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Article
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Abstract: Although the theory of mixed-integer inference is well developed for GNSS
parameter estimation, such is not yet the case for the validation and monitoring of mixed-
integer GNSS carrier-phase models. It is the goal of this research to contribute to this field
by introducing a class of mixed-integer model (MIM) tests for carrier-phase GNSS. Mem-
bers from this class and their distributional properties are worked out for different model
validation applications relevant to GNSS, such as detection, identification, significance
testing, and integer testing. The power performance of the various tests is character-
ized, thereby showing how they are capable of significantly outperforming the customary
ambiguity-float tests.

Keywords: GNSS; mixed-integer model (MIM) test; integer ambiguity estimation;
ambiguity success rate; generalized Chi-squared distribution; significance test; integer
test; highest-density (HD) test; likelihood-ratio (LR) test; partial ambiguity resolution (PAR)

1. Introduction
GNSS model validation and monitoring constitutes an essential part of any GNSS

data processing scheme [1–3]. Statistical tests are then employed to test for the occurrence
of model misspecifications—e.g., pseudorange outliers, carrier-phase slips, or neglected
atmospheric delays [4–6]—or, in the case of monitoring, to test for the stability of estimated
parameters—for instance, in GNSS time-series for displacement, deformation, or landslide
studies [7–10]. To achieve the highest accuracy in GNSS parameter estimation, carrier-
phase measurements are generally used, as they have a two orders of magnitude better
precision than their pseudorange (code) counterparts [11–13]. However, since the interfero-
metric carrier-phase observables are integer-ambiguous, their GNSS models consist of both
real-valued and integer-valued parameters; therefore, they are of the mixed-integer type.
Although the theory of mixed-integer inference is well developed for GNSS parameter
estimation [1–3], such is not yet the case for the validation and monitoring of the mixed-
integer GNSS carrier-phase models. It is the goal of this study to contribute to this field by
introducing a class of ambiguity-resolved model tests for carrier-phase GNSS.

This contribution is organized as follows. In Section 2, we formulate the to-be-tested
mixed-integer null and alternative hypotheses of carrier-phase GNSS and introduce our
class of mixed-integer model (MIM) tests for their testing. The hypotheses are formulated
in a general form such that they apply to any carrier-phase GNSS system of observation
equations, whether single-epoch or multi-epoch, single-frequency or multi-frequency,
undifferenced, single-differenced or double-differenced, or whether for use with single-
GNSS or multi-GNSS. Our MIM test statistic is a function of the least-squares residuals
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of both null and alternative hypotheses, as well as of their integer admissible ambiguity
estimators. As different forms of the test statistic are useful for different applications, we
provide various useful relationships between these normed residuals.

To obtain a first insight into the expected performance of the MIM test, we consider
two of its limiting cases in Section 3. In the first case, the integerness of the ambiguities
is not taken into account, while in the second case, the integer ambiguities are assumed
to be known. The first is referred to as ambiguity-float (AF), while the second is referred
to as ambiguity-known (AK). In both these limiting cases, the MIM test becomes equal to
a χ2-test with well-known power functions (i.e., functions that provide, for a given false-
alarm probability, the detection probability as a function of the biases). It is shown that for
carrier-phase GNSS, the AK power significantly outperforms the AF power, i.e., when the
ambiguities are assumed known, the carrier-phase observables start to act as very precise
pseudoranges, thereby contributing significantly to the power improvement of the test.
The AK test, however, is not an operational test, since in the case of carrier-phase GNSS,
the ambiguities can never be assumed as known, i.e., despite the fact that the ambiguities
are known to be integers, they still remain unknown.

Although the AK test cannot be used operationally, its large power difference with the
AF test does indicate the great potential of our MIM test, a test that operates in between the
AF and AK tests. This is shown in Section 4, where, for different circumstances, different
forms of the MIM test statistic are presented together with their associated probability
distributions. The MIM test is worked out in Section 4.1 for the case when the null
hypothesis is tested against the most relaxed alternative hypothesis. This case of detection
requires, in contrast to the general MIM test, only integer ambiguity resolution under
the null hypothesis. We also show, when the mixed-integer misclosure vector is used to
formulate a derived simple null hypothesis, how its distribution can be used to formulate
a highest-density (HD) detection test. This test will have similar performance but is
somewhat more difficult to execute. We show an illustrative example in which the power
of the MIM test, although not as good as the AK test, is still significantly better than the
AF test.

In Section 4.2, we discuss the MIM test for the case of identification, i.e., when the
design matrix’ range space of the alternative hypothesis is a strict subspace of the obser-
vation space. In this case, integer ambiguity resolution is required under both the null
and alternative hypotheses. We prove that the test statistic has a generalized Chi-square
distribution if the ambiguity success rate approaches one under the alternative hypothesis.
A further insight into the test is provided by neglecting the ambiguity resolution difference
of the two hypotheses. This results in a significance test for which the distribution of
the test statistic is also given. Again, we also provide the associated HD significance test.
For the cases in which full ambiguity resolution is not sufficient for a significant power
improvement, we show how partial ambiguity resolution under the alternative hypothesis
may drastically improve the power performance.

