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An IGA Framework for PDE-Based
Planar Parameterization on Convex
Multipatch Domains

Jochen Hinz, Matthias Möller, and Cornelis Vuik

Abstract The first step towards applying isogeometric analysis techniques to
solve PDE problems on a given domain consists in generating an analysis-suitable
mapping operator between parametric and physical domains with one or several
patches from no more than a description of the boundary contours of the physical
domain. A subclass of the multitude of the available parameterization algorithms are
those based on the principles of Elliptic Grid Generation (EGG) which, in their most
basic form, attempt to approximate a mapping operator whose inverse is composed
of harmonic functions. The main challenge lies in finding a formulation of the
problem that is suitable for a computational approach and a common strategy is to
approximate the mapping operator by means of solving a PDE-problem. PDE-based
EGG is well-established in classical meshing and first generalization attempts to
spline-based descriptions (as is mandatory in IgA) have been made. Unfortunately,
all of the practically viable PDE-based approaches impose certain requirements on
the employed spline-basis, in particular global C≥1-continuity.

This paper discusses an EGG-algorithm for the generation of planar param-
eterizations with locally reduced smoothness (i.e., with support for locally only
C0-continuous bases). A major use case of the proposed algorithm is that of
multipatch parameterizations, made possible by the support of C0-continuities.
This paper proposes a specially-taylored solution algorithm that exploits many
characteristics of the PDE-problem and is suitable for large-scale applications. It
is discussed for the single-patch case before generalizing its concepts to multipatch
settings. This paper is concluded with three numerical experiments and a discussion
of the results.
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1 Introduction

The automatic generation of analysis-suitable planar parameterizations for IgA-
based numerical simulations is a difficult, yet important problem in the field of
isogeometric analysis, since generally no more than a description of the boundary
contours is available. The main challenge lies in the generation of a folding-free (i.e.,
bijective) parameterization with numerically favorable properties such as orthogonal
isolines and a large degree of parametric smoothness. Furthermore, a practical
algorithm should be computationally inexpensive, and, if possible, exhibit little
sensitivity to small perturbations in the boundary contour description.

Let � denote the target geometry and �̂ the parametric domain. Furthermore, let
x : �̂ → � denote the mapping operator that we attempt to build from the linear
span of the B-Spline basis � = {w1, w2, . . . , wN }, where x|

∂�̂
= ∂� is known.

Note that x is of the form:

x(ξ, η) =
∑

i∈Iboundary

ciwi(ξ, η) +
∑

j∈Iinner

cjwj (ξ, η), (1)

where Iinner and Iboundary denote the index set of the vanishing and nonvanishing
basis functions on ∂�̂, respectively. Formally, Iboundary∩Iinner = ∅ and Iboundary∪
Iinner = {1, . . . , N}. With this, the objective of all parameterization algorithms is to
properly select the inner control points cj , while the boundary control points ci are
known from the boundary contours and typically held fixed.

In [8], Gravesen et al. study planar parameterization techniques based on the
constrained minimization of a quality functional over the inner control points.
To avoid self-intersections, a nonlinear and nonconvex sufficient condition for
det J > 0, where J denotes the Jacobian of the mapping, is added as a constraint.
The numerical quality of the resulting parameterization depends on the choice of
the employed cost functional and the characteristic properties of �. While this
approach is not guaranteed to yield acceptable results for all types of geometries
(see Sect. 4), it is known to yield good results in a wide range of applications with
proper parameter tuning. A drawback is the relatively large number of required
iterations (typically ∼ 30) and the need to find an initial guess that satisfies the
constraints (for which another optimization problem has to be solved first). The
proposed minimization is tackled with a black-box nonlinear optimizer (IPOPT [2])
that comes with all the drawbacks of nonlinear optimization such as the danger of
getting stuck in local minima.

