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An energy-conservative DG-FEM approach for solid–liquid
phase change

Bouke Johannes Kaaks, Martin Rohde, Jan-Leen Kloosterman, and Danny Lathouwers

Department of Radiation Science and Technology, Delft University of Technology, Delft, Netherlands

ABSTRACT
We present a discontinuous Galerkin method for melting/solidification
problems based on the “linearized enthalpy approach,” which is derived
from the conservative form of the energy transport equation and does not
depend on the use of a so-called mushy zone. We use the symmetric inter-
ior penalty method and the Lax–Friedrichs flux to discretize diffusive and
convective terms, respectively. Time is discretized with a second-order
implicit backward differentiation formula, and two outer iterations with
second-order extrapolation predictors are used for the coupling of the
momentum and energy. The numerical method was validated with three
different benchmark cases, i.e., the one-dimensional Stefan problem, octa-
decane melting in a square cavity and gallium melting in a rectangular cav-
ity. The performance of the method was quantified based on the L2 norm
error and the number of iterations needed to convergence the energy
equation at each time step. For all three validation cases, a mesh conver-
gence rate of approximately O(h) was obtained, which is below the
expected accuracy of the numerical method. Only for the gallium melting
case, the use of a higher-order method proved to be beneficial. The results
from the present numerical campaign demonstrate the promise of the dis-
continuous Galerkin finite element method for modeling certain solid–liquid
phase change problems where large gradients in the flow field are present
or the phase change is highly localized, however, further enhancement of
the method is needed to fully benefit from the use of a higher-order
numerical method when solving solid–liquid phase change problems.
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1. Introduction

Melting and solidification phase change plays an important role in a wide range of disciplines,
amongst which metallurgy [1–3], thermal management, and latent heat storage [4–7], reduction
of waste plastic [8] and the design of the Molten Salt Fast Reactor (MSFR) [9–11]. The numerical
solution of melting and solidification problems is non-trivial, due to the mathematical complexity
of solving the moving boundary problem, with a discontinuity in both the enthalpy and the tem-
perature gradient at the solid–liquid interface [12]. Moreover, most melting and solidification
problems of industrial significance are coupled to other physics, such as fluid flow, solid settling
[13], neutronics [11], or turbulence modeling [14–19].

Whilst many different approaches exist to modeling melting and solidification problems (such as
transformed grid approach [20, 21], the level-set method [22–25], and the phase field method [26–31]),

CONTACT Bouke Johannes Kaaks b.j.kaaks@tudelft.nl Department of Radiation Science and Technology, Delft University
of Technology, Delft, Netherlands; Danny Lathouwers d.lathouwers@tudelft.nl Department of Radiation Science and
Technology, Delft University of Technology, Delft, Netherlands.
� 2023 The Author(s). Published with license by Taylor & Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been
published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

NUMERICAL HEAT TRANSFER, PART B: FUNDAMENTALS
https://doi.org/10.1080/10407790.2023.2211231

http://crossmark.crossref.org/dialog/?doi=10.1080/10407790.2023.2211231&domain=pdf&date_stamp=2023-05-17
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/10407790.2023.2211231
http://www.tandfonline.com


we chose to restrict ourselves to implicit fixed grid approaches. Here, “implicit fixed grid” refers to the
solution of the melting/solidification problem on a single fixed domain where the solid–liquid interface
is tracked implicitly, i.e., the interface position is inferred from the enthalpy or temperature field at the
current time step, instead of being obtained by solving a separate equation. This approach has the advan-
tage of being applicable to a wide range of melting and solidification problems, not requiring mesh
deformation, coordinate transformation, or grid generation and not having to calculate interface curva-
tures, impose boundary conditions at the interface or having to deal with complex thermodynamic deri-
vations. For this reason, the implicit fixed grid approach has been the most popular choice for modeling
macroscale phase change phenomena in industrial applications.

The most widely used implicit fixed grid methods are the apparent heat capacity method,
which accounts for the latent heat release through a modified form of the heat capacity around
the melting point [32–34], and the source-based enthalpy approach [35–37] where the latent heat
release is captured through a source term. The tradeoff between these two methods is speed ver-
sus robustness. Whilst the apparent heat capacity method is fast, a naive implementation of the
method (such as using too large time steps, a too-small mushy zone or a too-fine mesh without
the proper precautions) may lead to an incorrect amount of the latent heat being released, and
therefore, a deteriorated solution quality [38]. Conversely, the source-based enthalpy approach
requires an iterative procedure and may be slow to converge.

To overcome these deficiencies, the “linearized enthalpy approach” (also referred to as “a general-
ized enthalpy approach” or “an optimum approach”) has been developed [39–43]. With this approach,

Nomenclature

Computational parameter
b small parameter to prevent division by

zero
C Darcy Constant
g gravitational acceleration (m s–2)

Discontinuous Galerkin discretization

½½��� jump operator
C boundary
n normal vector
r point on an element face

dimension of element
F face
P order of element
T element
V solution space
X computational domain
/ generic variable
f�g average operator

Other symbols

D incremental difference
H, W height, width, m
x, y, z cartesian coordinate system, m

Physical quantity

H volumetric enthalpy, J m–3

m mass flux, kg m–2 s–1

p pressure, Pa
t time, s
T temperature, K
u velocity, m s–1

Subscripts and superscripts

� normalized
D Dirichlet
i internal / at iteration “i”
N Neumann
n at time step “n”
h finite element approximation
l liquid
m at the melting point
s solid
qp at a quadrature point

Thermophysical property

a liquid fraction
a thermal diffusivity, m2 s–1

b thermal expansion coefficient, K–1

k thermal conductivity, W m–1 K
l dynamic viscosity, Pa s
q density, kg m–3

cp specific heat, J kg–1 K–1

L latent heat of fusion, kJ kg–1
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the volumetric enthalpy is linearized around the latest temperature values and the energy equation is
iterated until convergence has been reached. Compared to the source-based approach, the “linearized
enthalpy approach” requires significantly less nonlinear iterations to converge the energy equation
[42]. Unlike the apparent heat capacity method or the source-based approach, the “linearized enthalpy
approach” used in this work is based on the conservative form of the energy transport equation and
the conservation of thermal energy is verified through the imposed convergence criterion. Finally, the
“linearized enthalpy approach” does not depend on the use of a so-called “mushy zone,” eliminating
the energy error arising from the smearing of the latent heat peak.

An important drawback of implicit fixed grid methods is their relatively low accuracy in captur-
ing the melting or solidification front. This is mainly due to the difficulty of resolving the discon-
tinuity in the enthalpy and temperature solutions within the cell, leading to a maximum mesh
convergence rate of O(h) [44–46]. Therefore, a very fine mesh may be needed to obtain grid-inde-
pendent results [20, 21, 47]. To improve the computational efficiency of the implicit fixed grid
approach for modeling melting and solidification problems, recent studies have investigated the use
of finite elements with adaptive mesh refinement algorithms [48, 49], using extended finite element
methods [24, 50, 51] or using discontinuous Galerkin finite element methods (DG-FEM) [52–55]
for solving solid–liquid phase change problems, which is the focus of the present work.

Discontinuous Galerkin methods have gained interest over the last decade as an attractive
numerical method for computational fluid dynamics, due to its combination of desired features
of both the finite volume (FVM) and finite element (FEM) methods, such as local conservation,
the possibility for upwinding, an arbitrarily high order of discretization and high geometric flexi-
bility [56–58]. In addition, the high locality of the numerical scheme makes the discontinuous
Galerkin method efficient for parallelization [58]. Recent advances in the applicability of DG-
FEM methods to computational fluid dynamics include the simulation of turbulent flow with a
high-order discontinuous Galerkin method and RANS or LES turbulence modeling [59–63], the
development of discontinuous Galerkin methods for low-Mach number flow [64, 65], the simula-
tion of multiphase flows [66, 67] and a DG-FEM multiphysics solver for simulating the Molten
Salt Fast Reactor [58]. When coupled to a melting and solidification model, DG-FEM is expected
to offer a more reliable capture of nonlinear phase change phenomena as compared to the finite-
volume method [52]. Indeed, Schroeder and Lube [53] obtained qualitatively similar results on a
mesh that was 14 times coarser as compared to the mesh used in a similar finite volume numer-
ical benchmark study [47]. For these reasons, DG-FEM is an attractive numerical method for
modeling solid–liquid phase change problems.

