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Abstract
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functionality, which is currently lacking from TomTom geocoding systems. Auto-
completion is a highly desirable feature enabling users to perform their task more ef-
fectively, by providing suggestions for completing their queries as they start to type.

Implementing such functionality in the specific context of geocoding systems
raises several constraints and requirements not dealt within related literature. After
identifying all the requirements, this thesis will presentthe overall approach and the
algorithms used to meet all of them, including a novel algorithm for offering location
biased query completion suggestions.

The thesis will end with conclusions and ideas for future work, but not before
an experimental analysis which reveals some interesting characteristics of the system
and provides guidelines on getting the best performance forthe system by properly
adjusting the data that it operates on.
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dorra geocoder, in preparation for its launch.

Developing the algorithms presented in this thesis was a gradual process, starting from
desired properties derived from the functionality of some of the most advanced existing so-
lutions on one hand, and existing approaches to addressing the problem, which only covered
part of these desired properties, on the other. In the end, I believe a suitable meeting point
was reached: the resulting algorithms draw inspiration from existing approaches, but also
offer extensions that enable the successful implementation ofall the desired properties.
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the process of writing this thesis.
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notes on my thesis early on. And last, but definitely not least, I would like to thank Jason
Griffin, who offered me the internship within TomTom, and thus the chance to gain useful
practical experience as well as to research an interesting topic for my master thesis.
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Chapter 1

Introduction

This chapter will introduce the basic notions that create the context of this thesis project
and will present the problem statement from a business pointof view. We will start with
an introduction to TomTom and the company’s main products. We will then discuss the
Andorra Geocoding System and its role within the company. This will create a proper
foundation for an exact formulation of our problem statement speaking strictly from the
perspective of TomTom’s business need. Future chapters will deal with translating this into
a research problem and discussing the proposed solutions.

1.1 TomTom and the Andorra Geocoder

TomTom was founded in 1991 by Peter-Frans Pauwels, Pieter Geelen, Harold Goddijn and
Corinne Vigreux who are all currently still working within TomTom. Having studies in
Business and Computer Science completed at the University of Amsterdam, Peter-Frans
Pauwels founded, along with his former university colleague Pieter Geelen, a company
called Palmtop Software, with the initial aim of building general software solutions for mo-
bile devices. Harold Goddijn, who also studied economics atthe University of Amsterdam
and Corinne Vigreux who has studies in International Affairs, soon joined the company,
which was later renamed to TomTom.

Until 1996, the company developed a number of business-to-business applications for
mobile devices such as bar-code reading, meter reading and order-entry systems, before
shifting focus to developing consumer software products for personal digital assistant de-
vices (PDAs). By 1998, TomTom was established as a market leader in PDA software,
creating a number of consumer applications for PDAs, such asthe EnRoute (later renamed
RoutePlanner) and Citymaps navigation applications.

In 2001, as more accurate GPS satellite readings became available, TomTom looked
towards in-car navigation as a major opportunity for innovation. The company’s first navi-
gation (software) product for PDAs, the TomTom Navigator, was launched in 2002. In 2004
the Navigator targeted for PalmOS was launched, based on a cross-platform navigation en-
gine still used in current products. The company’s first stand-alone portable navigation
device (PND), the TomTom GO, was introduced in March 2004 andmarked a turning point
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1.1 TomTom and the Andorra Geocoder Introduction

in TomTom’s story. It featured a 3.5” 320x240 touchscreen, a200 MHz CPU, 32 MB of
RAM and an integrated SD reader, at a very competitive price (at the time) of £499. The
maps provided with the device came from Tele Atlas, a Netherlands-based company special-
ized in delivering digital maps and other dynamic content for navigation and location-based
services. The TomTom GO met a need for a portable fit-for-purpose navigation device that
was simple to use, affordable and worked better than any other navigation solution on the
market and effectively defined a new category of consumer electronics: thePND. Its suc-
cess was immediate, and by the end of the year of its launch, sales of the GO device formed
60% of the company’s revenue. In 2007, TomTom took over theirmap data provider, Tele
Atlas, after a bidding war with United States-based rival Garmin. The final accepted offer
was worthe2.9 billion.

Although TomTom has become nearly synonymous to the PND in the company’s recent
history, due to its success in this active market segment, the company’s product offering is
much wider and also includes in-dash infotainment systems,fleet management solutions,
maps and real-time services, including the award winning HDTraffic, which makes the
most up-to-date traffic information available, in order to optimize routing. Branching out
to new solutions is necessary, as the PND market is currentlyin decline. However, it is ex-
pected to endure for a long time and may never disappear. TomTom aims to slow the decline
and lengthen its life by improving the user experience and through innovation. In-dash in-
fotainment systems, on the other hand, will be a growth area.Such solutions are analogous
to the PND, but are integrated with the car that is equipped with them. It will take a long
time to develop these markets, because cars have long development and replacement cycles
compared to consumer electronics. TomTom already currently provides in-dash navigation
solutions for several car companies, such as Renault and Mazda.

Since 2004, TomTom has sold over 55 million PNDs and since 2009 over 2 million in
dash navigation systems. TomTom maps cover over 100 countries, reaching more than 3
billion people. These figures establish TomTom as a world leading supplier of navigation
products and services, and with the new products under development, TomTom aims to
maintain this position.

Traditionally, TomTom’s biggest rival is considered the American GPS solutions provider
Garmin, mainly because of the competition between the two companies on the PND market.
However, the product offerings of the two companies have significant non-overlapping areas
as well. For instance TomTom also offers in-dash navigation solutions for the automotive
industry. On the other hand, Garmin also has solutions for the aviation industry. Differ-
ent TomTom products have to compete with products coming from different competitors.
Whereas Garmin is the main competitor on the PND marked, TomTom’s RoutePlanner
(which can be found athttp://routes.tomtom.com/) competes with similar services
provided by Google Maps and Bing Maps. RoutePlanner has the advantage of benefiting
from up to date traffic information, whereas Google Maps has better support for Points of
Interest (i.e. finding locations by name, rather than address, where applicable) and includes
auto-completion functionality.

Headquartered in Amsterdam, TomTom has over 3,500 employees in offices located in
30 countries. There are four offices in the Netherlands: two in Amsterdam (the headquarters
and customer care center), one in Eindhoven (Automotive) and one in Amersfoort (iLocal).
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Figure 1.1: TomTom’s organizational chart

Across the world TomTom offices are located in Austria, Belgium, Denmark, France, Ger-
many, Hungary, Italy, Poland, Russia, Spain, Sweden, Switzerland, UK, USA, Mexico,
Canada, China, India, Indonesia, Japan, Korea, Malaysia, Singapore, South Africa, Taiwan,
Thailand, Turkey and Australia.

Figure 1.1 shows TomTom’s current organizational chart (asof January 2012), high-
lighting the company’s departments.

TomTom comprises four business units, as indicated by this figure: Consumer, Auto-
motive, Business Solutions and Licensing. These can be seenin the Markets section in the
figure, and correspond to the markets currently targeted by TomTom. The products to sup-
port TomTom’s business units are developed in the corresponding product units shown in
the chart. Most names are self-explanatory. The work of the different business units is dis-
tributed across multiple TomTom offices worldwide, even at the level of individual teams.
Hence, distributing work on a specific project across multiple countries or even continents
is very common within TomTom.

The specific product that this thesis is concerned with, named Andorra, is ageocoding
system, developed under LBS (for Location-Based Services) Product Unit. A geocoding
system is a software system used for finding geographic coordinates (latitude and longi-
tude) using other geographic data, most notably text-form addresses consisting of street
names, city names, postcodes, or combinations thereof, which are much easier to interpret
by humans. Andorra is currently used by Business Solutions to enable fleet management
businesses to do geocoding. Andorra will soon also be available on demand to a larger num-
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1.1 TomTom and the Andorra Geocoder Introduction

Figure 1.2: XML response given by Andorra for a geocoding query

ber of clients, through its inclusion in the Consumer business unit. Geocoding functionality
is essential to a large number of TomTom applications, such as the online RoutePlanner or
mobile applications that meet different needs. In the following we will give a brief introduc-
tion into the main constraints and challenges that need to betackled in building a geocoding
system.

The set of all addresses that can be geocoded to is finite, albeit very large. Andorra,
for instance, needs be able to geocode to nearly 1.2 million settlements and over 68 million
street-level addresses. Moreover, the addresses to which the system needs to be able to
geocode have a very strict and well-defined structure.

The input to a geocoding system will be referred to as aquery. An example of a typical
query that a geocoding system needs to handle is ”Kerkstraat, Amsterdam”. The response
for such a query, regardless of the way it is displayed, consists of the latitude and longitude
of the location to which the query is geocoded, along with other geographical information
that is associated to that location and that the geocoding system supports. Figure 1.2 shows
an example output in XML format from TomTom’s Andorra Geocoder for the above men-
tioned query.

This example shows the typical structure of a returned address for a particular geocod-
ing query. All returned addresses have such a structure, andall the data needs to be derived
from a user query containing a combination of city name, street name, postcode or other
geographical data. We also note that although the displayedresult can take many forms
(one option would be to display only theformattedAddressfield above to the user), the un-
derlying structure of the result always resembles what is depicted in Figure 1.2.

We also note that ambiguity is not a characteristic of the underlying data. All possible
latitude-longitude pairs that exist in the geocoder data source uniquely define all locations
that can be geocoded to, and the underlying data provides theinformation associated to
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Figure 1.3: The query input interface of the Andorra geocoder

each such location. However, ambiguity is something a geocoding system may have to deal
with. The following aspects are among the most important to be considered in order for the
geocoder to provide the desired behavior:

• The use of synonyms: As far as the geocoding system is concerned, the underlying
data defines the truth about the real world. But it is fairly common for the underlying
data to contain names such as ”Glenwood Ave”, for example. Itis up to the geocoding
system to offer its users the flexibility of being able to retrieve such a street with a
query for ”Glenwood Avenue”, which is not the correct streetname according to the
data, but can be assumed to refer to the same thing.

• Ambiguous queries: Some queries are more specific than others. For instance, a
query simply stating ”Amsterdam” as a city name could be referring to Amsterdam,
The Netherlands, as well as Amsterdam in the state of New York, USA. Depending
on the available data, it is up to the geocoding system to define a certain preference
between the two in the case of this ambiguous query whenever possible and whenever
it is considered fit to do so. For example, Amsterdam in The Netherlands should be
seen as the more likely desired result, as it is a major European capital. On the other
hand, if extra knowledge is available, stating that the useris located in the proximity
of Amsterdam, NY, USA, the balance may be tipped the other way.

Furthermore, queries are generally split into two classes:structuredqueries andunstruc-
tured or free-textqueries. Figure 1.3 shows part of the user interface used in the develop-
ment of Andorra - namely, the part that enables input to be provided to the geocoder - with
a query for ”100 Kerkstraat, Amsterdam, NL”, in both structured and unstructured form.

Note that the input to the geocoding system need only be one ofthe two types of queries
and structured queries are preferred, as they don’t have thesame potential for ambiguity that
unstructured queries do. That is because although most address formats are similar regard-
less of the country, when providing free-text queries usersshould be free to both change the
order of the different elements of the address provided, as well as skip over certain elements
in the address. Hence the main difficulty in handling free-text queries: figuring out what
address element each input token stands for. This task is further complicated by the fact
that many geographical elements (most notably streets) have names consisting of multiple
tokens.
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1.1 TomTom and the Andorra Geocoder Introduction

Figure 1.4: Response from Andorra for an unstructured queryfor ”Amsterdam”

Andorra does not officially support free-text queries at the time of this writing, but it is
planned to offer such support in the near future. A basic form of unstructured query han-
dling is implemented. The functionality currently supported matches an input query against
a complete address string in order to find the one that is the closest match to the entered
string by looking at tokens common to both. This offers particularly poor performance in
the case of ambiguous queries. Consider for example an unstructured query simply stating
’Amsterdam’. The result for such a query is shown in Figure 1.4 as currently provided by
Andorra.

As we can see in this figure, although the second suggestion seems like the most
likely match for the given query, the first suggestion that ismade is a street in Amsterdam,
whose name also matches (depending on the matcher used) the name Amsterdam. This may
not happen on many examples. However, a high number of irrelevant suggestions are also
made: basically all the streets in Amsterdam are returned, the set only being limited in this
case by the maximum number of addresses that we chose to retrieve. This can be expected
to happen for any query containing a city name and no street name. Ideally, a system for
dealing with unstructured queries would transform such inputs into structured queries, by
best interpreting what each token stands for. In the exampleabove, the input string should
be interpreted as representing a city. This would avoid bothproblems identified here. As
adding proper support for unstructured queries is work in progress, we will assume that
such functionality is in place. Moreover, it is required that unstructured queries perform
best when the input is nicely formatted, i.e. the query iswell structured. For our purposes,
we will define this to mean one of two possible formats: either”street name, city name,
country name”or ”city name, country name”.

6



Introduction 1.2 Problem statement

1.2 Problem statement

The goal of this thesis is to research effective techniques of building a real-time auto-
completion engine for free-text queries for the Andorra geocoder. Auto-completion al-
gorithms aim to offer search query suggestions in real-time, as the user is typing. This
functionality is currently lacking from TomTom geocoders,but could be desirable for a
number of applications that rely on the geocoding service. The advantages of implementing
auto-completion functionality into the geocoding system include:

• better user experience: As the user is typing, providing useful suggestions is an ef-
fective way of helping the user perform their task more efficiently.

• improved accuracy: Spelling mistakes are very common due to a series of factors.
The situation only gets worse when the user has to formulate aquery with strict
constraints, quite possibly in a language that the user doesnot know, as is often the
case with geocoding systems. The right suggestion could be very useful for someone
typing, as it could save the person the trouble of having to type many related queries
before getting the name right, or having to look up the exact spelling of the name
somewhere else. For instance, more or less surprisingly, ”Manhattan” is one of the
most misspelled location names in America, according tohttp://www.epodunk.
com/top10/misspelled/.

The problem of providing auto-completion suggestions has multiple variations. For in-
stance, depending on the type of suggestions that need to be offered, auto-completion may
need to suggest common natural language expressions, frequently observed user queries,
or suggestions from a fixed set, possibly depending on context. This last type of auto-
completion system is common in tasks such as suggesting terms from a dictionary or com-
pletion suggestions for source code in IDEs, whereas the former two are commonly used in
general search engines, such as those designed to search theentire Web. Our requirements
resemble the ones addressed by auto-completion engines that work on a fixed set of sugges-
tions. That is, the fixed set of addresses that we need to be able to geocode to represents the
set of all the possible suggestions we need to support.

Another important characteristic of auto-completion systems has to do with whether or
not support for suggestion ranking is required. Even when ranking needs to be supported
there can be variations in the requirements. While auto-completion strategies for IDEs may
only need to specify a ranking between suggestions based on the context and the type of
matched token, an auto-completion engine for geocoding systems should be able to deal
with arbitrary distributions over supported queries.

Because the geocoder is a tool that sits at the base of a large number of functionalities
supported by TomTom products, the auto-completion system has a large number of poten-
tial stakeholders who use geocoding and who want to offer the before mentioned benefits to
their customers. This includes the online RoutePlanner (http://routes.tomtom.com/)
and other not yet released products that offer various services to users of mobile applica-
tions.

Auto-completion functionality is commonly incorporated in many search systems, in-
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1.2 Problem statement Introduction

Figure 1.5: The auto-completion functionality offered by Google Maps

cluding geocoding systems. Concerning the competing products, auto-completion function-
ality is offered by Google Maps, but not by Bing Maps, at the time of this writing. The best
known example of the use of auto-completion system for geocoding is Google Maps’ func-
tionality, illustrated in Figure 1.5.

In the figure we can see that as the user has started typing a query, the software sys-
tem suggests ways to expand the already typed string to a complete address that the user is
likely to be intending to type. The string typed by the user shall be referred to as aprefix
string. There is a double challenge in building an auto-completionsuggestions engine: on
one hand, an efficient framework for providing suggestions based on user-entered prefix
strings is needed. On the other hand, it is desired that the best use is made of domain-
specific knowledge and system usage information, in order toensure the relevance of the
suggestions made.

Therefore, TomTom’s main requirements for an auto-completion system, that this thesis
should address, are as follows:

• Main Requirement 1: The auto-completion system should be able to make query
completion suggestions with real-time performance.

• Main Requirement 2: The auto-completion system should offer support for arbitrary
distributions over the supported query suggestions that itcan make.

Note that we have named these requirements (the names being Main Requirement 1 and
Main Requirement 2), so that we may refer to them throughout this thesis. Main Require-
ment 1 may seem ambiguous right now, but we will see in the following chapter how this
translates to a technical requirement. For now we only specify that the user needs to have
the perception that the system is reacting immediately to analteration of the provided query

8



Introduction 1.2 Problem statement

Figure 1.6: Query completion suggestions for the prefix ”Amsterdam” as offered by Google
Maps

prefix. Main Requirement 2 simply states that the system should accept input consisting
of the supported suggestions, with arbitrary weights associated to them, representing their
relative priorities, and then make suggestions according to these priorities.

Thus, the problem statement consists of researching techniques that can be used to add
such functionality to TomTom’s Andorra geocoder. Hence, the geocoder should offer clients
the possibility of efficiently retrieving a list of suggestions for a provided prefix, ordered ac-
cording to relevance.

Because we are dealing with the problem of auto-completion in the context of a system
that retrieves addresses, we also require that suggestionsbe presented in a format that in-
cludes the complete hierarchy of geographical data describing an address, as we can see in
Figure 1.6. The reason for this is that the completion suggestion making process is -in gen-
eral, at least- completely separate from the actual geocoding. Thus, as explained earlier, it is
desirable to provide the free-text query processor with an input that it can best interpret. We
will aim for a general enough implementation so that it shouldn’t matter how we define this
property, but to be going on with, we will consider that only well structured suggestions,
as defined previously, should be made. This cannot be seen as an added requirement to the
auto-completion system in itself, however, since the data provided to the auto-completion
system as supported suggestions should simply represent such address strings, and it is the
job of the system making use of the auto-completion system toprovide this data.

