
Stability of Graph Neural Network with respect to different types of topological
perturbations

Alex Brown1

Supervisor(s): Elvin Isufi, Mohammad Sabbaqi, Moasheng Yang

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Alex Brown
Final project course: CSE3000 Research Project
Thesis committee: Elvin Isufi, Mohammad Sabbaqi, Moasheng Yang, Klaus Hildebrandt

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Graph Neural Networks are widely used as useful
tools to investigate graphs because they can learn
from the topological structure of graphs. In prac-
tical applications, the graph’s structure can change
over time, have errors or be subject to adversarial
attacks. These perturbations negatively impact the
accuracy of the neural network. The theoretical sta-
bility of graph neural networks has been analysed
already and in this paper, the stability of graph neu-
ral networks is investigated experimentally. The
performance of different perturbation strategies is
compared to see how different perturbations impact
stability.

1 Introduction
Graph data structures are widely used since they capture
non-euclidean relational data. Graphs are the de facto
standard in several fields like social networks, recommender
systems, and molecule classification [1]. Researchers have
developed graph neural networks (GNNs) that can operate
on graphs and have been shown to have immense predictive
power in a variety of learning tasks [2].

Conventional neural networks do not perform well on
graphs. Neural networks assume a fixed ordering of, and a
relation between, every input. To input a graph in the model
it needs to be embedded in a feature vector. To convert a
graph to a vector you can save the value at every node in an
order vector. Any ordering of the nodes results in a valid
embedding but the model will have a different output. In
neural networks, layers are fully connected or connected with
a convolutional filter. Both assume that a regular structure
and that nodes are connected according to a pattern. Graphs
do not have a regular structure, the edges connecting the
nodes are the structure and conventional neural networks
cannot model it. Additionally, graph-level tasks work on
graphs with an arbitrary size input which regular neural
networks cannot do [3].

To address these issues GNNs were developed. In this
paper, Graph Convolutional Networks (GCNs) are consid-
ered. A GCN is a cascade of layers, where every layer is
composed of a graph convolution with a polynomial filter
and a pointwise non-linearity [1] [2]. Graph convolution
with polynomial filters can be defined as x′ = x

∑d
i=0 wiL

i

where x is the input, L is the Laplacian representation of
the graph, d is the degree of the filter and w are the filter
coefficients [3]. Depending on the task the final layer can
consist of various other types of layers including a pooling
layer or a classifier. Variations have been made to this model
that do not use convolution but similar functions that do
maintain node-order equivariance [4] [5].

The experiments are performed with a Topology adaptive
graph convolutional network (TAGConv network). TAGConv
is a GNN model that aims to maximize the use of the irregular

structure of graph data. The convolution is approximated by
only considering the Kth nearest neighbours. The next layer
of the network is calculated with:

X ′ =

K∑
k=0

(D− 1
2AD− 1

2)kXW (k) (1)

where D is the degree matrix, A the adjacency matrix, X
the graph signal and W (k). TAGConv reaches a higher
accuracy compared to other methods that approximate the
graph convolution with significantly less computing power.

Research into GNN design is still very relevant and
popular in the machine learning community. Yet the stability
of GNNs is still poorly understood. In practical applications,
there will always be some inaccuracies in the graph structure.
This can be caused by the data changing after the model
has been trained, the graph can be based on a measurement
with errors, or the graph can be manipulated by adversarial
attacks. All of these cases result in a graph topology that is
different from the one that the graph was trained on. These
errors are called perturbations and negatively impact the
accuracy of the model.

There have been key papers investigating the theoretical
stability bounds of GNNs and graph filters. Kenlay et al.
researched the stability bounds of linear graph filters and the
tightness of these bounds in [6]. In [2] the theoretical bounds
of GNNs are proven and the implications for GNN design
are discussed. In the paper by Xu et al. a method is proposed
to train a model in such a way that it is more robust to
adversarial attacks [7]. Our contribution is to experimentally
investigate the tightness of the stability bounds with respect
to different types of perturbation strategies. In [6] the
bound is based on the matrix norm of the perturbation. The
goal is to compare the impact on the stability of different
perturbation strategies and check whether there are special
cases where perturbations have more impact on the stability
than would be expected based on the matrix norm.

