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An Artificial Stream Network and Its 

Application on Exploring the Effect of DEM 

Resolution on Hydrological Parameters 

Haicheng Liu 

Abstract   Digital elevation models (DEM) are widely used in various distributed 

hydrological models. The stream network can be extracted from it so that runoff 

routing can be calculated. With the advent of remote sensing and computing tech-

nologies, the computation based on DEM with high resolution becomes possible. 

However, there still exist regions with poor resolution, particularly in developing 

countries. Previous work only conducted comparisons between results by imple-

menting hydrological models for specific basins in the real world and resolutions 

are only assigned to several fixed values, such as 30 m, 90 m. So, the results de-

rived are thus not in a general sense. To roughly understand how DEM resolution 

influence the hydrologic response, in this paper, first an artificial stream network 

of which the principle is originated from fractal theory is constructed. Then by 

implementing calculation on such artificial networks in an iterative way and per-

forming aggregation, the influence of DEM resolution on several hydrological pa-

rameters, namely, the number of basins, drainage density of all basins,  total 

stream length, average stream slope and average topographic index used to assess 

the spatial distribution of soil saturation of the largest basin can thus be acquired. 

It is found that DEMs of low resolution would reduce drainage density, total 

stream length and average stream slope, but increase topographic index. But the 

effect is insignificant regarding the number of basins. In the end, the results of 

simulation as well as the quality of the fractal terrain are validated by referencing 

field data. 

Keywords: Fractal terrain; DEM; Stream network; Hydrological parameter 

1 Introduction 

DEM as a common approach to express the topographic information is used as the 

basis for many fields and applications, for example (Li et al. 2004): determination 

of hydrological terrain parameters, highway and railway design, orthoimage gen-
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eration, wind models for environmental study and so on. Widely used distributed 

hydrological models like TOPMODEL (Beven and Kirkby 1979) , SWAT (Arnold 

et al. 1994) and DHSVM (Wigmosta et al. 1994) are all based on DEMs to calcu-

late stream flow. The effect of DEM resolution on these hydrological models or 

hydrological parameters have been the focus of many researchers in the past sev-

eral decades. For example, Wolock and Price (1994) found that degradation the 

spatial resolution of the topographic data resulted in higher minimum, mean, vari-

ance, and skew values of the TOPMODEL topographic index distribution. Wei et 

al. (2004) indicated that the decrease of DEM resolution would result in the in-

crease of total stream length and the reduction of average slope of stream flow 

from a perspective of topographic entropy. Furthermore, this might cause the re-

duction of both simulated flood peaks and hydrological response time. Similarly, 

by implementing DHSVM, Kenward et al. (2000) also observed a lower predicted 

peaks and additionally higher base flow for DEMs of lower resolutions. However, 

all these works including more recent ones (Sørensen and Seibert 2007; Yang et 

al. 2014; Jain and Sahoo 2017) share the same methodology, that is, demonstrat-

ing the law using data in the real world since it is impossible to collect data of all 

basins throughout the world to prove the discovery. In other words, whether those 

results can be applied to other watershed is still under suspicion. The aim of this 

paper is to propose a new approach in a generic sense to resolve how the resolu-

tion affects hydrological parameters extracted from the DEM. To do so, the simu-

lation on terrains is implemented using principles from fractal theory. 

    Basically, fractal terrain is originated from Mandelbrot and Pignoni (1983) who 

came up with fractals could be used as a basis for simulating natural scenes and 

phenomena. Since then, different algorithms (Saupe 1988) for generating fractal 

terrains have been proposed and implemented mainly in the field of computer 

graphics.  The quality of fractal terrains is judged by their visual analogy to reali-

ty. It is true that self-similarity is the core of the fractal terrain, but in order to as-

sign it more physical meaning, Kelley, Malin and Nielson (1988) first proposed a 

method in which a stream network was first generated using empirical erosion 

models and then the terrain was developed according to the channel network. 

Musgrave et al. (1989) adopted physically based models of hydraulic and thermal 

erosion and sediment movement to simulate the erosion caused by water flow to 

modify the fractal terrain. Later Stachniak and Stuerzlinger (2005) employed a 

stochastic local search to identify a sequence of local modifications. This method 

deformed the fractal terrain to conform to a set of specified constraints. And it 

served as a general solution to the modification of a fractal terrain. All these ap-

proaches make the fractal terrain realistic in terms of physics. 

