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RESEARCH

Neurophysiological validation 
of simultaneous intrinsic and reflexive joint 
impedance estimates
Ronald C. van ’t Veld1* , Alfred C. Schouten1,2, Herman van der Kooij1,2 and Edwin H. F. van Asseldonk1

Abstract 

Background: People with brain or neural injuries, such as cerebral palsy or spinal cord injury, commonly have joint 
hyper-resistance. Diagnosis and treatment of joint hyper-resistance is challenging due to a mix of tonic and phasic 
contributions. The parallel-cascade (PC) system identification technique offers a potential solution to disentangle 
the intrinsic (tonic) and reflexive (phasic) contributions to joint impedance, i.e. resistance. However, a simultaneous 
neurophysiological validation of both intrinsic and reflexive joint impedances is lacking. This simultaneous validation 
is important given the mix of tonic and phasic contributions to joint hyper-resistance. Therefore, the main goal of 
this paper is to perform a group-level neurophysiological validation of the PC system identification technique using 
electromyography (EMG) measurements.

Methods: Ten healthy people participated in the study. Perturbations were applied to the ankle joint to elicit reflexes 
and allow for system identification. Participants completed 20 hold periods of 60 seconds, assumed to have constant 
joint impedance, with varying magnitudes of intrinsic and reflexive joint impedances across periods. Each hold period 
provided a paired data point between the PC-based estimates and neurophysiological measures, i.e. between intrinsic 
stiffness and background EMG, and between reflexive gain and reflex EMG.

Results: The intrinsic paired data points, with all subjects combined, were strongly correlated, with a range of 
r = [0.87 0.91] in both ankle plantarflexors and dorsiflexors. The reflexive paired data points were moderately corre-
lated, with r = [0.64 0.69] in the ankle plantarflexors only.

Conclusion: An agreement with the neurophysiological basis on which PC algorithms are built is necessary to sup-
port its clinical application in people with joint hyper-resistance. Our results show this agreement for the PC system 
identification technique on group-level. Consequently, these results show the validity of the use of the technique for 
the integrated assessment and training of people with joint hyper-resistance in clinical practice.

Keywords: Joint resistance, System identification, Parallel-cascade model, Electromyography, Validation
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Background
People with brain or neural injuries, such as cerebral 
palsy or spinal cord injury, commonly have an increased 
joint resistance (or ’hyper-resistance’) [1]. This joint 

hyper-resistance can severely impair both walking ability 
and functional independence. The origin of the hyper-
resistance can vary and arises from one or multiple of the 
following categories [2]:

Intrinsic:

1 a tissue-related non-neural origin, e.g. shortened 
tissue or fibrosis;
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2 a tonic neural origin, i.e. involuntary background 
muscle activation;

Reflexive:

3 a phasic neural origin, i.e. stretch hyperreflexia 
(’spasticity’).

The mixed origin of the joint hyper-resistance creates 
a challenge in the diagnosis and treatment of hyper-
resistance. Ideally, diagnostic methods unravel the 
three contributions to hyper-resistance [2]. However, 
current clinical practise lacks a valid and reliable pro-
cedure to unravel these contributions. Besides, cur-
rent treatment includes non-specific interventions with 
questionable cost-effectiveness. For example, Botuli-
num neurotoxin injections reduce both involuntary 
background activation and spasticity, but also the abil-
ity to perform voluntary muscle contractions [3, 4].

The parallel-cascade (PC) system identification tech-
nique offers a potential solution for the integrated 
assessment and treatment of joint hyper-resistance 
[5]. The technique disentangles and simultaneously 
estimates the intrinsic and reflexive contributions to 
joint impedance, i.e. the joint’s resistance to imposed 
motion. PC algorithms have been used successfully 
to assess joint hyper-resistance compared to a control 
group and to assess the effect of treatments on joint 
resistance [6, 7]. Moreover, an online PC algorithm is 
available, which directly estimates joint impedance 
contributions during data acquisition and can conse-
quently be used to provide biofeedback [8]. Training 
people using this joint impedance biofeedback was 
shown to achieve voluntary within-session modulation 
of both intrinsic and reflexive contributions indepen-
dently [9]. This ability to train joint impedance modula-
tion enables a novel treatment using the PC algorithm 
to specifically reduce spasticity. For such a treatment, 
the within-session modulation of reflexive impedance 
should be consolidated to an across-session, long-term 
effect. This transformation from within- to across-ses-
sion effects are key for an effective intervention and has 
been shown in electromyography (EMG)-based operant 
conditioning protocols [10, 11].

The main goal of this paper is to perform a group-level 
neurophysiological validation of the PC system identifi-
cation technique to support its clinical application. The 
validation is performed using the online PC algorithm, 
because of the ability to provide biofeedback. Primarily, 
the neurophysiological validation will be performed by 
investigating the linear association of the system identifi-
cation outcome measures [9] with equivalent EMG-based 
outcome measures [10, 11]. We expect the following 

parameters to be correlated (also see pilot experiment 
[12]): 

1 estimated intrinsic joint stiffness is correlated with 
background EMG activity in both ankle plantarflex-
ors and dorsiflexors [13];

2 estimated reflexive gain is correlated with reflex 
EMG activity in the ankle plantarflexors only [9].