In section 2, we explain the approach and the theoretical
basis of the experiments. Then the experimental set-up is
fully described in section 3. The results of the experiments
are shown in section 4. In section 5, the ethical aspects of the
research are discussed. Finally, the impact of the results and
recommendations for future research are discussed in section
6.

2 Approach
To test the stability, the performance of the unperturbed and
perturbed graphs is compared on the Cora dataset [8]. This
dataset is used for node classification and the dataset is split
into a train, validation, and test set. Broadly, the approach to
testing the stability is as follows. Firstly, the GNN is trained
on the original dataset. Secondly, the dataset is perturbed
with various strategies. Finally, the GNN predicts the test set
of both the unperturbed and perturbed graphs.

1

Stability can not be measured directly and so we use met-
rics from which we can make conclusion about the stability.
The main metrics used in this study to evaluate the perfor-
mance are the accuracy, the relative euclidian distance of the
unperturbed and perturbed graphs, and the relative distance
normalised by the norm of the error matrix. The accuracy is
defined as

acc = (ŷ − ȳ)/len(y) (2)
where ŷ is the predicted classes and ȳ. The relative difference
is given by

err = ||y − yp||/||y|| (3)
where y is the output of the GNN and yp is the output of the
GNN with the perturbed graph. The error matrix is defined as
the absolute difference between the matrix representation of
the two graphs

E = |S− Sp| (4)
where S is the matrix representation of the graph. For GNNs,
the stability is bounded by:

||g(S)− g(Sp)|| ≤ ∆LFL−1ϵ+O(ϵ2) (5)

where g(S) is the output of the GNN on the data S, ϵ is some
constant for which ϵ ≥ ||E||, L is the number of layers in
the model, F is the number of features, and ∆ is the stabil-
ity constant of the graph. [2]. The stability is approximated
experimentally by

C ≥ ||g(S)− g(Sp)||/||E|| (6)

with C = ∆LFL−1. By dividing the relative distance by
the norm of the error matrix we can compare the impact of
different strategies even if some have larger perturbations.

There are a limited number of perturbation operations that
can be applied to graphs. Firstly, edge weight perturbation
where the weight of an edge is changed. Secondly, adding
or deleting an edge which technically is a special case of
the edge weight perturbation where the weight is set to zero
or non-zero. Finally, Adding or removing a node from the
graph. In this paper, we focus on edge addition and removal.

These operations can be applied in many different ways
to varying effects; the goal is to compare different strategies
of perturbations. Now we define the strategies for applying
these operations.

• Add Random, which randomly selects edges to add to
the graph.

• Delete Random, which randomly removes edges.
• Add-Delete Random which uses half of its budget to add

edges and half to remove edges.
• Rewire, which randomly deletes two edges and then

connects the previously disconnected nodes with two
new edges. This operation keeps the degree, the amount
of edges the node is connected to, of all the nodes intact
while changing the topology.

• Remove Node, which selects a node and removes all of
the edges connected to it. This does keep the node in the
graph and the accuracy of that node will be very low.

• Robust, which considers all possible additions and dele-
tions in the graph and adds or deletes the edges which
would result in the lowest spectral norm of the error ma-
trix ||E||2. This should result in a very small impact on
the stability.

For the Add and Delete random strategies, we have also
investigated the degree of the nodes where edges are added
or removed. The hypothesis is that adding or removing edges
adjacent to nodes with a high degree has less impact on the
stability as is the case in linear filters [6]. The contribution
of one edge to the new embedding of the node is inversely
proportional to the amount of connected edges. Nodes with
a lower degree are thus more impacted by the addition or re-
moval of an edge.

