
Hadoop in the browser
Simulating MapReduce in the
browser

H. Bilen & M. Zwart

Te
ch
ni
sc
he
U
ni
ve
rs
ite
it
D
el
ft

Hadoop in the browser
Simulating MapReduce in the browser

by

H. Bilen & M. Zwart

in partial fulfillment of the requirements for the degree of

Bachelor of Science
in Computer Science

at the Delft University of Technology,

Supervisor: dr. T. Abeel
Client: dr. C. Hauff
Bachelor coordinator: O. Visser

Preface

This report details the development and research done during the ’Hadoop in the browser’ project for
the course: TI3806 Bachelorproject. It was commissioned by Assistant Professor Claudia Hauff from
the Web Information Systems group (WIS) at the faculty of Electrical Engineering, Mathematics and
Computer Science (EEMCS) at the Delft University of Technology.
The report documents the 10 weeks that were spent researching the most optimal solution and the
development of this solution, Trifle. Trifle is a web based platform for practicing with toy MapReduce
problems to improve the quality of teaching in the Big Data Processing course in the Computer Science
curriculum. It allows for dynamic lectures, has high accessibility and user testing indicated that it in
fact does improve the understanding of MapReduce. The goal of the report is to show the reader how
the application works from both a student and lecturer perspective, which design choices were made
and how we recommend the system to be deployed.
We would like to thank dr. Thomas Abeel for his regular and constructive feedback on our report, dr.
Claudia Hauff for offering us this unique opportunity and attending our user test session. Lastly special
thanks go out to our user test group who offered their time to help us test the platform and get some
valuable feedback from them.

H. Bilen & M. Zwart
Delft, June 2016

iii

Abstract

With the current increase of user generated data, the need for tools to process large quantities of data
is increasing. One of the courses of the Computer Science BSc curriculum is the Big Data Processing
course. The Big Data Processing course teaches students ways of doing so. A popular and teached
method is using MapReduce, a programming model to process large quantities of data.

Big Data Processing students currently write their implementations for MapReduce related assign-
ments of the lab in the Cloudera Virtual Machine (VM). This VM is slow, cannot be used interactively
and it cannot be used to teach all MapReduce principles like memory separation.

Since there are no existing solutions that solves these problems we have decided to write our
own. Writing our own solution required diverse knowledge including but not limited to JavaScript,
ECMAScript 6, WebWorkers, HTML5 (&CSS), PHP, MySQL, API development, Wordpress, Linux, QUnit
and Selenium. Our solution, Trifle, overcomes previously mentioned and other shortcomings. Trifle is
a web-based solution that simulates MapReduce within the browser. The framework uses JavaScript
together with WebWorkers and our front-end is written using Wordpress. By simulating MapReduce
within the browser we managed to create a solution that requires no cluster, is easy to use, works multi-
platform and most importantly enables lecturers to teach some MapReduce principles that could not
be taught before. Furthermore, we integrated a submissions system that can be used to do interactive
lectures in which the lecturer can see problems in real-time and explain obstacles. A user test we have
done verifies that Trifle helps to better grasp the idea behind MapReduce.

v

Contents

1 Context 1
1.1 About the Big Data Processing course . 1
1.2 MapReduce . 1
1.3 Hadoop . 2
1.4 Current MapReduce teaching methods . 2

2 Problem definition 3
2.1 Shortcomings Cloudera VM. 3
2.2 Effective teaching model. 3
2.3 Requirements . 4
2.4 State of the art . 5

2.4.1 Website with backend that runs Hadoop jobs 5
2.4.2 Multi VM approach. 5
2.4.3 P2P VM approach . 5
2.4.4 Client-side simulation . 6

2.5 Choice motivation . 8

3 Technical choices & Implementation 9
3.1 Solution specific MoSCoW overview . 9
3.2 Use cases . 9
3.3 High level system design . 10

3.3.1 Server . 10
3.3.2 Browser (Lecturer) . 10
3.3.3 Browser (Student) . 11
3.3.4 MapReduce framework . 11
3.3.5 Custom MapReduce framework . 12

3.4 Implementation . 14
3.5 Software methodology . 14

4 Research & results 15
4.1 Benchmarks. 15

4.1.1 Setup . 15
4.1.2 Benchmarked use cases. 15
4.1.3 Graphical results . 15

4.2 User test . 20
4.2.1 General results . 20
4.2.2 Questionnaire results . 20
4.2.3 Suggestions from participants . 25
4.2.4 Remarks client . 25

5 Discussion 27
5.1 The resulting implementation . 27

5.1.1 Recommendations based on benchmarks . 27
5.1.2 Feedback from testers . 28

5.2 Recommendations for the BDP course . 28
5.3 Future work . 28

vii

viii Contents

A Defined custom fields 29

B Use cases code examples 31
B.1 Use case 1 . 31
B.2 Use case 2 . 32
B.3 Use case 3 . 32
B.4 Use case 4 . 33
B.5 Use case 5 . 34
B.6 Use case 6 . 35
B.7 Use case 7 . 36
B.8 Use case 8 . 37
B.9 Use case 9 . 38
B.10Use case 10 . 39

C Implementation 41
C.1 MapReduce Framework . 41

C.1.1 Languages . 41
C.1.2 Components. 41
C.1.3 Data flow. 43
C.1.4 Simulating the required scenarios. 43

C.2 Student testing framework . 43
C.3 Front-end . 44

C.3.1 Design . 44
C.3.2 Ace . 45
C.3.3 Bootstrap . 45
C.3.4 jQuery . 47

C.4 Back-end. 47
C.4.1 Wordpress theme ’Trifle’. 47
C.4.2 Wordpress plugins . 48
C.4.3 Custom Database Tables . 48
C.4.4 Anonymous login . 49

C.5 Testing . 49

D Using the system 51
D.1 Installing the website . 51
D.2 Using Wordpress . 51

D.2.1 Page hierarchy . 51
D.2.2 Setting up the first pages . 51

D.3 Using the website. 55

E Project description 57

F Raw benchmark results 59

G User test questionnaire 65

H Infosheet 71

I SIG Feedback 73
I.1 SIG Feedback on code quality . 73
I.2 Taking advantage of the SIG Feedback . 73

Bibliography 75

1
Context

This section provides context relevant to our research. We give an introduction to the Big Data Pro-
cessing course (BDP) and its main teaching goals. Furthermore, we give an overview of tools currently
used to teach the MapReduce paradigm.

1.1. About the Big Data Processing course
The course focuses on teaching the students the principles of processing Big Data and discovering
patterns in the (semi) unstructured data. The goals of this course include: explaining the differ-
ence between OO-programming and functional programming, explaining the major components of the
Hadoop framework, demonstrating the interplay between the different Hadoop components, creating
Hadoop-based algorithms for novel (unseen) practical problems and analyze MapReduce algorithms
for their feasibility in practice [1]. The BDP course introduces methods of processing such as stream-
ing and the MapReduce paradigm. A big part of this course is teaching the students the principles of
MapReduce in the Hadoop framework [1, 2], which we elaborate on in the next subsection.

1.2. MapReduce
MapReduce is a programming model developed by Google that provides a simple API for the distributed
processing of massive amounts of data in a cluster [3]. MapReduce handles the distribution of the
data that needs to be processed so the developers can focus on the processing of the data. This
way the same code can run on a single machine or a cluster consisting of 20,000 machines. For a
simple wordcount of a dataset, just two methods have to be written: map and reduce. The developer
implements a mapper that splits a given dataset into key-value pairs. The MapReduce framework then
splits the tasks such that the values of identical keys are given to a single reducer. The reducers output
the final result back to the framework which in place will write it to the filesystem.

1

2 1. Context

1.3. Hadoop
Hadoop is an open-source implementation of the MapReduce programming model used by many big
corporations for the distributed processing of large datasets in a cluster [4].

We provide a typical wordcount example in the MapReduce model below:

• The framework executes the mapper for each line with the document id as key and line as value.

• The mapper emits each word in the line as key and value 1 (ex. {dog, 1}).

• The MapReduce framework combines the values of each key and distributes the keys over reduc-
ers (one reducer might receive {dog, [1, 1, 1]}).

• The reducer sums up the values of each key and outputs the key together with the sum of the
values (one reducer might output {dog, 3}).

• The output of the framework are file(s) with each word and their frequency (the output of a
reducer might be [{dog, 3}, {cat, 2}]).