The present work introduces the Symmetric Interior Penalty - Discontinuous Galerkin (SIP-
DG) discretization of the “linearized enthalpy approach” with the aim of developing an accurate
and computationally efficient numerical method for modeling melting and solidification. Previous
investigations employing the DG-FEM method to simulate melting and/or solidification problems
used the apparent heat capacity method [52, 55] or the source-based enthalpy approach [53] for
modeling the phase transition. To the best of our knowledge, this is the first time the “linearized
enthalpy” approach has been implemented in a DG-FEM framework. An important novelty here
is the imposition of thermal energy conservation through the convergence criterion. Furthermore,
the present approach is thoroughly validated through comparison against three different bench-
mark cases (i.e., the one-dimensional Stefan problem, octadecane melting in a square enclosure
and gallium melting in a rectangular enclosure). Finally, the performance of the discontinuous
Galerkin with “linearized enthalpy approach” method is quantified by calculating and comparing
mesh convergence rates for two different element orders.

The rest of this article is organized as follows. Section 2 presents the governing equations and
the boundary conditions that close them. Section 3 introduces the semi-discrete variational for-
mulation with the discontinuous Galerkin method. Section 4 describes the temporal discretization
scheme, with special attention devoted to the time-integration of the nonlinear energy transport
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equation and the coupling of the energy and momentum transport equations. The results from
the three benchmark cases and accompanying numerical performance metrics are presented in
Section 5. Finally, the conclusions and recommendations for future work based on the obtained
results are given in Section 6.

2. Governing equations

We consider the energy and the momentum transport equations in conservative form and use
the volumetric enthalpy as the main variable. As such, the energy transport equation is written as

@H
@t

þr � uHð Þ ¼ r � krTð Þ, (1)

where H is the volumetric enthalpy, u is the velocity, k is the thermal conductivity, and T is the
temperature.

The energy transport equation contains two unknowns, the volumetric enthalpy in the accu-
mulation and the convection terms and the temperature in the diffusion term, coupled through
the enthalpy–temperature relationship. For most heat transfer problems, the enthalpy–tempera-
ture relationship is smooth and the temperature gradient in the diffusion term may be expressed
in terms of the enthalpy (rT ¼ 1

qcp
rH) with q being the density and cp the specific heat capacity,

hereby eliminating the temperature as the unknown and resulting in a linear energy transport
equation that may be solved by standard solution methods. However, for solid–liquid phase
change problems, the enthalpy–temperature relationship is nonsmooth resulting in a nonlinear
energy transport equation. For this reason, dedicated numerical methods are needed for modeling
solid–liquid phase change.

Figure 1 depicts the enthalpy-temperature relationship for isothermal solid–liquid phase
change. For temperatures below the melting point (T < Tm), the enthalpy temperature derivative
is equal to dH

dT ¼ qscp, s: For temperatures above the melting point (T > Tm), the enthalpy tempera-

ture derivative is equal to dH
dT ¼ qlcp, l: Here, the subscripts “s” and “l” refer to the solid and liquid

Figure 1. Enthalpy temperature relationship, for isothermal solid–liquid phase change. Here, q is the density, cp is the specific
heat capacity, L is the latent heat and the subscripts “l” and “s” refer to the liquid and the solid phases, respectively.
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phase, respectively. At the melting point, the volumetric enthalpy has a jump discontinuity with a
magnitude of qlL where L is the latent heat and qlL is the energy required for a unit volume of
solid at the melting temperature to be transformed into liquid.

Assuming constant thermophysical properties in each phase, and neglecting the volume expan-
sion effect as a consequence of the difference in densities between the solid and the liquid, the
enthalpy–temperature relationship is written as a piece-wise continuous function:

TðHÞ ¼

H
qscp, s

, H � qscp, sTm

Tm, qscp, sTm < H < qscp, sTm þ qlL

Tm þ
H � ðqscp, sTm þ qlLÞ

qlcp, l
, H � qscp, sTm þ qlL:

8>>>>>><
>>>>>>:

(2)

Following the recommendation of Ref. [68], who experienced numerical instabilities when using
the convection of the total enthalpy coupled to their implementation of the “linearized enthalpy
approach,” we use a “sensible enthalpy only” formulation for the convection term. Theory predicts
that for isothermal solid–liquid phase change, under the condition that no solid-settling occurs and
possible volume expansion effects due to different solid and liquid densities are neglected, the velocity
at the solid–liquid interface is equal to zero, and therefore, the convection of the latent heat is also
equal to zero [37]. In practice, however, the finite element approximation of the volumetric enthalpy
by piece-wise continuous functions will lead to an inevitable smearing of the latent heat peak within
an element and the convection of the latent heat will no longer be zero after the finite element discret-
ization. This “false numerical convection of latent heat” may result in poor convergence and deterio-
rated quality of results. Following the rational of the source-based approach [37], the convection of the
total enthalpy is split into a sensible and a latent heat contribution: r � ðuHtotÞ ¼ r � ðuHsensÞ þ r �
ðuaLÞ: Here, a is the liquid fraction (not to be confused with the thermal diffusivity), defined as

aðTÞ ¼ 0, T � Tm

1, T > Tm:

�
(3)

Since the latent heat contribution is considered equal to zero, only the sensible contribution remains.
The sensible contribution is expressed in terms of the temperature: r � ðuHsensÞ ¼ qlcp, lr � ðuTÞ: The
“sensible enthalpy only” formulation of the energy transport equation is thus written as

@H
@t

þ qlcp, lr � uTð Þ ¼ r � krTð Þ: (4)

For the momentum equation, we consider incompressible flow and a Newtonian fluid with
constant viscosity, and use the Boussinesq approximation to model the effect of buoyancy. The
Darcy source term approach is used to enforce the no-slip condition at the solid–liquid interface
position. This approach is most commonly used and has demonstrated better performance com-
pared to other approaches such as the switch-off and variable viscosity techniques [12, 36]. The
momentum equation, thus, reads

@ qluð Þ
@t

þr � u� qluð Þð Þ ¼ r � l ruþ ruð ÞT
� �h i

�rp

þqlgbðT � TmÞ � C
1� að Þ2

a3 þ b
u:

(5)

The large parameter C> 0 in the Darcy source term is responsible for the attenuation of the vel-
ocity in the solid phase. b> 0 is a small parameter to prevent division by zero when the liquid
fraction a becomes equal to zero.
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Finally, the continuity equation for incompressible flow reads

r � u ¼ 0: (6)

To close the system of coupled volumetric enthalpy transport and momentum transport equa-
tions, a set of boundary conditions and initial conditions are supplied. In the present work, the
boundary @X is decomposed into two pairwise disjoint sets CD and CN such that @X ¼ CD [ CN :

On the Dirichlet boundary CD the temperature is given, i.e., T ¼ TD, whereas on the Neumann
boundary CN the heat flux is specified, i.e., krT � n ¼ q: Here, n is the outward unit normal vec-
tor of @X: The no-slip condition u ¼ 0 is imposed on the entire boundary @X: Initially, the tem-
perature in the whole domain X is known, and the fluid is at rest, i.e., u ¼ 0 and p¼ 0 at t¼ 0.

3. Spatial discretization

This section describes the spatial discretization of the volumetric enthalpy and the mass flux
transport equations with the discontinuous Galerkin finite element method. First, we introduce
the basic definitions required for writing the variational formulation. Let X be the computational
domain and C ¼ CD [ CN its boundary. The domain is meshed into a set of nonoverlapping ele-
ments T h, with F i, FD, and FN being the set of interior, Dirichlet and Neumann boundary
faces, respectively. For each element T 2 T h we assign a set of faces FT , and for each face F we
assign a set of neighboring elements T F

h: All faces F 2 F i [ FD [ FN are assigned a unit normal
vector nF , which has an arbitrary but fixed direction for all interior faces and coincides with the
unit outward normal vector n for the boundary faces.