    This paper first introduces the generation of a realistic fractal terrain where em-

pirical statistic recognitions of the stream network is implemented as a filter to se-

lect raw fractal terrains. Then, the qualified terrain is used as a platform to derive 

some commonly referenced hydrological parameters. This is then followed by the 

discussion about the effect of resolution of DEM on these parameters by adopting 

aggregation on the digital terrains. Finally, the comparison between results from 

field data and experiments on virtual channel networks is performed. 
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2 Artificial Stream Network 

The artificial stream network is extracted from a DEM using the D8 algorithm 

(Tarboton et al. 1991) which assumes the flow direction of one cell can only be 

one of its eight neighbours. So the DEM, i.e. fractal terrain has to be firstly gener-

ated. Here, the diamond-square algorithm which is originated from two-

dimensional approximations to fractional Brownian Motion (Fournier et al. 1982) 

is adopted. The procedure of this algorithm is demonstrated in Fig. 1. 

 
       a                 b                          c                         d                          e 

Fig. 1 Generation of a fractal terrain using the diamond-square method                                                           

    In Fig. 1a, first we choose a common elevation value for four points at the cor-

ners on the boundary of the square. But it is also possible to assign  random num-

bers from a normal distribution to the four points. Then, by averaging the eleva-

tions of the four points and adding a random number extracted from a normal 

distribution of which the mean value equals to 0 and standard deviation is a figure 

which can represent the range of elevation for a certain area, we can get the eleva-

tion for the central black point in Fig. 1b. For example, if the minimum height of a 

particular area is 20 m, and the highest point is of 160 m, then it is better to set the 

standard deviation to 35 m which stands for σ for the normal distribution. The 

same principle goes for black points in Fig. 1c, but this time the mean is derived 

from the combination of two points at corners with the central point. After this, the 

whole square is divided into 4 patches and each of them falls into a similar situa-

tion of Fig. 1a. However, when calculating the value for a special black point in 

Fig. 1d, another normal distribution with a different standard deviation from the 

one used in Fig. 1b is employed and the relationship between them is expressed as 

Eq. 1. The mean value for the normal distribution remains unchanged, i.e. 0. 

 

σ𝑛 =
σ𝑛−1
2𝑟

 

 (1)  

    Where σ is the standard deviation for the normal distribution, n represent the it-

erative times, and r is basically a factor describing the roughness of the virtual ter-

rain and actually it determines the fractal dimension of the terrain. It ranges from 0 

to positive infinity. Visualizations for some specific r values are provided in Fig. 

2. As can be seen from the figure, the terrain generated by a higher roughness pa-

rameter tends to be more flat. The reason for modification of standard deviation is 

to guarantee the self-similar principle, which means by zooming into a specific 
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segment of the whole terrain, the sub-terrain presents a similar pattern as the 

whole terrain. 

    By implementing such a procedure in an iterative way,  an elevation dataset can 

be generated in any dimension required. Of course, horizontal coordinates will be 

later assigned to form a DEM.  

                          

    

 

 
 

 

a                                          b                                           c 

Fig. 2 Fractal terrains with different roughness values, ra=0.5, rb=1.0, rc=2.0 

    As mentioned earlier, terrains produced this way have weak physical meaning. 

For example, the number of streams in the first strahler order (Strahler 1957) de-

rived from such a terrain may be equal to that in the second order, which contra-

dicts the fact in the nature. Consequently, either modifications to the generation of 

the fractal terrain should be implemented, such as embedding an erosion model, or 

some validations should take place to filter the raw fractal terrains to fulfil physi-

cal laws. Here, the second option is adopted, and basically these criteria are origi-

nated from the statistical knowledge of stream networks though field surveys 

(Shreve 1966; Smart 1968). They are: 

1. The coefficient of variation of drainage densities for different basins derived 

from the DEM should be no more than 0.5. 

2. The average bifurcation ratio of the stream network of the largest basin should 

be between 2.5 and 5. 

