Auto-completion Algorithms for
Geocoding Systems

Master Thesis

Vlad Minzatu






Auto-completion Algorithms for
Geocoding Systems

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

COMPUTER SCIENCE

by

Vlad Minzatu
born in Roman, Romania

» |
1(';U Delft '&f

®
Algorithmics Group TomTom
Department of Software Technology TomTom International B.V.
Faculty EEMCS, Delft University of Technology Oosterdoksstraat 114, 1011 DK
Delft, the Netherlands Amsterdam, the Netherlands

www.ewi.tudelft.nl wwWw. tomtom. com



© 2012 Vlad Minzatu



Auto-completion Algorithms for
Geocoding Systems

Author: Vlad Minzatu
Student id: 4117816
Email: v.minzatu@student.tudelft.nl

Abstract

This thesis presents solutions to the problem of implemgrdiuto-completion
functionality, which is currently lacking from TomTom gemting systems. Auto-
completion is a highly desirable feature enabling usersetfopm their task more ef-
fectively, by providing suggestions for completing theiregies as they start to type.

Implementing such functionality in the specific context @fogoding systems
raises several constraints and requirements not dealtinvithlated literature. After
identifying all the requirements, this thesis will presém overall approach and the
algorithms used to meet all of them, including a novel altponi for offering location
biased query completion suggestions.

The thesis will end with conclusions and ideas for future kydiut not before
an experimental analysis which reveals some interestiagacteristics of the system
and provides guidelines on getting the best performancéh®isystem by properly
adjusting the data that it operates on.

Thesis Committee:

University supervisor:  Prof. Dr. C. Witteveen, Faculty EEB, TU Delft
Company supervisor:  A. Sutherland, TomTom Internation® B
Committee Member: Dr. F.A. Kuipers, Faculty EEMCS, TU Delft
Committee Member:  Dr. T.B. Klos, Faculty EEMCS, TU Delft






Preface

This thesis is the result of the research | have done in im@hdimg auto-completion func-
tionality for geocoding systems as part of my internshighimitTomTom International B.V.
in Amsterdam.

| started this internship in July 2011, initially without@search topic. Only after work-
ing in the Software Development team developing the And@eacoding System for about
the first two months of my internship, it was suggested th&d-aampletion functionality
would be a highly desired addition to the geocoder, so |etatd research existing ap-
proaches to implement such functionality, while still wiaidk on current tasks for the An-
dorra geocoder, in preparation for its launch.

Developing the algorithms presented in this thesis was dugitgorocess, starting from
desired properties derived from the functionality of sorhthe most advanced existing so-
lutions on one hand, and existing approaches to addresgmyablem, which only covered
part of these desired properties, on the other. In the engljdve a suitable meeting point
was reached: the resulting algorithms draw inspiratiomfiexisting approaches, but also
offer extensions that enable the successful implementatiah thie desired properties.

| have several people to thank for their help and supporst,Hivould like to thank my
University supervisor, Prof. Dr. Cees Witteveen, for thastant feedback and guidance in
the process of writing this thesis.

| would also like to thank all the people that | have had thaglee of working with
during my internship in TomTom for their support during mgearch, as well as for the
pleasant and very useful experience of working on a projgahteresting as the Andorra
geocoder. Here | would like to extend special thanks to MartMoudstra for her insightful
notes on my thesis early on. And last, but definitely not lelasbuld like to thank Jason
Griffin, who dfered me the internship within TomTom, and thus the chanceaito useful
practical experience as well as to research an interesipig tor my master thesis.

Vlad Minzatu
Amsterdam, the Netherlands
April 13, 2012






Preface iii

Contents %

1 Introduction 1
1.1 TomTom and the Andorra Geocoder . . . . .. . ... ... ....... 1
1.2 Problemstatement . ... ... ... . ... 7
1.3 Thesisoutline . . . . . . . . .. ... 12

2 Methods for auto-completion 13
2.1 Information retrieval systems and geocoding systems. . . . . ... .. 13
2.2 Literature and software libraries for auto-completion. . . . . . ... .. 15
2.3 Probabilistic Finite Automata and their properties . ..... . . ... ... 22
2.4 SUMMAIY . . . o o e e e 29

3 The auto-completion algorithms 31
3.1 The Probabilistic Radix Tree . . . . . . ... ... ... ... .. ... 32
3.2 Using Probabilistic Radix Trees to index suggestions . .. .. . . . ... . 37
3.3 Probabilistic Radix Tree construction. . . . . ... ... ........ 39
3.4 Makingsuggestions . . . . . ... 7 4
3.5 Implementing errortolerance . . . . . . .. ... ... ... 49
3.6 Implementing locationbias . . . . ... ... ... ... ........ 52
3.7 SUMMANY . . . . e 55

4 Evaluation of the proposed algorithms 57
4.1 Radix-tree implementation . . . .. ... ... ... .. .. .. .. .. 58
4.2 Errortolerance support . . . . . ... e e 68
4.3 Locationbiasimpact . .. .. .. .. ... .. ... 96
4.4 Distributingwork . . . . . .. 07
45 Summary ... .. e e e 73

Contents



CONTENTS

Vi

5 Conclusions and Future Work 75
51 Futurework . . . . . . 76

A Implementation Details 77
A.1 Thesuggestionpackage . . . . . . . . . ... .. . e 77
A.2 Thetreespackage . . . . . . . . . . . 80
A.3 Thedatapackage . . ... ... .. . . . . . .. .. ... 82

Bibliography 83



Chapter 1

Introduction

This chapter will introduce the basic notions that createdbntext of this thesis project
and will present the problem statement from a business pbiniew. We will start with
an introduction to TomTom and the company’s main product® Wl then discuss the
Andorra Geocoding System and its role within the companyis Will create a proper
foundation for an exact formulation of our problem statetrspeaking strictly from the
perspective of TomTom'’s business need. Future chaptergedl with translating this into
a research problem and discussing the proposed solutions.

1.1 TomTom and the Andorra Geocoder

TomTom was founded in 1991 by Peter-Frans Pauwels, Piete@eHarold Goddijn and
Corinne Vigreux who are all currently still working withinomTom. Having studies in
Business and Computer Science completed at the Universiymsterdam, Peter-Frans
Pauwels founded, along with his former university colleadqieter Geelen, a company
called Palmtop Software, with the initial aim of buildingrgeal software solutions for mo-
bile devices. Harold Goddijn, who also studied economidb@tniversity of Amsterdam
and Corinne Vigreux who has studies in Internationéllaks, soon joined the company,
which was later renamed to TomTom.

Until 1996, the company developed a number of businessioibss applications for
mobile devices such as bar-code reading, meter reading raed-entry systems, before
shifting focus to developing consumer software productgpfrsonal digital assistant de-
vices (PDAs). By 1998, TomTom was established as a markdeftea PDA software,
creating a number of consumer applications for PDAs, su¢heaEnRoute (later renamed
RoutePlanner) and Citymaps navigation applications.

In 2001, as more accurate GPS satellite readings becamlaldeaiTomTom looked
towards in-car navigation as a major opportunity for inrimra The company’s first navi-
gation (software) product for PDAs, the TomTom Navigataswaunched in 2002. In 2004
the Navigator targeted for PalmOS was launched, based assa-ptatform navigation en-
gine still used in current products. The company’s first dtalone portable navigation
device (PND), the TomTom GO, was introduced in March 2004raadked a turning point



1.1 TomTom and the Andorra Geocoder Introduction

in TomTom'’s story. It featured a 3.5” 320x240 touchscree@p@ MHz CPU, 32 MB of
RAM and an integrated SD reader, at a very competitive patehie time) of £499. The
maps provided with the device came from Tele Atlas, a Netineld-based company special-
ized in delivering digital maps and other dynamic contentifavigation and location-based
services. The TomTom GO met a need for a portable fit-forqgagmavigation device that
was simple to use,fiordable and worked better than any other navigation soluiio the
market and ffectively defined a new category of consumer electronicsPKB. Its suc-
cess was immediate, and by the end of the year of its launigs sithe GO device formed
60% of the company’s revenue. In 2007, TomTom took over tmeip data provider, Tele
Atlas, after a bidding war with United States-based rivair@®a. The final acceptedfier
was worth€2.9 billion.

Although TomTom has become nearly synonymous to the PNDeigdimpany’s recent
history, due to its success in this active market segmeatcdmpany’s productftering is
much wider and also includes in-dash infotainment systdiest management solutions,
maps and real-time services, including the award winning Haific, which makes the
most up-to-date tféc information available, in order to optimize routing. Bching out
to new solutions is necessary, as the PND market is currentigcline. However, it is ex-
pected to endure for a long time and may never disappear. donaims to slow the decline
and lengthen its life by improving the user experience anoligh innovation. In-dash in-
fotainment systems, on the other hand, will be a growth &eah solutions are analogous
to the PND, but are integrated with the car that is equippet thiem. It will take a long
time to develop these markets, because cars have long gaevetd and replacement cycles
compared to consumer electronics. TomTom already cuyrendlvides in-dash navigation
solutions for several car companies, such as Renault andaviaz

Since 2004, TomTom has sold over 55 million PNDs and sinc® 28@r 2 million in
dash navigation systems. TomTom maps cover over 100 ceanteaching more than 3
billion people. These figures establish TomTom as a worlditepsupplier of navigation
products and services, and with the new products under @@went, TomTom aims to
maintain this position.

Traditionally, TomTom’s biggest rival is considered the éican GPS solutions provider
Garmin, mainly because of the competition between the twapamies on the PND market.
However, the productféerings of the two companies have significant non-overlappieas
as well. For instance TomTom alsdfers in-dash navigation solutions for the automotive
industry. On the other hand, Garmin also has solutions ferathation industry. DOfer-
ent TomTom products have to compete with products coming fiiferent competitors.
Whereas Garmin is the main competitor on the PND marked, Domsl RoutePlanner
(which can be found atttp://routes.tomtom.com/) competes with similar services
provided by Google Maps and Bing Maps. RoutePlanner hasdynéage of benefiting
from up to date tréiic information, whereas Google Maps has better support fort$ of
Interest (i.e. finding locations by name, rather than addrebere applicable) and includes
auto-completion functionality.

Headquartered in Amsterdam, TomTom has over 3,500 emagesfices located in
30 countries. There are fouffiwes in the Netherlands: two in Amsterdam (the headquarters
and customer care center), one in Eindhoven (Automotive)ome in Amersfoort (iLocal).



Introduction 1.1 TomTom and the Andorra Geocoder

Markets

Product Units

Navigation | PND | Maps Traffic

FMS Fitness Mobile Places

Automotive LBS

Speedcams | Systems

Corporate Office
Shared Services

Shared Activities

Figure 1.1: TomTom’s organizational chart

Across the world TomTomfeices are located in Austria, Belgium, Denmark, France, Ger-
many, Hungary, Italy, Poland, Russia, Spain, Sweden, &vdtzd, UK, USA, Mexico,
Canada, China, India, Indonesia, Japan, Korea, Malaysigafore, South Africa, Taiwan,
Thailand, Turkey and Australia.

Figure 1.1 shows TomTom’s current organizational chartofa3anuary 2012), high-
lighting the company’s departments.

TomTom comprises four business units, as indicated by thisdi Consumer, Auto-
motive, Business Solutions and Licensing. These can beisd¢ba Markets section in the
figure, and correspond to the markets currently targetedonyTom. The products to sup-
port TomTom’s business units are developed in the corraipgrproduct units shown in
the chart. Most names are self-explanatory. The work of tfferént business units is dis-
tributed across multiple TomTontitces worldwide, even at the level of individual teams.
Hence, distributing work on a specific project across midtgountries or even continents
is very common within TomTom.

The specific product that this thesis is concerned with, mbAredorra, is ageocoding
system developed under LBS (for Location-Based Services) Produmit. A geocoding
system is a software system used for finding geographic twies (latitude and longi-
tude) using other geographic data, most notably text-fodaresses consisting of street
names, city names, postcodes, or combinations thereothvane much easier to interpret
by humans. Andorra is currently used by Business Solutiorengable fleet management
businesses to do geocoding. Andorra will soon also be &laitan demand to a larger num-



1.1 TomTom and the Andorra Geocoder Introduction

v<geoResult xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance"
xsi:type="GeoResult">
<latitude>52.36287456432948</latitude>
<longitude>4.8925373110959836</longitude>
<geohash>u173zkeeu7kl</gechash>
<mapName>FooMap</mapName>
<type>street</type=>
<street>Kerkstraat</street>
<city=Amsterdam</city=
<country>The Netherlands</country=
<countryIS03=NLD</countryIs03>
<formattedAddress=Kerkstraat, Amsterdam, NL</TormattedAddress=>
<widthMeters>l</widthMeters>
<heightMeters>1</heightMeters>
<score>1.@</score>
<confidence>0.5253081</confidence>
</geoResult>

Figure 1.2: XML response given by Andorra for a geocodingrgue

ber of clients, through its inclusion in the Consumer busingnit. Geocoding functionality
is essential to a large number of TomTom applications, ssdh&online RoutePlanner or
mobile applications that meetftirent needs. In the following we will give a brief introduc-
tion into the main constraints and challenges that need tadiéed in building a geocoding
system.

The set of all addresses that can be geocoded to is finitaf athg large. Andorra,
for instance, needs be able to geocode to nearly 1.2 miléttements and over 68 million
street-level addresses. Moreover, the addresses to whiichystem needs to be able to
geocode have a very strict and well-defined structure.

The input to a geocoding system will be referred to asi@ry An example of a typical
query that a geocoding system needs to handle is "Kerkst#aasterdam”. The response
for such a query, regardless of the way it is displayed, st&sif the latitude and longitude
of the location to which the query is geocoded, along witleotiieographical information
that is associated to that location and that the geocodistgsysupports. Figure 1.2 shows
an example output in XML format from TomTom’s Andorra Geoeotbr the above men-
tioned query.

This example shows the typical structure of a returned addia a particular geocod-
ing query. All returned addresses have such a structureglatice data needs to be derived
from a user query containing a combination of city name,estreame, postcode or other
geographical data. We also note that although the displeg=dt can take many forms
(one option would be to display only tiermattedAddresfield above to the user), the un-
derlying structure of the result always resembles what otied in Figure 1.2.

We also note that ambiguity is not a characteristic of thesdgihg data. All possible
latitude-longitude pairs that exist in the geocoder datac®uniquely define all locations
that can be geocoded to, and the underlying data providemfinenation associated to



Introduction 1.1 TomTom and the Andorra Geocoder

unstructured query
100, Kerkstraat, Amsterdam, NL max hits: language:
structured query

house: 100 street or road: Kerkstraat district:
city: Amsterdam state, province or region: country: NL postcode:
POL POI categories: tag: Bias Point:

Intersection: Accuracy: Bounding box: Order:
Submit

Figure 1.3: The query input interface of the Andorra geocode

each such location. However, ambiguity is something a ggingosystem may have to deal
with. The following aspects are among the most importanetodnsidered in order for the
geocoder to provide the desired behavior:

e The use of synonym#s far as the geocoding system is concerned, the underlying
data defines the truth about the real world. But it is fairlynooon for the underlying
data to contain names such as "Glenwood Ave”, for exampls.uip to the geocoding
system to €er its users the flexibility of being able to retrieve suchraestwith a
qguery for "Glenwood Avenue”, which is not the correct streaime according to the
data, but can be assumed to refer to the same thing.

e Ambiguous queriesSome queries are more specific than others. For instance, a

guery simply stating "Amsterdam” as a city name could berrafg to Amsterdam,

The Netherlands, as well as Amsterdam in the state of New, Yé8A. Depending

on the available data, it is up to the geocoding system to @eficertain preference
between the two in the case of this ambiguous query whenessilpge and whenever

it is considered fit to do so. For example, Amsterdam in Thendiédinds should be
seen as the more likely desired result, as it is a major Earopapital. On the other
hand, if extra knowledge is available, stating that the isskrcated in the proximity

of Amsterdam, NY, USA, the balance may be tipped the other way

Furthermore, queries are generally split into two classésicturedqueries andinstruc-
tured or free-textqueries. Figure 1.3 shows part of the user interface usdukeinlévelop-
ment of Andorra - namely, the part that enables input to beigeal to the geocoder - with
a query for "100 Kerkstraat, Amsterdam, NL”, in both struetdiand unstructured form.

Note that the input to the geocoding system need only be othe dfvo types of queries
and structured queries are preferred, as they don’t havaathe potential for ambiguity that
unstructured queries do. That is because although mostssltbrmats are similar regard-
less of the country, when providing free-text queries usbald be free to both change the
order of the diferent elements of the address provided, as well as skip eviic elements
in the address. Hence the mairfaiulty in handling free-text queries: figuring out what
address element each input token stands for. This tasktlefucomplicated by the fact
that many geographical elements (most notably street® hames consisting of multiple
tokens.



1.1 TomTom and the Andorra Geocoder

Introduction

score conf formatted location alternatives accy map geohash
1.00 023 Amsterdamseweg, Amsterdam, NL (52.32171,4.857435) street ul 73wsch43wm Visit
0.94 022 Amsterdam, NL (52.37315,4.89066) city ul73zqllwu? Visit
0.83 0.19 ::z::::::f:fe'wg =Houthaven; (52.394442 4.891481) EID:S?:;“ =Amsterdam street ul 766l gerby  Visit
0.B3 0.19 :x::z::tf:‘ biug Zasndam, (52.41984,4.827104) z:&i’i;f:fgi’"ﬁmmdam street Ul 76jvdzxwmm Visit
0.77 0.18 Rosmolen, Amsterdam, NL (52.4185354.89163) street ul 76pgIbpspt  Visit
0.77 0.18 Rumbeke, Amsterdam, NL (52.34758 4.8027) street u173v394z00t  Visit
0.77 0.18 Rietnesse, Amsterdam, NL {52.326262,4.877915) street ul73wvxyvxdm3 Visit
0.77 0.18 Roemer, Amsterdam, NL (52.42356,4.89491) street ul 76prkm7evk Visit
0.77 0.18 Simplon, Amsterdam, NL (52.352625,4.77309) street ul 73udeBjhOu  Visit
0.77 0.18 Sijlhoff, Amsterdam, NL (52.325099,4.874099) street ul73wvmpy9m Visit
0.77 0.18 Silvretta, Amsterdam, NL (52.352165,4.774265) street ul 73udkt?qvh  Visit
0.77 0.18 Entrepotdok, Amsterdam, NL (52.367759,4.917088) street ul 73zvkB23ve Visit
0.77 0.18 Ramskooi, Amsterdam, NL (52377624 4.896422) street u173zrj3vbuc  Visit
0.77 0.18 Ssandenburch, Amsterdam, NL (52.32569 4.87899) street ul 73xj8g0xwe  Visit
0.77 0.18 Schipmolen, Amsterdam, NL (5241812, 4.89012) street ul76pg2vsjcc  Visit
0.77 0.18 Pasubio, Amsterdam, NL (52.34979,4.775055) street ul 73udvpdusj  Visit
0.77 0.18 Pekkendam, Amsterdam, NL (52.331425 4.859695) street ul 73wwdsxhej Visit
0.77 0.18 Haarlemmerweg, Amsterdam, NL (52.384372 4.802196) N200 street ul76j22c569]  Visit
0.77 0.18 Wittgensteinlaan, Amsterdam, NL (52.35308,4.836385) Rhonevlakte street ul 73v49dzogn  Visit
0.77 0.18 Laagte Kadijk, Amsterdam, NL (52.37033,491165) Scharrebiersluis street ul73zvBx39pd  Visit

Figure 1.4: Response from Andorra for an unstructured giceriAmsterdam”

Andorra does notfficially support free-text queries at the time of this writifogit it is
planned to €fer such support in the near future. A basic form of unstrectuquery han-
dling is implemented. The functionality currently supgalimatches an input query against
a complete address string in order to find the one that is theest match to the entered
string by looking at tokens common to both. Thigens particularly poor performance in
the case of ambiguous queries. Consider for example aructhsted query simply stating
'Amsterdam’. The result for such a query is shown in Figureds currently provided by
Andorra.

As we can see in this figure, although the second suggestemsséike the most
likely match for the given query, the first suggestion thahede is a street in Amsterdam,
whose name also matches (depending on the matcher usedniegedmsterdam. This may
not happen on many examples. However, a high number ofiaeiesuggestions are also
made: basically all the streets in Amsterdam are returinedset only being limited in this
case by the maximum number of addresses that we chose tyeetiihis can be expected
to happen for any query containing a city hame and no straaenddeally, a system for
dealing with unstructured queries would transform suchuigiinto structured queries, by
best interpreting what each token stands for. In the exaaipbee, the input string should
be interpreted as representing a city. This would avoid potiblems identified here. As
adding proper support for unstructured queries is work wgpss, we will assume that
such functionality is in place. Moreover, it is required tthastructured queries perform
best when the input is nicely formatted, i.e. the quenyédl structured For our purposes,
we will define this to mean one of two possible formats: eittstreet name, city name,
country name’or "city name, country name”



Introduction 1.2 Problem statement

1.2 Problem statement

The goal of this thesis is to researcfieetive techniques of building a real-time auto-
completion engine for free-text queries for the Andorraapeler. Auto-completion al-
gorithms aim to @er search query suggestions in real-time, as the user isgtyprhis
functionality is currently lacking from TomTom geocodelsjt could be desirable for a
number of applications that rely on the geocoding servite ddvantages of implementing
auto-completion functionality into the geocoding systaciude:

e better user experiencéAs the user is typing, providing useful suggestions is an ef
fective way of helping the user perform their task mofficently.

e improved accuracy Spelling mistakes are very common due to a series of factors
The situation only gets worse when the user has to formulajaesy with strict
constraints, quite possibly in a language that the user doeknow, as is often the
case with geocoding systems. The right suggestion coul@&lyeuseful for someone
typing, as it could save the person the trouble of having pe tyany related queries
before getting the name right, or having to look up the expetliag of the name
somewhere else. For instance, more or less surprisinglgntidttan” is one of the
most misspelled location names in America, accordingttop: //www.epodunk.
com/topl®/misspelled/.