We use a hierarchical set of orthogonal modal basis functions (normalized Legendre polyno-
mials to be specific) to approximate the unknown variables on T h: The solution space within
each element is the span of all polynomials up to an order P and is written as

Vh,/ :¼ v 2 L2ðXÞ j vjT 2 PP/ , 8T 2 T h

n o
, (7)

where / is a generic unknown variable and /h represents its FEM approximation. The basis func-
tions are continuous within each element, but discontinuous at the interface between two neigh-
boring elements. As such, the trace of /h on the interior faces F i is not unique, and we need to
define the average and the jump operator, these are /hf g ¼ 1

2 ð/
þ
h þ /�

h Þ and /h½ �½ � ¼ /þ
h � /�

h ,

respectively. Here, for any point r on an interior face F 2 F i, the function traces /þ
h and /�

h are
defined as

/6
h r 2 Fð Þ ¼ lim

f#0
/h r6fnF
� �

: (8)

3.1. Variational formulation

The semi-discrete variational formulation of the coupled system of transport equations is
obtained by replacing the mass flux, pressure, volumetric enthalpy, and temperature with their
DG-FEM approximations (mh, ph,Hh,Th), by multiplying Eqs. (4)–(6) with the test functions vh 2
Vd
h,m, qh 2 Vh, p, and wh 2 Vh,T,H , respectively, and subsequently integrating over the whole

domain. Note that the superscript d denotes the dimensionality of the vector space to which the
DG-FEM approximation of the mass flux belongs. To close the system of equations, the
enthalpy–temperature coupling needs to be included. With these considerations, the semi-discrete
variational formulation reads

6 B. J. KAAKS ET AL.



Find mh 2 Vd
h,m and ph 2 Vh, p,H,T and Hh 2 Vh, p,H,T and Th 2 Vh, p,H,T

such that 8vh 2 Vd
h,m and 8qh,8wh 2 Vh, p,H,T ,X

T 2T h

ð
T
vh �

@mh

@t
þ aconv uh,mh, vhð Þ þ adiff mh, vhð Þ þ adiv vh, phð Þ

þasourceðmh, vhÞ ¼ lconvðuh, vhÞ þ ldiffðvhÞ þ lsourceðvh,ThÞ
(9a)

adivðmh, qhÞ ¼ ldivðqhÞ (9b)

X
T 2T h

ð
T
wh

@Hh

@t
þ aconvðmh,Th,whÞ þ adiffðTh,whÞ

¼ lconvðuh,whÞ þ ldiffðwhÞ
(9c)

Th ¼ TðHhÞ: (9d)

By solving the variational formulation of the coupled system of transport equations, the
numerical mass-flux mh, the pressure ph, the volumetric enthalpy Hh, and the temperature Th are
obtained. As opposed to the source-based enthalpy approach employed by Ref. [53], the present
variational formulation follows directly from the conservative form of the transport equations. In
addition, the present formulation does not depend on the use of an artificial smearing of the
latent heat peak through the introduction of a so-called mushy-zone, and directly preserves the
enthalpy-temperature coupling through inclusion in the system of equations. The nonlinear cou-
pling between the enthalpy and the temperature does not allow for a straightforward solution of
the discretized energy transport equation. Therefore, we chose an iterative solution method for
the energy equation, based on the work of Refs. [39, 40, 42]. The iterative solution of the energy
equation is described in more detail in Subsection 4.1.

In the present work, a mixed-order discretization for the mass-flux and the enthalpy, tempera-
ture, and pressure was used (i.e., Pp,H,T ¼ Pm � 1). The mixed-order formulation for the mass-
flux and pressure (i.e., Pp,T ¼ Pm � 1) is inf-sup stable and therefore no pressure stabilization
terms are needed in the discretized continuity equation [58, 69] as opposed to using an equal-
order formulation. In addition, it has been shown that the solution space of a transported scalar
quantity (in the present work, the enthalpy and the temperature) must be a subset of the solution
space of the pressure [58, 65]. The reason is that the continuity equation is weighted by the pres-
sure basis functions (see Eq. (9)), and therefore, the convective discretization in the scalar trans-
port equation can only be consistent up to order Pp: For this reason, we selected PH,T ¼ Pp),
resulting in the final mixed-order formulation Pp,H,T ¼ Pm � 1:

We will now specify the convection, diffusion, divergence, and source term operators in the
discretized momentum and continuity equations. The treatment of the convection and diffusion
operators in the energy equation proceeds along the same lines. The treatment of the time-oper-
ator will be described in detail in Section 4.

3.2. Convective term

The discretization of the convective term is given by

aconvðuh,mh, vhÞ ¼ �
P

T 2T h

Ð
T mh � uh � rð Þvh þ

P
F2F i

Ð
F vh½ �½ �HF uh,mhð Þ

þ
X
F2FN

ð
F

nF � uh
� �

mh � vh þ
X
F2FD

ð
F
max 0, nF � uDh

� �
mh � vh (10)

lconvðuh, vhÞ ¼ �
X
F2FD

ð
F
min 0, nF � uDh

� �
mD

h � vh, (11)

NUMERICAL HEAT TRANSFER, PART B: FUNDAMENTALS 7



where HF is the numerical flux function defined on an internal face F 2 F i: In this work, the
Lax–Friedrichs flux is used [70]:

HF uh,mhð Þ ¼
aF uhð Þ

2
mh½ �½ � þ nF � uh �mhf g, (12)

where aF is evaluated point-wise at face F through

aF uhð Þ ¼ Kmax nF � uþh
�� ��, nF � u�h�� ��� �

(13)

with K¼ 2 for the momentum equation and K¼ 1 for the energy equation.

3.3. Diffusive term

Following [58, 65], we discretize the diffusive term using the Symmetric Interior Penalty (SIP)
method. We limit ourselves to laminar incompressible flow and consider a Newtonian fluid with
constant viscosity. For this reason, we present the standard SIP bilinear form instead of the gen-
eralization outlined in Ref. [65]:

adiffðmh, vhÞ ¼
P

T 2T h

Ð
T
l
q
rmh � rvh þ

X
F2F i[FD

ð
F
gF mh½ �½ � vh½ �½ �

�
X

F2F i[FD

ð
F
nF � vh½ �½ �

l
q
rmh

� �
þ mh½ �½ �

l
q
rvh

� �	 
 (14)

ldiff ðvhÞ ¼
X
F2FD

ð
F

gFmD � vh �mD
h � l

q
rvh � nF

	 

: (15)

An optimum value of the penalty parameter is calculated through [71]

gF ¼ max
l
q

þ
,
l
q

�	 

max card FTð ÞEP,T

LT

	 

, (16)

where cardðFTÞ represents the number of faces of element T and EP,T is a factor which takes
into account the polynomial order of the finite element basis and test functions and the type of
elements used:

EP, T ¼
P þ 1ð Þ2, for quadrilaterals and hexahedra
P þ 1ð Þ P þ dð Þ

d
, for simplices:

8<
: (17)

LT is a length scale defined as

LT ¼ f
jTjj jleb
jFjj jleb

(18)

where jTjj jleb indicates the Lebesgue measure of the element, and jFjj jleb indicates the Lebesgue
measure of the face, respectively. Finally, f¼ 2 for boundary faces, and f¼ 1 for internal faces.
For the SIP discretization of the diffusive term in the energy equation, we substitute k for l

q and

substitute Th for mh:

3.4. Continuity terms

The discretized continuity equation consists of the following discrete divergence operator and
right-hand side term [72, 73]:
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adivðuh, qhÞ ¼ �
X
T 2T h

ð
T
qr � uh þ

X
F2F i[FD

ð
F
fqg uh½ �½ � � nF (19)

ldivðqÞ ¼
X
F2FD

ð
F
q uD � nFð Þ: (20)

3.5. Source terms

The momentum equation contains two source terms, i.e., the Darcy source term responsible for
the attenuation of the velocity at the solid–liquid interface and the Boussinesq approximation
responsible for modeling natural convection. The Darcy source term is imposed implicitly
through the bilinear operator asourceðmh, vhÞ :

asource mh, vhð Þ ¼
X
T 2T h

ð
T
C

1� að Þ
a3 þ b

mh � vh
ql

: (21)

For the liquid fraction, a finite element approximation of the same order as the mass flux is
used. To obtain the finite element approximation of the liquid fraction, the liquid fraction is cal-
culated from the temperature at each quadrature point (see Eq. (3)), and the values at the quadra-
ture points are subsequently projected onto the finite element basis.