Secondarily, the effect of varying voluntary torque on 
these linear associations is investigated, as the various 
assessment and treatment methodologies use a mix of 
relaxed and tonically activated plantarflexors [6, 11]. The 
change between the relaxed and activated conditions is 
known to influence both the intrinsic joint stiffness and 
reflexive gain [14].

This study investigates the agreement between the PC 
system identification technique and the neurophysiologi-
cal basis on which it is built [5]. The association between 
PC algorithms and EMG-based outcome measures has 
been investigated for reflexive contributions only [9, 
15, 16]. However, validating both intrinsic and reflexive 
pathways simultaneously is important, given the mixed 
intrinsic and reflexive origins of joint hyper-resistance. 
Besides, all previous results investigating this linear asso-
ciation were restricted by limited or no variation in vol-
untary muscle activation. A successful validation would 
increase clinical confidence in the PC technology when 
used for people with joint hyper-resistance.

Methods
Participants
Ten people with no history of neuromuscular disorders 
participated in the study (4 female, age 27.8±1.7 yr). The 
EEMCS/ET ethics committee of the University of Twente 
approved the study and all participants provided written 
informed consent.

Apparatus
The experiment was executed using an adjustable chair, 
actuator, EMG device and feedback screen, see Fig.  1. 
Participants were seated on the adjustable chair, which 
supported the upper leg and upper body, while control-
ling for hip (120◦ ) and knee (150◦ ) angles. The right foot 
was connected to the actuator, integrated into the frame 
of the chair, using a rigid footplate and Velcro straps. The 
ankle and actuator axes of rotation were visually aligned 
before the start of the experiment, minimizing knee 
translation due to the applied ankle rotations.

A one degree of freedom actuator (Moog, Nieuw-
Vennep, The Netherlands) was used to apply the pertur-
bations required for the PC algorithm. These position 
perturbations were applied in the sagittal plane around 
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the ankle joint. The actuator’s encoder measured the 
position and velocity of the footplate as indirect measure 
of the imposed ankle position (i.e. angle) and velocity (i.e. 
angular velocity). Similarly, a torque sensor was placed 
between the footplate and actuator as indirect measure of 
resulting ankle torque. Position, velocity and torque were 
recorded at 2048 Hz, all defined positive in dorsiflexion 
direction.

A Porti EMG device (TMSi, Oldenzaal, the Neth-
erlands) recorded activity of the Soleus (SOL), Tibi-
alis Anterior (TA), Gastrocnemius Medialis and Lateralis 
(GM and GL) muscles at 2048 Hz. EMG electrodes were 
placed according to the SENIAM guidelines [17].

A feedback screen provided biofeedback at a rate 
around 25  Hz using Matlab 2017b (Mathworks, Natick, 
MA, USA). The 2D feedback screen, see Fig. 1, visualized 
a 6  s historic trace of the low-pass filtered torque (2nd-
order, 0.1  Hz, critically-damped) in combination with 
the intrinsic stiffness or reflexive gain parameter from 
the online PC algorithm. Using the online PC algorithm 
estimates was challenging, as these estimates had a long 
transient period of about 15  s before becoming reliable 
[8, 9]. Therefore, each data collection period only started 
when both researcher and participant mutually agreed 
that the participant could keep the feedback constant.

Experimental protocol
First, an appropriate joint angle to elicit reflexes was 
determined for each participant, as reflexes depend on 
joint angle [14]. An initial trial was run at a 90◦ ankle 
angle, i.e. the angle between shank and foot determined 

using a goniometer. This initial trial also familiarized par-
ticipants with the robotic setup, applied perturbations, 
feedback screen and task instructions. If participants had 
an estimated reflexive gain below 3  Nm·s/rad at 0  Nm 
torque, the ankle angle was increased in 5 ◦ steps. This 
more dorsiflexed ankle angle was used to increase the 
minimum reflex magnitudes and avoid multiple measure-
ments close to zero distorting data analysis. Eventually, 
5 participants performed the experiment at a 90◦ ankle 
angle and another 5 at 95◦.

The experiment was split in 4 blocks of max. 15 min 
with continuous perturbations and biofeedback. A 3−5 
min break was included between blocks to avoid fatigue 
and loss of concentration. Participants were instructed to 
keep their voluntary torque between the two torque tar-
get boundaries. Moreover, participants were instructed 
to generate this torque by focusing on ankle rotation 
without using the upper leg. The torque target switched 
between the 0 and −5  Nm levels in randomised order, 
also within blocks. The difference in torque levels was 
selected to be large enough to impact both intrinsic and 
reflexive pathways [14], while limiting fatigue. Moreo-
ver, in each block, the participant was motivated to find 
5 different combinations of torque and depicted intrinsic 
stiffness (Block 1 & 3) or reflexive gain (Block 2 & 4). The 
participant was requested to hold each combination of 
torque and the impedance parameter (stiffness or reflex-
ive gain) constant for 60 seconds, referred to as a ’hold 
period’. Between hold periods, participants searched for a 
new impedance parameter value different from the aver-
ages in previous hold periods.