The problem of providing auto-completion suggestions ha#tipte variations. For in-
stance, depending on the type of suggestions that need tdved) auto-completion may
need to suggest common natural language expressionsgefigobserved user queries,
or suggestions from a fixed set, possibly depending on cont€kis last type of auto-
completion system is common in tasks such as suggesting feom a dictionary or com-
pletion suggestions for source code in IDEs, whereas ttmadibtwo are commonly used in
general search engines, such as those designed to seassttithéNVeb. Our requirements
resemble the ones addressed by auto-completion engiriegdhaon a fixed set of sugges-
tions. That is, the fixed set of addresses that we need to béabeocode to represents the
set of all the possible suggestions we need to support.

Another important characteristic of auto-completion egst has to do with whether or
not support for suggestion ranking is required. Even wheking needs to be supported
there can be variations in the requirements. While autoptetion strategies for IDEs may
only need to specify a ranking between suggestions baseldeocontext and the type of
matched token, an auto-completion engine for geocodinteiys should be able to deal
with arbitrary distributions over supported queries.

Because the geocoder is a tool that sits at the base of a langleean of functionalities
supported by TomTom products, the auto-completion syst@saharge number of poten-
tial stakeholders who use geocoding and who wanttir ¢the before mentioned benefits to
their customers. This includes the online RoutePlanhety: //routes. tomtom. com/)
and other not yet released products th@emovarious services to users of mobile applica-
tions.

Auto-completion functionality is commonly incorporatetd many search systems, in-



1.2 Problem statement Introduction

Google  [snav N - |

5th Avenue, New York, NY, United States

5th Avenue, Seattle, WA, United States wan
Getdirections | My lace 541y Avenue, San Diego, CA, United States

5th Avenue, San Francisco, CA, United States

Ontario

5th Avenue North, Seattle, WA, United States Vit
Set default location | B Valcoper UI %
- —u
8 | “Eeatth Spokans L, i
Put your business on Google Maps i L] North \
Weishi [ Dakota r
s Minnesota 1,
e Minneagolis 5
South @ Wisconsin .
Oregon pataia Michigani Y
Idaho, Wyoming Mitvaiikee & o Buft:
“hicaga
@ Delroit

Salt Towa
%alé‘;;\.?xe Nebraska GO 0mana

Lineain o .

Danvar Kansas HMinois Ohio

Mevada o City Indiana

Saciamento Utah o lotidD W s s

s 2 Kansas  missouri® Lousvites Virgin
3 S8 g © Stockion _ouisvil g

3 Flagta i

NEECSS California Wichiia p, i Kentucky

Bska‘r,sl-elﬂ ©las Vegas Tennessee

‘Albuguerqus
ARHgE Oklahoma a ryansas c

{ =

Los. Arizona Atienta
00 Riverside’ New
Angeies 5 Maxico Dailas Mississippi ! Ci?r.l:
o

r Phoanix
juanae—et m
N s O el @Tucson L Clidad Alabama

Figure 1.5: The auto-completion functionalitffered by Google Maps

cluding geocoding systems. Concerning the competing ptedauto-completion function-
ality is offered by Google Maps, but not by Bing Maps, at the time of thising. The best

known example of the use of auto-completion system for gdiogas Google Maps’ func-
tionality, illustrated in Figure 1.5.

In the figure we can see that as the user has started typinga thee software sys-
tem suggests ways to expand the already typed string to aletsgaldress that the user is
likely to be intending to type. The string typed by the usealishbe referred to as prefix
string. There is a double challenge in building an auto-complesioggestions engine: on
one hand, anfécient framework for providing suggestions based on ustared prefix
strings is needed. On the other hand, it is desired that teeuse is made of domain-
specific knowledge and system usage information, in ordensure the relevance of the
suggestions made.

Therefore, TomTom’s main requirements for an auto-conmietystem, that this thesis
should address, are as follows:

e Main Requirement :1 The auto-completion system should be able to make query
completion suggestions with real-time performance.

e Main Requirement 2The auto-completion system shoulffey support for arbitrary
distributions over the supported query suggestions tlratntmake.

Note that we have named these requirements (the names beimgRé@quirement 1 and
Main Requirement 2), so that we may refer to them throughustthesis. Main Require-
ment 1 may seem ambiguous right now, but we will see in theviailg chapter how this
translates to a technical requirement. For now we only §péuat the user needs to have
the perception that the system is reacting immediately tltenation of the provided query



Introduction 1.2 Problem statement

Amsterdam 4,

Amsterdam, The Netherlands
Amsterdam NY, United States
- Amsterdam Avenue, New York, NY, United States
Amsterdam, MO, United States
Amsterdam Court Hotel, West 50th Street, New York, NY, United States

Figure 1.6: Query completion suggestions for the prefix "fardam” as fered by Google
Maps

prefix. Main Requirement 2 simply states that the system ldhaccept input consisting
of the supported suggestions, with arbitrary weights aaset to them, representing their
relative priorities, and then make suggestions accordirigese priorities.

Thus, the problem statement consists of researching mobsithat can be used to add
such functionality to TomTom’s Andorra geocoder. Hence,gbocoder shouldier clients
the possibility of diciently retrieving a list of suggestions for a provided prefirdered ac-
cording to relevance.

Because we are dealing with the problem of auto-completidhé context of a system
that retrieves addresses, we also require that suggest@psesented in a format that in-
cludes the complete hierarchy of geographical data desgrdm address, as we can see in
Figure 1.6. The reason for this is that the completion sugmemaking process is -in gen-
eral, at least- completely separate from the actual gengodihus, as explained earlier, it is
desirable to provide the free-text query processor witmaatithat it can best interpret. We
will aim for a general enough implementation so that it sdoiilmatter how we define this
property, but to be going on with, we will consider that onlglixstructured suggestions,
as defined previously, should be made. This cannot be seenaaiklad requirement to the
auto-completion system in itself, however, since the dabaiged to the auto-completion
system as supported suggestions should simply represgmaddress strings, and it is the
job of the system making use of the auto-completion systepndaide this data.

Figure 1.6 also shows an example of meeting Main require@ieBburce data, as well
as user logs could be used to assign priorities to suggsstion regardless, it is useful to
derive information that allows the system to decide to priamfor example, a street in New
York ("TAmsterdam Avenue”) as a more likely candidate thaowrt named "Amsterdam”
in the state of Missouri for a given prefix.

In addition to these requirements that are inherent to ao-@apletion system as
described above, next we identify some extra requirembatsate specific toféering auto-
completion functionality for geocoding systems. Theseeaexrequirements were derived
from observing such functionality as it istered by competing products and following dis-
cussions with potential users of the geocoding service fstitar teams inside TomTom.

One such feature is illustrated in Figure 1.7: the systenulghalso dter suggestions



1.2 Problem statement Introduction

10

Munich Sef x

Sendling, Munich, Germany
Sendlinger-Tor-Platz, Munich, Germany
" Restaurant Seehaus, Kleinhesselohe, Munich, Germany
Seafood Restaurants near Munich, Germany
Seidivilla, Nikolaiplatz, Munich

Figure 1.7: Well-structured query completion suggestionprefixes not obeying the well
structured address format

of which the partial query typed is a substring which is notefig of the well structured
query. This is particularly interesting for geocoding syss. One important argument for
the necessity of supporting this feature is that we are wigaliith a setting in which it is
quite likely that the user is very unfamiliar with the quehat they are trying to formulate.
Thus, when searching for "Sendlinger-Tor-Platz, Municleri@any”, a user who is unfa-
miliar with the spelling could first type the city name in orde restrict the search scope. It
is, therefore, desirable in this case that a query prefix afridh, Se”, for example, should
still produce useful suggestions in the well structureanfatr described earlier. This can be
seen to be the case in the example of Figure 1.7. Thus, we canulide the following
optional requirement:

e Optional Requirement:1The auto-completion system shoulffer suggestions that
are well structured, even if the supplied prefix does not @ghisystructure.

Another desirable property is the ability of the systemftelosuggestions for prefixes that
don'’t perfectly match prefixes in the set of supported qseriEhere are two cases to be
considered here:

e On one hand, we could simply be dealing with a typing errortm®y @ser. Such a
scenario is depicted in Figure 1.8. Here, the mistyped nahmastrdam” still gets
the useful suggestions for queries containing the name t@&mam”. Such function-
ality is also desirable for the auto-completion system tiratare developing for the
Andorra geocoder.

e Another type of inexact matching is required in the case @i characters or
groups of characters. This is language-specific behavioexample of such match-
ing is presented in Figure 1.9. The German language charBtshould be accepted
both as-is, as well as substituted by the character group 'ss

Thus, we can formulate the following optional requirement:

e Optional Requirement:2The auto-completion system shoulffes suggestions for
mistyped prefixes that do not match any suggestion prefix.



Introduction 1.2 Problem statement

Amstrdam L

Amsterdam, The Netherlands

Amsterdam Arena, Arena Boulevard, Amsterdam, The Netherlands
Amsterdam Zuidoost, The Netherlands

Amsterdam Airport Schiphol, Schiphol, The Netherlands

Figure 1.8: Query completion suggestions for the mistypefixp”’Amstrdam”

Maximilianstras| ()

MaximilianstraBe, Augsburg, Germany
MaximilianstraBe, Speyer, Germany
MaximilianstraBe, Miunchen, Deutschland
MaximilianstraBe, Munich, Germany
Maximilianstrafe, Augsburg, Deutschland

Figure 1.9: Query completion suggestions for alternatpadlsg of the same name

It is also desirable to implement support fologation biasin the suggestion making
process. That is, the priorities can be altered dependintherregion of the map that
the user is currently looking at, which implies the need tkjy alter the distribution of
matched queries. For the example in Figure 1.9, if the usee m@ming into the region of
the map where the city Munich is located, or if we had knoweetltat the user is located
somewhere in Munich as they are typing a query, we would ptefase this knowledge to
promote the street in Munich as the first suggestion.

Thus we derive the following optional requirement:

e Optional Requirement:3rhe auto-completion system should allow for making sug-
gestions taking into account both the suggestion weigbta/edl as the user location,
if available.

The main challenge in meeting this requirement is incorragdocation-aware logic into

the suggestion making process, preferably without haardydmatically alter the approach
to making suggestions in a location-unaware context, aatepably at no high computa-
tional cost compared to the standard suggestion-makingepso

Remarkl.1 Despite the name, the optional requirements mentioneddnerkighly desir-
able. The auto-completion system that we are describingignthesis should be able to
meet as many of these requirements as posable.

11



1.3 Thesis outline Introduction

12

Thus, the result of this thesis project should consist ofszdigtion of algorithmic tech-
nigues that can be used to meet the main requirements i@entifihis chapter, and which
ideally ofer extensions to meet all the optional requirements as Wikdb, a proof of con-
cept implementation should be made, in order to demongtratdescribed algorithms.

1.3 Thesis outline

In the following chapter we will translate the business iegaents identified here into a
research question, and we will look at how this problem ig@gaghed in existing literature.
We will also look at the available software packages thalccaddress our requirements and
see to which extent they meet our demands. Based on this, ieutline the overall ap-
proach that we will take, motivating our choices using émxgstonclusions in literature and
knowledge of the particularities of addressing auto-catigh in the context of geocoding.
We will then introduce some definitions and properties ofttie@retical model that we will
use as support for our implementation in order to identgycapabilities and its applicabil-
ity to our problem.

The third chapter will describe the actual algorithms thatwill use to address all the
requirements identified earlier. We will start with a degtian of the algorithms for meet-
ing the main requirements for an auto-completion systei tla@n identify ways to extend
these algorithms to accommodate all of the remaining (opt)orequirements. The main
challenge comes from making sure that the added functigrialdone in a way that can be
closely integrated with the overall approach and withouigh Iperformance penalty.

Then, in Chapter 4 we will explain the experimental setupluegest whether, to which
extent and with what implications these requirements cambeby the proposed algo-
rithms. We will devise experiments in order to verify thae tassumptions we made in
developing our algorithms were true, and we will place patéir focus on the impact that
each added functionality has on the performance of the stiggamaking process. We will
also test a number of hypotheses about the impact on penficartaat diferent choices in
the usage of the system may have.

The main conclusions will be drawn in Chapter 5. We will alaket the opportunity
there to outline the main ideas for future work, based on ttpe®mental results from
Chapter 4.

The architecture of the actual implementation will be désad in Appendix A. The
various components will be described along with their r@led how they relate to the al-
gorithmic presentation in this thesis.



Chapter 2

Methods for auto-completion

This chapter will discuss related work done to address tabas requirement introduced
in Chapter 1 and formulate the technical requirements fersirstem that we are develop-
ing. We will first identify geocoding systems as a particutkass of information retrieval
systems and look at what it means to adapt techniques fandeaith auto-completion in
information retrieval systems to the specific context ofageting.

We will then analyze the handling of the auto-completionbtem in literature. We will
also look at existing software packages and derive the thagproach that we will take
based on the conclusions that can be drawn from related Weditk. these conclusions, as
well as the requirements identified in the previous chaptenind, we will introduce the
theoretical model that we will use to solve our problem: Rnebabilistic Prefix Tree (PPT)
We will look at the literature dealing with PPTs, in order dentify their properties and ap-
plicability to our problem. Subsequent chapters will deé&hwhe actual implementation
and analysis of our algorithms based on PPTs.

2.1 Information retrieval systems and geocoding systems

We begin with a discussion of the broader field of informatietnieval, because, as we will
see, geocoding systems are a particular type of informaébtieval systems, and most of
the literature dealing with the problem of auto-completi®iocused on this more general
context. As a particular type of information retrieval gat a geocoder can make use of
similar approaches, but also introduces some extra camstta be considered.

Information retrieval is the task of searching within a giwet of documents, for exactly
those that satisfy a certain information need [4]. The se&done based on a query for-
mulated by the user of the information retrieval system shahthe underlying information
need is best represented. An information retrieval syskemn has the task of retrieving the
documents that are relevant for the (most likely) undegdyiimformation need, based only
on the given query.

Information retrieval systems are very widespread andsgly used nowadays in or-
der to perform numerous common search tasks, ranging franctsag through personal

13



2.1 Information retrieval systems and geocoding systems thdds for auto-completion

14

e-mails, searching for news articles on a news website twlsieg the entire Web for a
particular piece of information. The best known exampleroirdiormation retrieval system
is Google’s search engine, which handles over one billi@nckerequests every day.

Information retrieval systems are often used for search omstructured documents
(usually containing plain text). An example of informaticatrieval through structured data
is when querying a relational database. Searching throsgh @ documents having a cer-
tain structure (i.e. certain fields), but without many ceaists on the field contents is called
semistructured information retrieval [4].

We stated that the task of an information retrieval systeto igtrieve documents that
are relevant to a particular information need. Howeverstrstem does not have access to
the information need, but rather to a textual represemtaifat (the query) provided by the
user. The task of searching is thus by definition not only iveterms of the query sup-
plied as input, but also in terms of the relation between therygand the likely underlying
information need.

In order to better express this relationship, domain spekifowledge should be used.
For example, in an information retrieval system where theudtents are known to repre-
sent scientific papers, we may want to use the knowledge dbedtructure of a typical
paper in order to give more importance to finding a certaicgiaf information in the ab-
stract, compared to the other sections, for example. lishkieown to be in accordance with
what users expect, then we have used the extra knowledge thieadocuments in order to
improve the accuracy of the information retrieval systenmilarly, a geocoding system
expects that a query represents an address, and thus tneptine tokens of a given query
to fields of an address, such as street name, city name, et thss extra knowledge cor-
rectly is very important in getting significantly improvednormance from the geocoding
system, as explained in the previous chapter, when we disduke free-text query support
for Andorra.

Another approach commonly used in practice to improve tlcaracy of such systems
is machine learning Machine learning can be seen as the process that enablesolye
a particular problem when either specifying the problentest&nt in a rigorous way is not
possible, or finding an algorithm to directly address thébfgnm proves to be a very com-
plex, if at all possible, task [2]. Some examples of tasks fhlh under this category are
spam filtering [1], face recognition [11], making persorati recommendations of news ar-
ticles [15] and many more. The way to tackle these problerhg muilding a simpler model
that enables us to solve the problem in a satisfactory wagxXample a parametrized func-
tion computing the probability that a certain user is intéed in a certain news article. The
model is configured - that is, its parameters are adjustadugfn the use of data. This is the
actual "learning” task. This approach relies on the beliat there is a process that explains
the data we observe, but we do not know the details of it. Tha id to use a machine in
order to "learn” to approximate that process.

User feedback is commonly used with machine learning algos, not only to assess
the performance of an information retrieval system, but &s a natural extension) to im-
prove or personalize the system behavior, either in geoenalth respect to specific users
[7]. Measures commonly used for user feedback include thmuatrof time the user spends
on a page, clickthrough data ([15, 7]), and even subjeces’negvements [8].



Methods for auto-completion 2.2 Literature and softwabedries for auto-completion

Many of the approaches used in information retrieval systentluding those address-
ing the auto-completion problem can be applicable to geiagoslystems as well. For in-
stance, user feedback can be useful in a geocoding systeandeeit could allow the sys-
tem to infer preference relations amongfelient locations to which it can do geocoding,
depending on the query and the knowledge of past usage ofysens. Thus, an auto-
completion system for geocoding can make use of implicitlieek to "learn” to make
better suggestions. To support this it is important that amstruct a solution that allows
for a great degree of flexibility when configuring the rankargong suggestions made, es-
pecially since user preferences are known to change over tim

On the other hand, as a particular class of informationenedtisystems, geocoders have
properties that set them apart in this class. Knowledgeeaddlparticularities is important
when adapting search or suggestion making techniques nsattiér search applications.
Such knowledge can help us make simplifying assumptiortsalba introduces extra con-
straints and requirements. For instance, a geocodingrsyddes not have to account for
the infinite productivity of natural languages because tiiresses that are supported form
a fixed set, leaving no room for generalization. On the ottzardh as we specified in the
first chapter, geocoding systems are by definition concewrigdocation, and as such they
could benefit greatly from knowing where a certain requesbiming from. For instance
a user typing an address on a mobile device is very likely ttobking for locations in
their immediate vicinity. Thus, making good use of the kreage of the user’s location is
crucial in order to produce relevant suggestions, at leesbine applications.

But before addressing the requirements specific to geogosiistems, we will first
look in the next section at how the auto-completion probleraddressed in literature, in
the related, but more general context of information resliesystems. We will then look
at available software packages that implement such atgosit We will end the section by
identifying the shortcomings of these approaches and @ity the introduction of a new
approach, based on the model of a Probabilistic Prefix Tree.

2.2 Literature and software libraries for auto-completion

As mentioned in the previous section, the auto-completitoblpm is studied in litera-
ture mainly in the general context of information retrieggstems. We will survey these
approaches in this section and identify their applicabil@t our problem, and look at the
possible extensions that need to be made to accommodatettheexjuirements that come
with supporting auto-completion for geocoding systems.

The requirements are that such algorithms are not only atsubput also ficient. In
order to get the perception of real-time interaction, aoasp time of no more than 100 ms
is required [12].

Algorithms for providing query completion suggestionseals input a string which is
assumed to represent the prefix of some query that the usamisitating and output a list
of possible queries that could be derived from that prefix #uad the user is most likely
to have started typing as they were entering the prefix. Ttablem of dfering sugges-
tions from a fixed set of possibilities has been studied in [@4. We will look at those

15



2.2 Literature and software libraries for auto-completion Methods for auto-completion

16

approaches in this section. Other variations of the thelpnolof auto-completion have
also been studied in literature. For instance [9] looks atfpitoblem of making completion
suggestions by taking into account the context in which éHee-completed word has been
typed. Such considerations do not apply to our problem, kewe

A problem similar to ours - that of displaying strings from»eefil set - is studied in [22].
The focus of the paper is on incorporating error-tolerantciniag of user prefix queries.
Thus, this paper addresses Optional Requirement 2 (seieysashapter) in addition to our
main requirements. As a distance measure, the well knowerishtein distance is used [5].
The Levenshtein distance between two strings is definedeasithimum number of edits
needed to transform one string into the other. Thréewint edits are considered: deletion
of a character, replacement of a character by another attimge@ new character at some
location in the string.

Example2.1 The Levenshtein distance between the strings 'oslo’ aravsis 3. That is,

we can obtain the string 'snow’ from 'oslo’ through the fallmg sequence of transforma-

. delete replace insert
tions: oslo —— slo ; 40 —— sno and sho—— snov. m

The well known dynamic programming algorithm for computihg Levenshtein dis-
tance is based on the following recursive formula for cormguthe distance between the
prefix of the first string ending at indéxand the prefix of the second string ending at index
J» whereg;; is O if the characters at indé»and j in the two strings respectively are the same
and 1 otherwise:

D[i, j] = min(D[i -1, j]+1,D[i, j—-1]+1,D[i - 1, j — 1] + 6ij)

One approach to providing auto-completion is to usa-gnam based algorithm. Amgram
is a contiguous sequence of characters of lengdttside a string.

Example2.2 Consider the string "abcd”. The 1-grams, also calledyrams of this string
are "a”, "b”, "c”, "d". The 2-grams, also calletbigrams are "ab”, "bc”, "cd”. And gener-
ally, a string of lengttmhasm-n+1n-gramsifm>n. m

The intuition is that two strings that are very similar sttbbhave a high overlap in their
n-gram sets. To make this more precise, the edit distanceelatiwo strings andr is at
mostk if the intersection between theirgram sets is at leasi@x(r|,|s) —n+1)—n-k [22].
This property can be used to enable error-tolerant strinighmray, based on set-similarity.
These algorithms are considered the state of the afflin@edit distance matching.