In Section 4.3, we describe a third important application of the MIM test. This concerns
the case under which the ambiguities of the null hypothesis are assumed integer and those
under the alternative hypothesis as real-valued. This form of the MIM test is of interest for
problems that require integer testing of the ambiguities. Such problems are also of interest
for carrier-phase GNSS, since the stability of instrumental hardware delays may not always
be such that integerness of the carrier-phase ambiguities is guaranteed. In [14,15], for
instance, it is demonstrated that smartphone phase observations may be contaminated
by receiver effects that destroy the integer property of the ambiguities. We describe the
integer test, its associated distributions, and provide an illustrative example of its power
performance. Finally, we provide a summary and conclusions in Section 5.
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The following notation is used throughout. We denote a random variable/vector by
means of an underscore; thus, x is a random variable/vector, while x is not. E(x) and
D(x) stand for the expectation and dispersion of x, respectively, and Np(µ, Q) denotes a p-
dimensional, normally distributed random vector, with mean (expectation) µ and variance
matrix (dispersion) Q. The Best Linear Unbiased Estimator (BLUE) of a parameter vector
x is denoted as x̂ and its admissible integer estimator as x̌. P[A] denotes the probability
of event A, f x̂(x) the probability density function (PDF) of the continuous random vector
x̂, and P[ǎ = z] the probability mass function (PMF) of the integer random vector ǎ. The
noncentral Chi-square distribution with q degrees of freedom and noncentrality parameter
λ is denoted as χ2(q, λ). The range space of a matrix M is denoted as R(M), and Rp

and Zp denote the p-dimensional spaces of real- and integer numbers, respectively. The
Qyy-weighted squared norm is denoted as ||.||2Qyy

= (.)TQ−1
yy (.). The BLUE-inverse of a

full column rank matrix M is denoted as M+ = (MTQ−1
yy M)−1MTQ−1

yy and the orthogonal
projector onto R(M) as PM = MM+. Thus, P⊥

M = I − PM is the orthogonal projector that
projects orthogonally on the orthogonal complement of R(M).

2. The Mixed-Integer GNSS Model
In this section, we describe the hypotheses of carrier-phase GNSS and introduce its

class of mixed-integer model tests.

2.1. The Null and Alternative Hypotheses

The observation equations of the linear(ized) mixed-integer GNSS model are formu-
lated under the null and alternative hypotheses as

H0 : E(y) = Aa + Bb ; a ∈ Zn, b ∈ Rp

Ha : E(y) = Aa + Bb + Cc ; c ∈ Rq (1)

with the observational vector y ∼ Nm(E(y), Qyy) containing the carrier-phase and pseudor-
ange observables; a ∈ Zn the unknown integer carrier-phase ambiguities; and b ∈ Rp the
unknown real-valued parameters, e.g., position coordinates, atmosphere parameters, re-
ceiver and satellite clock parameters, and instrumental biases [1,2,16]. Under Ha, the mean
of y is assumed shifted by Cc, E(y|Ha) = E(y|H0) + Cc. Such shifts allow one to model
various important GNSS model misspecifications or biases in c. For instance, through the
choice of C in Cc, one may model the presence of one or more outliers in the pseudorange
data, cycle-slips in the phase data, the presence of neglected atmospheric effects, or in fact
any other systematic effect that one failed to take into account under H0. Various such
examples are given in the GNSS Handbooks [2,3].

2.2. The AF and AK Residual Vectors

Residual vectors are generally instrumental in formulating proper test statistics for
the testing of a null hypothesis against an alternative hypothesis. In our case of the mixed-
integer models of (1), different such residual vectors need to be considered. These are the
ambiguity-float (AF) and ambiguity-known (AK) residual vectors of both H0 and Ha. They
are defined as

AF :

{
ê0 = P⊥

[A,B]y

êa = P⊥
[A,B,C]y

(2)

and

AK :

{
ê0(a) = P⊥

B (y − Aa)
êa(a) = P⊥

[B,C](y − Aa)
(3)
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The least-squares residual vectors ê0 and êa capture the data-model inconsistency of H0

and Ha in case the ambiguity vector is estimated as an unknown real-valued vector, under
H0 and Ha, respectively. Their counterparts, ê0(a) and êa(a), do the same; but now, for the
case, the ambiguity vectors are assumed known. Note that the AK residuals reduce to their
AF counterparts if the ambiguity vector is taken as ambiguity-BLUE. Thus, ê0 = ê0(â0)

and êa = êa(â), with â0 = Ā+y and â = ¯̄A+y being the BLUEs of a under H0 and Ha,
respectively, where Ā = P⊥

B A and ¯̄A = P⊥
[B,C]A.

Various important relations can be established between these residuals. The
ones directly relevant for our mixed-integer test statistic are summarized in the
following Lemma.