The Boussinesq approximated is imposed explicitly through the linear right-hand side term
lsourceðvh,ThÞ :

lsource vh,Thð Þ ¼
X
T 2T h

ð
T
qlb Th � Tmð Þvh � g: (22)

4. Temporal discretization and numerical solution procedure

In this work, implicit time-stepping is performed using the backward differentiation formulae
(BDF) [62, 64, 73]. The time derivatives for a generic unknown quantity / and for a constant
time step Dt is therefore written as

@/
@t

	 c0
Dt

/nþ1 þ
XM
j¼1

cj
Dt

/nþ1�j, (23)

where M is the order of the BDF scheme. In the present work, the second-order BDF scheme is
used, with c0 ¼ 3=2, c1 ¼ �2, and c2 ¼ 1=2: Special treatment is used for the temporal discret-
ization and time-integration of the enthalpy transport equation, as is explained in Subsection 4.1.
The coupled momentum and continuity equations are solved in a segregated way using a pressure
correction method (see Subsection 4.2). The full solution algorithm, including the coupling
between the energy, momentum, and continuity equations, is described in Subsection 4.3.

4.1. Iterative solution of energy equation

Applying BDF2 time-integration (and assuming a constant time step), the discretized energy
accumulation term is written as

X
T 2T h

ð
T
wh

@Hh

@t
¼
X
T 2T h

ð
T
wh

3Hnþ1
h � 4Hn

h þHn�1
h

2Dt
: (24)
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Inserting the discretized energy accumulation term into the variational formulation of the
energy equation results in the following form:

X
T 2T h

ð
T
wh

3Hnþ1
h � 4Hn

h þHn�1
h

2Dt
þ aconvðmh,T

nþ1
h ,whÞ þ adiffðTnþ1

h ,whÞ ¼

lconvðuh,whÞ þ ldiffðwhÞ:
(25)

This equation is highly nonlinear in the unknown Hnþ1
h , due to the discontinuous nature of

the enthalpy-temperature relationship (see Eq. (2)) and therefore cannot be solved in a straight-
forward manner. Building on the work of Refs. [39, 40, 42], we expand the unknown Hnþ1

h

around the temperature:

Hnþ1, iþ1
h ¼ Hnþ1, i

h þ dH
dT

jnþ1, i T
nþ1, iþ1=2 � Tnþ1, ið Þ, (26)

where the superscript iþ 1 refers to the new iteration, and iþ 1=2 refers to an intermediate value
between two iterations. Inserting the expansion into the discretized energy equation yields the
“linearized” discretized energy equation:

X
T 2T h

ð
T
wh

3Hnþ1, i
h � 4Hn

h þHn�1
h

2Dt
þ
X
T 2T h

ð
T

dH
dT

jnþ1, iwh
3Tnþ1, iþ1=2

h � 3Tnþ1, i
h

2Dt

þaconvðmh,T
nþ1, iþ1=2
h ,whÞ þ adiffðTnþ1, iþ1=2

h ,whÞ ¼ lconvðuh,whÞ þ ldiff ðwhÞ:
(27)

The linearized discretized energy equation contains only the intermediate temperature

Tnþ1, iþ1=2
h as the unknown variable. Solving the linearized energy equation for the intermediate

temperature may be seen as a single step in a Newton iteration. The remaining challenge is now
to define a suitable approximation of the enthalpy-temperature derivative, which is undefined at
the melting point.

In this work, we use the following formulation:

dH
dT

	 xqscp, s, T � Tm

xqlcp, l, T > Tm,

�
(28)

where x is an overrelaxation factor (1.5 was used in the present work) with the sole purpose of
speeding up the convergence. Upon convergence, the linearization term ðdHdT jnþ1, iðTnþ1, iþ1=2 �
Tnþ1, iÞÞ approaches zero. Therefore, for a strict enough convergence criterion, the exact form of
the enthalpy-temperature derivative has a negligible effect on the result of the numerical solution,
and the use of the current approximation is justified [40]. Finally, we would like to mention that
instead of updating the thermal conductivity at each iteration according to the latest position of
the solid–liquid interface, the thermal conductivity at the newest time step is estimated using
extrapolation from the previous two time steps (see Subsection 4.3) and is, therefore, kept con-
stant during the nonlinear enthalpy–temperature iterations.

The iterative solution procedure is described by the following steps:

(1) Initialize the enthalpy at the new time step Hnþ1, i using the extrapolation from the previous
time steps (see Eq. (38)).

(2) Solve the discretized linearized energy transport equation (Eq. (27)) to obtain the solution
for the intermediate temperature Tnþ1, iþ1=2

h :
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(3) Update the volumetric enthalpy at the quadrature points applying the Taylor linearization:

Hnþ1, iþ1
h

����
qp

¼ Hnþ1, i
h

����
qp

þ dH
dT

nþ1, i

Tnþ1, iþ1=2
h � Tnþ1, i

h

� �����
qp

: (29)

(4) At the quadrature points, calculate the temperature from the updated enthalpy values
through the enthalpy–temperature relationship (see Eq. (2)):

Tnþ1, iþ1
h ¼ T Hnþ1, iþ1

h

� �
: (30)

(5) Calculate the solution coefficients of the enthalpy and temperature at the latest iteration, by
projecting the values at the quadrature points onto the finite element basis for each element:

MHnþ1, iþ1
h ¼

Xn
qp¼1

wjqpHnþ1, iþ1jqpvh
� �

, MTnþ1, iþ1
h Tnþ1, iþ1

h vh
� �

¼
Xn
qp¼1

wjqpTjqpvh
� �

,
(31)

where wjqp are the quadrature weights and M is the mass matrix.

Figure 2. Flowchart of the solution algorithm, including the nonlinear temperature–enthalpy iterations and the coupling of the
energy and the momentum equations.
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(6) Check whether the convergence criterion (see Eq. (32)) is satisfied. If not, return to step 2.
If yes, move to the solution of the momentum equation (see Figure 2).

Through our approach, the energy equation is solved in conservative form through a series of
nonlinear enthalpy–temperature iterations, within a prescribed tolerance. The advantages of our
approach for solving melting and/or solidification problems as opposed to the apparent heat cap-
acity method or the source-based enthalpy approach are an inherent conservation of thermal
energy, no dependency on use of a so-called mushy zone for smearing the latent heat peak, and a
comparatively fast convergence of the energy equation per time step.