1.4. Current MapReduce teaching methods
During the BDP course, the professor explains concepts and gives examples of MapReduce algorithms
of simple problems such as the earlier mentioned WordCount example. Given this knowledge, students
implement more advanced problems in a Cloudera VM that is provided. Cloudera VM is a Virtual Machine
Image based on CentOS that has Hadoop pre-installed. Students of the BDP-course install this VM and
can start writing the required code after a setup (like adding the input files for the lab assignment
to this machine) [5]. After implementation solutions are sent to the teacher. The only way students
are actually interacting with the principles of MapReduce is by working in this provided environment.
However this environment has a few flaws as a learning environment. In the next chapter we will
elaborate on this.

2
Problem definition

Our client, the BDP-course lecturer, would like to have a tool to teach the principles of MapReduce
during a lecture but the only option at hand would be the Cloudera VM that students already use
for the lab assignments. In order to provide her with the most optimal solution we will research the
following questions and subquestions during the pre-implementation fase:

• Can an interactive and easy to use tool help a lecturer teach the principles of MapReduce?

– What are the shortcomings of current course setup?
– What is an effective model for teaching programming paradigms?
– What is the most suitable tool that has these properties and overcomes these shortcomings?

2.1. Shortcomings Cloudera VM
Cloudera VM has several shortcomings that make it unsuitable as a tool to use during lectures. Cloudera
runs Hadoop jobs as a single-node cluster which means that the mapper and reducer get executed
on the same machine. For this reason memory between the mapper and reducer is not separated,
something that is not the case in a real cluster. Bad solutions of students might work in a VM but
would not in a real cluster. It is hard to teach students the principle of separated memory without the
behaviour of a cluster.

Moreover, specifying the number of mappers and reducers is not possible in the VM. This means
the lecturer cannot let students experience the difference between a single-node-cluster and a cluster
with multiple mappers and reducers. Furthermore, Cloudera takes time to download, install, configure
and learn to use. Precious time that could be used for a more in depth look at important aspects of
MapReduce such as separate memory for nodes. Finally, professors are unable to track progress of
implementations written by students in the Cloudera VM, making the VM unsuitable for interactively
teaching students MapReduce during lectures.

2.2. Effective teaching model
Research shows that students involved in an active learning environment understand and remember
the material in a course better and less frequently drop out of a course [6]. Another study shows
that active learning results in up to 72% improved long-term retention of knowledge compared to
passive learning methods [7]. Active learning environments are an effective style of teaching. Research
suggests that active learning is especially effective for Computer Science students who tend to be
visual/intuitive learners [8]. Given the opportunity to interact with the material, students of most
disciplines demonstrate better understanding of the material. Computer Science students especially
demonstrate this improvement as suggested by research [9]. Furthermore, collecting and then grading
assignments is a tedious process that takes away time from teaching. When an online system is used,
these issues could be resolved [10]. These results found in other researches allows us to conclude that
an active teaching environment is the best approach to help students improve their understanding of
MapReduce. A possible active environment is, as our client also suggested, one that allows students

3

4 2. Problem definition

to work on exercises during lectures. Where the lecturer can also gain insights in the solutions of the
students, so he/she can explain topics that students find difficult or have a hard time getting their
heads around.

2.3. Requirements
There is a need for a tool that helps students get a better understanding by having ”activity breaks”
during a lecture. Doing an assignment about the material discussed in the lecture students tend to be
more engaged and thus learn more [11]. The usefulness of the tool would greatly improve if it were
to have a two-way communication and educator-student interaction as these aspects are deemed as
characteristics of effective lectures [12]. Therefore a high accessibility tool that can be used during the
lectures to teach the students the principles of MapReduce would be a suitable solution. The description
of this project can be found in Appendix E.

The solution that we introduce will be used to improve teaching of the BDP course. However the
solution also has certain requirements that it has comply with. There is no access to a real cluster for
the BDP students and for this reason all lab assignments are currently conducted using the Cloudera VM.
Therefore the solution must work without a cluster, just like the VM. A solution is sought that enables
important cluster-like conditions that the VM lacks, like a scalable amount of nodes and separate
runtime memory between nodes. It would enable students to learn how issues like separate runtime
memory influence the way one programs in Hadoop, in addition to teaching students the MapReduce
paradigm in general. Furthermore, it would be desirable to configure the amount of mappers and
reducers dynamically. As implied in this paragraph the goal of this research is not to implement a
simulation that does everything that (real) Hadoop offers but rather offer what the Cloudera VM does
not offer. The goal is to create a tool that complements the current teaching methods and preferably
enable the lecturer to use the tool in-class exercises. In order to create a tool that suits the use-case,
it will be made accessible and interactive. The teacher will be able to see submissions in real-time,
the student must be able to anonymously login and submit solutions. Besides this it should be easy
to configure for each lecture. Finally, it has to work on each popular OS (Windows, OSX and Linux)
and there may be no requirement to install anything besides a modern browser like Firefox or Google
Chrome. Below we include an overview of requirements we will be taking into account while weighing
the possible solutions we could implement in the next section.

Category Requirement

Must have 1. must not depend on a cluster

2. students must be writing code in a language they learned in one of their courses

Should have 3. memory separation of mappers and reducers

4. ability to define amount of mappers/reducers

5. ability to see submisions in real time

6. multi OS support

7. high accessibility

Could have 8. practical unit tests for students (defined by lecturer)

9. memory monitoring/limitation

Won’t have 10. the requirement to install Hadoop or a VM

Table 2.1: Generic MoSCoW overview

2.4. State of the art 5

2.4. State of the art
There are many possible solutions that could be applied to help students grasp the principles of MapRe-
duce faster and better. We will discuss the most promising ideas that we have found or came up with
and argue why we have or have not chosen them as our approach to solve our challenge. For a quick
overview of this section please see Table 2.2 included at the end of this section.

2.4.1. Website with backend that runs Hadoop jobs
One possible path some programming courses take is to offer a web based solution in which jobs are
ran on a (clustered) backend. One of the TU Delft Bachelor Computer Science courses that does this is
’Concepts of Programming Languages’ using WebLab [13]. ”WebLab, an e-learning platform that lets
students write, execute and test Scala programs entirely in their browser” [10] Students are prompted
with a simple web based IDE that they can use to write solutions in. When they press run, the code is
sent to the server where it is compiled and executed. The output of the run is shown to the student.
A similar approach for MapReduce would be practical in a technical sense. ”The proofs of concept
serve as early evidence for the usefulness of web IDEs as a teaching aid and the feasibility executing
advanced editor services in the browser.” [10] The implementations of students would be tested using
real world conditions: a real cluster in combination with Hadoop. Additionally, students don’t have to
install anything and solutions are kept online. However, this solution is impossible without the proper
financial resources. It is given that limited resources are available to the BDP course which would
make the financial aspect a big disadvantage of this solution. An outdated but similar solution has
been created before, called WebMapReduce [14].

2.4.2. Multi VM approach
Another possibility would be to have each student install multiple instances of the Cloudera VM and
cluster these. This way each student will have his/her own ’cluster’ that they can run their MapReduce
problems on. This will solve the shared memory problem and can teach students how the system
behaves when multiple mappers and reducers are present. However this means that if a professor
wants the students to run a job with for instance 10 reducers and 1 mapper, that the student will have
to install 11 instances of the Cloudera VM. Having this many active VMs is a big strain on the machine
of the student, a slightly older laptop might not even be able to deal with this many VMs. It is also very
time consuming to install all these VMs and add them to their simulated cluster. Sadly, this approach
still does not allow dynamic lectures in which the professor gets insights in how the students approach
given problems, simply because the students’ solutions are kept on their local machines. Regardless
of the fact that this would be a very realistic simulation for the students these last three drawbacks are
simply too big from a teaching perspective for this approach to be practical.

2.4.3. P2P VM approach
A very interesting approach would be to incorporate a Peer to Peer (P2P) network into the Cloudera VM
where each student would represent a node in the cluster. Allowing them to use their peers machines
as extra mappers/reducers. This way every student would only have to install one instance of the
Cloudera VM in which we would incorporate the software that sets up the P2P network. Another
advantage is that even though the student only installs 1 VM they can still run very realistic MapReduce
jobs that do not have the shared memory problem and the amount of required mappers of reducers
can be upscaled up to the size of the network. However this approach also has its drawbacks. For
example the amount of mappers/reducers cannot exceed the size of the network. Lets say there is
an example which uses 100 reducers while there are only 30 students present then this cannot be
simulated. If a peer disconnects while another user is waiting for a mapper/reducer that was running
on this peers machine a part of the job will have to be re-run, which causes extra load on the rest of the
cluster. If multiple users are running jobs the machines in the cluster might become overloaded with
jobs, resulting in a very slow cluster causing all students to be unable to continue their work properly.
Another edge case would be if a student does not have an active internet connection or just happens
to be working on his own he still has the same situation as before, in which he has shared memory
between the mapper and reducer and cannot increase the amount of mappers/reducers. Last but not
least it still does not allow for dynamic lectures in which the professor gets insights in how the students
approach given problems, which from a teaching perspective is a major drawback.