For the task of online query completion, an alternative appn using drie-based al-
gorithm is proposed in [22], and shown to outperform thgram algorithm. A trie, or
prefix-treg is a data structure that supports fast search for a stritigngia given set. Tries
can also be used to match keys in associative data struethere the keys are strings.

Example2.3. An example trie is shown in Figure 2.1. Each of the terminalesalong
each path represent one supported string, in this case fi@b@eging to the seftex, ted,
tod, ad m

Example 2.3 shows the main idea behind the use of tries: ectihécstorage space re-
quirement and parsing time for all strings by sharing prafiXé/hile the space reduction



Methods for auto-completion 2.2 Literature and softwabedries for auto-completion

Figure 2.1: Trie

is dependent on the degree to which the supported stringe gphefixes and on the rep-
resentation of the links between nodes, the main advansatjat it now only take©(m)
time to determine whether or not a string belongs to the skgrem is the length of the
string we are searching for, as each character needs to ltaveeaponding transition from
the current state. The same complexity is obtained for addistring to a trie, through a
process that is very similar to parsing.

Example2.4. Given the trie in Figure 2.1, parsing the string 'tex’ can lome by taking
the the edge labeled 't' from the start node, then the edgaddide’, and finally the edge
labeled "X’ which is the last character in the searched gtand leads to a leaf. Hence the
string is successfully parsed. On the other hand, parsmgtting 'tall’ would fail as soon
as we find no edge labeled 'a’ after parsing 't. Adding a neringtto the trie is done
through a similar process, with the onlyfidirence that whenever edges with the required
label are not found, they are simply added.

As example 2.4 shows, whenever parsing a string using aotriagding a string to it,
the maximum number of operations is bounded by the lengtheobtring to be parsed or
added. Note that the main advantage of this is that thisime-d#oes not depend in any way
on the total number of strings that the trie is able to parse.

TheO(m) parsing time is implementation specific, however. To aghit it is assumed
that the next character can be looked up in constant times ddm be achieved by using
an array to associate a new edge to characters where negceBsiarapproach can be too
inefficient in terms of space requirements if the supported akthalvery large, especially
since the number of transitions emitting from each node Ishioe expected to drop as we
go deeper down the tree.

The way error-tolerance is implemented to work with thisrapgh is by adapting the

17



2.2 Literature and software libraries for auto-completion Methods for auto-completion

18

well-known dynamic programming algorithm for computing thevenshtein distance men-
tioned earlier, introducing the notion of attive node representing a node that can be
expanded to generate suggestions, based on the given pndfigome threshold for the
maximum tolerated edit distance.

The algorithm to achieve this is described in [22] and we alssent its pseudocode
here, as Algorithm 1. The algorithm maintains a set of aativdes,valid, initialized to
contain just the start node and all nodes reachable fromtlitiwthe maximum provided
edit distancemaxDistance Then, iteratively, as each character is consumed, thefset o
active nodes is replaced by a new set, starting from the muative nodes. If an active
node was reachable within edit distance less than the maxithteshold, then it is main-
tained in the set with an increased distance (this correlsptmremoving the currently read
character). The node that follows down the path of the coesuamharacter is added and
the distance is not increased (this corresponds to lealimigcharacter as it is). Finally all
other nodes that follow edges otherwise labeled are add#uketset, with increased dis-
tance (this corresponds to replacing the currently parbadacter with another character).
Then the set thus formed becomes the new set of active naukshe process is repeated
with the next character in the inpatre fix. Note that if the distance has already reached
the maximum allowed threshold, only the second of the ojperaimentioned above can be
performed (the one that does not require further increasiaglistance). Anything that falls
outside the cases mentioned here will not result in actideadeing added to the set. After
parsing the whole string, we can expand all active node$iegsail correspond to adequate
suggestions for the typed prefix, given the error-tolerdimoit being used.

Example2.5. Figure 2.2 shows how the set of active nodes evolves whilgmathe string
‘tax’ with the trie in Figure 2.1 and a maximum edit distanlsesshold of 1. The highlighted
nodes are active, and next to each active node we write thenenin distance of reaching
that node, while consuming the prefix up to a certain paint.

Referring back to the requirements that we introduced im@hél, the previously men-
tioned approaches do not meet several of them. AlthoughdaHemmance of the trie-based
approach is shown to meet real-time requirements, thusimgelgiain Requirement 1, set-
ting priorities among the supported strings is not posdibkhis implementation. Instead,
the authors suggest making use of a static score for the stigge made. In order to avoid
sorting a large number of possible suggestions accorditigigscore, the authors suggest
pre-computing the top-k suggestions associated to eadhindtie trie. This is a possible
solution to meeting Main Requirement 2, but this approaatotsvery flexible. We would
prefer to be able to alter suggestion scores at run-timeowithaving to recompute the
top-k suggestions associated to each node. We also expésutth lists would not be very
useful if we want to alter suggestion rankings based on teelosation (to meet Optional
Requirement 3), since in that case the lists are not fixeddmtvditerent queries. Also,
suggestions are only made for matching prefixes, which doemeet Optional Require-
ment 1. Another shortcoming is that there is no support focation bias in the suggestion
making process, since location is not an important parte@sftstem under consideration in
the paper.



Methods for auto-completion 2.2 Literature and softwabedries for auto-completion

Algorithm 1: GetValidStates(prefix, maxDistance)
input : The query prefixprefix and the maximum admissible edit distance,
maxDistance
output: All active statesyalid corresponding tprefix
valid «— [];
valid.add(start,0);
foreach node reachable from start within distance imaxDistancelo
| valid.add(node,i);
foreach character c in the prefix, in ordeido
new.valid «— [];
foreach node node in valid, in queue orddp
if valid[node].distance+ 1 < maxDistancehen
| newvalid.add(node,valid[node].distaneel);
if node has child node’ throughtben
| newvalid.add(node’,valid[node].distance);
| «— max(newvalid[node].distance,valid[node].distance);
if | + 1 < maxDistancehen
L foreach child node’ of nodelo

| new.valid.add(node’#1);

| valid «— new.valid;
return valid;

Another trie-based approach to auto-completion is preseint[10]. The focus here as
well is on achieving error-tolerant auto-completion, balike the approach presented ear-
lier, here a database of corrected queries is used to leamake corrections by training a
transformation model. A transformation model is defined bgamposing a transformation
from the intended (corrected) queryo the mistyped query into substring transformation
units.

Example2.6. The paper gives as an example the transformdiiitmey — britny into the
substring transformation (dransfemgunits{br — br,i —»i,t - i,t - t,ney— ny} m

The advantage of this approach is that the transformatiodelriearns to make such
corrections from data, so with Sicient data, error-correction should be expected to per-
form better, as it is more likely to prioritize correcting stakes that are more common.
This transformation model is used along with a trie that @spnts the supported queries
which can be suggested by the system. Probabilities areaaligned to the edges in the
trie representing the likelihoods of following those edfyesn the current node. Because
we are lacking a database of corrected queries used agaidstra, we cannot use a simi-
lar approach to error-correction. Instead, we will prefdating the edit distance approach
discussed in [22] to our algorithms. We will, however, alsddiking to implement a prob-
abilistic approach in order to support suggestion rankimug,we have to come up with an
approach that can be extended to also meet Optional Reaentelrand Optional Require-

19



2.2 Literature and software libraries for auto-completion Methods for auto-completion

o stat 1 start

/N 4\

A A

Consumed Input: tax

Consumed Input:

Consumed Input: ta 1 t 1 a

1
X 1 1
OJIOIO
Figure 2.2: Edit-distance based error-tolerant parsing

ment 3, which are not addressed in [10].

Next we will introduce some software libraries and tools tten be used for providing
auto-completion functionality. The algorithms implemaghby these tools are similar to the
ones discussed in literature, with somé&ealiences and enhancements as we will see. We
will evaluate their suitability in addressing our problendave will end by motivating the
choice to develop a new solution from the ground up.

e Sphinx(http://www.sphinxsearch.com/) is a full-text search engine, used for
searching words in indexed documents, similaApache LucenandSolr. Hence, it
is essentially an information retrieval system that workb\8QL databases, NoSQL
storage and simple files. Such technologies can be useddorm@e in implementing
n-gram-based solutions like the ones described earliemdbgxing documents con-

20



Methods for auto-completion 2.2 Literature and softwabedries for auto-completion

sisting of then-grams of the supported queries. Such an approach doespsesee
shortcomings, though. As stated previously, these aphesaare the state of the art
in offline edit distance matching, but are shown to be outperforoyade-based edit
distance matching solutions for the purpose of online @otopletion. Alternatively,
an index based on supported prefixes can be created, butdhbis wesult in a po-
tentially very large index, and despite the moderate memegyirements, querying
an index may prove too slow for auto-completion if the indeze §s too big. Also,
such an approach does ndlies the level of flexibility we would like in order to easily
adjust the distribution of queries. Also, there is no in€lddupport for implementing
a location bias, and implementing this functionality as atgsearch technique could
prove too computationally expensive for a service that dorgeliver real-time per-
formance.

e LingPipe(http://alias-i.com/lingpipe/) is an open source suite of Java li-
braries for the analysis of human language. It alfers auto-completion function-
ality using a trie implementation over a set of strings, whseems to be the rec-
ommended approach in the present literature as well. Tharjibmplementation’s
functionality is similar to the trie-based algorithm dissed earlier, but also supports
ranking among the suggestions that can be made, as it takeguas set of strings
along with weights associated to each of them, and produmagpletions for given
prefixes, ranked according to these weights, thus meetitigdfmur main require-
ments. Edit distance based error-tolerance is also impltade However, the imple-
mentation lacks the flexibility to configure probabilities the supported queries in
real-time, as it uses a scoring scheme based on string styndad the pre-computed
counts, or weights. Another reason for not being able to hisesblution as-is is the
lack of support for matching substrings with arbitrary stadex within the supported
query pattern (i.e. this approach does not meet OptionaliiRagent 1). Thus, well
structured queries, as they were defined in the previougeha@an only be provided
if the user dfers a prefix of that well-structured query, and not for a pneikstarting
with the smallest element in the address. Also, the impleatiem is not location-
aware, so Optional Requirement 3 is also not met.

These shortcomings, along with the unexploited potenfialsing properties particular to
geocoding systems lead us to favor developing an in-houp&eimentation over the gen-
eral solutions presented so far. In order to implement aatopletion for Andorra, we
will make use of the conclusions from the mentioned litematand opt for a prefix-tree
based approach. However, we need to adapt this approactiantormeet the requirements
identified in Chapter 1. Given the conclusions in the exgsliterature, we expect that a
prefix-tree is a good choice for real-time suggestion makiHgwever, we also need to
account for the ranking of suggestions made in a highly cardigie way. In addition to
these main requirements, we should aim for a solution thawalus to easily integrate the
other optional requirements: substring matching, ewtarance and location bias.

The need to support arbitrary distributions over the sutjmes that can be made leads

21



2.3 Probabilistic Finite Automata and their properties Metls for auto-completion

22

to the idea of using a probabilistic approach. We would likedmbine this with the bene-
fits in terms of speedftered by prefix trees. A data structure that meets these esqeits
is the Probabilistic Prefix Tree, which is a particular cla®robabilistic Automata. We
will use the Probabilistic Prefix Tree as the core model farettping our algorithms. Sev-
eral modifications will be made to this model in order to mdlatar requirements. We will
describe all these modifications in the next chapter, as esept our algorithms, but first,
in the following section, we will present a survey of the eumtrliterature on these models
in order to get a better understanding of their known pragernd thus to establish their
applicability in solving our problem. The algorithms forptementing the desired function-
ality will be described and analyzed in the next chapteh ait experimental evaluation to
follow in Chapter 4.

2.3 Probabilistic Finite Automata and their properties

The goal of this section is to introduce the theoretical epite necessary in analyzing the
algorithms that we will develop to address the problem thiatthesis is concerned with. As
prefix-trees form the basis of our approach, it is importardtudy the properties of these
structures that have been identified in previous work. Oylémentation will be based on
aProbabilistic Finite Automaton (PFAYWe will look at the definition and properties of such
structures. Automata are extensively used to model largguagd they have also been used
successfully to model physical systems [14], in tasks ranfjiom increasing sustainability
of existing systems by learnindgfeient behavior [23] to giving systems the capability to
self-diagnose [3].

We will now define Probabilistic Automata (PA). Definitionitbese structures can also
be found in [18] and [17], along with more detailed descaps and comparisons to other
similar concepts. We shall present the general definitiens &nd quickly turn our attention
to the class of PAs of particular interest to us.

In order to study PAs we must first introduce the notiostotthastic languaggL8]. Let
¥ be afinite alphabet, art the set of all strings oveX, including the empty string, and
let =" (andX=") represent the set of words of lengiHand the set of words of length no
greater tham respectively). Aanguageis defined as a subset Bf.

Example2.7. LetX ={a,b,c}. ThenX* is the sef1,a,b,c,aa ab,ac ba,...}. Any subset of
x* defines a language. An example of a languagests= {1, a, b, ¢, aa, ab, ac, ba, bb, bc,
ca ch,ccl. m

Definition 2.1. A stochastic language is a probability distribution over*.
Alternatively, we can define semi-distribution([17]) as follows:

Definition 2.2. A semi-distributioroverX* is a functiony : 2* — [0, 1] satisfying} ,cs+ ¥(U) <
1

Thus, we can give the following alternative definition fortachastic language:



Methods for auto-completion 2.3 Probabilistic Finite Aottata and their properties

Definition 2.3. A stochastic languages overX* is a semi-distribution oveE* such that
ZZUEZ“//(U) =1

Example2.8. GivenX = {a,b,c}, the functiony : =* — [0, 1] defined by (1) = y(a) = y(b) =
¥(c) =0.25 andy(u) = 0, Yu e £* \ {4,a,b,c} is a stochastic language oEY. m

We will denote Pr,(x) the probability associated to a stringe ** under the dis-
tribution . Note that according to the previous definition, the distitin must verify
Zyes+ Pry(x) = 1. Assuming that the distribution is modeled by a mackinthe probability
of x according to the probability distribution defined Bys denotedPra(x), and the distri-
bution modeled byA will be denotedya. If L is a language ovex, andy is a distribution
overx*, Pry(L) = Zye Pry(X).

In the context of geocoding, the finite alphakds the set of all characters contained in
the address strings corresponding to locations that cambdeoged to, and the language is
the subset oE* consisting of valid strings that represent addresses. Ap eay to con-
form to the definition of stochastic languages would be tagaggrobability O (through the
function y) to all strings except the ones representing addressesasaigh equal proba-
bilities to all address strings. Thus, if there araddress strings in total, probabiliﬂycan
be assigned to each of them. Alternatively, though, we wdikédto assign probabilities
depending on the relevance of each string: assigning higiwrabilities to large cities,
compared to small roads in villages, for instance.

Definition 2.4. A sample Sis a multiset of strings from*.

We will denote thesizeof the sample byS|, and the number of distinct strings $
by ||S|l. Thus, the empirical distribution associated whwill be denoted byys, i.e.
Prys(X) = % We will use such samples to generate the distributions difesd strings

supported by the auto-completion system.
Next we will first define a semi-PA([17]). We will then be abtedefine a PA in terms

semi-PAs by imposing a simple condition.

Definition 2.5. A semi-PAis a 5-tupleA=<ZX,Q,6,y,7 >, where:

e X is the finite alphabet

e Qis afinite set of states

e §:QxXxQ— [0,1] defines transition probabilities

e y:Q — [0,1] defines the probability of a state being an initial state

e 7:Q — [0,1] defines the probability of a state being a final state
and the following constraints are satisfied:

e Yov(@=1

23



2.3 Probabilistic Finite Automata and their properties Metls for auto-completion

24

Figure 2.3: Semi-PA with multiple initial states

e Yqe Q, we haver(Q) + X aes Zq’eQé(q, aq)=1

The functions can be interpreted as assigning a probability to each trangrom one
state to another. The first constraint in the definition alsiages that the total initial state
probability across the states of the automaton should beshcélthere is no notion of the
automaton not generating any stringtih. It may, however, generate the empty string with
a certain probability in case we have stagesith bothy(qg) > 0 andr(qg) > 0. The second
constraint in the definition is similar to the first, statimgt the probabilities of a state being
final or leading to any transition add up to 1, and hence amgragption is excluded. These
two constraints ensure that a semi-PA defines a semi-distiboverZ*.

Example2.9. Figure 2.3 shows an example of a semi-PA. H&e; {ql,g2}, X = {a,b}, and

we assume(gl) = 0.6 andy(g2) = 0.4. We also assumgql) = 0, 7(g2) = 0.3 (as indicated

on the states themselves). Thprobability values are written on the corresponding edges,
along with the edge labels. It is easy to see that the pregeofi semi-PAs are verified in
this examplem

Definition 2.6. A stateq is said to be arnitial stateif y(q) > 0 and it is said to be a final
state ifr(q) > 0.

Proposition 2.1. Any semi-PA is equivalent to a semi-PA with one initial state
Proof. A constructive proof of this proposition is presented in][17 m|

Example2.1Q Returning to the example in Figure 2.4, we note that it comgzitwo initial
states:ql with y(gl) = 0.6 andg2 with y(g2) = 0.4. The idea behind converting this semi-
PA to one with one initial state is to add a stgtwith this designated purpose of being
the single initial state in the semi-PA. Thefdrent fields are updated accordingly, such that
a semi-PA generating the same semi-distribution &/ers obtained. These changes are
shown in figure 2.5.

In the new semi-PA there is only one initial staj@ havingy’(q0) = 1 andy’(ql) and
v'(g2) are both set to 0. Nothing else changesdbrandg2. The probability that0 is a
final state is set to’(d0) = X 4o ¥(q) - 7(d), which is basically to account fa@Q stealing the



Methods for auto-completion 2.3 Probabilistic Finite Aottata and their properties

Figure 2.4: Semi-PA with one initial statp

role of initial state from all states that previously had a+ero probability of being initial
states. The new values forq0 are set according to the following formula®(g0,a,q) =
ZqeY(d)-6(d',a,q). Itis proven in [17] that this semi-PA is equivalent to theiR figure
24.m

Next, we will define the probability of generating a wardvhich we will denoteP(u).
Definition 2.7. The functionPa : £* — [0, 1] is defined as follows:
Pa(U) = 2Zqqeqv(@)d(a.u.q)7(d)
We can extend the definition of this function to subdétsf X* as follows:
Pa(U) = 2ueu Pa(u)
Definition 2.8. Let A be a semi-PA. TheA is a PA if P, is a distribution ovek*.

What we will be using in our implementation is a particulgpeyof PA, known asletermin-
istic probabilistic finite-state automata (DPAJefined as follows:

Definition 2.9. A Probabilistic AutomatorA =< X, Q,6,y,t > is aDeterministic PAf Vqe
Q,YaeX,|d:(g,aq)ed <1

DPAs present some advantages over PAs:
e Parsing is easier, since only one path is followed.

e Some intractable problems (such as finding the most prolstbiey, or comparing
two distributions) become tractable.

e There are a number of positive learning results for DPA tloatat hold for PA.

25



2.3 Probabilistic Finite Automata and their properties Metls for auto-completion

26

Figure 2.5: Probabilistic Prefix Tree

The particular case of DPA that we will be studying is Brebabilistic Prefix Tree (PPT)
where the underlying graph is a tree, rooted at the singtalirstateq0, and which only
accepts strings in the sample.

Definition 2.10. A Probabilistic Prefix Treds a deterministic PA with one initial statg,
satisfying the following added constraint:

e The underlying undirected graph corresponding to all itexms is a tree

Note that this is similar to the trie introduced in the prexachapter. As described in
[16], we will construct the PPT such that each transitiondasobability which is propor-
tional to the number of times it is used while generating itve@ any finite samplé&, a
PPT can be easily constructed which generates the empiigtebutionys.

There are some issues to consider when implementing a PA.ig€3ne is that the
codomain of functiong andr is restricted fronR* to a subset of*.

Example2.11 Figure 2.6 gives a representation of a Probabilistic PrefeeT Note that
we will be using integer values to denote weights associtdeshch edge. The weight
associated to some edggl(a,g2) will be denoted byw(gl,a g2), wheregl,g2 € Q and

a2
aeX. Thus,s(ql,a q2) = —Zq,egi‘z V"’J’(‘(‘]ﬁx’ 77 .

Note that the weights decrease along each path. This is $#®@athe construction of a
Probabilistic Prefix Tree from a sample, each edge that isctlnla state other thay® has
a corresponding preceding edge leading into that states,This also easy to see that the
properties of Probabilistic Automata are verified.

Another important issue is that if we want to compute the dexify of the algorithms
using PAs, we need a way of expressing the size of a PA. Thuse she number of bits
needed to represent the symbols in the alphabet or the wagftiked, a correct measure of



Methods for auto-completion 2.3 Probabilistic Finite Aottata and their properties

Figure 2.6: State merging

the size of PAs is the sum of the number of states and the sithee @fiphabet|E[). Given
that the alphabet that we will be working with is fixed, we wailily be concerned with
reducing the number of states where possible.

Approaches to reducing or minimizing the size of PAs areqmesd in [16, 19, 20, 13].
These approaches make use of state merging to generalilgathang sample and reduce
the size of the automaton. We will define state merging in thetext of Probabilistic
Automata as follows:

Definition 2.11. State mergings the process of obtaining an automa#drirom an automa-
ton A by combining two or more of the statesAfnto a single state, such that the language
generated by A is a subset of the language generated by A'.

Example2.12 Figure 2.7 shows an example of state merging. As we can seg@ehier-
alizes the language generated by the automaton in such ahagintthe new automaton,
generating the empty string is possible with probability40and generating the strirap is
also possible, whereas these strings were not part of tigeidgye generated by the initial
automatonm

When performing state merging it should be ensured that émerglization is kept
within certain bounds. For example, the Kullback-Leibléredgence measure between
two distributions can be used to measure the generalizgtiatity during merging. This
divergence measure between two autordetandA’ is defined as follows:

Definition 2.12. The Kullback-Leibler divergence measupetween the distributions gen-
erated by two automata A and A’ is given by the formula:

D(AIIA) = Sxes+ Pa(X)log £23.