Another class of parameterization methods suitable for nontrivial geometries are
PDE-based, most notably, the class of methods based on the principles of elliptic
grid generation (EGG). Methods based on EGG attempt to generate a mapping
x : �̂ → � such that the components of x−1 : � → �̂ are harmonic functions
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on �. For this, a nonlinear partial differential equation is imposed on x, which takes
the form

L(x) = g22xξξ − 2g12xξη + g11xηη = 0, s.t. x|
∂�̂

= ∂�, (2)

with

g11(x) = xξ · xξ ,

g12(x) = xξ · xη,

g22(x) = xη · xη (3)

being the entries of the metric tensor of the mapping (which are nonlinear functions
of x). Under certain assumptions of the boundary contour regularity and assuming
that �̂ is convex, it can be shown that the exact solution of (2) is bijective, justifying
a numerical approximation for the purpose of generating a geometry description [1].

EGG has been an established approach in classical meshing for decades and
first attempts to apply it to spline-based geometry descriptions were made in [13],
where the equations are approximately solved by a collocation at the abscissae of a
Gaussian quadrature scheme with cubic Hermite-splines. In [12], the collocation
takes place at the Greville-abscissae and the resulting nonlinear equations are
solved using a Picard-based iterative scheme, allowing for a wider range of spline-
bases. However, as a downside, the consistency order of Greville-based collocation
is not optimal. In [9], the equations are discretized with a Galerkin approach
and a Newton-based iterative approach is employed for the resulting root-finding
problem, allowing for C≥1-continuous bases. Numerical convergence is accelerated
by generating good initial guesses utilizing multigrid-techniques and convergence
is typically achieved within 4 (unconstrained) nonlinear iterations.

Unfortunately, none of the aforementioned approaches allow for spline-bases
with locally reduced smoothness, limiting their usefullness in practice, since
in certain applications C0-continuities are desirable or unavoidable, notably in
multipatch parameterizations or when ∂� is build from a spline-basis with (one
or more) p-fold internal knot repetitions (where p refers to the polynomial order of
the spline-basis used). To allow for C0-continuities, one may instead minimize the
Winslow-functional [16] (whose global minimizer is equal to the exact solution of
(2)). Unfortunately, this leads to a formulation in which the Jacobian determinant
appears in the denominator, which is why an iterative solution scheme has to be
initialized with a bijective initial guess in order to avoid division by zero, restricting
it to use cases in which a bijective initial guess is available.

Motivated by our striving for a computationally inexpensive parameterization
algorithm that does not have to be initialized by a bijective initial guess and allows
for spline-bases with arbitrary continuity properties, in this paper, we augment the
discretization proposed in [9] with auxilliary variables, leading to a mixed-FEM
type problem. To allow for its application to large-scale problems, we present a
solution strategy that tackles the resulting nonlinear root-finding problem with a
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Newton-Krylov-based [11] Jacobian-free iterative approach that only operates on
the nonlinear part (corresponding to the primary, not auxilliary variables) of the
equation. Besides single-patch problems, we will address potential use cases of the
algorithm in multipatch settings (in particular with extraordinary vertices), made
possible by the support of C0-continuous spline bases. We conclude this paper with
a number of example-parameterizations and a discussion of the results.

2 Problem Formulation

In [9], the following discretization of the governing equations (see Eq. (2)) is
proposed:

find x ∈ [span�]2 s.t.
{

∀σ i ∈ [�0]2 : ∫
�̂

σ i · L(x)dξ = 0
x|

∂�̂
= ∂�

, (4)

where �0 ≡ {wi ∈ � | wi |∂�̂
= 0}.