Figure 1.6 also shows an example of meeting Main requirement2. Source data, as well
as user logs could be used to assign priorities to suggestions, but regardless, it is useful to
derive information that allows the system to decide to promote, for example, a street in New
York (”Amsterdam Avenue”) as a more likely candidate than a town named ”Amsterdam”
in the state of Missouri for a given prefix.

In addition to these requirements that are inherent to an auto-completion system as
described above, next we identify some extra requirements that are specific to offering auto-
completion functionality for geocoding systems. These extra requirements were derived
from observing such functionality as it is offered by competing products and following dis-
cussions with potential users of the geocoding service fromother teams inside TomTom.

One such feature is illustrated in Figure 1.7: the system should also offer suggestions

9



1.2 Problem statement Introduction

Figure 1.7: Well-structured query completion suggestionsfor prefixes not obeying the well
structured address format

of which the partial query typed is a substring which is not a prefix of the well structured
query. This is particularly interesting for geocoding systems. One important argument for
the necessity of supporting this feature is that we are dealing with a setting in which it is
quite likely that the user is very unfamiliar with the query that they are trying to formulate.
Thus, when searching for ”Sendlinger-Tor-Platz, Munich, Germany”, a user who is unfa-
miliar with the spelling could first type the city name in order to restrict the search scope. It
is, therefore, desirable in this case that a query prefix of ”Munich, Se”, for example, should
still produce useful suggestions in the well structured format described earlier. This can be
seen to be the case in the example of Figure 1.7. Thus, we can formulate the following
optional requirement:

• Optional Requirement 1: The auto-completion system should offer suggestions that
are well structured, even if the supplied prefix does not obeythis structure.

Another desirable property is the ability of the system to offer suggestions for prefixes that
don’t perfectly match prefixes in the set of supported queries. There are two cases to be
considered here:

• On one hand, we could simply be dealing with a typing error by the user. Such a
scenario is depicted in Figure 1.8. Here, the mistyped name ”Amstrdam” still gets
the useful suggestions for queries containing the name ”Amsterdam”. Such function-
ality is also desirable for the auto-completion system thatwe are developing for the
Andorra geocoder.

• Another type of inexact matching is required in the case of special characters or
groups of characters. This is language-specific behavior. An example of such match-
ing is presented in Figure 1.9. The German language character ’ß’ should be accepted
both as-is, as well as substituted by the character group ’ss’.

Thus, we can formulate the following optional requirement:

• Optional Requirement 2: The auto-completion system should offer suggestions for
mistyped prefixes that do not match any suggestion prefix.

10
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Figure 1.8: Query completion suggestions for the mistyped prefix ”Amstrdam”

Figure 1.9: Query completion suggestions for alternative spelling of the same name

It is also desirable to implement support for alocation biasin the suggestion making
process. That is, the priorities can be altered depending onthe region of the map that
the user is currently looking at, which implies the need to quickly alter the distribution of
matched queries. For the example in Figure 1.9, if the user were zooming into the region of
the map where the city Munich is located, or if we had knowledge that the user is located
somewhere in Munich as they are typing a query, we would prefer to use this knowledge to
promote the street in Munich as the first suggestion.

Thus we derive the following optional requirement:

• Optional Requirement 3: The auto-completion system should allow for making sug-
gestions taking into account both the suggestion weights, as well as the user location,
if available.

The main challenge in meeting this requirement is incorporating location-aware logic into
the suggestion making process, preferably without having to dramatically alter the approach
to making suggestions in a location-unaware context, and preferably at no high computa-
tional cost compared to the standard suggestion-making process.

Remark1.1. Despite the name, the optional requirements mentioned hereare highly desir-
able. The auto-completion system that we are describing in this thesis should be able to
meet as many of these requirements as possible.�
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Thus, the result of this thesis project should consist of a description of algorithmic tech-
niques that can be used to meet the main requirements identified in this chapter, and which
ideally offer extensions to meet all the optional requirements as well.Also, a proof of con-
cept implementation should be made, in order to demonstratethe described algorithms.

1.3 Thesis outline

In the following chapter we will translate the business requirements identified here into a
research question, and we will look at how this problem is approached in existing literature.
We will also look at the available software packages that could address our requirements and
see to which extent they meet our demands. Based on this, we will outline the overall ap-
proach that we will take, motivating our choices using existing conclusions in literature and
knowledge of the particularities of addressing auto-completion in the context of geocoding.
We will then introduce some definitions and properties of thetheoretical model that we will
use as support for our implementation in order to identify its capabilities and its applicabil-
ity to our problem.

The third chapter will describe the actual algorithms that we will use to address all the
requirements identified earlier. We will start with a description of the algorithms for meet-
ing the main requirements for an auto-completion system, and then identify ways to extend
these algorithms to accommodate all of the remaining (optional) requirements. The main
challenge comes from making sure that the added functionality is done in a way that can be
closely integrated with the overall approach and without a high performance penalty.

Then, in Chapter 4 we will explain the experimental setup used to test whether, to which
extent and with what implications these requirements can bemet by the proposed algo-
rithms. We will devise experiments in order to verify that the assumptions we made in
developing our algorithms were true, and we will place particular focus on the impact that
each added functionality has on the performance of the suggestion making process. We will
also test a number of hypotheses about the impact on performance that different choices in
the usage of the system may have.

The main conclusions will be drawn in Chapter 5. We will also take the opportunity
there to outline the main ideas for future work, based on the experimental results from
Chapter 4.

The architecture of the actual implementation will be discussed in Appendix A. The
various components will be described along with their rolesand how they relate to the al-
gorithmic presentation in this thesis.
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Chapter 2

Methods for auto-completion

This chapter will discuss related work done to address the business requirement introduced
in Chapter 1 and formulate the technical requirements for the system that we are develop-
ing. We will first identify geocoding systems as a particularclass of information retrieval
systems and look at what it means to adapt techniques for dealing with auto-completion in
information retrieval systems to the specific context of geocoding.

We will then analyze the handling of the auto-completion problem in literature. We will
also look at existing software packages and derive the overall approach that we will take
based on the conclusions that can be drawn from related work.With these conclusions, as
well as the requirements identified in the previous chapter in mind, we will introduce the
theoretical model that we will use to solve our problem: theProbabilistic Prefix Tree (PPT).
We will look at the literature dealing with PPTs, in order to identify their properties and ap-
plicability to our problem. Subsequent chapters will deal with the actual implementation
and analysis of our algorithms based on PPTs.

2.1 Information retrieval systems and geocoding systems

We begin with a discussion of the broader field of informationretrieval, because, as we will
see, geocoding systems are a particular type of informationretrieval systems, and most of
the literature dealing with the problem of auto-completionis focused on this more general
context. As a particular type of information retrieval system, a geocoder can make use of
similar approaches, but also introduces some extra constraints to be considered.

Information retrieval is the task of searching within a given set of documents, for exactly
those that satisfy a certain information need [4]. The search is done based on a query for-
mulated by the user of the information retrieval system suchthat the underlying information
need is best represented. An information retrieval system then has the task of retrieving the
documents that are relevant for the (most likely) underlying information need, based only
on the given query.

Information retrieval systems are very widespread and intensely used nowadays in or-
der to perform numerous common search tasks, ranging from searching through personal
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e-mails, searching for news articles on a news website to searching the entire Web for a
particular piece of information. The best known example of an information retrieval system
is Google’s search engine, which handles over one billion search requests every day.

Information retrieval systems are often used for search over unstructured documents
(usually containing plain text). An example of informationretrieval through structured data
is when querying a relational database. Searching through aset of documents having a cer-
tain structure (i.e. certain fields), but without many constraints on the field contents is called
semistructured information retrieval [4].

We stated that the task of an information retrieval system isto retrieve documents that
are relevant to a particular information need. However, thesystem does not have access to
the information need, but rather to a textual representation of it (the query) provided by the
user. The task of searching is thus by definition not only given in terms of the query sup-
plied as input, but also in terms of the relation between the query and the likely underlying
information need.

In order to better express this relationship, domain specific knowledge should be used.
For example, in an information retrieval system where the documents are known to repre-
sent scientific papers, we may want to use the knowledge aboutthe structure of a typical
paper in order to give more importance to finding a certain piece of information in the ab-
stract, compared to the other sections, for example. If thisis known to be in accordance with
what users expect, then we have used the extra knowledge about the documents in order to
improve the accuracy of the information retrieval system. Similarly, a geocoding system
expects that a query represents an address, and thus tries tomap the tokens of a given query
to fields of an address, such as street name, city name, etc. Using this extra knowledge cor-
rectly is very important in getting significantly improved performance from the geocoding
system, as explained in the previous chapter, when we discussed the free-text query support
for Andorra.

Another approach commonly used in practice to improve the accuracy of such systems
is machine learning. Machine learning can be seen as the process that enables us to solve
a particular problem when either specifying the problem statement in a rigorous way is not
possible, or finding an algorithm to directly address the problem proves to be a very com-
plex, if at all possible, task [2]. Some examples of tasks that fall under this category are
spam filtering [1], face recognition [11], making personalized recommendations of news ar-
ticles [15] and many more. The way to tackle these problems isby building a simpler model
that enables us to solve the problem in a satisfactory way, for example a parametrized func-
tion computing the probability that a certain user is interested in a certain news article. The
model is configured - that is, its parameters are adjusted - through the use of data. This is the
actual ”learning” task. This approach relies on the belief that there is a process that explains
the data we observe, but we do not know the details of it. The idea is to use a machine in
order to ”learn” to approximate that process.

User feedback is commonly used with machine learning algorithms, not only to assess
the performance of an information retrieval system, but also (as a natural extension) to im-
prove or personalize the system behavior, either in generalor with respect to specific users
[7]. Measures commonly used for user feedback include the amount of time the user spends
on a page, clickthrough data ([15, 7]), and even subjects’ eye movements [8].
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Many of the approaches used in information retrieval systems, including those address-
ing the auto-completion problem can be applicable to geocoding systems as well. For in-
stance, user feedback can be useful in a geocoding system because it could allow the sys-
tem to infer preference relations among different locations to which it can do geocoding,
depending on the query and the knowledge of past usage of the system. Thus, an auto-
completion system for geocoding can make use of implicit feedback to ”learn” to make
better suggestions. To support this it is important that we construct a solution that allows
for a great degree of flexibility when configuring the rankingamong suggestions made, es-
pecially since user preferences are known to change over time.

On the other hand, as a particular class of information retrieval systems, geocoders have
properties that set them apart in this class. Knowledge of these particularities is important
when adapting search or suggestion making techniques used in other search applications.
Such knowledge can help us make simplifying assumptions, but also introduces extra con-
straints and requirements. For instance, a geocoding system does not have to account for
the infinite productivity of natural languages because the addresses that are supported form
a fixed set, leaving no room for generalization. On the other hand, as we specified in the
first chapter, geocoding systems are by definition concernedwith location, and as such they
could benefit greatly from knowing where a certain request iscoming from. For instance
a user typing an address on a mobile device is very likely to belooking for locations in
their immediate vicinity. Thus, making good use of the knowledge of the user’s location is
crucial in order to produce relevant suggestions, at least in some applications.

But before addressing the requirements specific to geocoding systems, we will first
look in the next section at how the auto-completion problem is addressed in literature, in
the related, but more general context of information retrieval systems. We will then look
at available software packages that implement such algorithms. We will end the section by
identifying the shortcomings of these approaches and motivating the introduction of a new
approach, based on the model of a Probabilistic Prefix Tree.

2.2 Literature and software libraries for auto-completion

As mentioned in the previous section, the auto-completion problem is studied in litera-
ture mainly in the general context of information retrievalsystems. We will survey these
approaches in this section and identify their applicability to our problem, and look at the
possible extensions that need to be made to accommodate the extra requirements that come
with supporting auto-completion for geocoding systems.

The requirements are that such algorithms are not only accurate, but also efficient. In
order to get the perception of real-time interaction, a response time of no more than 100 ms
is required [12].

Algorithms for providing query completion suggestions take as input a string which is
assumed to represent the prefix of some query that the user is formulating and output a list
of possible queries that could be derived from that prefix andthat the user is most likely
to have started typing as they were entering the prefix. This problem of offering sugges-
tions from a fixed set of possibilities has been studied in [22, 10]. We will look at those
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approaches in this section. Other variations of the the problem of auto-completion have
also been studied in literature. For instance [9] looks at the problem of making completion
suggestions by taking into account the context in which the to-be-completed word has been
typed. Such considerations do not apply to our problem, however.

A problem similar to ours - that of displaying strings from a fixed set - is studied in [22].
The focus of the paper is on incorporating error-tolerant matching of user prefix queries.
Thus, this paper addresses Optional Requirement 2 (see previous chapter) in addition to our
main requirements. As a distance measure, the well known Levenshtein distance is used [5].
The Levenshtein distance between two strings is defined as the minimum number of edits
needed to transform one string into the other. Three different edits are considered: deletion
of a character, replacement of a character by another or inserting a new character at some
location in the string.

Example2.1. The Levenshtein distance between the strings ’oslo’ and ’snow’ is 3. That is,
we can obtain the string ’snow’ from ’oslo’ through the following sequence of transforma-

tions: oslo
delete
−−−−→ slo ; slo

replace
−−−−−→ sno and sno

insert
−−−−→ snow. �

The well known dynamic programming algorithm for computingthe Levenshtein dis-
tance is based on the following recursive formula for computing the distance between the
prefix of the first string ending at indexi and the prefix of the second string ending at index
j, whereδi j is 0 if the characters at indexi and j in the two strings respectively are the same
and 1 otherwise:

D[i, j] = min(D[i −1, j] +1, D[i, j −1]+1, D[i −1, j −1]+ δi j )

One approach to providing auto-completion is to use ann-gram based algorithm. Ann-gram
is a contiguous sequence of characters of lengthn inside a string.

Example2.2. Consider the string ”abcd”. The 1-grams, also calledunigrams, of this string
are ”a”, ”b”, ”c”, ”d”. The 2-grams, also calledbigrams, are ”ab”, ”bc”, ”cd”. And gener-
ally, a string of lengthmhasm−n+1 n-grams ifm≥ n. �

The intuition is that two strings that are very similar should have a high overlap in their
n-gram sets. To make this more precise, the edit distance between two stringss andr is at
mostk if the intersection between theirn-gram sets is at least (max(|r |, |s|)−n+1)−n·k [22].
This property can be used to enable error-tolerant string matching, based on set-similarity.
These algorithms are considered the state of the art in offline edit distance matching.

For the task of online query completion, an alternative approach using atrie-based al-
gorithm is proposed in [22], and shown to outperform then-gram algorithm. A trie, or
prefix-tree, is a data structure that supports fast search for a string withing a given set. Tries
can also be used to match keys in associative data structureswhere the keys are strings.

Example2.3. An example trie is shown in Figure 2.1. Each of the terminal nodes along
each path represent one supported string, in this case thosebelonging to the set{tex, ted,
tod, ad} �

Example 2.3 shows the main idea behind the use of tries: reduce the storage space re-
quirement and parsing time for all strings by sharing prefixes. While the space reduction
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Figure 2.1: Trie

is dependent on the degree to which the supported strings share prefixes and on the rep-
resentation of the links between nodes, the main advantage is that it now only takesO(m)
time to determine whether or not a string belongs to the set, wherem is the length of the
string we are searching for, as each character needs to have acorresponding transition from
the current state. The same complexity is obtained for adding a string to a trie, through a
process that is very similar to parsing.

Example2.4. Given the trie in Figure 2.1, parsing the string ’tex’ can be done by taking
the the edge labeled ’t’ from the start node, then the edge labeled ’e’, and finally the edge
labeled ’x’ which is the last character in the searched string and leads to a leaf. Hence the
string is successfully parsed. On the other hand, parsing the string ’tall’ would fail as soon
as we find no edge labeled ’a’ after parsing ’t’. Adding a new string to the trie is done
through a similar process, with the only difference that whenever edges with the required
label are not found, they are simply added.�

As example 2.4 shows, whenever parsing a string using a trie,or adding a string to it,
the maximum number of operations is bounded by the length of the string to be parsed or
added. Note that the main advantage of this is that this run-time does not depend in any way
on the total number of strings that the trie is able to parse.

TheO(m) parsing time is implementation specific, however. To achieve it, it is assumed
that the next character can be looked up in constant time. This can be achieved by using
an array to associate a new edge to characters where necessary. This approach can be too
inefficient in terms of space requirements if the supported alphabet is very large, especially
since the number of transitions emitting from each node should be expected to drop as we
go deeper down the tree.

The way error-tolerance is implemented to work with this approach is by adapting the
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well-known dynamic programming algorithm for computing the Levenshtein distance men-
tioned earlier, introducing the notion of anactive node, representing a node that can be
expanded to generate suggestions, based on the given prefix and some threshold for the
maximum tolerated edit distance.

The algorithm to achieve this is described in [22] and we alsopresent its pseudocode
here, as Algorithm 1. The algorithm maintains a set of activenodes,valid, initialized to
contain just the start node and all nodes reachable from it within the maximum provided
edit distance,maxDistance. Then, iteratively, as each character is consumed, the set of
active nodes is replaced by a new set, starting from the current active nodes. If an active
node was reachable within edit distance less than the maximum threshold, then it is main-
tained in the set with an increased distance (this corresponds to removing the currently read
character). The node that follows down the path of the consumed character is added and
the distance is not increased (this corresponds to leaving that character as it is). Finally all
other nodes that follow edges otherwise labeled are added tothe set, with increased dis-
tance (this corresponds to replacing the currently parsed character with another character).
Then the set thus formed becomes the new set of active nodes, and the process is repeated
with the next character in the inputpre f ix. Note that if the distance has already reached
the maximum allowed threshold, only the second of the operations mentioned above can be
performed (the one that does not require further increasingthe distance). Anything that falls
outside the cases mentioned here will not result in active nodes being added to the set. After
parsing the whole string, we can expand all active nodes, as they all correspond to adequate
suggestions for the typed prefix, given the error-tolerancelimit being used.

