SEMANTIC SEGMENTATION OF POINT CLOUDS WITH THE 3D MEDIAL AXIS TRANSFORM

Giulia Ceccarelli

Ravi Peters Weixiao Gao

Arjen Swart

Bas Boom

INTRODUCTION Point clouds

Raw point cloud

RGB point cloud

Segmented point cloud

INTRODUCTION 3D medial axis transform

Raw point cloud

Medial axis transform

Structured medial axis transform

How can the properties of the 3D medial axis transform be exploited in deep learning algorithms for point cloud semantic segmentation?

3D MAT

- to give context to points
- to partition a point cloud
- to enrich a graph edges information
- most useful properties
- to improve the accuracy of deep learning methods
- performance real data-set vs synthetic data-set

METHODOLOGY Pipeline

TUDelft cyclomedia –

METHODOLOGY Pipeline - preliminary steps

METHODOLOGY Pipeline - preliminary steps

TUDelft cyclomedia –

MEDIAL AXIS TRANSFORM Definition

Skeleton representation of shapes, dual to the boundary of an object

cyclomedia

Preliminary steps

Unit PointNet - Interpolate

cyclomedia

UDelft

Segmentation - per point predictions

Deep learning architecture

PointNet & graph convolution for predictions

METHODOLOGY Pipeline - preliminary steps

CycloMedia internal Dataset

Internal dataset

Mobile laser scanner 80 point clouds – each 3 million points 6 semantic classes

One CycloMedia point cloud

One CycloMedia point cloud number of neighbors per point

METHODOLOGY Preliminary steps

Datasets characteristics

MLS data-set

Low presence of noise

Low presence of artifacts

High points' density

Homogeneous points' density

Objects' geometry is fully represented

3DOM point cloud

3DOM point cloud - MAT

3DOM Dataset

3DOM dataset

Dense image matching point cloud 1 point cloud - total 28 million points 6 semantic classes

3DOM point cloud

3DOM point cloud number of neighbors per point

SynthCity Dataset

SynthCity dataset

Simulated Velodyne scanner – mobile laser scanner 9 point clouds – total 368 million points

9 semantic classes

Subset of a SynthCity point cloud

Subset of a SynthCity point cloud - number of neighbors per point

METHODOLOGY Pipeline - preliminary steps

SynthCity - default normals

SynthCity - oriented normals

METHODOLOGY Pipeline - preliminary steps

METHODOLOGY Preliminary steps

3DOM point cloud - default MAT

3DOM point cloud - custom MAT

MAT construction parameters Denoise planar Denoise preserve Initial radius

MAT structuration parameters Ball overlap Bisector angle K Method Minimum count Separation angle Shape count

METHODOLOGY Pipeline - evaluation steps

TUDelft cyclomedia

METHODOLOGY Evaluation steps

	Comusion matrix								
	А	В	С	D					
А	10	3	7	5	25				
В	5	20	4	8	37				
С	2	6	30	1	39				
D	11	9	12	25	57				
	28	38	53	39	158				

Confusion matrix

Overall

accuracy

Intersection over Union

METHODOLOGY Pipeline - integrated algorithm

TUDelft cyclomedia

METHODOLOGY Pipeline - integrated algorithm

TUDelft cyclomedia –

3D medial axis transform as a point feature PointNet++ analysis

cyclomedia

TUDelft

3D medial axis transform as a point feature 3D MAT use

Coordinates

3D MAT interior and exterior coordinates 3D MAT interior coordinates

Local geometry of the medial atom Interior radius Exterior radius

Interior separation angle Exterior separation angle

3D medial axis transform as a point feature 3D MAT use

3D medial axis transform as a point feature 3DOM - results

xyz + color xyz + color + MAT coordinates xyz + color + MAT interior coordinates xyz + color + radii and separation angles

RGB

MAT-C

MAT-I

MAT-RS

3D medial axis transform as a point feature 3DOM - results

RGBxyz + colorMAT-Cxyz + color + MAT coordinates<u>MAT-I</u>xyz + color + MAT interior coordinatesMAT-RSxyz + color + radii and separation angles