Lemma 1 (Differences normed residuals). Let ĉ and ĉ(a) denote the AF-BLUE and AK-BLUE
of the bias vector c under Ha, and let â0 and â be the BLUEs of a under H0 and Ha, respectively.
Then, we can express the differences of the Qyy-weighted squared norms of the residual vectors in ĉ,
ĉ(a), â0, and â as

(i) ||ê0||2Qyy
− ||êa||2Qyy

= ||ĉ||2Qĉĉ

(ii) ||ê0(a)||2Qyy
− ||êa(a)||2Qyy

= ||ĉ(a)||2Qĉ(a)ĉ(a)

(iii) ||ê0(a)||2Qyy
− ||ê0||2Qyy

= ||ϵ̂0(a)||2Qâ0 â0

(iv) ||êa(a)||2Qyy
− ||êa||2Qyy

= ||ϵ̂a(a)||2Qââ

with ambiguity residuals ϵ̂0(a) = â0 − a and ϵ̂a(a) = â − a.

Proof. See Appendix A.

Note that the first two relations of the Lemma, (i) and (ii), establish the link between the
H0-Ha change in normed residuals, on the one hand, and the estimated bias vector, either
in AF form or AK form, on the other hand. Therefore, the significance of the estimated
bias vectors can be considered a measure of the discrepancy between the two hypotheses.
The last two relations of the Lemma establish the link of the AF–AK change in the normed
residuals, on the one hand, and the difference between the estimated ambiguities and their
assumed values, under H0 and Ha, on the other hand. The AF–AK change in normed
residuals is, therefore, a measure for the truthfulness of the assumed ambiguity values.

2.3. The Mixed-Integer Model Test

We now introduce our mixed-integer model (MIM) test for testing the hypotheses
of (1). Its statistic is designed to measure the H0-Ha change in model fit, while at the same
time doing justice to the integer estimation of the ambiguities under both hypotheses.

Definition 1 (Mixed-Integer Model (MIM) Test). Let the change in H0-Ha model fit be
captured by the statistic

T(a0, a) = ||ê0(a0)||2Qyy
− ||êa(a)||2Qyy

(4)

and let ǎ0 and ǎ be admissible integer estimators of a ∈ Zn under H0 and Ha (cf. (1)), respectively.
Then, the α-level MIM test for rejecting H0 in favor of Ha is defined as

T(ǎ0, ǎ) > τα (5)

with the critical value τα satisfying P[T(ǎ0, ǎ) > τα | H0] = α.

Note that this MIM test requires the integer estimation of the ambiguities under both
hypotheses, H0 and Ha. However, the user still has the freedom in choosing which member
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from the class of admissible integer estimators to select. An integer estimator ǎ = I(â), with
I : Rn 7→ Zn, is said to be admissible when its pull-in regions Pz = {x ∈ Rn | I(x) = z},
z ∈ Zn, cover Rn, while being disjoint and integer translational invariant [17]. Popular
choices for I(.) are integer rounding (IR), integer bootstrapping (IB), integer least-squares
(ILS), or vectorial combinations (VIB) of them. The above MIM test becomes equivalent
to the LR test if both ǎ0 and ǎ are taken as the ILS solutions. ILS is the most complex, but
has the advantage of providing the largest possible ambiguity success rate, i.e., the largest
probability of correct integer estimation. IR and IB are both simple to execute, whereby IB,
especially after ambiguity decorrelation, often obtains a close-to-optimal ambiguity success
rate. The freedom in choice of integer estimator implies that the integer estimator choice for
H0 need not be the same as the one for Ha. For example, the ILS principle may be chosen
to obtain ǎ from â, while the IB principle is chosen to obtain ǎ0 from â0. Therefore, such
choices should be taken in dependence of the required success rates.

3. The AF and AK Tests
To obtain insight on the expected performance of the MIM test, we first consider

two of its limiting cases. First, we consider the case when the integerness of the ambiguities
is not taken into account, i.e., the ambiguities are treated as real-valued parameters. This is
referred to as the ambiguity-float (AF) test. Then, we consider the case when the integer
ambiguities are assumed to be completely known. This is referred to as the ambiguity-
known (AK) test. Both tests are LR tests and have the property of being uniformly most
powerful invariant [2]. We start with the AF test.

3.1. The Ambiguity-Float Test

The AF test statistic is obtained from (4) by replacing a0 and a by their BLUEs under
H0 and Ha, respectively. This gives, with the help of Lemma 1,

T(â0, â) = ||ê0||2Qyy
− ||êa||2Qyy

= ||ĉ||2Qĉĉ
(6)

It is distributed under H0 and Ha as

T(â0, â)


H0∼ χ2(q, 0)
Ha∼ χ2(q, λAF)

(7)

with noncentrality parameter λAF = ||c||2Qĉĉ
.

A special case occurs when, under the alternative hypothesis, the mean of y is allowed
to vary freely over the whole of Rm, i.e., when R(A, B, C) = Rm. Then, êa ≡ 0 and (6)
reduces to

T(â0, â) = ||ê0||2Qyy
(8)

This is the test statistic that is used for AF detection, i.e., for testing the ambiguity-float null
hypothesis against the most relaxed alternative hypothesis.

