmarks we used.

131

7.1 FUTURE WORK

7.1 FUTURE WORK

Approach Ideal Solution. We have translated programs between weak memory ar-
chitectures in various ways. Our mapping schemes are correct in the general case,
but necessarily over-approximate a program’s semantics, sometimes placing too many
fences. Our dynamic analysis technique only places those fences needed to fix viola-
tions detected at runtime, under-approximating a program’s semantics and thus some-
times placing too few fences. The crucial observation here is that they approach the
hypothetical ideal solutions (which is undecidable) from either side. We foresee op-
portunities to combine aspects of both to get closer to the ideal solution, placing fewer
fences than our mapping schemes but remaining correct in general. Instead of over-
approximating the behavior of any program, we could over-approximate the behav-
ior of a specific program. For instance, a program analysis could over-approximate
the communication between threads, which mapping schemes then fix.

Intermediate Weak Memory Model. In Part I we introduced the three memory
models LIMM, TIMM, and AIMM, which were intermediate within our mapping
schemes. Our model preserves the order explicitly among memory accesses with
fences, but does not order them with dependencies (e.g., ‘a = X5 Y = a3’), unlike Arm
(Pulte et al., 2017; Alglave et al., 2021). We decided to eliminate dependencies to
work with existing translation system —LLVM for LIMM and TCG for TIMM- whose
existing optimizations would likely not respect those dependencies. Although that
decision poses no issues for our context, when translating from x86 to Arm and RISC-
V, it limits extension to others; In particular, any mapping from Arm to itself through
any of our models cannot be the identity mapping. The dependencies of the orig-
inal Arm program are not preserved along any mapping —because our models do
not represent them- meaning an additional fence must be inserted to represent those
orders explicitly. When mapping back to Arm, possibly after optimizing the inter-
mediate program, those fences remain, resulting in a program with more fences. To
avoid those unnecessary fences, we need another intermediate model that captures
the intricate ordering constraints of weaker architectures.

Detect poUrf cycles. Origamr (Chapter 6) detects x86-Arm robustness violations by
simulating a program step-by-step. When simulating a load instruction, which gen-
erates a R event, it reads a value from an existing W event, generating a rf edge be-
tween them. The algorithm thus always executes a store before the load observing
it. However, as Arm can execute R—W pairs out-of-order, that assumption does not
always hold. Specifically, OrRiGamI cannot detect ‘poUrf’ cycles (Lahav et al., 2017;
Geeson and Smith, 2024; Lee et al., 2023), which is why we strengthened the Arm
model it uses (Section 6.2.2). It remains future work to adapt its algorithm to detect
those cycles.

132

Acronyms

CAS
DBT
HBT
1P

IR
ISA
LEM
11/sc
LTS
RAR
RAW
RMW

SBT
SC

TCG
TSO

WAW

Compare-and-Swap
Dynamic Binary Translation
Hybrid Binary Translation

Instruction Pointer
Intermediate Representation
Instruction Set Architecture

Law of the Excluded Middle
load-linked store-conditional
Labeled Transition System

Read-After-Read
Read-After-Write
Read-Modify-Write

Static Binary Translation
Sequential Consistency

Tiny Code Generator
Total Store Order

Write-After-Write

133

Bibliography

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Magnus Lang, and Tuan Phong Ngo. 2015b. Pre-
cise and Sound Automatic Fence Insertion Procedure under PSO. In NETYS (Lecture Notes
in Computer Science, Vol. 9466). 32-47. https://doi.org/10.1007/978-3-319-26850-7_3

Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Tuan-Phong Ngo. 2015a. The Best of Both
Worlds: Trading Efficiency and Optimality in Fence Insertion for TSO. In Programming Lan-
guages and Systems, Jan Vitek (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 308—332.
https://doi.org/10.1007/978-3-662-46669-8_13

Sarita V. Adve and Kourosh Gharachorloo. 1996. Shared Memory Consistency Models: A
Tutorial. IEEE Computer 29, 12 (1996), 66—76. https://doi.org/10.1109/2.546611

Sarita V. Adve and Mark D. Hill. 1993. A Unified Formalization of Four Shared-Memory Mod-
els. IEEE Trans. Parallel Distrib. Syst. 4, 6 (June 1993), 613 — 624. https://doi.org/10.1109/
71.242161

Agda Team. 2025a. Agda Documentation. https://agda.readthedocs.io/en/stable/.
Agda Team. 2025b. Agda standard library. https://github.com/agda/agda-stdlib.

Agda Team. 2025¢. PapersUsingAgda - The Agda Wiki. https://wiki.portal.chalmers.se/
agda/Main/PapersUsingAgda

Jade Alglave. 2012. A Formal Hierarchy of Weak Memory Models. Form. Methods Syst. Des. 41,
2 (2012),178 — 210. https://doi.org/10.1007/s10703-012-0161-5

Jade Alglave. 2022. GitHub issue: “{AArch64 cat] Atomics strengthening ”. https://github.com/
herd/herdtools7/pull/322

Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc Maranget.
2021. Armed Cats: Formal Concurrency Modelling at Arm. ACM Trans. Program. Lang.
Syst. 43, 2, Article 8 (July 2021), 54 pages. https://doi.org/10.1145/3458926

Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. 2017. Don’ t Sit on the
Fence: A Static Analysis Approach to Automatic Fence Insertion. 39, 2, Article 6 (May 2017),
38 pages. https://doi.org/10.1145/2994593

Jade Alglave and Luc Maranget. 2011. Stability in Weak Memory Models. In Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings (Lecture Notes in Computer Science, Vol. 6806), Ganesh Gopalakrishnan and Shaz
Qadeer (Eds.). Springer, 50-66. https://doi.org/10.1007/978-3-642-22110-1_6

Jade Alglave and Luc Maranget. 2025. aarch64.cat — Armo8 cat model. https://github.com/
herd/herdtools7/blob/master/herd/1ibdir/aarch64.cat Accessed on 2025-02-05.

Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2010. Fences in Weak Mem-
ory Models. In Computer Aided Verification. 258-272. https://doi.org/10.1007/978-3-642-
14295-6_25

134

https://doi.org/10.1007/978-3-319-26850-7_3
https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1109/2.546611
https://doi.org/10.1109/71.242161
https://doi.org/10.1109/71.242161
https://agda.readthedocs.io/en/stable/
https://github.com/agda/agda-stdlib
https://wiki.portal.chalmers.se/agda/Main/PapersUsingAgda
https://wiki.portal.chalmers.se/agda/Main/PapersUsingAgda
https://doi.org/10.1007/s10703-012-0161-5
https://github.com/herd/herdtools7/pull/322
https://github.com/herd/herdtools7/pull/322
https://doi.org/10.1145/3458926
https://doi.org/10.1145/2994593
https://doi.org/10.1007/978-3-642-22110-1_6
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://doi.org/10.1007/978-3-642-14295-6_25
https://doi.org/10.1007/978-3-642-14295-6_25

BIBLIOGRAPHY

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Sim-
ulation, Testing, and Data Mining for Weak Memory. In Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (Edinburgh, United
Kingdom) (PLDI ‘14). Association for Computing Machinery, New York, NY, USA, jo.
https://doi.org/10.1145/2594291.2594347

AMD 2024. AMD64 Architecture Programmer’ s Manual, Volume 2, System Programming.

Kristy Andrews and Duane Sand. 1992. Migrating a CISC computer family onto RISC via object
code translation. In Proceedings of the Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (Boston, Massachusetts, USA) (ASPLOS V).
Association for Computing Machinery, New York, NY, USA, 213 — 222. https://doi.org/
10.1145/143365.143520

Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowinska, and Herbert Bos. 2016. An
in-depth analysis of disassembly on full-scale x86/x64 binaries. In Proceedings of the 25th
USENIX Conference on Security Symposium (Austin, TX, USA) (SEC’16). USENIX Association,
USA, 583 — 600.

Apple Inc. 2021. Rosetta 2 on a Mac with Apple silicon. https://support.apple.com/fr-
fr/guide/security/secebb113be1/web.

Apple Inc. 2023. Apple unveils M3, M3 Pro, and M3 Max, the most advanced chips for a personal
computer. https://www.apple.com/newsroom/2023/10/apple-unveils-m3-m3-pro-and-m3-
max-the-most-advanced-chips-for-a-personal-computer/

Arm. 2016. ARM Cortex-A72 MPCore Processor Technical Reference Manual - Memory access
sequence. https://developer.arm.com/documentation/100095/0003/Memory-Management-
Unit/Memory-access-sequence.

Arm Limited 2024. Arm® Architecture Reference Manual. Arm Limited. https://developer.
arm.com/documentation/ddi0487/1atest/

Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi.
2012. What'’s Decidable about Weak Memory Models?. In ESOP’12. 26-46. https://doi.
org/10.1007/978-3-642-28869-2_2

Avast Developers. 2022. A retargetable machine-code decompiler based on LLVM. https:
//github.com/avast/retdec

Mark Batty, Alastair F. Donaldson, and John Wickerson. 2016. Overhauling SC atomics in C11
and OpenCL. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (St. Petersburg, FL, USA) (POPL "16). Association for Com-
puting Machinery, New York, NY, USA, 634 — 648. https://doi.org/10.1145/2837614.
2837637

Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Peter Sewell. 2012. Clarifying
and compiling C/C++ concurrency: from C++11 to POWER. SIGPLAN Not. 47, 1 (Jan. 2012),
509 — 520. https://doi.org/10.1145/2103621.2103717

135

https://doi.org/10.1145/2594291.2594347
https://doi.org/10.1145/143365.143520
https://doi.org/10.1145/143365.143520
https://support.apple.com/fr-fr/guide/security/secebb113be1/web
https://support.apple.com/fr-fr/guide/security/secebb113be1/web
https://www.apple.com/newsroom/2023/10/apple-unveils-m3-m3-pro-and-m3-max-the-most-advanced-chips-for-a-personal-computer/
https://www.apple.com/newsroom/2023/10/apple-unveils-m3-m3-pro-and-m3-max-the-most-advanced-chips-for-a-personal-computer/
https://developer.arm.com/documentation/100095/0003/Memory-Management-Unit/Memory-access-sequence
https://developer.arm.com/documentation/100095/0003/Memory-Management-Unit/Memory-access-sequence
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1007/978-3-642-28869-2_2
https://github.com/avast/retdec
https://github.com/avast/retdec
https://doi.org/10.1145/2837614.2837637
https://doi.org/10.1145/2837614.2837637
https://doi.org/10.1145/2103621.2103717

BIBLIOGRAPHY

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematiz-
ing C++ concurrency. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (Austin, Texas, USA) (POPL 11). Association for
Computing Machinery, New York, NY, USA, 55 — 66. https://doi.org/10.1145/1926385.
1926394

Martin Beck, Koustubha Bhat, Lazar Stricevic, Geng Chen, Diogo Behrens, Ming Fu, Viktor
Vafeiadis, Haibo Chen, and Hermann Hartig. 2023. AtoMig: Automatically Migrating Mil-
lions Lines of Code from TSO to WMM. In ASPLOS 2023. 61—73. https://doi.org/10.1145/
3575693.3579849

Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator. In Proceedings of the An-
nual Conference on USENIX Annual Technical Conference (Anaheim, CA) (ATEC 'o5). USENIX
Association, USA, 41.

Yves Bertot and Pierre Castran. 2010. Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions (1st ed.). Springer Publishing Company, In-
corporated.

Christian Bienia. 2011. Benchmarking modern multiprocessors. Ph.D. Dissertation. Princeton
University, USA. Advisor(s) Kai Li. AAI3445564.

Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. 2013a. Checking and Enforcing
Robustness against TSO. In Programming Languages and Systems, Matthias Felleisen and
Philippa Gardner (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 533-553.

Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. 2013b. Verifying concur-
rent programs against sequential specifications. In ESOP’13. Springer, 290-309.

Ahmed Bougacha. 2022. Binary Translator to LLVM IR. https://github.com/repzret/dagger.

Ana Bove, Peter Dybjer, and Ulf Norell. 2009. A Brief Overview of Agda — A Functional Lan-
guage with Dependent Types. In Theorem Proving in Higher Order Logics. 73-78.

Soham Chakraborty. 2021. Robustness between Weak Memory Models. In 2021 Formal Methods
in Computer Aided Design (FMCAD). 173—-182. https://doi.org/10.34727/2021/1sbn.978-
3-85448-046-4_26

Soham Chakraborty and Viktor Vafeiadis. 2016. Validating optimizations of concurrent C/C++
programs. In Proceedings of the 2016 International Symposium on Code Generation and Optimiza-
tion (Barcelona, Spain) (CGO 16). Association for Computing Machinery, New York, NY,
USA, 216 — 226. https://doi.org/10.1145/2854038.2854051

Soham Chakraborty and Viktor Vafeiadis. 2017. Formalizing the concurrency semantics of an
LLVM fragment. In Proceedings of the 2017 International Symposium on Code Generation and
Optimization (Austin, USA) (CGO ’17). IEEE Press, 100 — 110.

Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding Thin-Air Reads with Event Struc-
tures. In POPL, Vol. 3. https://doi.org/10.1145/3290383

136

https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3575693.3579849
https://doi.org/10.1145/3575693.3579849
https://github.com/repzret/dagger
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_26
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_26
https://doi.org/10.1145/2854038.2854051
https://doi.org/10.1145/3290383

BIBLIOGRAPHY

Jesper Cockx and Andreas Abel. 2018. Elaborating dependent (co)pattern matching. Proc. ACM
Program. Lang. 2, ICFP, Article 75 (July 2018), 30 pages. https://doi.org/10.1145/3236770

Thierry Coquand. 1992. Pattern Matching with Dependent Types.

Emilio G. Cota, Paolo Bonzini, Alex Bennée, and Luca P. Carloni. 2017. Cross-ISA Machine
Emulation for Multicores. In CGO’2017. IEEE Press, 210 — 220. https://doi.org/10.1109/
C60.2017.7863741

Jiun-Hung Ding, Po-Chun Chang, Wei-Chung Hsu, and Yeh-Ching Chung. 2011. PQEMU:
A Parallel System Emulator Based on QEMU. In ICPADS 11. IEEE, Tainan, Taiwan, China,
276-283. https://doi.org/10.1109/ICPADS.2011.102

Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick. 2019. Verifying C11 pro-
grams operationally. In Proceedings of the 24th Symposium on Principles and Practice of Parallel
Programming (Washington, District of Columbia) (PPoPP “19). Association for Computing
Machinery, New York, NY, USA, 355 — 365. https://doi.org/10.1145/3293883.3295702

Marko Doko and Viktor Vafeiadis. 2016. A Program Logic for C11 Memory Fences. In Verifica-
tion, Model Checking, and Abstract Interpretation. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 413—430.
Reinoud Elhorst. 2014. Lowering C11 Atomics for ARM in LLVM. In European LLVM Conference.

Robert W. Floyd. 1993. Assigning Meanings to Programs. Springer Netherlands, Dordrecht,
65-81. https://doi.org/10.1007/978-94-011-1793-7_4

Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis, Luc Maranget, Kathryn E.
Gray, Ali Sezgin, Mark Batty, and Peter Sewell. 2017. Mixed-size concurrency: ARM,
POWER, C/C++11, and SC. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages (Paris, France) (POPL "17). Association for Computing Machinery,
New York, NY, USA, 429 — 442. https://doi.org/10.1145/3009837.3009839

Sheng-Yu Fu, Ding-Yong Hong, Yu-Ping Liu, Jan-Jan Wu, and Wei-Chung Hsu. 2018. Efficient
and retargetable SIMD translation in a dynamic binary translator. Software: Practice and
Experience 48, 6 (2018), 1312-1330. https://doi.org/10.1002/spe.2573 arXiv:https://on-
linelibrary.wiley.com/doi/pdf/10.1002/spe.2573

Natalia Gavrilenko, Hernan Ponce-de Ledn, Florian Furbach, Keijo Heljanko, and Roland
Meyer. 2019. BMC for Weak Memory Models: Relation Analysis for Compact SMT En-
codings. In Computer Aided Verification, Isil Dillig and Serdar Tasiran (Eds.). Springer Inter-
national Publishing, Cham, 355-365.

Luke Geeson and Lee Smith. 2024. Compiler Testing with Relaxed Memory Models. In 2024
IEEE/ACM International Symposium on Code Generation and Optimization (CGO). IEEE Com-
puter Society, 334—348. https://doi.org/doi.org/10.1109/C6057630.2024.10444836 pre-
print: https://lukegeeson.com/assets/publications/cgo24/paper.pdf.

137

https://doi.org/10.1145/3236770
https://doi.org/10.1109/CGO.2017.7863741
https://doi.org/10.1109/CGO.2017.7863741
https://doi.org/10.1109/ICPADS.2011.102
https://doi.org/10.1145/3293883.3295702
https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1145/3009837.3009839
https://doi.org/10.1002/spe.2573
https://doi.org/doi.org/10.1109/CGO57630.2024.10444836
https://lukegeeson.com/assets/publications/cgo24/paper.pdf

BIBLIOGRAPHY

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and
John Hennessy. 1990. Memory consistency and event ordering in scalable shared-memory
multiprocessors. In Proceedings of the 17th Annual International Symposium on Computer Archi-
tecture (Seattle, Washington, USA) (ISCA ‘9o). Association for Computing Machinery, New
York, NY, USA, 15 — 26. https://doi.org/10.1145/325164.325102

Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and Andrew W. Roscoe.
2014. FDR3 — A Modern Refinement Checker for CSP. In Tools and Algorithms for the Con-
struction and Analysis of Systems, Erika Abraham and Klaus Havelund (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 187—201.

Redha Gouicem, Dennis Sprokholt, Jasper Ruehl, Rodrigo C. O. Rocha, Tom Spink, Soham
Chakraborty, and Pramod Bhatotia. 2022. Risotto: A Dynamic Binary Translator for Weak
Memory Model Architectures. In Proceedings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, Volume 1 (Vancouver,
BC, Canada) (ASPLOS 2023). Association for Computing Machinery, New York, NY, USA,
107 — 122. https://doi.org/10.1145/3567955.3567962

Yu-Chuan Guo, Wuu Yang, Jiunn-Yeu Chen, and Jeng-Kuen Lee. 2016. Translating the ARM
Neon and VFP instructions in a binary translator. Software: Practice and Experience 46,
12 (2016), 1591—1615. https://doi.org/10.1002/spe.2394 arXiv:https:/ /onlinelibrary.wi-
ley.com/doi/pdf/10.1002/spe.2394

Lisa Higham, Lillanne Jackson, and Jalal Kawash. 2007. Specifying Memory Consistency of
Write Buffer Multiprocessors. ACM Trans. Comput. Syst. (2007). https://doi.org/10.1145/
1189736.1189737

Lisa Higham, Jalal Kawash, and Nathaly Verwaal. 1997. Defining and Comparing Memory
Consistency Models. In PDCS’97.

C. A. R. Hoare. 1969. An axiomatic basis for computer programming. Commun. ACM 12, 10
(Oct. 1969), 576 — 580. https://doi.org/10.1145/363235.363259

Ding-Yong Hong, Chun-Chen Hsu, Pen-Chung Yew, Jan-Jan Wu, Wei-Chung Hsu, Pangfeng
Liu, Chien-Min Wang, and Yeh-Ching Chung. 2012. HQEMU: A Multi-Threaded and
Retargetable Dynamic Binary Translator on Multicores. In CGO’12. 104 — 113. https:
//doi.org/10.1145/2259016.2259030

Intel Corporation 2025. Intel® 64 and IA-32 Architectures Software Developer Manual. Intel Cor-
poration.