	RGB	MAT-C	MAT-I	MAT-RS
OA	0.86	0.69	0.72	0.91
loU				
Ground	74.48%	59.12% -15.36	75.80% +1.32	83.98% +9.50
Grass	34.49%	15.40% -1 <mark>9.0</mark> 9	14.39% -20.10	67.84% +33.35
Shrub	42.78%	22.50% - <mark>20.28</mark>	22.47% -20.31	66.52% +23.74
Tree	86.38%	50.27% - 36.11	50.46% - 35.92	91.34% +4.96
Façade	88.48%	60.43% -28.05	61.91% -26.57	89.18% +0.70
Roof	59.94%	57.32% -2.62	63.75% +3.81	68.59% +8.65

3D medial axis transform as a point feature 3DOM - results

Ground truth

RGB classification point cloud

MAT interior coordinates classification point cloud

MAT coordinates classification point cloud

cyclomedia

TUDelft

Radius and separation angle classification point cloud

3D medial axis transform as a point feature 3DOM - analysis of results

TUDelft cyclomedia

3D medial axis transform as a point feature SynthCity - results

xyz + color xyz + color + MAT coordinates xyz + color + MAT interior coordinates xyz + color + radii and separation angles

RGB

MAT-C

MAT-I

MAT-RS

TUDelft cyclomedia

3D medial axis transform as a point feature SynthCity - results

RGBxyz + colorMAT-Cxyz + color + MAT coordinatesMAT-Ixyz + color + MAT interior coordinatesMAT-RSxyz + color + radii and separation angles

	RGB	MAT-C	MAT-I	MAT-RS
OA	0.94	0.86	0.88	0.96
loU				
Building	97.90%	90.64% -7.26	92.04% -5.86	98.89% +0.99
Car	71.58%	14.08% -57.50	24.27% -47.31	78.71% +7.31
Natural ground	84.92%	50.53% -34.39	76.10% - <mark>8.8</mark> 2	93.16% +8.24
Ground	45.49%	8.48% -37.01	15.13% -30.36	56.82% +11.33
Pole-like	65.72%	0.00% -65.72	9.37% - <mark>56.35</mark>	66.84% +1.12
Road	96.41%	83.46% -12.95	88.31% - <mark>8.10</mark>	97.99% +1.58
Street furniture	34.50%	0.00% -34.50	0.31% -34.19	41.03% +6.53
Tree	88.18%	69.98% -18.20	74.22% -13.96	95.58% +7.40
Pavement	72.04%	65.03% - 7.01	62.34% -11.70	78.83% +6.79

3D medial axis transform as a point feature SynthCity - results

Ground

MAT interior coordinates classification point cloud

RGB classification point cloud

MAT coordinates classification point cloud **T**UDelft

3D medial axis transform as a point feature SynthCity - analysis of results

Classification

Radius 2

Separation angle 2

3D medial axis transform as a point feature Internal dataset - results

RGBxyz + colorMAT-RSxyz + color + radii and separation anglesMAT-SPxyz + color + spoke vectorsMAT-BISxyz + color + bisector angles

3D medial axis transform as a point featureRGB
MAT-RS
MAT-SP
MAT-BISxyz + color
xyz + color + radii and separation angles
xyz + color + spoke vectors
xyz + color + bisector angles

	RGB	MAT-RS	MAT-SP	MAT-BIS
OA	0.84	0.89	0.87	0.84
loU				
Undefined	08.63%	09.71% +1.08	13.94% +5.31	09.22% +0.59
Building	24.39%	54.49% +30.10	43.22% +18.83	38.64% +14.25
Car	13.68%	22.22% +8.54	28.05% +14.37	22.25% +8.57
Ground	88.10%	95.76% +7.66	94.65% +6.55	92.98% +4.88
Pole	00.00%	00.00%	00.00%	00.00%
Vegetation	73.85%	79.34% +5.49	76.10% +2.25	69.00% -4.85