Similarly, [10] introduces a scaled version of (4), namely:

find x ∈ [span�]2 s.t.
{

∀σ i ∈ [�0]2 : ∫
�̂

σ i · L̃(x)dξ = 0
x|

∂�̂
= ∂�

, (5)

where

L̃(x) = L(x)
g11 + g22︸ ︷︷ ︸

≥0

+ μ︸︷︷︸
>0

. (6)

Here, μ > 0 is a small positive parameter that is usually taken to be μ = 10−4.
The motivation to solve (5) rather than (4) is based on the observation that

numerical root-finding algorithms typically converge faster in this case and that a
suitable convergence criterion is less geometry-dependent. Note that the scaling
is allowed because the exact solution is unchanged. Therefore, we base our
reformulation of the problem on (5).

In order to reduce the highest-order derivatives from two to one, we introduce
a new operator in which we replace second order derivatives in x by the first order
derivatives of u and v, respectively:

U(u, v, x) = g22uξ − g12uη − g12vξ + g11vη

g11 + g22 + μ
. (7)
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Where U satisfies

L̃(x) = U(xξ , xη, x). (8)

A possible reformulation of (5) with auxilliary variables now reads:

find (u, v, x)T ∈ [span �̄]4 × [span�]2 s.t.
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀σ i ∈ [�̄]4 × [�0]2 : ∫
�̂

σ i ·
⎛

⎜⎝
u − xξ

v − xη

U(u, v, x)

⎞

⎟⎠ dξ = 0

x|
∂�̂

= ∂�

, (9)

where �̄ = {w̄1, . . . , w̄N̄ } denotes the basis that is used for the auxilliary variables.
Note that the choice of (7) is not unique. Here, we have chosen to divide xξη

equally among uη and vξ . In general, any combination

xξη → χuη + (1 − χ)vξ , (10)

is valid. Note that since the gij are functions of xξ and xη, further possible variants
are acquired by substituting u, v in the gij .

System (9) now constitutes a discretization of (2) that allows for only C0-
continuous bases at the expense of increasing the problem size from 2|Iinner| to
2|Iinner| + 4|�̄|, where, as before, Iinner refers to the index set of inner control
points.

Let us remark that in certain settings, it suffices to invoke auxilliary variables in
one coordinate-direction only. A possible problem formulation for the ξ -direction
reads:

find (u, x)T ∈ [span �̄]2 × [span�]2 s.t.
⎧
⎪⎪⎨

⎪⎪⎩

∀σ i ∈ [�̄]2 × [�0]2 : ∫
�̂

σ i ·
(

u − xξ

Uξ (u, x)

)
dξ = 0

x|
∂�̂

= ∂�

, (11)

with (for instance)

Uξ (u, x) = g22uξ − g12uη − g12xξη + g11xηη

g11 + g22 + μ
. (12)

And similarly for the η-direction.
The above approach is useful if C0-continuities are only required in a single

coordinate-direction so that the total number of degrees of freedom (DOFs) can be
reduced.
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3 Solution Strategy

Systems (9) and (11) are nonlinear and have to be solved with an iterative algorithm.
We will discuss a solution algorithm that is loosely based on the Newton-approach
proposed in [9]. However, we tweak it in order to reduce computational costs and
memory requirements by exploiting many characteristics of the problem at hand.
First, we discuss the case in which �̂ is given by a single patch, after which we
generalize our solution strategy to multipatch-settings (in particular with topologies
that contain extraordinary vertices).

3.1 Single Patch Parameterizations

With x = x[c], where c is a vector containing the cj in (1) (while freezing the ci

that follow from the boundary condition) and (u, v)T = (u, v)T [d], where d =
(du,dv)T is a vector containing du

i and dv
i in

u[du] =
∑

i

du
i w̄i ,

v[dv] =
∑

i

dv
i w̄i , (13)

we can reinterpret (9) as a problem in c and d. It has a residual vector of the form

R(d, c) =
(

RL(d, c)
RN(d, c)

)
, (14)

where RL refers to the linear part in (9) (the projection of the auxilliary variables
onto xξ and xη) and RN to the nonlinear (the part involving the operatorU(u, v, x)).