3 Methods
3.1 GNN model
The GNN architecture consists of three TAGConv layers, as
implemented in Pytorch geometrics. The non-linearity used
is the hyperbolic tangent. The layers have 32, 16, and 8 nodes
respectively. The learning rate is 0.01, the weight decay is
0.0005. The model was trained using a cross-entropy loss
function and with 25 epochs.

The experiment is done on the Cora dataset [8]. The
dataset contains 2708 nodes and 5278 undirected edges. The
model will perform node classification on this dataset. The
data is stored as a PyTorch tensor with two lists. Every edge
is represented as an integer in both lists. The first indicates
which node the edge is coming from and the second is the
index of the second node. Since the graph is undirected every
edge is saved twice with one in the opposite direction.

For the first experiment, the graph is perturbed with an in-
tensity of 20 and all the strategies are compared with each
other. The effect of the degree on the stability is determined
by plotting the degree of affected nodes and the relative dis-
tance. This is done for the Add Random and Delete Random
strategies at an intensity of 1 and 100. Lastly, the effect of
perturbation intensity is explored by analysing stability with
varying perturbation intensities.

3.2 Perturbation algorithms
Add Random
The add random strategy selects two random numbers be-
tween zero and the number of nodes and checks if an edge
exists between them. If not, it adds an edge and increases a
counter. When this counter equals the budget assigned to the
perturbation, the algorithm returns the new graph and termi-
nates.

Delete Random
The delete random strategy selects a number between zero
and the number of edges and then adds that edge to a mask.
The algorithm then applies the mask to the edge index and
returns the new graph without the selected edges.

2

Add Delete Random
Add delete random assigns half of its budget to adding edges
randomly and half to deleting edges. This is done using the al-
gorithms described above. None of the edges that were added
by this algorithm can be removed again or vice versa.

Rewire
This strategy randomly selects two edges that do not share
any nodes. These two edges are then deleted and two new
edges are made that connect two previously disconnected
nodes.

Remove Node
This strategy randomly selects a node and finds all of the
edges that are connected to it. All of these edges are then
removed from the edge index. This operation still leaves the
selected node in the graph with no connected edges.

Robust
The robust strategy adds or deletes the edge that minimises
the norm of the error matrix. Each iteration consists of choos-
ing an edge to perturb, calculating the norm of the error ma-
trix, comparing the norm with the previous minimum and sav-
ing the edge with a minimal norm. Ideally, this algorithm
considers every edge in the graph and so is deterministic. We
have used a deterministic version that considers x edges of
which half are guaranteed to delete the edge to ensure that
some edges considered are deletions since the graph is sparse.

3.3 Evaluation
After the graph has been perturbed, the model’s performance
can be assessed with multiple metrics. By inputting the
unperturbed and perturbed graph into the model we get two
lists of feature vectors detailing the probability that a certain
node is a certain class. By comparing these two lists we
can quantify the system’s stability. Firstly, the accuracy is
calculated by selecting the maximum value of each feature
vector as the assigned class at that node and comparing it
with the ground truth. The average score for the training,
validation and test data is calculated.

Secondly, the relative distance of the output vectors is
calculated. The second norm of the difference between the
perturbed and unperturbed output is divided by the norm of
the unperturbed data. This results in one scalar indicating the
effect on the stability.

Lastly, dividing the norm of the difference of feature vec-
tors by the matrix norm of the error matrix results in a lower
bound for the stability bound of the system. The error matrix
is obtained by calculating the difference between the Lapla-
cian of the perturbed and unperturbed graphs.

4 Results
First, the experiments are performed with the same pertur-
bation intensity for every strategy to compare the accuracy,
relative distance and normalised relative distance. The results
can be seen in fig: 14, 2, and 3

Figure 1: Accuracy of different strategies

Figure 2: Relative distance of different strategies

Figure 3: Stability bounds of the different strategies

Some of the perturbations can be seen to increase the
stability. This is consistent with the literature where adding
perturbations is used to improve the generalizability of
models [9]. The improvement depends on the training of the
model and the intensity of perturbations.