3. The average stream length ratio for the largest basin can only range from 1 to 3. 

4. The average slope of all first order streams should be larger than that of the 

maximum order streams in the largest basin.    

    So the procedure to generate an artificial stream network is as follows, 

1. Generate a raw DEM dataset with a specific roughness parameter using the di-

amond-square algorithm. 

2. Extract the statistics of stream networks such as the average bifurcation ratio 

from the raw DEM. 

3. Judge whether the raw DEM follows all the constraints, and if so, enter the next 

step. Otherwise, return to the first step. 

4. Implement the D8 algorithm on the DEM to derive the stream network. 

5. Iterate the whole process until a large number of qualified DEMs are produced 

for experiments. 
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3 Effect of DEM Resolution 

The initial DEM which is acquired by the diamond-square algorithm is assigned 

10m as the resolution. By aggregating the DEM, we can get coarse versions. In 

addition, as has been explained earlier, the roughness parameter plays a crucial 

role on the shape of the fractal terrain, so 0.6, 0.8, 1.0 and 1.2 are adopted respec-

tively. Five hydrologic parameters explored are the number of basins of the ter-

rain, drainage density of the terrain, total stream length of the largest basin, aver-

age stream slope of the largest basin and average topographic index (Beven and 

Kirkby, 1979) of the largest basin. The specific procedure for the experiment is 

provided below, 

1. Set the initial value of the elevation for the four corner points to 100 and the 

primary standard deviation to 50. Then 0.6 is chosen as the roughness parame-

ter to generate the fractal terrain in an iterative way for 9 times. The result is an 

array of the elevation in the size of 513 x 513. This is then followed by the con-

straints validation. If the constraints are violated, then redo this step, otherwise 

aggregate the dataset into smaller scales, i.e. 30 m, 60 m, 90 m and enter the 

next step.  

2. Derive the stream network from all the DEMs, and then extract the 5 hydrolog-

ical parameters. 

3. Repeat step 1 and 2 1,000 times (Table 1) in order to retrieve the statistical in-

formation of the 5 parameters for each resolution, i.e. the distribution of their 

values. 

4. Alter the roughness parameter, repeat step 1 to 3. And after this step, statistics 

of five hydrological parameters in four terrain shapes can be derived.   

Table 1 Statistics of  experiments on fractal terrains 

Roughness Total fractal terrain Qualified fractal terrain Success rate 

0.6 1,000 507 50.7% 

0.8 1,000 484 48.4% 

1.0 1,000 407 40.7% 

1.2 1,000 262 26.2% 

    Basically, for each parameter, Probability Density Function (PDF) is derived by 

fitting the data using a specific type of distribution. PDF here is to generalize the 

quantitative findings, e.g. the mode and deviation, which makes analysis conven-

iently later. Fig. 3 demonstrates this. 1.0 is taken as the roughness while 10 m is 

assigned to the resolution. Since the fractal terrain is generated in random totally, 

so the first two parameters, i.e. the number of basins and drainage density fit the 

normal distribution well which is later adopted as the distribution type for these 
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two parameters. However, when it comes to the last three parameters, the target is 

changed to the basin with the largest area, which means in order to access the val-

ues of these parameters, first the largest basin in the original DEM has to be se-

lected and therefore the whole procedure is concerned with the extreme distribu-

tion. In Fig. 3c-e, on the one hand, normal distribution is adopted to fit the 

histogram, on the other hand, Gumbel distribution which belongs to extreme dis-

tribution is tried. Figures clearly show that Gumbel distribution leads to better fit-

ting results. Therefore, it is utilized to analyse the last three parameters. 

                             a                                              b                                                                                                  

                             c                   d 

 

 

 

 

 

 

    

    

     
 

e 

Fig. 3 Determination of probabilistic distributions of five parameters 
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3.1 The Number of Basins 

In Fig. 4, the gaps between the 10 m DEM and the other aggregated DEMs are not 

large, and the original DEM produces the least basins in general. Actually, in the 

experiments, there are also results which indicated that aggregation decreased the 

number of basins. 

 
  a r=0.6                    b r=0.8 

 
 

           c r=1.0                d r=1.2 

Fig. 4 PDFs for the number of basins where r represents the roughness parameter     

    Additionally, figures also present that the mean value of the number of basins is 

around 14 and such a large number indicates that the artificial stream network can 

only be suitable for simulating the head area of rivers where trivial streams are in 

a large quantity. So the regions of the field data selected later to check the stability 

of the experiments are also located at source-basin areas of rivers.  