3.2. The Ambiguity-Known Test

The AK test statistic is obtained from (4) by setting a0 = a and assuming a as known.
This gives, with the help of Lemma 1,

T(a, a) = ||ê0(a)||2Qyy
− ||êa(a)||2Qyy

= ||ĉ(a)||2Qĉĉ
(9)
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It is distributed under H0 and Ha as

T(â0, â)


H0∼ χ2(q, 0)
Ha∼ χ2(q, λAK)

(10)

with noncentrality parameter λAK = ||c||2Qĉ(a)ĉ(a)
.

Again, a special case occurs when, under the alternative hypothesis, the mean of y is
allowed to vary freely over the whole of Rm while a is known, i.e., when R(B, C) = Rm.
Then, êa(a) ≡ 0 and (6) reduces, with the help of Lemma 1, to

T(a, a) = ||ê0(a)||2Qyy
= ||ê0||2Qyy

+ ||ϵ̂0(a)||2Qâ0 â0
(11)

This is the test statistic that is used for AK detection, i.e., for testing the ambiguity-known
null hypothesis against the most relaxed ambiguity-known alternative hypothesis.

Note that both detectors, (8) and (11), are expressed in the singular residual vector
ê0. A useful alternative expression follows if one makes use of H0’s misclosure vector,
which has a nonsingular distribution. The misclosure vector is defined as t0 = DTy, with

D ∈ Rm×(m−n−p) being a basis matrix of the null space of [A, B]T , i.e., DT [A, B] = 0. Then,

t Ha∼ Nm−n−p(Ct0 c, Qt0t0), with Ct0 = DTC and Qt0t0 = DTQyyD. From expressing ê0 in t0
as ê0 = QyyD(DTQyyD)−1t0, it follows that

||ê0||2Qyy
= ||t0||2Qt0t0

(12)

In order to compare the performance of the AF and AK tests, we compare their power.
Since the estimator ĉ(a) is more precise than ĉ, we have Qĉ(a)ĉ(a) ≤ Qĉĉ and, therefore,
λAK ≥ λAF. This shows that the power of the AK test will never be smaller than that of
the AF test, i.e., P[T(a, a) > τα|Ha] ≥ P[T(â0, â) > τα|Ha]. As an example application, we
consider the presence testing of a differential tropospheric zenith delay based on a single-
epoch, single-frequency, double-differenced (DD) GPS model. Figure 1 shows the power
functions of the two tests, thereby illustrating the significant improvement in power that
can be achieved with carrier-phase GNSS once all n = 7 double-differenced ambiguities
are known.

Figure 1. Tropospheric AK and AF power function curves, computed using their noncentral Chi-
square CDF. Left: single-epoch GPS skyplot; Right: single-epoch, L1 GPS, α = 0.05, ambiguity-float
(AF) and ambiguity-known (AK) power function curves for tropospheric zenith delay testing.

4. The Ambiguity-Resolved Tests
The previous example has shown that there can be quite a difference in performance

between the AK and AF tests in the case of carrier-phase GNSS. This is of course due to the
very high precision of the GNSS carrier-phase observables—a precision that really becomes
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exploited once the ambiguities are known. However, the problem is that, strictly speaking,
the AK test cannot be applied in the case of GNSS. Although the ambiguities are known to
be integer, they are still unknown. Hence, the best one can do is to estimate the ambiguities
as integers and formulate the proper test statistic by taking the uncertainty of the integer
estimators into account. For sufficiently high ambiguity success rates, i.e., probabilities of
correct integer estimation, one can then generally expect the performance of the MIM test
to be better than the AF test and approaching that of the corresponding AK test. We now
consider different versions of the MIM test. We start with the case of detection.

4.1. AR Detection

If R(A, B, C) = Rm , then êa(a) ≡ 0, from which it follows that the statistic (4)
becomes dependent only on the H0-estimators. The AR detector reads, therefore, with
ϵ̌0 = ϵ̂0(ǎ0) = â0 − ǎ0,

T(ǎ0, •) = ||ê0(ǎ0)||2Qyy

= ||ê0||2Qyy
+ ||ϵ̌0||2Qâ0 â0

= ||t0||2Qt0t0
+ ||ϵ̌0||2Qâ0 â0

(13)

Thus, for detection, only integer ambiguity estimation under H0 is required. Also, note
that t0 and ϵ̌0, being the input to T(ǎ0, •), are independent. The PDF of the mixed-integer
misclosure vector [tT

0 , ϵ̌T
0 ]

T follows then as

ft0,ϵ̌0(t, ϵ) = ft0(t) fϵ̌0(ϵ) (14)

with, under Ha,
t0 ∼ Nm−n−p(Ct0 c, Qt0t0), Ct0 = DTC
â0 ∼ Nn(a + Ca0 c, Qâ0 â0), Ca0 = Ā+C
ϵ̌0 ∼ ∑z∈Zn f â0(ϵ + z)s0(ϵ)