An algorithm for minimizing PAs through state merging usthg Kullback-Leibler di-
vergence measure to control generalization is the ALERGdArghm [19]. The algorithm

27



2.3 Probabilistic Finite Automata and their properties Metls for auto-completion

starts by constructing a prefix tree based on a sample formaircéanguage, where each
transition has a probability according to the number of &irtés traversed when construct-
ing the prefix tree. The algorithm then merges compatibleestavhere compatibility is
established based on the similarity offistes generated from those states. The problem
with the approach is that there is no way to globally contha generalization from the
training sample. The MDI algorithm presented in [16] aim$xdhis by considering a new
solution compatible with the training data if the divergenancrement relative to the size
reduction is under a certain threshold.

As we've mentioned, these algorithms capture not only gériftom the sample, but
also strings that were not part of the sample (but which &eyipart of the language from
which the sample was extracted). This was also illustrdtezligh an example (Figure 2.7).
Clearly, although performing state merging in this fashémuld lead to significant state
count reduction, with a controlled divergence from theiahitanguage, this is not what we
want for our problem, as the set of addresses that we opeanadeas not allow for gener-
alization of this kind. Thus, we are constrained to usingptedix tree generated from the
sample - which has zero-divergence from the training samatehe cost of increased au-
tomaton size. We will, however, look at the alternativesampressing probabilistic prefix
trees, by only merging state paig (gp) where there is one and only one transition frgmm
to gp, wherer(q;) = 0, as this is an operation that preserves the distributighartraining
sample. Other results concerning the learnability of Podiséic Automata can be found in
[6, 17].

In the following, we will describe the task of parsing a grinsing a Probabilistic
Automaton. Of course, the discussion also applies to Pilidtab Prefix Trees. This is
an important operation which determines the probabiliyoamted to a certain string ac-
cording to the distribution modeled by the automaton. As vilesge in the next chapter,
suggestion making can also be seen as an extension to parsing

Given the stringx = XgX1.... Xk_1, let (0o, X0, 1, X1, 02, - - ., Ok_1, X1, Ok) be a path forx
in A, i.e. there is a sequence of transitiogg, &o, 1), - - - (Ok_1, Xk_1, 0k) € &

Definition 2.13. Parsinga stringx using a PAA means computin@ra(X) = X geoax) Pra(),
where®a(x) is the set of all paths for stringin AandPra(6) =y(to)- (H'j‘:1 8(Qj-1, Xj-1,0;))-
7(Qk)-

As noted earlier, this task is greatly simplified in the casBrobabilistic Prefix Trees,
since the path for string is unique, therefor®ra(x) = Pra(6), whered is this unique path.

Also, when there is only one initial statp with y(qg) = 1, the formula for parsing a
string x simplifies toPra(x) = ﬂ'j‘zl(é(qj_l,xj_l,qj)) -7(0k), since there is only one initial
state, and the path associated to stririg unique. This means that a parsing a stran
be done inO(|x) time, and thus the complexity of parsing a string in a PPTsdue depend
on the number of states.

Example2.13 Referring back to the prefix tree in Figure 2.5, computingpiabability for

a string (i.e. parsing that string) can be done accordindgp@édfdrmula in definition 2.13,
but it is worth noting that when using weights this way, thtugeof parsing any particular
string is equal to the weight of that string divided by theat@um of weights in the initial
state, so all intermediate transition probabilities neete computed. Hence, the benefit

28



Methods for auto-completion 2.4 Summary

of defining arbitrary distributions over the supported igelin the prefix tree comes at
virtually no extra cost for the operations supported bwit.

2.4 Summary

Our choice of a Probabilistic Prefix Tree as the structure bithvto base our implemen-
tation was motivated by the prospect of a double advantageroputational ficiency in
parsing and suggestion making (owing to the prefix tree strag and the ability to very
flexibly configure the distribution of supported suggesigowing to the probabilistic na-
ture of the structure).

We have already seen in this chapter how a ProbabilisticXPTedie can be defined to
represent a given distribution over a fixed set of suggestiand how it can be used to
parse a string to compute its probability of occurrence englven set. In the next chapter
we will describe the algorithms that we can build startiragrirthis Probabilistic Prefix Tree
structure in order to support the functionality we requirethe following chapters we will
also see that in practice the use of a probabilistic, rathean & regular, prefix tree also has
the potential to make the suggestion making process far sfbogent, without having to
resort to tricks such as pre-computing suggestion listeémh state, which greatly limits
the flexibility of suggestion making.

29






Chapter 3

The auto-completion algorithms

In this chapter we will present and analyze the algorithnesius address the requirements
identified in the previous chapters. First, in section 3.&,wil introduce an extension to
the Probabilistic Prefix Tree that we will be using in our iemplentation: the Probabilistic
Radix Tree. The intuitive idea behind this data structute ieerge the state pairg(qgp) in
the prefix tree where there is only one edge leagjndo gp, whenever possible. We expect
that this approach will result in a considerable reductibthe memory requirements as
well as improved speed in making suggestions. We expectdhes go be considerable,
given the types of suggestions we are making (address styiwere long slixes can be
compacted most of the time.

In Section 3.2, we will further extend this data structursupport storingey: weight
pairs within each state. This will enable us to use the radig for indexing keys in an
associative data structure, rather than representingctivalaset of possible suggestions.
Section 3.3 describes the procedure for building such agbibiétic Radix Tree from data.
Apart from allowing for more flexibility when parsing prefixethis choice will form the
basis for supporting substring matching in a way that we hspealable in terms of run-
time performance, and it will also enable us to store anyep@fadata we need, associated
to a particular suggestion. As we will see in section 3.6 thill also allow us to come
up with an algorithm for location biased suggestion makhag tequires little modification
and little overhead compared to the algorithm without lmcabias support (which will be
described in Section 3.4).

The algorithm for supporting error-tolerant prefix matchwill also need to be adapted
for use with Probabilistic Radix Trees. We will discuss itSection 3.5. After describing
all the algorithms and our expectations in relation to themrehthe next chapter will deal
with the experimental analysis of these algorithms, fawgsin verifying our intuitions
with respect to the algorithms, as well as trying to answbkeotuestions to do with their
applicability, such as scalability and th&ext of possible decisions that need to be made
when using these algorithms.

31



3.1 The Probabilistic Radix Tree The auto-completion alfons

32

3.1 The Probabilistic Radix Tree

One observation we can make is that given the structure o$aggestion strings, unless
two addresses are exactly the same, after merging prefiresotintry name will be spelled
out over a number of states equal to the number of characténe name. One approach to
fixing this is to switch to &robabilistic Radix Treémplementation, instead of a Probabilis-
tic Prefix Tree. The idea (also illustrated in Figure 3.1)asrterge those states that have
only one outgoing edge with the state that follows along #ith pf that edge. Equivalently,
this can be seen as removing the states with one outgoingagdgeplacing them with the
corresponding successor, and merging the incoming edgeheétoutgoing edge by setting
the label of the incoming edge to the concatenation of thel$atif the two merged edges.

Formally, a Probabilistic Radix Tree can be defined in a way i very similar to the
Probabilistic Prefix Tree, but with an added function wita thle of explicitly representing
edge labels, and some added constraints:

Definition 3.1. A Probabilistic Radix Treés a deterministic PA with one initial statg),
with the added function:

e a:QxX — X* which represents edge labels
and satisfying the following added constraints:
e The underlying undirected graph corresponding to all items is a tree
e Yqe Q\ {0}, we have |{q € Q: 6(q,a,q') > Ofor any ac X}| = 1) — ((q) > 0)

This definition adds two things to that of the Probabilistiefix Tree (see Definition
2.10): the functiorr and the second constraint. The added functi¢ma) associates a
transition stringto the unique edge leavingthat is associated ta, in case it exists. The
second constraint describes a property that applies ttatdissexcept for the root of the tree
and says that for each such state, if it has exactly one aggadge, then it must be final
with some probability greater than 0. Equivalently, if thelpability of one such state being
final is O, then it must either have none, or more than one uggedge, but never exactly
one.

To see why this corresponds to our intuition for turning alRmlistic Prefix Tree into
Probabilistic Radix Tree, note that this last constrairthimdefinition means that we cannot
have states with just one outgoing edge and which are not fiilnalse are exactly the states
that we would want to remove by merging their incoming edgei¢v exists and is unique
by the first constraint in the definition and the fact that weerast considering the root here)
with the unique outgoing edge. States that are final shouldencemoved even if they have
exactly one outgoing edge, because otherwise the infoomatbout the strings that could
be successfully parsed until reaching them would be lost.

Example3.1 In the radix tree in Figure 3.1, l& be the initial state, or root of the tree.
The two edges leaving this start state hawealues "berlin” and "potsdamer$platz$berlin”.
That is, edges for whicbh(qo,b,q’) > 0 ands(qo, p,q”) > 0 have labels given by(qgp, b) and



The auto-completion algorithms 3.1 The Probabilistic Raltiee

a(do, p) respectively, wherg andq” € Q. Also, here, only the leaves are considered final.
As we can see, all other states are either the root or havéptaudutgoing edges (or both),
and hence cannot be considered for mergmng.

Using the definition of the Probabilistic Radix Tree, we pr@sn Algorithm 2 a proce-
dure for obtaining a Probabilistic Radix Tree from a Probstii Prefix Tree. The correct-
ness of this algorithm follows immediately by noticing titatlosely follows the constraints
in the definition of a Probabilistic Radix Tree.

Algorithm 2 : Transform(q)
input : A stateq, in a Probabilistic Prefix Tree
output: -
effect : Mergesq with the state that it has a transition to, if there is a unigiate
with this property
if {g €Q:6(g,a,q) >0 foranyaeX} =0then
L return
if {g €Q:6(g,a,q) >0 foranyae X} =1andr(q) =0then
if qis the rootthen
| Transform(q)
else
Let p be the direct ancestor gfthrough symbot;
(Y(p, C) — Cl’(p,C) - a
for the uniqueq’ anda in this casedo
7(a) — 7(a);
for all b e X such thaty(q’,b,q"”) > 0 for someq” € Q do
L o(a.b.q”) «— o(a',b,q”);
Transform(q);

else

for all statesy such thaty(g,a,q") > 0 for somea € X do
| Transform(q’)

This algorithm operates recursively and should be invokéH the root of the Proba-
bilistic Prefix Tree as a parameter. The first case that isledrid the stopping condition.
That is, if there is no edge leaving the current state, themoi pair of edges to merge.
This corresponds to reaching the leaves of the tree. Othenifithe current state has only
one outgoing edge, we merge its unique incoming edge withuthique outgoing edge,
replacing the state with the state that this latter edgesléadNote that this is only done if
7(g) = 0. This ensures the probability of the single outgoing edge (by Definition 2.5)
and the only information that needs to be maintained whileging is the label of the edge
being removed.

However, if the current state is the root of the tree, we trapply this procedure on
its unique descendant, as the root is the only state thatdhasaming edge. The value
that is being modified is that corresponding to the parenhefdurrent state that is being

33



3.1 The Probabilistic Radix Tree

The auto-completion alfons

Oe OO

B NS E

Orelre OO

B_
5

Bl

3

_
Prefix Tree

berlin:30 \potsdamer§platzfberlin:25

$potzdamerdplatz:10\er$strabeSmunich:20

Figure 3.1: Transforming a Probabilistic Prefix Tree to abRkilistic Radix Tree

34



The auto-completion algorithms 3.1 The Probabilistic Raltiee

replaced. We are essentially adding the symbol correspgridithe outgoing edge of the
state that we are removing (through merging) to the labehefstate leading to the cur-
rent state. Hence, any string that could be parsed in thalipitefix tree, can be parsed in
the resulting radix tree, as the complete information reigagrthe path labels is preserved
through the functiornr. Note also that in case states are merged, the recursivis cadde
on the same state. Intuitively, this corresponds to the stahsuming outgoing edges (and
maintaining the information about the consumed edge ldabédlse o function correspond-
ing to the parent of the current state) as long as they araianig/hen this process cannot
be continued, recursive calls are made on the states to \ildcburrent state has defined
transitions, in order to apply the process all the way doventtee, until the recursive calls
bottom out at the leaves level. Thé&exts of running this procedure on a a Probabilistic
Prefix Tree, in the form of the resulting Probabilistic Ratlnee, are shown in Figure 3.1.

Example3.2 In Figure 3.1, calling Algorithm 2 with the root of the Proliléiic Prefix
Tree as a parameter will result in calling the algorithm rewely for its two descendants,
as the root has more than one of them. For the left descenti@antondition for merging
would be met in all in successive recursive calls on thisestattil all the symbols in the
path down to the leaf are added to the transition string fiearoot to the current state. In
the end, this transition string will bpotsdame$platzberlin and the current state will be
final and have no more outgoing edges, so recursive callsrbaitit.

On the other branch, a similar process will take place unélgtate with two outgoing
edges is met. Note that this state is now a direct descendahe aoot, by following
the edge now labelederlin. According to the way Algorithm 2 works, since the current
state now has two outgoing edges, the algorithm is callagrsaely for each of them, and
merging is continued as before down each path, until theekeave reacheas

To sum it up, if the conditions mentioned above for mergirgraet, the current state is
essentially replaced by its only descendant, and the |dlibecedge leading to the current
state is updated in order to preserve the labeling of the tEimpath leading to its descen-
dant. To see that the probabilities associated to supptetets are notfiected, note that
by Algorithm 2, we are only removing edges with probabilitadsociated to them. Since
this is the multiplicative identity, and by the way terms pegsed (see Definition 2.13), we
can conclude that removing such edges does fietiathe probabilities of the supported
terms.

The use of radix trees as opposed to prefix trees can be edpgeaterk well for many
vocabularies, but it should be a particularly useful appinoia the context of geocoding,
where the patterns that we are trying to predict constitdtFesses. To get an intuition as
to why this can be expected in the context of geocoding, densill the street-level ad-
dresses in Amsterdam. All will have the forrstfeet-namgAmsterdam, The Netherlands”.
For all distinct street names, the whole string "Amsterda@ire Netherlands” could label a
single transition, binding only two states, instead of gatieg 25 states and the transitions
between them.

Remark3.1 As such labels will exist for all addresses in Amsterdansg kbads to the idea

35



3.1 The Probabilistic Radix Tree The auto-completion alfons

36

of further reducing the number of states required, throbghuse of a data structure called
aDirected Acyclic Word Graph

Definition 3.2 A Directed Acyclic Word Graplis a directed acyclic graph €V,E) for
which we define a functios: E — X which assigns a symbol to each edge.

Note that apart from the lack of weights or probabilitiesigrssd to each edge, unlike
a Probabilistic Prefix Tree or Radix Tree, the Directed Aicy@Vord Graph also does not
impose that the underlying (induced) undirected graph bee tThe construction of a
Directed Acyclic Word Graph from a given set of strings isatésed in [21]. The idea
behind this data structure is to merge not only prefixes, et @mmon sfiixes of the
strings over which we support searching.

Figure 3.2 shows the construction of a Directed Acyclic W&néph starting from a
prefix tree representing the stringfap,taps,top,topswith the character '$’ used to mark
the end of strings.

This data structure can be used to represent large vocedauilag very compact manner.
Although this could once again lead to significant state t@aduction in our context,
such a representation lacks the power of representing alpiliti distribution over a given
vocabulary, and thus cannot be used to solve the problefffiesfrig ranked auto-completion
suggestions. Therefore, we will construct our algorithmmuad the Probabilistic Radix
Tree.m

Although it is perhaps conceptually simplest to understaatlix trees as they can be
obtained from prefix trees, as depicted in Figure 3.1 anda@gxgd in Algorithm 2 - by
collapsing multiple states in the prefix tree into a sing&estvhere possible and merging
edges by preserving information in their labels - we will hetconstructing radix trees from
prefix trees, as this would mean losing the main advantagsin§uadix trees in the first
place: reduced memory requirements.

In order to avoid the high memory requirements of repreagntiur data using prefix
trees, we will present all our algorithms in terms of radiees, and we will start with the
construction of radix trees directly from sample data cstitgjj of addresses to be suggested,
without having to first represent the strings as a Probabilarefix Tree.

Note that from an implementation perspective, reducingnimamber of states comes
at the cost of storing the strings associated to each tiamsihat is, the functionr (see
Definition 3.1) also needs to be represented with each sftes is not necessary for a
Probabilistic Prefix Tree. Thus, representing a singleestthe radix tree would require
more memory compared to the prefix tree. However, we expettttte state count re-
duction will far outweigh the extra storage needed with estaele and the overall memory
requirement should drop significantly.

But before explaining the construction of a Probabilistedix Tree from data, in the
following section we will describe how the Probabilisticd®aTree can be used to store
keys to suggestions and how this can help us meet the reqntsrformulated in Chapter
1.



The auto-completion algorithms 3.2 Using Probabilisticdixalrees to index suggestions

Prefix Tree DAWG

Figure 3.2: Transforming a Probabilistic Prefix Tree to aebied Acyclic Word Graph

3.2 Using Probabilistic Radix Trees to index suggestions

In this section we describe how a Probabilistic Radix Traelmaused to parse keys in an
associative data structure. The definition of the ProlstlnlRadix Tree as presented in the
previous section does not change, but we add the followingementation detail: each
state will store a possibly empty set defy: weigh) pairs, wherey. yeyweighyeq Weight=
7(q), with the convention that if the set is empty, the) = 0.

Example3.3 The use of a radix tree in order to index an associative datatate is de-

picted in Figure 3.3. As in the previous chapter, we have useger weights instead of
probability values to annotate the states and transitidh$s easy from these to derive
the actual probability values, based on the radix tree digimi Each state stores a (pos-
sibly empty) set of references to associations (in our ctraecompletion suggestion for
an address) and their associated weights. This decouggsatted string from the actual
suggestion string returned to the user. Thus some fleyilidiensured when parsing pre-
fixes. For example, the radix tree in Figure 3.3 containsigérithat are all lower case and
any non-empty sequence of symbols considered token semamteplaced by the single
placeholder symbol: $. If user-typed prefixes are also ntizewaccording to these rules

37



3.2 Using Probabilistic Radix Trees to index suggestions e ditto-completion algorithms

38

prior to parsing, this ensures case insensitive parsing saime freedom in choosing how
to separate tokens (e.g. spaces and commas can be useldantgzably).

This separation between matched strings and actual simyestings is also the key
to offering suggestions in a well structured format. For instaaseseen in the radix tree
in Figure 3.3, both "Potsdamer Platz, Berlin” as well as 'IBerPotsdamer Platz” can be
supported by the radix tree and have the same key assodiatieeinh, so regardless of the
way the input is given, the suggestion will be "PotsdametZ?Berlin”, which is a nicely
formatted address string. This comes at the cost of addirtpheustrings in the radix tree
for each association. On the other hand, because the paesifgmance only depends on
the length of the string to be parsed, as we've seen in théqueehapter, the prefix match-
ing performance should not $ar as a result, and we expect that the suggestion making
performance also won't $ier too much from this choice.

But perhaps the main advantage of our approach is that thghtvefi the association in
each case is free toftier. As we can see in the example, parsing "Potsdamer Platim'Be
gives us this suggestion with a weight of 25. Parsing "BeRiotsdamer Platz”, on the other
hand, gives us the same suggestion, but with a weight of 1i8.rmakes a dference when
we have to make suggestions and several parsing optionstamdxdexplored in order to
choose the most likely one, as higher weight suggestioriswiprioritized. Thus, we are
giving the associations for badly structured queries a tomgight. As an example of why
we may want this, consider a user typing "Berlin” in the sbkapoox. Apart from the sug-
gestion for "Potsdamer Platz, Berlin” (because we're algmpsrting improperly formatted
address queries) we could alsfies "Berliner Stral3e, Munich” as a suggestion. Note that
parsing "Potsdamer Platz, Berlin” gives us a higher weigh) than "Berliner Strafl3e, Mu-
nich” (20). This could be because the first street is somelmvgidered more important,
or we know people search for it more often, or maybe simplyabse it is situated in a
capital city. However, because we storéfelient strings to be parsed in the radix tree for the
same suggestion, we are free to associate a lower weighe tiir¢h suggestion when it is
retrieved by parsing "Berlin, Potsdamer Platz” compared/hen it is retrieved by parsing
"Potsdamer Platz, Berlin”. That is, we assume the user ia¢htlyping a prefix of a well
formatted address. This is not a hard constraint, howevermal choose not to obey this
rule depending on the fiierence in the weights of the two streets or the user locasion.

The choice of an associative data structure also preseothaansignificant advan-
tage for geocoding applications: since the radix tree nedyl siore a pointer to an auto-
completion suggestion, the suggestion could consist dfetkteal representation of a com-
plete address, as well as other data, such as a completécgiami of all the fields in the
suggestion. This can help improve search results in caserachsoses a suggestion and
does not edit it, as the associated suggestion can be usestrastared query, thus elimi-
nating the need to rely on the free-text query support of gwgder, and producing better
accuracy. Moreover, the service managing these suggestambe completely decoupled
from the radix tree or even be implemented to run orfi@dént machine, thusi@ring more
flexibility in resource management. But perhaps the mosbtapt benefit of using an as-
sociative data structure - which enables us to keep extoanétion about the suggestions
made - will be highlighted when we introduce our strategyifgulementing a location bias.



The auto-completion algorithms 3.3 Probabilistic Radir@construction

Associations:
1 - Potsdamer Platz, Berlin
2 - Berliner StralRe, Munich

berlin:30 \potsdamer$platzberlin25

Figure 3.3: Using a Probabilistic Radix Tree to parse keyaniassociative data structure

For this, we assume that each suggestion key comes with a fwrayrieving the latitude
and longitude of the location of that suggestion.