3.2 Drainage Density 

Drainage density is one of most representative parameters to describe a basin. 

Former studies have shown that several morphological processes have great corre-

lation with drainage density, such as streamflow (Carlston 1963), sediment yield 

(Hadley and Schumm 1961), flood (Pallard et al. 2009), etc. It is the sum of chan-
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nel lengths divided by basin area. Horton (1945) indicated that the drainage densi-

ty tended to be a constant for all basins within a same region because of the com-

mon environment. 

      
         a r=0.6                b r=0.8 

 

       c r=1.0             d r=1.2 

Fig. 5 PDFs for drainage density 

    Fig. 5 Shows that the drainage density of the source DEM can be 1.5 times 

larger than that of the most coarse DEM. The direct cause can be attributed to the 

decrease of the total stream length after aggregation since the area is nearly the 

same for all the DEMs. As can be seen in Fig. 6, for the 90 m DEM, some tributar-

ies disappear, which makes the total stream length decline. A further influence on 

hydrological response can also be deduced. Basically, runoff process is divided in-

to two parts of which one takes place on the slope, and the other occurs in the 

channel. It is the fact that the water velocity is higher in the channel than on the 

slope. Thus a high drainage density implies that the flood can be formed in a short 

time. On the other hand, less water infiltrates into soil on the slope, which can in-

crease the volume of flood. Pallard et al. (2009) also indicate some indirect effects 

of the drainage density on flood. For instance, drainage density can be regarded as 

an index of vegetation cover in semiarid areas where bare soil is much likely to be 

eroded, which results in high drainage density and high runoff production. This 

further implies large flood peaks and volume.     

    Another interesting point is that the flatter the terrain is, the weaker the effect of 

DEM resolution presents. When the roughness parameter is equal to 1.2, the gap 

between the aggregated DEMs and the original DEM becomes narrow. This is be-
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cause the average effect of aggregation is not that strong for plane compared with 

mountain areas where local elevation change can be very serious, hence aggrega-

tion significantly affects the basic shape of a stream. 

3.3 Total Stream Length of the Largest Basin 

Although the effect of DEM resolution on stream networks can be demonstrated in 

a rectangle place, the widely adopted hydrological research unit is still the basins 

which is the basic unit for the analysis of hydrological responses.  

    Analogous to drainage density, with the increase of roughness of the terrain, 

variations between the original DEM and three coarse DEMs decline. Coarse 

DEMs have smaller total steam lengths because some tributaries are lost during 

aggregation (Fig. 6).  

 Fig. 6 Stream network for 

the original DEM represent-

ed by thin lines, and the 90 m 

DEM represented by thick 

lines. Each colour refers to a 

distinctive stream order. For 

instance, yellow streams are 

all of the first order. The 

roughness parameter is 0.6 

 

 

 

 

 

 

 

 

 

3.4 Average Stream Slope of the Largest Basin 

In Fig. 7, on the whole, due to the averaging effect of the aggregation, the average 

stream slope of each coarse DEM is lower than that of the original DEM. More 

specifically, for the rugged terrain, i.e. r=0.6, the difference can be as large as 2 to 

3 times of the average stream slope derived from coarse DEMs. But when the 

roughness parameter goes up, the average stream slopes retrieved from different 
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DEMs present little gaps. This can be attributed to that in flat areas, the slope can 

keep a constant for a wide scope, so the aggregation does not influence the value 

of slope very much. While in mountain areas, the slope can vary severely in a nar-

row space and averaging elevation will definitely affect the average stream slope. 