Saagar Jha. 2020. TSOEnabler — Kernel extension that enables TSO for Apple silicon processes.
https://github.com/saagarjha/TS0Enabler.

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promis-
ing Semantics for Relaxed-Memory Concurrency. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages (Paris, France) (POPL "17). Association
for Computing Machinery, New York, NY, USA, 175 — 189. https://doi.org/10.1145/
3009837.3009850

138

https://doi.org/10.1145/325164.325102
https://doi.org/10.1145/3567955.3567962
https://doi.org/10.1002/spe.2394
https://doi.org/10.1145/1189736.1189737
https://doi.org/10.1145/1189736.1189737
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/2259016.2259030
https://doi.org/10.1145/2259016.2259030
https://github.com/saagarjha/TSOEnabler
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3009837.3009850

BIBLIOGRAPHY

Hyungseok Kim, Soomin Kim, and Sang Kil Cha. 2025. Towards Sound Reassembly of Modern
x86-64 Binaries. In Proceedings of the 30th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Volume 2 (Rotterdam, Netherlands)
(ASPLOS ’25). Association for Computing Machinery, New York, NY, USA, 1317 — 1333.
https://doi.org/10.1145/3676641.3716026

Arun Kishan and Rani Borkar. 2024. Azure Cobalt 100-based Virtual Machines are now generally
available. https://azure.microsoft.com/en-us/blog/azure-cobalt-100-based-virtual-
machines-are-now-generally-available/

Michalis Kokologiannakis, Ori Lahav, and Viktor Vafeiadis. 2023. Kater: Automating Weak
Memory Model Metatheory and Consistency Checking. Proc. ACM Program. Lang. 7, POPL,
Article 19 (Jan. 2023), 29 pages. https://doi.org/10.1145/3571212

Michalis Kokologiannakis and Viktor Vafeiadis. 2021. GenMC: A Model Checker for Weak
Memory Models. In Computer Aided Verification: 33rd International Conference, CAV 2021, Vir-
tual Event, July 20 — 23, 2021, Proceedings, Part 1. Springer-Verlag, Berlin, Heidelberg, 427 —
440. https://doi.org/10.1007/978-3-030-81685-8_20

Ori Lahav and Udi Boker. 2022. What’s Decidable About Causally Consistent Shared Memory?
ACM Trans. Program. Lang. Syst. 44, 2, Article 8 (apr 2022), 55 pages. https://doi.org/10.
1145/3505273

Ori Lahav and Roy Margalit. 2019. Robustness against Release/Acquire Semantics. In Proceed-
ings of the g4oth ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New York, NY,
USA, 126 — 141. https://doi.org/10.1145/3314221.3314604

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing
sequential consistency in C/C++11. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017). Association
for Computing Machinery, New York, NY, USA, 618 — 632. https://doi.org/10.1145/
3062341.3062352

Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Mul-
tiprocess Programs. I[EEE Trans. Comput. C-28, 9 (1979), 690-691. https://doi.org/10.
1109/TC.1979.1675439

Leslie Lamport. 2019. Time, clocks, and the ordering of events in a distributed system. Association
for Computing Machinery, New York, NY, USA, 179 — 196. https://doi.org/10.1145/
3335772.3335934

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program
Analysis and Transformation. In CGO. San Jose, CA, USA, 75-88. https://doi.org/10.
1109/C60.2004.1281665

Jaejin Lee and David A. Padua. 2001. Hiding Relaxed Memory Consistency with Compilers.
IEEE Trans. Comput. 50, 8 (2001), 824-833. https://doi.org/10.1109/PACT.2000.888336

139

https://doi.org/10.1145/3676641.3716026
https://azure.microsoft.com/en-us/blog/azure-cobalt-100-based-virtual-machines-are-now-generally-available/
https://azure.microsoft.com/en-us/blog/azure-cobalt-100-based-virtual-machines-are-now-generally-available/
https://doi.org/10.1145/3571212
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1145/3505273
https://doi.org/10.1145/3505273
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/3335772.3335934
https://doi.org/10.1145/3335772.3335934
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/PACT.2000.888336

BIBLIOGRAPHY

Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav. 2023. Putting Weak
Memory in Order via a Promising Intermediate Representation. Proc. ACM Program. Lang.
7, PLDI (2023). https://doi.org/10.1145/3591297

Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-Kil Hur, Ori La-
hav, and Viktor Vafeiadis. 2020. Promising 2.0: global optimizations in relaxed memory
concurrency. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (London, UK) (PLDI 2020). Association for Computing Machin-
ery, New York, NY, USA, 362 — 376. https://doi.org/10.1145/3385412.3386010

Alexander Linden and Pierre Wolper. 2011. A Verification-Based Approach to Memory Fence
Insertion in Relaxed Memory Systems. In SPIN’11. 144—-160.

Alexander Linden and Pierre Wolper. 2013. A Verification-Based Approach to Memory Fence
Insertion in PSO Memory Systems. In TACAS.

Feng Liu, Nayden Nedev, Nedyalko Prisadnikov, Martin Vechev, and Eran Yahav. 2012. Dy-
namic Synthesis for Relaxed Memory Models. In PLDI ‘12. 429—440. https://doi.org/10.
1145/2345156.2254115

Nian Liu, Binyu Zang, and Haibo Chen. 2020. No Barrier in the Road: A Comprehensive Study
and Optimization of ARM Barriers. In Proceedings of the 25th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (San Diego, California) (PPoPP "20). Association
for Computing Machinery, New York, NY, USA, 348 — 361. https://doi.org/10.1145/
3332466.3374535

LLVM Team. 2025. The LLVM Compiler Infrastructure. https://1lvm.org/.

Weiyu Luo and Brian Demsky. 2021. C11Tester: A Race Detector for C/C++ Atomics. In Pro-
ceedings of the 26th ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Virtual, USA) (ASPLOS ’21). Association for Computing Ma-
chinery, New York, NY, USA, 630 — 646. https://doi.org/10.1145/3445814.3446711

Daniel Lustig, Caroline Trippel, Michael Pellauer, and Margaret Martonosi. 2015. ArMOR: De-
fending against Memory Consistency Model Mismatches in Heterogeneous Architectures.
In ISCA’15. 388 — 400. https://doi.org/10.1145/2749469.2750378

Sela Mador-Haim, Rajeev Alur, and Milo M K. Martin. 2010. Generating Litmus Tests for Con-
trasting Memory Consistency Models. In CAV'10. 273 — 287. https://doi.org/10.1007/
978-3-642-14295-6_26

Yatin A. Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer, and Margaret Martonosi.
2016. Counterexamples and Proof Loophole for the C/C++ to POWER and ARMv7 Trailing-
Sync Compiler Mappings.