The protocol was intended to measure a large range of 
intrinsic and reflexive impedances within each partici-
pant. This large range of variation is desired to properly 
investigate the association between the PC algorithm 
and EMG-based outcome measures. Participants could 
use the provided biofeedback to guide their modulation 
strategy across hold periods and to keep the parameters 
constant during the hold periods, see Fig. 1. No specific 
instruction on modulation strategies were given and co-
contraction was permitted. Participants were instructed 
to keep away from the average impedance parameter 
magnitudes measured in previous hold periods. These 
average magnitudes were shown on screen as black-
dashed vertical lines, see Fig.  1. Participants started the 
experiment with a screen without any black-dashed lines 
in Blocks 1 & 2 and placed an additional line with each 
completed hold period. The lines from Blocks 1 & 2 were 
used as starting point in Blocks 3 & 4 respectively.

Online joint impedance estimation
The online algorithm of the PC system identification 
technique was used to simultaneously estimate intrinsic 

Fig. 1 Experimental setup overview. Participants were seated on 
an adjustable chair with their right foot connected to an actuator, 
applying perturbations around the ankle joint. Feedback was given 
using a (blue) 2D trace on both torque (y-axis) and an impedance 
parameter (x-axis). On the y-axis, a (red) torque target was shown 
around either 0 or −5 Nm. On the x-axis, (black-dashed) reference 
lines were shown with the average magnitude of the impedance 
parameter from previously completed 60 s hold periods at each 
torque level. In the specific example situation depicted, a participant 
would have had the following two tasks: (1) (y-axis) keep voluntary 
torque stable within the target boundaries around −5 Nm; and (2) 
(x-axis) keep the impedance parameter stable and away from the 
black-dashed reference lines shown
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and reflexive impedances based on the model of Fig.  2. 
The PC model consisted of an intrinsic and reflexive 
pathway to relate the position perturbation as input with 
the measured torque response as output. The online PC 
algorithm required a 2 ◦ amplitude pulse-step position 
perturbation to be applied to the joint. Moreover, the PC 
model assumed a constant voluntary torque, therefore 
the initial impedance estimates after a change in torque 
target were unreliable for about 15 s [8, 9].

Algorithm
The implemented algorithm was based on the original 
algorithm combined with some specific improvements 
to decrease the bias on the identified parameters [8, 12]. 
The algorithm consists of the following 10 steps: 

1 The measured position (with neutral position sub-
tracted), velocity and torque signals were low-pass 
filtered (2nd-order, 100 Hz, Butterworth) to remove 
high-frequency noise.

2 The acceleration was estimated via numerical dif-
ferentiation (4th order, backwards difference) of the 
low-pass filtered velocity.

3 The torque was high-pass filtered (2nd-order, 
0.033 Hz, Butterworth) to remove any constant vol-
untary torque.

4 The 9 auto- and cross-correlation between position, 
velocity and acceleration, as well as the 3 cross-cor-
relation between torque and position, velocity and 
acceleration were computed via a low-pass filter 
(2nd-order, 0.033 Hz, Butterworth).

5 The intrinsic inertia I, damping B and stiffness K 
parameters were estimated by solving an equation 
relating the 12 auto- and cross-correlations.

6 The intrinsic torque contribution was computed 
as defined in Fig.  2 using the estimated I, B and 
K parameters and high-pass filtered (2nd-order, 
0.033 Hz, Butterworth) to remove the mean.

7 The reflexive torque was taken as measured torque 
minus intrinsic torque, see Fig.  2. The velocity was 
half-wave rectified and high-pass filtered (2nd-order, 
0.033 Hz, Butterworth).

8 An anti-aliasing filter was applied to both reflexive 
torque and half-wave rectified velocity (8th-order, 
81.9 Hz, 0.05 dB) and both were downsampled with a 
factor 10, to 204.8 Hz.

9 The reflexive IRF was estimated every 48.8 ms using 
a linear least-squares method, based on the reflexive 
torque and lagged half-wave rectified velocity (rang-
ing from min. 50 ms to max. 400 ms lag) both with a 
data length of 1 s, see [8].

10 The reflexive gain G was computed as the sum of the 
reflexive IRF. The time series of reflexive gains G was 
then low-pass filtered (2nd-order, 0.033  Hz, Butter-
worth).

Pulse‑step perturbation
The online PC algorithm required a purposely designed 
pulse-step position perturbation [8]. The estimation 
of the intrinsic parameters (Step  5) was based on the 
assumption that the cross-correlation between torque 
and position, velocity and acceleration are not affected 
by any reflexive contributions. The dedicated pulse-step 
perturbation signal was required to comply with this 
assumption and to avoid biased intrinsic parameter esti-
mates. The signal randomly switched between ’pulses’, 
ramp-hold-return perturbations with a 40 ms width, and 
’steps’, ramp-hold-return perturbations with a 460  ms 
width. The rising and falling edge position profiles were 
equal for pulses and steps and were generated by low-
pass filtering (2nd-order, 30  Hz, critically-damped) a 
rate-limited (227.6 rad/s) block pulse. The perturbation 
was low-pass filtered and rate-limited to avoid excessive 
oscillations and overshoot in the imposed ankle position.