6 2. Problem definition

2.4.4. Client-side simulation
Rather than running jobs in Hadoop in a cluster, one could write and use a framework or tool that runs
jobs in a simulated environment possibly with cluster like behaviour. There are multiple ways of doing
this and certainly different programming languages can be used but the solutions can be categorised
into two very different categories: program based and website based.

Program based
A program based solution has to be installed by the student before it can take advantage of it. For exam-
ple a Java Swing based application or a plugin that students should install in their webbrowser. Either
way, this solution might be platform or browser dependent and cannot be used instantly. However,
this is the best performing client-side simulation solution, regarding execution speed and maximum
input size. It would also allow the students to write Java (just like in Hadoop).

Website based
As opposed to program based solutions, a website based solution does not need any installation (apart
from the browser itself). Such solution would typically use JavaScript. Using JavaScript along with
WebWorkers would allow us to configure the amount of mappers & reducers and also separate the
memory of the mappers and reducers. JavaScript and most WebWorkers features are known to be
supported by all modern browsers [15, 16] (a solution might support a limited set of browsers due
to time contraints or less than full browser compatibility). Those characteristics alone are a big plus.
By contrast, mapper and reducer code could practically only be written in JavaScript to be evaluated
within the browser. Moreover, since everything runs within the browser, the input size of the dataset
is limited. As mentioned in section Website with backend that runs Hadoop jobs, web IDEs are useful
as a teaching aid [10]. The most significant disadvantage of a client-side simulation solution is that
a simulation does not have the same conditions as a real Hadoop cluster. For that reason, a website
based solution would probably only be useful for educative purposes and only for use cases the solution
can accurately simulate conditions.

2.4. State of the art 7

So
lu
ti
on

A
dv
an

ta
ge

s
D
is
ad

va
nt
ag

es
Th

e
cu
rr
en

t
Cl
ou

de
ra

VM
Ru
ns
th
e
ac
tu
al
H
ad
oo
p
fr
am
ew
or
k

Sh
ar
ed
m
em
or
y
be
tw
ee
n
m
ap
pe
r/
re
du
ce
r

Ch
ea
p
to
m
ai
nt
ai
n
(d
oe
s
no
t
co
st
an
yt
hi
ng
at
al
l)

Ca
nn
ot
si
m
ul
at
e
be
ha
vi
ou
r
of
fr
am
ew
or
k
w
ith
m
ul
tip
le

m
ap
pe
rs
/r
ed
uc
er
s

W
el
ld
oc
um
en
te
d

Ta
ke
s
a
lo
t
of
tim
e
to
in
st
al
l

D
oe
s
no
t
al
lo
w
fo
r
dy
na
m
ic
le
ct
ur
es

W
eb

si
te

w
ith

cl
us
te
re
d
ba

ck
en

d
Ve
ry
re
al
is
tic
si
m
ul
at
io
ns

H
os
tin
g
th
e
cl
us
te
r
re
qu
ire
d
fo
r
th
e
ba
ck
en
d
is
ve
ry
ex
pe
ns
iv
e

N
o
sh
ar
ed
m
em
or
y
is
su
e

St
ud
en
ts
do
no
t
ha
ve
to
in
st
al
la
ny
so
ft
w
ar
e
be
si
de
s

br
ow
se
r

M
ul
ti
VM

ap
pr
oa

ch
Ve
ry
re
al
is
tic
si
m
ul
at
io
ns

D
oe
s
no
t
al
lo
w
fo
r
dy
na
m
ic
le
ct
ur
es

N
o
sh
ar
ed
m
em
or
y
is
su
e

Ta
ke
s
a
lo
t
of
tim
e
to
se
t
up

Ca
n
se
t
th
e
am
ou
nt
of
m
ap
pe
rs
/r
ed
uc
er
s
to
be
si
m
ul
at
ed

Li
m
its
am
ou
nt
of
m
ap
pe
rs
/r
ed
uc
er
s
to
am
ou
nt
of
VM
s
th
e
ho
st

m
ac
hi
ne
ca
n
ha
nd
le

P2
P
VM

ap
pr
oa

ch
Ve
ry
re
al
is
tic
si
m
ul
at
io
ns

D
oe
s
no
t
al
lo
w
fo
r
dy
na
m
ic
le
ct
ur
es

N
o
sh
ar
ed
m
em
or
y
is
su
e

St
ill
ta
ke
s
at
le
as
t
as
m
uc
h
tim
e
to
se
t
up
as
th
e
or
ig
in
al
VM

Li
m
its
am
ou
nt
of
m
ap
pe
rs
/r
ed
uc
er
s
to
si
ze
of
P2
P
ne
tw
or
k

(c
ou
ld
be
1)

N
et
w
or
k
co
ul
d
ge
t
ov
er
lo
ad
ed
re
su
lti
ng
in
al
ls
tu
de
nt
s
be
in
g

af
fe
ct
ed
by
sl
ow
ne
ss

Cl
ie
nt
-s
id
e

si
m
ul
at
io
n
us
in
g
a

pr
og

ra
m

Al
lo
w
s
fo
r
dy
na
m
ic
le
ct
ur
es

Re
qu
ire
s
so
m
e
so
rt
of
in
st
al
la
tio
n
be
fo
re
it
ca
n
be
us
ed

Fi
xe
s
th
e
sh
ar
ed
m
em
or
y
is
su
e

Te
nd
s
to
be
co
m
e
pl
at
fo
rm

de
pe
nd
en
t

Ca
n
se
t
th
e
am
ou
nt
of
m
ap
pe
rs
/r
ed
uc
er
s

Cl
ie
nt
-s
id
e

si
m
ul
at
io
n
us
in
g
a

w
eb

si
te

Al
lo
w
s
fo
r
dy
na
m
ic
le
ct
ur
es

Si
m
ul
at
io
ns
ca
n
no
t
be
co
m
pl
et
el
y
re
al
is
tic

Fi
xe
s
th
e
sh
ar
ed
m
em
or
y
is
su
e

In
pu
t
si
ze
is
lim
ite
d

Re
qu
ire
s
no
in
st
al
la
tio
n
w
ha
so
ev
er

Pl
at
fo
rm

in
de
pe
nd
en
t

Ca
n
se
t
th
e
am
ou
nt
of
m
ap
pe
rs
/r
ed
uc
er
s

Ch
ea
p
ho
st
in
g
co
st
s

Ta
bl
e
2.
2:
An

ov
er
vi
ew

of
th
e
ad
va
nt
ag
es
an
d
di
sa
dv
an
ta
ge
s
of
th
e
di
sc
us
se
d
so
lu
tio
ns

8 2. Problem definition

2.5. Choice motivation
In the table below we show which requirements are met by which possible solution, the requirements
can be found in Table 2.1, the requirement numbers match with the numbers in this table. A checkmark
means the requirement is satisfied, a cross means that the requirement is not satisfied.
Weighing all aspects of each potential solution we quickly arrived at the conclusion that a client side

Solution R.1 R.2 R.3 R.4 R.5 R.6 R.7 R.8 R.9 R.10
The current Cloudera VM � � × × × × × × � ×
Website with clustered
backend × � � � � � × � � ×

Multi VM approach × � � � × × × × � ×
P2P VM approach × � � � × � × � � ×
Client-side simulation
using a program � � � � � � × � � �
Client-side simulation
using a website � � � � � � � � × �

Table 2.3: An overview of which requirements are met by which possible solution

simulation would be the most feasible solution. We were left with the choice between a client-side
simulation using a program or using a website. We could choose between a tool with lower accessibility
and memory management or a tool with high accessibility and no memory management. Since we feel
like accessibility is an important aspect in this challenge we have chosen for the client-side simulation
using a website.

A website with a cluster in the backend would be perfect but is due to the lack of financial resources
unachievable. The multi VM approach could work, but puts a big strain on the students machines,
putting those with older machines at a disadvantage. Besides that, it still does not allow very interactive
lectures and the user experience would probably suffer a lot as well.