Example2.5. Figure 2.2 shows how the set of active nodes evolves while parsing the string
’tax’ with the trie in Figure 2.1 and a maximum edit distance threshold of 1. The highlighted
nodes are active, and next to each active node we write the minimum distance of reaching
that node, while consuming the prefix up to a certain point.�

Referring back to the requirements that we introduced in Chapter 1, the previously men-
tioned approaches do not meet several of them. Although the performance of the trie-based
approach is shown to meet real-time requirements, thus meeting Main Requirement 1, set-
ting priorities among the supported strings is not possiblein this implementation. Instead,
the authors suggest making use of a static score for the suggestions made. In order to avoid
sorting a large number of possible suggestions according tothis score, the authors suggest
pre-computing the top-k suggestions associated to each node in the trie. This is a possible
solution to meeting Main Requirement 2, but this approach isnot very flexible. We would
prefer to be able to alter suggestion scores at run-time without having to recompute the
top-k suggestions associated to each node. We also expect that such lists would not be very
useful if we want to alter suggestion rankings based on the user location (to meet Optional
Requirement 3), since in that case the lists are not fixed between different queries. Also,
suggestions are only made for matching prefixes, which does not meet Optional Require-
ment 1. Another shortcoming is that there is no support for a location bias in the suggestion
making process, since location is not an important part of the system under consideration in
the paper.
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Algorithm 1 : GetValidStates(prefix, maxDistance)
input : The query prefix,prefix, and the maximum admissible edit distance,

maxDistance
output: All active states,valid corresponding toprefix
valid←− [];
valid.add(start,0);
foreach node reachable from start within distance i≤maxDistancedo

valid.add(node,i);

foreach character c in the prefix, in orderdo
new valid←− [];
foreach node node in valid, in queue orderdo

if valid[node].distance+ 1 ≤maxDistancethen
new valid.add(node,valid[node].distance+ 1);

if node has child node’ through cthen
new valid.add(node’,valid[node].distance);

l ←−max(newvalid[node].distance,valid[node].distance);
if l + 1 ≤maxDistancethen

foreach child node’ of nodedo
new valid.add(node’,l+1);

valid←− new valid;
return valid;

Another trie-based approach to auto-completion is presented in [10]. The focus here as
well is on achieving error-tolerant auto-completion, but unlike the approach presented ear-
lier, here a database of corrected queries is used to learn tomake corrections by training a
transformation model. A transformation model is defined by decomposing a transformation
from the intended (corrected) queryc to the mistyped queryq into substring transformation
units.

Example2.6. The paper gives as an example the transformationbritney→ britny into the
substring transformation (ortransfeme) units {br→ br, i→ i, t→ i, t→ t,ney→ ny} �

The advantage of this approach is that the transformation model learns to make such
corrections from data, so with sufficient data, error-correction should be expected to per-
form better, as it is more likely to prioritize correcting mistakes that are more common.
This transformation model is used along with a trie that represents the supported queries
which can be suggested by the system. Probabilities are alsoassigned to the edges in the
trie representing the likelihoods of following those edgesfrom the current node. Because
we are lacking a database of corrected queries used against Andorra, we cannot use a simi-
lar approach to error-correction. Instead, we will prefer adapting the edit distance approach
discussed in [22] to our algorithms. We will, however, also be looking to implement a prob-
abilistic approach in order to support suggestion ranking,but we have to come up with an
approach that can be extended to also meet Optional Requirement 1 and Optional Require-
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Figure 2.2: Edit-distance based error-tolerant parsing

ment 3, which are not addressed in [10].
Next we will introduce some software libraries and tools that can be used for providing

auto-completion functionality. The algorithms implemented by these tools are similar to the
ones discussed in literature, with some differences and enhancements as we will see. We
will evaluate their suitability in addressing our problem and we will end by motivating the
choice to develop a new solution from the ground up.

• Sphinx(http://www.sphinxsearch.com/) is a full-text search engine, used for
searching words in indexed documents, similar toApache LuceneandSolr. Hence, it
is essentially an information retrieval system that works with SQL databases, NoSQL
storage and simple files. Such technologies can be used for example in implementing
n-gram-based solutions like the ones described earlier, by indexing documents con-
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sisting of then-grams of the supported queries. Such an approach does present some
shortcomings, though. As stated previously, these approaches are the state of the art
in offline edit distance matching, but are shown to be outperformedby trie-based edit
distance matching solutions for the purpose of online auto-completion. Alternatively,
an index based on supported prefixes can be created, but this would result in a po-
tentially very large index, and despite the moderate memoryrequirements, querying
an index may prove too slow for auto-completion if the index size is too big. Also,
such an approach does not offer the level of flexibility we would like in order to easily
adjust the distribution of queries. Also, there is no included support for implementing
a location bias, and implementing this functionality as a post-search technique could
prove too computationally expensive for a service that aimsto deliver real-time per-
formance.

• LingPipe (http://alias-i.com/lingpipe/) is an open source suite of Java li-
braries for the analysis of human language. It also offers auto-completion function-
ality using a trie implementation over a set of strings, which seems to be the rec-
ommended approach in the present literature as well. The library implementation’s
functionality is similar to the trie-based algorithm discussed earlier, but also supports
ranking among the suggestions that can be made, as it takes asinput a set of strings
along with weights associated to each of them, and produces completions for given
prefixes, ranked according to these weights, thus meeting both of our main require-
ments. Edit distance based error-tolerance is also implemented. However, the imple-
mentation lacks the flexibility to configure probabilities for the supported queries in
real-time, as it uses a scoring scheme based on string similarity and the pre-computed
counts, or weights. Another reason for not being able to use this solution as-is is the
lack of support for matching substrings with arbitrary start index within the supported
query pattern (i.e. this approach does not meet Optional Requirement 1). Thus, well
structured queries, as they were defined in the previous chapter, can only be provided
if the user offers a prefix of that well-structured query, and not for a prefixnot starting
with the smallest element in the address. Also, the implementation is not location-
aware, so Optional Requirement 3 is also not met.

These shortcomings, along with the unexploited potential of using properties particular to
geocoding systems lead us to favor developing an in-house implementation over the gen-
eral solutions presented so far. In order to implement auto-completion for Andorra, we
will make use of the conclusions from the mentioned literature and opt for a prefix-tree
based approach. However, we need to adapt this approach in order to meet the requirements
identified in Chapter 1. Given the conclusions in the existing literature, we expect that a
prefix-tree is a good choice for real-time suggestion making. However, we also need to
account for the ranking of suggestions made in a highly configurable way. In addition to
these main requirements, we should aim for a solution that allows us to easily integrate the
other optional requirements: substring matching, error-tolerance and location bias.

The need to support arbitrary distributions over the suggestions that can be made leads
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to the idea of using a probabilistic approach. We would like to combine this with the bene-
fits in terms of speed offered by prefix trees. A data structure that meets these requirements
is the Probabilistic Prefix Tree, which is a particular classof Probabilistic Automata. We
will use the Probabilistic Prefix Tree as the core model for developing our algorithms. Sev-
eral modifications will be made to this model in order to meet all our requirements. We will
describe all these modifications in the next chapter, as we present our algorithms, but first,
in the following section, we will present a survey of the current literature on these models
in order to get a better understanding of their known properties and thus to establish their
applicability in solving our problem. The algorithms for implementing the desired function-
ality will be described and analyzed in the next chapter, with an experimental evaluation to
follow in Chapter 4.

2.3 Probabilistic Finite Automata and their properties

The goal of this section is to introduce the theoretical concepts necessary in analyzing the
algorithms that we will develop to address the problem that this thesis is concerned with. As
prefix-trees form the basis of our approach, it is important to study the properties of these
structures that have been identified in previous work. Our implementation will be based on
aProbabilistic Finite Automaton (PFA). We will look at the definition and properties of such
structures. Automata are extensively used to model language, but they have also been used
successfully to model physical systems [14], in tasks ranging from increasing sustainability
of existing systems by learning efficient behavior [23] to giving systems the capability to
self-diagnose [3].

We will now define Probabilistic Automata (PA). Definitions of these structures can also
be found in [18] and [17], along with more detailed descriptions and comparisons to other
similar concepts. We shall present the general definitions here and quickly turn our attention
to the class of PAs of particular interest to us.

In order to study PAs we must first introduce the notion ofstochastic language[18]. Let
Σ be a finite alphabet, andΣ⋆ the set of all strings overΣ, including the empty stringλ, and
let Σn (andΣ≤n) represent the set of words of lengthn (and the set of words of length no
greater thann respectively). Alanguageis defined as a subset ofΣ⋆.

Example2.7. Let Σ = {a,b,c}. ThenΣ⋆ is the set{λ,a,b,c,aa,ab,ac,ba, ...}. Any subset of
Σ⋆ defines a language. An example of a language isΣ≤2 = {λ, a, b, c, aa, ab, ac, ba, bb, bc,
ca, cb, cc}. �

Definition 2.1. A stochastic languageψ is a probability distribution overΣ⋆.

Alternatively, we can define asemi-distribution([17]) as follows:

Definition 2.2. A semi-distributionoverΣ⋆ is a functionψ :Σ⋆→ [0,1] satisfying
∑

u∈Σ⋆ ψ(u)≤
1.

Thus, we can give the following alternative definition for a stochastic language:
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Definition 2.3. A stochastic languageψ overΣ⋆ is a semi-distribution overΣ⋆ such that
Σu∈Σ⋆ψ(u) = 1.

Example2.8. GivenΣ= {a,b,c}, the functionψ :Σ⋆→ [0,1] defined byψ(λ)=ψ(a)=ψ(b)=
ψ(c) = 0.25 andψ(u) = 0,∀u ∈ Σ⋆ \ {λ,a,b,c} is a stochastic language overΣ⋆. �

We will denote Prψ(x) the probability associated to a stringx ∈ Σ⋆ under the dis-
tribution ψ. Note that according to the previous definition, the distribution must verify
Σx∈Σ⋆Prψ(x) = 1. Assuming that the distribution is modeled by a machineA, the probability
of x according to the probability distribution defined byA is denotedPrA(x), and the distri-
bution modeled byA will be denotedψA. If L is a language overΣ, andψ is a distribution
overΣ⋆, Prψ(L) = Σx∈LPrψ(x).

In the context of geocoding, the finite alphabetΣ is the set of all characters contained in
the address strings corresponding to locations that can be geocoded to, and the language is
the subset ofΣ⋆ consisting of valid strings that represent addresses. An easy way to con-
form to the definition of stochastic languages would be to assign probability 0 (through the
function ψ) to all strings except the ones representing addresses, andassign equal proba-
bilities to all address strings. Thus, if there aren address strings in total, probability1n can
be assigned to each of them. Alternatively, though, we wouldlike to assign probabilities
depending on the relevance of each string: assigning higherprobabilities to large cities,
compared to small roads in villages, for instance.

Definition 2.4. A sample Sis a multiset of strings fromΣ⋆.

We will denote thesizeof the sample by|S|, and the number of distinct strings inS
by ||S||. Thus, the empirical distribution associated withS will be denoted byψS, i.e.
PrψS(x) = |{x}∩S|

|S| . We will use such samples to generate the distributions of address strings
supported by the auto-completion system.

Next we will first define a semi-PA([17]). We will then be able to define a PA in terms
semi-PAs by imposing a simple condition.

Definition 2.5. A semi-PAis a 5-tupleA=< Σ,Q, δ,γ,τ >, where:

• Σ is the finite alphabet

• Q is a finite set of states

• δ : Q×Σ×Q→ [0,1] defines transition probabilities

• γ : Q→ [0,1] defines the probability of a state being an initial state

• τ : Q→ [0,1] defines the probability of a state being a final state

and the following constraints are satisfied:

•
∑

q∈Qγ(q) = 1
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Figure 2.3: Semi-PA with multiple initial states

• ∀q ∈ Q, we haveτ(q)+
∑

a∈Σ
∑

q′∈Qδ(q,a,q
′) = 1

The functionδ can be interpreted as assigning a probability to each transition from one
state to another. The first constraint in the definition abovestates that the total initial state
probability across the states of the automaton should be 1. Hence there is no notion of the
automaton not generating any string inΣ⋆. It may, however, generate the empty string with
a certain probability in case we have statesq with bothγ(q) > 0 andτ(q) > 0. The second
constraint in the definition is similar to the first, stating that the probabilities of a state being
final or leading to any transition add up to 1, and hence any other option is excluded. These
two constraints ensure that a semi-PA defines a semi-distribution overΣ⋆.

Example2.9. Figure 2.3 shows an example of a semi-PA. Here,Q= {q1,q2}, Σ = {a,b}, and
we assumeγ(q1)= 0.6 andγ(q2)= 0.4. We also assumeτ(q1)= 0, τ(q2)= 0.3 (as indicated
on the states themselves). Theδ probability values are written on the corresponding edges,
along with the edge labels. It is easy to see that the properties of semi-PAs are verified in
this example.�

Definition 2.6. A stateq is said to be aninitial state if γ(q) > 0 and it is said to be a final
state ifτ(q) > 0.

Proposition 2.1. Any semi-PA is equivalent to a semi-PA with one initial state.

Proof. A constructive proof of this proposition is presented in [17]. �

Example2.10. Returning to the example in Figure 2.4, we note that it contained two initial
states:q1 with γ(q1) = 0.6 andq2 with γ(q2) = 0.4. The idea behind converting this semi-
PA to one with one initial state is to add a stateq0 with this designated purpose of being
the single initial state in the semi-PA. The different fields are updated accordingly, such that
a semi-PA generating the same semi-distribution overΣ⋆ is obtained. These changes are
shown in figure 2.5.

In the new semi-PA there is only one initial stateq0 havingγ′(q0) = 1 andγ′(q1) and
γ′(q2) are both set to 0. Nothing else changes forq1 andq2. The probability thatq0 is a
final state is set toτ′(q0)=

∑
q∈Qγ(q) · τ(q), which is basically to account forq0 stealing the
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Figure 2.4: Semi-PA with one initial stateq0

role of initial state from all states that previously had a non-zero probability of being initial
states. The newδ values forq0 are set according to the following formula:δ′(q0,a,q) =
∑

q′∈Qγ(q′) · δ(q′,a,q). It is proven in [17] that this semi-PA is equivalent to the PA in figure
2.4.�

Next, we will define the probability of generating a wordu, which we will denotePA(u).

Definition 2.7. The functionPA : Σ⋆→ [0,1] is defined as follows:

PA(u) =
∑

q,q′∈Qγ(q)δ(q,u,q′)τ(q′)

We can extend the definition of this function to subsetsU of Σ⋆ as follows:

PA(U) =
∑

u∈U PA(u)

Definition 2.8. Let A be a semi-PA. ThenA is a PA if PA is a distribution overΣ⋆.

What we will be using in our implementation is a particular type of PA, known asdetermin-
istic probabilistic finite-state automata (DPA), defined as follows:

Definition 2.9. A Probabilistic AutomatonA=< Σ,Q, δ,γ,τ > is aDeterministic PAif ∀q ∈
Q,∀a ∈ Σ, |q′ : (q,a,q′) ∈ δ| ≤ 1.

DPAs present some advantages over PAs:

• Parsing is easier, since only one path is followed.

• Some intractable problems (such as finding the most probablestring, or comparing
two distributions) become tractable.

• There are a number of positive learning results for DPA that do not hold for PA.
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Figure 2.5: Probabilistic Prefix Tree

The particular case of DPA that we will be studying is theProbabilistic Prefix Tree (PPT),
where the underlying graph is a tree, rooted at the single initial stateq0, and which only
accepts strings in the sample.

Definition 2.10. A Probabilistic Prefix Treeis a deterministic PA with one initial stateq0,
satisfying the following added constraint:

• The underlying undirected graph corresponding to all transitions is a tree

Note that this is similar to the trie introduced in the previous chapter. As described in
[16], we will construct the PPT such that each transition hasa probability which is propor-
tional to the number of times it is used while generating it. Given any finite sampleS, a
PPT can be easily constructed which generates the empiricaldistributionψS.

There are some issues to consider when implementing a PA. Oneissue is that the
codomain of functionsδ andτ is restricted fromR+ to a subset ofQ+.

Example2.11. Figure 2.6 gives a representation of a Probabilistic Prefix Tree. Note that
we will be using integer values to denote weights associatedto each edge. The weight
associated to some edge (q1,a,q2) will be denoted byw(q1,a,q2), whereq1,q2 ∈ Q and
a ∈ Σ. Thus,δ(q1,a,q2)= w(q1,a,q2)

∑
q′∈Q,x∈Σw(q1,x,q′) . �

Note that the weights decrease along each path. This is because in the construction of a
Probabilistic Prefix Tree from a sample, each edge that is added to a state other thanq0 has
a corresponding preceding edge leading into that state. Thus, it is also easy to see that the
properties of Probabilistic Automata are verified.

Another important issue is that if we want to compute the complexity of the algorithms
using PAs, we need a way of expressing the size of a PA. Thus, since the number of bits
needed to represent the symbols in the alphabet or the weights is fixed, a correct measure of
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Figure 2.6: State merging

the size of PAs is the sum of the number of states and the size ofthe alphabet (|Σ|). Given
that the alphabet that we will be working with is fixed, we willonly be concerned with
reducing the number of states where possible.

Approaches to reducing or minimizing the size of PAs are presented in [16, 19, 20, 13].
These approaches make use of state merging to generalize thelearning sample and reduce
the size of the automaton. We will define state merging in the context of Probabilistic
Automata as follows:

Definition 2.11. State mergingis the process of obtaining an automatonA’ from an automa-
tonA by combining two or more of the states ofA into a single state, such that the language
generated by A is a subset of the language generated by A’.

Example2.12. Figure 2.7 shows an example of state merging. As we can see this gener-
alizes the language generated by the automaton in such a way that in the new automaton,
generating the empty string is possible with probability 0.14 and generating the stringab is
also possible, whereas these strings were not part of the language generated by the initial
automaton.�

When performing state merging it should be ensured that the generalization is kept
within certain bounds. For example, the Kullback-Leibler divergence measure between
two distributions can be used to measure the generalizationquality during merging. This
divergence measure between two automataA andA′ is defined as follows:

Definition 2.12. TheKullback-Leibler divergence measurebetween the distributions gen-
erated by two automata A and A’ is given by the formula:

D(A||A′) =
∑

x∈Σ⋆ PA(x) log PA(x)
PA′ (x) .