The accuracy and the relative distance have an inverse
relation. The relative distance is a measure of how much

3

the perturbed output differs from the original. It does not
indicate if the perturbed output is closer to or further away
from the ground truth. There is a correlation between the
mean relative distance and the accuracy. The error has less
variation than the accuracy and there is a larger difference
between the strategies.

Adding an edge is more detrimental to the stability than
removing one. In this experiment, the edges are added
randomly without domain knowledge. If the edge connects
two completely unrelated nodes the model will extract
information from the adjacent node. Deleting an edge means
that there is less information to learn from but not any false
information. Our conclusion is that this is not a general rule
and to generalise the results, one needs to investigate more
datasets and models. Depending on the domain and the
nature of the perturbations the impact of an edge addition or
removal can significantly vary.

The Add Delete Random and the Rewire strategies have
the largest variation in both accuracy and relative distance.
The budget for all operations is the same but per strategy,
the size of the operations varies. In the Add Delete Random
strategy, one operation adds and deletes one edge and the
Rewire strategy adds and deletes two. Both strategies are
special cases of the Add and Delete operations and the mean
accuracy is similar.

From fig 3 it is clear that the Delete Random and the
Remove Node strategies perform the best when normalised
with the error norm of the matrix. The matrix norm of the
error is very large for Remove Node. The other strategies
perform similarly with an average C of 2.5 to 3.

For the second experiment, we compare the stability of
different strategies over various perturbation intensities.
Only the Add Random strategy is displayed in fig 4 and 5
and Delete Random can be found in the Appendix. All of
the other strategies display similar behaviour. The stability is
approximately linear with the perturbation intensity. This is
in line with the theory since the stability bound is linear with
the norm of the error [2]. The accuracy, relative distance,
error norm and stability bounds all grow linearly with the
intensity.

Finally, the relation between the degree of affected nodes
and stability. For this experiment, we consider the Add
Random and Delete Random strategies with an intensity of
one edge. We only consider the primitive operations of Add
Random and Delete Random here. In fig 6 and 7 the relative
distance is plotted over the average degree of the affected
nodes before perturbing.

When adding one edge there is a significant correlation
between the relative distance and the degree of the nodes.
Nodes with a lower degree have a much larger impact on the
stability on average. But when multiple edges are perturbed
this correlation disappears as can be seen in fig 8 and 9. Here
100 edges were perturbed at a time and the distribution seems

Figure 4: Accuracy over intensity with Add Random

Figure 5: Relative distance over intensity with Add Random

Figure 6: Relative distance of Add random with one edge addition

much more like a normal distribution. The Delete Random
strategy does have a lower error than the Add Random and
a higher average degree. This is a possible explanation for
Delete Random outperforming the Add Random strategy.

4

Figure 7: Relative distance of Delete random with one edge deletion

Figure 8: Relative distance of Add random with 100 edge additions

Since we only consider one edge removal the other
strategies will perform the same but will just collect data
with a different distribution. The results are shown in 6
and 7. There is a relation between the degree and the
stability. Nodes with a lower degree have a significantly
higher relative distance. There is not a lot of data for
nodes with higher degrees but all of these edges have a
very low relative distance. This means that GNNs also are
more stable to perturbations around nodes with a high degree.

5 Responsible Research
All of the code used while researching this project can
be found in the project repository1. The code contains
sufficient documentation for others to reproduce and expand

1The project repository can be found at
https://github.com/arg3t/TUDelft CSE3000.

Figure 9: Relative distance of Delete random with 100 edge dele-
tions

upon this research. The dataset is well-known in the graph
machine-learning community and has been used in several
papers. The existence of hidden bias in the dataset is not
expected.

All the experiments are repeated multiple times to gain
more confidence in the results. In the visualisations, the
outliers are not depicted for clarity but are incorporated in
the mean and median.

We investigated the behaviour of GNNs when pertur-
bations are introduced with the goal of improving the
performance of GNNs ultimately. This research would also
aid malicious actors trying to attack the model. By inten-
tionally supplying fabricated data the model is negatively
influenced. This is done to destabilise the model or make the
model not detect malicious inputs.