(15)

in which f â0(x) is the PDF of â0 and s0(ϵ) is the indicator function of the pull-in region of
the integer estimator ǎ0. The PDF of the integer ambiguity residual ϵ̌0 was already given
in [18], Equation (19). Figure 2 (Left) illustrates stepwise (in blue) how it is obtained from
f â0(x) in the one-dimensional case. The PDF of â0 (top left) is shown along the x-axis, the
PMF of ǎ0 (top right) along the z-axis, and the joint PDF f â,ǎ(x, z) (top middle) is shown
in the xz-plane. This joint PDF consists of slices of f â0(x) translated along the z-axis to the
corresponding integers z. The joint PDF of ϵ̌0 = â0 − ǎ0 and ǎ0 (bottom left) follows from
translating the slices along the x-axis so that they are all centered at the mean value: x = 0
in this case. The PDF of ϵ̌0 (bottom right) is then finally obtained by summing over z, i.e.,
all slices are again translated along the z-axis to the origin. Figure 2 (Right) shows how the
shape of the PDF of the ambiguity residual f ě0(x) changes with the ambiguity standard
deviation and how, under these changes, it compares with the ambiguity-float PDF f â0(x).
It shows that the difference between the two distributions becomes lower the smaller the
standard deviation gets.

We remark that under H0 (cf. (1)), we have E(t0) = 0 and E(ϵ̌) = 0. When this derived
simple null hypothesis is used as the starting point, one can directly make use of (14) to
formulate the highest-density (HD) test as an alternative: reject H0 if ft0,ϵ̌0(t, ϵ|H0) < λα. It
is also an LR-ratio test for testing H′

0 : E(t0) = 0,E(ϵ̌) = 0 against H′
a : E(t0) ̸= 0,E(ϵ̌) ̸= 0.

As shown in [18], p. 1124, the HD-formulation does justice to the multimodality of the PDF,
while providing an acceptance region with the most concentrated probability. This HD test
will, however, due to its infinite sum, be more difficult to execute than the one based on the
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quadratic form (13); at the same time, due to the commonly high ambiguity success rate
carrier-GNSS usages, its performance will be similar to that of (13).

Figure 2. PDF ambiguity residual: (Left) Stepwise construction (in blue) of fϵ̌0 (x) from f â0 (x)
(cf. (15)); (Right) PDF comparison between fϵ̌0 (x) (left) and f â0 (x) (right) for four different values of
the standard deviation σ.

To illustrate the difference in power between the AF and AK detectors, on the one
hand, and the operational AR detector (13), on the other hand, we consider as an example
application their detection power in the presence of a zenith tropospheric delay bias. As
with the other AR test statistics, the power of the AR detector is computed using the
Monte Carlo simulation approach of [19]. Figure 3 shows the detection power of the three
detectors for a single-frequency, single-epoch, dual constellation (GPS and Galileo), using a
mass-market receiver with relatively poor undifferenced pseudorange standard deviation
σp = 50 cm. The results show that the AR detector is not as good as the AK detector would
be (as the H0 success rate is only 92%), but that it is significantly better than the AF detector.

Figure 3. Tropospheric zenith delay detection power of AR detector (13) compared with that of the
AF and AK detectors (7) and (10), for a single-frequency, single-epoch, dual constellation (GPS and
Galileo), with undifferenced pseudorange standard deviation σp = 50 cm.
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4.2. AR Identification

In case R(A, B, C) is a strict subspace of Rm, then êa(a) also contributes to the statistic (4),
thus implying that integer ambiguity estimation under both H0 and Ha is required. We
then have, with the help of Lemma 1 and the short-hand notation ϵ̌0 = ϵ̂0(ǎ0) = â0 − ǎ0
and ϵ̌a = ϵ̂a(ǎ) = â − ǎ, the following representation for the test statistic:

T(ǎ0, ǎ) = ||ĉ||2Qĉĉ
+ ||ϵ̌0||2Qâ0 â0

− ||ϵ̌a||2Qââ
(16)

Comparison with the AF statistic T(â0, â) (cf. (6)) shows that now, next to the differ-
ence ||ĉ||2Qĉĉ

= ||ê0||2Qyy
− ||êa||2Qyy

, the ambiguity-resolution based difference ||ϵ̌0||2Qâ0 â0
−

||ϵ̌a||2Qââ
is present. It is this added difference, diagnosing the impact of ambiguity reso-

lution under H0 and Ha, that can be expected to improve the power-performance over
that of the AF test. To understand what the best possible performance of the test would
be, we determine the PDF of (16) for the limiting case that the ambiguity success rate of
ǎ goes to one, P[ǎ = a] ↑ 1. The following Theorem shows that the limiting distribution
is a generalized Chi-squared distribution, i.e., the distribution of the sum of two indepen-
dent random variables of which the first is Chi-squared distributed and the second is
normally distributed.

Theorem 1 (Limit distribution of T(ǎ0, ǎ)). Let E(ǎ|Ha) = a and E(ǎ0|Ha) = a0. Then,
with the ambiguity success rate under Ha approaching one, the limiting distribution of the test
statistic T(ǎ0, ǎ) is a generalized Chi-squared distribution, given as

lim
P[ǎ=a]↑1

T(ǎ0, ǎ)


H0∼ χ2(q, 0)
Ha∼ χ2(q, λ) +N (µ, 4µ2)

with noncentrality parameter λ = ||c+ C̄+A(a− a0)||2Qĉ(a)ĉ(a)
and normal mean µ = ||a− a0||2Qââ

.