 
              a r=0.6                    b r=0.8 

 
c r=1.0                        d r=1.2  

Fig. 7 PDFs for average stream slope of the largest basin 

The average stream slope is also correlated with hydrological process. Roughly 

speaking, the speed at which the water flows in the channel would decrease if the 

slope descended. We usually take the combination of the average stream slope and 

the total stream length to analyse composite effect on the hydrological process. So 

taking consideration of the conclusions from previous section, it can be deduced 

that the arrival of flood would delay and the flood volume would decline if the 

coarse DEM was adopted to perform related calculation. The focus here is only 

the effect caused by the change of stream network, but hydrological process is al-

ways concerned with several sub processes, like evapotranspiration, infiltration, 

etc. The analysis here is partial. More accurate results can be got by running a dis-

tributed hydrological model, such as DHSVM, which in turn complexes things 

since more elements are enrolled in the process. 
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3.5 Average Topographic Index of the Largest Basin 

Topographic index, also known as the wetness index is first introduced in 

TOPMODEL by Beven and Kirkby (1979) and it is used to assess the spatial dis-

tribution of soil saturation. A high value of the topographic index indicates the re-

gion has high potential to be saturated. It is defined as the logarithm of the ratio of 

the upslope area and the local slope for a certain pixel. The upslope area means all 

the area which contributes flow across a particular pixel. Topographic index is a 

crucial attribute for hydrological responses since soil moisture is closely related to 

runoff, soil moisture and the depth of ground water. 

 
   a r=0.6                                                       b r=0.8 

 
         c r=1.0              d r=1.2 

Fig. 8 PDFs for average topographic index of the largest basin 

As can be seen from Fig. 8, the average topographic index is mostly between 

4.5 and 5 for the most accurate DEM, while for the coarse DEMs,  the index rang-

es from 5.5 to 8.5. This is mainly due to the decrease of the average slope of the 

whole basin which can be roughly reflected by the average stream slope from last 

section. This is based on two assumptions. First, the basic shape of one basin re-

mains the same after aggregation. Second, the stream location in the coarse DEMs 

would not shift too much from the original DEM and this can be verified by Fig. 

6. Basically, the deviation of the slope of a pixel on the one hand, is caused by the 

change of flow direction, and on the other hand, it results from the change of rela-

tive elevation between the pixel and its target neighbour with respect to the flow 

direction. These two assumptions imply that the flow directions inside the basin 
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stay the same as the original DEM. So the change of the average stream slope is 

mainly attributed to the averaging effect of the aggregation which works the same 

for all pixels inside the basin. 

    Large gaps between topographic indexes derived from DEMs of different reso-

lution indicate the DEM resolution has profound impact on the calculation of the 

volume of stream flow by TOPMODEL. In fact, the average topographic index 

cannot represent the spatial distribution of soil saturation which may differ from 

pixel to pixel, instead it can only provide a sense of the overall saturation. 

        

4 Validation Against Field Data 

4.1 Data Description 

The field DEM data all comes from the National Elevation Dataset (NED) of the 

USA. The NED is a seamless mosaic of best-available elevation data drawn from 

a variety of sources. While much of the NED is derived from USGS Digital Eleva-

tion Models (DEM’s) in the 7.5-minute series, increasingly large areas are being 

obtained from active remote sensing technologies, such as LIDAR and IFSAR, 

and also by digital photogrammetric processes. NED is available in spatial resolu-

tions of 1 arc-second (roughly 30 m), 1/3 arc-second (roughly 10 m), and 1/9 arc-

second (roughly 3 m). And the dataset is updated on a two months cycle. 

    The accuracy of the NED varies spatially because of the variable quality of data 

sources. An overall vertical accuracy is acquired by comparing it with the geodetic 

control points that the National Geodetic Survey (NGS) uses for gravity and geoid 

modeling (Smith and Roman 2001; National Geodetic Survey 2003) (Table 2) 

 

Table 2 Error statistics (in meters) of the NED vs. 13,305 reference geodetic control points 

(Gesch 2007) 

Minimum Maximum Mean Standard deviation RMSE 

-42.64 18.74 -0.32 2.42 2.44 

 
    The three locations (Table 3) chosen for validation are all source-basin areas of 

rivers (The reason has been given in Sect. 3.1) and they are square patches from 

Tennessee, California and Idaho respectively. The resolutions of DEM datasets of 

these three regions are all 10 m, i.e.  1/3 arc-second and they are all selected at the 

same area level with our experiments.  
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Table 3 Primary metadata of field DEM datasets 