The P2P VM approach sounds rather promising but comes with a risk of the network getting over-
loaded. Furthermore, you cannot simulate more mappers/reducers than there are available machines.
Finally, this method still does not allow very interactive lectures. These facts combined made us not
choose for this solution as well.

Developing a program that students could install on their machines would have all the advantages
the client side webbrowser except for the fact that students would have to install this program. This
finalised our decision to implement the client side webbrowser solution. It requires very little resources,
provides all features requested by our client and has the best accessibility of all possible solutions.

3
Technical choices & Implementation

This chapter introduces the Technical choices which were made before and during the implementation
fase. It elaborates on the requirements, provide an overview of the system’s design and finally shortly
discuss the implementation.

3.1. Solution specific MoSCoW overview
We start this chapter by defining the exact requirements for website based simulation solution. These
requirements are based on meetings we had with both our client and supervisor. We will use this
overview as a reference to motivate our (technical) design choices. The overview of the requirements
can be found in table 3.1.

3.2. Use cases
Together with our client dr. Claudia Hauff we have defined the following cases the system should
certainly be able to simulate:

• WordCount to count the total amount of words in a document.

• WordCount (count the frequencies of each word).

– Same scenario with 2 mappers and 2 reducers.

• Inlink count (output the number of times each webpage is referred)

• List documents and their categories occurring 2+ times

• Simple WordCount with a combiner summing the total term frequencies in documents (here the
result with and without combiner are the same)

• Simple WordCount with a combiner that computes the average term frequencies in documents
(here the result with and without combiner are different)

• WordCount example that initializes a dictionary in the setup of the mapper. The mapper would
then only map words that occur in the dictionary.

• WordCount example with a setup and cleanup. WordCount would emit the 10 most occurring
words.

• WordCount example with a setup and cleanup. This example would emit how many words start
with the same letter.

• WordCount example that uses Counters to determine total amount of words (of amount of unique
words), essentially different from case 1 where no counter is used.

9

10 3. Technical choices & Implementation

Category Requirement

Must have not depend on a cluster

run completely in a browser

students must write JavaScript code

has to be platform independent

students should be able to write mapper and reducer code

Should have an interface for the lecturer to see submissions in real-time

an interface for the students to code in (in JavaScript)

back-end for lecturer to define exercises in

separate memory for mapper and reducer

amount of mappers/reducers should be configurable

ability to simulate setup for both mapper and reducer

ability to simulate combiner and cleanup

simulation of counters

ability to simulate partitioner

Could have an interface for the students to see an overview of all exercises

unit testing (definable in back-end)

memory management/limitation

Won’t have required installation of plugins/tools

Table 3.1: Requirements defined according to the MoSCoW method

3.3. High level system design
In this section we define a high level system overview and then proceed to explain more in detail
how each component should work. Our system consists of four general components: the server,
the students’ browser, the MapReduce framework and the lecturer’s browser (where exercises can be
defined and real-time submissions of students can be seen).
Below you will find a graphic representation of this system, we will then proceed to elaborate on each
component.

3.3.1. Server
The server serves partially static data (such as code for running the MapReduce jobs), manages (anony-
mous) sessions, saves submissions in a database, keeps a collection of exercises and renders pages
for the lecturer and students. The system we have chosen to serve this content and handle web
accessibility is Wordpress.

Wordpress
This research mainly focuses on the framework rather than the website hosting it. Therefore we have
chosen not to write a Content Management System (CMS) from scratch, something that is already done
several times by others. A well known and documented CMS is Wordpress [17]. Its good documentation
and large community are our primary reasons for choosing this solution.

3.3.2. Browser (Lecturer)
The lecturer should be able to login into the admin area, create exercises (and possibly add unit tests
for them) and see an overview of the submissions on those exercises. The admin area and exercise
creation will be integrated in Wordpress, since this is easily configured in this CMS. The overview of

3.3. High level system design 11

Figure 3.1: a high level overview of the system

submissions will be a separate page on the website which only the lecturer can see. When the lecturer
clicks on a submission a student view is opened with the requested submission so the lecturer can
directly run it, making it easy to show to the students what needs to be changed to fix an error in a
given submission.

3.3.3. Browser (Student)
Students should be able to anonymously use the tool and view the overview of exercises. They should
be able to write implementations of mapper/reduce code, run and submit their implementations. The
anonymity of the students is taken care of by the server. Each assignment will have a page with several
fields in which the students can write mapper/reducer code in JavaScript, buttons to run/submit the
solution, a console to see the logs of the simulation and finally the final output of the reducers.

3.3.4. MapReduce framework
The framework should accept input and user-defined mapper/reducer (and possibly setup/combine/-
cleanup) functions. Then it should use them to run a MapReduce job and return its output. The
framework should use separate memory for different nodes and between mapper/reducer.

State of the art
MapReduce is a popular algorithm that many people have written in several languages including
JavaScript. We have looked at multiple Open Source projects written in JavaScript. We will give a
small list of the most noteworthy ones and explain why they are good and what lacks them.

• https://github.com/f1ames/maprereduce
Very simple implementation that works in the browser and able to feed an array as input. However
does not use WebWorkers (so memory separation is not possible). Furthermore it is not very
advanced, it lacks functions as setup, combine and cleanup. Thus it would not be able to handle
several of our use cases defined in section 3.2 and therefore also not able to meet our should
have requirements in table 3.1.

• https://github.com/wenkesj/mapreducejs
Runs in the browser but depends on a server side master, furthermore it only offers map and
reduce functions. Because of this limitation this framework is unable to meet one of our must

12 3. Technical choices & Implementation

have requirements defined in table 3.1. Neither is it able to handle all of our use cases defined
in section 3.2.

• https://github.com/eterna2/MRCluster
Able to configure amount of mappers & reducers and able to define map/reduce/partition/com-
bine/cleanup functions. However, it is written for NodeJs (so it requires some refactoring), does
not use WebWorkers (so memory separation is not possible) and only accepts files as input. So
this framework meets all our requirements but it is written in NodeJS (a server side JavaScript-
based language), therefore we would have to modify it to work in native JavaScript. However,
due to the fact that modifying this solution has very high potential to take more time than writing
a custom solution ourselves we have chosen not to use this framework.

3.3.5. Custom MapReduce framework
We have chosen for a custom solution because we expect it would require a rather limited amount of
time to develop and we would get extra features that the state of the art frameworks does not offer
us.

WebWorkers
In order to achieve true memory separation between mapper & reducer and between different (simu-
lated) nodes one could only use WebWorkers [15]. It would be impossible to truly separate the mapper
and reducer memory if we were to use a native approach or any framework approach (like JQuery)
due to the fact that global variables could be declared in the mapper which would then be available
in the reducer. Furthermore, by moving the computation to WebWorkers you can keep the webpage
responsive during code execution.

MapReduce framework Sequence Diagram
In order to simulate MapReduce jobs, one has to follow the MapReduce paradigm. First the input is
partitioned and the input is split over the available mappers. The mappers should map the input into
key value pairs. Thereafter, the pairs are aggregated and sent to the available reducers. Finally, the
reducers send their output back and is displayed to the user. In the following sequence diagram we
show this process. Each mapper and reducer will be a WebWorker instance running in the background.
This method allows to create multiple WebWorkers if we want to simulate more than one mapper/re-
ducer. The master will instantiate, command and eventually terminate the mapper/reducer workers
and provide the user with the output of the workers.

Memory management
We have looked into possibilities of memory management and/or memory limitation. Such features
would allow lecturers to teach the difference between memory efficient and inefficient algorithms.
However, JavaScript and WebWorkers do not offer memory management or limitation out of the box.
In Google Chrome there are ways to request the used JS heap size but requires a non-default enabled
flag. Furthermore, it is not possible to specifically request or limit memory usage of a single WebWorker.

3.3. High level system design 13

Figure 3.2: MapReduce framework sequence diagram

14 3. Technical choices & Implementation

3.4. Implementation
Our solution, called Luna, was built from scratch and consists of a JavaScript frontend with a PHP
backend. The MapReduce code a user can write in this system has to be JavaScript and resembles the
core of the Hadoop 2.6.3 API as closely as possible [18] so the user does not have to become familar
with two different APIs while learning MapReduce. Luna’s most important features are as follows:

• Intuitive interface with easy to use JavaScript code editors.

• Simulation of all functions from the Mapper class [19].

• Simulation of all functions from the Partitioner class [20].

• Simulation of all functions from the Reducer class [21].

• Shows preview of input on the page (full input can be downloaded).

• Shows preview of output on the page after a job is done (full output can be downloaded).