The Newton-approach from [9] requires the assembly of the Jacobian

JR =
⎛

⎜⎝
∂RL

∂d
∂RL

∂c

∂RN

∂d
∂RN

∂c

⎞

⎟⎠ ≡
(

A B

C D

)
(15)

of (9) at every Newton-iteration. The matrices A and B, corresponding to the linear
part in (9), are not a function of c and d and thus have to be assembled only once. In
fact, A is block-diagonal with blocks given by the parametric mass matrix M̄ over
the auxilliary basis �̄ = {w̄1, . . . , w̄N̄ } with entries

M̄ij =
∫

�̂

w̄iw̄jdξ , (16)



Planar Parameterization on Convex Multipatch Domains 63

while B is block-diagonal with blocks whose columns are given by a subset of the
columns of the matrices M̄ξ and M̄η with entries

M̄
ξ
ij =

∫

�̂

w̄iwjξdξ (17)

and

M̄
η
ij =

∫

�̂

w̄iwjηdξ . (18)

For given c and d, the Newton search-direction is computed from a system of the
form

(
A B

C D

) (
�d
�c

)
=

(
a
b

)
, (19)

where C = C(d, c) and D = D(d, c) are, unlike A and B, not constant and have to
be reassembled in each iteration. We form the Schur-complement of A, in order to
yield an equation for �c only, namely:

(D − CA−1B︸ ︷︷ ︸
D̃

)�c = b − CA−1a. (20)

In order to avoid the computationally expensive assembly of C and D, we solve (20)
with a Newton-Krylov [11] algorithm which only requires the evaluation of vector
products D̃s, which can be approximated with finite differences rather than explicit
assembly of C and D. Since

Cs1 + Ds2 = RN

(
d + εs1, c + εs2

) − RN(d, c)

ε
+ O(ε), (21)

we have

D̃s � RN(d − εA−1Bs, c + εs) − RN(d, c)
ε

, (22)

and

CA−1a � RN(d + εA−1a, c) − RN(d, c)
ε

, (23)

for ε small. The optimal choice of ε is discussed in [11].
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We compute products of the form q = A−1t from the solution of the system
Aq = t, which has for t = Bs (see Eq. (22)) and t = a (see Eq. (23)) the form of a
(separable) L2-projection. Let

x0[c] =
∑

j∈Iinner

cjwj . (24)

Product q = A−1Bs satisfies

q = (qu,qv)T = argmin
(q̃u,q̃v)

1

2

∫

�̂

∥∥∥∥∥∥

[
u[q̃u]
v[q̃v]

]
−

[
x0ξ [s]
x0η[s]

]∥∥∥∥∥∥

2

dξ , (25)

and similarly for q = A−1a.
As such, A is block-diagonal and composed of separable mass matrices M̄ =

m̄ξ ⊗ m̄η

A =

⎛

⎜⎜⎝

m̄ξ ⊗ m̄η

. . .

m̄ξ ⊗ m̄η

⎞

⎟⎟⎠ , (26)

where m̄ξ and m̄η refer to the univariate mass matrices resulting from the tensor-
product structure of �. Therefore, we have

A−1 =

⎛

⎜⎜⎝

(m̄−1
ξ ) ⊗ (m̄−1

η )

. . .

(m̄−1
ξ ) ⊗ (m̄−1

η )

⎞

⎟⎟⎠ . (27)

We follow the methodology from [6], where a computationally inexpensive inver-
sion of this 2D mass matrix is achieved by repeated inversion with the 1D mass
matrices m̄ξ and m̄η. Here, we do direct inversion of the 1D mass matrices by
computing their Cholesky-decompositions [15]. An inversion can be done in only
O(N̄) arithmetic operations and Cholesky-decompositions have to be formed only
once, thanks to the fact that A is constant.

