

Delft University of Technology

Classifying code comments in Java Mobile Applications

Pascarella, Luca

DOI
10.1145/3197231.3198444
Publication date
2018
Document Version
Accepted author manuscript
Published in
Conference on Mobile Software Engineering and Systems

Citation (APA)
Pascarella, L. (2018). Classifying code comments in Java Mobile Applications. In Conference on Mobile
Software Engineering and Systems (pp. 39-40) https://doi.org/10.1145/3197231.3198444

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3197231.3198444
https://doi.org/10.1145/3197231.3198444

Delft University of Technology
Software Engineering Research Group

Technical Report Series

Classifying code comments in Java Mobile
Applications

Luca Pascarella

Report TUD-SERG-2018-010

SERG

TUD-SERG-2018-010

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Van Mourik Broekmanweg 6
2628 XE Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
https://se.ewi.tudelft.nl/tr.html

For more information about the Software Engineering Research Group:
https://se.ewi.tudelft.nl/

This paper is a pre-print of: Luca Pascarella – Classifying code comments in Java Mobile Applications.
In Proceedings of the 5th IEEE/ACM International Conference on Mobile Software Engineering and Sys-
tems (MOBILESoft-2018) – Student Research Competition – May 27-28 2018 — Gothenburg, Sweden.
doi: https://doi.org/10.1145/3197231.3198444

Acknowledgments. This project has received funding from the European Unions’ Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant agreement No. 642954.

c© 2018 ACM. Personal use of this material is permitted. Permission from ACM must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

https://doi.org/10.1145/3197231.3198444

Classifying Code Comments in Java Mobile Applications
Luca Pascarella

Delft University of Technology, The Netherlands
L.Pascarella@tudelft.nl

ABSTRACT
Developers adopt code comments for different reasons such as doc-
ument source codes or change program flows. Due to a variety
of use scenarios, code comments may impact on readability and
maintainability. In this study, we investigate how developers of
5 open-source mobile applications use code comments to docu-
ment their projects. Additionally, we evaluate the performance of
two machine learning models to automatically classify code com-
ments. Initial results show marginal differences between desktop
and mobile applications.

CCS CONCEPTS
• Software and its engineering→ Maintaining software;

KEYWORDS
Android, Mining Software Repositories, Code Comments
ACM Reference Format:
Luca Pascarella. 2018. Classifying Code Comments in Java Mobile Appli-
cations. In MOBILESoft ’18: MOBILESoft ’18: 5th IEEE/ACM International
Conference on Mobile Software Engineering and Systems , May 27–28, 2018,
Gothenburg, Sweden. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3197231.3198444

1 INTRODUCTION
During software development, software engineers make several
choices forging computer programs [5] and to document their ratio-
nals, developers write code comments [10]. Past researches demon-
strate that code comments are crucial to enhance program read-
ability and maintainability [3]. Despite unaligned documentation
may exacerbate maintenance [4, 9], researchers globally agree that
having a generous commented code is a good practice [2, 6].

Considering all comments the same may bring to incorrect eval-
uations especially when code comments are used to perceive the
quality of inspected codes, for example, by measuring the code/-
comment ratio [2, 6]. In a recent study, Pascarella et al. confirmed
this limitation arguing that code comments contribute to different
meanings [8]. They proposed a novel taxonomy to classify Java com-
ments, investigated how developers of OSS systems use comments,
and experimented with automatically classifying code comments.

In this study, we aim at corroborating and possibly improving the
current knowledge about the use of code comments in mobile apps.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5712-8/18/05. . . $15.00
https://doi.org/10.1145/3197231.3198444

Particularly, we (1) measured the distribution of code comments in
the given taxonomy and (2) we evaluated the performance of two
machine learning models to automatically classify code comments.
For this purpose, we inspected 325 Java files of 5 open-source An-
droid mobile apps and we manually classified up to 2, 100 comment
blocks comprising more than 4, 500 lines.

Our results confirm the suitability of the proposed taxonomy
in the context of mobile apps. We discovered only marginal dif-
ferences between desktop and mobile apps. Finally, even though
the performance of the machine learning classifiers decreases in
the context of a cross-project training we detected a promising
capability in reusing the provided training set.

2 METHODOLOGY
The intention of this work denotes and extends the goal of the study
conducted by Pascarella et al. aimed at understanding the purpose
of the code comment written by developers [8]. Particularly, this
study focuses on code comments of open-source Android mobile
apps by verifying the generalizability of the proposed approach.