4.1.1. Convergence criterion
To ensure the final solution of the linearized energy transport equation corresponds to the solu-
tion of the original energy transport equation (see Eq. (4)), a suitable convergence criterion is
defined:

max
res
Etot

,

Ð
X Tnþ1, iþ1

h � Tnþ1, i
h

h i2	 

Ð
X Tnþ1, iþ1

h

h i2	 

0
BBB@

1
CCCA

1=2
0
BBBB@

1
CCCCA < tol: (32)

This convergence criterion depends on two parts. The second part is the L2 norm of the tem-
perature difference between the current and the previous iteration. The justification for this part
of the convergence criterion is that upon convergence, the linearization term should be equal to
zero (see Eq. (26)). In other words, the L2 norm of the temperature difference between the cur-
rent and the previous iteration should be minimized. The first part of the convergence criterion
may be considered an energy conservation check. This is done by inserting the solution vectors
into the original discretized energy equation (i.e., prior to linearization, see Eq. (9)) and selecting
the zeroth-order polynomial vh ¼ 1 as test function. Therefore, all terms containing the gradients
and/or jumps of the test-function are equal to zero (except for the jumps at the boundaries) and
the residual may be defined as:

res ¼
X
T 2T h

ð
T
vh �

3Hnþ1, iþ1
h � 4Hn

h þ Hn�1
h

2Dt

þ
X
F2FN

ð
F

nF � uh
� �

qlcp, lT
nþ1, iþ1
h � vh þ

X
F2FD

ð
F
max 0, nF � uDh

� �
qlcp, lT

nþ1, iþ1
h � vh

þ
X
F2FD

ð
F
gF Tnþ1, iþ1

h

h ih i
vh½ �½ � �

X
F2FD

ð
F

ffkrTnþ1, iþ1
h gg � nF vh½ �½ �

� �

þ
X
F2FD

ð
F
min 0,nF � uDh

� �
qlcp, lT

D
h � vh �

X
F2FD

ð
F

gFTD
h � vh

� �
:

(33)

The residual is thus a measure of the energy loss or gain after each iteration, which is a measure
of how far the solution to the linearized equation is from satisfying thermal energy conservation.
The residual is scaled with the total thermal energy in the system to represent a relative error.
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4.2. Pressure correction method

The coupled continuity and momentum equations are solved in a segregated way, applying the
following pressure correction scheme [58, 65, 73]:

(1) Obtain a predictor for the mass flux m by solving the linear system which corresponds to
the semi-discrete form (see Eq. (9))

c0
Dt

Mþ N

	 

m̂nþ1 ¼ �D

Tpn þ f : (34)

Here, M is the mass matrix, N contains the implicit parts of the discrete convection and
diffusion terms, D is the discrete divergence operator and f collects all the explicit terms
(i.e., explicit terms from the discretization of the time derivative, boundary conditions, and
source terms). The convective term is linearized by replacing the convective field unþ1 with
the predictor mnþ1, �

ql
:

(2) Solve a Poisson equation to obtain the pressure-difference at the new time step

Dt
c0

DM
�1
D

T

	 

dpnþ1 ¼ Dm̂nþ1 � bp, (35)

where bp represents the fully discrete right-hand side of the continuity equation (see Eq.
(20)). Subsequently, the pressure may be updated,

pnþ1 ¼ pn þ dpnþ1: (36)

(3) Correct the mass flux, such that it satisfies the discrete continuity equation

mnþ1 ¼ m̂nþ1 � Dt
c0

M
�1
D

Tdpnþ1: (37)

4.3. Full solution algorithm

The full set of discretized transport equations is solved using a one-way coupling method between the
energy and the momentum equation. The algorithm to find the solution vectors mnþ1, pnþ1, Hnþ1,
and Tnþ1 at a new time step nþ 1 consists of the following steps (also see Figure 2).

1. Obtain predictors for the temperature T, enthalpy H, mass flux m, pressure p, liquid fraction
a, and thermal conductivity k, using a second-order extrapolation from previous time steps:

/nþ1, � ¼ 2/n � /n�1: (38)

2. Solve the discretized energy equation through a series of Newton iterations until convergence
is achieved, as described in Subsection 4.1.

Table 1. Thermophysical properties used in the one-dimensional Stefan problem (corresponding to
the thermophysical properties of water).

Solid Liquid

Density, kg m�3 1000 1000
Specific heat capacity, J kg�1 4200 2100
Thermal conductivity, W m�1 K�1 2.16 0.575
Latent heat, J kg�1 333000
Melting temperature, K 273
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3. Solve the coupled momentum and continuity equations using the pressure correction method
described in Subsection 4.2.

4. Repeat steps 3 and 4 for a number of n outer iterations. In this work, 2 outer iterations were
deemed sufficient based on a sensitivity analysis.

4.4. Implementation and numerical solution

The DG-FEM formulation of the linearized enthalpy approach for simulating melting and solidifi-
cation heat transfer problems was validated with three different test cases: the 1D Stefan problem,
octadecane melting in a square enclosure [5] and gallium melting in a rectangular enclosure [1].
The linearized enthalpy approach was implemented in the in-house DG-FEM based computa-
tional fluid dynamics solver DGFlows. A hierarchical set of orthogonal modal basis functions
(normalized Legendre polynomials to be specific) was used and all integrals were evaluated with a
Gaussian quadrature set with polynomial accuracy of 3Pm � 1 [74, 75]. The meshes were gener-
ated with the open-source software tool Gmsh [76]. METIS [77] is used to partition the mesh,
and the MPI-based software library PETSc [78] is used to assemble and solve all linear systems
with iterative Krylov methods. The pressure-Poisson system is solved with the conjugate gradient
method and a block jacobi preconditioner, where the submatrix within each MPI process is pre-
conditioned with an incomplete Cholesky decomposition. The linear systems for the linearized
enthalpy and momentum equations are solved with GMRES, with a block Jacobi preconditioner
and successive over-relaxation for the submatrix within each MPI process. To reduce the required
computational time, the pressure matrix and its preconditioner are only assembled and computed
once (since the pressure matrix is the same at each time step [58]), and the Krylov solvers are ini-
tialized with the solution predictors (see Section 4) to speed up the convergence.

5. Results and discussion

5.1. Case 1: 1D Stefan problem

The one-dimensional Stefan problem was chosen for the first test case because the absence of
convection and the presence of an analytical solution enabled a step-wise validation of the pro-
posed numerical method, as well as a quantitative evaluation of the error in the numerical solu-
tion. We, thus, consider a one-dimensional rod of length l ¼ 0:05m, with a temperature of
Tðx, t ¼ 0Þ ¼ 278K: At t> 0, the temperature at the left side is suddenly lowered below the

Figure 3. (a) Temperature field at 100, 250, 500, and 1000 s. (b) Solid–liquid interface position. Numerical vs. analytical solution
for a 1D Stefan problem, with 128 linear elements, and a time step of Dt ¼ 0:1 s with BDF2 time-integration. tol ¼ 10�6: See Ref.
[79] for the implementation of the solution of the 1D Stefan problem with the discontinuous Galerkin method and the linearized
enthalpy approach in an inhouse Fortran code. The raw data of the 1D Stefan problem is included in a Zenodo repository [80].
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melting temperature: Tð0, tÞ ¼ 268K < Tm and the right side is described by a homogeneous
Neumann boundary condition, @T@x jt, L ¼ 0: The phase change material matches the thermophysical
properties of water (see Table 1). The same density is used for the solid and the liquid phases, to
avoid any issues regarding volume expansion and mass conservation.

The entire problem is described by one pair of heat conduction equations, i.e., one heat con-
duction equation for the solid phase and one for the liquid phase [35]:

@Tl

@t
¼ al

@2Tl

@x2
, 0 � x < sðtÞ

@Ts

@t
¼ as

@2Ts

@x2
, x � sðtÞ:

8>><
>>: (39)

The displacement of the solid–liquid interface in time is described by the following two condi-
tions, where “s” represents the solid–liquid interface:

Tl ¼ Ts ¼ Tm

qsL
dsðtÞ
dt

¼ ks
@Ts

@x

����
x¼sðtÞ

� kl
@Tl

@x

����
x¼sðtÞ

:

8><
>: (40)

The analytical solution to the 1D Stefan problem is well known and given by Voller and Cross [35]

sðtÞ ¼ 2k astð Þ1=2, (41)

where k is the solution to the following transcendental equation:

kLp1=2

cs Tm � Tð0, tÞ½ � ¼
exp �k2ð Þ
erfðkÞ � kl

ks

a1=2s Tðx, 0Þ � Tm½ � exp �ask
2=al

� �
a1=2l Tm � Tð0, t

� �
erfc k ks=klð Þ1=2
� � : (42)