Proof. See Appendix A.

This result shows that the limiting distribution of (16) is equal to that of the AK test
statistic (10), under H0 and Ha, in case a = a0. The distributions differ, however, under
Ha when a ̸= a0. Thus, it is the possible bias in ǎ0 under the alternative hypothesis,
i.e., E(ǎ0|Ha) ̸= a, that drives the difference between the two distributions. A further
insight into the behavior of the test is obtained when the difference between ǎ0 and ǎ is
neglected. Using the representation T(ǎ0, ǎ) = ||ĉ(ǎ)||2 + ||â0 − ǎ0||2Qâ0 â0

− ||â0 − ǎ||2Qâ0 â0
and neglecting the difference between ǎ0 and ǎ, we obtain

T(ǎ, ǎ) = ||ĉ(ǎ)||2Qĉ(a)ĉ(a)
(17)

Note that this statistic also follows directly from the AK test statistic when a in (9) is re-
placed by the integer estimator ǎ. Therefore, it can be seen as a direct ambiguity-resolved
generalization of the AK test, having the advantage that now only the integer estimation
under Ha needs to be performed. The PDF of č = ĉ(ǎ) was already given in [20], Equa-
tion (36), as f č(x) = ∑z∈Zn f ĉ(z)(x)P[ǎ = z], with ĉ(z) ∼ Nq(c + C̄+A(a − z), Qĉ(a)ĉ(a)).
This result can be used to determine the PDF of (17).

Lemma 2 (Distribution of T(ǎ, ǎ)). The PDF of the test statistic (17) is given as

fT(ǎ,ǎ)(x) = ∑
z∈Zq

fχ2(q,λz)
(x)P[ǎ = z] (18)
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with noncentrality parameter λz = ||c + C̄+A(a − z)||2Qĉ(a)ĉ(a)
.

Proof. See Appendix A.

Note that if the ambiguity success rate goes to one, P[ǎ = z] ↑ 1, the PDF (18) indeed
converges to that of the AK test (9). Also note that, as before, we could have used the
PDF of č = ĉ(ǎ) directly, by means of the HD test: reject H0 if f č(x) < µα, to test for the
significance of the bias c. Such a test was proposed for outlier testing in [18]. However, as
mentioned earlier, such would require dealing with the infinite sum for each individual
execution of the test, while at the same time, its GNSS performance will generally be similar
to that of (17). Furthermore, for the test statistic T(ǎ, ǎ), we have its exact distribution
available (cf. (18)). The fact that it also consists of an infinite sum is not an issue, since its
usage for critical value and power computations can usually be performed off-line at the
designing stage, see [19].

Although the ambiguity success rates are not required to be as large as needed for
ambiguity-fixed GNSS baseline estimation [1], it is clear from the above considerations that
they still play a driving role in the performance of the ambiguity-resolved tests. Since it
may happen that full ambiguity success rates become drastically reduced when switching
from H0 to Ha, particularly when the dimension of c increases, partial ambiguity resolution
(PAR) is a strategy to keep the reduction in ambiguity success rate at bay. This is illustrated
for ionospheric testing in the example of Figure 4. It shows how PAR can obtain large Ha

success rates, thus enabling the conditions of Theorem 1, thereby significantly improving
the power compared to that of AF testing.

Figure 4. PAR ionospheric power function compared with AK and AF counterparts for single-epoch,
triple-frequency Galileo model with undifferenced pseudorange standard deviation σp = 20 cm. PAR
allowed the Ha ambiguity success rate to increase from 38.4% to 99.6%.

4.3. AR Integer Testing

The distribution of Theorem 1 considers the case when the integer ambiguity success
rate under Ha approaches one, i.e., the case when the integer estimated ambiguity may
be considered as known. We now consider the other extreme and assume the ambiguity
vector under Ha to be an unknown real-valued parameter instead of integer-valued. The
test statistic relevant for this case follows if instead of ǎ, the ambiguity-float estimator â is
used. We obtain, instead of (16), the test statistic
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T(ǎ0, â) = ||ĉ||2Qĉĉ
+ ||ϵ̌0||2Qâ0 â0

(19)

As ĉ and ϵ̌0 are independent, the PDF of the input [ĉT , ϵ̌T
0 ]

T follows, similarly to (14),
as f ĉ,ϵ̌0(γ, ϵ) = f ĉ(γ) fϵ̌0(ϵ), with ĉ ∼ Nq(c, Qĉĉ). With a assumed as real-valued un-
der Ha, a ∈ Rn, but integer-valued under H0, a ∈ Zn, the statistic (19) is the test
statistic to use for integer testing of the ambiguities. When c = 0, it simplifies to
T(ǎ0, â) = ||ϵ̌0||2Qâ0 â0

= ||â0 − ǎ0||2Qâ0 â0
.