Research questions. To this aim, we observed that Pascarella
et al. mainly focus on Java desktop apps [8]. Although the desktop
and mobile apps share the same programming languages, develop-
ers could adopt the same development approach. A study showed
the opposite [11]. Consequently, to understand how Android devel-
opers use code comments we defined our first research question:

RQ1. How often does each category occur in OSS Android apps
using the Pascarella et al. taxonomy?

Then, we investigate to what extent the automated models pro-
posed by Pascarella et al. can be generalized in a cross-project
approach. This leads to our second research question:

RQ2. How effective are the proposed machine learning models in
classifying code comments in OSS Android apps?

Project selection. To conduct our analysis we selected 5 het-
erogeneous Android apps written in Java programming language.
They are all open-source projects available through Google Play,
hosted by GitHub, and with different size and scope. Table 2 sum-
marizes the characteristics of the selected systems reporting for
each project the GitHub link, the Google Play link, the number of
commits, the number of contributors, and the number of Java lines.

Table 1: Overview of the projects used in this study

Project GitHub Google Play Commits Cont. Lines
AFWall+ https://goo.gl/xzExNE https://goo.gl/rjhZ2h 1,346 21 28k
Amaze File Manager https://goo.gl/8k67AJ https://goo.gl/yV5jJE 2,913 89 41k
AntennaPod https://goo.gl/XkS14Y https://goo.gl/t76sCB 2,913 103 61k
ownCloud https://goo.gl/5b9BVG https://goo.gl/NhnVAq 6,397 76 63k
WordPress https://goo.gl/qfkTQA https://goo.gl/d5dnJe 6,397 131 140k

Sample validity. To establish a statistical significant sample of
Java files used to measure to what extent Java code comments are

SERG Luca Pascarella – Classifying code comments in Java Mobile Applications

TUD-SERG-2018-010 1

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden L. Pascarella

Figure 1: Comparison of code comments frequency.

A

B

C

D

E

F

31.6%
38.9%

6.3%
7.5%

4.5%
16.3%

0.3%
0.2%

7.1%
40.8%

0.2%
0.1%

Blocks of comments
OSS Mobile apps

Lines of comments
OSS Mobile apps

0 7% 14% 21% 28% 50%

20.1%
28.3%

11.1%
12.9%

2.1%
3.6%

3.7%
4.6%

49.8% 11.5%

0.8%
0.8%

Blocks of comments
OSS Desktop apps

Lines of comments
OSS Desktop apps

07%14%21%28%50%

0 7% 14% 21% 28% 50%07%14%21%28%50%

used by mobile apps developers we considered all 2108 Java files, we
defined a confidence level of 95%, and we set a confidence interval
of 5%. We obtained a representative sample of 325 Java files. This
sample creates a reasonable large dataset composed of about 2, 100
block of comments and more than 4, 500 lines of comments.

Manual classification. To answer our RQ1 we manually in-
spected and classified all comments of the sampled Java files. To
this aim, we used the definitions of the taxonomy proposed by
Pascarella et al. [8]. Such a taxonomy is composed of 22 categories
organized into 2 levels. The first level discerns 6 top categories while
the second level details 16 definitions (inner categories). Thereafter,
we used ComMean tool [8] to support the classification process and
reduce human errors. Moreover, we annotated possible comments
whose purpose was not covered by the provided taxonomy.

Classification technique. To answer our RQ2 we repeated the
settings of Pascarella et al.. by applying only a subset of machine
learning classifiers. Particularly, we used 2 well-known classes
of supervised machine learning algorithms based on probabilistic
classifiers and decision tree algorithms, Naive Bayes Multinominal
and Random Forest, respectively. These algorithms rely on diverse
assumptions aimed at reacting to different execution speeds and
overfitting ability. Finally, to improve the performance we applied
both data balancing and multi-collinearity corrections.

Classification evaluation. To evaluate the performance of the
achieved results we relied on precision and recall, which are based
on the evaluation of different combinations of True Positive, False
Positive, and False Negative. Finally, we evaluated the performance
considering 2 different evaluation techniques: (1) a preliminary
evaluation adopting the 10-fold cross-validation, then (2) intersect-
ing datasets of different projects to train and test the model and
overcome the limitation imposed by data availability [1].

3 RESULTS
We report the top categories’ results (a detailed report is available
online with a new dataset of classified mobile apps comments [7]).