The analytical solution for the temperature is given by

T ¼

Tm � Tð0, tÞ
erfðkÞ erf

x

2 astð Þ1=2
	 


þ Tð0, tÞ, x < sðtÞ

Tm, x ¼ sðtÞ
Tðx, 0Þ � Tðx, 0Þ � Tm

erfc k as=al1=2
� �� � erfc x

2 altð Þ1=2
	 


, x > sðtÞ:

8>>>>><
>>>>>:

(43)

Figure 4. Mesh convergence rate based on the L2 norm of the error in the temperature field. The total time was 250 s and the
time step was Dt ¼ 0:1 s: The raw data of the 1D Stefan problem is included in a Zenodo repository [80].
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Figure 3 shows the numerical versus the analytical solution, for both the temperature field and
the solid–liquid interface position. 128 equally sized linear elements and BDF2 time-integration
with a time step of Dt ¼ 0:1s were used. The tolerance was set to tol ¼ 10�6: The numerical
solid–liquid interface position was found based on Hnum ¼ qscp, sTm þ 0:5qlL: For the temperature
field, excellent agreement with the analytical results was observed and it is nearly impossible to
distinguish the numerical and analytical solutions by eye. Conversely, although the overall agree-
ment with the analytical solution is good, the numerical solution for the solid–liquid interface
position “jumps” in time. This is due to the numerical solid–liquid interface being localized at
one of the element edges, until the enthalpy has jumped past the latent heat peak. The “time-
jumping” of the numerical solid–liquid interface position is therefore inherent to the discontinu-
ous Galerkin finite element discretization.

In Figure 4, the L2 norm of the errorÐ
X T�

num � T�
an½ �2

� �
Ð
X T�

an½ �2
� �

 !1=2

(44)

versus the number of elements is depicted. Here, the normalized temperatures are used, i.e., T� ¼
T�TC
TH�Tc

with Tc ¼ 268K and TH ¼ 278K: The errors continue to decrease with an increasing

amount of elements and approach very small values, indicating that the numerical solution con-
verges to the analytical solution. For both the linear and the quadratic elements, approximately
linear (Oðh�Þ) convergence rates were achieved. Note that the elements are only discontinuous at
the element edges: within each element, a continuous finite element approximation is used. Since
the solid–liquid interface is most of the time located somewhere within an element, we believe
the suboptimal linear convergence rate is a consequence of the use of continuous polynomials for
approximating the discontinuities in the enthalpy and temperature fields at the interface. Also
recall the “trapping” of the solid–liquid interface position at the element edges, until both nodal
enthalpy values have moved past the latent heat peak. The current results are in line with theoret-
ical predictions that the optimal convergence rate for a Stefan problem with a finite element
method and implicit tracking of the solid–liquid interface is O(h) [44]. Possibly, a faster mesh
convergence could be obtained using adaptive mesh refinement in the vicinity of the solid–liquid
interface [49] or an extended finite element method [24].

5.2. Case 2: Melting of octadecane in a square container

For the second benchmark case, we consider a square cavity of dimensions H 
W ¼ 40mm

40mm, filled with n-octadecane as the phase-change material (PCM). At the initial temperature
of T0 ¼ 298:15K, the entire PCM is solid. At t¼ 0, the left wall is suddenly heated to TH ¼
308:15K: The right wall is kept constant at TC ¼ 298:15K and the rest of the walls are adiabatic.
The thermophysical properties of n-octadecane are given in Table 2. We chose this particular
benchmark case for the following two reasons:

Table 2. Thermophysical properties of n-octadecane [5].

Solid Liquid

Density, kg m�3 867 775.6
Specific heat capacity, J kg�1 1900 2240
Thermal conductivity, W m�1 K�1 0.32 0.15
Latent heat, J kg�1 243680
Melting temperature, K 301.15
Thermal expansion coefficient, 1/K 8:36 � 10�4

Dynamic viscosity, Pas 3:75 � 10�3
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(1) The availability of recent experimental measurements, with relatively well described bound-
ary conditions, including PIV measurements of the flowfield [5].

(2) The availability of a recent numerical investigation with a linearized enthalpy approach and
the finite volume method (FVM) [42], to compare the performance of the present method
against.

Figure 5 depicts the absolute velocity contours at, respectively, 1 and 2 h after the onset of
melting as measured experimentally using PIV (top two images) and numerically (bottom two
images). Qualitatively, a good agreement was observed between the experimental data and the
simulation results. The onset of the natural circulation loop, as seen in the PIV results, is well
captured by the numerical method. As a consequence of the natural convection flow, the heat
transfer to the solid–liquid interface is enhanced and the rate of melting is accelerated.

Figure 6 shows the results from a mesh convergence analysis, for both the solid–liquid inter-
face position and the temperature plotted on the line y ¼ 0mm through the center of the
domain. All meshes consist of equally sized quadrilateral elements. Two different hierarchical sets
of orthogonal basis functions were used, respectively, P ¼ f2, 1, 1, 1g and P ¼ f3, 2, 2, 2g for the
mass flux, pressure, enthalpy, and temperature. Both sets of polynomial orders displayed visually

Figure 5. Absolute velocity contours for melting of n-octadecane in a square enclosure, at, respectively, 3600 s and 7200 s.
Qualitative comparison between experimental campaign (top) and numerical campaign (bottom). Numerical campaign per-
formed with “linearized enthalpy approach” coupled to a SIP-DG numerical method. 200
 200 P ¼ f2, 1, 1, 1g elements were
used. Time-integration was performed with the BDF2 finite difference scheme and Dt ¼ 0:25 s: The raw data of the octadecane
melting case is included in a Zenodo repository [80].
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similar results for P ¼ f2, 1, 1, 1g and P ¼ f3, 2, 2, 2g with the finer meshes of 200
 200 and
400
 400 elements.

To provide insight on the mesh convergence rates, Table 3 depicts the average number of inner
iterations, the total liquid fraction, and the L2-norms of errors in the temperature, enthalpy and the
absolute velocity (see Eq. (44)). Quantitative mesh convergence studies for solid–liquid phase change
problems are rare and to the best of our knowledge this is the first time such a study has been per-
formed for the solution of solid–liquid phase change problems with a discontinuous Galerkin
method. The number of inner iterations do not grow excessively with an increasing mesh-size,

Figure 6. Mesh convergence study based on interface position and temperature at the line y ¼ 0mm: Two sets of finite elem-
ent polynomial orders are selected, these are P ¼ f2, 1, 1, 1g and P ¼ f3, 2, 2, 2g: BDF2 time-stepping with Dt ¼ 0:5 s was used
for a total simulation time of 3600 s. The raw data of the octadecane melting case is included in a Zenodo repository [80]. (a)
Interface position, P ¼ f2,1,1,1g (b) Interface position, P ¼ f3,2,2,2g (c) Temperature, P ¼ f2,1,1,1g (d) Temperature, P ¼
f3,2,2,2g

Table 3. Relevant quantities from the mesh convergence analysis for the octadecane melting in a square cavity case.