3D medial axis transform as a point feature Internal dataset - results

Ground truth

RGB classification point cloud

Bisector angles classification point cloud

Radius and separation angle classification point cloud

MAT spoke vectors classification point cloud

3D medial axis transform as a point feature Sum up

- Radius and separation angle improve the accuracy of the algorithm
- Both radius and separation angle contribute to the increase in accuracy
- MAT coordinates are prone to lead to overfitting and in general introduce ambiguity in the algorithm
- Even with real data, radius and separation angle introduce improvements in the accuracy of the algorithm
- The results can be improved for the internal dataset, if class weighting is applied

METHODOLOGY Pipeline - integrated algorithm

TUDelft cyclomedia

3D medial axis transform as a geometric descriptor SPG partition analysis

Graph based networks

Superpoint Graph

3D medial axis transform as a geometric descriptor 3D MAT use

Graph based networks

Superpoint Graph

Goal: improve the partition of the point cloud in homogeneous shapes

Assumption: better partition leads to better overall results

Computed as a function of the Eigen values and vectors for a point's neighborhood

3D medial axis transform as a geometric descriptor 3D MAT use

Graph based networks

Superpoint Graph

Knn graph: edge weight as inverse distance between point and neighbors

Knn graph: edge weight strengthened if point and neighbor belong to the same medial sheet

Goal: improve the partition of the point cloud in homogeneous shapes

Goal: increase similarity between SPG and structured MAT

Assumption: better partition leads to better overall results

3D medial axis transform as a geometric descriptor 3DOM - results

Cut-pursuit algorithm - number of parts

Defaultlinearity + planarity + scattering + verticalityMATdefault + radii and separation angles (int, est)Bisectordefault + medial bisectorsEdge weightdefault with different edge weight

	Default	MAT	Bisector	Edge weight
Point cloud				
train1	642	1502	646*	595
train2	709	1620	844*	504
eval1	632	1831	670*	528
eval2	765	1757	997*	556
val1	1685	3511	2218*	1334

* Regularization strength parameter modified

3D medial axis transform as a geometric descriptor 3DOM - results

3DOM point cloud - medial bisector partition

3DOM point cloud - edge weight partition

TUDelft cyclomedia

3D medial axis transform as a geometric descriptor 3DOM - analysis of results

3DOM point cloud - linearity

3DOM point cloud - scattering **T**UDelft cyclomedia

3DOM point cloud - planarity

3DOM point cloud - verticality

3D medial axis transform as a geometric descriptor 3DOM - analysis of results

3DOM point cloud - medial bisectors

3DOM point cloud - bisector2

3DOM point cloud - bisector1

3D medial axis transform as a geometric descriptor 3DOM - analysis of results

3DOM point cloud - interior radius

3DOM point cloud - interior separation angle

3DOM point cloud - exterior radius

3DOM point cloud - exterior separation angle

3D medial axis transform as a geometric descriptor 3DOM - results

linearity + planarity + scattering + verticality default + radii and separation angles (int, est) default + medial bisectors ight default with different edge weight

MAT

	Default	MAT	Bisector	Edge weight
OA	74.36%	64.78%	67.25%	66.51%
loU				
Ground	47.48%	30.89%	59.66%	55.01%
Grass	02.68%	43.67%	00.02%	19.27%
Shrub	28.89%	01.55%	57.51%	36.70%
Tree	66.78%	66.46%	64.13%	52.09%
Facade	79.01%	28.24%	67.64%	63.25%
Roof	51.74%	21.54%	03.08%	00.04%

3D medial axis transform as a geometric descriptor SynthCity - results

Cut-pursuit algorithm - number of parts

Defaultlinearity + planarity + scattering + verticalityMATdefault + radii and separation angles (int, est)Bisectordefault + medial bisectorsEdge weightdefault with different edge weight

	Default	MAT	Bisector	Edge weight
Point cloud				
area1	656	755	1575	701
area2	840	991	2176	981
area3	770	1017	1735	896
area4	832	875	2001	912
area5	1064	1212	2661	1172
area6	886	1202	3053	969
area7	501	493	472	499
area8	472	382	684	525
area9	557	780	1220	639