Roy Margalit and Ori Lahav. 2021. Verifying Observational Robustness against a C11-Style
Memory Model. Proc. ACM Program. Lang. 5, POPL, Article 4 (2021). https://doi.org/10.
1145/3434285

140

https://doi.org/10.1145/3591297
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/2345156.2254115
https://doi.org/10.1145/2345156.2254115
https://doi.org/10.1145/3332466.3374535
https://doi.org/10.1145/3332466.3374535
https://llvm.org/
https://doi.org/10.1145/3445814.3446711
https://doi.org/10.1145/2749469.2750378
https://doi.org/10.1007/978-3-642-14295-6_26
https://doi.org/10.1007/978-3-642-14295-6_26
https://doi.org/10.1145/3434285
https://doi.org/10.1145/3434285

BIBLIOGRAPHY

Iason Marmanis, Michalis Kokologiannakis, and Viktor Vafeiadis. 2025. Model Checking
C/C++ with Mixed-Size Accesses. Proc. ACM Program. Lang. 9, POPL, Article 75 (Jan. 2025),
21 pages. https://doi.org/10.1145/3704911

Per Martin-L6f. 1982. Constructive Mathematics and Computer Programming. In Logic,
Methodology and Philosophy of Science VI. Studies in Logic and the Foundations of Mathe-
matics, Vol. 104. Elsevier, 153-175. https://doi.org/10.1016/50049-237X(09)70189-2

Conor McBride. 2012. A polynomial testing principle. https://personal.cis.strath.ac.uk/
conor.mchride/PolyTest.pdf (2012).

Microsoft. 2024. Windows on ARM - How emulation works on Arm. https://learn.microsoft.
com/en-us/windows/arm/apps-on-arm-x86-emulation#prism

Robin Morisset and Francesco Zappa Nardelli. 2017. Partially redundant fence elimination
for x86, ARM, and power processors. In CC’17. 1—10. https://doi.org/10.1145/3033019.
3033021

Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli. 2013. Compiler testing via a
theory of sound optimisations in the C11/C++11 memory model. In PLDI'13. ACM, 187-196.
https://doi.org/10.1145/2499370.2491967

Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. 2002. Isabelle/HOL: a proof assistant
for higher-order logic. Vol. 2283. Springer Science & Business Media.

Jonas Oberhauser, Rafael Lourenco de Lima Chehab, Diogo Behrens, Ming Fu, Antonio Pao-
lillo, Lilith Oberhauser, Koustubha Bhat, Yuzhong Wen, Haibo Chen, Jaeho Kim, and Vik-
tor Vafeiadis. 2021. VSync: push-button verification and optimization for synchroniza-
tion primitives on weak memory models. In Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and Operating Systems (Virtual,
USA) (ASPLOS ’21). Association for Computing Machinery, New York, NY, USA, 530 —
545. https://doi.org/10.1145/3445814.3446748

Scott Owens. 2010. Reasoning about the implementation of concurrency abstractions on x86-
TSO. In Proceedings of the 24th European Conference on Object-Oriented Programming (Maribor,
Slovenia) (ECOOP’10). Springer-Verlag, Berlin, Heidelberg, 478 — 503.

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model: x86-TSO.
In Theorem Proving in Higher Order Logics. Springer Berlin Heidelberg, Berlin, Heidelberg,
391—407. https://doi.org/10.1007/978-3-642-03359-9_27

Gustavo Petri, Jan Vitek, and Suresh Jagannathan. 2015. Cooking the Books: Formalizing
JMM Implementation Recipes. In 29th European Conference on Object-Oriented Programming
(ECOOP 2015), Vol. 37. 445—469. https://doi.org/10.4230/LIPIcs.ECO0P.2015.445

Gordon D. Plotkin. 1981. A structural approach to operational semantics. (1981).

Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2019. Bridging the Gap between Program-
ming Languages and Hardware Weak Memory Models. Proc. ACM Program. Lang. 3, POPL
(2019). https://doi.org/10.1145/3290382

141

https://doi.org/10.1145/3704911
https://doi.org/10.1016/S0049-237X(09)70189-2
https://personal.cis.strath.ac.uk/conor.mcbride/PolyTest.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/PolyTest.pdf
https://learn.microsoft.com/en-us/windows/arm/apps-on-arm-x86-emulation#prism
https://learn.microsoft.com/en-us/windows/arm/apps-on-arm-x86-emulation#prism
https://doi.org/10.1145/3033019.3033021
https://doi.org/10.1145/3033019.3033021
https://doi.org/10.1145/2499370.2491967
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.4230/LIPIcs.ECOOP.2015.445
https://doi.org/10.1145/3290382

BIBLIOGRAPHY

Hernan Ponce de Le6n, Florian Furbach, Keijo Heljanko, and Roland Meyer. 2017. Portability
Analysis for Weak Memory Models PORTHOS: One Tool for all Models. In Static Analysis,
Francesco Ranzato (Ed.). Springer International Publishing, Cham, 299—320.

Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell.
2017. Simplifying ARM concurrency: multicopy-atomic axiomatic and operational mod-
els for ARMv8. Proc. ACM Program. Lang. 2, POPL, Article 19 (Dec. 2017), 29 pages.
https://doi.org/10.1145/3158107

QEMU Team. 2003. QEMU: A generic and open source machine emulator and virtualizer.
https://www.qemu.org/.

QEMU Team. 2021. QEMU Wiki: Features/tcg-multithread. https://wiki.gemu.org/
Features/tcg-multithread.

QEMU Team. 2025. Atomic operations in QEMU. https://www.qgemu.org/docs/master/devel/
atomics.html.

Azalea Raad, Ori Lahav, John Wickerson, Piotr Balcer, and Brijesh Dongol. 2024. Intel PMDK
Transactions: Specification, Validation and Concurrency. In Programming Languages and Sys-
tems, Stephanie Weirich (Ed.). Springer Nature Switzerland, Cham, 150-179.

Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary R. Bradski, and Christos
Kozyrakis. 2007. Evaluating MapReduce for Multi-core and Multiprocessor Systems. In
HPCA. IEEE Computer Society, Scottsdale, AZ, USA, 13—24.