Polynomial order Mesh size
Average number of
inner iterations

Total liquid
fraction L2T L2H L2U

P ¼ f2, 1, 1, 1g 25
 25 4.95, 2.29 0.212 2.24(–1) 3.89(–1) 4.99(–1)
50
 50 6.64, 1.89 0.210 1.62(–1) 2.58(–1) 3.25(–1)
100
 100 9.27, 1.93 0.213 1.04(–1) 1.95(–1) 2.09(–1)
200
 200 13.03, 1.85 0.212 4.39(–2) 1.12(–1) 9.97(–2)
400
 400 24.95, 2.27 0.218 2.50(–2) 8.35(–2) 6.86(–2)

P ¼ f3, 2, 2, 2g 25
 25 5.67, 1.83 0.190 2.74(–1) 3.89(–1) 6.10(–1)
50
 50 7.00, 1.86 0.202 1.84(–1) 2.92(–1) 4.12(–1)
100
 100 9.51, 1.78 0.210 1.01(–1) 1.93(–1) 2.40(–1)
200
 200 13.59, 1.89 0.213 3.87(–2) 1.04(–1) 9.66(–2)
400
 400 33.92, 4.03 0.216 N/A N/A N/A

BDF2 time-integration with a time step of Dt ¼ 0:5 s was used for a total simulation time of 3600 s. The raw data of the octa-
decane melting case is included in a Zenodo repository [80].
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although for the finest meshes of 400
 400 elements a relatively large number of iterations was
needed to obtain convergence. This was probably a consequence of keeping the time step constant at
Dt ¼ 0:5, for the higher mesh resolutions a smaller time step could be more suitable. The differen-
ces in the total liquid fraction are small, even between the finest and the coarsest mesh, which can
possibly be attributed to the good energy conservation properties of the current numerical method.
For the L2 norms, the normalized quantities were used, i.e., T� ¼ T�TC

TH�Tc
with Tc ¼ 298:15K and

TH ¼ 308:15K and juj� ¼ juj
maxðjujÞ : Since now we do not have an analytical solution to compare to,

the numerical solution for the finest mesh (i.e., 400
 400 and P ¼ f3, 2, 2, 2g) was used as the refer-
ence solution. For both the P ¼ f2, 1, 1, 1g and the P ¼ f3, 2, 2, 2g meshes, the L2 error norms for
the first 3 meshes (less than 100
 100 elements) appeared to decrease slowly (less than O(h)), whilst
the error decreased with a rate close to O(h) from the 100
 100 elements mesh onwards.

Overall, these numerical results indicate that also for a two-dimensional melting problem with
fluid flow, the present DG-FEM linearized enthalpy approach suffers from suboptimal mesh con-
vergence. This conclusion is in line with theoretical predictions [44] and our observations from
the 1D Stefan problem. However, we should note that since the mesh of 400
 400 with P ¼
f3, 2, 2, 2g was used as the reference solution, the calculated errors might not correspond to the
“true” errors of the numerical solution.

Figure 7 depicts the interface position after, respectively, 1 h, 2 h, 3 h, and 4 h of simulation
time. Based on the results from the mesh convergence, we selected the 200
 200 P ¼ f2, 1, 1, 1g
mesh for the final simulations. We believe this choice of mesh was a good compromise between
accuracy and computational affordability. The time step was set to Dt ¼ 0:25s based on a time
step sensitivity analysis (see Ref. [80]). A good agreement with both the previous numerical cam-
paign [42] and the experimental results [5] was observed. Compared to the experimental cam-
paign, the numerical results predict a faster melting rate (although the shape of the melting
fronts are very similar and a better agreement with the experimental results was obtained as com-
pared to the reference simulations of Faden et al. [42]). We believe the main reasons for the
over-prediction of the melting rate are:

(1) The simulations are performed in two dimensions, whereas the experimental domain is a
cubical cavity. Ignoring the effect of the walls in the third dimension leads to an over-estimation
of the melting rate, of which the severity depends on the dimensions of the problem and the

Figure 7. Octadecane melting in a square enclosure. Interface position at, respectively, 3600 s, 7200 s, 10800 s, 14400 s. The
mesh consisted of 200
 200 P ¼ f2, 1, 1, 1g elements. BDF2 time-stepping with a time step of Dt ¼ 0:25 s was used. Previous
numerical campaign of Faden et al. [5] and experimental campaign are plotted for comparison.
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Prandtl number of the phase change material [81]. For high Prandtl materials such as octade-
cane, the over-estimation of the melting rate in a 2D simulation is less serious then for low
Prandtlmaterials.

(2) Even though the experimental setup was thermally insulated, some heat losses to the envir-
onment were still present during the experimental campaign [5]. However, fully adiabatic
walls were assumed in the numerical simulations.

(3) The present numerical campaign uses the Boussinesq approximation and does not consider
the expansion of the octadecane during melting. It has been shown that the use of a con-
stant density model will lead to an over-prediction of the melting rate, as opposed to the
use of a variable density model [82].

5.3. Case 3: Melting of gallium in a rectangular container

For the third benchmark case, we consider Gallium melting in a rectangular cavity of dimensions
H 
W ¼ 63:5mm
 88:9mm: At the initial temperature of T0 ¼ 301:3K, the entire PCM is
solid. At t¼ 0, the left wall is suddenly heated to TH ¼ 311K: The right wall is kept constant at
TC ¼ 301:3K and the rest of the walls are adiabatic. The thermophysical properties of gallium are
given in Table 4. Similar to the melting of n-octadecane in a square enclosure, this benchmark
features the melting of a PCM in a natural convection flowfield. However, there are several rea-
sons to include this additional benchmark:

(1) The different thermophysical properties of Gallium and the different aspect ratio of this
enclosure lead to significantly different behavior of the flowfield and the evolution of the
melting front. Therefore, the gallium melting in a rectangular enclosure case contributes to
further validation of the “linearized enthalpy approach” with SIP-DG method.

(2) For the 2D numerical case, multicellular flow is observed, possibly due to the onset of the
Rayleigh–Benard instability (this was not the case in 3D simulations of the gallium melting
problem, leading to an overall different outcome [83]). The number of vortices present in
the multicellular flow depends on the resolution of the mesh and the accuracy of the
numerical schemes [47].

(3) The Gallium melting in a rectangular enclosure by Gau and Viskanta [1], later repeated by
CampBell and Coster and Ben David et al. using nonintrusive experimental methods in the
form of x-ray radioscopy and ultrasound doppler velocimetry, respectively [2, 3], is one of
the classic melting and solidification experiments and is often used for numerical validation
purposes. Examples are the validation of the source-based enthalpy approach [37], the grid
refinement study performed by Hannoun et al. to find the correct 2D numerical solution
[47] and the validation of the FEM and DG-FEM source-based enthalpy methods developed
by Belhamadia et al. [84] and Schroeder and Lube [53].

Figure 8 shows the results from a mesh convergence analysis for the absolute velocity plotted
on the line y ¼ 31:75mm through the center of the domain. All meshes consist of equally sized

Table 4. Thermophysical properties of gallium [47].

Solid Liquid

Density, kg m�3 6093 6093
Specific heat capacity, J kg�1 381.5 381.5
Thermal conductivity, W m�1 K�1 32 32
Latent heat, J kg�1 80160
Melting temperature, K 302.78
Thermal expansion coefficient, 1/K 1:2 � 10�4

Dynamic viscosity, Pas 1:81 � 10�3
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quadrilateral elements. Compared to the octadecane melting case, the difference in results
between the P ¼ f3, 2, 2, 2g and the P ¼ f2, 1, 1, 1g polynomial sets is more significant. Possibly,
the multicellular flow patterns, which are a particular feature of the 2D Gallium melting case, are
better captured with a higher-order finite element basis function for the mass flux and the pres-
sure. Indeed, also Hannoun et al. observed differences in results when using a second order as
opposed to a first-order finite volume upwind scheme for the convection term [47]. One can see
that for both the P ¼ f3, 2, 2, 2g and the P ¼ f2, 1, 1, 1g basis function sets, the results for the
280
 200 and the 560
 400 meshes appear qualitatively similar, although no full mesh conver-
gence was achieved. Relevant quantities from the mesh convergence analysis are given in Table 5
(i.e., the average number of inner iterations, the total liquid fraction, and the L2-norms of errors
in the temperature, enthalpy and the absolute velocity). Similar to the octadecane melting case,
the differences in total liquid fraction between the different meshes are small. Up to a mesh size
of 280
 200 elements, the number of inner iterations do not grow excessively with an increasing
mesh size. However, for the mesh size of 560
 400 elements, a large number of inner iterations
was needed to converge the energy equation, especially for the P ¼ f3, 2, 2, 2g basis function set.
It is expected that the use of a smaller time step will speed up the convergence of the nonlinear
enthalpy-temperature iterations for the finer meshes. Regarding the L2 error norms, similar errors
are observed for the first three mesh sizes with respect to the finest mesh of 560
 400 elements
with both the P ¼ f2, 1, 1, 1g and the P ¼ f3, 2, 2, 2g basis function sets. We believe this is due to
the inability of the coarse meshes to properly resolve the multicellular flow, leading to an

Figure 8. Mesh convergence study based on the absolute velocity at the line y ¼ 31:75mm: Two sets of finite element polyno-
mial orders are selected, these are P ¼ f2, 1, 1, 1g and P ¼ f3, 2, 2, 2g for mass flux, pressure and enthalpy, temperature, respect-
ively. BDF2 time-stepping with Dt ¼ 0:025 s was used for a total simulation time of 85 s. The raw data of the gallium melting
case is included in a Zenodo repository [80]. (a) Absolute velocity, p1p2p1 (b) Absolute velocity, p2p3p2.