3.3 Probabillistic Radix Tree construction

As stated in the previous sections, we would like to constauProbabilistic Radix Tree
from data, without having to build a Probabilistic Prefix @ffest. Thus, instead of merging
states of a Probabilistic Prefix Tree as we did in Section ®el would prefer to use as
few states as possible from the start, labeling edges battheen with strings as long as
possible, and only add new states when necessary.

For this, we would like to define a method which we will cAIdT erngq, term k, w)
to add the stringerm such that it can be parsed starting from stgia order to retrieve
suggestiork with an associated weight.

Example3.4. Figure 3.4 shows the construction of a Probabilistic RadeeTthrough suc-
cessive calls to thaddTermmethod described above. We start with just the root of the tre
and the first term that is added to it p@tsdameBplatzsberlin. For this, we only need to
add one state, as there is a single path in our tree that leadsuggestion, from the root
to the state which now stores suggestion key 1, with a caoreipg weight of 25. Then
the termsberlingpotsdame$platz andberliner$stralie$munichare added, making sure at
each step that the result is equivalent to creating a PridtabPrefix Tree and then merging
states wherever possible, as described in Algorithm 2.

To describe the algorithm for constructing the Probaliliadix Tree from data, we
first describe the representation of a single stgais consisting of the following fields and
their relation to the definition of a radix tree:

39



3.3 Probabilistic Radix Tree construction The auto-cortipiealgorithms

a) b)

AddTerm({g0, potsdamerSplatzsberlin, 1, 25)

@ potsdamer$platzfberlin:25

Associations:
1 - Potsdamer Platz, Berlin
2 - Berliner Stral3e, Munich

d)
€)
AddTerm(q0, berlinSpotsdamerSplatz, 1, 10) AddTerm(q0, berliner$straBeSmunich, 2, 20}

potsdamer$platziberlin:2 5\ berlin$potsdamer$platz:10

Figure 3.4: Constructing a Probabilistic Radix Tree frorteda

e transition_string[c], which stores the label on the edge associated to cha@ietav-
ing the current state. This corresponds to the valueseaf*, such thatr(g,c) = s.
Hence transition_string[c] will always be a string of length at least 1, and will always
start withc.

e transition.counfc], which stores the number of times the transition which lelad
transition_string[c] is used while generating the radix tree. This value, digdithy
thetotal_count(see below), is the actual value &fj, ¢, q’) for the uniqueq’ € Q for
whiché(g,c,q’) > 0, according to the properties of radix trees.

e transition statgc], which stores a reference to the state at the end of theitrans
tion arrow labeledransition string[c], corresponds to those statgss Q for which

6(g,c,q) > 0.

e keycoun{k], which corresponds to the number of times the current satssociated
with suggestiork (as a final state). Hene¢q) = % (see below the definition

of total_couny.

e total_count which is simply the sum of transition counts and key court®ss all
defined transition characters and key values for gfate

40



The auto-completion algorithms 3.3 Probabilistic Radir@construction

Example3.5. For the radix tree constructed in Figure 3.4, if we consitiergtart state, it
will have transition_string[b] = berlin andtransition string[ p] = potsdame$platzZsberlin,
with thetransition statefields pointing to the corresponding states, tnadsition.coun{b] =
30, whiletransition.coun{p] = 25, for atotal_count=55. There are n&ey countvalues
associated to the start state, however the terminal statbssicase have the following key
counts:key counfl] = 10, keycounf{2] = 20 andkeycounf{l] =25m

Note that this ensures we are building a Probabilistic Radee as it was defined in this
chapter. To see this, note that the required constrd)i+ X ey X qeqd(@a.q) =1 is
verified for all states by the definition ¢btal_count Moreover, we assume a construction
of a radix tree in which there is exactly one state -which wh @énoteqp- designated
as initial state, for which/(qo) = 1 and assume thatq) = O for all other states, so the
relation 4o v(Q) = 1 is trivially verified. In fact, assuming this implicit deftion of y, we
will not represent it explicitly. Instead, we just assumatttihe construction of a radix tree
must start with the single initial state, which must alwayise

Next we mention two functions that will be used in our aldamitfor constructing radix
trees from data. We will skip the actual implementationshafse functions, as they are
trivial:

e AddAssociation(q,k) adds an association kdyto stateq and adjusts the fields af
to a new consistent state. That is, tey.counfk] is incremented, or initialized to
1 if it did not exist, and theotal_countof stateq is also incremented by 1. We will
consider that this function is implemented such that it $aB€l) time to complete.

e AddTransition(q,s,q’} adds a transition labeled from stateq to stateq’, where
se X*. This is a utility function that is not concerned with mainiag the radix tree
structure, rather it just adds the requested transitiomitimgl the fields describing the
two states appropriately. We only mention this functionehleecause we will make
use of it in the radix tree construction. Hence, all it doagidatetransition_string[ [1]]
to s and transition statg g1]] to ¢, while transition.counfg1]] and total_count
are each incremented by 1. This function will also be assu@@d-time com-
putable. We will assume that we also have a variation of thistion: AddTran-
sition(q,s,q’,w) which is equivalent to callingddTransition(q,s,q’) viimes.

The function that we will define and use to construct the Rodistic Radix Tree isAd-
dTerm(q,s,k)where the term to be added is denote@herese X*. This will be the same
as calling the functiolAddTerm(q,s,k,wiliscussed earlier, witiw = 1. Generalizing for
arbitrary values ofv is trivial. The result of calling this function is that stag from q,
the strings can be parsed in the radix tree and the resulting state shauk suggestiok
associated to it.

Constructing a Probabilistic Radix Tree from a data setisting of address strings
will be done through successive callsAddTerm(g,s,k) whereqq is the designated start
state of the Probabilistic Radix Tree.

Because we are working with a radix tree, th@édTerm(q,s,kjunction is considerably
more complex than the similar function for prefix trees. Thaations that need to be
considered by this function are depicted in Figure 3.5, afgb#thm 3 implements this

41



3.3 Probabilistic Radix Tree construction The auto-cortipiealgorithms

42

function. The first case to consider is when there are no mggedges from statg whose
labels start withg[1]. In this case, a new state needs to be created, which aldl issocia-
tion k and the edge frorg to this new state is labelesl Once this new state is created, this
can be accomplished by calling the utility functiddTransition(q,s,q;)described earlier.

The other easy case is when there is an edge flamnsome state whose label not
only starts with the same character sadut is exactlys. In this case, the dierent fields
of stateq are updated to reflect the addition of extra weight on thaisiteon (this means
incrementingransition counf{g1]] and total_coun) and suggestiok is added tay, either
incrementingkey coun{k] or initializing it to 1, depending on whether or not it hadesdy
been initialized.

The remaining cases are more complex. Since we know that wetfall under the
first case, because our algorithm would have ended thereaweanclude that there is a
transitions’ from g to some statg’ such thatg[1] = S[1]. Moreover, by this point we can
safely assume that # s, because that would have been handled in the case we just de-
scribed. Therefore we can wrige= vwands = vt with w,t € X* andv e X*, such thatv # t
andw andt do not share a prefix. Note that this implies that we cannot havl andw = A
at the same time. The remaining cases are as follows:

e t = A. This basically means that the transition string is a prefithe term to be
added. The action taken here is represented in Figure 3derwase 3. We can
safely consume the prefix of the term that is added which isletguthe transition
string and add the remaining piece of the terngtthrough a recursive call.

e W= 1. Thisis basically the case when the term to be added is a mfetie transition
string betweerg andq’. The solution in this case is shown in Figure 3.5 under case
4: we create a new statg’ in order to store the new suggestikrat the end of the
string that is associated to it (which ends affeand making sure we still have a path
to g for exactly the same strings that used to lead ug toe. those passing through
g and ending after seeing from there.

e w# A andt # A. The solution in this case is shown under the last case in&igb.
This solution is similar to that for the previous case, exdbp new statey” that is
added betweeq andq’ does not store suggestitrany more. Instead it adds a new
transition labeleav to yet another new stat#®) which stores suggestida The tran-
sition labeledt to ' is also added like before, in order to maintain the inforovati
needed to parse strings previously added to the radix tree.

Algorithm 3 is a rather straightforward implementation wéetly the cases described here
and depicted in Figure 3.5. Constructing a ProbabilistidiRdree can be accomplished
through successive calls #ddT ernfqg, s,k) for the ditferent terms that need to be sup-
portedse X*, whereqq is the root of the radix tree.

By the discussion of the cases above, and the observatibth#se cases sum up all
possible scenarios that can be encountered when addinong sto the radix tree state,
we can conclude that callingddT ernfg, s,k) ensures that we are able to parse the stsing



The auto-completion algorithms 3.3 Probabilistic Radir@construction

Algorithm 3: AddTerm(q,s,k)
input : A stateq, a stringsand an associated suggestion
output: -
Result Stateq will support parsing the string resulting in the associatidn

if transition state[s[1]] = null then
L g < new.state;

AddTransition(q,s,q’);
return;
s’ «— q.transitionstring[s[1]];
index «— longestCommonPrefixindex(s,s’);
v «— s[l..index];
w «— s[index+ 1..s.length];
t «— s’[index + 1..s’.length];
g «— g.transitionstate[s[1]];
if (w=24)A (t=2)then
g.transitioncount[s[1]] «— qg.transitioncount[s[1]] + 1;
g.totalcount«— g.totalcount+ 1;
AddAssociation(q’,k);
| return;
if t=Athen
g.transitioncount[s[1]] «— qg.transitioncount[s[1]] + 1;
g.totalcount«— g.totalcount+ 1;
AddTerm(q’,w,k);
| return;
if w= Athen
g" «— new.state;
g.transitioncount[s[1]] «— qg.transitioncount[s[1]] + 1;
g.totalcount«— g.totalcount+ 1;
g.transitionstring[s[1]] «— V;
g.transitionstate[s[1]]«— q";
AddAssociation(q”,Kk);
AddTransition(q”,t,q’,q.transitiorcount[s[1]] - 1);
else
q” «— new state;

g.transitioncount[s[1]] «— g.transitioncount[s[1]]+ 1;
g.totalcount«— g.totalcount+ 1;
g.transitionstring[s[1]] «— v;
g.transitionstate[s[1]]«— q";

AddAssociation(q”,k);
AddTransition(q",t,q’,q.transitiorcount[s[1]] - 1);
AddTerm(qg”,w, k);

43



3.3 Probabilistic Radix Tree construction The auto-cortipiealgorithms

44

from qin order to retrieve suggestidq as established by the following theorem.

Theorem 3.1. Calling AddT ernfg, s,k) ensures that string s can be parsed from state q in
order to retrieve suggestion k with a weight equal to the neinab times it has been added,
without breaking this property for previously added stsng

Proof. We can prove this by induction. Since we do not have to dedl ampty strings,
we can takdg = 1 as our base case. Note that only cases 1, 2 and 4 from Figueees.
applicable to this situation. From the previous discussibAlgorithm 3, in each such case
we create ways of reaching a state storing suggektairthe end of a path labeledrom g
without losing previously existing information in the tree

Now, assuming this property holds for all strirgjswith 1 <|S’| < n, we consider a string
s having lengtm, wheren > 1. Again, it is easy to see from the discussion of Algorithm 3
that in cases 1, 2 and 4 we addo that it can be parsed frogin order to retrievek with a
weight equal to the number of times it has been added, andair@itg previously existing
information in the tree. In case 3, a prefixsdlready gives us a way to retrieve an existing
stateq’. Since this prefix is not empty, when removing it, we will havstring of length
less tham to add to that state. By our induction hypothesis, by firssiparthe prefix ofs
to retrieve state’, we will be able to parse the remaindersih order to retrieve suggestion
k with a weight equal to the number of times it has been addedcase 5, we need to
break up an existing edge with a label that shares only a psafadler than the length of
either string withs. In that case, a new state is added at the breaking point, dgesare
added and weights are updated in order to maintain all tloerirdtion, as discussed in the
cases above. Coupled with the observation that these dstsal$ possibilities that we have
to face when adding a stringto stateq, we can conclude that the desired properties are
maintained throughout the construction of a ProbabiliRtadix Tree through successive
calls toAddTerm m]

Another important question is whether or not we have obthmeesult equivalent to
running state merging on a Probabilistic Prefix Tree. Thasithe Radix Tree built through
successive calls tddd T ermminimal, in the sense that no further state merging as deestri
in Algorithm 2 can be performed?

Theorem 3.2. Given a Probabilistic Radix Tree as it results through rejgeiacalls to
AddT ernfqo, S, K), merging of any two states as described in Algorithm 2 is ssjide.

Proof. To see this, note that we build the Probabilistic Radix Tstarting from just the des-
ignated start state, which can never be merged by Algorithirh2 functionAddT ermonly
creates states that either have multiple outgoing edgesva &ssociations stored within
them, and thus a value> 0. By the description of Algorithm 2, such states would ndxer
considered for merging with descendants. Therefore, we pamerated a Radix Tree from
data, that is already minimal, in the sense that its statatomannot be further reduced by
applying the merging procedure in Algorithm 2. m|

Theorems 3.1 and 3.2 ensure that we are able to use Algoritianbdid a Probabilis-
tic Radix Tree directly from data, without having to first lobia Probabilistic Prefix Tree



The auto-completion algorithms 3.3 Probabilistic Radir@construction

AddState(q,s,k)

Figure 3.5: The cases encountered in adding a term to bedpfnse a state in the Proba-
bilistic Radix Tree

45



3.3 Probabilistic Radix Tree construction The auto-cortipiealgorithms

46

and whose state count cannot be further reduced by mergitgsstNote that to do this,
we needed a considerably more complicated procedure tleaedthivalent procedure for
adding terms to a Probabilistic Prefix Tree, but this extfareshould pay &, and not only
through reduced memory requirements. Although the taskidihg terms to a radix tree in
a way that maintains the integrity of the data structure ssdéfined was more complicated
compared to the equivalent operation on a prefix tree, theahcomputational complexity
of adding a terns as a supported term to the radix tree is €{|g) time if we consider the
time spent updating the data structures describing thesstaimputable in constant time.
This is because any recursive call is made after parsingtempaf the string which is later
never visited again, and all other control paths that do nakenrecursive calls are com-
putable in a constant amount of time. Moreover, dependinth@actual implementation, if
updating the data structures does turn out to be a rathdy postedure, the radix tree may
actually be built faster than a prefix tree, because there lmadiar fewer states to update
along the path taken to addo the radix tree.

Note that to make this discussion simpler, we assumed tbataitix tree sets counts
depending only on the number of occurrences of a string invengsample. The actual
implementation should support addition of weighted ssjras in Figure 3.4, but this can
be achieved through a minor change in the algorithm.

Now that we have seen how to construct a Probabilistic Radbe Trom a given set
of suggestions and we have described the structure of sudilx Reees, we can define the
algorithms that implement the functionality that we requitom the auto-completion sys-
tem. Hence, in the following sections we will look at the @wlling algorithms on a given
Probabilistic Radix Tree:

o GetState(sate,prefixjvhich retrieves a state of the Probabilistic Radix Tred¢aioled
from parsing the supplied striqgefix starting from the given statstate This algo-
rithm will be introduced because it is useful for suggestioaking, as it returns the
subtree of possible suggestions corresponding to a givadix [tring.

o GetStates(prefix,distangayhich is the algorithm for retrieving the set of states that
can be obtained from parsing any of the strings within eiditaticedistancefrom
the supplied prefix string. This algorithm will enable us fiéeo error-tolerant prefix
matching and suggestion making.

e GetSuggestions(prefix,nyhich is the algorithm used for getting a ranked list of the
top n suggestions for a suppligaefixstring. This algorithm will rely on th&etState
algorithm mentioned earlier toffer suggestions for a supplied prefix, and on the
GetStateslgorithm when error-tolerance is required for parsingsieplied prefix.

e GetSuggestions(prefix, n, lat, longyhich is a variation on the suggestion-making
algorithm, which also allows for taking a location-biasoironsideration, thus pro-
viding an altered list of top-n suggestions, with a relewameasure being a function
of both the weight of the suggestion and its proximity to thpmied bias point (the
lat-long parameter pair).



The auto-completion algorithms 3.4 Making suggestions

Associations:
1- Amsterdam
2 - Amstelveen

pmste:29

rdam:20\lveen:9

Figure 3.6: A Radix Tree used for suggesting 'Amsterdam’ ‘&mistelveen’

3.4 Making suggestions

In this section we will discuss the algorithm for retrieviaganked list of the top-n sug-
gestions for a supplied prefix. This algorithm is the first teectly address requirements
from those introduced in Chapter 1. That is, this algoritimplements the two main re-
quirements and Optional Requirement 1. This latter requard is not directly addressed
by the algorithm, but it is met if the radix tree that the altfon operates on has been
properly configured toféer such support, as described in the previous sectionsder tw
discuss the suggestion making algorithm, we start by d@agria convenience procedure,
GetState(state,prefixjnentioned in the previous section, which returns the sthtained
by parsing the stringrefix given a certain start state as its first parameter.

Algorithm 4 describes a recursive function that achieves th order to parse a prefix
on the whole tree, the start state of the tree should be supat thestateparameter. Note
that the algorithm may return a state that the supplied pdefes not reach, but which it
can be extended to reach. This behavior is suitable for gkeabsuggestion making.

Example3.6. Consider Figure 3.6. If we try to get the state for string "grs then by
Algorithm 4, we will end up with a state having "Amsterdam”asassociated suggestion,
although we did not enter "amsterdam”, which is the onlynsfrsuficient to reach that
state. However, if we are interested in making suggestionexXtending the entered string
"amster”, it is clear that this state is a good candidaten@hith any state that may follow
it down the radix treem

We can now finally introduce the algorithm that we will use toquce a list of ranked
suggestions for an input prefix string. Algorithm 5 achietrés by making use of a priority
queueQ to store entries which can be either states or associatigs Réde implementation
is such that the top element in the queue (and the first one tetbheved when calling
Q.top()) is the one with the largest weight. Unless otherwisecstait should be assumed
that whenever we refer to a priority queue, we are using a pniaxity queue. Hence the
first n association keys that come out of the priority queue as dtrebthe algorithm
execution will be our top suggestions. As long as there are states that are more pigmis
they are expanded (all their associated suggestions ates $keat follow from them are

a7



3.4 Making suggestions The auto-completion algorithms

48

added to the priority queue). The correctness of this algworis established by Theorem
3.3.

Algorithm 4 : GetState(sate,prefix)

input : A current statestate and a prefix stringprefix
output: The state that parsing the input prefix leads to, from thergivode
if prefix.length= 0then
L return state
newState— transitionstate[prefix[1]];
if newState= null then
L return null
transitionString— state.transitiorstring[prefix[1]];
if prefix= transitionStringthen
L return newState
else
index < longestCommonPrefixindex(prefix,transitionString);
if index= transitionString.lengttthen
| GetState(newNode,prefix[indeg..prefix.length]);

else
if index= prefix.lengththen
L return newNode
else
L return null

Theorem 3.3. The suggestions returned by Algorithm 5 are the top n suggessthat can
be retrieved from the subtree rooted at the state obtaineithdgupplied prefix.

Proof. Based on the radix tree construction, the weight of any @stsoe is added to all
the weights of all transitions leading to it, and thus totibiml weightmember of any state
traversed along the path to adding that association. Hérbe,algorithm prefers a certain
suggestion to some state at a certain iteration ofuhiée loop, then that state cannot lead to
a better suggestion, so it is safe to report that suggestigrad of the desired result, ahead
of any suggestion that may be found by expanding the state.

i

Example3.7. Consider the radix tree that we built in Figure 3.4. If we wamtetrieve
the (single) top suggestion for the prefix 'be’, the functi®atState(startState, beiyould
return the state at the end of the edge labeled 'berlin:3@d, this state would be added to
the queue. As this state is expanded, we next add to the duestate at the end of the edge
labeled 'potsdamer$platz’ with a weight of 10 and the statth@ end of the edge labeled
‘er$stralRe$munich’ with a weight of 20. As the entry with tiighest weight currently in
the queue, this last state is extracted next, and expandddtisat suggestion 2 is added
to the queue with a weight of 20. As this weight is still thetregt in the queue, it is
extracted next, and since it is a suggestion, it is addedgditial result, which also ends



The auto-completion algorithms 3.5 Implementing erroetahce

the loop, since we were only looking to make one top suggesfitius, we have come up
with a result without expanding all states, since we had ghauggestions and we knew
expanding more states would not lead to any better suggsstio this simple example, the
savings were modest, as we only avoided expanding one eatea $n significantly larger
trees, the savings should also be significantly higher.

Algorithm 5: GetSuggestions(prefix,n)
input : A prefix stringprefixand a maximum number of suggestians
output: The list of top n suggestions taking into account the subgmesveights
result— [J;
Q—1I;
state«— getState(startState,prefix);
Q.add(state,state.totabunt);

while Q.notEmpty( result.size< ndo
current— Q.top();
if current.isState(jhen
foreach suggestion k associated to curraiu
| Q.add(k,current.kexount[K]);

foreach transition character ¢ from currerdo
| Q.add(current.transitiastate[c],current.transitiasount|c]);

else
| result.add(current);

return result;

The upper bound on the run-time of Algorithm 53¢klogk), wherek is the total num-
ber of states and suggestions in the radix tree. This canelspto the situation in which we
have to visit all states before we can return a list of thertepggestions. However, because
we can stop expanding states as soon as we have retrieveghesuggestions, this upper
bound is potentially over-pessimistic, depending on thigylate associated to the supported
strings. We will have much more to say about this in the folfapchapter.

Note also, that this is exactly how we would implement thgoathm for a prefix tree
as well. The distinction between the two tree structuregédavant for Algorithm 5. Thus,
given the expected state count reduction, this algorithaulshbe considerably faster on a
radix tree. Although we paid for the compactness of our igm&ation by having to design
more complicated procedures when building the radix tieexetis no more price to pay
when making suggestions, so this is where the exfmateshould pay f.