Being able to statistically test for the integerness of estimable ambiguities is important
when linking GNSS models. Dependent on how different GNSS systems are combined
or on how well receiver hardware delays can be calibrated, real-valued biases may be-
come lumped with the carrier-phase ambiguities, thereby removing the integerness of
the estimable ambiguities. For instance, when signals of different systems are integrated,
inter-system biases in both the carrier-phase and code data may occur [21,22]. Also, in the
case of low-cost, mass-market GNSS receivers, the stability of the hardware delays may not
be such that integerness of the carrier-phase ambiguities is guaranteed. For instance, it is
demonstrated in [14,15] that smartphone phase observations may indeed be contaminated
by receiver effects that destroy the integer property of the ambiguities. Therefore, being
able to statistically test for such occurrences becomes important. This is also true in case of
opportunistic PNT when one tries to use carrier-phase signals from terrestrial transmitters
or LEO communication satellites for precise positioning [23,24].

As an example illustration, we consider the single-epoch, dual-frequency, two-satellite
GNSS geometry-free model [1]. The ambiguity bias vector under Ha, propagated
into the ambiguity residual ϵ̌0 = â0 − ǎ0, is denoted as δ = [δ1, δ2]

T . This bias
vector is, like the ambiguity residual ϵ̌0, confined to the origin-centered pull-in re-
gion of the integer ambiguity estimator. Hence, the domain of the power function
F(δ) = P[||â0 − ǎ0||2Qâ0 â0

> τα|Ha] is confined to this pull-in region as well, which, in
case of ILS estimation, is a hexagon. Figure 5 shows, for when ǎ0 is chosen as the ILS
estimator, the contour aligns with the color bar of the power function F(δ). It clearly shows
how the power increases as the ambiguity bias vector moves away from the origin towards
the edges of the ILS pull-in region.

Figure 5. Contour plot with color bar of the integer testing power function F(δ) = P[||â0 − ǎ0||2Qâ0 â0
>

τα|Ha] (α = 0.05) for a single-epoch, dual-frequency, GNSS geometry-free model. The horizontal and
vertical axes are expressed in cycles.
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5. Summary and Conclusions
In this contribution, we introduced a class of mixed-integer model (MIM) tests for

carrier-phase GNSS and studied its characteristics. As a first indication of its significant
power potential, we compared the power performance of two of its limiting forms, the
ambiguity-float (AF) test and the ambiguity-known (AK) test. It was shown that for carrier-
phase GNSS, the AK test significantly outperforms the AF test. The AK test, however, is
not an operational test, since for carrier-phase GNSS, the ambiguities can never be assumed
known. Therefore, its best operational alternative is the MIM test for which, for different
circumstances, different forms were presented, see Table 1. The relevant probability dis-
tributions were also provided, including the highest-density versions of the testing. For
the case when the null hypothesis is tested against the most relaxed alternative hypothesis,
the MIM test provides ambiguity-resolved detection, while identification is enabled in
case the design matrix’ range space of the alternative hypothesis is a strict subspace of the
observation space. As a special case of the latter, we also described the significance test,
which—in contrast to the general MIM test—only requires integer ambiguity resolution
under the alternative hypothesis. As a third field of application, we described how the MIM
test specializes to integer testing. Such testing is relevant for carrier-phase GNSS models in
which the integerness of ambiguities, or the lack thereof, needs verification—for instance,
due to suspected stability issues in its instrumental hardware delays. Several illustrative
examples of the MIM test performance were given, demonstrating its improved power over
that of the ambiguity-float test. Noteworthy is hereby that such improvements generally
do not need the same high ambiguity success rates as required for ambiguity-resolved
parameter estimation.

Table 1. Mixed-integer model (MIM) testing: an overview of the AF, AK, and AR test statistics.

Ambiguity-Float (AF) Ambiguity-Known (AK) Ambiguity-Resolved (AR)

Detection
T(â0,•)=||ê0||2Qyy T(a,•)=||ê0||2Qyy+||ϵ̂0(a)||2Qâ0 â0

T(ǎ0,•)=||ê0||2Qyy+||ϵ̂0(ǎ0)||2Qâ0 â0
R(A,B,C)=Rm R(B,C)=Rm R(A,B,C)=Rm

Identification
T(â0,â)=||ĉ||2Qĉĉ

T(a,a)=||ĉ(a)||2Qĉ(a)ĉ(a)
T(ǎ0,ǎ)=||ĉ(ǎ)||2Qĉ(a)ĉ(a)

+

||ϵ̂0(ǎ0)||2Qâ0 â0
−||ϵ̂0(ǎ)||2Qâ0 â0

Integer Testing T(ǎ0,â)=||ĉ||2Qĉĉ
+||ϵ̂0(ǎ0)||2Qâ0 â0
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Appendix A
Proof of Lemma 1 (Differences normed residuals). Using the projector product for-
mula, P⊥