RQ1 results. Figure 1 compares the distributions of comments
for desktop and mobile apps. An appreciable difference is evident
for Under Dev. category that for mobile apps is more than the dou-
ble. It suggests that these developers frequently deal with unstable
features. While this represents a dynamic development it is also a
sign of self-admitted technical debts. At same time Purpose cate-
gory suggests that mobile apps developers resort to code comments
to document their code more than desktop apps developers.

RQ2 results. Table 2 shows only the performance of the better
classifier tested considering precision (P) and recall (R) for 10-fold

Table 2: Performance of the Random Forest classifier

Categories P/R 10-fold P1 P2 P3 P4 P5
P 0.98 0.63 0.70 0.94 0.98 0.98Purpose R 0.97 1.00 0.98 0.99 1.00 1.00
P 0.94 1.00 0.00 1.00 1.00 1.00Notice R 0.96 0.54 0.00 0.60 1.00 1.00
P 0.99 1.00 0.75 0.00Under

development R 0.99 0.33 0.30 0.00
P 0.84 1.00 0.00Style

& IDE R 0.91 1.00 0.00
P 1.00 1.00 1.00 1.00 1.00 1.00Metadata R 1.00 0.95 0.73 0.50 1.00 1.00
P 1.00 0.00Discarded R 1.00 0.00

and cross-project validation. While 10-fold confirms considerable
performance, cross-project validation suffers. This drop is due to
a well-known limitation of a supervised algorithm that does not
tolerate project-specific key terms.

Despite limitations, this classification method may still help the
development life cycle providing an overview of the code quality.

4 THREATS TO VALIDITY AND CONCLUSION
Aware of limitations of our dataset (low number of apps and files)
and the taxonomy validity (new categories may emerge) we plan
to extend this study by considering a higher number of projects
besides a revisited taxonomy validation. Additionally, we plan to
overcome the limitation of the cross-project train/test model by
creating a representative dataset of mobile apps comments. This
dataset may be used to pre-filter code comments and improve the
performance of self-admitted technical debt methods.

With our preliminary study, we observed that in both desktop
and mobile projects code comments contain valuable information
for supporting software development. However, mobile apps de-
velopers tend to use code comments for a different purpose. For
example, the high percentage of Commented Code category may
represent a bad practice, such as with negative consequence on
readability and maintainability. Finally, we observed a limitation of
supervised classifiers when applied to cross-project validation.

REFERENCES
[1] Alberto Bacchelli, Tommaso dal Sasso, Marco D’Ambros, and Michele Lanza.

2012. Content Classification of Development Emails. In ICSE.
[2] Manuel J Barranco Garcia and Juan Carlos Granja-Alvarez. 1996. Maintainability

as a key factor in maintenance productivity: a case study. In ICSM.
[3] Carl S. Hartzman and Charles F. Austin. 1993. Maintenance Productivity: Obser-

vations Based on an Experience in a Large System Environment. (1993).
[4] Zhen Ming Jiang and Ahmed E. Hassan. 2006. Examining the Evolution of Code

Comments in PostgreSQL. In Workshop on Mining Software Repositories.
[5] Yan Liang, Ying Liu, Chun Kit Kwong, and Wing Bun Lee. 2012. Learning the

“Whys”: Discovering design rationale using text mining-An algorithm perspective.
Computer-Aided Design (2012).

[6] Paul Oman and Jack Hagemeister. 1992. Metrics for assessing a software system’s
maintainability. In Software Maintenance.

[7] Luca Pascarella. 2018. Appendix. (2018). https://ndownloader.figshare.com/files/
10838253.

[8] Luca Pascarella and Alberto Bacchelli. 2017. Classifying code comments in Java
open-source software systems. In Mining Software Repositories (MSR).

[9] L. Pascarella, A. Ram, A. Nadeem, D. Bisesser, N. Knyazev, and A. Bacchelli. 2018.
Investigating Type Declaration Mismatches in Python. MaLTeSQuE (2018).

[10] Jef Raskin. 2005. Comments are more important than code. Queue (2005).
[11] D. Zhang and B. Adipat. 2005. Challenges, methodologies, and issues in the

usability testing of mobile apps. Journal of human-computer interaction (2005).

Luca Pascarella – Classifying code comments in Java Mobile Applications SERG

2 TUD-SERG-2018-010

TUD-SERG-2018-010
ISSN 1872-5392 SERG