3.5 Implementing error tolerance

In this section we will look at an alternative implementatiof the GetState procedure (Al-
gorithm 4), which will enable us to parse the supplied prefithwwome degree of tolerance
to error. Thus, we will €er an solution for meeting Optional Requirement 2, which we

49



3.5 Implementing error tolerance The auto-completion &gthms

introduced in the first chapter. Because there may be mailgigtes that can be expanded
for a given prefix given a certain tolerance to error, we whilhage the algorithm name to
GetStatesnd its implicit return type is changed as well: the algaonithow returns a set of
states, rather than a single state.

We implement error tolerant prefix matching for the radietusing an approach based
on the Levenshtein distance between two strings. In thiseest is similar to the approach
presented in Chapter 2 for regular tries, but the implentiemtaliffers as a result of hav-
ing to accommodate for edges labeled with strings, as oppiwssingle characters. This
function can then simply be used instead of the calG&tStatewithin the algorithm for
suggestion making, in order to allow retrieving suggestianith some tolerance to error
when parsing the supplied prefix string. This procedure ésvshin Algorithm 6.

A regular FIFO queu®) is used, for storing states in the radix tree along withirtioke x
to which thepre fixhas been consumed in reaching this state, and the ¢eslihceneeded
in order to achieve this, but only if the edit distance dogsemoeed thalistanceparameter
to the function. The queue initially consists of just thetsstate, with the associated prefix
and index set to O.

On each iteration of the while loop, we examine all transgidrom the current state

Algorithm 6 : GetStates(prefix,distance)
input : A prefix stringprefix a valuedistancefor the maximal tolerated edit distance
output: A set of active states that are viable candidates to be egubfor
suggestion making
result«— [J;
Q—1II
Q.addk qp,0,0>);

while Q.notEmpty(do
<Q,q.distance,q.index«— Q.top();

currentprefix = prefix[g.index..prefix.length];

foreach label from q to state qdo
match«— transform(label,currenprefix, distance - g.distance);

if m.size> 0then
| result.add(q);

match«— transform(currenprefix,label, distance - g.distance);
for m in matchdo
if g.index+ m.index+ 1 > prefix.lengththen
| result.add(q);

else
| Q.addkq’,g.distance+ m.distance, g.index m.index-1>);

return result;

extracted from the head of the queue. First we try to transtmy prefix of the label on that
transition into what'’s left to parse, within the edit-dista limits. The functiortransform
tries to achieve this. It returnsraatchobject which is a list of all the pairs of minimum

50



The auto-completion algorithms 3.5 Implementing erroetahce

distance necessary to transform a prefix of the first pararmtethe second and the index
inside the first parameter that delimits this prefix, as losgh& number of edits required
for the transformation is no bigger than the maximum thrisipoovided as the third pa-
rameter. If the transformation can be done, we can safelgidenthat the prefix has been
parsed and we can expand suggestions from the destinaditeno$that edge.

Alternatively we try to transform theurrent pre fixto be parsed into thiabel leading
from the current state, in order to be able to traverse thdicpéar edge. Basically, we try
to getlabel from any prefix ofcurrent prefix, using the minimal possible number of edits
for that particular prefix. We make entries for all possilab inQ as long as distance does
not exceed the maximum threshold.

This can be seen as simulating the algorithm presented ipt€ha for error tolerant
prefix matching on regular tries, with theffdirence that since some states have been merged
in the radix tree, we simulate the addition of active nodembking multiple entries for the
same state with éfierent index and distance values.

Example3.8 For an example, consider again the radix tree in Figure 318,cansider
parsing the (mistyped) string "amstrdam”, with a maximutowaéd edit distance of 1. The
algorithm starts by placing the start state in the queue Wgtborresponding entries for the
index to which the prefix was already parsed and the distaeeded for that, both set to
0. When this is examined, we first try to transform the onlyeldbaving the current state
("amste”) to the prefix ("amstrdam”). The match object in ffeudocode is used to store
the diferent indices and the edit distance needed to achieve thisgbindex. In this case
an edit distance 4 is the minimum that can be achieved focé&sdcorresponding to ends
of substrings "amst” and "amste”. Since this is not achiewdttiin the maximum allowed
edit distance, the match object will be empty and the statheaend of the edge labeled
"amste” is not stored as a final result. Next, we try to tramsfeubstrings of "amstrdam”
to "amste” with the minimum possible edit distance. We cdniex@ this with edit distance
1 only for the prefixes "amst” and "amstr” and entries are madédoth in the queue, with
the requirement that we are able to parse the rest of the pvitfiin edit distance 0 starting
from the state to which the edge labeled "amste” leads. Blosly possible by continuing
from the substring "amst”, and thus we have found a way toep#trs string "amstrdam”
within edit distance 1, by traversing edges that, put togretspell "amsterdam”.

Note that we do need to store all prefixes that can be expaadédle shortest one is not
always the best choice. Referring back to the previous eblgnighe supplied prefix had
been "amstwrdam”, "amste” could again be obtained two waiisinvedit distance 1: from
both "amst” and "amstw”. However, in this case, expandingltmger prefix is clearly the
only choice that would allow us to parse the string "amstertaithin edit distance 1.

Moreover, storing entries for just the minimum overall diste in thematchobject is
also instficient. Consider parsing the striradpb over two edgesb andabh  Trying to
traverse the edgeb could be done with the empty string or with the predixvithin edit
distance 2, and withb within edit distance 1. But if we choose to traverse it usatgwe
require edit distance at least 2 to traverse the remainigg &dth b, and this would lead
to a total edit distance of 3 needed to traverse both edgeshédother hand, choosing the
empty prefix to traverse the first edgb, despite requiring an edit distance of 2, leads to a

51



3.6 Implementing location bias The auto-completion aldponis

52

lower edit distance overall, because then traversing tberstedge usingbb can be done
within edit distance Om

3.6 Implementing location bias

In this section we describe the algorithm that allows us tet@ptional Requirement 3:
take into account the location of the user when making suggess We will see that the
choices made in designing our algorithms so far allow us fpett this functionality by
implementing a small modification to the suggestion makilggrithm that we introduced
in Section 3.4.

Algorithm 7 shows how this can be achieved. This algorithrarisextension of Al-
gorithm 5. The idea to implementing a location bias (retativ a latitude-longitude pair
known as thebias poin) is to apply a (downwards) scaling of the weights of the ssgge
tions before they are added to the priority queue, deperatiribe distance between the bias
point and the location of the suggestion. This is accometishy multiplying the weight
of the association with a value between 0 and 1. Since a fyriguieue is used to find sug-
gestions by choosing the largest weight at any point in tiimie,means deferring retrieving
suggestions that are far away from the bias point, and gipiiayity to expanding other,
more promising, states. The formula that we use for the regdéctor ise = gEane
where the distance is any measure of the distance betweét#imn of the bias point and
the location of the to-be-suggested location.

Example3.9. Consider again the radix tree constructed in Figure 3.4 hadstiggestion
making process for the supplied prefix 'be’. The queue wouwdnitialized to the state
at the end of the edge labeled 'berlin’ and an associatedhveiy30. As this state is
expanded, both states at the ends of strings '$potsdamaéx$pind 'er$strale$munich’
would be added, with associated weights 10 and 20 resplgctividne latter of the two
would be the first to be expanded. Consider that the querynisngpfrom a location having
latitude approximately 52.509 and a longitude of approxétyal 3.381. That means that the
user would be located somewhere in Berlin. This means teatigtance to Berliner Stralle,
Munich is quite large. Suppose this would create a scaliopfa = 0.2, according to some
distance measure. This would mean that suggestion 2 is aditledveight 4, and hence
would no longer be the first to be extracted from the queuendutie next iteration, as in
Example 3.7. The state holding suggestion 1 with associaggght 10 would be expanded
next, and since the distance is very small, even after scalinwould add suggestion 1 to
the queue with a weight of about 10, which means that on theitexation, it would be
the first to be retrieved from the queue, as the top suggesttorad of the suggestion for
Berliner Strafl3e, Munichm

In order to see whether the algorithm works correctly, weeh@vfirst make precise
what its correct behavior should be. For each invocatiorhefaigorithm, we are given a
lat-long pair which is fixed for that particular instance. eTdgorithm then should retrieve
a ranked list of the tom suggestions, having the highest rescaled weights. Thélyis,
specifying a fixed lat-long pair to represent a bias pointaneessentially creating a new



The auto-completion algorithms 3.6 Implementing locatias

Algorithm 7 : GetSuggestions(prefix, n, lat, long)

input : A prefix stringprefix, a maximum number of suggestionsthe user latitude,
lat, and the user longitudéng

output: The list of top n suggestions taking into account the subgmesveights and
their proximity to the bias point

result«— [J;

Q—1I;

state«— getState(startState,prefix);

Q.add(state,state.totabunt);

while Q.notEmpty( result.size< ndo
current— Q.top();

if currentState.isStatefhen
foreach suggestion k associated to curratd
1 .
@ < T distancé(at,jon),(klatkiong)) *

Q.add(ke- current.keycount[k]);

foreach transition character ¢ from currerdo
| Q.add(current.transitiastate[c],current.transitiacount[c]);

else
| result.add(current);

return result

problem instance for Algorithm 5, with modified weights asated to each suggestion.
However, in Algorithm 7, we are only rescaling before add#uggestions to the priority
gueue, and weights of states are not modified, since we c&noat which (or even how

many suggestions) are associated to the tree rooted inarcstate without exploring the
whole tree. Nonetheless, the corollary to the followingptieen shows that Algorithm 7 will

still allow us to find the correct result.

Theorem 3.4. When a suggestion is retrieved from the priority queue bydtdgm 7, its
weight is the highest of the rescaled weights of suggestiottse queue, including those
hidden in not yet expanded states.

Proof. Let suggestiork be a suggestion that is being retrieved from the queue bylthe a
gorithm. By the priority queue property, it is clear that ttescaled weight ok, which
we will denoteay - W, is higher than the weight of any other suggestion currentlihe
gueue (which must also have been rescaled). What we neeawoisthat the rescaled
weight ofk is also higher than the rescaled weight of any suggestidncdrabe retrieved
by expanding any state currently in the queue. Consider litray stateq with weight
Wg, Which is in the priority queue whekiis retrieved. By the priority queue property, we
haveay - Wi > Wq (1). Again, recall that by the way the radix tree is consedctfor any
suggestiork’ having weightwi, that we may obtain by expandirggwe will observe that
Wq > Wi (2). Letaw be the scaling factor associated to suggeskigrealculated based
on its proximity to the bias point. From the definition of theakng factor, we know that

53



3.6 Implementing location bias The auto-completion aldponis

O<ax <1, and hencev > ay - W (3). Putting relations (1), (2) and (3) together, we get
ak-Wg > Wq > Wi > ak -W. Thus, the rescaled weight of suggestlors guaranteed to
be no lower than the rescaled weight of suggeskioiso we can retrievi from the queue
ahead ofk’. Since statay and suggestiolk’ associated to it were chosen arbitrarily, we
can conclude that suggestidncan be retrieved ahead of all suggestions currently in the
queue, as well as the suggestions that have not yet beenree) despite the fact that
we have not yet applied rescaling to find their actual weig¥ergthe bias point provided
as a parameter. i

Theorem 3.4, coupled with the fact that the priority queumiisalized to contain the
state that hides the subtree of all suggestions that can te foaa given prefix, yields the
following immediate corollary.

Corollary 3.1. Algorithm 7 correctly determines the list of the top n sugjges that can
be made for a given prefix, based on the rescaled weights diogpto the suggestions’
proximity to the bias point.

We end by presenting a variation to the biased suggestiomngakgorithm. We first
motivate it through an example. The biased suggestion mgaktgorithm seems to be a good
solution for mobile applications, where the user is locatea certain latitude and longitude
and is likely to be interested in search results in their irdiaite vicinity. But consider an
application such as the online RoutePlanmartp: //routes. tomtom.com/), which may
also want to ffer biased suggestions, depending on the location that #reisisurrently
looking at. A typical RoutePlanner screen is shown in Fidiiie

Here, the user is looking at a nearly complete map of Europé,isifree to further
zoom in or out. A good choice for a bias point in this case setnie the center of the
image, located somewhere in the South of Germany in thiscpéat example. However,
since the user is looking at a map of Europe, it does not segimb t6 make "Langenau,
Germany” a much more likely suggestion than "London, Unkéelgdom” for prefix "L”,
for example, simply because it is located much closer to #meer of the currently visible
portion of the map. In other words, we should not ignore tut flaat the user is currently
looking at a very large portion of the map, and is equallyljike be interested in any part
of it (but perhaps less likely to be interested in other regiof the map that are not visible).
For such applications, the biased suggestion making puoeezhn be modified, as shown
in Algorithm 8.

The idea is simply to restrict applying the scaling to just $iggestions outside the vis-
ible region of the map. A radius is supplied for this purpoegresenting the approximate
distance to each edge of the visible region of the map. Heaaggestions maintain their
weights inside the supplied radius. For our previous exammuggestions in the visible
part of Europe are made, according to their original weigBther suggestions outside the
visible region of the map are only made depending on thedvegice for the entered prefix
and their proximity to the visible region of the map.

Building on this idea, it is easy to adapt the algorithm ta ese a bounding box rather
than a radius if this is a better choice for the applicatiat thakes use of this functionality.

54



The auto-completion algorithms

3.7 Summary

Goteborg Jankaping

rsAap
m el C )
R

Aalborg LATVIIA
Edinburgh et o DA RE -
= Gkt & KBEERHAVM KBBEL ) rruva
Ayt Esbigrg ¥
b Carlile Kalingrad VILHILS
u vﬁn Scarbarough Kiel ' pocrnck Kosaahy  GUafisk 3
KIN! M b
: Hambig ; Olszyn Grodna
LN gienhpay  Sheffield ) saczecin
MEDERLAND |  Brermen POLSKA
i Bimingham > Hannover BERLIN Poznan
dord Cambridge amsTeRiEER ARSZAWA g pinsk
£ Rotterdam Cottbiss £
nbroke Cantf LONDON Dortrund Leipg \
2 Lublin
. DEUTSCAZEND Dresden Wradaw Kieke
Boumemoith Lile; IE @ Lutsk
Phymouth BELGIQUE:  * Frankfurt am P . Katowice ]
Amiens ¢ Main W@ Reesziw |
[uxiERURG
@ Nimberg EZRE = - Khmi
Caen Metz = y Bmo e
4 i Sutigart i SLOVENSKO . zhborod
: Reres ! Minchen ™ WIEN gRatisiava i
Orléans ¥
g SCHWEIZ s T
MNante: E Besancon SUISSE
; = - aBLes MAGYARORSZAG |
eef ; : Baca
FRANCE Genere: W e SLOVENIIA . Pecs S0 ROMANIA
o Biseay, & Milang L. INGREB A
7 Bixcay ooy Toing HRVATSKA Ramnicu Valcea
Bordeaux Bologria Tinka ' BEOGRAD A
Genova i Sl Craiowa BUCURE!
SAN MARING, S BlIA
i MONKED o L BOSNA e i
o Santander Montpelier il | HERCEGOVINA ; =
; . Marselk, m\ﬁ CRNA GORA (o - BALGARIIA
5 {GORA o
Légn Logrofio ANDORRA - o Pescara i P :  SOFIA
MAKEDONIIA ]
Valladolid Taragoza Badions TIRANE W i
el Nagoli SHQIPERIA Thessaloniki
=
Valenda Paima % : B ]
ESPARA ; Cagked R T———
200 M ———
s Mawrin Palermo Palffjan Data 2012 TomTa

Figure 3.7: Partial view of the European map on www.roud@stdm.com

3.7 Summary

Having presented the algorithms to support all the funetibnthat we set out to include in
our auto-completion system, in the next chapter we will expentally test these algorithms
and the assumptions and hypotheses made in developing tvemwill also focus on the

issues that are important for the applicability of theseatms in practice and try to derive

useful guidelines for their use based on the experimersaltse

55



3.7 Summary The auto-completion algorithms

Algorithm 8: GetSuggestions(prefix,lat,long,r)
input : A prefix stringprefix, a maximum number of suggestionsthe user latitude,
lat, and the user longitudégng, and a radius
output: A set of active states to be expanded
result«— [J;
Q—1I
state«—— getState(startState,prefix);
Q.add(state,state.totabunt);

while Q.notEmpty(A result.size< ndo
currente— Q.top();

if currentState.isStatefhen
foreach suggestion k associated to curreiu
if distance((lat,lon),(k.lat,k.long)} r then
1

¥ < T distancé(aton),(KIat.klong)—r ’

Q.add(ke- current.keycount[k]);

else
| Q.add(k,current.kexount[k]);

foreach transition character ¢ from currerdo
| Q.add(current.transitiastate[c],current.transitiogount|c]);

else
| result.add(current);

return result

56



Chapter 4

Evaluation of the proposed
algorithms

In this chapter we will experimentally evaluate the alduris described in the previous
chapter, with the goal of testing the hypotheses made whikimg diferent choices in
developing these algorithms. Where applicable, we wilb aésaluate dierent choices
that can be made when using these algorithms and how thegeshmpact performance.

To test the proposed algorithms we used a JAVA implememtafitiis choice was made
primarily to facilitate the inclusion of the new functioftglwithin existing projects within
TomTom, which also run JAVA. The experiments were run on almmacwith an IntéP
Core ™ i7-2620M processor (2.7 GHz) and 8 GB of RAM. Two hyperthiegcenabled
processor cores were available, but all our implementatiwii be sequential and will run
on a single processor core, in a single thread, unless otfeestated.

Next we describe the structure of this chapter. Sectionglthé longest section and
tests the radix tree implementation starting from verifythe hypotheses that motivated
the choice of a radix tree over a prefix tree. Because thisogeatms to test all aspects
related to the way we defined the Probabilistic Radix Treegddition to verifying how
the two main requirements introduced in Chapter 1 are metyvilvalso verify here how
Optional Requirement 1 is met, as this is strictly tied torthdix tree structure. Motivated
by some curious findings about the influence of the distriloutf suggestion weights on
performance, we will also run multiple tests from which we é@arn more about how to
configure this distribution in order to get the best perfanoefrom the auto-completion
system.

Section 4.2 is dedicated to testing the performance of ttee grlerant prefix matching,
which aims to meet Optional Requirement 2, and drawing emichs about its proper
use in the auto-completion system. In Section 4.3 we tespénrmance of the system
when making location biased suggestions in order to meeib@gitRequirement 3. In
Section 4.4 we will motivate and run tests regarding theability of implementing the
described algorithms in a distributed environment, aga&nvihg useful tips for getting
good performance from such an implementation.

57



4.1 Radix-tree implementation Evaluation of the propodgdrithms

58

4.1 Radix-tree implementation

This section aims to answer a series of practical questiegarding the choices made in
developing the algorithms presented, and more precidebget questions that have to do
with the actual radix tree structure. The questions that Vlldogk at are as follows:

e Does choosing a radix tree implementatidifieo the expected benefits in terms of
memory usage and run-time performance, compared to a predR t

e Does the use of the radix tree for key matching in an asseeidtta structureftect
performance, when we need to support queries where the st of order, with
respect to the standard hierarchical format?

e What is the influence of the distribution of weights on thefpenance of the auto-
completion system?

In conducting the first experiments, we use a list of stree¢lland city-level addresses cor-
responding to the largest 140 cities and towns in Germarmyalirstreet level addresses in
them, for a total of approximately 205,000 addresses.

Figures 4.1 and 4.2 show theflidirent scaling behavior of the number of states needed
by the prefix tree and radix tree implementations as a funatiostrings and addresses
supported, respectively. The distinction is made becaask address has several strings
associated to it, in order to support substring matchingvektbeless, the two graphs are
very similar. As expected, given the nature of our suppogeeries, the number of states
required by the radix tree implementation is significantiyadier.

However, this reduction in state count does come at the d¢dsiwing to store strings
instead of characters as edge labels. To maintain thesis,|&aeh state will require more
memory in a radix tree compared to a prefix tree. So despitdithelifference in state
counts, we should verify that the overall memory requiretmane actually reduced. Figure
4.3 shows the outcome of this test. Because it is not tricigvaluate the memory require-
ments of a JAVA program, these test results are a bit codngeconclusive, nonetheless.

The tests run so far make the point that using a radix treeadsdf a prefix tree leads
to a great reduction in the number of states and in the amdumémory used. Compelling
as the results may be, since we are building a real-time @utgpletion system, we still
need to make sure that we are not paying any considerabldétyp@rathis compact repre-
sentation. First we address the perhaps less critical tfquerformance during building the
radix tree. We first raised this issue in the previous chaptieen describing the procedure
for adding a new term to the Probabilistic Radix Tree. Thepdure is far more complex
compared to the equivalent procedure for a prefix tree, budidvargue that the asymptotic
complexity of the algorithm as a function of the length of taem added does not change,
but the constant time operations involved could have mor@naimpact, especially since
the length of all terms can be assumed to be bounded by somengdde constant itself.
Nevertheless, we don't expect the run-time in the case ofatii tree to sffer too much.

Note also that given the state reduction, there are fewtsssta be updated along the
path of adding each new term to the radix tree. Indeed, Figurshows that the run-time
for this procedure follows similar trends for the two sturess.



Evaluation of the proposed algorithms 4.1 Radix-tree imm@atation

9e+06 T

T
#States(Prefix Tree)
#5tates(Radix Tree)

8e+06 [ B

7e+06 | +

6e+06 [ +

5e+06 B

States

4e+06 | +

3e+06 [ B

2e+06 [ B

1e+06 [ +

o _ —r—— R I I I L I I
0 50000 100000 150000 200000 250000 300000 350000 400000 450000
Strings

Figure 4.1: Comparison of the scalability in terms of staterts vs. number of supported
strings for Prefix Trees and Radix Trees

9e+06 ; .