An algorithm for minimizing PAs through state merging usingthe Kullback-Leibler di-
vergence measure to control generalization is the ALERGIA algorithm [19]. The algorithm
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starts by constructing a prefix tree based on a sample form a certain language, where each
transition has a probability according to the number of times it is traversed when construct-
ing the prefix tree. The algorithm then merges compatible states, where compatibility is
established based on the similarity of suffixes generated from those states. The problem
with the approach is that there is no way to globally control the generalization from the
training sample. The MDI algorithm presented in [16] aims tofix this by considering a new
solution compatible with the training data if the divergence increment relative to the size
reduction is under a certain threshold.

As we’ve mentioned, these algorithms capture not only strings from the sample, but
also strings that were not part of the sample (but which are likely part of the language from
which the sample was extracted). This was also illustrated through an example (Figure 2.7).
Clearly, although performing state merging in this fashioncould lead to significant state
count reduction, with a controlled divergence from the initial language, this is not what we
want for our problem, as the set of addresses that we operate on does not allow for gener-
alization of this kind. Thus, we are constrained to using theprefix tree generated from the
sample - which has zero-divergence from the training sample- at the cost of increased au-
tomaton size. We will, however, look at the alternatives to compressing probabilistic prefix
trees, by only merging state pairs (q1, q2) where there is one and only one transition fromq1

to q2, whereτ(q1) = 0, as this is an operation that preserves the distribution inthe training
sample. Other results concerning the learnability of Probabilistic Automata can be found in
[6, 17].

In the following, we will describe the task of parsing a string using a Probabilistic
Automaton. Of course, the discussion also applies to Probabilistic Prefix Trees. This is
an important operation which determines the probability associated to a certain string ac-
cording to the distribution modeled by the automaton. As we will see in the next chapter,
suggestion making can also be seen as an extension to parsing.

Given the stringx = x0x1 . . . xk−1, let (q0, x0,q1, x1,q2, . . . ,qk−1, xk−1,qk) be a path forx
in A, i.e. there is a sequence of transitions (q0, x0,q1), . . . (qk−1, xk−1,qk) ∈ δ

Definition 2.13. Parsinga stringxusing a PAA means computingPrA(x)=
∑
θ∈ΘA(x) PrA(θ),

whereΘA(x) is the set of all paths for stringx in AandPrA(θ)= γ(q0) ·(
∏k

j=1δ(q j−1, x j−1,q j)) ·
τ(qk).

As noted earlier, this task is greatly simplified in the case of Probabilistic Prefix Trees,
since the path for stringx is unique, thereforePrA(x) = PrA(θ), whereθ is this unique path.

Also, when there is only one initial stateq0 with γ(q0) = 1, the formula for parsing a
string x simplifies toPrA(x) =

∏k
j=1(δ(q j−1, x j−1,q j)) · τ(qk), since there is only one initial

state, and the path associated to stringx is unique. This means that a parsing a stringx can
be done inO(|x|) time, and thus the complexity of parsing a string in a PPT does not depend
on the number of states.

Example2.13. Referring back to the prefix tree in Figure 2.5, computing theprobability for
a string (i.e. parsing that string) can be done according to the formula in definition 2.13,
but it is worth noting that when using weights this way, the value of parsing any particular
string is equal to the weight of that string divided by the total sum of weights in the initial
state, so all intermediate transition probabilities need not be computed. Hence, the benefit
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of defining arbitrary distributions over the supported queries in the prefix tree comes at
virtually no extra cost for the operations supported by it.�

2.4 Summary

Our choice of a Probabilistic Prefix Tree as the structure on which to base our implemen-
tation was motivated by the prospect of a double advantage ofcomputational efficiency in
parsing and suggestion making (owing to the prefix tree structure) and the ability to very
flexibly configure the distribution of supported suggestions (owing to the probabilistic na-
ture of the structure).

We have already seen in this chapter how a Probabilistic Prefix Tree can be defined to
represent a given distribution over a fixed set of suggestions, and how it can be used to
parse a string to compute its probability of occurrence in the given set. In the next chapter
we will describe the algorithms that we can build starting from this Probabilistic Prefix Tree
structure in order to support the functionality we require.In the following chapters we will
also see that in practice the use of a probabilistic, rather than a regular, prefix tree also has
the potential to make the suggestion making process far moreefficient, without having to
resort to tricks such as pre-computing suggestion lists foreach state, which greatly limits
the flexibility of suggestion making.
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Chapter 3

The auto-completion algorithms

In this chapter we will present and analyze the algorithms used to address the requirements
identified in the previous chapters. First, in section 3.1, we will introduce an extension to
the Probabilistic Prefix Tree that we will be using in our implementation: the Probabilistic
Radix Tree. The intuitive idea behind this data structure isto merge the state pairs (q1,q2) in
the prefix tree where there is only one edge leavingq1, to q2, whenever possible. We expect
that this approach will result in a considerable reduction of the memory requirements as
well as improved speed in making suggestions. We expect the gains to be considerable,
given the types of suggestions we are making (address strings), where long suffixes can be
compacted most of the time.

In Section 3.2, we will further extend this data structure tosupport storingkey: weight
pairs within each state. This will enable us to use the radix tree for indexing keys in an
associative data structure, rather than representing the actual set of possible suggestions.
Section 3.3 describes the procedure for building such a Probabilistic Radix Tree from data.
Apart from allowing for more flexibility when parsing prefixes, this choice will form the
basis for supporting substring matching in a way that we hopeis scalable in terms of run-
time performance, and it will also enable us to store any piece of data we need, associated
to a particular suggestion. As we will see in section 3.6, this will also allow us to come
up with an algorithm for location biased suggestion making that requires little modification
and little overhead compared to the algorithm without location bias support (which will be
described in Section 3.4).

The algorithm for supporting error-tolerant prefix matching will also need to be adapted
for use with Probabilistic Radix Trees. We will discuss it inSection 3.5. After describing
all the algorithms and our expectations in relation to them here, the next chapter will deal
with the experimental analysis of these algorithms, focusing on verifying our intuitions
with respect to the algorithms, as well as trying to answer other questions to do with their
applicability, such as scalability and the effect of possible decisions that need to be made
when using these algorithms.
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3.1 The Probabilistic Radix Tree

One observation we can make is that given the structure of oursuggestion strings, unless
two addresses are exactly the same, after merging prefixes, the country name will be spelled
out over a number of states equal to the number of characters in the name. One approach to
fixing this is to switch to aProbabilistic Radix Treeimplementation, instead of a Probabilis-
tic Prefix Tree. The idea (also illustrated in Figure 3.1) is to merge those states that have
only one outgoing edge with the state that follows along the path of that edge. Equivalently,
this can be seen as removing the states with one outgoing edgeand replacing them with the
corresponding successor, and merging the incoming edge with the outgoing edge by setting
the label of the incoming edge to the concatenation of the labels of the two merged edges.

Formally, a Probabilistic Radix Tree can be defined in a way that is very similar to the
Probabilistic Prefix Tree, but with an added function with the role of explicitly representing
edge labels, and some added constraints:

Definition 3.1. A Probabilistic Radix Treeis a deterministic PA with one initial stateq0,
with the added function:

• α : Q×Σ→ Σ⋆, which represents edge labels

and satisfying the following added constraints:

• The underlying undirected graph corresponding to all transitions is a tree

• ∀q ∈ Q\ {q0}, we have (|{q′ ∈ Q : δ(q,a,q′) > 0 for any a∈ Σ}| = 1)−→ (τ(q) > 0)

This definition adds two things to that of the Probabilistic Prefix Tree (see Definition
2.10): the functionα and the second constraint. The added functionα(q,a) associates a
transition stringto the unique edge leavingq that is associated toa, in case it exists. The
second constraint describes a property that applies to all states except for the root of the tree
and says that for each such state, if it has exactly one outgoing edge, then it must be final
with some probability greater than 0. Equivalently, if the probability of one such state being
final is 0, then it must either have none, or more than one outgoing edge, but never exactly
one.

To see why this corresponds to our intuition for turning a Probabilistic Prefix Tree into
Probabilistic Radix Tree, note that this last constraint inthe definition means that we cannot
have states with just one outgoing edge and which are not final. Those are exactly the states
that we would want to remove by merging their incoming edge (which exists and is unique
by the first constraint in the definition and the fact that we are not considering the root here)
with the unique outgoing edge. States that are final should not be removed even if they have
exactly one outgoing edge, because otherwise the information about the strings that could
be successfully parsed until reaching them would be lost.

Example3.1. In the radix tree in Figure 3.1, letq0 be the initial state, or root of the tree.
The two edges leaving this start state haveα values ”berlin” and ”potsdamer$platz$berlin”.
That is, edges for whichδ(q0,b,q′) > 0 andδ(q0, p,q′′) > 0 have labels given byα(q0,b) and
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α(q0, p) respectively, whereq′ andq′′ ∈ Q. Also, here, only the leaves are considered final.
As we can see, all other states are either the root or have multiple outgoing edges (or both),
and hence cannot be considered for merging.�

Using the definition of the Probabilistic Radix Tree, we present in Algorithm 2 a proce-
dure for obtaining a Probabilistic Radix Tree from a Probabilistic Prefix Tree. The correct-
ness of this algorithm follows immediately by noticing thatit closely follows the constraints
in the definition of a Probabilistic Radix Tree.

Algorithm 2 : Transform(q)
input : A stateq, in a Probabilistic Prefix Tree
output: -
effect : Mergesq with the state that it has a transition to, if there is a uniquestate

with this property
if |{q′ ∈ Q : δ(q,a,q′) > 0 for anya ∈ Σ}| = 0 then

return
if |{q′ ∈ Q : δ(q,a,q′) > 0 for anya ∈ Σ}| = 1 andτ(q) = 0 then

if q is the rootthen
Transform(q’);

else
Let p be the direct ancestor ofq through symbolc;
α(p,c)←− α(p,c) ·a;
for the uniqueq’ anda in this casedo

τ(q)←− τ(q′);
for all b∈ Σ such thatδ(q′,b,q′′) > 0 for someq′′ ∈ Q do

δ(q,b,q′′)←− δ(q′,b,q′′);
Transform(q);

else
for all statesq′ such thatδ(q,a,q′) > 0 for somea∈ Σ do

Transform(q’);

This algorithm operates recursively and should be invoked with the root of the Proba-
bilistic Prefix Tree as a parameter. The first case that is handled is the stopping condition.
That is, if there is no edge leaving the current state, there is no pair of edges to merge.
This corresponds to reaching the leaves of the tree. Otherwise, if the current state has only
one outgoing edge, we merge its unique incoming edge with this unique outgoing edge,
replacing the state with the state that this latter edge leads to. Note that this is only done if
τ(q) = 0. This ensures the probability of the single outgoing edge is 1 (by Definition 2.5)
and the only information that needs to be maintained while merging is the label of the edge
being removed.

However, if the current state is the root of the tree, we try toapply this procedure on
its unique descendant, as the root is the only state that has no incoming edge. Theα value
that is being modified is that corresponding to the parent of the current state that is being

33



3.1 The Probabilistic Radix Tree The auto-completion algorithms

Figure 3.1: Transforming a Probabilistic Prefix Tree to a Probabilistic Radix Tree
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replaced. We are essentially adding the symbol corresponding to the outgoing edge of the
state that we are removing (through merging) to the label of the state leading to the cur-
rent state. Hence, any string that could be parsed in the initial prefix tree, can be parsed in
the resulting radix tree, as the complete information regarding the path labels is preserved
through the functionα. Note also that in case states are merged, the recursive callis made
on the same state. Intuitively, this corresponds to the state consuming outgoing edges (and
maintaining the information about the consumed edge labelsin theα function correspond-
ing to the parent of the current state) as long as they are unique. When this process cannot
be continued, recursive calls are made on the states to whichthe current state has defined
transitions, in order to apply the process all the way down the tree, until the recursive calls
bottom out at the leaves level. The effects of running this procedure on a a Probabilistic
Prefix Tree, in the form of the resulting Probabilistic RadixTree, are shown in Figure 3.1.

Example3.2. In Figure 3.1, calling Algorithm 2 with the root of the Probabilistic Prefix
Tree as a parameter will result in calling the algorithm recursively for its two descendants,
as the root has more than one of them. For the left descendant,the condition for merging
would be met in all in successive recursive calls on this state until all the symbols in the
path down to the leaf are added to the transition string from the root to the current state. In
the end, this transition string will bepotsdamer$platz$berlin and the current state will be
final and have no more outgoing edges, so recursive calls bottom out.

On the other branch, a similar process will take place until the state with two outgoing
edges is met. Note that this state is now a direct descendant of the root, by following
the edge now labeledberlin. According to the way Algorithm 2 works, since the current
state now has two outgoing edges, the algorithm is called recursively for each of them, and
merging is continued as before down each path, until the leaves are reached.�

To sum it up, if the conditions mentioned above for merging are met, the current state is
essentially replaced by its only descendant, and the label of the edge leading to the current
state is updated in order to preserve the labeling of the complete path leading to its descen-
dant. To see that the probabilities associated to supportedterms are not affected, note that
by Algorithm 2, we are only removing edges with probability 1associated to them. Since
this is the multiplicative identity, and by the way terms areparsed (see Definition 2.13), we
can conclude that removing such edges does not affect the probabilities of the supported
terms.

The use of radix trees as opposed to prefix trees can be expected to work well for many
vocabularies, but it should be a particularly useful approach in the context of geocoding,
where the patterns that we are trying to predict constitute addresses. To get an intuition as
to why this can be expected in the context of geocoding, consider all the street-level ad-
dresses in Amsterdam. All will have the form ”street-name, Amsterdam, The Netherlands”.
For all distinct street names, the whole string ”Amsterdam,The Netherlands” could label a
single transition, binding only two states, instead of generating 25 states and the transitions
between them.

Remark3.1. As such labels will exist for all addresses in Amsterdam, this leads to the idea
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of further reducing the number of states required, through the use of a data structure called
aDirected Acyclic Word Graph.

Definition 3.2. A Directed Acyclic Word Graphis a directed acyclic graph G=(V,E) for
which we define a functions : E→ Σ which assigns a symbol to each edge.

Note that apart from the lack of weights or probabilities assigned to each edge, unlike
a Probabilistic Prefix Tree or Radix Tree, the Directed Acyclic Word Graph also does not
impose that the underlying (induced) undirected graph be a tree. The construction of a
Directed Acyclic Word Graph from a given set of strings is described in [21]. The idea
behind this data structure is to merge not only prefixes, but also common suffixes of the
strings over which we support searching.

Figure 3.2 shows the construction of a Directed Acyclic WordGraph starting from a
prefix tree representing the strings{tap,taps,top,tops}, with the character ’$’ used to mark
the end of strings.

This data structure can be used to represent large vocabularies in a very compact manner.
Although this could once again lead to significant state count reduction in our context,
such a representation lacks the power of representing a probability distribution over a given
vocabulary, and thus cannot be used to solve the problem of offering ranked auto-completion
suggestions. Therefore, we will construct our algorithms around the Probabilistic Radix
Tree.�

Although it is perhaps conceptually simplest to understandradix trees as they can be
obtained from prefix trees, as depicted in Figure 3.1 and explained in Algorithm 2 - by
collapsing multiple states in the prefix tree into a single state where possible and merging
edges by preserving information in their labels - we will notbe constructing radix trees from
prefix trees, as this would mean losing the main advantage of using radix trees in the first
place: reduced memory requirements.

In order to avoid the high memory requirements of representing our data using prefix
trees, we will present all our algorithms in terms of radix trees, and we will start with the
construction of radix trees directly from sample data consisting of addresses to be suggested,
without having to first represent the strings as a Probabilistic Prefix Tree.

Note that from an implementation perspective, reducing thenumber of states comes
at the cost of storing the strings associated to each transition, that is, the functionα (see
Definition 3.1) also needs to be represented with each state.This is not necessary for a
Probabilistic Prefix Tree. Thus, representing a single state of the radix tree would require
more memory compared to the prefix tree. However, we expect that the state count re-
duction will far outweigh the extra storage needed with eachstate and the overall memory
requirement should drop significantly.

But before explaining the construction of a Probabilistic Radix Tree from data, in the
following section we will describe how the Probabilistic Radix Tree can be used to store
keys to suggestions and how this can help us meet the requirements formulated in Chapter
1.

36



The auto-completion algorithms 3.2 Using Probabilistic Radix Trees to index suggestions

Figure 3.2: Transforming a Probabilistic Prefix Tree to a Directed Acyclic Word Graph

3.2 Using Probabilistic Radix Trees to index suggestions

In this section we describe how a Probabilistic Radix Tree can be used to parse keys in an
associative data structure. The definition of the Probabilistic Radix Tree as presented in the
previous section does not change, but we add the following implementation detail: each
state will store a possibly empty set of (key: weight) pairs, where

∑
(key:weight)∈q weight=

τ(q), with the convention that if the set is empty, thenτ(q) = 0.

Example3.3. The use of a radix tree in order to index an associative data structure is de-
picted in Figure 3.3. As in the previous chapter, we have usedinteger weights instead of
probability values to annotate the states and transitions.It is easy from these to derive
the actual probability values, based on the radix tree definition. Each state stores a (pos-
sibly empty) set of references to associations (in our context a completion suggestion for
an address) and their associated weights. This decouples the parsed string from the actual
suggestion string returned to the user. Thus some flexibility is ensured when parsing pre-
fixes. For example, the radix tree in Figure 3.3 contains strings that are all lower case and
any non-empty sequence of symbols considered token separators is replaced by the single
placeholder symbol: $. If user-typed prefixes are also normalized according to these rules
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prior to parsing, this ensures case insensitive parsing with some freedom in choosing how
to separate tokens (e.g. spaces and commas can be used interchangeably).

This separation between matched strings and actual suggestion strings is also the key
to offering suggestions in a well structured format. For instance, as seen in the radix tree
in Figure 3.3, both ”Potsdamer Platz, Berlin” as well as ”Berlin, Potsdamer Platz” can be
supported by the radix tree and have the same key associated to them, so regardless of the
way the input is given, the suggestion will be ”Potsdamer Platz, Berlin”, which is a nicely
formatted address string. This comes at the cost of adding multiple strings in the radix tree
for each association. On the other hand, because the parsingperformance only depends on
the length of the string to be parsed, as we’ve seen in the previous chapter, the prefix match-
ing performance should not suffer as a result, and we expect that the suggestion making
performance also won’t suffer too much from this choice.