Data analysis
The study outcome measures were based on the K and G 
parameters of the PC algorithm and the EMG measure-
ments. For each hold period, an average of the intrinsic 
stiffness (K) and reflexive gain (G) was obtained. The 
model fit quality for each hold period was investigated 
by checking the amount of variance accounted for (VAF) 
of the measured torque ensemble. The torque ensemble 

Intrinsic Pathway

Reflexive Pathway
Fig. 2 Parallel-cascade joint impedance model with intrinsic and 
reflexive pathway. The intrinsic pathway was modelled as a 2nd-order 
mass-spring-damper system with parameters: inertia I, damping B 
and stiffness K. The reflexive pathway was modelled based on the 
40 ms delayed, half-wave rectified velocity using 2nd-order muscle 
activation dynamics and a parameter for reflexive gain G 
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was obtained by aligning all data at dorsiflexion pertur-
bation onset and removing average background torque 
measured over the 40 ms period before onset. The online 
PC algorithm does not estimate all parameters of the PC 
model required to calculate model torque output, which 
is used to compute the VAF, see Fig. 2. Therefore, the uni-
dentified activation dynamics parameters ω and ζ had to 
be estimated afterwards during data analysis. A nonlinear 
least squares optimization procedure was used per data 
point to find the ω and ζ maximizing VAF.

Average background and reflex EMG measures were 
calculated based on [10, 11], see Fig. 3a. Before analysis, 
the EMG measurements were high-pass filtered (2nd-
order, 5 Hz, Butterworth) and rectified. The background 
EMG measure should reflect an average activity over the 
short, unperturbed period before perturbation onset. 
Therefore, background EMG activity was computed as 
the mean EMG activity over the 40 ms period before each 
dorsiflexion perturbation onset. The reflex EMG meas-
ure should reflect the true reflexive magnitude, observed 
as characteristic double-peak shape after rectification. 
Accordingly, reflex EMG activity was defined as the root 
mean square (RMS) of a subject-specific 20 ms window 
centered around M1 reflex activity. Before computing 
RMS, mean background activity was subtracted and the 
resulting signal was half-wave rectified. For the SOL, GM 
and GL reflex measures, dorsiflexion perturbation onset 
was used as timing reference. For the TA reflex measure, 
plantarflexion perturbation onsets of all steps were used 
as reference. Pulses were excluded for the TA, as the TA 
muscle stretch during a pulse follows only 40  ms after 
shortening.

Each hold period provided a paired data point between 
intrinsic stiffness and background EMG, and between 

reflexive gain and reflex EMG. A total of 200 hold peri-
ods (20 hold periods for 10 participants) were executed, 
equally split between the 0 and −5  Nm torque levels. 
Some data points were removed due to EMG measure-
ment artifacts. Additionally, one data point was removed 
as the participant indicated that she had executed the 
task instructions incorrectly. She modulated the imped-
ance parameter by deliberately varying voluntary torque. 
Therefore, 94 to 100 paired data points remained to 
investigate the linear associations.

Linear associations for both intrinsic and reflexive 
pathways were calculated on group-level using Pearson’s 
correlation coefficient, r. The correlation coefficient can-
not be computed directly across the dataset, because 
the absolute values showed a subject-specific slope and 
intercept, see Fig. 3b. Therefore, all investigated datasets 
were normalized using the Z-score per participant. The 
Z-score standardization avoids any influence of subject-
specific slopes and intercepts on the correlation coef-
ficient, see Fig. 3c. The robustness of r was investigated 
using the 95% confidence interval (CI) constructed via a 
non-parametric bootstrap procedure using the bias cor-
rected and accelerated method [18]. All data analysis was 
performed using Matlab 2017b (Mathworks, Natick, MA, 
USA).

Results
We investigated the neurophysiological validity of an 
online PC algorithm, which disentangles the intrinsic and 
reflexive contribution to joint impedance. Participants 
completed 20 hold periods of 60  s with varying magni-
tudes of intrinsic and reflexive joint impedances across 
2 voluntary torque levels, 0 and −5 Nm (plantarflexion). 
Each hold period provided a paired data point between 

a cb

Fig. 3 Data analysis methodology. a Background and reflexive EMG activity were calculated using the perturbation onset as reference. Background 
activity was based on the 40 ms period before perturbation onset, while reflexive activity was based on a 20 ms period about 40 ms after 
perturbation onset. b Absolute and c normalized correlation analysis. Both plots show a representative example using the intrinsic stiffness and SOL 
background EMG outcome measures collected at a 0 Nm torque target. A total least squares (TLS) fit shows the slope and intercept of the datasets 
of each individual participant
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estimated intrinsic stiffness and background EMG, and 
between estimated reflexive gain and reflex EMG. These 
paired data points were used to study the linear associa-
tion by analyzing the correlation coefficient.

Experiment time series
The measured time series signals show the stretch reflex 
elicitation and causality within the reflex loop in response 
to a position perturbation, see Fig.  4. The dorsiflexion 
perturbations stretch the ankle plantarflexors (SOL, GM 
and GL) and first show a reflexive EMG response after 
roughly 40 ms. This EMG response is followed by a con-
traction of the plantarflexors resulting in a reflexive plan-
tarflexion torque with a peak roughly 150-200  ms after 
perturbation onset. Note, the antagonist TA muscle also 
appears to show reflexive EMG activity 40 ms after dor-
siflexion perturbations, however this is considered to be 
cross-talk from the plantarflexors [9].