After solving (20), �d is found by solving

A�d = a − B�c. (28)

Upon completion, the vector n ≡ (�d,�c)T constitutes the Newton search-
direction. We update the current iterate (d, c)T by adding νn, where the optimal
value of ν ∈ (0, 1] is estimated through a line-search routine. Above steps are
repeated until the norm of n is negligibly small. Upon completion, we extract the
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c-component from the resulting solution vector which contains the inner control
points of the mapping operator x, while the d-component serves no further purpose
and can be discarded.

It should be noted that a single matrix-vector product D̃s is slightly more
expensive than, for instance, Ds, due to the requirement to invert A. However,
thanks to the separable nature of A, the costs in (22) are dominated by function
evaluations in RL, which implies that a performance quite similar to that of an
approach without auxilliary variables can be achieved.

There exist many possible choices of constructing an initial guess for the c-
component of the iterative scheme. Common choices are algebraic methods, most
notably transfinite interpolation [7]. Once the c-component has been computed with
one of the available methods, a reasonable way to compute the corresponding d-part
is through a (separable) projection of xξ and xη onto �̄.

Slightly superior initial guesses can be generated using multigrid techniques
as demonstrated in [9]. The problem is first solved using a coarser basis and an
algebraic initial guess, after which the coarse solution vector is prolonged and
subsequently used as an initial guess. This is compatible with the techniques
discussed in this section. However, instead of prolonging the full coarse solution
vector, we only prolong the c-component and compute the corresponding d-
component using an L2(�̂)-projection.

3.2 Multipatch

The reformulation with auxilliary variables has a particularly interesting application
in multipatch-settings, especially when extraordinary patch vertices are present.
Most of the techniques from Sect. 3.1 are readily applicable but there exist subtle
differences that shall be outlined in the following.

Let �̂ be a multipatch domain, i.e.,

�̂ =
n⋃

i=1

�̂i . (29)

For convenience, let us assume that each �̂i is an affine transformation of the
reference unit square �̃ = [0, 1]2 with corresponding mapping mi : �̃ → �̂i ,
where

mi (s) = Ais + bi . (30)

Here, Ai is an invertible matrix, bi ∈ R
2 some translation and the vector s = (s, t)T

contains the free variables in �̃. The automated generation of a multipatch structure
is a nontrivial task, which is not discussed in this paper. For an overview of possible
segmentation techniques, we refer to [3, 17, 5].
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Let x̃ : �̂ → � be such that x̃−1 : � → �̂ is a harmonic mapping. Assuming
that the �̂i are arranged such that �̂ is convex, Rado’s theorem [14] applies and a
harmonic x̃−1 is bijective.

In the case of a multipatch domain, pairs of faces (γ α
i , γ

β
j ) ⊂ ∂�̂i ×∂�̂j and sets

of vertices {pi , . . . ,pl} ⊂ ∂�̂i × . . . × ∂�̂l may coincide on �̂. As such, the bases
� and �̄, whose elements constitute single-valued functions on �̂ are constructed
from the patchwise discontinuous local bases �i and �̄i with appropriate degree of
freedom (DOF) coupling that canonically follows from the connectivity properties
of the �̂i . In the multipatch case, we solve (9) by evaluating the associated integrals
through a set of pull backs of the �̂i ⊂ �̂ into the reference domain �̃. Thanks to
the affine nature of the pull back, replacement of ξ -derivatives by local s-derivatives
is straightforward.

As such, the solution of (9) yields a collection of mappings {xi}i , with xi : �̃ →
�i ⊂ �, where each xi satisfies

xi � x̃|
�̂i

◦ mi . (31)

As the right hand side of (31) is a composition of bijective mappings, the bijectivity
of xi depends on the quality of the approximation. If the xi are bijective, they jointly
form a parameterization of �.

Unlike in the single-patch setting, theL2(�̂)-projection associated with the linear
part of the residual vector is not separable. As such, the evaluation of vector products
A−1Bs (see Eq. (22)) becomes more involved. A possible workaround is explicit
assembly and inversion of the Jacobian of the system (see Eq. (19)), leading to
increased computational times and memory requirements.