But perhaps the main advantage of our approach is that the weight of the association in
each case is free to differ. As we can see in the example, parsing ”Potsdamer Platz, Berlin”
gives us this suggestion with a weight of 25. Parsing ”Berlin, Potsdamer Platz”, on the other
hand, gives us the same suggestion, but with a weight of 10. This makes a difference when
we have to make suggestions and several parsing options needto be explored in order to
choose the most likely one, as higher weight suggestions will be prioritized. Thus, we are
giving the associations for badly structured queries a lower weight. As an example of why
we may want this, consider a user typing ”Berlin” in the search box. Apart from the sug-
gestion for ”Potsdamer Platz, Berlin” (because we’re also supporting improperly formatted
address queries) we could also offer ”Berliner Straße, Munich” as a suggestion. Note that
parsing ”Potsdamer Platz, Berlin” gives us a higher weight (25) than ”Berliner Straße, Mu-
nich” (20). This could be because the first street is somehow considered more important,
or we know people search for it more often, or maybe simply because it is situated in a
capital city. However, because we store different strings to be parsed in the radix tree for the
same suggestion, we are free to associate a lower weight to the first suggestion when it is
retrieved by parsing ”Berlin, Potsdamer Platz” compared towhen it is retrieved by parsing
”Potsdamer Platz, Berlin”. That is, we assume the user is in fact typing a prefix of a well
formatted address. This is not a hard constraint, however. We may choose not to obey this
rule depending on the difference in the weights of the two streets or the user location.�

The choice of an associative data structure also presents another significant advan-
tage for geocoding applications: since the radix tree need only store a pointer to an auto-
completion suggestion, the suggestion could consist of thetextual representation of a com-
plete address, as well as other data, such as a complete specification of all the fields in the
suggestion. This can help improve search results in case a user chooses a suggestion and
does not edit it, as the associated suggestion can be used as astructured query, thus elimi-
nating the need to rely on the free-text query support of the geocoder, and producing better
accuracy. Moreover, the service managing these suggestions can be completely decoupled
from the radix tree or even be implemented to run on a different machine, thus offering more
flexibility in resource management. But perhaps the most important benefit of using an as-
sociative data structure - which enables us to keep extra information about the suggestions
made - will be highlighted when we introduce our strategy forimplementing a location bias.
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Figure 3.3: Using a Probabilistic Radix Tree to parse keys inan associative data structure

For this, we assume that each suggestion key comes with a way of retrieving the latitude
and longitude of the location of that suggestion.

3.3 Probabilistic Radix Tree construction

As stated in the previous sections, we would like to construct a Probabilistic Radix Tree
from data, without having to build a Probabilistic Prefix Tree first. Thus, instead of merging
states of a Probabilistic Prefix Tree as we did in Section 3.1,we would prefer to use as
few states as possible from the start, labeling edges between them with strings as long as
possible, and only add new states when necessary.

For this, we would like to define a method which we will callAddTerm(q, term,k,w)
to add the stringterm such that it can be parsed starting from stateq in order to retrieve
suggestionk with an associated weightw.

Example3.4. Figure 3.4 shows the construction of a Probabilistic Radix Tree through suc-
cessive calls to theAddTermmethod described above. We start with just the root of the tree,
and the first term that is added to it ispotsdamer$platz$berlin. For this, we only need to
add one state, as there is a single path in our tree that leads to a suggestion, from the root
to the state which now stores suggestion key 1, with a corresponding weight of 25. Then
the termsberlin$potsdamer$platz andberliner$straße$munichare added, making sure at
each step that the result is equivalent to creating a Probabilistic Prefix Tree and then merging
states wherever possible, as described in Algorithm 2.�

To describe the algorithm for constructing the Probabilistic Radix Tree from data, we
first describe the representation of a single stateq as consisting of the following fields and
their relation to the definition of a radix tree:
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Figure 3.4: Constructing a Probabilistic Radix Tree from data

• transition string[c], which stores the label on the edge associated to characterc leav-
ing the current state. This corresponds to the values ofs∈ Σ⋆, such thatα(q,c) = s.
Hence,transition string[c] will always be a string of length at least 1, and will always
start withc.

• transition count[c], which stores the number of times the transition which is labeled
transition string[c] is used while generating the radix tree. This value, divided by
the total count(see below), is the actual value ofδ(q,c,q′) for the uniqueq′ ∈ Q for
which δ(q,c,q′) > 0, according to the properties of radix trees.

• transition state[c], which stores a reference to the state at the end of the transi-
tion arrow labeledtransition string[c], corresponds to those statesq′ ∈ Q for which
δ(q,c,q′) > 0.

• keycount[k], which corresponds to the number of times the current stateis associated
with suggestionk (as a final state). Henceτ(q)=

∑
k key count[k]
total count (see below the definition

of total count).

• total count, which is simply the sum of transition counts and key counts across all
defined transition characters and key values for stateq.
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Example3.5. For the radix tree constructed in Figure 3.4, if we consider the start state, it
will have transition string[b] = berlin andtransition string[p] = potsdamer$platz$berlin,
with thetransition statefields pointing to the corresponding states, andtransition count[b] =
30, while transition count[p] = 25, for atotal count= 55. There are nokey countvalues
associated to the start state, however the terminal states in this case have the following key
counts:key count[1] = 10,keycount[2] = 20 andkeycount[1] = 25�

Note that this ensures we are building a Probabilistic RadixTree as it was defined in this
chapter. To see this, note that the required constraintτ(q) +

∑
a∈Σ
∑

q′∈Qδ(q,a,q
′) = 1 is

verified for all states by the definition oftotal count. Moreover, we assume a construction
of a radix tree in which there is exactly one state -which we will denoteq0- designated
as initial state, for whichγ(q0) = 1 and assume thatγ(q) = 0 for all other statesq, so the
relation

∑
q∈Qγ(q) = 1 is trivially verified. In fact, assuming this implicit definition of γ, we

will not represent it explicitly. Instead, we just assume that the construction of a radix tree
must start with the single initial state, which must always exist.

Next we mention two functions that will be used in our algorithm for constructing radix
trees from data. We will skip the actual implementations of these functions, as they are
trivial:

• AddAssociation(q,k)- adds an association keyk to stateq and adjusts the fields ofq
to a new consistent state. That is, thekeycount[k] is incremented, or initialized to
1 if it did not exist, and thetotal countof stateq is also incremented by 1. We will
consider that this function is implemented such that it takes O(1) time to complete.

• AddTransition(q,s,q’)- adds a transition labeleds from stateq to stateq′, where
s∈ Σ⋆. This is a utility function that is not concerned with maintaining the radix tree
structure, rather it just adds the requested transition updating the fields describing the
two states appropriately. We only mention this function here because we will make
use of it in the radix tree construction. Hence, all it does isupdatetransition string[s[1]]
to s and transition state[s[1]] to q′, while transition count[s[1]] and total count
are each incremented by 1. This function will also be assumedO(1)-time com-
putable. We will assume that we also have a variation of this function: AddTran-
sition(q,s,q’,w), which is equivalent to callingAddTransition(q,s,q’) wtimes.

The function that we will define and use to construct the Probabilistic Radix Tree isAd-
dTerm(q,s,k), where the term to be added is denoteds, wheres∈ Σ⋆. This will be the same
as calling the functionAddTerm(q,s,k,w)discussed earlier, withw = 1. Generalizing for
arbitrary values ofw is trivial. The result of calling this function is that starting from q,
the strings can be parsed in the radix tree and the resulting state shouldhave suggestionk
associated to it.

Constructing a Probabilistic Radix Tree from a data set consisting of address stringss
will be done through successive calls toAddTerm(q0,s,k), whereq0 is the designated start
state of the Probabilistic Radix Tree.

Because we are working with a radix tree, theAddTerm(q,s,k)function is considerably
more complex than the similar function for prefix trees. The situations that need to be
considered by this function are depicted in Figure 3.5, and Algorithm 3 implements this

41



3.3 Probabilistic Radix Tree construction The auto-completion algorithms

function. The first case to consider is when there are no outgoing edges from stateq whose
labels start withs[1]. In this case, a new state needs to be created, which will hold associa-
tion k and the edge fromq to this new state is labeleds. Once this new state is created, this
can be accomplished by calling the utility functionAddTransition(q,s,q’), described earlier.

The other easy case is when there is an edge fromq to some stateq′ whose label not
only starts with the same character ass, but is exactlys. In this case, the different fields
of stateq are updated to reflect the addition of extra weight on that transition (this means
incrementingtransition count[s[1]] and total count) and suggestionk is added toq′, either
incrementingkey count[k] or initializing it to 1, depending on whether or not it had already
been initialized.

The remaining cases are more complex. Since we know that we donot fall under the
first case, because our algorithm would have ended there, we can conclude that there is a
transitions′ from q to some stateq′ such thats[1] = s′[1]. Moreover, by this point we can
safely assume thats, s′, because that would have been handled in the case we just de-
scribed. Therefore we can writes= vwands′ = vt with w, t ∈ Σ⋆ andv∈ Σ+, such thatw, t
andw andt do not share a prefix. Note that this implies that we cannot have t = λ andw= λ
at the same time. The remaining cases are as follows:

• t = λ. This basically means that the transition string is a prefix of the term to be
added. The action taken here is represented in Figure 3.5, under case 3. We can
safely consume the prefix of the term that is added which is equal to the transition
string and add the remaining piece of the term toq′ through a recursive call.

• w= λ. This is basically the case when the term to be added is a prefixof the transition
string betweenq andq′. The solution in this case is shown in Figure 3.5 under case
4: we create a new stateq′′ in order to store the new suggestionk at the end of the
string that is associated to it (which ends afterv) and making sure we still have a path
to q′ for exactly the same strings that used to lead us toq′, i.e. those passing through
q and ending after seeingvt from there.

• w, λ andt , λ. The solution in this case is shown under the last case in Figure 3.5.
This solution is similar to that for the previous case, except the new stateq′′ that is
added betweenq andq′ does not store suggestionk any more. Instead it adds a new
transition labeledw to yet another new stateq(3) which stores suggestionk. The tran-
sition labeledt to q′ is also added like before, in order to maintain the information
needed to parse strings previously added to the radix tree.

Algorithm 3 is a rather straightforward implementation of exactly the cases described here
and depicted in Figure 3.5. Constructing a Probabilistic Radix Tree can be accomplished
through successive calls toAddTerm(q0, s,k) for the different terms that need to be sup-
porteds∈ Σ⋆, whereq0 is the root of the radix tree.

By the discussion of the cases above, and the observation that these cases sum up all
possible scenarios that can be encountered when adding a string s to the radix tree state,
we can conclude that callingAddTerm(q, s,k) ensures that we are able to parse the strings
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Algorithm 3 : AddTerm(q,s,k)
input : A stateq, a stringsand an associated suggestionk
output: -
Result: Stateq will support parsing the strings, resulting in the associationk
if transition state[s[1]] = null then

q’ ←− new state;
AddTransition(q,s,q’);
return ;

s’←− q.transitionstring[s[1]];
index←− longestCommonPrefixIndex(s,s’);
v←− s[1..index];
w←− s[index+ 1..s.length];
t←− s’[index+ 1..s’.length];
q’ ←− q.transitionstate[s[1]];
if (w = λ) ∧ (t = λ) then

q.transitioncount[s[1]]←− q.transitioncount[s[1]]+ 1;
q.total count←− q.total count+ 1;
AddAssociation(q’,k);
return ;

if t = λ then
q.transitioncount[s[1]]←− q.transitioncount[s[1]]+ 1;
q.total count←− q.total count+ 1;
AddTerm(q’,w,k);
return ;

if w = λ then
q” ←− new state;
q.transitioncount[s[1]]←− q.transitioncount[s[1]]+ 1;
q.total count←− q.total count+ 1;
q.transitionstring[s[1]]←− v;
q.transitionstate[s[1]]←− q”;
AddAssociation(q”,k);
AddTransition(q”,t,q’,q.transitioncount[s[1]] - 1);
else

q” ←− new state;
q.transitioncount[s[1]]←− q.transitioncount[s[1]]+ 1;
q.total count←− q.total count+ 1;
q.transitionstring[s[1]]←− v;
q.transitionstate[s[1]]←− q”;
AddAssociation(q”,k);
AddTransition(q”,t,q’,q.transitioncount[s[1]] - 1);
AddTerm(q”,w, k);
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from q in order to retrieve suggestionk, as established by the following theorem.

Theorem 3.1. Calling AddTerm(q, s,k) ensures that string s can be parsed from state q in
order to retrieve suggestion k with a weight equal to the number of times it has been added,
without breaking this property for previously added strings.

Proof. We can prove this by induction. Since we do not have to deal with empty strings,
we can take|s| = 1 as our base case. Note that only cases 1, 2 and 4 from Figure 3.5 are
applicable to this situation. From the previous discussionof Algorithm 3, in each such case
we create ways of reaching a state storing suggestionk at the end of a path labeleds from q
without losing previously existing information in the tree.

Now, assuming this property holds for all stringss′, with 1≤ |s′|< n, we consider a string
s having lengthn, wheren> 1. Again, it is easy to see from the discussion of Algorithm 3
that in cases 1, 2 and 4 we addsso that it can be parsed fromq in order to retrievek with a
weight equal to the number of times it has been added, and maintaining previously existing
information in the tree. In case 3, a prefix ofsalready gives us a way to retrieve an existing
stateq′. Since this prefix is not empty, when removing it, we will havea string of length
less thann to add to that state. By our induction hypothesis, by first parsing the prefix ofs
to retrieve stateq′, we will be able to parse the remainder ofs in order to retrieve suggestion
k with a weight equal to the number of times it has been added. Incase 5, we need to
break up an existing edge with a label that shares only a prefixsmaller than the length of
either string withs. In that case, a new state is added at the breaking point, and edges are
added and weights are updated in order to maintain all the information, as discussed in the
cases above. Coupled with the observation that these cases list all possibilities that we have
to face when adding a strings to stateq, we can conclude that the desired properties are
maintained throughout the construction of a ProbabilisticRadix Tree through successive
calls toAddTerm. �

Another important question is whether or not we have obtained a result equivalent to
running state merging on a Probabilistic Prefix Tree. That is, is the Radix Tree built through
successive calls toAddTermminimal, in the sense that no further state merging as described
in Algorithm 2 can be performed?

Theorem 3.2. Given a Probabilistic Radix Tree as it results through repeated calls to
AddTerm(q0, s,k), merging of any two states as described in Algorithm 2 is impossible.

Proof. To see this, note that we build the Probabilistic Radix Tree,starting from just the des-
ignated start state, which can never be merged by Algorithm 2. The functionAddTermonly
creates states that either have multiple outgoing edges or have associations stored within
them, and thus a valueτ > 0. By the description of Algorithm 2, such states would neverbe
considered for merging with descendants. Therefore, we have generated a Radix Tree from
data, that is already minimal, in the sense that its state count cannot be further reduced by
applying the merging procedure in Algorithm 2. �

Theorems 3.1 and 3.2 ensure that we are able to use Algorithm 3to build a Probabilis-
tic Radix Tree directly from data, without having to first build a Probabilistic Prefix Tree
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Figure 3.5: The cases encountered in adding a term to be parsed form a state in the Proba-
bilistic Radix Tree
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and whose state count cannot be further reduced by merging states. Note that to do this,
we needed a considerably more complicated procedure than the equivalent procedure for
adding terms to a Probabilistic Prefix Tree, but this extra effort should pay off, and not only
through reduced memory requirements. Although the task of adding terms to a radix tree in
a way that maintains the integrity of the data structure as itis defined was more complicated
compared to the equivalent operation on a prefix tree, the actual computational complexity
of adding a termsas a supported term to the radix tree is stillO(|s|) time if we consider the
time spent updating the data structures describing the states computable in constant time.
This is because any recursive call is made after parsing a portion of the string which is later
never visited again, and all other control paths that do not make recursive calls are com-
putable in a constant amount of time. Moreover, depending onthe actual implementation, if
updating the data structures does turn out to be a rather costly procedure, the radix tree may
actually be built faster than a prefix tree, because there maybe far fewer states to update
along the path taken to adds to the radix tree.

Note that to make this discussion simpler, we assumed that the radix tree sets counts
depending only on the number of occurrences of a string in a given sample. The actual
implementation should support addition of weighted strings, as in Figure 3.4, but this can
be achieved through a minor change in the algorithm.

Now that we have seen how to construct a Probabilistic Radix Tree from a given set
of suggestions and we have described the structure of such Radix Trees, we can define the
algorithms that implement the functionality that we require from the auto-completion sys-
tem. Hence, in the following sections we will look at the following algorithms on a given
Probabilistic Radix Tree:

• GetState(sate,prefix), which retrieves a state of the Probabilistic Radix Tree, obtained
from parsing the supplied stringprefix, starting from the given state,state. This algo-
rithm will be introduced because it is useful for suggestionmaking, as it returns the
subtree of possible suggestions corresponding to a given prefix string.

• GetStates(prefix,distance), which is the algorithm for retrieving the set of states that
can be obtained from parsing any of the strings within edit-distancedistancefrom
the supplied prefix string. This algorithm will enable us to offer error-tolerant prefix
matching and suggestion making.

• GetSuggestions(prefix,n), which is the algorithm used for getting a ranked list of the
topn suggestions for a suppliedprefixstring. This algorithm will rely on theGetState
algorithm mentioned earlier to offer suggestions for a supplied prefix, and on the
GetStatesalgorithm when error-tolerance is required for parsing thesupplied prefix.