• Allows lecturer to see students submissions in (near) real-time.

• Students submissions are tested against tests predefined by the lecturer. The results are shown
to both lecturer and student.

• Accessible since it requires no installation nor registration.

The frontend is responsible for storing (anonymous) authentication details, simulating MapReduce jobs
and fetching job data such as input and tests from the server. Communication with the server is done
through HTTP requests to our REST API [22] where most of the data is represented in JSON format [23].
The serverside implementation was kept relatively simple, a Wordpress installation which incorporates
our custom theme and REST API plugin forms the spine of the backend. The theme includes the
MapReduce framework and the student testing framework besides the template and styling definitions.
New exercises can be made by creating new exercise pages, for more details on using this system
please see D. For further implementation details please see Appendix C.

3.5. Software methodology
During our implementation phase we implemented scrum in order to increase our productivity [24].
We have had daily meetings in which we discussed our previous sprint, whether we were having any
problems, how to tackle these and finally plan our next sprint. This way we avoided doing duplicate
work, we did not stand in each others way and we solved problems more quickly. Furthermore, we
used an online scrum board on trello.com. With a scrum board we could prioritize tasks and see our
progress anytime.

4
Research & results

This chapter discusses the conducted research and the results found during this research. We discuss
the benchmarking of the system and its results, after which we discuss the conducted user test and its
results.

4.1. Benchmarks
We conducted benchmarks using our framework in order to determine performance and the (practical)
input size limit. Benchmarks were done using Chrome and Firefox on three different machines using
four different cases. Raw results can be found in Appendix F

4.1.1. Setup
The benchmarks were conducted on 3 machines, two laptops and a custom build desktop. Below we
include the relevant specifications of these machines. We will refer to these machines as M1, M2 and
M3 as described below.

• Machine 1 (M1): Thinkpad Yoga 15 (8gb ram + i7 @ 2.4ghz)

• Machine 2 (M2): Custom Desktop computer (8gb ram + i5 @ 3.8ghz)

• Machine 3 (M3): Acer Aspire V Nitro (8gb ram + i7 @ 2.5ghz)

4.1.2. Benchmarked use cases
The cases we have benchmarked were picked from the list of use cases that were defined in Section
3.2. We chose the following 4:

• Case 1: A simple WordCount example to test simple implementation performance

• Case 2: A more complex WordCount example to test performance

• Case 8: 10 most occurring words example in which workers temporally save data in memory to
test memory usage and performance

• Case 10: A counter example in which performance of internal communication in the framework
is tested

4.1.3. Graphical results
In the following graphical results you will see the correlation between input size and runtime/memory
usage. For runtime you can clearly see a linear correlation. In Figure 4.1 you can see that in one
benchmark the partitioner throwed an error due to being out of memory (100MB input, case 1, Firefox,
machine 1). For every runtime result we have done the benchmark three times and averaged how
long it took to finish by outputting data when it is done running. For every memory usage we have
done the benchmark three times as well and averaged the peak memory usage by looking at the native
Windows Task manager. We looked at peak browser memory usage to also take into consideration the
browsers overhead compared to executing the script separately.

15

16 4. Research & results

Benchmark results case 1
The benchmark results measuring input size in MB vs runtime in ms were very nice. Generally speaking
Firefox had less overhead than Chrome did, resulting in faster runtimes in most cases. However in
one case Firefox did go out of memory on Machine 1 (M1). The browser clearly has a big overhead
regarding memory usage. Since the browsers memory usage exceeds 1GB with an input size of 100MB
we strongly discourage anyone who deploys this platform to simulate cases with this input size. 50MB
input size also tends to have memory usage close to 1GB. We recommend input sizes of smaller than
10MB since this input size will result in simulations with runtimes lower than 6-7 seconds.

Figure 4.1: Graphical representation of runtime in use case 1

Figure 4.2: Graphical representation of memory usage in use case 1

4.1. Benchmarks 17

Benchmark results case 2
Case 2 had severely lower running times, simulations processing about 50MB would take anywhere
from 4-6.5 seconds. In Firefox however this input size resulted in a peak browser memory usage of
over 900MB, we still recommend inputting 10MB or less when simulating this case.

Figure 4.3: Graphical representation of runtime in use case 2

Figure 4.4: Graphical representation of memory usage in use case 2

18 4. Research & results

Benchmark results case 8
Case 8 had quite low runtimes and memory usage, peaking at a runtime of 12 seconds and memory
usage of just slightly over 1GB with the largest input size. This case included some more complex
computations, which makes the results even more interesting. As with the previous two benchmarked
cases we recommend not exceeding 10MB input size, in order to keep the simulations fast not use
excessive amounts of memory.

Figure 4.5: Graphical representation of runtime in use case 8

Figure 4.6: Graphical representation of memory usage in use case 8

4.1. Benchmarks 19

Benchmark results case 10
The last case we benchmarked, case 10, was primarily to test internal communication within the frame-
work. More specifically, communication between webworkers and the webpage’s JavaScript. This ap-
pears to be very efficient, processing 100MB of input only takes at most 13 seconds. The browser
does however still use close to 1GB of memory while processing this data. So like the other cases we
recommend not exceeding 10MB of input for a simulation.

Figure 4.7: Graphical representation of runtime in use case 10

Figure 4.8: Graphical representation of memory usage in use case 10

20 4. Research & results

4.2. User test
In order to streamline our solution we employed an user test with fellow students, some of which did
and some of which did not follow the Big Data Processing course. Because there might be a lack of
knowledge about MapReduce, we gave students a short introduction lecture. The lecture explained
the following topics:

• What Trifle is.

• What MapReduce is.

• How MapReduce works.

• Explanation of assignment 1: WordCount (Participants are asked to implement WordCount that
outputs each word with its frequency)

• Explanation of assignment 2: Inlink count (Participants are asked to implement Inlink count that
outputs the amount of references to each referenced document)

• Explanation of assignment 3: Counters (Participants are asked to implement a counter that out-
puts the total amount of words using the context.getCounter(name).increment(amount) API)

After the introduction we explained some simple assignments that are also part of the BDP course
and asked the participants to implement these assignments in Trifle. After each assignment we would
explain the next one untill all three assignments were completed. After the participants completed the
test they were asked to fill out a questionnaire. To see the full questionnaire see Appendix G. The
questions were asked about usability of the system and if the participants felt like it had helped them
understand the MapReduce programming model.

4.2.1. General results
The most interesting results we found during the test is that JavaScript knowledge is the biggest issue
to getting started with the system. Most testers quickly grasped the idea, but made mostly syntax
errors or did not know how to implement certain functionalities (like regex matching) in JavaScript.
The first assignment took most users the longest, after that, more complicated assignments would be
completed rather quickly. So if the system gets deployed and used in an actual lecture of the BDP
course it is to be expected that the first (and probably the second) exercise will take above average in
time to implement, mainly due to the fact that students will have to refresh their JavaScript knowledge.
Furthermore initially the ’context’ variable was unclear, we concluded this was mainly due to the fact
that we explained MapReduce based on an old Hadoop API, which did not have the ’context’ variable.
Explaining MapReduce using the Hadoop 2.6.3 API [18] should eliminate this unclarity.

4.2.2. Questionnaire results
The results of the questionnaire will be discussed in the following sections. Each question’s results will
be visualised using a pie chart. The most interesting results from the questionnaire were found in the
questions about error displaying.

4.2. User test 21

Experience with MapReduce/Hadoop
Our testgroup was evenly partitioned, half of the group was somewhat familar with MapReduce while
the other half was not. This gave us the opportunity to also filter down other question’s results to see
how users that were familiar with MapReduce experienced our system differently from users that were
not familiar with MapReduce.

Figure 4.9: User test questionnaire answers as a Pie chart

Navigation and intuitivity of the interface
We started off with some more superficial, nevertheless important questions. No users experienced
any problems with navigating him or herself through the website. The users also voted unanimously
yes to the question whether the interface was intuitive.

Figure 4.10: Answers to the question whether the website was
easy to navigate through

Figure 4.11: Answers to the question whether the interface was
intuitive

22 4. Research & results

Tooltips and tab structure
The following two questions were also about the interface, more specifically about the tooltips and tab
structure on the exercise pages. The tooltips were found to be very usefull, one user had preferred if
the tabs were displayed next to each other. However in the test we had only used two of the 7 editors,
the others were hidden. So if only two editors are present it would be a good idea to display the editors
besides or below each other, but when there is a total of 7 editors then this is not a very effective way
to display them.