The processed time series show the simultaneous 
increase of the joint impedance parameters and EMG 

activity for both intrinsic and reflexive pathways across 
hold periods, see Fig.  4. The transition period between 
the hold periods lasted a minute, to have the participant 
familiarize themselves with the new task execution. Fur-
thermore, the transition period is required to avoid vio-
lation of the online PC algorithm’s constant voluntary 
torque assumption.

Hold period ensemble averages
The simultaneous variation in joint impedance param-
eters and EMG activity was further investigated using 
the ensemble averages of each hold period, see Fig.  5. 
The model fitted the torque ensembles with a VAF of 
76.2± 7.2% with a range of [56.9 88.6]% across all hold 
periods and participants. The activation dynamics 
parameters found via nonlinear optimization to compute 
the VAF were: ω = 11.4 ± 2.0 rad/s and ζ = 0.76± 0.12 . 
To check the constant voluntary torque assumption, 
the variance of the measured torque at all dorsiflex-
ion perturbation onsets within a 60  s hold period was 

Fig. 4 Time series of measured and processed signals, typical example for a single representative participant. (Left) Four consecutive dorsiflexion 
perturbations with perturbation onset (grey-dashed vertical lines). The response to the position perturbations are shown for the high-pass filtered, 
rectified EMG of Triceps Surae (TS) and TA as well as measured ankle joint torque. (Right) Two consecutive 60s hold periods (grey background) 
with transition period. 2D feedback was provided on torque and intrinsic stiffness. The time series show the voluntary modulation of the low-pass 
filtered torque and active torque target (red), intrinsic stiffness K, background SOL EMG activity, reflexive gain G and reflexive SOL EMG activity. The 
PC algorithm parameters K and G were computed continuously, while the EMG activity computations were performed around every perturbation 
onset
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investigated. Across all participants, the hold periods 
showed a significantly lower torque average standard 
deviation at the 0 Nm target ( σ = 0.78± 0.26) Nm than 
at −5  Nm ( σ = 1.32± 0.27)  Nm with t(9) = −7.93 , 
p =< .001 (paired t-test).

An increased intrinsic stiffness was reflected in a 
larger plantarflexion torque across the 400  ms period 
after perturbation onset. Moreover, the increased stiff-
ness was also reflected in increased background activ-
ity in both plantarflexors and dorsiflexors. This torque 
response matched with the concept of intrinsic stiffness, 
because the 2 ◦ dorsiflexion step perturbation lengthened 
the plantarflexor muscle-tendon unit over this entire 
400  ms period. The EMG response showed the neural, 
non-velocity dependent contribution to joint impedance, 
with a large intrinsic stiffness matching high levels of 
co-contraction.

An increased reflexive gain was reflected in a larger 
reflexive plantarflexion torque with peak around 150-
200 ms after perturbation onset. Moreover, the increased 
reflexive gain was also reflected in a larger EMG burst 
activity. The delayed timing with respect to perturba-
tion onset and limited duration of both torque and EMG 
responses matches with the concept of a stretch reflex. 
The reflexive torque response is further delayed and 
smeared out compared with the EMG response due to 
the muscle activation dynamics, as included in the PC 
model Fig.  2. Note, EMG burst activity in the TA was 

observed in all participants after perturbations towards 
plantarflexion, stretching the TA, not the dorsiflexion 
perturbations shown in Fig. 5.

Correlation analysis
The consistency of the simultaneous variation of the 
joint impedance parameters and EMG activity across 
all participants and torque levels was investigated using 
Pearson’s correlation coefficient, see Fig.  6 and Table  1. 
For the intrinsic pathway, a positive correlation at both 
torque levels was observed for all muscles. For the reflex-
ive pathway, a positive correlation at both torque levels 
was only observed for the plantarflexors.

The intrinsic pathway (top row of Fig. 6) showed fairly 
similar linear trends in the plantarflexors for the two 
torque levels, whereas the linear trend of the dorsiflexor 
differed between both torque levels. Furthermore, the 
correlation analysis at the −5 Nm level was restricted to 
smaller intervals for all muscles. All observations for the 
intrinsic pathway were caused by the additional plantar-
flexion activation required to reach a −5 Nm plantarflex-
ion torque. On the other hand, the range of dorsiflexor 
muscle activity was not influenced by the −5 Nm level. 
These changes in muscle activation limit the range of 
plantarflexor activity and intrinsic stiffness. In contrast, 
maximum values for background EMG as well as intrin-
sic stiffness reached similar magnitudes at both torque 
levels.