[A,B,C,] = P⊥
¯̄C

P⊥
[A,B] , with ¯̄C = P⊥

[A,B]C, we may express the Ha-residual vector

êa = P⊥
[A,B,C,]y in the H0-residual vector ê0 = P⊥

[A,B]y as êa = P⊥
¯̄C

ê0. This, together with
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P ¯̄C = ¯̄C ¯̄C+ and the AF-BLUE of c expressed as ĉ = ¯̄C+y = ¯̄C+ ê0, having the variance matrix
Qĉĉ = ( ¯̄CTQ−1

yy
¯̄C)−1, allows us to write

||ê0||2Qyy
= ||P⊥

¯̄C
ê0||2Qyy

+ ||P ¯̄C ê0||2Qyy

= ||êa||2Qyy
+ || ¯̄C ¯̄C+ ê0||2Qyy

= ||êa||2Qyy
+ ||ĉ||2Qĉĉ

which proves Lemma 1(i). The resulting Lemma 1(ii), in which ĉ(a) is the AK-BLUE of c,
is proven in a similar way. To prove Lemma 1(iii), we use the projector product formula
P⊥
[A,B] = P⊥

Ā P⊥
B , with Ā = P⊥

B A, to express the AF residual vector ê0 = P⊥
[A,B](y − Aa) in the

AK residual vector ê0(a) = P⊥
B (y − Aa) as ê0 = P⊥

Ā ê0(a). This, together with PĀ = ĀĀ+,
â0 − a = Ā+(y − Aa0), and Qâ0 â0 = (ĀTQ−1

yy Ā)−1, allows us to write

||ê0(a)||2Qyy
= ||P⊥

Ā ê0||2Qyy
+ ||PĀ ê0(a)||2Qyy

= ||ê0||2Qyy
+ ||ĀĀ+(y − Aa)||2Qyy

= ||ê0||2Qyy
+ ||â0 − a||2Qâ0 â0

which proves Lemma 1(iii). The resulting Lemma 1(iv) is proven in a similar way.

Proof of Theorem 1 (Limit distribution of T(ǎ0, ǎ)). As â and â0 are both unbiased esti-
mators under H0, we have, since—Qââ ≥ Qâ0 â0—that under H0, ǎ → a and ǎ0 → a, when
P[ǎ = a] → 1. This changes under Ha, since â0 will then have become a biased estimator
of a, E(â0|Ha) = a + Ā+Cc ̸= a. Thus, under Ha, we have ǎ → a and ǎ0 → a0 ̸= a, when
P[ǎ = a] → 1. Therefore, we have lim

P[ǎ=a]↑1
T(ǎ0, ǎ) = T(a0, a). To determine the distribution

of the latter, we make use of its representation

T(a0, a) = ||ĉ(a0)||2Qĉ(a)ĉ(a)
+ n(a0, a)

n(a0, a) = ||â − a0||2Qââ
− ||â − a||2Qââ

(A1)

thereby recognizing that n(a0, a) is independent of ||ĉ(a0)||2Qĉ(a)ĉ(a)
, since â is independent

of ĉ(a0). We now determine the distributions of ||ĉ(a0)||2Qĉ(a)ĉ(a)
and n(a0, a) separately.

Since ĉ(a0) = C̄+(y − Aa0), we have C̄ĉ(a0) = PC̄(y − Aa0) and, therefore,
||ĉ(a0)||2Qĉ(a)ĉ(a)

= ||PC̄(y − Aa0)||2Qyy
. Hence,

||ĉ(a0)||2Qĉ(a)ĉ(a)


Ha∼ χ2(q, λ)
H0∼ χ2(q, 0)

(A2)

with noncentrality parameter λ = ||C̄c + PC̄ A(a − a0)||2Qyy
= ||c + C̄+A(a − a0)||2Qĉ(a)ĉ(a)

.

For n(a0, a), we may write n(a0, a) = ||(â − a) + (a − a0)||2Qââ
− ||â − a||2Qââ

=

2(a − a0)
TQ−1

ââ (â − 1
2 (a + a0)), thus showing that n(a0, a) is a linear function of a nor-

mally distributed random vector and, therefore, is normally distributed itself. Furthermore,
it is identically zero if a = a0. Hence, it follows that

n(a0, a)


Ha∼ N (µ, 4µ2)
H0= 0

(A3)

with µ = ||a − a0||2Qââ
. Combining (A2) and (A3) proves the result of Theorem 1.
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Proof of Lemma 2 (Distribution of T(ǎ, ǎ)). As ||ĉ(z)||2Qĉ(a)ĉ(a)

Ha∼ χ2(q, λz), and ĉ(z) and
â are independent, we have for any Ω ⊂ Rq,

P[T ∈ Ω] = P[||ĉ(ǎ)||2Qĉ(a)ĉ(a)
∈ Ω]

= ∑
z∈Zn

P[||ĉ(z)||2Qĉ(a)ĉ(a)
∈ Ω, ǎ = z]

= ∑
z∈Zn

P[||ĉ(z)||2Qĉ(a)ĉ(a)
∈ Ω]P[ǎ = z]

= ∑
z∈Zn

P[χ2(q, λz) ∈ Ω]P[ǎ = z]

from which the result follows.
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