Figure 4.12: Answers to the question whether the tooltips were
helpfull Figure 4.13: Answers to the question whether the user liked the

tab structure

Error messages
The question whether the error messages were displayed showed some interesting results, half of the
participants thought the error messages were not displayed clearly. Even though the question was
focused on the visual aspect, most users answered no due to the fact that the messages themselves
were not very clear. Our system in its current setup is only able to determine whether a function written
by the user is valid or not. It is unable to tell the user which specific line is syntactically wrong. Even
though the Ace editors come with some build in syntax validation, some edge cases are overlooked.
For instance in Java one could write:

f o r ([Type] element : l i s t){
/ / do something

}

While in JavaScript this is syntactically wrong. Ace fails to recognise this syntax error, so the user
tends to think it is a valid expression. When running a job with a syntax error like described above,
our system will show the user an exception with a message ”this is not a function”. Leaving the user
confused what is wrong with their code. We wanted to see if it made any difference whether the user

Figure 4.14: Answers to the question whether the error messages were displayed clearly

had some experience with MapReduce beforehand regarding the answers to this question. It turned

4.2. User test 23

out it did not, half the users of each group answered ’no’. Currently we cannot change the way errors

Figure 4.15: Answers from users who did know MapReduce be-
forehand

Figure 4.16: Answers from users who did not know MapReduce
beforehand

are shown to the user, if a syntax error passes through Ace’s syntax validation then there is nothing we
can currently do about that. We can only show which function contains an error, but not which line in
that function is wrong. For this we would have to make our own custom syntax validator which is far
outside the scope of this project. It might however be a good addition to implement in a future work.

Performance
Our test group was very statisfied with the performance of the system. No user had any remarks about
long running times. Performance was one of our main concerns, especially cross browser, so its good
to have verification that the system runs as efficiently on others machines as well.

Figure 4.17: Answers to the question whether the performance was good

24 4. Research & results

Trifling around
The users felt like working with the platform helped them grasp the idea behind MapReduce. Being able
to quickly dive into the material and run simulations in rapid succession helped better understanding
what was going on. One user felt like it would not improve the spead of understanding how MapReduce
works, since the answers were anonymous and the person who answered no did not reveil himself we
do not know why this user thought this way about the platform.

Figure 4.18: Answers to the question whether trifling around
helped understanding MapReduce

Figure 4.19: Answers to the question whether the user thought
the platform improves the speed of understanding MapReduce

Trifle during the BDP course
All users found that the platform is a good addition to the material and would like to use it during the
lectures. These questions were asked with the context that they follow the BDP course.

Figure 4.20: Answers to the question whether the platform is a
good addition to the material

Figure 4.21: Answers to the question whether the user would
like to use the platform during lectures

4.2. User test 25

4.2.3. Suggestions from participants
During the user test some participants gave us some suggestions that could improve the platform. We
have noted those suggestions down and aggregated them into the following list:

• Rather than only giving the name of the test that fails, also explain why it fails

• Showing to the user that you already submitted an assignment

• Run button looks disabled when grey

• Explain what the context parameter does and when it should be used

• Give better feedback to the user when something is submitting, for example going to the next
assignment (if any)

• Explain that students should write JavaScript so they do not get mistaken with syntax of other
languages

4.2.4. Remarks client
Our client who attended our user test had some remarks:

• The majority of the participants completed the first two assignments and all participants com-
pleted the first assignment.

• It is confusing how the input translates to key/value pairs and whether the value parameter of
map is a single line or whole document.

• Context parameter lacks documentation

• It is unclear what the output of the Mapper looks like

• Some participants were not overly familiar with JavaScript syntax

• Submission confirmation should be more obvious

In order to remedy these issues we have done the following things:

• Make the assignment description describe how the input gets split and fed to the mapper

• Explain what the context parameter does and when it should be used in the assignment descrip-
tion

• Add a link to the JavaScript documentation together with explaining that the student code should
be fully written in JavaScript

5
Discussion

In the following sections we discuss the results of the project. The target was to implement a high
accessibility tool that can be used during the lectures to teach students the principles of MapReduce.

5.1. The resulting implementation
The platform has a high accessibility, as it only requires you to go to a website, no installation needed
whatsoever. From the user tests we concluded that it does help understand the principles of MapRe-
duce. Furthermore it overcomes the many shortcomings such as memory separation. Therefore we
can answer our research question mentioned in chapter 2. An interactive and easy to use tool can help
a lecturer to help the principles of MapReduce. The platform was implemented using HTML5, CSS,
JavaScript (ECMAScript 6) and uses WebWorkers to do computations in the background without the
website becoming unresponsive. As a backend we chose Wordpress for its good documentation and to
provide a clean interface to our client to define the exercises in. Every single requirement as defined
in section 3.1 is met in the current implementation.

5.1.1. Recommendations based on benchmarks
From the benchmark we can clearly see that the runtime scales linearly with the input size. Furthermore,
Firefox computes the result much faster, in some cases twice as fast but that comes with a bigger
memory usage compared to Chrome. Due to browser set maximum JavaScript heapspace size, the
maximum input size is about 100MB but practically the input size is lower for several reasons. First
of all, since the solution will be used in a lecture environment, solutions must run fast so the lecturer
can interactively teach the subject. Computing jobs with inputs of 100MB could take several minutes
client-side and serving a 100MB input file for hundred students is far from ideal when a low-end server
is used. Benchmarking using different input sizes has led us to conclude that the practical limit for
input size is somewhere around 1MB, never exceeding 10MB. Only having input files of 1MB or less
makes it cheap to host, fast to compute and interactive to use.

Small input sizes used solely to teach students the concept of MapReduce are best suited for our
solution. Our solution has minimal memory and cpu usage for those inputs. Our assumption that
performance wise, large quantities of data would be impractical to be done in a browser is verified with
our benchmark. However, in 2.3 we have noted that ”the goal of this research is not to implement a
simulation that does everything that (real) Hadoop offers but rather offer what the Cloudera VM does
not offer”. In other words, the goal was to create something that performs well with small assignments
that teach concepts like memory separation. Something that we have proven working and therefore
benchmark wise our requirements are met.

27

28 5. Discussion

5.1.2. Feedback from testers
The user test gave us some insights from a different perspective. Students thought the interface was
easy to navigate and intuitive to use. Students also mentioned that error messages were confusing and
they did not know what was wrong with their code. As discussed in subsection 4.2.2 this was mainly
due to the fact that some syntax errors were not picked up by Ace’s syntax validation. Furthermore
there were some good suggestions regarding user feedback. Some felt like it was unclear wether their
submission had succeeded. Another noted that showing multiple notifications at once was not possible.
There was hardly any negative feedback on the interface itself, besides that the run button, which is
grey, gave the impression it was disabled. Therefore we have decided to change this buttons colour.

5.2. Recommendations for the BDP course
From the results of the user test we have several recommendations for the BDP course. First of all we
suggest the students refresh their JavaScript knowledge at home before they work with the system, in
order to more quickly start implementing the MapReduce problems introduced in the course. Another
recommendation is to explain MapReduce using code examples that follow the Hadoop 2.6.3 API, since
our platform also follows this API. During the user test we received quite a few questions regarding
this API differing from the code examples we showed on the slides. Therefore keeping the slides in
line with this API would make it even easier to start working with Trifle.

5.3. Future work
A nice addition to this system would be a custom syntax validator that does not leave edge cases like
described in subsection 4.2.2. This will allow to give more detailed error reports to the users.

Another next step is to take a look at possible improvements for other topics of the Big Data
Processing course. For instance incorporating Streaming Algorithms, which is another part of the
course, into Trifle.

We think it would be another nice feature to also show students that increasing your cluster size
also comes with a speedup instead of just separated output. The current simulation will have to be
modified to show this speedup, but it would be a nice addition to the platform.

Currently, users log in anonymously, but a possible extension to the platform is to have users create
an account on Trifle, and implement actual lab exercises in Trifle instead of just toy examples during
the lectures.

A
Defined custom fields

On the next page we have included a table showing the relevant information regarding the custom
fields defined in Wordpress.