Region Location Resolution 

(m) 

Minimum 

value 

Maximum 

value 

Rows Columns Area(km2) 

Ten-

nessee 

 -84.0795,35.3331: -

84.0207,35.3880 

10 678 1,440 593 635 37.66 

Cali-

fornia 

 -122.9656,40.3960: 

-122.9069,40.4506 

10 687 1,455 590 635 37.47 

Idaho -115.4908,43.8068: -

115.4298,43.8658 

10 1,337 2,104 638 659 42.04 

4.2 Analysis 

DEM aggregation and deviation of hydrological parameters are performed from 

the field data. The procedure is basically repeating the simulation experiment and 

all the results are listed in Table 4. The column mean from experiment is the aver-

age value of the four means with respect to different roughness parameters and the 

column of standard deviation is analogous. However, more accurate way for their 

calculation is for each of the field datasets, first trying to determine the corre-

sponding fractal dimension using methods (Brivio and Marini, 1993) like box 

counting, variance analysis, etc. And then construct the fractal terrain of the same 

scale to derive PDFs. Also, for a same dataset, these methods may return different 

fractal dimension values (Brivio and Marini, 1993) which still need to be selected 

and thus they are not adopted here. 

Table 4 Values of hydrological parameters derived from field data and simulation 

Hydrological 

parameter 

Resolution 

(m) 

Tennessee California Idaho Mean from 

experiments 

Standard deviation 

from experiments 

Number of ba-

sins 

10 16 15 14 13.760 2.903 

30 16 14 13 14.153 2.927 

60 16 14 13 14.405 2.867 

90 17 13 14 14.588 2.675 

Dainage 

density 

(*10-3m/m2) 

10 1.505 1.310 1.332 1.956 0.166 

30 1.470 1.291 1.331 1.692 0.143 

60 1.441 1.315 1.294 1.590 0.148 

90 1.407 1.312 1.338 1.557 0.149 
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Total stream 

length of the 

largest basin 

(*104m) 

10 2.405 2.073 3.032 2.206 0.823 

30 2.343 2.039 3.017 1.906 0.708 

60 2.294 2.075 2.923 1.803 0.668 

90 2.270 2.080 3.032 1.791 0.672 

Average slope 

of the largest 

basin 

10 0.104 0.177 0.147 0.049 0.012 

30 0.103 0.174 0.159 0.040 0.012 

60 0.113 0.174 0.138 0.037 0.013 

90 0.103 0.168 0.139 0.035 0.012 

Average topo-

graphic index of 

largest basin 

10 5.010 5.573 5.119 4.807 0.247 

30 5.650 6.034 5.695 5.940 0.161 

60 6.354 6.577 6.325 6.830 0.204 

90 6.936 7.071 6.829 7.540 0.309 

   
    As is presented in the table, for the number of basins, although all values de-

rived from field data are higher than the mean retrieved from simulations when the 

resolution is 10m, still they fall into the one σ range and so do the aggregated 

DEMs, which implies the simulation can provide reliable number of basins. 

    As to the drainage density, the simulating result is much larger than values de-

rived from field data, although in order to acquire low drainage density, we can 

increase the threshold used to derive the stream network. But in a way, high drain-

age density is a characteristic implied in the fractal terrain constructed by dia-

mond-square algorithm. Unless the approach for producing the fractal terrain is 

modified radically, the drainage density will not decrease in a natural sense. On 

the other hand, this parameter also differs notably in different regions and Tennes-

see basins present more dense stream network than the other two regions. So accu-

rately simulating the drainage density needs further research. 

    Total stream length of the largest basin again presents satisfactory results even 

though the value derived from experiments seems lower. Actually, the areas cov-

ered by the field data are all slightly larger than area of the fractal terrain. And it 

also shows that the aggregation process does cause the decrease of the total stream 

length for both field data and virtual data. 