A possible alternative is the approximation of products of the form A−1Bs by a
sequence of patchwise separable operations. In the following, we sketch a plausible
approach.

Similar to the single-patch case, products of the form (qu,qv)T = A−1Bs satisfy

(qu,qv)T = argmin
(q̃u,q̃v)T

n∑

i=1

1

2

∫

�̂i

∥∥∥∥∥∥

[
u[q̃u]
v[q̃v]

]
−

[
x0ξ [s]
x0η[s]

]∥∥∥∥∥∥

2

dξ . (32)

Let

�̃ =
n⋃

i=1

�̄i ≡ {w̃i}i (33)
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be the patchwise discontinuous union of local (auxilliary variable) bases and let

ũ[g] =
∑

i

gi w̃i ,

ṽ[h] =
∑

i

hi w̃i . (34)

In order to approximate (qu,qv)T , we first find

(g,h)T = argmin
(g̃,h̃)T

n∑

i=1

1

2

∫

�̂i

∥∥∥∥∥∥

[
ũ[g̃]
ṽ[h̃]

]
−

[
x0ξ [s]
x0η[s]

]∥∥∥∥∥∥

2

dξ . (35)

We perform a patchwise pullback of the L2-projections into the reference domain
where they are solved with the techniques from Sect. 3.1. Thanks to the affine nature
of the pullback, the geometric factor associated with �̂i is constant and given by

det Ji = detAi. (36)

Therefore, separability is not lost and the same efficiency as in the single-patch case
is achieved. We restrict the solution of (35) to �̄ by performing a weighted sum
of components that coincide under coupling. Let w̄i ∈ �̄ result from a coupling
of {w̃α, . . . , w̃γ } ⊂ �̃ and let {det Jα, . . . , det Jγ } denote the set of corresponding
local geometric factors. If the {w̃α, . . . , w̃γ } receive control points gα, . . . , gγ under
the projection, we set

qu
i = det Jαgα + . . . + det Jγ gγ

det Jα + . . . + det Jγ

, (37)

and similarly for qv . Relation (37) induces a canonical restriction operator from
span �̃ to span �̄ that is used to compute (qu,qv)T from (g,h)T .

4 Numerical Experiments

In the following, we present several numerical experiments, demonstrating the
functioning of the proposed algorithm. First, we present two single-patch problems
after which we present a more involved multipatch parameterization.

In all cases, the auxiliary basis �̄ results from one global h-refinement of the
primal basis �.
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4.1 L-Bend

As a proof of concept, we present results for the well-known single-patch L-bend
problem. Wherever possible, we shall compare the results to a direct minimization
of the Winslow-functional

W(x) =
∫

�̂

g11 + g22

det J
dξ , (38)

whose global minimizer (over [span�]2) coincides with a numerical approximation
of the solution of (2) in the limit where N → ∞ [1]. For the L-bend problem,
we employ uniform cubic (p = 3) knot-vectors in both directions with a p-fold
knot-repetition at ξ = 0.5 in order to properly resolve the C0-continuity. As such
we solve (11) rather than (9). Figure 1 shows the resulting parameterization along
with the element boundaries under the mapping. The Schur-complement solver
converges after 3 iterations which amounts to 106 evaluations of RN . As can be
seen in the figure, the parameterization is symmetric across the line connecting
the upper and lower C0-continuities which is expected behaviour from the shape
of the geometry. We regard this as a positive sanity check for the functioning of

Fig. 1 Solution of the L-bend problem with the mixed-FEM algorithm
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the algorithm. Another observation is that despite the presence of knot-repetitions
at ξ = 0.5, the parameterization shows a large degree of smoothness along the
corresponding isoline. Again, this is a positive result since the solution is expected
to be an approximation of the global minimizer of (38) (over x ∈ [span�]2), which,
in turn, approximates a smooth function. A substitution of the solution vector cmf of
the system of Eqs. (11) in (38) gives

W(cmf) � 3.01518, (39)

whereas the global minimizer cW of (38) over the same basis yields

W(cW) � 3.01425. (40)

This constitutes another positive sanity check as the results are very close, while a
substitution of the PDE-solution is slightly above the global minimum. As such, the
PDE-solution comes with all the undesired characteristics of EGG-schemes such as
the tendency to yield bundled/spread isolines near concave/convex corners. This
does not occur in parameterizations based on the techniques of [8] (see Fig. 2).