Henry G. Rice. 1953. Classes of Recursively Enumerable Sets and Their Decision Problems.
Trans. Amer. Math. Soc. 74, 2 (1953), 358-366. http://uww.jstor.org/stable/1990888

RISC-V International 2024. The RISC-V Instruction Set Manual: Volume I. RISC-V International.
https://riscv.org/specifications/ratified/.

Rodrigo C. O. Rocha, Dennis Sprokholt, Martin Fink, Redha Gouicem, Tom Spink, Soham
Chakraborty, and Pramod Bhatotia. 2022. Lasagne: A Static Binary Translator for Weak
Memory Model Architectures. In Proceedings of the 43rd ACM SIGPLAN International Con-
ference on Programming Language Design and Implementation (San Diego, CA, USA) (PLDI
2022). Association for Computing Machinery, New York, NY, USA, 888 -~ go2. https:
//doi.org/10.1145/3519939.3523719

Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc Maranget, Jade
Alglave, and Derek Williams. 2012. Synchronising C/C++ and POWER. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and Implementation (Beijing,
China) (PLDI "12). Association for Computing Machinery, New York, NY, USA, 311 — 322.
https://doi.org/10.1145/2254064.2254102

Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. 2011. Under-
standing POWER multiprocessors. In Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation (San Jose, California, USA) (PLDI '11). As-
sociation for Computing Machinery, New York, NY, USA, 175 — 186. https://doi.org/10.
1145/1993498.1993520

142

https://doi.org/10.1145/3158107
https://www.qemu.org/
https://wiki.qemu.org/Features/tcg-multithread
https://wiki.qemu.org/Features/tcg-multithread
https://www.qemu.org/docs/master/devel/atomics.html
https://www.qemu.org/docs/master/devel/atomics.html
http://www.jstor.org/stable/1990888
https://riscv.org/specifications/ratified/
https://doi.org/10.1145/3519939.3523719
https://doi.org/10.1145/3519939.3523719
https://doi.org/10.1145/2254064.2254102
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1993498.1993520

BIBLIOGRAPHY

Shigeyuki Sato, Taiyo Mizuhashi, Genki Kimura, and Kenjiro Taura. 2025. Efficiently Adapting
Stateless Model Checking for C11/C++11 to Mixed-Size Accesses. In Programming Languages
and Systems, Oleg Kiselyov (Ed.). Springer Nature Singapore, Singapore, 346—364.

Jaroslav Sev¢ik. 2011. Safe optimisations for shared-memory concurrent programs. In Proceed-
ings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (San Jose, California, USA) (PLDI "11). Association for Computing Machinery, New
York, NY, USA, 306 — 316. https://doi.org/10.1145/1993498.1993534

Jaroslav Sevéik and David Aspinall. 2008. On Validity of Program Transformations in the Java
Memory Model. In ECOOP 2008 — Object-Oriented Programming, Jan Vitek (Ed.). 27-51.

Peter Sewell. 2011. C/C++11 mappings to processors. https://www.cl.cam.ac.uk/~pes20/
cpp/cppOxmappings.html.

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen.
2010. x86-TSO: A Rigorous and Usable Programmer’s Model for x86 Multiprocessors. Com-
mun. ACM 53, 7 (July 2010), 89 — 97. https://doi.org/10.1145/1785414.1785443

Dennis E. Shasha and Marc Snir. 1988. Efficient and Correct Execution of Parallel Programs
that Share Memory. ACM Trans. Program. Lang. Syst. 10, 2 (1988), 282-312. https://doi.
org/10.1145/42190.42277

Bor-Yeh Shen, Jiunn-Yeu Chen, Wei-Chung Hsu, and Wuu Yang. 2012a. LLBT: An LLVM-Based
Static Binary Translator. In CASES 2012. 51 — 60. https://doi.org/10.1145/2380403.
2380419

Bor-Yeh Shen, Jyun-Yan You, Wuu Yang, and Wei-Chung Hsu. 2012b. An LLVM-based hybrid
binary translation system. In 7th IEEE International Symposium on Industrial Embedded Systems
(SIES’12). 229—236. https://doi.org/10.1109/SIES.2012.6356589

Richard L. Sites, Anton Chernoff, Matthew B. Kirk, Maurice P. Marks, and Scott G. Robinson.
1993. Binary translation. Commun. ACM 36, 2 (Feb. 1993), 69 — 81. https://doi.org/10.
1145/151220.151227

Tom Spink, Harry Wagstaff, and Bjorn Franke. 2019. A Retargetable System-Level DBT Hy-
pervisor. In USENIX Annual Technical Conference. USENIX Association, 505-520. https:
//doi.org/10.1145/3302516.3307357

Robert C. Steinke and Gary]. Nutt. 2004. A unified theory of shared memory consistency. J.
ACM 51, 5 (2004), 800-849. https://doi.org/10.1145/1017460.1017464

Sélbastien Stormacq. 2022. New — Amazon EC2 Cyg Instances, Powered by AWS Graviton3 Pro-
cessors. https://aws.amazon.com/blogs/aws/new-amazon-ec2-c7g-instances-powered-by-
aws-graviton3-processors/

Zehra Sura, Xing Fang, Chi-Leung Wong, Samuel P. Midkiff, Jaejin Lee, and David Padua.
2005. Compiler Techniques for High Performance Sequentially Consistent Java Programs.
In PPOPP’05.2 — 13. https://doi.org/10.1145/1065944.1065947

143

https://doi.org/10.1145/1993498.1993534
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/42190.42277
https://doi.org/10.1145/42190.42277
https://doi.org/10.1145/2380403.2380419
https://doi.org/10.1145/2380403.2380419
https://doi.org/10.1109/SIES.2012.6356589
https://doi.org/10.1145/151220.151227
https://doi.org/10.1145/151220.151227
https://doi.org/10.1145/3302516.3307357
https://doi.org/10.1145/3302516.3307357
https://doi.org/10.1145/1017460.1017464
https://aws.amazon.com/blogs/aws/new-amazon-ec2-c7g-instances-powered-by-aws-graviton3-processors/
https://aws.amazon.com/blogs/aws/new-amazon-ec2-c7g-instances-powered-by-aws-graviton3-processors/
https://doi.org/10.1145/1065944.1065947

Bibliography

Trail of Bits. 2022. Framework for lifting x86, amd64, and aarch64 program binaries to LLVM
bitcode. https://github.com/lifting-bits/mcsema.

Viktor Vafeiadis. 2018. Hahn: A Coq library. https://github.com/vafeiadis/hahn.

Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and Francesco
Zappa Nardelli. 2015. Common Compiler Optimisations are Invalid in the C11 Memory
Model and what we can do about it. In POPL'15. ACM, 209—220. https://doi.org/10.
1145/2676726.2676995

Viktor Vafeiadis and Francesco Zappa Nardelli. 2011. Verifying Fence Elimination Optimisa-
tions. In SAS’11 (LNCS, Vol. 6887). Springer, 146-162. https://doi.org/10.1007/978-3-
642-23702-7_14

Amin Vahdat. 2024. Introducing Google Axion Processors, our new Arm-based CPUs. https:
//cloud.google.com/blog/products/compute/introducing-googles-new-arm-based-cpu

Jun Wang, Jianmin Pang, Xiaonan Liu, Feng Yue, Jie Tan, and Liguo Fu. 2019. Dynamic
Translation Optimization Method Based on Static Pre-Translation. IEEE Access 7 (2019),
21491-21501. https://doi.org/10.1109/ACCESS.2019.2897611

Zhaoguo Wang, Ran Liu, Yufei Chen, Xi Wu, Haibo Chen, Weihua Zhang, and Binyu Zang,.
2011. COREMU: a scalable and portable parallel full-system emulator. In Proceedings of the
16th ACM Symposium on Principles and Practice of Parallel Programming (San Antonio, TX,
USA) (PPoPP ’11). Association for Computing Machinery, New York, NY, USA, 213 — 222.
https://doi.org/10.1145/1941553.1941583

John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides. 2017. Auto-
matically Comparing Memory Consistency Models. In POPL'17. ACM, 190-204. https:
//doi.org/10.1145/3009837.3009838

Daniel Wright, Mark Batty, and Brijesh Dongol. 2021. Owicki-Gries Reasoning for C11 Pro-
grams with Relaxed Dependencies. In Formal Methods: 24th International Symposium, FM
2021, Virtual Event, November 20 — 26, 2021, Proceedings. Springer-Verlag, Berlin, Heidelberg,
237 — 254. https://doi.org/10.1007/978-3-030-90870-6_13

S. Bharadwaj Yadavalli and Aaron Smith. 2019. Raising Binaries to LLVM IR with MCTOLL
(WIP Paper). In Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference on
Languages, Compilers, and Tools for Embedded Systems (Phoenix, AZ, USA) (LCTES 2019). As-
sociation for Computing Machinery, New York, NY, USA, 213 — 218. https://doi.org/10.
1145/3316482.3326354

Zhaoxin Yang, Xuehai Chen, Liangpu Wang, Weiming Guo, Dongru Zhao, Chao Yang, and
Fuxin Zhang. 2024. MFHBT: Hybrid Binary Translation System with Multi-stage Feedback
Powered by LLVM. In Advanced Parallel Processing Technologies, Chao Li, Zhenhua Li, Li Shen,
Fan Wu, and Xiaoli Gong (Eds.). Springer Nature Singapore, Singapore, 310-325.

144

https://github.com/lifting-bits/mcsema
https://github.com/vafeiadis/hahn
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1007/978-3-642-23702-7_14
https://doi.org/10.1007/978-3-642-23702-7_14
https://cloud.google.com/blog/products/compute/introducing-googles-new-arm-based-cpu
https://cloud.google.com/blog/products/compute/introducing-googles-new-arm-based-cpu
https://doi.org/10.1109/ACCESS.2019.2897611
https://doi.org/10.1145/1941553.1941583
https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1007/978-3-030-90870-6_13
https://doi.org/10.1145/3316482.3326354
https://doi.org/10.1145/3316482.3326354

Curriculum Vitae

Dennis Sprokholt earned his Computing Science bachelor degree cum laude from the
University of Groningen. During his Computing Science master studies at Utrecht
University, he specialized in Programming Technology and conducted research on
superoptimization, also obtaining his master degree cum laude.

He started his PhD at Delft University of Technology, under the supervision of
Soham Chakraborty and Eelco Visser, on the topic of binary translation; later under
the supervision of Soham Chakraborty and Koen Langendoen. His PhD research con-
tributed formal methods to translate programs from strong to weak memory model
architectures. During his PhD, he co-supervised the research of many bachelor and
master students. Dennis is currently a Humboldt postdoc at the Technical University
of Munich, hosted by Pramod Bhatotia.

145

Titles in the IPA Dissertation Series since 2022

A. Fedotov. Verification Techniques for
xMAS. Faculty of Mathematics and
Computer Science, TU/e. 2022-01

M.O. Mahmoud. GPU Enabled
Automated Reasoning. Faculty of
Mathematics and Computer Science,
TU/e. 2022-02

M. Safari. Correct Optimized GPU Pro-
grams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2022-03

M. Verano Merino. Engineering
Language-Parametric End-User Program-
ming Environments for DSLs. Faculty
of Mathematics and Computer Science,
TU/e. 2022-04

G.F.C. Dupont. Network Security Moni-
toring in Environments where Digital and
Physical Safety are Critical. Faculty of
Mathematics and Computer Science,
TU/e. 2022-05

T.M. Soethout. Banking on Domain
Knowledge for Faster Transactions. Faculty
of Mathematics and Computer Science,
TU/e. 2022-06

P. Vukmirovié. Implementation of Higher-
Order Superposition. Faculty of Sci-
ences, Department of Computer Sci-
ence, VU. 2022-07

J. Wagemaker. Extensions of (Concur-
rent) Kleene Algebra. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2022-08

R. Janssen. Refinement and Partiality
for Model-Based Testing. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2022-09

M. Laveaux. Accelerated Verification
of Concurrent Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2022-10

S. Kochanthara. A Changing Land-
scape: On Safety & Open Source in Au-
tomated and Connected Driving. Faculty
of Mathematics and Computer Science,
TU/e. 2023-01

L.M. Ochoa Venegas. Break the Code?
Breaking Changes and Their Impact on Soft-
ware Evolution. Faculty of Mathematics
and Computer Science, TU/e. 2023-02

N. Yang. Logs and models in engineering
complex embedded production software sys-
tems. Faculty of Mathematics and Com-
puter Science, TU/e. 2023-03

J. Cao. An Independent Timing Analysis
for Credit-Based Shaping in Ethernet TSN.
Faculty of Mathematics and Computer
Science, TU/e. 2023-04

K. Dokter. Scheduled Protocol Program-
ming. Faculty of Mathematics and Nat-
ural Sciences, UL. 2023-05

J. Smits. Strategic Language Workbench
Improvements. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2023-06

A. Arslanagié. Minimal Structures
for Program Analysis and Verification.
Faculty of Science and Engineering,
RUG. 2023-07

