SEMANTIC SEGMENTATION OF POINT CLOUDS WITH THE 3D MEDIAL AXIS TRANSFORM

Giulia Ceccarelli

cyclomedia

Ravi Peters
Weixiao Gao
Bas Boom
Arjen Swart

INTRODUCTION

INTRODUCTION

How can the properties of the 3D medial axis transform be exploited in deep learning algorithms for point cloud semantic segmentation?

3D MAT

- to give context to points
- to partition a point cloud
- to enrich a graph edges information
- most useful properties
- to improve the accuracy of deep learning methods
- performance real data-set vs synthetic data-set

METHODOLOGY

 Pipeline

MEDIAL AXIS TRANSFORM Definition

Skeleton representation of shapes, dual to the boundary of an object

METHODOLOGY

```
#}\begin{array}{c}{\mathrm{ Algorithms }}\\{\mathrm{ analysis }}\end{array}->\begin{array}{c}{\mathrm{ 3D MAT (alysis }}\end{array}->\underset{\mathrm{ preprocessing }}{\mathrm{ Data }}->\begin{array}{c}{\mathrm{ 3D MAT}}\\{\mathrm{ computation }}
```


Point properties

Graph properties

Geometry of the medial atom
p, q : feature points
q
c: medial point
r: radius
$\mathrm{B}(\mathbf{c}, \mathrm{r})$ medial ball
sp, sq: spoke vectors
b: medial bisector

- - separation angle

Interior and exterior MAT

Structured MAT

METHODOLOGY

Point based networks

PointNet++

Graph based networks
 Superpoint Graph

Deep learning architecture

Segmentation - per point predictions

Hierarchical features learning

Sampling and \longrightarrow PointNet grouping
Algorithms

analysis \rightarrow\begin{tabular}{c}
3D MAT

analysis

$\rightarrow \underset{\text { preprocessing }}{\text { Data }} \rightarrow$

3D MAT

computation
\end{tabular}

Preprocessing

Partition in simple shapes - Superpoints
Construction of adjacency graph

Deep learning architecture

PointNet \& graph convolution for predictions

CycloMedia internal

Internal dataset

Mobile laser scanner
80 point clouds - each 3 million points
6 semantic classes

One CycloMedia point cloud
Algorithms

analysis \rightarrow\begin{tabular}{c}
3D MAT

analysis

\rightarrow

Data

preprocessing

\rightarrow

3D MAT

computation
\end{tabular}

Datasets characteristics

MLS data-set
Low presence of noise
Low presence of artifacts
High points' density
Homogeneous points' density
Objects' geometry is fully represented

3DOM point cloud

3DOM point cloud - MAT

3DOM dataset

Dense image matching point cloud
1 point cloud - total 28 million points
6 semantic classes

3DOM point cloud
3DOM point cloud -
number of neighbors per point

SynthCity

SynthCity dataset

Simulated Velodyne scanner - mobile laser scanner
9 point clouds - total 368 million points
9 semantic classes

Subset of a SynthCity point cloud
Subset of a SynthCity point cloud number of neighbors per point

Algorithms

analysis $\rightarrow \underset{$\begin{tabular}{c}
3D MAT

analysis

$\rightarrow \underset{\text { preprocessing }}{\text { Data }} \rightarrow$

3D MAT

computation
\end{tabular}$}{\text { 3D }}$

SynthCity - default normals
SynthCity - oriented normals

3DOM point cloud - default MAT
3DOM point cloud - custom MAT

MAT construction parameters

Denoise planar
Denoise preserve
Initial radius

MAT structuration parameters
Ball overlap
Bisector angle
K
Method
Minimum count Separation angle
Shape count

Confusion matrix

	A	B	C	D	
A	10	3	7	5	25
B	5	20	4	8	37
C	2	6	30	1	39
D	11	9	12	25	57
	28	38	53	39	158

3D medial axis transform as a point feature

PointNet++ analysis

PointNet++

Deep learning architecture
Hierarchical features learning

Segmentation - per point predictions

Algorithm's setting

Batch size 16

Number of points 9000
Learning rate 0.001
Epochs 200200

3D medial axis transform as a point feature

> Coordinates
> 3D MAT interior and exterior coordinates
> 3D MAT interior coordinates