Fig. 2 Solution of the L-bend problem with constrained minimization of the Area Orthogonality
functional (see [8])
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However, the L-bend example is rather contrived since a good parameterization is
easily constructed with algebraic techniques. Here, the results only serve as a proof
of concept.

4.2 Tube-Like Shaped Geometry

In many cases, segmentation along knots with p-fold repetition and continuation
with, for instance, techniques from [9] on the smaller pieces is a viable choice.
However, in some cases, a segmentation curve along which to split the geometry
into smaller parts may be hard to find. One such example is depicted in Fig. 3
(left), which is a geometry taken from the practical application of numerically
simulating a twin-screw machine. For convenience, the ξ = 0.5 isoline, across
which the mapping is C0-continuous, has been plotted in red. The usefullness of
the proposed algorithm becomes apparent in this case: instead of having to generate
a valid ξ = 0.5 isoline, the isoline establishes itself from the solution of the PDE-
problem.

As in the L-bend problem, we observe that the resulting parameterization
exhibits a great degree of smoothness across the ξ = 0.5 isoline, despite the
continuity properties of � and the spiked upper and lower boundaries.

Fig. 3 PDE-based parameterization (left) and area-orthogonality minimized parameterization
(right) of a tube-like shaped geometry
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The proposed algorithm produces superior results to the constrained optimization
approach from [8] (see Fig. 3, right). In fact, here we initialized the optimization by
the PDE-solution, as the solver struggles to find a feasible initial guess through
optimization. This confirms the finding from [9] that EGG-based approaches may
be a viable alternative to finding feasible initial guesses for approaches based on
optimization. Furthermore, we note the striking difference in the required number
of iterations, which amount to over 100 (constrained) in the optimization, while the
PDE-solver converges in only 7 iterations.

The poor performance of the optimization-approach can be explained by tiny
gaps contained in the geometry, leading to natural jumps in the magnitude of the
Jacobian determinant. As most cost functions are functions of the gij , they are very
sensitive to jumps in det J . This is further evidenced by the poor grid quality in the
narrow part of the geometry (see Fig. 4 right). In our experience, this is not the case
for the PDE-solution (see Fig. 4 left) and we successfully employed the approach
for the automatic generation of a large number of similar geometries.

Finally, it should be noted that a comparison to the global minimizer of the
Winslow-energy is not possible since the gradient-based optimizer we employed
failed to further reduce the cost function from the evaluation of the PDE-solution.

4.3 Multipatch Problem: The Bat Geometry

Another interesting application of the proposed algorithm is that of a multipatch
parameterization. In Sect. 4.2, we have successfully employed the algorithm to a
geometry with a C0-continuity along the ξ = 0.5 isoline, which might as well
be regarded as a two-patch parameterization with coupling along aforementioned
isoline. A much more interesting multipatch application would be that of an uneven
number of patches with extraordinary vertices. We are considering the diamond-
shaped triple-patch domain depicted in Fig. 5, left. The target boundaries form the