29

30 A. Defined custom fields

Fi
el
d
la
be

l
Fi
el
d
na

m
e

Fi
el
d
ty
pe

N
ot
ew

or
th
y
at
tr
ib
ut
es

R
eq

ui
re
d

D
ef
au

lt
va
lu
e

W
ee
k
nu
m
be
r

w
ee
k_
no

Se
le
ct

Pr
ov
id
es
ch
oi
ce
s
’W
ee
k
1’
to

’W
ee
k
10
’

Ye
s

W
ee
k
1

Am
ou
nt
of
m
ap
pe
rs

m
ap
pe
r_
no

N
um
be
r

Ca
n
no
t
be
sm
al
le
r
th
an
0

Ye
s

1
Am
ou
nt
of
re
du
ce
rs

re
du
ce
r_
no

N
um
be
r

Ca
n
no
t
be
sm
al
le
r
th
an
0

Ye
s

1

In
pu
t

in
pu
t

Fi
le

Sh
ou
ld
be
a
.z
ip
fil
e
co
nt
ai
ni
ng

.t
xt
fil
es
w
hi
ch
w
ill
be
us
ed
as

in
pu
t
fo
r
th
e
ex
er
ci
se
.

Ye
s

D
es
cr
ip
tio
n

de
sc
rip
tio
n

W
ys
iw
yg
Ed
ito
r

N
o

Sh
ow

ed
ito
rs

sh
ow
_e
di
to
rs

Ch
ec
kb
ox

un
ch
ec
ki
ng
on
e
of
th
e
ed
ito
rs

bo
xe
s
w
ill
hi
de
it
fr
om

vi
ew

on
th
e
ex
er
ci
se
pa
ge
bu
t
th
e
co
de

pr
ov
id
ed
in
th
e
m
at
ch
in
g

ed
ito
rs
Te
xt
ar
ea
fie
ld
w
ill
be

us
ed
du
rin
g
th
e
ex
er
ci
se
.

N
o

al
lo
pt
io
ns
ch
ec
ke
d

M
ap
pe
r.s
et
up

m
ap
pe
r_
se
tu
p

Te
xt
Ar
ea

Th
e
de
fa
ul
t
va
lu
e
ca
n
be

ch
an
ge
d
to
pr
ov
id
e
he
lp
or

di
ffe
re
nt
ki
nd
of
ex
er
ci
se
s
to
th
e

st
ud
en
t.

Ye
s

fu
nc
tio
n
se
tu
p(
co
nt
ex
t)
{}

M
ap
pe
r.m
ap

m
ap
pe
r_
m
ap
pe
r

Te
xt
Ar
ea

Ye
s

fu
nc
tio
n
m
ap
(k
ey
,v
al
ue
,

co
nt
ex
t)
{}

M
ap
pe
r.c
om
bi
ne

m
ap
pe
r_
co
m
bi
ne
r

Te
xt
Ar
ea

D
ef
au
lts
to
th
e
el
em
en
ta
ry

co
m
bi
ne
r
(o
ut
pu
ts
ea
ch

ke
y-
va
lu
e
pa
ir
ag
ai
n)
.

Ye
s

fu
nc
tio
n
co
m
bi
ne
(k
ey
,v
al
ue
s,

co
n-

te
xt
){
,w
hi
le
(v
al
ue
s.
ha
sN
ex
t(
))

{,
co
nt
ex
t.
w
rit
e(
ke
y,

va
lu
es
.n
ex
t(
))
;,}
}

Pa
rt
iti
on
er
.g
et
Pa
rt
io
n

pa
rt
iti
on
er
_p
ar
tit
io
ne
r

Te
xt
Ar
ea

D
ef
au
lts
to
a
pa
rt
iti
on
er
th
at

sp
lit
s
ke
ys
ev
en
ly
ov
er
re
du
ce
rs
.

Ye
s

fu
nc
tio
n
ge
tP
ar
tit
io
n(
ke
y,
va
lu
e,

nu
m
Pa
rt
iti
on
s)
{,
va
r
ha
sh
Co
de
=

fu
nc
tio
n(
s)
{,
re
tu
rn

s.
sp
lit
(”
”)
.r
ed
uc
e(
fu
nc
tio
n(
x,
y)
{x
=

((
x<
<
5)
-

x)
+
y.
ch
ar
Co
de
At
(0
);
re
tu
rn

x&
x}
,0
);
,}
,r
et
ur
n

M
at
h.
ab
s(
ha
sh
Co
de
(k
ey
))
%

nu
m
Pa
rt
iti
on
s;
}

Re
du
ce
r.s
et
up

re
du
ce
r_
se
tu
p

Te
xt
Ar
ea

Ye
s

fu
nc
tio
n
se
tu
p(
co
nt
ex
t)
{}

Re
du
ce
r.r
ed
uc
e

re
du
ce
r_
re
du
ce
r

Te
xt
Ar
ea

Ye
s

fu
nc
tio
n
re
du
ce
(k
ey
,v
al
ue
s,

co
nt
ex
t)
{}

Re
du
ce
r.c
le
an
up

re
du
ce
r_
cl
ea
nu
p

Te
xt
Ar
ea

Ye
s

fu
nc
tio
n
cl
ea
nu
p(
co
nt
ex
t)
{}

Ta
bl
e
A.
1:
An

ov
er
vi
ew

of
th
e
cu
st
om

fie
ld
s
de
fin
ed
in
W
or
dp
re
ss

B
Use cases code examples

This appendix provides code examples for our framework that solves use cases defined in 3.2.

B.1. Use case 1
f unc t i on setup (context){

}

func t i on map(key , value , context){
const words = value . rep lace (/[^a−zA−Z] / g , ’ ’) . toLowerCase () . s p l i t (’ ’) ;
f o r (l e t word in words){

context . wr i t e (key , 1) ;
}
context . getCounter (’ example1 ’) . increment (1) ;

}

func t i on combine (key , values , context){
whi le (va lues . hasNext ()) {

context . wr i t e (key , va lues . next ()) ;
}

}

func t i on g e t P a r t i t i o n (key , value , numPar t i t i ons){
var hashCode = func t i on (s){

re tu rn s . s p l i t (” ”) . reduce (func t i on (x , y){ x=((x<<5)−x)+y . charCodeAt (0) ; re tu rn x&x } ,0) ;
}
re tu rn Math . abs (hashCode (key)) % numPar t i t i ons ;

}

func t i on setup (context){

}

func t i on reduce (key , values , context){
l e t count = 0;
whi le (va lues . hasNext ()) {

count += va lues . next () ;
}
context . wr i t e (key , count) ;

}

31

32 B. Use cases code examples

f unc t i on cleanup (context){

}

B.2. Use case 2
f unc t i on setup (context){

}

func t i on map(key , value , context){
const words = value . rep lace (/[^a−zA−Z] / g , ’ ’) . toLowerCase () . s p l i t (’ ’) ;
f o r (l e t word of words){

context . wr i t e (word , 1) ;
}

}

func t i on combine (key , values , context){
var emitValue = 0;
whi le (va lues . hasNext ()) {

emitValue += values . next () ;
}
context . wr i t e (key , emitValue) ;

}

func t i on g e t P a r t i t i o n (key , value , numPar t i t i ons){
var hashCode = func t i on (s){

re tu rn s . s p l i t (” ”) . reduce (func t i on (x , y){ x=((x<<5)−x)+y . charCodeAt (0) ; re tu rn x&x } ,0) ;
}
re tu rn Math . abs (hashCode (key)) % numPar t i t i ons ;

}

func t i on setup (context){

}

func t i on reduce (key , values , context){
l e t count = 0;
whi le (va lues . hasNext ()) {

count += va lues . next () ;
}
context . wr i t e (key , count) ;

}

func t i on cleanup (context){

}

B.3. Use case 3
f unc t i on setup (context){

}

func t i on map(key , value , context){
const words = value . rep lace (/[^a−zA−Z0−9.:] / g , ’ ’) . s p l i t (’ ’) ;

B.4. Use case 4 33

f o r (l e t word of words){
l e t index = word . indexOf (” : ”) ;
i f (index >−1){

context . wr i t e (word . subs t r i ng (0 , index) , key) ;
}

}
}

func t i on combine (key , values , context){
whi le (va lues . hasNext ()) {

context . wr i t e (key , va lues . next ()) ;
}

}

func t i on g e t P a r t i t i o n (key , value , numPar t i t i ons){
var hashCode = func t i on (s){

re tu rn s . s p l i t (” ”) . reduce (func t i on (x , y){ x=((x<<5)−x)+y . charCodeAt (0) ; re tu rn x&x } ,0) ;
}
re tu rn Math . abs (hashCode (key)) % numPar t i t i ons ;

}

func t i on setup (context){

}

func t i on reduce (key , values , context){
l e t count = 0;
whi le (va lues . hasNext ()) {

va lues . next () ;
count += 1;

}
context . wr i t e (key , count) ;