    When it comes to the average slope of the largest basin, the value of the fractal 

terrain is much lower than that of the real terrain. This is because as Table 3 

shows, the range of elevation selected from different regions are all around 800m, 

while the fractal terrain only covers a range of 200 m for elevation. By increasing 

the initial standard deviation in the first diamond step (Sect. 2), the mismatch issue 

can be addressed. In addition, for the field data, the aggregation does not always 

make the average stream slope of the largest basin decline as the data of Tennes-
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see and Idaho indicates. This is possible since after averaging the original DEM, 

the stream length decreases, while the variation of elevation may not change too 

much to result in a decreasing slope.  

    For the average topographic index of the largest basin, the experiment fails to 

simulate extreme values presented by California with the highest resolution. An-

other unsatisfactory result is the decreasing rate is faster than that derived from the 

field data and this can be mostly attributed to the high decreasing rate of average 

slope. But, on the whole, the topographic index shows an increasing trend for both 

simulation and field data from aggregation. 

    Additionally, the rules for filtering the artificial stream network are also validat-

ed by the field data (Table 5). 

Table 5 Tests against constraints on the fractal terrain 

 Tennessee California Idaho Constraints 

CV of drainage density 0.37 0.81 0.38 <0.5 

Bifurcation ratio 3.06 5.00 3.29 2.5-5 

Stream length ratio 2.14 3.32 2.22 1-3 

S1-S-1 0.08 0.19 0.17 >0 

 
    Where S1 refers to the average slope of streams in the first order while S-1 repre-

sents the stream slope in the maximum order. In Table 5, stream networks derived 

from datasets of Tennessee and Idaho satisfy the standard of the artificial stream 

network while California fails. Its CV of drainage density is above 0.5, which 

means the drainage density fluctuates a lot within its geographic scope. Besides, 

its stream length ratio also exceeds the range. In fact, the stream length ratio 

should not be valued too much because the threshold used to delineate basins and 

the range of regions selected has significant effect on this value. For example, a 

lower threshold tends to reduce the stream length in the first order, and also if the 

geographic range of selected area is enlarged, other tributaries may join into the 

current stream system, thus disturbing the stream length ratio.   

    To sum up, the artificial stream network together with the fractal terrain shows 

some satisfactory results. However, improvements still need to be made. Also if 

more hydrological parameters were taken into account, situation would become 

more sophisticated. This research can be seen as an initiative to explore a standard 

prototype for modeling stream networks and it reveals positive aspects to intro-

duce computer simulations based on fractal theory to discover hydrological laws. 
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5 Conclusions 

In this research, an artificial stream network based on fractal terrain is developed 

and then several typical hydrological parameters concerned with stream flow are 

selected to analyse the effect of DEM resolution on hydrological responses rough-

ly. Actually, it is insufficient to analyse the DEM influence on hydrological re-

sponses without considering specific environment such as precipitation and  evap-

otranspiration because a hydrologic system is composed of several hydrological 

processes. A more comprehensive simulation framework may be coupled with a 

precipitation model in the future.   

    The artificial stream network is delineated from a constrained fractal terrain de-

veloped by adopting the diamond-square algorithm. And the constraints come 

from empirical statistical understanding of natural channel networks. These recog-

nitions were proposed around 1960s by Smarts (1968), Shreve (1966) with basic 

concepts originated from Horton (1945), which might not be advanced. They are 

only statistical properties like the average stream length ratio and the bifurcation 

ratio. Yet in reality,  their range may not be appropriate (Table 5). But approaches 

based on the statistical knowledge to define the fractal terrain have the advantage 

of simplicity. Final simulation results keep consistent with previous studies, i.e. 

the low resolution of DEM leads to the reduction of the total stream length and the 

average stream slope (Li et al. 2004) and the increase of the topographic index 

(Wolock and Price, 1994).  

    A specific characteristic of the artificial stream network described here is that it 

can only model the situation of stream networks in the source-basin areas. More 

meaningful work is to extract specific basins from the square fractal terrain and 

perform researches within a single basin. In order to achieve a large scale of basin, 

say, 100,000 km2, much more random points should be generated for the fractal 

terrain given a high resolution. As current implementation of terrain generation for 

1,000 times can cost half a day with a normal laptop, parallel implementation 

should be developed for the sake of efficiency. Nonetheless, the artificial stream 

network as a digital platform can serve for other experiments as well, for example, 

simulating the evolution of stream networks.  
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