Table 5. Relevant quantities from mesh convergence analysis for the gallium melting in a rectangular container case.

Polynomial order Mesh size
Average number of
inner iterations

Total liquid
fraction L2T L2H L2U

P ¼ f2, 1, 1, 1g 35
 25 5.86, 1.00 0.108 1.62(–1) 1.86(–1) 6.24(–1)
70
 50 7.90, 1.00 0.110 1.50(–1) 1.41(–1) 7.49(–1)
140
 100 10.86, 1.00 0.110 1.42(–1) 1.47(–1) 7.38(–1)
280
 200 23.34, 1.21 0.108 1.59(–2) 4.84(–2) 1.00(–1)
560
 400 70.91, 15.78 0.110 2.93(–3) 1.63(–2) 1.56(–2)

P ¼ f3, 2, 2, 2g 35
 25 6.86, 1.01 0.108 1.37(–1) 1.65(–1) 6.89(–1)
70
 50 8.80, 1.00 0.109 1.15(–1) 1.31(–1) 6.29(–1)
140
 100 13.82, 1.11 0.109 1.20(–1) 1.22(–1) 6.47(–1)
280
 200 18.53, 1.12 0.109 1.55(–2) 5.34(–2) 1.01(–1)
560
 400 231.32, 152.01 0.109 N/A N/A N/A

BDF2 time-integration with a time step of Dt ¼ 0:025 was used and the total simulation time was 85 s. The raw data of the
gallium melting case is included in a Zenodo repository [79].
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incorrect prediction of the number of vortices. With respect to the 140
 100 mesh, the 280
 200
mesh presents a significant decrease in error. From the current numerical results, it is difficult to
deduct the mesh convergence rate. However, based on the observations from the 1D Stefan prob-
lem and the octadecane melting in a rectangular enclosure case, we expect the mesh convergence
to be around O(h).

Figure 9 depicts the contour plots of the absolute velocity at various time steps. The right
image shows the results obtained with the present numerical campaign, the left image depicts the
reference solution of Hannoun et al. [47]. Amongst the different meshes, we selected the
280
 200 mesh for our final simulations with a time step of Dt ¼ 0:025s: Contrary to the octade-
cane melting case, the P ¼ f3, 2, 2, 2g basis function set was used because the results with the
280
 200 mesh (in particular the number of vortices) remained stable for different time step sizes
as opposed to the P ¼ f2, 1, 1, 1g basis function set (as can be seen in the time step refinement
included in the numerical data repository [80]). As mentioned earlier, we belief the resolution of
the multicellular flow patterns benefits from the use of a higher-order finite element basis func-
tion set. The results obtained with the current numerical campaign and the results from the refer-
ence solution appear to be almost identical, despite differences in the modeling approach
(“linearized enthalpy approach” versus “source-based enthalpy approach”) and the numerical
method (DG vs. FVM). The mesh resolution is equal to 0.3175mm, similar to the mesh reso-
lution of 0.4mm used for the grid-converged simulations of Schroeder and Lube who also used a
DG-FEM method for modeling solid–liquid phase change with quadratic elements for the velocity
and the temperature [53]. Like-wise, qualitatively similar results were obtained with a significantly
coarser grid as compared to the reference simulations of Hannoun et al. [47], where a 840
 600
uniform grid was used. Overall, the results from the Gallium melting case indicate the potential
benefit of using discontinuous Galerkin methods for modeling melting/solidification problems,
especially those where large gradients in the flowfield are present, as an alternative to the conven-
tionally used finite volume method.

The results from the mesh refinement studies performed for the 1D Stefan, octadecane melting
and gallium melting cases indicate that the proposed DG-FEM method is able to solve solid–
liquid phase change problems with an accuracy of around O(h). Therefore, in the vicinity of the
solid–liquid interface, a lower-order method with refined mesh might be preferable. As the results
from the gallium case show, regions with strong gradients in the velocity field could still benefit
from a higher-order discontinuous Galerkin method. Most likely, the same would apply to areas
of interest far away from the solid–liquid interface (for instance in problems where the phase
change is highly localized), although this was not investigated in the present article. Combining

Figure 9. Absolute velocity contours for melting of gallium in a square enclosure, at, respectively, 20, 32, 36, 42, 85, 155, and
280 s. Left image shows the results as obtained by the numerical benchmark of Hannoun et al. [47], the right image shows the
results from the current numerical campaign. 280
 200 P ¼ f3, 2, 2, 2g elements were used. Time-integration was performed
using the BDF2 finite difference scheme and Dt ¼ 0:025 s: The raw data of the gallium melting case is included in a Zenodo
repository [80].

22 B. J. KAAKS ET AL.



the current DG-FEM “linearized enthalpy approach” method with adaptive grid refinement (see
for instance Belhamadia et al. [49]) could be the next step toward the development of more
accurate and computationally efficient numerical methods for solving solid–liquid phase change
problems. Another interesting approach could be the use of an extended finite element basis
(such as proposed by Chessa et al. [24]) which provides a better treatment of discontinuous solu-
tions within the element as opposed to the classical polynomial finite element basis functions.

6. Conclusion and recommendations

This work presents a novel method for the numerical solution of solid–liquid phase change prob-
lems, where the “linearized enthalpy approach” was coupled to a discontinuous Galerkin frame-
work. Compared to the apparent heat capacity method and the source-based approach, the
“linearized enthalpy approach” has the advantages of being inherently thermal energy conserva-
tive, having a comparatively fast convergence of the energy equation for each time step, and not
depending on the use of a so-called mushy zone. DG-FEM was selected for its attractive features,
i.e., local conservativity, the possibility for upwinding, an arbitrarily high order of accuracy, high
parallelization efficiency and high geometric flexibility. In particular, DG-FEM has the potential of
offering a higher spatial resolution as compared to the finite-volume method, resulting in a more
accurate and computationally efficient numerical method. The present numerical method was vali-
dated with the one-dimensional Stefan problem and the two-dimensional melting of octadecane in
a square cavity and melting of gallium in a rectangular cavity cases. For the one-dimensional Stefan
problem, the numerical method converged to the analytical solution and for both the octadecane
and gallium melting cases, a good agreement between the current numerical campaign and the
experimental and numerical reference solutions was observed. Comparatively few iterations were
needed to solve the energy equation at each time step and the number of iterations appeared to
scale well with an increasing time step. For both the one-dimensional Stefan problem and the 2D
octadecane melting in a square cavity cases, approximately linear (O(h)) convergence rates were
observed regardless of the element order. This suboptimal mesh convergence rate was a conse-
quence of the deteriorated solution quality in the vicinity of the solid–liquid interface, due to the
discontinuous enthalpy and temperature solutions when undergoing phase change. Only for the gal-
lium melting in a rectangular cavity case an increase in performance from increasing the polyno-
mial order of the finite element basis could be observed. As the results from the Gallium case
show, mainly solid–liquid phase change problems with strong gradients in the flowfield can benefit
from the present higher-order DG method. Probably, the same applies to problems with regions of
interest far away from the solid–liquid interface. To take full advantage of the arbitrarily high order
of accuracy of the DG-FEM numerical method, we recommend combining the current approach
with adaptive grid refinement or an extended finite element basis as a next step toward the devel-
opment of more accurate and computationally efficient numerical methods for modeling melting
and solidification.
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