• GetSuggestions(prefix, n, lat, long), which is a variation on the suggestion-making
algorithm, which also allows for taking a location-bias into consideration, thus pro-
viding an altered list of top-n suggestions, with a relevance measure being a function
of both the weight of the suggestion and its proximity to the supplied bias point (the
lat-long parameter pair).
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Figure 3.6: A Radix Tree used for suggesting ’Amsterdam’ and’Amstelveen’

3.4 Making suggestions

In this section we will discuss the algorithm for retrievinga ranked list of the top-n sug-
gestions for a supplied prefix. This algorithm is the first to directly address requirements
from those introduced in Chapter 1. That is, this algorithm implements the two main re-
quirements and Optional Requirement 1. This latter requirement is not directly addressed
by the algorithm, but it is met if the radix tree that the algorithm operates on has been
properly configured to offer such support, as described in the previous sections. In order to
discuss the suggestion making algorithm, we start by describing a convenience procedure,
GetState(state,prefix), mentioned in the previous section, which returns the stateobtained
by parsing the stringprefix, given a certain start state as its first parameter.

Algorithm 4 describes a recursive function that achieves this. In order to parse a prefix
on the whole tree, the start state of the tree should be supplied as thestateparameter. Note
that the algorithm may return a state that the supplied prefixdoes not reach, but which it
can be extended to reach. This behavior is suitable for the task of suggestion making.

Example3.6. Consider Figure 3.6. If we try to get the state for string ”amster”, then by
Algorithm 4, we will end up with a state having ”Amsterdam” asan associated suggestion,
although we did not enter ”amsterdam”, which is the only string sufficient to reach that
state. However, if we are interested in making suggestions for extending the entered string
”amster”, it is clear that this state is a good candidate, along with any state that may follow
it down the radix tree.�

We can now finally introduce the algorithm that we will use to produce a list of ranked
suggestions for an input prefix string. Algorithm 5 achievesthis by making use of a priority
queueQ to store entries which can be either states or association keys. The implementation
is such that the top element in the queue (and the first one to beretrieved when calling
Q.top()) is the one with the largest weight. Unless otherwise stated, it should be assumed
that whenever we refer to a priority queue, we are using a max-priority queue. Hence the
first n association keys that come out of the priority queue as a result of the algorithm
execution will be our top-n suggestions. As long as there are states that are more promising,
they are expanded (all their associated suggestions and states that follow from them are
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added to the priority queue). The correctness of this algorithm is established by Theorem
3.3.

Algorithm 4 : GetState(sate,prefix)
input : A current statestate, and a prefix stringprefix
output: The state that parsing the input prefix leads to, from the given node
if prefix.length= 0 then

return state
newState←− transitionstate[prefix[1]];
if newState= null then

return null
transitionString←− state.transitionstring[prefix[1]];
if prefix= transitionStringthen

return newState
else

index←− longestCommonPrefixIndex(prefix,transitionString);
if index= transitionString.lengththen

GetState(newNode,prefix[index+1..prefix.length]);

else
if index= prefix.lengththen

return newNode
else

return null

Theorem 3.3. The suggestions returned by Algorithm 5 are the top n suggestions that can
be retrieved from the subtree rooted at the state obtained bythe supplied prefix.

Proof. Based on the radix tree construction, the weight of any association is added to all
the weights of all transitions leading to it, and thus to thetotal weightmember of any state
traversed along the path to adding that association. Hence,if the algorithm prefers a certain
suggestion to some state at a certain iteration of thewhile loop, then that state cannot lead to
a better suggestion, so it is safe to report that suggestion as part of the desired result, ahead
of any suggestion that may be found by expanding the state.

�

Example3.7. Consider the radix tree that we built in Figure 3.4. If we wantto retrieve
the (single) top suggestion for the prefix ’be’, the functionGetState(startState,’be’)would
return the state at the end of the edge labeled ’berlin:30’, and this state would be added to
the queue. As this state is expanded, we next add to the queue the state at the end of the edge
labeled ’potsdamer$platz’ with a weight of 10 and the state at the end of the edge labeled
’er$straße$munich’ with a weight of 20. As the entry with thehighest weight currently in
the queue, this last state is extracted next, and expanded such that suggestion 2 is added
to the queue with a weight of 20. As this weight is still the highest in the queue, it is
extracted next, and since it is a suggestion, it is added to the final result, which also ends
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the loop, since we were only looking to make one top suggestion. Thus, we have come up
with a result without expanding all states, since we had enough suggestions and we knew
expanding more states would not lead to any better suggestions. In this simple example, the
savings were modest, as we only avoided expanding one extra state. In significantly larger
trees, the savings should also be significantly higher.�

Algorithm 5 : GetSuggestions(prefix,n)
input : A prefix stringprefixand a maximum number of suggestionsn
output: The list of top n suggestions taking into account the suggestion weights
result←− [];
Q←− [];
state←− getState(startState,prefix);
Q.add(state,state.totalcount);
while Q.notEmpty()∧ result.size< n do

current←− Q.top();
if current.isState()then

foreach suggestion k associated to currentdo
Q.add(k,current.keycount[k]);

foreach transition character c from currentdo
Q.add(current.transitionstate[c],current.transitioncount[c]);

else
result.add(current);

return result;

The upper bound on the run-time of Algorithm 5 isO(k logk), wherek is the total num-
ber of states and suggestions in the radix tree. This corresponds to the situation in which we
have to visit all states before we can return a list of the topn suggestions. However, because
we can stop expanding states as soon as we have retrieved enough suggestions, this upper
bound is potentially over-pessimistic, depending on the weights associated to the supported
strings. We will have much more to say about this in the following chapter.

Note also, that this is exactly how we would implement this algorithm for a prefix tree
as well. The distinction between the two tree structures is irrelevant for Algorithm 5. Thus,
given the expected state count reduction, this algorithm should be considerably faster on a
radix tree. Although we paid for the compactness of our representation by having to design
more complicated procedures when building the radix tree, there is no more price to pay
when making suggestions, so this is where the extra effort should pay off.

3.5 Implementing error tolerance

In this section we will look at an alternative implementation of the GetState procedure (Al-
gorithm 4), which will enable us to parse the supplied prefix with some degree of tolerance
to error. Thus, we will offer an solution for meeting Optional Requirement 2, which we
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introduced in the first chapter. Because there may be multiple states that can be expanded
for a given prefix given a certain tolerance to error, we will change the algorithm name to
GetStatesand its implicit return type is changed as well: the algorithm now returns a set of
states, rather than a single state.

We implement error tolerant prefix matching for the radix tree using an approach based
on the Levenshtein distance between two strings. In this respect it is similar to the approach
presented in Chapter 2 for regular tries, but the implementation differs as a result of hav-
ing to accommodate for edges labeled with strings, as opposed to single characters. This
function can then simply be used instead of the call toGetStatewithin the algorithm for
suggestion making, in order to allow retrieving suggestions with some tolerance to error
when parsing the supplied prefix string. This procedure is shown in Algorithm 6.

A regular FIFO queueQ is used, for storing states in the radix tree along with theindex
to which thepre f ixhas been consumed in reaching this state, and the (edit)distanceneeded
in order to achieve this, but only if the edit distance does not exceed thedistanceparameter
to the function. The queue initially consists of just the start state, with the associated prefix
and index set to 0.

On each iteration of the while loop, we examine all transitions from the current state

Algorithm 6 : GetStates(prefix,distance)
input : A prefix stringprefix, a valuedistancefor the maximal tolerated edit distance
output: A set of active states that are viable candidates to be expanded for

suggestion making
result←− [];
Q←− [];
Q.add(< q0,0,0>);
while Q.notEmpty()do

<q,q.distance,q.index> ←− Q.top();
currentprefix= prefix[q.index..prefix.length];
foreach label from q to state q’do

match←− transform(label,currentprefix, distance - q.distance);
if m.size> 0 then

result.add(q’);
match←− transform(currentprefix,label, distance - q.distance);
for m in matchdo

if q.index+ m.index+ 1 ≥ prefix.lengththen
result.add(q’);

else
Q.add(<q’,q.distance+m.distance, q.index+m.index+1>);

return result;

extracted from the head of the queue. First we try to transform any prefix of the label on that
transition into what’s left to parse, within the edit-distance limits. The functiontransform
tries to achieve this. It returns amatchobject which is a list of all the pairs of minimum
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distance necessary to transform a prefix of the first parameter into the second and the index
inside the first parameter that delimits this prefix, as long as the number of edits required
for the transformation is no bigger than the maximum threshold provided as the third pa-
rameter. If the transformation can be done, we can safely consider that the prefix has been
parsed and we can expand suggestions from the destination state of that edge.

Alternatively we try to transform thecurrent pre f ix to be parsed into thelabel leading
from the current state, in order to be able to traverse that particular edge. Basically, we try
to getlabel from any prefix ofcurrent pre f ix, using the minimal possible number of edits
for that particular prefix. We make entries for all possibilities inQ as long as distance does
not exceed the maximum threshold.

This can be seen as simulating the algorithm presented in Chapter 2 for error tolerant
prefix matching on regular tries, with the difference that since some states have been merged
in the radix tree, we simulate the addition of active nodes bymaking multiple entries for the
same state with different index and distance values.

Example3.8. For an example, consider again the radix tree in Figure 3.6, and consider
parsing the (mistyped) string ”amstrdam”, with a maximum allowed edit distance of 1. The
algorithm starts by placing the start state in the queue withits corresponding entries for the
index to which the prefix was already parsed and the distance needed for that, both set to
0. When this is examined, we first try to transform the only label leaving the current state
(”amste”) to the prefix (”amstrdam”). The match object in thepseudocode is used to store
the different indices and the edit distance needed to achieve this for that index. In this case
an edit distance 4 is the minimum that can be achieved for indices corresponding to ends
of substrings ”amst” and ”amste”. Since this is not achievedwithin the maximum allowed
edit distance, the match object will be empty and the state atthe end of the edge labeled
”amste” is not stored as a final result. Next, we try to transform substrings of ”amstrdam”
to ”amste” with the minimum possible edit distance. We can achieve this with edit distance
1 only for the prefixes ”amst” and ”amstr” and entries are madefor both in the queue, with
the requirement that we are able to parse the rest of the prefixwithin edit distance 0 starting
from the state to which the edge labeled ”amste” leads. This is only possible by continuing
from the substring ”amst”, and thus we have found a way to parse the string ”amstrdam”
within edit distance 1, by traversing edges that, put together, spell ”amsterdam”.

Note that we do need to store all prefixes that can be expanded,as the shortest one is not
always the best choice. Referring back to the previous example, if the supplied prefix had
been ”amstwrdam”, ”amste” could again be obtained two ways within edit distance 1: from
both ”amst” and ”amstw”. However, in this case, expanding the longer prefix is clearly the
only choice that would allow us to parse the string ”amsterdam” within edit distance 1.

Moreover, storing entries for just the minimum overall distance in thematchobject is
also insufficient. Consider parsing the stringabb over two edgesxb andabb. Trying to
traverse the edgexb could be done with the empty string or with the prefixa within edit
distance 2, and withab within edit distance 1. But if we choose to traverse it usingab, we
require edit distance at least 2 to traverse the remaining edge with b, and this would lead
to a total edit distance of 3 needed to traverse both edges. Onthe other hand, choosing the
empty prefix to traverse the first edgexb, despite requiring an edit distance of 2, leads to a
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lower edit distance overall, because then traversing the second edge usingabbcan be done
within edit distance 0.�

3.6 Implementing location bias

In this section we describe the algorithm that allows us to meet Optional Requirement 3:
take into account the location of the user when making suggestions. We will see that the
choices made in designing our algorithms so far allow us to support this functionality by
implementing a small modification to the suggestion making algorithm that we introduced
in Section 3.4.

Algorithm 7 shows how this can be achieved. This algorithm isan extension of Al-
gorithm 5. The idea to implementing a location bias (relative to a latitude-longitude pair
known as thebias point) is to apply a (downwards) scaling of the weights of the sugges-
tions before they are added to the priority queue, dependingon the distance between the bias
point and the location of the suggestion. This is accomplished by multiplying the weight
of the association with a value between 0 and 1. Since a priority queue is used to find sug-
gestions by choosing the largest weight at any point in time,this means deferring retrieving
suggestions that are far away from the bias point, and givingpriority to expanding other,
more promising, states. The formula that we use for the scaling factor isα = 1

1+distance,
where the distance is any measure of the distance between thelocation of the bias point and
the location of the to-be-suggested location.

Example3.9. Consider again the radix tree constructed in Figure 3.4 and the suggestion
making process for the supplied prefix ’be’. The queue would be initialized to the state
at the end of the edge labeled ’berlin’ and an associated weight of 30. As this state is
expanded, both states at the ends of strings ’$potsdamer$platz’ and ’er$straße$munich’
would be added, with associated weights 10 and 20 respectively. The latter of the two
would be the first to be expanded. Consider that the query is coming from a location having
latitude approximately 52.509 and a longitude of approximately 13.381. That means that the
user would be located somewhere in Berlin. This means that the distance to Berliner Straße,
Munich is quite large. Suppose this would create a scaling factorα = 0.2, according to some
distance measure. This would mean that suggestion 2 is addedwith weight 4, and hence
would no longer be the first to be extracted from the queue during the next iteration, as in
Example 3.7. The state holding suggestion 1 with associatedweight 10 would be expanded
next, and since the distance is very small, even after scaling we would add suggestion 1 to
the queue with a weight of about 10, which means that on the next iteration, it would be
the first to be retrieved from the queue, as the top suggestion, ahead of the suggestion for
Berliner Straße, Munich.�

In order to see whether the algorithm works correctly, we have to first make precise
what its correct behavior should be. For each invocation of the algorithm, we are given a
lat-long pair which is fixed for that particular instance. The algorithm then should retrieve
a ranked list of the topn suggestions, having the highest rescaled weights. That is,by
specifying a fixed lat-long pair to represent a bias point, weare essentially creating a new
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Algorithm 7 : GetSuggestions(prefix, n, lat, long)
input : A prefix stringprefix, a maximum number of suggestionsn, the user latitude,

lat, and the user longitude,long
output: The list of top n suggestions taking into account the suggestion weights and

their proximity to the bias point
result←− [];
Q←− [];
state←− getState(startState,prefix);
Q.add(state,state.totalcount);
while Q.notEmpty()∧ result.size< n do

current←− Q.top();
if currentState.isState()then

foreach suggestion k associated to currentdo
α←− 1

1+distance((lat,lon),(k.lat,k.long)) ;
Q.add(k,α· current.keycount[k]);

foreach transition character c from currentdo
Q.add(current.transitionstate[c],current.transitioncount[c]);

else
result.add(current);

return result;

problem instance for Algorithm 5, with modified weights associated to each suggestion.
However, in Algorithm 7, we are only rescaling before addingsuggestions to the priority
queue, and weights of states are not modified, since we cannotknow which (or even how
many suggestions) are associated to the tree rooted in a certain state without exploring the
whole tree. Nonetheless, the corollary to the following theorem shows that Algorithm 7 will
still allow us to find the correct result.

Theorem 3.4. When a suggestion is retrieved from the priority queue by Algorithm 7, its
weight is the highest of the rescaled weights of suggestionsin the queue, including those
hidden in not yet expanded states.

Proof. Let suggestionk be a suggestion that is being retrieved from the queue by the al-
gorithm. By the priority queue property, it is clear that therescaled weight ofk, which
we will denoteαk ·wk, is higher than the weight of any other suggestion currentlyin the
queue (which must also have been rescaled). What we need to show is that the rescaled
weight ofk is also higher than the rescaled weight of any suggestion that can be retrieved
by expanding any state currently in the queue. Consider an arbitrary stateq with weight
wq, which is in the priority queue whenk is retrieved. By the priority queue property, we
haveαk ·wk ≥ wq (1). Again, recall that by the way the radix tree is constructed, for any
suggestionk′ having weightwk′ that we may obtain by expandingq we will observe that
wq ≥ wk′ (2). Let αk′ be the scaling factor associated to suggestionk′, calculated based
on its proximity to the bias point. From the definition of the scaling factor, we know that
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0< αk′ ≤ 1, and hencewk′ ≥ αk′ ·wk′ (3). Putting relations (1), (2) and (3) together, we get
αk ·wk ≥ wq ≥ wk′ ≥ αk′ ·wk′ . Thus, the rescaled weight of suggestionk is guaranteed to
be no lower than the rescaled weight of suggestionk′, so we can retrievek from the queue
ahead ofk′. Since stateq and suggestionk′ associated to it were chosen arbitrarily, we
can conclude that suggestionk can be retrieved ahead of all suggestions currently in the
queue, as well as the suggestions that have not yet been encountered, despite the fact that
we have not yet applied rescaling to find their actual weight given the bias point provided
as a parameter. �

Theorem 3.4, coupled with the fact that the priority queue isinitialized to contain the
state that hides the subtree of all suggestions that can be made for a given prefix, yields the
following immediate corollary.

Corollary 3.1. Algorithm 7 correctly determines the list of the top n suggestions that can
be made for a given prefix, based on the rescaled weights according to the suggestions’
proximity to the bias point.

We end by presenting a variation to the biased suggestion making algorithm. We first
motivate it through an example. The biased suggestion making algorithm seems to be a good
solution for mobile applications, where the user is locatedat a certain latitude and longitude
and is likely to be interested in search results in their immediate vicinity. But consider an
application such as the online RoutePlanner (http://routes.tomtom.com/), which may
also want to offer biased suggestions, depending on the location that the user is currently
looking at. A typical RoutePlanner screen is shown in Figure3.7.

Here, the user is looking at a nearly complete map of Europe, and is free to further
zoom in or out. A good choice for a bias point in this case seemsto be the center of the
image, located somewhere in the South of Germany in this particular example. However,
since the user is looking at a map of Europe, it does not seem right to make ”Langenau,
Germany” a much more likely suggestion than ”London, UnitedKingdom” for prefix ”L”,
for example, simply because it is located much closer to the center of the currently visible
portion of the map. In other words, we should not ignore the fact that the user is currently
looking at a very large portion of the map, and is equally likely to be interested in any part
of it (but perhaps less likely to be interested in other regions of the map that are not visible).
For such applications, the biased suggestion making procedure can be modified, as shown
in Algorithm 8.

The idea is simply to restrict applying the scaling to just the suggestions outside the vis-
ible region of the map. A radius is supplied for this purpose,representing the approximate
distance to each edge of the visible region of the map. Hence,suggestions maintain their
weights inside the supplied radius. For our previous examples, suggestions in the visible
part of Europe are made, according to their original weights. Other suggestions outside the
visible region of the map are only made depending on their relevance for the entered prefix
and their proximity to the visible region of the map.