Local geometry of the medial atom
Interior radius
Exterior radius

Interior separation angle
Exterior separation angle

3D medial axis transform as a point feature 3D MAT use

3D medial axis transform as a point feature 3DOM - results

$x y z+$ color
xyz + color + MAT coordinates
$x y z+$ color + MAT interior coordinates
$x y z+$ color + radii and separation angles

3D medial axis transform as a point feature 3DOM - results

	RGB	MAT-C		MAT-I		MAT-RS	
OA	0.86	0.69		0.72		0.91	
IoU							
Ground	74.48\%	59.12\%	-15.36	75.80\%	+1.32	83.98\%	$+9.50$
Grass	34.49\%	15.40\%	-19.09	14.39\%	-20.10	67.84\%	+33.35
Shrub	42.78\%	22.50\%	-20.28	22.47\%	-20.31	66.52\%	+23.74
Tree	86.38\%	50.27\%	-36.11	50.46\%	-35.92	91.34\%	+4.96
Façade	88.48\%	60.43\%	-28.05	61.91\%	-26.57	89.18\%	$+0.70$
Roof	59.94\%	57.32\%	-2.62	63.75\%	+3.81	68.59\%	+8.65

RGB classification point cloud
MAT interior coordinates classification point cloud

Radius and separation angle classification point cloud

3D medial axis transform as a point feature

 SynthCity - results$x y z+$ color
xyz + color + MAT coordinates
$x y z+$ color + MAT interior coordinates
$x y z+$ color + radii and separation angles

3D medial axis transform as a point feature SynthCity - results

	RGB	MAT-C		MAT-I		MAT-RS	
OA	0.94	0.86		0.88		0.96	
IoU							
Building	97.90\%	90.64\%	-7.26	92.04\%	-5.86	98.89\%	+0.99
Car	71.58\%	14.08\%	-57.50	24.27\%	-47.31	78.71\%	+7.31
Natural ground	84.92\%	50.53\%	-34.39	76.10\%	-8.82	93.16\%	+8.24
Ground	45.49\%	8.48\%	-37.01	15.13\%	-30.36	56.82\%	+11.33
Pole-like	65.72\%	0.00\%	-65.72	9.37\%	-56.35	66.84\%	+1.12
Road	96.41\%	83.46\%	-12.95	88.31\%	-8.10	97.99\%	+1.58
Street furniture	34.50\%	0.00\%	-34.50	0.31\%	-34.19	41.03\%	+6.53
Tree	88.18\%	69.98\%	-18.20	74.22\%	-13.96	95.58\%	+7.40
Pavement	72.04\%	65.03\%	-7.01	62.34\%	-11.70	78.83\%	+6.79

RGB classification point cloud
MAT interior coordinates classification point cloud

3D medial axis transform as a point feature SynthCity - analysis of results

3D medial axis transform as a point feature

 Internal dataset - resultsMAT-SP xyz + color + spoke vectors
MAT-BIS $\quad x y z+$ color + bisector angles

	RGB	MAT-RS	MAT-SP	MAT-BIS		
OA	0.84	0.89	0.87		0.84	
IoU						
Undefined	08.63%	$09.71 \%+1.08$	$13.94 \%+5.31$	09.22%	+0.59	
Building	24.39%	$54.49 \%+30.10$	43.22%	+18.83	38.64%	+14.25
Car	13.68%	$22.22 \%+8.54$	$28.05 \%+14.37$	22.25%	+8.57	
Ground	88.10%	$95.76 \%+7.66$	94.65%	+6.55	92.98%	+4.88
Pole	00.00%	00.00%		00.00%		00.00%
Vegetation	73.85%	$79.34 \%+5.49$	76.10%	+2.25	69.00%	-4.85

3D medial axis transform as a point feature

 Internal dataset - resultsOA

IoU

Vegetation

RGB
MAT-RS
0.89
0.84
73.85\%

	RGB	MAT-RS	MAT-SP	MAT-BIS		
OA	0.84	0.89	0.87		0.84	
IoU						
Undefined	08.63%	$09.71 \%+1.08$	$13.94 \%+5.31$	09.22%	+0.59	
Building	24.39%	$54.49 \%+30.10$	43.22%	+18.83	38.64%	+14.25
Car	13.68%	$22.22 \%+8.54$	$28.05 \%+14.37$	22.25%	+8.57	
Ground	88.10%	$95.76 \%+7.66$	94.65%	+6.55	92.98%	+4.88
Pole	00.00%	00.00%		00.00%		00.00%
Vegetation	73.85%	$79.34 \%+5.49$	76.10%	+2.25	69.00%	-4.85