Fig. 5 Ensemble averages (±SD) of hold periods with modulated impedance, typical examples for a single representative participant. Ensemble 
averages of the measured signals, created by aligning all step perturbations at perturbation onset (grey-dashed vertical lines). %VAF was computed 
using the measured and modeled torque ensemble of both step and pulse perturbations. The K (Nm/rad) and G (Nm/rad/s) parameter values 
provided represent the mean value across each hold period. All torque ensembles were normalized by subtracting the average background torque 
to enhance visualization of intrinsic and reflexive torque effects. All three hold periods were executed at a 0 Nm torque target
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The intrinsic pathway had a moderate to strong cor-
relation with a range of r = [0.52 0.91] . If the two torque 
levels are considered separately, the degree of correlation 
was different between both levels for the three plantar-
flexors, based on the 95% CIs. The 0  Nm level showed 
a strong correlation ( r = [0.87 0.91] ) compared with a 
moderate correlation at −5 Nm ( r = [0.52 0.68] ). For the 
dorsiflexor, both torque levels showed a strong correla-
tion ( r = 0.91 and 0.84).

The reflexive pathway (bottom row of Fig.  6) also 
showed fairly similar linear trends in the plantarflex-
ors for the two torque levels, while the TA muscle 
trends differed. Again, low values of EMG activity were 

sporadically reached at the −5  Nm torque level, while 
maximum EMG values were more similar, especially for 
GM and GL. Contrary to the intrinsic pathway, the range 
of reflexive gain values did not seem restricted due to the 
−5 Nm torque level. Moreover, a relative shift appeared 
in the relation between EMG and reflexive gain in the 
lower range values (i.e. left hand side). The same level 
of reflex EMG corresponded to a lower level of reflexive 
gain in the −5 Nm task compared with the 0 Nm task.

The reflexive pathway had a weak to moderate corre-
lation in the plantarflexors ( r = [0.31 0.69] ). The 0  Nm 
level showed a moderate correlation ( r = [0.64 0.69] ) 
compared with a weak to moderate correlation at −5 Nm 

Fig. 6 Linear associations between Z-score normalized joint impedance parameters and EMG activity across all participants. All datasets are shown 
for all hold periods across both torque levels. The TLS fit is shown for both torque levels to help visualize and interpret the linear associations

Table 1 Pearson’s correlation coefficients (r) and their 95% confidence intervals across all hold periods (N = 94-100) 

Correlations between identified intrinsic stiffness and background EMG activity (intrinsic pathway) and identified reflexive gain and reflex EMG activity (reflexive 
pathway). The 95% confidence intervals were constructed using a non-parametric bootstrap procedure

Intrinsic Reflexive

Torque 0 Nm −5 Nm 0 Nm −5 Nm

SOL 0.89 [0.82, 0.93] 0.68 [0.53, 0.78] 0.64 [0.46, 0.75] 0.54 [0.34, 0.69]

GM 0.89 [0.82, 0.93] 0.54 [0.33, 0.67] 0.69 [0.57, 0.78] 0.31 [0.13, 0.50]

GL 0.87 [0.80, 0.92] 0.52 [0.35, 0.66] 0.68 [0.48, 0.78] 0.54 [0.38, 0.65]

TA 0.91 [0.84, 0.95] 0.84 [0.78, 0.89] 0.37 [0.13, 0.56] −0.02 [−0.24, 0.20]
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( r = [0.32 0.55] ). Contrary to the intrinsic pathway, the 
95% CIs did overlap, except for the GM. The dorsiflexor 
had a weak correlation r = 0.38 at 0 Nm and no correla-
tion r = −0.02 at the −5 Nm level.

Discussion
The main goal of this paper was to support the clinical 
application of the PC system identification technique 
through a neurophysiological validation on group-level. 
For the intrinsic pathway, a strong positive correlation 
between estimated intrinsic stiffness and background 
EMG was observed for plantarflexors and dorsiflexors 
at a 0 Nm voluntary torque level. For the reflexive path-
way, a moderate positive correlation between estimated 
reflexive gain and reflex EMG was only observed for the 
plantarflexors at the 0 Nm torque level. For both intrin-
sic and reflexive pathways, a lower degree of correlation 
was found for the −5 Nm plantarflexion torque condition 
compared with a 0 Nm torque level.

Linear association parallel‑cascade system identification 
and EMG
The linear association between PC system identifica-
tion technique and EMG outcome measures was previ-
ously only investigated for the reflexive pathway [9, 15, 
16]. The multitude of outcome parameters used and 
the use of both between within- and between-subject 
measurements make it difficult to compare the previ-
ous results. Two studies investigated between-subject 
measurements. The first study investigated the intrin-
sic and reflexive ankle impedance components in stroke 
survivors using an offline PC algorithm [15]. The rela-
tive between-subject contribution of both intrinsic and 
reflexive impedance on the total response torque meas-
ured was investigated using the VAF. They found an 
unquantified positive association between the VAF by 
the reflexive contribution and reflexive EMG gain of GM 
or GL. The second study used an offline PC algorithm 
to investigate the intrinsic and reflexive contributions to 
wrist impedance in people with Parkinson’s disease [16]. 
The effect of medication on the neural, phasic compo-
nent was studied by comparing the correlation between 
reflexive torque and reflexive EMG. For both on- and off-
medication conditions moderate correlations of r = 0.45 
and 0.46 were found. Finally, one study investigated the 
within-subject voluntary modulation of reflexive imped-
ance and stretch reflexes using the online PC algorithm 
[9]. For a single representative participant a correlation 
of r ≈ 0.98 between reflexive gain and GL reflexive EMG 
was found to confirm that both measures modulated 
simultaneously.