Building on this idea, it is easy to adapt the algorithm to e.g. use a bounding box rather
than a radius if this is a better choice for the application that makes use of this functionality.
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Figure 3.7: Partial view of the European map on www.routes.tomtom.com

3.7 Summary

Having presented the algorithms to support all the functionality that we set out to include in
our auto-completion system, in the next chapter we will experimentally test these algorithms
and the assumptions and hypotheses made in developing them.We will also focus on the
issues that are important for the applicability of these algorithms in practice and try to derive
useful guidelines for their use based on the experimental results.
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Algorithm 8 : GetSuggestions(prefix,lat,long,r)
input : A prefix stringprefix, a maximum number of suggestionsn, the user latitude,

lat, and the user longitude,long, and a radiusr
output: A set of active states to be expanded
result←− [];
Q←− [];
state←− getState(startState,prefix);
Q.add(state,state.totalcount);
while Q.notEmpty()∧ result.size< n do

current←− Q.top();
if currentState.isState()then

foreach suggestion k associated to currentdo
if distance((lat,lon),(k.lat,k.long))> r then

α←− 1
1+distance((lat,lon),(k.lat,k.long))−r ;

Q.add(k,α· current.keycount[k]);

else
Q.add(k,current.keycount[k]);

foreach transition character c from currentdo
Q.add(current.transitionstate[c],current.transitioncount[c]);

else
result.add(current);

return result;
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Chapter 4

Evaluation of the proposed
algorithms

In this chapter we will experimentally evaluate the algorithms described in the previous
chapter, with the goal of testing the hypotheses made while making different choices in
developing these algorithms. Where applicable, we will also evaluate different choices
that can be made when using these algorithms and how these choices impact performance.

To test the proposed algorithms we used a JAVA implementation. This choice was made
primarily to facilitate the inclusion of the new functionality within existing projects within
TomTom, which also run JAVA. The experiments were run on a machine with an IntelR©

CoreTM i7-2620M processor (2.7 GHz) and 8 GB of RAM. Two hyperthreading enabled
processor cores were available, but all our implementations will be sequential and will run
on a single processor core, in a single thread, unless otherwise stated.

Next we describe the structure of this chapter. Section 4.1 is the longest section and
tests the radix tree implementation starting from verifying the hypotheses that motivated
the choice of a radix tree over a prefix tree. Because this section aims to test all aspects
related to the way we defined the Probabilistic Radix Tree, inaddition to verifying how
the two main requirements introduced in Chapter 1 are met, wewill also verify here how
Optional Requirement 1 is met, as this is strictly tied to theradix tree structure. Motivated
by some curious findings about the influence of the distribution of suggestion weights on
performance, we will also run multiple tests from which we can learn more about how to
configure this distribution in order to get the best performance from the auto-completion
system.

Section 4.2 is dedicated to testing the performance of the error tolerant prefix matching,
which aims to meet Optional Requirement 2, and drawing conclusions about its proper
use in the auto-completion system. In Section 4.3 we test theperformance of the system
when making location biased suggestions in order to meet Optional Requirement 3. In
Section 4.4 we will motivate and run tests regarding the suitability of implementing the
described algorithms in a distributed environment, again deriving useful tips for getting
good performance from such an implementation.
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4.1 Radix-tree implementation

This section aims to answer a series of practical questions regarding the choices made in
developing the algorithms presented, and more precisely, those questions that have to do
with the actual radix tree structure. The questions that we will look at are as follows:

• Does choosing a radix tree implementation offer the expected benefits in terms of
memory usage and run-time performance, compared to a prefix tree?

• Does the use of the radix tree for key matching in an associative data structure affect
performance, when we need to support queries where the termsare out of order, with
respect to the standard hierarchical format?

• What is the influence of the distribution of weights on the performance of the auto-
completion system?

In conducting the first experiments, we use a list of street-level and city-level addresses cor-
responding to the largest 140 cities and towns in Germany, and all street level addresses in
them, for a total of approximately 205,000 addresses.

Figures 4.1 and 4.2 show the different scaling behavior of the number of states needed
by the prefix tree and radix tree implementations as a function of strings and addresses
supported, respectively. The distinction is made because each address has several strings
associated to it, in order to support substring matching. Nevertheless, the two graphs are
very similar. As expected, given the nature of our supportedqueries, the number of states
required by the radix tree implementation is significantly smaller.

However, this reduction in state count does come at the cost of having to store strings
instead of characters as edge labels. To maintain these labels, each state will require more
memory in a radix tree compared to a prefix tree. So despite thebig difference in state
counts, we should verify that the overall memory requirements are actually reduced. Figure
4.3 shows the outcome of this test. Because it is not trivial to evaluate the memory require-
ments of a JAVA program, these test results are a bit coarser,but conclusive, nonetheless.

The tests run so far make the point that using a radix tree instead of a prefix tree leads
to a great reduction in the number of states and in the amount of memory used. Compelling
as the results may be, since we are building a real-time auto-completion system, we still
need to make sure that we are not paying any considerable penalty for this compact repre-
sentation. First we address the perhaps less critical issueof performance during building the
radix tree. We first raised this issue in the previous chapter, when describing the procedure
for adding a new term to the Probabilistic Radix Tree. The procedure is far more complex
compared to the equivalent procedure for a prefix tree, but wedid argue that the asymptotic
complexity of the algorithm as a function of the length of theterm added does not change,
but the constant time operations involved could have more ofan impact, especially since
the length of all terms can be assumed to be bounded by some reasonable constant itself.
Nevertheless, we don’t expect the run-time in the case of theradix tree to suffer too much.

Note also that given the state reduction, there are fewer states to be updated along the
path of adding each new term to the radix tree. Indeed, Figure4.4 shows that the run-time
for this procedure follows similar trends for the two structures.
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Figure 4.1: Comparison of the scalability in terms of state counts vs. number of supported
strings for Prefix Trees and Radix Trees

Figure 4.2: Comparison of the scalability in terms of state counts vs. number of supported
addresses for Prefix Trees and Radix Trees
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Figure 4.3: Comparison of the memory requirements vs. number of addresses for Prefix
Trees and Radix Trees

Figure 4.4: Scalability of run-times for adding terms to Prefix Trees and Radix Trees vs.
the number of addresses already supported by the tree
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Figure 4.5: Scalability of the run-times for the suggestionmaking process for Prefix Trees
and Radix Trees for varying prefix lengths and number of addresses

Remark4.1. Note that the measured run-times are in the nanoseconds range. We believe
that the sawtooth trend observed for the measured run-timesis owed to external factors,
such as buffering and caching, since the measurements were made at intermediate points
in the process of reading data from disk and adding terms to the tree. We do not see any
reason for this pattern to arise as a result of the algorithm logic. What we are interested in,
though, is that the run-times for the two data structures arevery similar, so we can conclude
that we did not create performance issues as far as the operation of adding supported terms
is concerned, by opting for a radix tree implementation.�

Next, we turn out attention to the far more important performance issue: the run-time
required for making suggestions. We compare the prefix tree against the radix tree on this
performance measure. When describing the suggestion making algorithm in the previous
chapter we mentioned that the algorithm requires no adapting when moving from prefix
trees to radix trees. Coupled with the significant state count reduction noticed in radix trees
compared to prefix trees, we should expect the radix tree to offer significant improvements
over the prefix tree. Figure 4.5 shows the outcome of verifying this. The figure shows the
run-time in nanoseconds for making suggestions for prefixesof different lengths, on trees
supporting different numbers of addresses. All prefixes are guaranteed to generate some
number of suggestions, so it is never the case that the algorithm has no state to expand in
order to produce a list of suggestions.

As expected, the radix tree is much faster, and the difference is significant in the case
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Figure 4.6: The impact of the prefix length on the suggestion making run-time for Prefix
Trees and Radix Trees

of small prefix lengths, where expanding states means exploring a large number of possibil-
ities before completing a list of suggestions. We also take this opportunity to point out that
the run-times seen so far fit comfortably within the definition of real-time performance as
described in Chapter 2, as in very few tests the 1 ms barrier ispassed, and that usually just
for the prefix tree, on short prefixes.

Figures 4.6 and 4.7 project figure 4.5 on the prefix length and the address count planes
respectively, in order to clarify the run-time behavior relative to each of these parameters.

We find the tests conducted so far sufficient in order to conclude that radix trees offer
an overall better approach, so in the following we will only concentrate on them, which
will also allow us to move to larger data sets. Specifically, in the following experiments we
will use a list of the largest 256 cities in the United States and the 1,115,291 street level
addresses in them.

We will next look at the penalty that we pay for being able to match terms of an address
in an out-of-order fashion. For this purpose we look at the time required to make suggestion
for prefixes one character in length for both the case when substring matching is supported,
as well as when it isn’t. The choice of this minimum prefix length corresponds to a worst-
case scenario, because as we have seen in the previous tests (and not surprisingly), making
suggestions for these short prefixes takes the longest. The results are plotted in Figure 4.8.

Again, we attribute the spikes that can be observed to external factors, as the run-time
ranges we are dealing with are very small, and we focus on the general trend, which seems
to be similar for the two types of matching.
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Figure 4.7: The impact of the number of supported addresses on the suggestion making
run-time for Prefix Trees and Radix Trees

Figure 4.8: Scalability of suggestion making run-times when substring matching is enabled
or disabled
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There are in this case three strings that are added to the radix tree for each individual
address. Thus, for an address of the form ”street, city, state, country”, we also add the
strings corresponding to the hierarchies ”city, street, state, country” and ”city, state, street,
country”. As Figure 4.8 shows, the price to pay for this flexibility iswithin a constant factor
and the suggestion making run-time exhibits scalability very close to the one seen for the
version without substring matching.

The experiments run so far have used a very simple distribution, in which we have three
types of cities (capital, large city, medium city), and all cities and streets within them had a
weight that depends only on this type. More specifically, cities have weights 5,000, 4,000
and 3,000 depending on type, and the streets in them have weights 500, 400 and 300 re-
spectively. Intuitively, this corresponds to a near worst case scenario, because of the limited
possible values of weights attributed to each association.That is, assuming we have an asso-
ciationk in the priority queue, its weight will be lower than any statethat can be expanded,
at least to one association of similar type. It is beyond the scope of this thesis project to
determine ways of generating distributions that produce more relevant suggestions, but we
want to test the hypothesis that doing so will also result in improved performance for the
suggestion making algorithm.

To do this, we simplify our distribution further: all citieswill have weights 1,000, and
all streets will have weights 100. We will test this against auniform distribution of weights
in the much wider range 1 - 10,000, across all cities and streets. We expect that given a cer-
tain prefix, more diversity will lead to a higher chance of expanding suggestions that hide
portions of the tree that correspond to lower weight suggestions, thus speeding up the sug-
gestion making process. The results of this experiment are shown in Figure 4.9 and seem
very surprising at first. The very simple distribution is performing much better than the
distribution with much greater diversity. The results (which were consistent over multiple
runs) clearly contradict our hypothesis in its simple form stated above.

We will address this apparently very strange behavior soon,but first, we would like to
address the hypothesis that increased diversity has benefits, by creating a test environment
that more directly addresses this aspect. The reason for theinsistence on at least establish-
ing that greater diversity does not incur a performance penalty in itself is that diversity is
a requirement, and it is strongly recommended that it is usedfor reasons other than per-
formance, such as offering a detailed ranking between the different suggestions that can be
made.

Figure 4.10 shows a comparison between the run-time required to make suggestions
when the range of weights is uniformly distributed across the interval 1 to 100 compared to
the interval 1 to 10,000.

Once again, prefixes of length 1 are used, to simulate a worst case scenario. It should
also be noted that the run-times we are dealing with now have significantly increased, and
we even observe run-times that exceed 100 ms. This time, the behavior is as expected, and
indeed the tree built with addresses the weights of which exhibit greater diversity can be
used to produce better run-times. This is in line with the intuition that having a greater
diversity creates a higher potential for having states thatare not worth expanding before
making some higher weighted suggestion. However, this difference is far less impressive
compared to the benefit that we noticed when using the very simple distribution which we
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Figure 4.9: Scalability of suggestion making run-times fordifferent distributions of weights

Figure 4.10: Scalability of suggestion making run-times for different distributions of
weights
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Figure 4.11: Scalability of the run-times for the suggestion making process for varying
prefix lengths and number of addresses, using different weight distributions

mentioned earlier (with all city weights 1,000 and all street weights of 100).
Returning to the example in Figure 4.9, we would like to get tothe bottom of why such

a simple distribution performs so well. Clearly the number of states expanded by the simple
distribution is much smaller than the corresponding numberin the case of the uniform dis-
tribution. According to the logic of the suggestion making algorithm, this can only happen
as a result of the fact that many suggestions outweigh statesthat could be expanded which
hide lower weighted suggestions. Recalling that we tested against the one letter prefix worst
case scenario, we hypothesize that as there are plenty of city candidates to choose from for
most one-letter prefixes, it is these suggestions that are responsible for hiding enough street
level suggestions to reduce the search space sufficiently to result in the behavior seen in
Figure 4.9. This will be interesting to verify. Note that given our choice of weights, only
10 street suggestions can be hidden by a city suggestion, because if a state leads to more
than 10 street suggestions, that state will have to be expanded before any suggestion for a
city can be added to the results set, as the weights of cities are exactly 10 times greater than
those of streets. For instance, states that can be reached byparsing prefixes like ’5th’ or
’West’ will surely be expanded as well, given the large number of streets with such prefixes.

In order to retest, we introduce an extra parameter: the prefix length. Figure 4.11 shows
the results: indeed, this significant difference is only noticeable for small prefixes of length
2 and especially 1 (this was verified by zooming in on smaller ranges of the run-time axis
for different prefix lengths). These experiments show the importance of having a class of
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Figure 4.12: Scalability of the run-times for the suggestion making process for varying
prefix lengths and number of addresses, using different weight distributions

a relatively small number of high-weight suggestions in allowing the system to cope with
short prefixes.

This leads to a very interesting conclusion. All the experiments run so far show that no
special tricks need to be added to the implementation to allow the algorithms to scale nicely
with address counts, even when dealing with very short prefixes, as long as the data sample
used when building the radix tree has the right kind of distribution of weights.

Thus, the distribution of weights over suggestions should preferably be structured in dif-
ferent levels, containing at least one level of few high-weight suggestions representing, say,
country names or city names, in order to deal with very short prefixes. Within the different
levels, a high diversity is recommended, but primarily in order to implement preferences
among different same-level suggestions. A high diversity within different levels is less im-
portant for the run-time performance of suggestion making,since it makes little difference,
as Figure 4.12 shows.

However, as long as the distinction between the different levels is clear enough, it is
probably highly desirable to have some diversity within each level, in order to make sug-
gestions that are properly ranked according to their relevance for the supplied prefix. It will
be left to future work to find ways of generating such distributions, but our experiments
underline the necessity to make sure that such distributions account for short prefixes, as
described in this section.
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Figure 4.13: Scalability of the run-times for the suggestion making process for varying
levels of error tolerance of prefix matching

4.2 Error tolerance support

In this section we will look at the run-time penalty for error-tolerant prefix matching. Figure
4.13 shows the difference in run-times for retrieving the top suggestions using exact prefix
matching versus using a maximum edit distance threshold of 1or 2 for parsing prefixes of
length 4, which have been modified from exact matching prefixes, within the correspond-
ing distance thresholds. We opted for this prefix length, as mistyping a prefix of length 1
or 2 cannot be interpreted as such, since the result would most likely be a prefix for some
other possible suggestion. Moreover, we are only interested here in how different matching
strategies compare to each other.

As the figure suggests, allowing for prefix matching that is tolerant to errors incurs sig-
nificant overhead. The difference is so big, that it makes sense to try matching with different
levels of tolerance in succession, i.e. try exact matching,and in case no states are retrieved,
try matching with a maximum allowed edit distance of 1, and incase of failure again try
matching, this time with a maximum allowed edit distance of 2.

This is a useful strategy, since for the very short prefixes (which also require the largest
amount of time for making suggestions based on them), it is very unlikely that exact match-
ing will produce no results, and as the prefix length increases, the run-times should drop
for all kinds of matching. It is also perhaps fair to assume that the user is not mistyping a
query, before suggesting a correction, as long as there are suggestions that can be made for
the prefix as it is given by the user.
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Figure 4.14: Scalability of the run-times for the suggestion making process for varying
prefix lengths and number of addresses, with or without location bias support

4.3 Location bias impact

In this section we test the impact of implementing a locationbias for making suggestions.
For this purpose we initially used a distribution of weightsas follows: cities have weights
3,000, 4,000 and 5,000 (depending on the city type, where only the capital city has weight
5,000) and the corresponding streets in them have weights 300, 400 and 500 respectively.
The results of this experiment are summarized in Figure 4.14, for different prefix lengths.

We notice here that adding a location bias creates a fairly high overhead for short pre-
fixes, with run-times reaching nearly 250ms for prefixes of length 1 with many possible
suggestions to choose from, due to the rescaling that is done. However, this behavior can
also be fixed with a better choice of a weighting scheme, as shown in Figure 4.15. In
this case we found it useful to make a separation between streets in large cities and small
cities. Hence, cities had weights 3,000,000, 4,000,000 and5,000,000, whereas streets in
large cities had weights 40,000 and 50,000, and streets in smaller cities had much smaller
weights: 3,000.

These values were chosen somewhat arbitrarily, simply making use of the intuition that
due to the rescaling, the advantage of having separate levels of suggestion relevance was
lost. The choice of the best weighting scheme should be established experimentally, taking
into consideration the suggestions to be made and how they can be divided into levels of
relevance. This depends on the specific application that makes use of the auto-completion
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Figure 4.15: Scalability of the run-times for the suggestion making process for varying
prefix lengths and number of addresses, with or without location bias support

system, and which has the responsibility of providing the data regarding the suggestions to
be made and their weights.

We furthermore note that the range of distances plays a role here, i.e. in choosing a
weighting scheme, it is important to get some hints from observing how high the distance
can get, and equivalently how low theα factor (see Algorithm 7) will scale the suggestions
to be made. This will depend on the specific distance measure being used and the unit in
which it is calculated. What this experiment shows, however, is that it is easy to get good
performance from the auto-completion system by using a weighting scheme that takes little
effort and little imagination to come up with.