M.S. Bouwman. Supporting Railway
Standardisation with Formal Verification.
Faculty of Mathematics and Computer
Science, TU/e. 2023-08

S.A.M. Lathouwers. Exploring Annota-
tions for Deductive Verification. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2023-09

J.H. Stoel. Solving the Bank, Lightweight
Specification and Verification Techniques
for Enterprise Software. ~ Faculty of
Mathematics and Computer Science,
TU/e. 2023-10

D.M. Groenewegen. WebDSL: Lin-
guistic Abstractions for Web Program-
ming. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2023-11

D.R. do Vale. On Semantical Methods for
Higher-Order Complexity Analysis. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2024-01

M.J.G. Olsthoorn. More Effective Test
Case Generation with Multiple Tribes of
Al Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2024-02

B. van den Heuvel. Correctly Com-
municating Software: Distributed, Asyn-
chronous, and Beyond. Faculty of Science
and Engineering, RUG. 2024-03

H.A. Hiep. New Foundations for Separa-
tion Logic. Faculty of Mathematics and
Natural Sciences, UL. 2024-04

C.E. Brandt. Test Amplification For and
With Developers. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2024-05

J.I. Hejderup. Fine-Grained Analysis of
Software Supply Chains. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2024-06

J. Jacobs. Guarantees by construction.
Faculty of Science, Mathematics and
Computer Science, RU. 2024-07

O. Bunte. Cracking OIL: A Formal Per-
spective on an Industrial DSL for Mod-
elling Control Software. Faculty of
Mathematics and Computer Science,
TU/e. 2024-08

R.J.A. Erkens. Automaton-based Tech-
niques for Optimized Term Rewriting. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2024-09

J.J.M. Martens. The Complexity of Bisim-
ilarity by Partition Refinement. Faculty
of Mathematics and Computer Science,
TU/e. 2024-10

L.J. Edixhoven. Expressive Specification
and Verification of Choreographies. Faculty
of Science, OU. 2024-11

JW.N. Paulus. On the Expressivity of
Typed Concurrent Calculi. Faculty of Sci-
ence and Engineering, RUG. 2024-12

J. Denkers. Domain-Specific Languages
for Digital Printing Systems. Faculty
of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2024-13

L.H. Applis. Tool-Driven Quality Assur-
ance for Functional Programming and Ma-
chine Learning. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2024-14

P. Karkhanis. Driving the Future: Fa-
cilitating C-ITS Service Deployment for
Connected and Smart Roadways. Faculty
of Mathematics and Computer Science,
TU/e. 2024-15

N.W. Cassee. Sentiment in Software En-
gineering. Faculty of Mathematics and
Computer Science, TU/e. 2024-16

H. van Antwerpen. Declarative Name
Binding for Type System Specifications.
Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2025-01

L.N. Mulder. Proof Automation for Fine-
Grained Concurrent Separation Logic. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2025-02

T.S. Badings. Robust Verification of
Stochastic Systems: Guarantees in the Pres-
ence of Uncertainty. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2025-03

AM. Mir. Machine Learning-assisted
Software Analysis. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2025-04

L.T. Vinkhuijzen. Data Structures for
Quantum Circuit Verification and How To
Compare Them. Faculty of Mathematics
and Natural Sciences, UL. 2025-05

D. van der Wal. What is the Point?
Single-Input-Change Testing a EULYNX
Controller. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2025-06

A. Rosset. Uniform Monad Presenta-
tions and Graph Quasitoposes. Faculty of
Sciences, Department of Computer Sci-
ence, VU. 2025-07

L. Guo. Higher-Order Termination with
Logical Constraints. Faculty of Science,
Mathematics and Computer Science,
RU. 2025-08

D.A. Manrique Negrin. A Model Or-
chestra in Digital Twins: A Model-Driven

Approach to Integration and Orchestration.
Faculty of Mathematics and Computer
Science, TU/e. 2025-09

C.A. Esterhuyse. Specification-Centric
Multi-Agent Systems. Faculty of Science,
UvA. 2025-10

H.M. Muctadir. Consistency Matters:
Building Consistent Digital Twin Virtual
Entities. Faculty of Mathematics and
Computer Science, TU/e. 2025-11

A. Stramaglia. Model Checking Machine-
Control Applications. Faculty of
Mathematics and Computer Science,
TU/e. 2025-12

M. Saeedi Nikoo. Supporting busi-
ness process management: clone detection
and recommendation techniques. Faculty
of Mathematics and Computer Science,
TU/e. 2025-13

R.B. Rubbens. Bridging the Implementa-
tion Gap: Advances in Model-Based Con-
current Program Verification. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2025-14

E.I. van der Berg. DMC Model Checker:
Delta-Driven Variable-Length Next-State
Generation via Recursive Compression.

Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2025-15

D.G. Sprokholt. Correct Translation
between Weak Memory Model Architec-
tures. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2025-16

	Acknowledgements
	English Summary
	Nederlandse Samenvatting
	Contents
	Introduction
	Chapter 1 – Background
	Axiomatic Weak Memory By Example
	Axiomatic Weak Memory, Formally
	Axiomatic Weak Memory Architecture Semantics
	High-Level Theorem Statement

	Chapter 2 – Static Program Translation with Mapping Schemes
	Introduction
	Background
	Motivation
	Overview
	LIMM Weak Memory Model
	Mapping Schemes
	Implementation
	Evaluation
	Conclusion

	Chapter 3 – Dynamic Program Translation with Mapping Schemes
	Introduction
	Background
	Motivation
	Overview
	TIMM Weak Memory Model
	Mapping Schemes
	Implementation
	Evaluation
	Conclusion

	Chapter 4 – Hybrid Program Translation with Mapping Schemes
	Introduction
	Background and Motivation
	Overview
	AIMM Weak Memory Model and Mapping Schemes
	Evaluation
	Conclusion

	Binary Translation Related Work
	Concurrency Semantics
	Binary Translation

	Chapter 5 – Weak Memory Mapping Proofs in Agda
	Introduction
	Background
	Weak Memory Mechanization
	Mapping Proof Mechanization
	Case Study: Mapping x86 to Arm
	Related Work
	Conclusion

	Chapter 6 – Porting Programs with Dynamic Analysis
	Introduction
	Background
	Operational-Axiomatic Weak Memory Model
	Robustness Analysis
	Robustness Enforcement
	Experimental Evaluation
	Related Work
	Conclusion

	Conclusion
	Future Work

	Acronyms
	Bibliography
	Curriculum Vitae