Understanding how different types of topological perturba-
tions affect stability will inform the design of adversarial at-
tacks and more importantly the design of adversarial defence.
Adversarial defence is the field concerned with researching
ways to build models resistant to adversarial attacks. Accord-
ing to the CUDOS principle, all research results are public
property and should be published as soon as possible. We be-
lieve that GNNs can be made safer and more trustworthy by
making these results public since researchers can create more
robust models.

6 Conclusion
In this paper, we have investigated the impact of different
topological perturbations on the impact of Graph Neural
Networks. To do this a model was trained on the Cora dataset
and then the data was perturbed with various strategies. The
model’s performance on the perturbed data was measured
using the accuracy, the relative distance of the perturbed
and unperturbed output, and the relative distance normalised

5

by the norm of the error. Additionally, the influence of the
perturbation intensity and the degree of affected nodes was
investigated.

Our main results are as follows: The stability is very
dependent on the degree of adjacent nodes. Deleting edges
is often less impactful than adding new edges since nodes
adjacent to existing edges, on average, have a higher degree.
The relation between the intensity of the perturbations is lin-
ear; GNNs are very resistant to large amount of perturbations.

The results in this paper lead to a better understanding of
the behaviour of GNNs and their weaknesses. In situations
where the behaviour of perturbations is known beforehand
the performance of GNNs can be more predictable. Espe-
cially in the field of adversarial defence knowledge of the
stability is essential.

For further research into this topic we recommend con-
sidering more strategies and graphs. Specifically, situations
that are more likely to occur in real world applications. In
the case of adversarial attacks the perturbations would try to
maximise the error and in some context the graph might only
grow and add new edges.

References
[1] F. Gama, E. Isufi, G. Leus, and A. Ribeiro,

“Graphs, convolutions, and neural networks,” CoRR,
vol. abs/2003.03777, 2020.

[2] F. Gama, J. Bruna, and A. Ribeiro, “Stability properties
of graph neural networks,” IEEE Transactions on Signal
Processing, vol. 68, p. 5680–5695, 2020.

[3] A. Daigavane, B. Ravindran, and G. Aggarwal, “Under-
standing convolutions on graphs,” Distill, vol. 6, Aug
2021.

[4] P. Veličković, G. Cucurull, A. Casanova, A. Romero,
P. Liò, and Y. Bengio, “Graph attention networks,” 2018.

[5] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive
representation learning on large graphs,” 2018.

[6] H. Kenlay, D. Thanou, and X. Dong, “Interpretable
stability bounds for spectral graph filters,” CoRR,
vol. abs/2102.09587, 2021.

[7] K. Xu, H. Chen, S. Liu, P.-Y. Chen, T.-W. Weng,
M. Hong, and X. Lin, “Topology attack and defense for
graph neural networks: An optimization perspective,”
2019.

[8] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revis-
iting semi-supervised learning with graph embeddings,”
CoRR, vol. abs/1603.08861, 2016.

[9] X. Liu, Y. Zhang, M. Wu, M. Yan, K. He, W. Yan, S. Pan,
X. Ye, and D. Fan, “Revisiting edge perturbation for
graph neural network in graph data augmentation and at-
tack,” 2024.

7 Appendix: Additional Plots

Figure 10: Norm of the error for different strategies

Figure 11: Stability bound with varying amount of perturbations

Figure 12: Accuracy of Delete Random with varying amount of per-
turbations

6

Figure 13: Relative distance of Delete Random with varying amount
of perturbations

Figure 14: Stability bound of Delete Random with varying amount
of perturbations

7

	Introduction
	Approach
	Methods
	GNN model
	Perturbation algorithms
	Add Random
	Delete Random
	Add Delete Random
	Rewire
	Remove Node
	Robust

	Evaluation

	Results
	Responsible Research
	Conclusion
	Appendix: Additional Plots