The linear association between joint impedance 
and EMG is best investigated using within-subject 

measurements. Multiple subject-dependent characteris-
tics influence both EMG amplitude, e.g. varying amounts 
of fat tissue, and joint impedance amplitudes, e.g. passive 
muscle slack length. These underlying subject-dependent 
characteristics would directly influence the linear asso-
ciation when between-subject measures are used. We 
applied a Z-score standardization to the data of each par-
ticipant separately to compute a combined within-sub-
ject correlation coefficient. If all participants contribute 
the same number of samples, the combined correlation 
coefficient would equal the mean correlation of all ten 
participants. Therefore, our within-subject results can be 
compared directly with the within-subject results of [9].

Our results showed a lower correlation between reflex-
ive gain and reflexive EMG of the GL than [9] at a 0 Nm 
torque target ( r = 0.68 vs. 0.98). These results can poten-
tially be explained by the differences in protocol and data 
analysis. First, the results of [9] were based on a single 
participant instead of ten. When calculating correlation 
coefficient for each individual a range of correlation val-
ues of r = [0.04 0.94] was found compared with r = 0.68 
at group-level. However, as the individual results were 
based on only 10 paired data points per participant, a 
dedicated study design is recommended for validation 
on an individual level. Second, [9] did not allow co-con-
traction to reduce variation in intrinsic stiffness. This 
reduced variation could improve reflexive gain estimates, 
as simulation results showed that the online reflexive gain 
estimate is influenced by changes in intrinsic stiffness [8]. 
Third, the result of [9] was obtained in a second session, 
thus the participant was more familiar with the experi-
ment and task. This familiarity could improve control 
over both reflexive impedance and torque and as result 
improve the quality of the parameter estimations.

The higher degree of correlation for the intrin-
sic compared with the reflexive pathway potentially 
reveals a better neurophysiological basis for the intrin-
sic pathway. However, the correlation sensitivity to 
both within-subject modulation range and amount 
of variation around the true value has to be taken as 
reservation. First, participants perceived modulat-
ing intrinsic impedance easier than reflexive imped-
ance, as participants were used to conscious intrinsic 
stiffness modulation through co-contraction in daily 
living. This familiarity could have increased relative 
modulation range, thus resulting in larger correlations. 
Second, the reflexive gain parameter showed higher 
levels of variation during hold periods, see Fig. 4, which 
could result in a lower correlation. Note, the results of 
the dorsiflexor TA muscle was not taken into account 
when comparing correlations between the intrinsic 
and reflexive pathway. The dorsiflexor was excluded, 
because the input of the reflexive pathway in the PC 
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model only uses the dorsiflexion perturbations, which 
stretch the plantarflexors, and not the plantarflexion 
perturbations, which stretch the dorsiflexors.

Despite the strong and moderate correlations found 
for the intrinsic and reflexive contributions to joint 
impedance, the neurophysiological basis of both path-
ways can be extended upon. Recent studies have shown 
that additional model parameters and elements are 
required to build complete models. The maximum VAF 
of 88.6% found in our results does indicate that there 
are unmodeled system dynamics in the experimental 
data. For the intrinsic pathway, a third-order model can 
better capture the agonist-antagonist musculoskeletal 
structure of the human ankle than the second-order 
IBK model used [19]. Fortunately, the estimated intrin-
sic stiffness component only shows a small bias for the 
90-95◦ ankle positions used. For angles smaller than 
90◦ the IBK model overestimates the stiffness, whereas 
for angles larger than 95◦ the IBK model underesti-
mates the stiffness [19]. For the reflexive pathway, sev-
eral studies about muscle spindles and spasticity have 
shown that the reflexive response is not only velocity 
dependent. Complete models would also potentially 
require elements based on acceleration, force and force 
derivative [20–22]. Note, all pulse and step pertur-
bations applied during our experiment stretched the 
plantarflexors with exactly the same velocity, accelera-
tion and force profile. Therefore, all observed modula-
tions of joint impedance are attributed to task-driven 
changes made by the participants, which justifies the 
use of the PC model.

The 0  Nm torque target is recommended for future 
neurophysiological validation of joint impedance esti-
mation algorithm, as it showed better characteristics 
for correlation analysis. Again, the sensitivity of the 
correlation analysis could explain the decrease in corre-
lation at the −5 Nm target. First, Fig. 6 shows a smaller 
modulation range at −5 Nm on group-level, decreasing 
correlation. Second, correlation could have decreased 
due to increased variability as participants perceived 
it more difficult to keep torque constant at the −5 Nm 
level ( σ = 1.32  Nm vs. 0.78  Nm at 0  Nm). The algo-
rithm assumes this voluntary torque to be constant, 
thus torque variability can increase joint impedance 
estimation errors [8]. Third, small EMG magnitudes 
were occasionally measured from a specific muscle 
within a participant. As result, the amount of modu-
lation observed also remained small. The small EMG 
magnitudes occurred most frequently within the GM 
or GL muscle in combination with the −5 Nm torque 
condition. These occurrences for the GM and GL are 
reflected in the lower group-level correlations com-
pared to the SOL.