T
#States(Prefix Tree)
8e+06 #States(Radix. Tree) _

7e+06 - -

6e+06 - -1

5e+06 - -1

States

4e+06 - -
3e+06 - -
2e+06 - —

le+06 -1

I
I

0 e e —— 1 1 1
0 50000 100000 150000 200000 25000¢

Addresses

Figure 4.2: Comparison of the scalability in terms of staterts vs. number of supported
addresses for Prefix Trees and Radix Trees

59



4.1 Radix-tree implementation Evaluation of the propodgdrithms

7000
MB RAM used (Prefix Tree)

—
MB RAM used (Radix Tree)

6000 |- -
5000 -

4000 -

ME RAM

3000

2000 -

1000

%
'VO'
%
0.!‘

%,
S

Addresses

Figure 4.3: Comparison of the memory requirements vs. nurobaddresses for Prefix
Trees and Radix Trees

le+06

T
Tirme to add term (ns) - Prefix Tree
Time to add term time (ns) - Radix Tree

800000 |- -

600000 |- -

Time (ns)

400000 |-

200000

A ‘

[ 10000 20000 30000 40000 50000 60000 70000

No. Addresses

Figure 4.4: Scalability of run-times for adding terms tofixrdrees and Radix Trees vs.
the number of addresses already supported by the tree

60



Evaluation of the proposed algorithms 4.1 Radix-tree imm@atation

Prefix ree  +
Radix Tree  *

1.6e+06

l.4e+086

Time (ns) 1 5.4 06
le+06
800000
600000
400000
200000
]

70000

No. Addresses
20000

Prefix Length

Figure 4.5: Scalability of the run-times for the suggestioaking process for Prefix Trees
and Radix Trees for varying prefix lengths and number of aide

Remark4.1 Note that the measured run-times are in the nanoseconds. raig believe
that the sawtooth trend observed for the measured run-tisnesed to external factors,
such as bffering and caching, since the measurements were made ahédigte points
in the process of reading data from disk and adding termsedréde. We do not see any
reason for this pattern to arise as a result of the algorithgit] What we are interested in,
though, is that the run-times for the two data structuresvang similar, so we can conclude
that we did not create performance issues as far as the igpecdiadding supported terms
is concerned, by opting for a radix tree implementatmn.

Next, we turn out attention to the far more important perfance issue: the run-time
required for making suggestions. We compare the prefix aeat the radix tree on this
performance measure. When describing the suggestion galgorithm in the previous
chapter we mentioned that the algorithm requires no adgptimen moving from prefix
trees to radix trees. Coupled with the significant state toeauction noticed in radix trees
compared to prefix trees, we should expect the radix tre@eo significant improvements
over the prefix tree. Figure 4.5 shows the outcome of vewgfyins. The figure shows the
run-time in nanoseconds for making suggestions for prefitatfferent lengths, on trees
supporting diferent numbers of addresses. All prefixes are guaranteech&rage some
number of suggestions, so it is never the case that the tilgohas no state to expand in
order to produce a list of suggestions.

As expected, the radix tree is much faster, and tffemince is significant in the case

61



4.1 Radix-tree implementation Evaluation of the propodgdrithms

62

D
i
a5
X X
5
o
o o

2e+06 %

1.5e+08

le+06 -

S e —

Time (ns)

"

500000 t

Prefix Length

Figure 4.6: The impact of the prefix length on the suggestiaking run-time for Prefix
Trees and Radix Trees

of small prefix lengths, where expanding states means explarlarge number of possibil-

ities before completing a list of suggestions. We also thleedpportunity to point out that

the run-times seen so far fit comfortably within the defimitif real-time performance as
described in Chapter 2, as in very few tests the 1 ms barrjgaigsed, and that usually just
for the prefix tree, on short prefixes.

Figures 4.6 and 4.7 project figure 4.5 on the prefix length hedatddress count planes
respectively, in order to clarify the run-time behavioratele to each of these parameters.

We find the tests conducted so fafffszient in order to conclude that radix treefev
an overall better approach, so in the following we will onlgncentrate on them, which
will also allow us to move to larger data sets. Specificaliythie following experiments we
will use a list of the largest 256 cities in the United Stated the 1,115,291 street level
addresses in them.

We will next look at the penalty that we pay for being able tachaerms of an address
in an out-of-order fashion. For this purpose we look at thetiequired to make suggestion
for prefixes one character in length for both the case whestsnog matching is supported,
as well as when it isn't. The choice of this minimum prefix léngorresponds to a worst-
case scenario, because as we have seen in the previousitektwo{ surprisingly), making
suggestions for these short prefixes takes the longest.€Bhéts are plotted in Figure 4.8.

Again, we attribute the spikes that can be observed to edtéamntors, as the run-time
ranges we are dealing with are very small, and we focus ondhergl trend, which seems
to be similar for the two types of matching.



Evaluation of the proposed algorithms 4.1 Radix-tree imm@atation

22406 :

Prefix Tree  +
e Radix Tree

1.5e+086

le+06

Time (ns)

500000

0 10000 20000 30000 40000 50000 60000 70000
Mo. Addresses

Figure 4.7: The impact of the number of supported addressdheosuggestion making
run-time for Prefix Trees and Radix Trees

9e+07 . .

T
prefix matching
substring matching ———

8e+07 - ' B
Tet07 - -
Be+07 - | J

5e+07 - | | s

Time (ns)

de+07 —

3e+07

2e+07

1e+07 -

120

%10 000 addresses

Figure 4.8: Scalability of suggestion making run-times whebstring matching is enabled
or disabled

63



4.1 Radix-tree implementation Evaluation of the propodgdrithms

64

There are in this case three strings that are added to the tradi for each individual
address. Thus, for an address of the forsiréet, city, state, counttywe also add the
strings corresponding to the hierarchiegty, street, state, counthyand "city, state, street,
country. As Figure 4.8 shows, the price to pay for this flexibilityigthin a constant factor
and the suggestion making run-time exhibits scalabilityy\@ose to the one seen for the
version without substring matching.

The experiments run so far have used a very simple distoibuih which we have three
types of cities (capital, large city, medium city), and afles and streets within them had a
weight that depends only on this type. More specificallyesihave weights 5,000, 4,000
and 3,000 depending on type, and the streets in them havéitwdi§0, 400 and 300 re-
spectively. Intuitively, this corresponds to a near woestecscenario, because of the limited
possible values of weights attributed to each associalibat is, assuming we have an asso-
ciationk in the priority queue, its weight will be lower than any stttat can be expanded,
at least to one association of similar type. It is beyond ttaps of this thesis project to
determine ways of generating distributions that produceemelevant suggestions, but we
want to test the hypothesis that doing so will also resulimiprioved performance for the
suggestion making algorithm.

To do this, we simplify our distribution further: all citiesill have weights 1,000, and
all streets will have weights 100. We will test this againsihiorm distribution of weights
in the much wider range 1 - 10,000, across all cities andtstr&ée expect that given a cer-
tain prefix, more diversity will lead to a higher chance of @axging suggestions that hide
portions of the tree that correspond to lower weight suggest thus speeding up the sug-
gestion making process. The results of this experimenttarers in Figure 4.9 and seem
very surprising at first. The very simple distribution is feeming much better than the
distribution with much greater diversity. The results (efhivere consistent over multiple
runs) clearly contradict our hypothesis in its simple fotated above.

We will address this apparently very strange behavior sbonfirst, we would like to
address the hypothesis that increased diversity has kermfitreating a test environment
that more directly addresses this aspect. The reason fanglstence on at least establish-
ing that greater diversity does not incur a performance Ipemaitself is that diversity is
a requirement, and it is strongly recommended that it is disedeasons other than per-
formance, such adsfiering a detailed ranking between th&eient suggestions that can be
made.

Figure 4.10 shows a comparison between the run-time retjtirenake suggestions
when the range of weights is uniformly distributed acrossititerval 1 to 100 compared to
the interval 1 to 10,000.

Once again, prefixes of length 1 are used, to simulate a wasst scenario. It should
also be noted that the run-times we are dealing with now higwéfisantly increased, and
we even observe run-times that exceed 100 ms. This time giavior is as expected, and
indeed the tree built with addresses the weights of whichbéxgreater diversity can be
used to produce better run-times. This is in line with thaitian that having a greater
diversity creates a higher potential for having states #natnot worth expanding before
making some higher weighted suggestion. However, thiemince is far less impressive
compared to the benefit that we noticed when using the verglsidistribution which we



Evaluation of the proposed algorithms 4.1 Radix-tree imm@atation

1.4e+08 .

T
city weights: 1000, street weights: 100
weight range:1-10000 ——

1.2e+08 - | —
le+08 - | B

ge+07 |- ’| B

Tirme (ns)

6et07 |- % | 4

det07 |- [ "1 H ,l

O . H l o ‘f\/\/\_/\/ i
j | | ﬂ/\/\,/ S

| | “ i /\// \ LA A 2
/\,._,_,jx.,,/\J A e

T

e
] 20 40 60 80 100 120
%10 000 addresses

Figure 4.9: Scalability of suggestion making run-timesdisferent distributions of weights

14e+08 T T
weight range: 1- 100
weight range: 1 - 10000 ——
12e+08 [ ‘H' |
- I
12408 |- H | ‘“\ | Hl i g
| \ vl
i
L Iy
\
8e+07 [ W (| ‘ ‘\u‘ - 7
(A Vet
= I A 4\/\| |/
- (AR A
| \
6e+07 \‘ ﬁ [ ,—) @ B
Nl || |
\ 4 AV
H “I| \;’J\/ /Y
“I \‘ { “| ‘
4e+07 - |1 /J g
! v
/\// 1% 2
2e+07 [ \ ,\\//\/ ! 4
A A '/_J
/\_//\\‘/\/\/
A~
o L ! | L L
0 20 40 50 0 100 120

x10 000 addresses

Figure 4.10: Scalability of suggestion making run-times @iferent distributions of
weights

65



4.1 Radix-tree implementation Evaluation of the propodgdrithms

66

Uniferm(weight range: 1-10000)  +
city weight: 100, street weight: 1000

1.6e+08
1.4e+08

Time (ns) Laeros
1e+08

8e+07

e+07 ‘

4e+07 Wi ‘

26407 ' .

0

1.2e+06

800000
600000
*10 000 addresses 400000

200000 Prefix Length

Figure 4.11: Scalability of the run-times for the suggestinaking process for varying
prefix lengths and number of addresses, usifigint weight distributions

mentioned earlier (with all city weights 1,000 and all stneeights of 100).

Returning to the example in Figure 4.9, we would like to gehtbottom of why such
a simple distribution performs so well. Clearly the numbkstates expanded by the simple
distribution is much smaller than the corresponding nunibbéne case of the uniform dis-
tribution. According to the logic of the suggestion makirigaaithm, this can only happen
as a result of the fact that many suggestions outweigh dtaesould be expanded which
hide lower weighted suggestions. Recalling that we tegjadhat the one letter prefix worst
case scenario, we hypothesize that as there are plentyafazitiidates to choose from for
most one-letter prefixes, it is these suggestions that aponsible for hiding enough street
level suggestions to reduce the search spaffecigmtly to result in the behavior seen in
Figure 4.9. This will be interesting to verify. Note that givour choice of weights, only
10 street suggestions can be hidden by a city suggestioaubedf a state leads to more
than 10 street suggestions, that state will have to be exohbefore any suggestion for a
city can be added to the results set, as the weights of citeesxactly 10 times greater than
those of streets. For instance, states that can be reachear&ing prefixes like '5th’ or
"West’ will surely be expanded as well, given the large nundfestreets with such prefixes.

In order to retest, we introduce an extra parameter: thexdefgth. Figure 4.11 shows
the results: indeed, this significanti@girence is only noticeable for small prefixes of length
2 and especially 1 (this was verified by zooming in on smali@ges of the run-time axis
for different prefix lengths). These experiments show the impatahbaving a class of



Evaluation of the proposed algorithms 4.1 Radix-tree imm@atation

weight range: 1-100  +
weight range: 1-10000

16e+08

lde+08 *
o,
12e+08 - ‘%ﬁ
Time (ns) % it 4 .
le+08 | o "a’*’ﬁ%* -
8e+07 [ W$%ﬁ4.+ W%
L . i ’
6e+07 3 b g
? %M % i, +
aet07 M M £ X, gt
s | ~ S M

4]

1.2e+06

2800000
600000
%10 000 addresses 400000

200000 Prefix Length

Figure 4.12: Scalability of the run-times for the suggestinaking process for varying
prefix lengths and number of addresses, usiffigint weight distributions

a relatively small number of high-weight suggestions ilmwihg the system to cope with
short prefixes.

This leads to a very interesting conclusion. All the experits run so far show that no
special tricks need to be added to the implementation tavdle algorithms to scale nicely
with address counts, even when dealing with very short mgfias long as the data sample
used when building the radix tree has the right kind of distibn of weights.

Thus, the distribution of weights over suggestions shotddigpably be structured in dif-
ferent levels, containing at least one level of few highgheisuggestions representing, say,
country names or city names, in order to deal with very shatixes. Within the dferent
levels, a high diversity is recommended, but primarily idarto implement preferences
among dfferent same-level suggestions. A high diversity withifiestent levels is less im-
portant for the run-time performance of suggestion malsing;e it makes little dference,
as Figure 4.12 shows.

However, as long as the distinction between théedent levels is clear enough, it is
probably highly desirable to have some diversity withinkelavel, in order to make sug-
gestions that are properly ranked according to their relexdor the supplied prefix. It will
be left to future work to find ways of generating such disttidns, but our experiments
underline the necessity to make sure that such distribsitamtount for short prefixes, as
described in this section.

67



4.2 Error tolerance support Evaluation of the proposed ailipons

68

1.6e+08 T T

elit distance = 0
edit distance = 1 ——
edjt distance = 2
l.de+08 - —

1.2e+08 | -

le+08 -

8e+07 - =

Time (ns)

6e+07 f -
4e+07 =

2e+07 " | | s

0 —— = — ¥ - J/\ L ’\ | d I Vs
0 20 40 60 80 100 120
%10 000 addresses

Figure 4.13: Scalability of the run-times for the suggestinaking process for varying
levels of error tolerance of prefix matching

4.2 Error tolerance support

In this section we will look at the run-time penalty for ertoterant prefix matching. Figure
4.13 shows the ¢lierence in run-times for retrieving the top suggestionsgusiact prefix
matching versus using a maximum edit distance thresholdoof2lfor parsing prefixes of
length 4, which have been modified from exact matching prefinathin the correspond-
ing distance thresholds. We opted for this prefix length, esyming a prefix of length 1
or 2 cannot be interpreted as such, since the result would likely be a prefix for some
other possible suggestion. Moreover, we are only inteddstee in how dferent matching
strategies compare to each other.

As the figure suggests, allowing for prefix matching that isremt to errors incurs sig-
nificant overhead. The fiierence is so big, that it makes sense to try matching witareint
levels of tolerance in succession, i.e. try exact matchang,in case no states are retrieved,
try matching with a maximum allowed edit distance of 1, andase of failure again try
matching, this time with a maximum allowed edit distance .of 2

This is a useful strategy, since for the very short prefixdsglvalso require the largest
amount of time for making suggestions based on them), itrig welikely that exact match-
ing will produce no results, and as the prefix length increatee run-times should drop
for all kinds of matching. It is also perhaps fair to assunad the user is not mistyping a
query, before suggesting a correction, as long as therauggestions that can be made for
the prefix as it is given by the user.



Evaluation of the proposed algorithms 4.3 Location biasaaip

no location bias  +
location bias

25e+08
2e+08 -
Time (ns)
1.5e+08
le+08

5e+07

0

1.2e+06

800000
600000
%10 000 addresses 400000

200000 Prefix length

Figure 4.14: Scalability of the run-times for the suggestinaking process for varying
prefix lengths and number of addresses, with or without locdiias support

4.3 Location bias impact

In this section we test the impact of implementing a locabi@as for making suggestions.
For this purpose we initially used a distribution of weightsfollows: cities have weights
3,000, 4,000 and 5,000 (depending on the city type, wherngtbel capital city has weight
5,000) and the corresponding streets in them have weigls48® and 500 respectively.
The results of this experiment are summarized in Figure,4at4ifferent prefix lengths.

We notice here that adding a location bias creates a faigly biverhead for short pre-
fixes, with run-times reaching nearly 250ms for prefixes ofgte 1 with many possible
suggestions to choose from, due to the rescaling that is. ddowever, this behavior can
also be fixed with a better choice of a weighting scheme, assho Figure 4.15. In
this case we found it useful to make a separation betweeetstire large cities and small
cities. Hence, cities had weights 3,000,000, 4,000,000%0@0,000, whereas streets in
large cities had weights 40,000 and 50,000, and streets atlesneities had much smaller
weights: 3,000.

These values were chosen somewhat arbitrarily, simply mgakse of the intuition that
due to the rescaling, the advantage of having separateslef’@luggestion relevance was
lost. The choice of the best weighting scheme should beledtald experimentally, taking
into consideration the suggestions to be made and how thepealivided into levels of
relevance. This depends on the specific application thaemake of the auto-completion

69



4.4 Distributing work Evaluation of the proposed algorithm

no location bias  +
lacation bias

9e+07
8e+07
Te+07

ok
“Fah
Time ns) o, o5 @‘;‘!3:..:#*
S5e+07 i ]
4e+07 +ﬁ$_ﬁ? i 4‘%%‘
3e+07 g Mo,
S

2e+07
le+07

+
4
PN

1.2e+086

500000
600000
x10 000 addresses 400000

200000 Prefix length

Figure 4.15: Scalability of the run-times for the suggestinaking process for varying
prefix lengths and number of addresses, with or without loodiias support

system, and which has the responsibility of providing thia dagarding the suggestions to
be made and their weights.

We furthermore note that the range of distances plays a e he. in choosing a
weighting scheme, it is important to get some hints from obsg how high the distance
can get, and equivalently how low thefactor (see Algorithm 7) will scale the suggestions
to be made. This will depend on the specific distance measing lused and the unit in
which it is calculated. What this experiment shows, howeigethat it is easy to get good
performance from the auto-completion system by using altigig scheme that takes little
effort and little imagination to come up with.

4.4 Distributing work

In this section we will look at ways of distributing the tasksniggestion making among a
number of computers. The need to explore this option arig#s fmaking the observation
that the implementation in its current form requires a ydakge amount of memory. While
this should be addressed as a problem in its own right, intamat to make use of as little
memory as necessary, depending on the production envirtnased, it may eventually
still be necessary to resort to using multiple computersfigygestion making.

The first test pits the straightforward implementation agaan implementation dis-
tributing the load evenly across 2 and 4 trees respectivéty, each tree attributed its own

70



Evaluation of the proposed algorithms 4.4 Distributing wor

2e+08
1.8e+08
.He+08
Time ("‘stdeJrOE
1.2e+08
let08
8e+07
6e+07
4e+07
2e+07
0

1.2e+06

800000
600000
# Addresses 400000

200000 Prefix length

Figure 4.16: Scalability of the run-times for the suggestinaking process for varying
prefix lengths and number of addresses withedent numbers of Trees working in parallel

thread for making suggestions. Hence the trees are queripdrallel (in as much as the
system allows) and the results of all of them are merged iardlget a final ranked list of
suggestions to return to the user. The overhead of settimifignent threads to query trees
is only added to the 2 and 4 tree implementation. The reskitgi(e 4.16) show that this
has an impact, but one that scales nicely with the size of timé only for long prefixes. In
the case of short prefixes, however, the scalability is muotsev

We expect that this bad scalability for short prefixes is no¢ tb the overhead of
distributing the work across multiple cores and mergingréseilts, because such overhead
should also be apparent for longer prefixes. But the scilatiiere is much better. This is
most likely again caused by the distribution of supporteghsstions.

For this experiment all trees were formed by randomly disting addresses to trees,
and thus all trees should exhibit similar weight distribng, but with a smaller number of
suggestions for each possible weight in the case of each et that although the sug-
gestions were distributed among several trees, we arérgiily to get the total number of
suggestions from each tree in order to merge them into a fesaltr All this means that
each tree now has a smaller number of highly ranked strirgs ¥vhich to choose the same
number of top suggestions to be made. A way to address thiswgden the gap between
top level suggestions and lower priority suggestions. fegul7 shows theffects of doing
this only for when 2 trees are used, and Figure 4.18 showsfthaet® of doing this on 4
trees as well.

71



4.4 Distributing work Evaluation of the proposed algorithm

1Tree +
2 Trees X

4Trees  *

1.8e+08
16e+08

Time (nsfet08
12e+08
1l=+08

8e+07

6e+07

4e+07

2e+07

[}

1.2e+06

800000
600000

ry
# Addresses 400000

200000 Prefix length

Figure 4.17: Scalability of the run-times for the suggestinaking process for varying
prefix lengths and number of addresses withedent numbers of Trees working in parallel

1Tree *
2 Trees
4 Trees *

8e+07

Te+07

Time (nske+07
Se+07

4e+07

3e+07

2e+07

let+07

]

1.2e+06

800000

600000
3

# Addresses 200000

200000 Prefix length

Figure 4.18: Scalability of the run-times for the suggestinaking process for varying
prefix lengths and number of addresses withedent numbers of Trees working in parallel

72



Evaluation of the proposed algorithms 4.5 Summary

4.5 Summary

In this chapter we have tested the hypotheses made in dewglthe Probabilistic Radix
Tree model used by our auto-completion algorithms. We haga that the radix treeffers
significant improvements over a prefix tree both in terms ooy requirements, as well
as in terms of suggestion making run-time performance.

We have also seen that we can successfully meet all the (mdi@tional) require-
ments that we introduced in Chapter 1, and we have learnedltieaing the distribution
of weights associated toftlrent suggestions is a very powerful tool in obtaining thet be
performance from the system, but, also very importantlyhexe shown that this tool is not
at all hard to use.

