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A 720 nW Current Sensor with 0-to-15 V Input Common-Mode Range

and £0.5% Gain Error from —40 to 85 °C
Roger Zamparette!, Kofi Makinwa!
Delft University of Technology, Delft, The Netherlands

Abstract
This paper presents a nano-power high-side shunt-based
current sensor (CS) that digitizes the voltage drop across an on-
chip (£1A) or a lead-frame (+30A) shunt. A TC-tunable ADC
reference compensates for the shunts' large temperature
coefficient (TC), resulting in +0.5% gain error from -40 to
85°C. The CS employs a capacitively coupled gm-boosted
front-end followed by a CCO-based AX ADC. Together with a
floating input chopper, this results in an input common-mode
range (ICMR) of 0-to-15V, the largest reported for a CS
implemented in a standard CMOS process. It achieves high
energy efficiency (164dB FoM) while consuming only 720nW,
representing a 4x improvement on the state-of-the-art and
making this the first ever reported sub-pW smart current
sensor.
Introduction
Knowing the battery State of Charge is essential for the reliable
operation of IoT devices, and it is typically determined by
Coulomb counting. Since it must always be on, this requires a
low-power CS [1-4], which, for [oT applications, should also
be low-cost. The latter can be achieved using metal shunts,
such as on-chip, lead-frame, and PCB traces, but their readout
circuits often consume several pWs, significantly impacting
battery life. High-side sensing is preferred, but it is an extra
challenge in multi-cell battery applications and typically
requires an expensive BCD process [3,4]. This work proposes
a nano-power high-side CS compatible with low-cost metal
shunts and fabricated in a standard 0.18um CMOS process.
Proposed Current Sensor
As shown in Fig.la, the CS employs an ADC with a TC-
tunable Vier=Verart A Verar [2] to digitize the voltage across a
metal shunt Vs = Rsls while simultaneously compensating for
its 18-order TC (~3500 ppm/°C). The CS can be used with
either a lead-frame shunt (300pQ, £30A, Fig.1b) or an on-chip
metal shunt (40mQ, £1A, Fig.1¢c) [2,4].

Previous TC-tunable Vg generators used separate circuits
for Vierar and Verar [1,2]. In this work, Ve is generated by a
single circuit to save power (Fig. 2). The PTAT voltage across
a dynamic threshold MOST (DTMOST) pair is added to a
CTAT voltage IpiasA'Rerar, where A is a trim factor. The use of
DTMOSTs instead of BJTs enables V,,<1V since Vg (250mV
@ 25°C) is ~3x smaller than Vg (700mV @ 25°C). However,
a low-TC bias current Ignsis required to minimize the non-
linear temperature dependence of the resulting Vie:.

As shown in Fig. 3, Iuus is generated by forcing the PTAT
voltage produced by a DTMOST pair across a silicided poly
resistor (Rsi), whose near-PTAT TC results in a near-zero TC
current. This is realized by a current-voltage mirror (CVM) [5]
rather than the usual opamp, saving power and enabling
Vop<IV. The current is then mirrored to another DTMOST pair
in series with two 4-bit resistor ladders, Ryss (Runir=8kQ) and
Riss (Runit=0.5kQ) that realize the TC-tuning. A polarity bit
Aex selects the appropriate ladder, resulting in a 9-bit trim DAC
using just 34 switches, thus significantly reducing switch
leakage while providing accurate Kelvin connections. The
CVM and mirrors are chopped at fu=fs/2 to suppress
offset/flicker noise.

As shown in Fig. 4, Vs is sensed by a capacitively-coupled g,
stage, which is chopped at fu=fy2, thus suppressing its

offset/flicker noise and decoupling the DC levels of the input
and the AZM summing node. System-Level Chopping (SLC)
further suppresses offset with fs.c = fs/64. The floating input
choppers [4] are protected by a custom ESD structure, which
enables a high ICMR (<15V). Using a 1#-order AXM ensures a
uniform impulse response [2], but its finite DC gain leads to
dead zones and low SQNR. A phase quantizing loop filter
based on two current-controlled oscillators (CCOs) is
employed to address these issues. It provides multi-bit
quantization and high DC gain, even for Vpp<1V [6]. A phase
frequency detector (PFD) quantizes the CCOs' phase
difference, resulting in a 4-bit, 3-level output that drives a
capacitive DAC Cpac. Compared to [6], the middle level is
obtained by simply shorting the bottom plates of Cpac. Finally,
dead-banding (DB) suppresses chopping-induced non-linearity
[7]1.

For energy efficiency, the bias current of the g, stage also
supplies the CCOs (Iccoraw) (Fig.5). Large loop-gain
(X gnkeeo) 1s required for high SQNR, while reducing keco
reduces fcco and dynamic power consumption. A current-reuse
gm-boosting scheme is proposed to decouple the gn choice
from the Icco. The cross-coupled M. transistors create a
negative g, that boosts the effective g. (gmr) to, ideally,
infinity. The series resistors Rs stabilize the system and define
uer=1/Rs=4pS (~3x the g. of M,,) with Iccorny =60nA and
fcco=16kHz. They also provide pseudo-differential
degeneration, leading to a wider input range. A large bias
resistor Rg=5GQ is required to minimize its noise contribution,
which is realized as a Segmented Duty-Cycled Resistor
(SDCR) [1] operating at fsper = fs.

Measurement Results and Performance Summary
The CS is fabricated in a standard 0.18um CMOS process
(Fig.6a) and consumes 720nW from a single 0.9V supply. The
ADC achieves a 4uVrys resolution in a S5Sms conversion time
for f=32kHz. Decimation is performed off-chip for flexibility.
The chip is shown in Fig 6b mounted on the lead-frame from a
standard package.

Fig.7 shows Aloyr vs. AV of the g, stage with and without
g.-boosting. As shown in Fig. 8, the lower quantization noise
and increased gain with gm-boosting increase the modulator's
thermal-noise limited BW from ~60Hz to ~200Hz. Fig. 9 and
Fig. 11 show the Doyr (Is=0.5A, on-chip / [s=20A, lead-frame)
and Ips variation from —40 to 85°C for a typical sample. The
TC of Isas=140ppm/°C, and the on-chip/lead-frame Douyr
variation is +0.3%/<0.5%. Fig.10 shows the gain error for the
on-chip/ and lead-frame shunts (0.5%, four samples each) after
a room temperature gain trim and a A batch calibration. The
spectrum for different ICMs is shown in Fig. 12, demonstrating
the 0-to-15V ICMR. The offset stays below 100uV/5uV with
SLC on/off for eight samples, as shown in Fig.13.

The sensor's performance is summarized in Tab.1. Compared
to the state-of-the-art, it requires ~4x less power and is more
energy efficient. Moreover, it supports high-side sensing up to
15V and is the first reported sub-uW CMOS current sensor.
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Fig. 1 Dlagram of the shunt resistor-based current sensor system
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Fig. 10: Gain error.

* Uses a custom/off-chip low-TCR shunt

** FoM=Dynamic Range + 10log(Bandwidth/Power)
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