Clinical application parallel‑cascade system identification
The successful neurophysiological validation on group-
level should support the clinical application of the PC 
model. This neurophysiological validation for the group 
of system identification methods is supported by the 
large degree of association between online and offline 
PC algorithms [8, 9]. A specific example of valid clini-
cal applications would be within rehabilitation, utiliz-
ing the PC algorithms to unravel intrinsic and reflexive 
contributions. For example, this information could help 
in clinical decision making process to evaluate the cur-
rent neurological impact of brain or neural injuries [6] or 
the effects of other treatments [7]. A strict limitation of 
the PC model is that isometric experimental conditions 
are required. Thus, self-generated movements cannot be 
analyzed using the PC model and other system identifi-
cation techniques are required, e.g. [23]. Compared to 
our experimental conditions, recent advances did show 
that isometric conditions with faster variations in volun-
tary torques can be studied using the PC model [24]. As 
result, application of the PC model to evaluate functional 
tasks within a clinical setting, such as walking or balance, 
is difficult, because self-generated movement is a critical 
element of these tasks. Nevertheless, there is a relevant 
clinical need to unravel the contributions to joint hyper-
resistance, even within an isometric context [2]. Still, 
the results do not show a perfect correlation between 
the joint impedance estimates and EMG measurements, 
which does raise a question which methodology is more 
suitable for use in clinical practise.

The lack of gold standard for reliably unravelling intrin-
sic and reflexive joint resistance contributions [2], makes 
it difficult to select the best method, EMG-based or 
PC-based, to quantify hyper-resistance in a clinical set-
ting. Both methods could have their potential strengths 
and weaknesses depending on the hypothesized origin 
of a patients functional impairment and user aim. First, 
the joint impedance estimates and EMG measurements 
act at a joint and muscle level respectively. Second, the 
PC-based methods outcome measures are in mechanical 
units (K in Nm/rad and G in Nm·s/rad), whereas EMG-
based methods have electrical units of V. As result, the 
PC-based measures can be more directly related to the 
concept of resistance as felt by clinicians. Moreover, 
these outcome measures remove the need for normaliza-
tion as required for the EMG-based methods to compare 
between-subject or across-session within-subject results. 
Third, the online PC algorithm showed slow variations, 
whereas online EMG measurements show fast varia-
tions, see Fig. 4. The online PC algorithm was purposely 
designed for these slow variations, as implementation of 
a 0.033  Hz low-pass filter improved participant control 
over the biofeedback [8]. Consequently, the online PC 
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algorithm requires a transient period of about 15 s before 
estimates become reliable [8, 9]. On the other hand, due 
to the fast variations EMG-based methods are gener-
ally based on ensemble averages and hence require mul-
tiple perturbations to obtain a reliable measure as well. 
Fourth, PC-based methods require an experimental setup 
similar to Fig.  1 with a powerful actuator to apply the 
stretch perturbations. However, the need for EMG and 
sometimes even electrical stimulation [10, 11] equipment 
would be avoided. Contrarily, EMG-based methods can 
be used for motorized assessment, requiring less power-
ful actuators, and can even be executed without actuator 
at all via manual assessment [25].

Study limitations
The study protocol design limits our results and conclu-
sions to a group-level, as discussed above, and data peri-
ods of 60  s, assumed to have constant joint impedance. 
Moreover, the correlation coefficient used is sensitive to 
the ratio of within-subject modulation range and amount 
of variation around the true value. This effect influenced 
both the difference between the 0 and −5 Nm torque lev-
els and the intrinsic and reflexive pathways. Furthermore, 
a limited amount of EMG activity in the GM and GL 
muscles in some participants also influenced the study 
outcome in a similar manner. To mitigate issues due to 
correlation sensitivity, biofeedback was provided on both 
torque and joint impedance with instruction to minimize 
variations within hold periods. Additionally, the joint 
impedance biofeedback helped to increase modulation 
range. Unfortunately, the large modulation range did 
in turn increase variability again for high intrinsic and 
reflexive impedance values, see Figs. 4 and 5. Moreover, 
the inclusion of several 60  s hold periods at high mus-
cle activation levels also induce fatigue and hence again 
additional variability in the measurements. In short, 
participant instruction and protocol design were aimed 
to balance these multiple sources of variation to reduce 
their effect on the correlation coefficients.

Conclusions
We have shown the neurophysiological validity of the PC 
system identification technique on group-level through 
the evaluation of an online PC algorithm. As hypothe-
sized, for the intrinsic pathway, a strong positive correla-
tion between estimated intrinsic stiffness and background 
EMG was found for both plantarflexors and dorsiflexors. 
For the reflexive pathway, a moderate positive correlation 
between estimated reflexive gain and reflex EMG was 
found for the plantarflexors only. For both intrinsic and 
reflexive pathways, a higher degree of correlation was 
found for the 0 Nm voluntary torque condition compared 
with a constant −5 Nm plantarflexion torque.

The successful neurophysiological validation shows the 
validity of the PC model and system identification tech-
niques to study the human physiological system. The 
simultaneous validation of both intrinsic and reflexive 
pathways performed is important given the mix of physi-
ological origins of joint hyper-resistance. As result, it is 
valid to use the PC system identification technique for 
the integrated assessment and training of participants 
with joint hyper-resistance in clinical practise.
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