4.4 Distributing work

In this section we will look at ways of distributing the task of suggestion making among a
number of computers. The need to explore this option arises from making the observation
that the implementation in its current form requires a fairly large amount of memory. While
this should be addressed as a problem in its own right, in an attempt to make use of as little
memory as necessary, depending on the production environment used, it may eventually
still be necessary to resort to using multiple computers forsuggestion making.

The first test pits the straightforward implementation against an implementation dis-
tributing the load evenly across 2 and 4 trees respectively,with each tree attributed its own
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Figure 4.16: Scalability of the run-times for the suggestion making process for varying
prefix lengths and number of addresses with different numbers of Trees working in parallel

thread for making suggestions. Hence the trees are queried in parallel (in as much as the
system allows) and the results of all of them are merged in order to get a final ranked list of
suggestions to return to the user. The overhead of setting updifferent threads to query trees
is only added to the 2 and 4 tree implementation. The results (Figure 4.16) show that this
has an impact, but one that scales nicely with the size of trees, but only for long prefixes. In
the case of short prefixes, however, the scalability is much worse.

We expect that this bad scalability for short prefixes is not due to the overhead of
distributing the work across multiple cores and merging theresults, because such overhead
should also be apparent for longer prefixes. But the scalability there is much better. This is
most likely again caused by the distribution of supported suggestions.

For this experiment all trees were formed by randomly distributing addresses to trees,
and thus all trees should exhibit similar weight distributions, but with a smaller number of
suggestions for each possible weight in the case of each tree. Note that although the sug-
gestions were distributed among several trees, we are stilltrying to get the total number of
suggestions from each tree in order to merge them into a final result. All this means that
each tree now has a smaller number of highly ranked strings from which to choose the same
number of top suggestions to be made. A way to address this is to widen the gap between
top level suggestions and lower priority suggestions. Figure 4.17 shows the effects of doing
this only for when 2 trees are used, and Figure 4.18 shows the effects of doing this on 4
trees as well.
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Figure 4.17: Scalability of the run-times for the suggestion making process for varying
prefix lengths and number of addresses with different numbers of Trees working in parallel

Figure 4.18: Scalability of the run-times for the suggestion making process for varying
prefix lengths and number of addresses with different numbers of Trees working in parallel

72



Evaluation of the proposed algorithms 4.5 Summary

4.5 Summary

In this chapter we have tested the hypotheses made in developing the Probabilistic Radix
Tree model used by our auto-completion algorithms. We have seen that the radix tree offers
significant improvements over a prefix tree both in terms of memory requirements, as well
as in terms of suggestion making run-time performance.

We have also seen that we can successfully meet all the (main and optional) require-
ments that we introduced in Chapter 1, and we have learned that altering the distribution
of weights associated to different suggestions is a very powerful tool in obtaining the best
performance from the system, but, also very importantly, wehave shown that this tool is not
at all hard to use.
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Chapter 5

Conclusions and Future Work

In this thesis we began with a presentation of TomTom’s business need, which was the
implementation of auto-completion functionality for the Andorra geocoding system. We
started by separating the main requirements from the optional requirements. The main re-
quirements were typical of general auto-completion systems: real-time performance and the
support for setting priorities or weights to suggestions. Systems implementing such func-
tionality exist in numerous applications, and techniques for implementing them have been
investigated in literature. The same applies to Optional Requirement 2 identified in the
first chapter. The optional requirements 1 and 3, on the otherhand, are specific to geocod-
ing systems, and although systems offering such functionality exist, there are no publicly
available descriptions of algorithms for implementing such functionality, to the best of our
knowledge.

In Chapter 2 we have surveyed existing literature for approaches to dealing with the
problem of real-time auto-completion in the general context of information retrieval sys-
tems. Building on the conclusions from related literature,we opted for a prefix tree based
approach, which we then gradually modified in order to meet all the requirements identified
for our auto-completion system.

We have described ways of adding the required functionalitywhile still meeting the
very strict run-time requirements. The most important thing to mention here is the impact
that the probability distribution over the supported suggestions has on the run-time of the
suggestion making process, as identified in the previous chapter. These notes are very im-
portant for getting the right performance when using the auto-completion system in specific
applications. We have tried to offer some guidelines through our experiments, but ultimately
it will be up to the application that will make use of the system to configure its data for op-
timal performance.

Perhaps the most important conclusion is that different levels of importance need to be
defined, such that suggestions within different levels are quite clearly separated. We have
seen that at least one ’high-priority’ level of relatively few suggestions is necessary to be
able to handle prefix strings of only 1 or 2 characters. This requirement can be met quite
naturally in the context of geocoding, as a class of high priority suggestions can be defined
as the set of supported country name suggestions, or state names, etc. It is also possible to
define this high priority class of suggestions based on othercriteria completely unrelated to
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the type of suggestions. For instance, the frequency with which a particular suggestion is
found relevant by users could be used to define a class of high priority suggestions, regard-
less of their type (street, city, etc.).

Having met all the requirements that have been set in the firstchapter, there are two main
directions for future work: improving the relevance of suggestions being made by properly
assigning weights to them, and dealing with the implementation details that need to be ad-
dressed in order to get the system into production. We will look at these two directions
more carefully in the following section.

5.1 Future work

It is beyond the scope of this thesis to investigate how to best distribute suggestion prob-
abilities or weights to obtain the best results both in termsof suggestion making run-time
performance and relevance of suggestions. Thus we will leave it for future work to find
ways of best separating the suggestions into a set of levels of importance and then defin-
ing distributions within each level in order to meet this double requirement. This can also
be interpreted as an optimization problem to be solved, and numerous techniques can be
tried for this purpose. Distributions can be defined taking into consideration such data as
the length of streets, or the importance of streets, coupledwith the importance of the cities
or countries they are in. Such information can be derived from the source data, and may
offer useful hints. Ideally, though, use logs for the geocoder can be used to define such
distributions based on what users search. Also, once up and running, the auto-completion
system could employ learning mechanisms based on its own usage, in order to optimize its
performance.

There are also still some challenges to get from the implementation used for this thesis
project to something that can be used in a production system.The main concern is the rel-
atively high memory requirements. Future work should focuson possible alterations that
can be made to the implementation in order to reduce memory requirements. Ideally, better
choices can be made for the tree implementation without changing any of the interfaces or
template methods (see Appendix A).

Ultimately, depending on the production environment, it may be easier to distribute
work across multiple computing nodes. As we’ve establishedin the previous chapter, with
some consideration for how the distribution of suggestion probabilities is affected, this is a
viable solution.

Another idea for future work is to try an approach to making prefix string corrections
even if there are suggestions that exactly match the supplied user prefix. This can be an
option if we know the user made a very common typo which gives them an obscure sug-
gestion, whereas without the typo a very common suggestion could be made. Then we may
decide to at least add the highly weighted suggestion to the result set after the exact match-
ing one. To implement this, a different error tolerant prefix matching strategy is required,
perhaps similar to the one in [10], but this would require first collecting data about what
spelling mistakes are common.
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Appendix A

Implementation Details

In this appendix we describe the implementation of the software system that was used for
the experimental evaluation. Ideally, this system should come as close as possible to one
that could be used in production. The aim of this appendix is to serve as a documentation
for the code written. The code consists of three packages (inthe sense that packages are
defined in the Java programming language) which we will discuss in subsequent sections.
For each package, we will survey the classes, their roles within the system, details of the
implementation where necessary, as well as possible considerations for future use.

A.1 The suggestions package

Thesuggestionspackage defines classes that represent suggestions to whichthe Probabilis-
tic Radix Tree can point. Here we define a simple implementation of the suggestion man-
ager, which is the key component in allowing flexible prefix matching and error tolerant and
location biased suggestion making. We also define the so-called SuggestionsEnginewhich
serves as the entry point for the auto-completion system, providing a simple interface that
allows a user of the system to make use of all its functionality by interacting with it via only
two method calls. The UML diagram corresponding to this package is shown in Figure A.1.

The classes in this package are as follows:

• Suggestion. This is an interface that defines the minimal behavior of a suggestion
that the system supports. Specifically, a Suggestion shouldoffer a way of retrieving
the suggestionString, which is the string displayed to the end-user as a completion
suggestion and a method that returns all strings that can be used to match that sug-
gestion. This last method is calledgetMatchingStringsand it takes as a parameter a
StringNormalizer (discussed below) and a weight, and it returns a set of strings that
can be used to match this suggestion, along with their corresponding weights, cal-
culated based on the weight attributed to the suggestion andthe possible distortion
applied to thesuggestionStringin order to get the matching string.

• AddressSuggestion. This is an abstract class that implements Suggestion (speaking
only strictly from a Java language point of view, as it does not actually implement any
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A.1 Thesuggestionspackage Implementation Details

of its methods), and it imposes that concrete classes extending it have associated with
them a location (a latitude and longitude pair) that can be retrieved by implement-
ing the abstract methods defined here for this purpose. The class does implement a
methoddistancefor calculating the distance to a bias point provided as a parameter,
using its own latitude and longitude. For now this method hasa simple implementa-
tion which serves as an approximation: it treats coordinates as points in a plane and
computes the Euclidean distance between them. For more accuracy, this method can
be implemented to return the actual distance in e.g. kilometers. Note that this exact
implementation will also affect the choice of the weight distribution for supported
queries.

• StringNormalizeris an interface which exposes a methodnormalizeStringwhich
should be applied both on matching strings that can be parsedusing the edges of
the radix tree, as well as on prefixes provided to retrieve suggestions, in order to
allow for some flexibility when parsing user-supplied prefixes.

• AddressStringNormalizerimplementsStringNormalizersuch that strings passed to
thenormalizeStringmethod are lower cased and all delimiter sequences are replaced
by a single placeholder character: $. Hence the strings ”Frankfurt (Oder)” and
”frankfurt-oder ” are the same when normalized using this method.

• CitySuggestionandStreetSuggestionare classes that implementAddressSuggestion
and are constructed by supplying all the elements necessaryfor describing such sug-
gestions in each case, such as street name, city name, lat-long, etc.

• SuggestionsManageris an interface describing the functionality of an associative data
structure which maps keys to suggestions and offers a way of retrieving keys based
on suggestions and vice-versa. The addition of new suggestions is meant to be trans-
parent to the user, as getting a suggestion key should resultin the creation of one, in
case a key is not already associated to the supplied suggestion.

• SuggestionsManagerImplis a simple implementation ofSuggestionsManagerusing
integer keys and managing their association to suggestionsby using an in-memory
hash map.

• SuggestionsEngineis a concrete class, offering a simple interface (not in the Java
language sense) to the auto-completion system. It manages aTreeinstance (see sec-
tion A.2) and through calling its constructor, it is provided aDataReader(see section
A.3) that populates the tree with suggestions and their supported strings. It also ex-
poses methods for getting a ranked list of top-k suggestions. This is accomplished
by simply wrapping around similar methods exposed by the tree, after only applying
normalization to the prefix provided as a parameter.
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Figure A.1: The UML diagram corresponding to thesuggestionspackage
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A.2 The trees package

The treespackage is the core package containing the definition of the Probabilistic Radix
Tree, along with the other components necessary for its implementation. Figure A.2 shows
the UML diagram generated from these components. Next we discuss the main classes in
this package individually:

• Nodeis an interface to a node in the abstractTreestructure. The interface requires that
implementers offer a way to add terms to the node, retrieve suggestions associated to
this node, get the total weight corresponding to the node andget the descendant nodes
in the tree structure.

• Treeis an abstract class requiring implementations for (abstract) methods for adding
suggestions, parsing prefix strings (and returning the correspondingNode), both with
and without error tolerance support. The class does implement a template method for
getting a ranked list of the top-k suggestions corresponding to a given prefix. The
method corresponds to Algorithm 5 and its variations described in chapter 3. It is a
template method because it relies on subclasses to implement the abstract methods
that it uses, for getting states based on prefix strings. Thissame method is used for
both biased and unbiased suggestion making, depending on the type ofCandidateAd-
der parameter it is provided, as discussed next.

• CandidateAdderis an interface, exposing methods the implementers of whichhave
to define, in order encapsulate the way suggestions are addedto a priority queue.
This is a step in the suggestion making algorithm of theTreeand encapsulating it
into objects of base typeCandidateAdderallows us to use the same method for unbi-
ased or different kinds of biased suggestion-making, simply by changing the concrete
type of CandidateAdderthat is passed to the method (this is an implementation of
the ’Strategy’ software design pattern). Implementationsare currently provided for
simple addition of Suggestions according to their weights (PlainCandidateAdder),
addition of suggestions with rescaled weights according tothe distance to a provided
bias point (BiasedCandidateAdder) and addition of suggestions with rescaled weights
according to the distance to a given bias point, but only outside a provided radius (Bi-
asedRadiusCandidateAdder).

• SuggestionCandidateis a class encapsulating an entry in the priority queue used by
the suggestion making algorithm ofTree. It is meant to hold a reference to either
a state to be expanded in the suggestion making process or a suggestion that can
be made to the user.SuggestionCandidates are instantiated byCandidateAdders,
which assign weights to them according to the type of the suggestion making process
(biased/unbiased/etc.).

• RadixNodeandRadixTreeoffer complete implementations of theNodeandTreeab-
stractions respectively, according to the algorithms discussed in this thesis for Prob-
abilistic Radix Trees. The intent of this separation is to define the algorithms in an
abstract way as far as possible, while allowing for different implementation decisions.
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Figure A.2: The UML diagram corresponding to thetreespackage
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A.3 Thedatapackage Implementation Details

Figure A.3: The UML diagram corresponding to thedatapackage

• DistanceEditoris a utility class which implements edit-distance calculation between
two strings, as it is required by the algorithms discussed inthis thesis. That is, it
is passed two string parameters and it returns the minimum distance necessary to
transform prefixes of the first string into the second one, along with the indices that
delimit these prefixes.

A.3 The data package

Thedatapackage consists of classes that populate aTreewith supported strings from a given
data source. This will need to change (or at least be expanded) in order to incorporate sup-
port for application-specific data sources and processing.There is an interface that defines
a simple protocol for populating aTreefrom a given data source, calledDataReader. Con-
creteDataReaders have to encapsulate the knowledge of reading and interpreting a known
data source and making the necessary calls to the supplied tree to support the suggestions
they require.

Figure A.3 shows the implementations ofDataReaderinterface that have been used in
the experimental evaluation presented in this thesis.

82



Bibliography

[1] B. Filipic T.R. Lynam B. Zupan A. Bratko, G. V. Cormack. Spam filtering using sta-
tistical data compression models.Journal of Machine Learning, 7:2673–2698, 2006.

[2] E. Alpaydin. Introduction to Machine Learning, Second Edition. The MIT Press,
2010.

[3] R. Asok. Symbolic dynamic analysis of complex systems for anomaly detection.Sig-
nal Processing, 84(7):1115–1130, 2004.

[4] H. Schutze C.D. Manning, P. Raghavan.An introduction to Information Retrieval.
Cambridge University Press, 2009.

[5] F.J. Damerau. A technique for computer detection and correction of spelling errors.
Communications of the ACM, 7:171–176, 1964.

[6] C. de la Higuera. Characteristic sets for polynomial grammatical inference. 1995.

[7] H. Hembrooke T. Joachims B. Pan G. Gay, L. Granka. Accurately interpreting click-
through data as implicit feedback.ACM Conference On Research and Development
In Information Retrieval, 28, 2005.

[8] H. Hembrooke T. Joachims B. Pan F. Radlinski G. Gay, L. Granka. Evaluating the
accuracy of implicit feedback and query reformulations in web search.ACM Transac-
tions on Information Systems (TOIS), 25, 2007.

[9] I. Weber H. Bast. Type less, find more: Fast autocompletion search with a succinct
index. ACM Conference On Research and Development In Information Retrieval, 29,
2006.

[10] P. Hsu H. Duan. Online spelling correction for query completion. WWW, 2011.

[11] C. von der Malsburg L. Wiskott J. Fellous, N. Kruger. Face recognition by elastic
bunch graph matching.IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 19:775–779, 1997.

83



BIBLIOGRAPHY

[12] R.B. Miller. Response time in man-computer conversational transactions.AFIPS,
1968.

[13] M. Mohri. Finite-state transducers in language and speech recognition.Association
for Computational Linguistics, 23(2):269–312, 1997.

[14] A. Ray P. Adenis, K. Mukherjee. State splitting and state merging in probabilistic
finite state automata.American Control Conference, pages 5145–5150, 2011.

[15] J. Liu P. Dolan, E. R. Pedersen. Personalized news recommendation based on click be-
havior.Proceedings of the 15th international conference on Intelligent user interfaces,
2010.

[16] F. Thollard P. Dupont, C. de la Higuera. Probabilistic dfa inference using kullback-
leibler divergence and minimality.Proceedings of the 17th International Conference
on Machine Learning, 2000.

[17] Y. Esposito P. Dupont, F. Denis. Links between probabilistic automata and hidden
markov models: probability distributions, learning models and induction algorithms.
Pattern Recognition, 38(9):1349–1371, 2005.

[18] C. de la Higueroa F. Thollard E. Vidal R. C. Carrasco, F. Casacuberta. Probabilistic
finite state machines - parts i and ii.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(7):1013–1025, 2005.

[19] J. Oncina R. C. Carrasco. Learning stochastic regular grammars by means of state
merging method.Springer-Verlag, pages 139–152, 1994.

[20] J. Oncina R.C. Carrasco. Learning deterministic regular grammars from stochastic
samples in polynomial time.RAIRO (Theoretical Informatics and Applications), 33:1–
20, 1999.

[21] S. Inenage G. Mauri G. Pavesi A. Shinohara M. Takeda S. Arikawa, H. Hoshino. On-
line construction of compact directed acyclic word graphs.Discrete Applied Mathe-
matics - 12th annual symposium on Combinatorial Pattern Matching, pages 169–186,
2001.

[22] R. Kaushik S. Chaudhuri. Extending autocompletion to tolerate errors.ACM SIG-
MOD, 2009.

[23] S. Verwer.Efficient Identification of Timed Automata, theory and practice. 2011.

84