Fig. 4 Zoom-in on the PDE-based parameterization and area-orthogonality minimization param-
eterization
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Fig. 5 Diamond shaped multipatch domain (left) and the target boundaries (right). Here, n1 = 10,
n2 = 11 and n3 = 12 denote the number of (uniformly-spaced) elements in each coordinate
direction. There are no internal knot repetitions

bat-shaped contour depicted in Fig. 5, right. Note that, as required in Sect. 3.2, the
domain forms a convex subset of R2. For convenience we have highlighted the
positions of the various boundaries under the mapping in different colors. Of course,
of major interest shall be how the dotted red curve(s) in Fig. 5 (left) are deformed
under the mapping. Figure 6 (left) shows the mapping we utilize to initialize the
Newton-Krylov solver while Fig. 6 (right) shows the resulting geometry. Even
though better initial guesses are easily constructed, here we have chosen to initialize
the solver with a folded initial guess in order to demonstrate that bijectivity is
not a necessary condition for convergence. The Newton-Krylov solver converges
after 6 nonlinear iterations. The dotted red curves in Fig. 6 (right) show the internal
interfaces of �̂ under the mapping. We see that the patch interfaces are mapped into
the interior of �. The resulting geometry is bijective. However, the isolines make
steep angles by the internal patch interfaces. This results from the additional pull
back of x̃|

�̂i
into �̃ via the operator mi (see Eq. (31)), which generally introduces

a C0-continuity in the composite mapping. Higher-order smoothness across patch
interfaces is generally difficult to achieve and usually done by constructing bases
whose elements possess higher-order continuity sufficiently far away from the
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Fig. 6 The mapping that is passed on to the solver (left) and the resulting parameterization (right)

extraordinary vertices. However, note that such bases may not allow for patchwise-
affine transformations such that L2(�̂i)-projections lose their separability property.
For a more rigorous definition of smoothness on multipatch topologies and strategies
to build bases with local C≥1 smoothness on patch interfaces, we refer to [4].

5 Conclusion

We have formulated an IgA-suitable EGG-algorithm that is compatible with spline
bases � possessing arbitrary continuity properties (whereby arbitrary stands for
global C≥0-continuity) by introducing a set of auxiliary variables. We proposed
an iterative Newton-Krylov approach operating on the Schur-complement of the
linear part of the resulting nonlinear system of equations, which operates efficiently
and reduces memory requirements. As such, it is suitable for large problems.
Unlike similar C0-compatible EGG-based approaches, the iterative solution method
does not have to be initialized with a bijective mapping, significantly improving
its usability in practice. However, this major advantage comes at the expense of
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increasing the problem size from N to � cN , where c = 2 or c = 3, depending
on the context. The impact is partially mitigated by the specially-taylored iterative
solution algorithm.

We have presented three numerical experiments, two with a single patch and one
resulting from a triple-patch configuration. In the single-patch case, we concluded
that a substitution of the PDE-solution into the Winslow functional (Eq. (38)) yields
an outcome that is close to that of the global function-minimizer (which is generally
hard to find through direct minimization, due to the presence of det J in the
denominator of Eq. (38)). As such, we concluded that the algorithm operates as
expected and offers a viable alternative to direct minimization of (38). However, it
also comes with all the known drawbacks of EGG-based approaches and the two
single-patch test cases demonstrate that it can yield inferior and superior results to
other techniques, depending on the characteristics of the geometry.

As convergence is typically reached within only a few iterations, we conclude
that the algorithm can serve as a computationally inexpensive method to initialize
other methods that require a bijective initial guess. The required number of iterations
can be further reduced by employing multigrid techniques (see [9]) but this has not
been implemented yet.

A major use case of the proposed algorithm is that of multipatch applications. In
Sect. 4.3, we presented results of the application to a triple-patch topology, where we
successfully generated a patchwise bijective parameterization by approximating the
composition of an inverse-harmonic mapping and patchwise affine transformations.
The position of internal patch-interfaces under the mapping do not have to be
imposed manually but follow naturally from the composite PDE-solution.

Finally, we observed that the composition with affine transformations results in
nonsmooth transitions at patch interfaces. Higher-order smoothness can be achieved
by a clever coupling of inter-patch DOFs sufficiently far away from extraordinary
vertices.
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