RGB classification point cloud

Bisector angles classification point cloud TUDelft cyclomedia

Radius and separation angle classification point cloud

medial axis transform as a point feature

- Radius and separation angle improve the accuracy of the algorithm
- Both radius and separation angle contribute to the increase in accuracy
- MAT coordinates are prone to lead to overfitting and in general introduce ambiguity in the algorithm
- Even with real data, radius and separation angle introduce improvements in the accuracy of the algorithm
- The results can be improved for the internal dataset, if class weighting is applied

3D medial axis transform as a geometric descriptor SPG partition analysis

Graph based networks

Superpoint Graph

Preprocessing

3D medial axis transform as a geometric descriptor

Graph based networks

Superpoint Graph

Radii, separation angles and medial bisectors as geometric descriptors

Goal: improve the partition of the point cloud in homogeneous shapes

Assumption: better partition leads to better overall results

Default geometric descriptors

Computed as a function of the Eigen values and vectors for a point's neighborhood

3D medial axis transform as a geometric descriptor

Graph based networks

Superpoint Graph

Knn graph: edge weight as inverse distance between point and neighbors

Knn graph: edge weight strengthened if point and neighbor belong to the same medial sheet

Goal: improve the partition of the point cloud in homogeneous shapes
Goal: increase similarity between SPG and structured MAT

Assumption: better partition leads to better overall results

3D medial axis transform as a geometric descriptor

 3DOM - resultsCut-pursuit algorithm - number of parts

	Default	MAT	Bisector	Edge weight
Point cloud				
train1	642	1502	646^{*}	595
train2	709	1620	844^{*}	504
eval1	632	1831	670^{*}	528
eval2	765	3511	2218^{*}	556
val1	1685			1334

* Regularization strength parameter modified

TUDelft cyclomedia

3DOM point cloud - default partition
 3DOM point cloud - MAT partition

3DOM point cloud - medial bisector partition

3DOM point cloud - edge weight partition

3D medial axis transform as a geometric descriptor 3DOM - analysis of results

3DOM point cloud - linearity

3DOM point cloud - scattering

3DOM point cloud - planarity

3DOM point cloud - verticality

3D medial axis transform as a geometric descriptor 3DOM - analysis of results

3DOM point cloud - medial bisectors

3DOM point cloud - bisector1

3DOM point cloud - bisector2

TUDelft cyclomedia

3DOM point cloud - bisector3

3D medial axis transform as a geometric descriptor 3DOM - analysis of results

3DOM point cloud - interior radius

3DOM point cloud - exterior radius

3DOM point cloud - interior separation angle

TUDelft cyclomedia

3DOM point cloud - exterior separation angle

3D medial axis transform as a geometric descriptor

 3DOM - results| | | | Default
 MAT
 Bisector
 Edge weight | linearity + planarity + scattering + verticality
 default + radii and separation angles (int, est)
 default + medial bisectors
 default with different edge weight |
| :---: | :---: | :---: | :---: | :---: |
| | Default | MAT | Bisector | Edge weight |
| OA | 74.36\% | 64.78\% | 67.25\% | 66.51\% |
| IoU | | | | |
| Ground | 47.48\% | 30.89\% | 59.66\% | 55.01\% |
| Grass | 02.68\% | 43.67\% | 00.02\% | 19.27\% |
| Shrub | 28.89\% | 01.55\% | 57.51\% | 36.70\% |
| Tree | 66.78\% | 66.46\% | 64.13\% | 52.09\% |
| Facade | 79.01\% | 28.24\% | 67.64\% | 63.25\% |
| Roof | 51.74\% | 21.54\% | 03.08\% | 00.04\% |

3D medial axis transform as a geometric descriptor

 SynthCity - resultsCut-pursuit algorithm - number of parts

	Default	MAT	Bisector	Edge weight
Point cloud				
area1	656	755	1575	
area2	840	991	2176	701
area3	770	1017	1735	981
area4	832	875	2001	896
area5	1064	1212	2661	912
area6	886	1202	3053	1172
area7	501	493	472	969
area8	472	780	1220	599
area9	557			639