73






Chapter 5

Conclusions and Future Work

In this thesis we began with a presentation of TomTom’s l@ssmeed, which was the
implementation of auto-completion functionality for thendorra geocoding system. We
started by separating the main requirements from the agti@guirements. The main re-
quirements were typical of general auto-completion systeeal-time performance and the
support for setting priorities or weights to suggestiongst&ns implementing such func-
tionality exist in numerous applications, and techniquesrhplementing them have been
investigated in literature. The same applies to OptionajuRement 2 identified in the
first chapter. The optional requirements 1 and 3, on the dthed, are specific to geocod-
ing systems, and although systenfBedng such functionality exist, there are no publicly
available descriptions of algorithms for implementingtsfienctionality, to the best of our
knowledge.

In Chapter 2 we have surveyed existing literature for apghresa to dealing with the
problem of real-time auto-completion in the general conadxnformation retrieval sys-
tems. Building on the conclusions from related literatuve,opted for a prefix tree based
approach, which we then gradually modified in order to mdé¢halrequirements identified
for our auto-completion system.

We have described ways of adding the required functionaliyle still meeting the
very strict run-time requirements. The most importantdghio mention here is the impact
that the probability distribution over the supported siggigas has on the run-time of the
suggestion making process, as identified in the previougtehalhese notes are very im-
portant for getting the right performance when using the-wampletion system in specific
applications. We have tried tdter some guidelines through our experiments, but ultimately
it will be up to the application that will make use of the syst® configure its data for op-
timal performance.

Perhaps the most important conclusion is théfedent levels of importance need to be
defined, such that suggestions withifffelient levels are quite clearly separated. We have
seen that at least one ’high-priority’ level of relativewf suggestions is necessary to be
able to handle prefix strings of only 1 or 2 characters. Thislirement can be met quite
naturally in the context of geocoding, as a class of highrjtyicuggestions can be defined
as the set of supported country hame suggestions, or staeshatc. It is also possible to
define this high priority class of suggestions based on attiteria completely unrelated to

75



5.1 Future work Conclusions and Future Work

76

the type of suggestions. For instance, the frequency witictwh particular suggestion is
found relevant by users could be used to define a class of higtity suggestions, regard-
less of their type (street, city, etc.).

Having met all the requirements that have been set in thefiegiter, there are two main
directions for future work: improving the relevance of sagtijons being made by properly
assigning weights to them, and dealing with the implem@niadetails that need to be ad-
dressed in order to get the system into production. We wilklat these two directions
more carefully in the following section.

5.1 Future work

It is beyond the scope of this thesis to investigate how td dissribute suggestion prob-
abilities or weights to obtain the best results both in teainsuggestion making run-time
performance and relevance of suggestions. Thus we wileléafor future work to find
ways of best separating the suggestions into a set of lefétspmrtance and then defin-
ing distributions within each level in order to meet this deurequirement. This can also
be interpreted as an optimization problem to be solved, amdenous techniques can be
tried for this purpose. Distributions can be defined takimg iconsideration such data as
the length of streets, or the importance of streets, coupltdthe importance of the cities
or countries they are in. Such information can be derivethftbe source data, and may
offer useful hints. Ideally, though, use logs for the geocoder lme used to define such
distributions based on what users search. Also, once upuamming, the auto-completion
system could employ learning mechanisms based on its ovgeusaorder to optimize its
performance.

There are also still some challenges to get from the impléatien used for this thesis
project to something that can be used in a production systdér.main concern is the rel-
atively high memory requirements. Future work should foongossible alterations that
can be made to the implementation in order to reduce memaquyregnents. ldeally, better
choices can be made for the tree implementation withoutgihgrany of the interfaces or
template methods (see Appendix A).

Ultimately, depending on the production environment, itynb@ easier to distribute
work across multiple computing nodes. As we've establighetie previous chapter, with
some consideration for how the distribution of suggestimbabilities is #&ected, this is a
viable solution.

Another idea for future work is to try an approach to makingfirstring corrections
even if there are suggestions that exactly match the suppber prefix. This can be an
option if we know the user made a very common typo which gibesnt an obscure sug-
gestion, whereas without the typo a very common suggestiatd e made. Then we may
decide to at least add the highly weighted suggestion toethdtrset after the exact match-
ing one. To implement this, afiérent error tolerant prefix matching strategy is required,
perhaps similar to the one in [10], but this would requiret fiallecting data about what
spelling mistakes are common.



Appendix A

Implementation Detalils

In this appendix we describe the implementation of the saféwsystem that was used for
the experimental evaluation. Ideally, this system shoole& as close as possible to one
that could be used in production. The aim of this appendip iserve as a documentation
for the code written. The code consists of three packagewhéirsense that packages are
defined in the Java programming language) which we will disda subsequent sections.
For each package, we will survey the classes, their roldsmihe system, details of the
implementation where necessary, as well as possible @masions for future use.

A.1 The suggestions package

Thesuggestionpackage defines classes that represent suggestions totivaiehobabilis-
tic Radix Tree can point. Here we define a simple implemeoadif the suggestion man-
ager, which is the key component in allowing flexible prefixohéng and error tolerant and
location biased suggestion making. We also define the $edcaliggestionsEnginghich
serves as the entry point for the auto-completion systeaviging a simple interface that
allows a user of the system to make use of all its functiopaltinteracting with it via only
two method calls. The UML diagram corresponding to this paekis shown in Figure A.1.
The classes in this package are as follows:

e Suggestion This is an interface that defines the minimal behavior of ggestion
that the system supports. Specifically, a Suggestion shastdd a way of retrieving
the suggestionStringwhich is the string displayed to the end-user as a completio
suggestion and a method that returns all strings that carsdéx t0 match that sug-
gestion. This last method is callggtMatchingStringand it takes as a parameter a
StringNormalizer (discussed below) and a weight, and itrnet a set of strings that
can be used to match this suggestion, along with their qooreing weights, cal-
culated based on the weight attributed to the suggestiorttengossible distortion
applied to thesuggestionStringn order to get the matching string.

e AddressSuggestionThis is an abstract class that implements Suggestion Kspgea
only strictly from a Java language point of view, as it doesawually implement any

1



A.1 Thesuggestionpackage Implementation Details

78

of its methods), and it imposes that concrete classes artgitdhave associated with
them a location (a latitude and longitude pair) that can Iekeed by implement-
ing the abstract methods defined here for this purpose. Hss does implement a
methoddistancefor calculating the distance to a bias point provided as arpater,
using its own latitude and longitude. For now this methoddasnple implementa-
tion which serves as an approximation: it treats coordgatepoints in a plane and
computes the Euclidean distance between them. For moresagcthis method can
be implemented to return the actual distance in e.g. kilersetNote that this exact
implementation will also fiect the choice of the weight distribution for supported
queries.

StringNormalizeris an interface which exposes a methaormalizeStringwhich
should be applied both on matching strings that can be parsieg) the edges of
the radix tree, as well as on prefixes provided to retrievagssigons, in order to
allow for some flexibility when parsing user-supplied prefix

AddressStringNormalizeimplementsStringNormalizersuch that strings passed to
thenormalizeStringnethod are lower cased and all delimiter sequences areegpla
by a single placeholder character: $. Hence the stringsnkfuat (Oder)” and
"frankfurt-oder " are the same when normalized using thishoe.

CitySuggestiorand StreetSuggestioare classes that implemeAtdressSuggestion
and are constructed by supplying all the elements necegwaalgscribing such sug-
gestions in each case, such as street name, city namendgatele.

SuggestionsManagés an interface describing the functionality of an assowatata
structure which maps keys to suggestions afidre a way of retrieving keys based
on suggestions and vice-versa. The addition of new suggessis meant to be trans-
parent to the user, as getting a suggestion key should iegti creation of one, in
case a key is not already associated to the supplied sugigesti

SuggestionsManagerimjg a simple implementation @duggestionsManagersing
integer keys and managing their association to suggestipnssing an in-memory
hash map.

SuggestionsEnginis a concrete class,fiering a simple interface (not in the Java
language sense) to the auto-completion system. It manafes mstance (see sec-
tion A.2) and through calling its constructor, it is providleDataReadelsee section
A.3) that populates the tree with suggestions and their atipg strings. It also ex-
poses methods for getting a ranked list of topuggestions. This is accomplished
by simply wrapping around similar methods exposed by the @éter only applying
normalization to the prefix provided as a parameter.



Implementation Details A.1 Thesuggestionpackage

winterfaces 0
«Genericss :
i :
SuggestionsManager winterfacen 1
Suggestion

getSuggestionkey { suggestion : Suggestion ) : KeyType
suggestionString | String

getSuggestion  key : KeyType ) : Suggestion

getMatchingStrings { normalizer © StringMormalizer. weight ©lang ) : Mapw..n

& o
! = s T IT A

SuggestiansManagerimpl B

. SuggestionsManagerimpl{ | : SuggestionsManagar! mpl

etsuggestion {key : Intager) : Suggestion| )

|
|
|
|
|
|
etSuggestbnKey ( suggestion ; Suggestian ) : Integer ] |
|
|

rinterfacen B AddressSuggestion

StringNormalizer 1 )
{a3 getlaticude { ) double

getlongitude ( ) : double

%3 narmalize String { string - String ) © String
s {54 distance { latkude © double, lbngiuds : double ) : dousle[)

; %

AddressStringNormalizer ]
CitySuggestion
MAME_DELIMITERS: String = "{[ TILTI[TILI I
COUT_OF_ORDER_PENALTY : double =0.45
ddrassStringhl fdrazss iojhiame  String
normaliz eString { string @ String ) @ String { stateName : String
o2 addDelimiter {query : String | : String auntryName | String
A latitude : double
% longitude : double
i CitySugge stion { cityMame : String, stateName | String. countryMame : String. latitude : double. longitude | double ) : CitySuggestion
{54 CitySugge stion | cityMame : String, countryfame : String, latituds : double. longituds « double ) : CitySuggestion
. getSuggestionString { ) String
: getMatchingStrings { normalizer ¢ StringNormalizer. weight : lang ) @ Mapa..»
SuggestionsEngine [B1]

getTopkSuggestions | prefix - String, k: int) : Suggestion
getTopkSuggestions | prefic . String, k- int, latitude : double, longitude : doutle ) : Suggestion

StreetSuggestion

streathame : String

citylame : String
statelame : String
countryMName : String

Latitude : double
longitude : double
StreetSuggestion ( streetMame : String, cityMame : String, stateMame : String, countryName : String, latitude © double, longitude : double ) : StreetSuggestion
StreetSuggestion ( streetName ; String, cityMame : String, countryName | String, latitude : double. longitude @ double ) ; StreetSuggestion
getSuggestionString ( )@ String

etMatchingStrings { normalizer ; StringMormalizer. weight : long ) | Maps..0

Figure A.1: The UML diagram corresponding to theggestionpackage

79




A.2 Thetreespackage Implementation Details

80

A.2 Thetreespackage

Thetreespackage is the core package containing the definition of thbdbilistic Radix
Tree, along with the other components necessary for itssmehtation. Figure A.2 shows
the UML diagram generated from these components. Next weisksthe main classes in
this package individually:

e Nodeis an interface to a node in the abstraiestructure. The interface requires that
implementers fier a way to add terms to the node, retrieve suggestions atstdo
this node, get the total weight corresponding to the nodegahthe descendant nodes
in the tree structure.

e Treeis an abstract class requiring implementations for (ab8traethods for adding
suggestions, parsing prefix strings (and returning theespondingNode, both with
and without error tolerance support. The class does impiemgmplate method for
getting a ranked list of the tok-suggestions corresponding to a given prefix. The
method corresponds to Algorithm 5 and its variations dbecrin chapter 3. Itis a
template method because it relies on subclasses to impteéheabstract methods
that it uses, for getting states based on prefix strings. Sdmse method is used for
both biased and unbiased suggestion making, depending ayyth ofCandidate Ad-
der parameter it is provided, as discussed next.

e CandidateAddeis an interface, exposing methods the implementers of whése
to define, in order encapsulate the way suggestions are daddegbriority queue.
This is a step in the suggestion making algorithm of Tinee and encapsulating it
into objects of base typ@andidateAdderllows us to use the same method for unbi-
ased or dierent kinds of biased suggestion-making, simply by chantiie concrete
type of CandidateAddethat is passed to the method (this is an implementation of
the 'Strategy’ software design pattern). Implementatiares currently provided for
simple addition of Suggestions according to their weigRtsiaCandidateAddgr
addition of suggestions with rescaled weights accordirthealistance to a provided
bias point BiasedCandidateAddeand addition of suggestions with rescaled weights
according to the distance to a given bias point, but onlyideta provided radius5j-
asedRadiusCandidateAdder

e SuggestionCandidatis a class encapsulating an entry in the priority queue uged b
the suggestion making algorithm ®fee It is meant to hold a reference to either
a state to be expanded in the suggestion making process @gastion that can
be made to the userSuggestionCandidageare instantiated bZandidateAddes,
which assign weights to them according to the type of the ssiijgn making process
(biasedunbiasegetc.).

e RadixNodeandRadixTreeoffer complete implementations of tiodeand Treeab-
stractions respectively, according to the algorithmsudised in this thesis for Prob-
abilistic Radix Trees. The intent of this separation is téreethe algorithms in an
abstract way as far as possible, while allowing fdfatient implementation decisions.



Implementation Details

A.2 Thetreespackage

Tree

parsePrefix { prafix : String ) : Node

5, parsePrefix { prefix | String, maxEditDistance ! int} © Nade

getTopkSuggestions { prefis: String. k:int ) : Suggestion

getTopkSuggestions ( prefic: String. k: int, dder ; Candid

getTapkSuggestions { preféc: String, k: int. latitude : double, langitude : double ) : Suggestion

weight : long

&

addSuggestion { suggestion : Suggestion, normalizer : StringNormalizer }

addSuggestion { suggestion | Suggestion, weight : long, normalizer ; StringMormalizer }

1 suggestionsManager: SuggestionsManager

)

3

followhade

followCount  long

7 finalCount  lang

transitionStrings ! String

L totalCount : lang

7, addterm { term | String, associationkey | Integer)

addTerm( term: String. weight : long, associztionkey | Integer)

472 lange stCommanPrefidndss 51 ¢ String. =2 * String ) int

addAssaciation ( associationKey | Integer )

5 getWeight () : long

getSuggestions( ) : Map«.»

getDescandants( ) : Mapu..n
getTransitionLabels () Mapu.»

Radichlode { suggestionsManager | SuggestionsManager )

' addAssaciation { assaciationKey ; Integer, weight : Long )

getTransitianLabel (¢ Character ) : String

getFollower (c : Character) | RadiNode
1
startMode
1

DistanceEditor

harPool: char = new char[]{'a, [1.#]s.0
inimum (3 int, b :int ¢ : int
alter { str ; String, distance cint ) : String|

omputel evenshteinDistance { strl : CharSequence. str2 : CharSequence ) : int| ]

BlasedRadiusCandidataAdder

[ latitude : double

longitude : dauble

radius: double

{izadd (queve  PriorityQueue, node : Node, weight : long §

j BiasedRadiuzCandidateAdder { latitude | double, longitude : doubls, radius | dousle |

BiazedRadiusCandidateAdder

add (queus | PriorityGueue, suggestion : Suggestion, weight : long )

parsePrefix ( prefix: String. maxEditDistance

{55 sddSuggestion { suggestion : Suggestian. normalizer

winterfaces

Node

uggestions:long

descendants; lang

. addTerm (term : String, weight : lang, assaciationKey : Integer )

&

| 1] 1
| node

“ lreterence
|
SuggestienCandidate

suggestion : Suggestion
weight : lang

getweight { ) ¢ long [}
3 isSuggestion { }

0 boolean
52 getode{ ) : Node[])

getSuggestion ( ) : Suggestion| ]
SuggestionCandidate { node : Nade, weight : long )

£ compareTo (o : SuggestionCandidate ) ¢ int

SuggestionCandidate { suggestion | Suggestion, weight | long )

SuggestionCandidate

“Referancen

SuggestionCandidate

Radixhlade

«Referencen

RadixTree

suggestionsManager: Suggestionshanager «...n

RadicTree ( ) : RadiTree
parsePrefic( prefic: String ) : Mode «..n

int] : Nodes.o

parsePrefix( curranthode ; Radichiade, prafix : String ) : Radisiode

StringNormalizer ) w0

sintarfacen i}
CandidateAdder

add { queue : PriarityQueue, suggestion : Suggestion, weight : lang }
add {queue : PriorityGueue, node : Node, weight - lang )

PlainCandidateAdder

dd (queue | PriorityGueue, suggestion | Suggestion, weight | lang )

“apadd (queue : PriorityQueue, node : Node, weight : long |

BiasedCandidateAdder

1 latitude : double

I longitude | double

“; BiasedCandidateAdder { latitude : double. longitude | double ) | BiasedCandidate Adder

dd (queus : PriorityQueue, suggestion : Suggestion. weight : long |
dd (queus : PriorityQueus, node : Node, weight : long )

Figure A.2: The UML diagram corresponding to tineespackage

addSuggestion | suggestion : Suggestian, weight : long, normalizer : StringMarmalizer) «...»

81



A.3 Thedatapackage Implementation Details

82

winterfacan

DataReader

readToTree (tree : Tree )

|
|
| USACitiesReader USAStreetsReader
|
|

readToTree (tree : Tree ) readToTree [ tree : Tree )

GermanyStreetsReader

readToTree (tree : Tree)

GermanyCitiesReader

readToTree (tree : Tree)

Figure A.3: The UML diagram corresponding to tii&tapackage

e DistanceEditoris a utility class which implements edit-distance caldolabetween
two strings, as it is required by the algorithms discussethis thesis. That is, it
is passed two string parameters and it returns the minimwtardie necessary to
transform prefixes of the first string into the second onen@hith the indices that
delimit these prefixes.

A.3 The data package

Thedatapackage consists of classes that populdieawith supported strings from a given
data source. This will need to change (or at least be expaidedder to incorporate sup-
port for application-specific data sources and procesdsihgre is an interface that defines
a simple protocol for populating Breefrom a given data source, call&htaReader Con-
creteDataReades have to encapsulate the knowledge of reading and intergr@tknown
data source and making the necessary calls to the suppdiedarsupport the suggestions
they require.

Figure A.3 shows the implementations DataReadelinterface that have been used in
the experimental evaluation presented in this thesis.



Bibliography

[1] B. Filipic T.R. Lynam B. Zupan A. Bratko, G. V. Cormack. & filtering using sta-
tistical data compression modelournal of Machine Learning7:2673—-2698, 2006.

[2] E. Alpaydin. Introduction to Machine Learning, Second EditioThe MIT Press,
2010.

[3] R.Asok. Symbolic dynamic analysis of complex systenrssitomaly detectionSig-
nal Processing84(7):1115-1130, 2004.

[4] H. Schutze C.D. Manning, P. RaghavaAn introduction to Information Retrieval
Cambridge University Press, 2009.

[5] F.J. Damerau. A technique for computer detection andection of spelling errors.
Communications of the ACM:171-176, 1964.

[6] C.de laHiguera. Characteristic sets for polynomialngmnaatical inference. 1995.

[7]1 H. Hembrooke T. Joachims B. Pan G. Gay, L. Granka. Acelyahterpreting click-
through data as implicit feedbaclACM Conference On Research and Development
In Information Retrieval28, 2005.

[8] H. Hembrooke T. Joachims B. Pan F. Radlinski G. Gay, L.nkea Evaluating the
accuracy of implicit feedback and query reformulations gtvsearchACM Transac-
tions on Information Systems (TOJ8p, 2007.

[9] I. Weber H. Bast. Type less, find more: Fast autocomphetiearch with a succinct
index. ACM Conference On Research and Development In InformatitrieRal, 29,
2006.

[10] P. Hsu H. Duan. Online spelling correction for query gation. WWW 2011.

[11] C. von der Malsburg L. Wiskott J. Fellous, N. Kruger. Eaecognition by elastic
bunch graph matchinglEEE Transactions on Pattern Analysis and Machine Intelli-
gence 19:775-779, 1997.

83



BIBLIOGRAPHY

84

[12] R.B. Miller. Response time in man-computer conversal transactions.AFIPS
1968.

[13] M. Mohri. Finite-state transducers in language andesperecognition.Association
for Computational Linguistics23(2):269-312, 1997.

[14] A. Ray P. Adenis, K. Mukherjee. State splitting and staterging in probabilistic
finite state automataAmerican Control Conferen¢pages 5145-5150, 2011.

[15] J.LiuP. Dolan, E. R. Pedersen. Personalized news neardation based on click be-
havior. Proceedings of the 15th international conference on ligiefit user interfaces
2010.

[16] F. Thollard P. Dupont, C. de la Higuera. Probabilistfa thference using kullback-
leibler divergence and minimalityProceedings of the 17th International Conference
on Machine Learning2000.

[17] Y. Esposito P. Dupont, F. Denis. Links between prohsiiil automata and hidden
markov models: probability distributions, learning madeahd induction algorithms.
Pattern Recognition38(9):1349-1371, 2005.

[18] C. de la Higueroa F. Thollard E. Vidal R. C. Carrasco, Bs&cuberta. Probabilistic
finite state machines - parts i and IlEEE Transactions on Pattern Analysis and
Machine Intelligence27(7):1013-1025, 2005.

[19] J. Oncina R. C. Carrasco. Learning stochastic regulamgiars by means of state
merging methodSpringer-Verlag pages 139-152, 1994.

[20] J. Oncina R.C. Carrasco. Learning deterministic reggrammars from stochastic
samples in polynomial timéRAIRO (Theoretical Informatics and Application8p:1—
20, 1999.

[21] S. Inenage G. Mauri G. Pavesi A. Shinohara M. Takeda &ata, H. Hoshino. On-
line construction of compact directed acyclic word grapbsscrete Applied Mathe-
matics - 12th annual symposium on Combinatorial Patternd\iailg, pages 169-186,
2001.

[22] R. Kaushik S. Chaudhuri. Extending autocompletiondierate errors.ACM SIG-
MOD, 2009.

[23] S. Verwer.Efficient Identification of Timed Automata, theory and practizel1.