3D medial axis transform as a geometric descriptor SynthCity - results

SynthCity point cloud - default partition

SynthCity point cloud - medial bisector partition

SynthCity point cloud - MAT partition

TUDelft

cyclomedia

SynthCity point cloud - edge weight partition

3D medial axis transform as a geometric descriptor SynthCity - results

t linearity + planarity + scattering + verticality default + radii and separation angles (int, est) or default + medial bisectors weight default with different edge weight

MAT

	Default	MAT	Bisector	Edge weight
OA	89.04%	85.28%	85.84%	80.71%
loU				
Building	97.75%	96.36%	92.14%	94.81%
Car	66.37%	56.16%	42.47%	38.17%
Natural ground	00.20%	44.38%	01.83%	01.46%
Ground	06.76%	12.20%	11.39%	03.90%
Pole-like	42.52%	48.16%	01.04%	24.77%
Road	41.53%	46.56%	00.00%	41.52%
Street furniture	29.59%	15.87%	00.00%	18.20%
Tree	98.34%	96.69%	66.00%	94.80%
Pavement	00.04%	00.00%	00.00%	00.00%

METHODOLOGY Pipeline - integrated algorithm

TUDelft cyclomedia

3D medial axis transform as an edge attribute SPG construction analysis

3D medial axis transform as an edge attribute 3D MAT use

TUDelft

cyclomedia

54

3D medial axis transform as an edge attribute 3DOM - results

Default	SPG graph edge attributes
Mean	mean radii and separation angles (int, est)
Min-max	min and max radii and separation angles (int,est)

	Default +					
	Default	Mean	Mean	Default	Min-max	Min-max
OA	74.36%	70.12%	74.04%	72.64%	73.64%	72.77%
loU						
Ground	47.48%	35.70%	29.40%	71.68%	53.63%	23.87%
Grass	02.68%	20.97%	15.62%	00.11%	00.00%	00.08%
Shrub	28.89%	60.32%	22.53%	05.62%	18.99%	37.53%
Tree	66.78%	69.54%	70.86%	50.05%	47.52%	62.47%
Façade	79.01%	43.78%	27.53%	69.48%	72.18%	33.28%
Roof	51.74%	10.23%	62.69%	01.09%	28.69%	00.00%

3D medial axis transform as a geometric descriptor 3D medial axis transform as an edge attribute Sum up

- Introducing MAT information to partition a point cloud leads to different results in different datasets
- For the 3DOM dataset:
 - The number of parts is highly increased using radii, separation angles and medial bisectors
 - The number of parts is decreased when modifying the edge weight
- For the SynthCity dataset:
 - The number of parts is similar using radii, separation angles and medial bisectors
 - The number of parts is increased when modifying the edge weight
- In general, the default partition leads to better overall results
- Using the MAT to enrich the SPG edges' attributes does not lead to improvements, the reason is that the structured MAT is not like the SPG in practice

RESEARCH QUESTIONS & problem statement

3D MAT

- to give context to points
 - most useful properties
- to improve the accuracy of existing deep learning methods
- real data-set vs synthetic data-set

- local geometry of the medial atom
- radii and separation angles

yes

similar trends in the results

- to partition a point cloud
- to enrich the SPG's edge information

not useful in the cut-pursuit algorithm

not useful if SPG and MAT are not similar

RESEARCH QUESTIONS & CONCLUSIONS

How can the properties of the 3D medial axis transform be exploited in deep learning algorithms for point cloud semantic segmentation?

Radii, separation angles, spoke vectors and bisector angles can be successfully used as a *point feature* in a *point based* deep learning network

FUTURE WORK & REFLECTIONS

General directions

Automatic computation of the 3D MAT Analysis of different types of datasets

Superpoint graph

Use of 3D MAT adjacencies as SPG Direct use of 3D MAT point cloud

SynthCity

SynthCity – MAT