\qquad

SynthCity point cloud - default partition

SynthCity point cloud - medial bisector partition

SynthCity point cloud - MAT partition

SynthCity point cloud - edge weight partition

3D medial axis transform as a geometric descriptor

 SynthCity - results| | Default | MAT | Bisector | Edge weight |
| :--- | :--- | :--- | :--- | :--- |
| OA | 89.04% | 85.28% | 85.84% | 80.71% |
| loU | | | | |
| Building | | | | |
| Car | 97.75% | 96.36% | 92.14% | 94.81% |
| Natural ground | 06.37% | 56.16% | 42.47% | 38.17% |
| Ground | 06.76% | 44.38% | 01.83% | 01.46% |
| Pole-like | 42.52% | 48.16% | 11.39% | 03.90% |
| Road | 41.53% | 01.04% | 24.77% | |
| Street furniture | 29.59% | 15.87% | 00.00% | 41.52% |
| Tree | 98.34% | 00.69% | 00.00% | 18.20% |
| Pavement | 00.04% | | 66.00% | 94.80% |
| | | | 00.00% | 00.00% |

Default
MAT
Bisector
Edge weight
linearity + planarity + scattering + verticality default + radii and separation angles (int, est) default + medial bisectors default with different edge weight

Edge weight
80.71\%
94.81\%
38.17\%
01.46\%
03.90\%
24.77\%
41.52\%
18.20\%
94.80\%
00.00\%

3D medial axis transform as an edge attribute

 SPG construction analysisGraph based networks
Superpoint Graph

SPG graph

centroid

Superpoint attributes

Superedge attributes

deviation offset

centroid offset

surface ratio

volume ratio

point count ratio

3D medial axis transform as an edge attribute

Graph based networks

Superpoint Graph

Superpoint attributes

mean radius

max radius

min radius

mean sep angle

max sep angle

min sep angle

Superedge attributes

mean radius offset

max radius offset

min radius offset

mean sep angle offset

max sep angle offset

min sep angle offset

3D medial axis transform as an edge attribute

 3DOM - resultsDefault

SPG graph edge attributes
mean radii and separation angles (int, est) min and max radii and separation angles (int,est)

		Default +				
	Default	Mean	Mean	Default	Default + Min-max	Min-max
OA	74.36%	70.12%	74.04%	72.64%	73.64%	72.77%
loU						
Ground	47.48%	35.70%	29.40%	71.68%	53.63%	23.87%
Grass	02.68%	20.97%	15.62%	00.11%	00.00%	00.08%
Shrub	28.89%	60.32%	22.53%	05.62%	18.99%	37.53%
Tree	66.78%	69.54%	70.86%	50.05%	47.52%	62.47%
Façade	79.01%	43.78%	27.53%	69.48%	72.18%	33.28%
Roof	51.74%	10.23%	62.69%	01.09%	28.69%	00.00%

3D medial axis transform as a geometric descriptor 3D medial axis transform as an edge attribute

- Introducing MAT information to partition a point cloud leads to different results in different datasets
- For the 3DOM dataset:
- The number of parts is highly increased using radii, separation angles and medial bisectors
- The number of parts is decreased when modifying the edge weight
- For the SynthCity dataset:
- The number of parts is similar using radii, separation angles and medial bisectors
- The number of parts is increased when modifying the edge weight
- In general, the default partition leads to better overall results
- Using the MAT to enrich the SPG edges' attributes does not lead to improvements, the reason is that the structured MAT is not like the SPG in practice

RESEARCH QUESTIONS

3D MAT

- to give context to points
- most useful properties
- to improve the accuracy of existing deep learning methods
- real data-set vs synthetic data-set

- to partition a point cloud
- to enrich the SPG's edge information
local geometry of the medial atom radii and separation angles
yes
similar trends in the results
not useful in the cut-pursuit algorithm
not useful if SPG and MAT are not similar

How can the properties of the 3D medial axis transform be exploited in deep learning algorithms for point cloud semantic segmentation?

Radii, separation angles, spoke vectors and bisector angles can be successfully used as a point feature in a point based deep learning network

General directions

Automatic computation of the 3D MAT
Analysis of different types of datasets

SynthCity - MAT

THANK YOU!