}

func t i on cleanup (context){

}

B.4. Use case 4
f unc t i on setup (context){

}

func t i on map(key , value , context){
const words = value . rep lace (/[^a−zA−Z \ : 0−9]/g , ’ ’) . s p l i t (’ ’) ;
f o r (l e t i i n words){

i f (words [i] . s t a r t sW i th (’ category ’)) {
l e t category = words [i] . s p l i t (’ : ’) [1] ;
context . wr i t e (category , key) ;

}
}

}

func t i on combine (key , values , context){
whi le (va lues . hasNext ()) {

context . wr i t e (key , va lues . next ()) ;

34 B. Use cases code examples

}
}

func t i on g e t P a r t i t i o n (key , value , numPar t i t i ons){
var hashCode = func t i on (s){

re tu rn s . s p l i t (” ”) . reduce (func t i on (x , y){ x=((x<<5)−x)+y . charCodeAt (0) ; re tu rn x&x } ,0) ;
}
re tu rn Math . abs (hashCode (key)) % numPar t i t i ons ;

}

func t i on setup (context){

}

func t i on reduce (key , values , context){
i f (va lues . hasNext ()) {

l e t f i r s t = va lues . next () ;
i f (va lues . hasNext ()) {

context . wr i t e (f i r s t , key) ;
wh i le (va lues . hasNext ()) {

context . wr i t e (va lues . next () , key) ;
}

}
}

}

func t i on cleanup (context){

}

B.5. Use case 5
f unc t i on setup (context){

}

func t i on map(key , value , context){
const words = value . s p l i t (’ ’) ;
l e t termFreq = {};
f o r (l e t i i n words){

l e t word = words [i] ;
i f (! termFreq [word]) {

termFreq [word] = 1;
} e l se {

termFreq [word]++;
}

}

f o r (l e t word in termFreq){
context . wr i t e (word , termFreq [word]) ;

}
}

func t i on combine (key , values , context){
var emitValue = 0;
whi le (va lues . hasNext ()) {

emitValue += values . next () ;

B.6. Use case 6 35

}
context . wr i t e (key , emitValue) ;

}

func t i on g e t P a r t i t i o n (key , value , numPar t i t i ons){
var hashCode = func t i on (s){

re tu rn s . s p l i t (” ”) . reduce (func t i on (x , y){ x=((x<<5)−x)+y . charCodeAt (0) ; re tu rn x&x } ,0) ;
}
re tu rn Math . abs (hashCode (key)) % numPar t i t i ons ;

}

func t i on setup (context){

}

func t i on reduce (key , values , context){
l e t t o t a l = 0;
whi le (va lues . hasNext ()) {

t o t a l += va lues . next () ;
}
context . wr i t e (key , t o t a l) ;

}

func t i on cleanup (context){

}

B.6. Use case 6
f unc t i on setup (context){

}

func t i on map(key , value , context){
const words = value . s p l i t (’ ’) ;
l e t termFreq = {};
f o r (l e t i i n words){

l e t word = words [i] ;
i f (! termFreq [word]) {

termFreq [word] = 1;
} e l se {

termFreq [word]++;
}

}

f o r (l e t word in termFreq){
context . wr i t e (word , termFreq [word]) ;

}
}

func t i on combine (key , values , context){
l e t emitValue = 0;
l e t count = 0;
whi le (va lues . hasNext ()) {

count++;
emitValue += values . next () ;

}

36 B. Use cases code examples

context . wr i t e (key , emitValue / count) ;
}

func t i on g e t P a r t i t i o n (key , value , numPar t i t i ons){
var hashCode = func t i on (s){

re tu rn s . s p l i t (” ”) . reduce (func t i on (x , y){ x=((x<<5)−x)+y . charCodeAt (0) ; re tu rn x&x } ,0) ;
}
re tu rn Math . abs (hashCode (key)) % numPar t i t i ons ;

}

func t i on setup (context){

}

func t i on reduce (key , values , context){
l e t t o t a l = 0;
l e t count = 0;
whi le (va lues . hasNext ()) {

count++;
t o t a l += values . next () ;

}
context . wr i t e (key , t o t a l / count) ;

}

func t i on cleanup (context){

}

B.7. Use case 7
f unc t i on setup (context){

t h i s . animals = [’ cat ’ , ’ dog ’ , ’mouse ’] ;
}

func t i on map(key , value , context){
const words = value . rep lace (/[^a−zA−Z] / g , ’ ’) . toLowerCase () . s p l i t (’ ’) ;
f o r (l e t i i n words){

l e t word = words [i] ;
i f (t h i s . animals . indexOf (word) >= 0){

context . wr i t e (word , 1) ;
}

}
}

func t i on combine (key , values , context){
var emitValue = 0;
whi le (va lues . hasNext ()) {

emitValue += values . next () ;
}
context . wr i t e (key , emitValue) ;

}

func t i on g e t P a r t i t i o n (key , value , numPar t i t i ons){
var hashCode = func t i on (s){

re tu rn s . s p l i t (” ”) . reduce (func t i on (x , y){ x=((x<<5)−x)+y . charCodeAt (0) ; re tu rn x&x } ,0) ;
}
re tu rn Math . abs (hashCode (key)) % numPar t i t i ons ;

B.8. Use case 8 37

}

func t i on setup (context){

}

func t i on reduce (key , values , context){
l e t count = 0;
whi le (va lues . hasNext ()) {

count += va lues . next () ;
}
context . wr i t e (key , count) ;

}

func t i on cleanup (context){

}

B.8. Use case 8
f unc t i on setup (context){

}

func t i on map(key , value , context){
const words = value . rep lace (/[^a−zA−Z] / g , ’ ’) . toLowerCase () . s p l i t (’ ’) ;
f o r (l e t i i n words){

context . wr i t e (words [i] , 1) ;
}

}

func t i on combine (key , values , context){
var emitValue = 0;
whi le (va lues . hasNext ()) {

emitValue += values . next () ;
}
context . wr i t e (key , emitValue) ;

}

func t i on g e t P a r t i t i o n (key , value , numPar t i t i ons){
var hashCode = func t i on (s){

re tu rn s . s p l i t (” ”) . reduce (func t i on (x , y){ x=((x<<5)−x)+y . charCodeAt (0) ; re tu rn x&x } ,0) ;
}
re tu rn Math . abs (hashCode (key)) % numPar t i t i ons ;

}

func t i on setup (context){
t h i s . tenMostOccurr ing = {};

}

func t i on reduce (key , values , context){
l e t count = 0;
whi le (va lues . hasNext ()) {

count += va lues . next () ;
}
t h i s . tenMostOccurr ing [key] = count ;

38 B. Use cases code examples

l e t _ s e l f = t h i s ;
l e t sortedWords = Object . keys (t h i s . tenMostOccurr ing) . s o r t (f unc t i on (a , b){

re tu rn _ s e l f . tenMostOccurr ing [b] − _ s e l f . tenMostOccurr ing [a] ;
}) ;

i f (Object . keys (t h i s . tenMostOccurr ing) . length > 10){
de le te t h i s . tenMostOccurr ing [sortedWords . pop ()] ;

}
}

func t i on cleanup (context){
f o r (l e t word in t h i s . tenMostOccurr ing){

context . wr i t e (word , t h i s . tenMostOccurr ing [word]) ;
}

}

B.9. Use case 9
f unc t i on setup (context){

}

func t i on map(key , value , context){
const words = value . rep lace (/[^a−zA−Z] / g , ’ ’) . s p l i t (’ ’) ;
f o r (l e t i i n words){

context . wr i t e (words [i] , 1) ;
}

}

func t i on combine (key , values , context){
whi le (va lues . hasNext ()) {

context . wr i t e (key , va lues . next ()) ;
}

}

func t i on g e t P a r t i t i o n (key , value , numPar t i t i ons){
var hashCode = func t i on (s){

re tu rn s . s p l i t (” ”) . reduce (func t i on (x , y){ x=((x<<5)−x)+y . charCodeAt (0) ; re tu rn x&x } ,0) ;
}
re tu rn Math . abs (hashCode (key)) % numPar t i t i ons ;

}

func t i on setup (context){
t h i s . cha rac te r s = {};

}

func t i on reduce (key , values , context){
whi le (va lues . hasNext ()) {

l e t va lue = va lues . next ()
l e t charac te r = key . charAt (0) ;
i f (! t h i s . cha rac te r s [charac te r]) {

t h i s . cha rac te r s [charac te r] = value ;
} e l se {

t h i s . cha rac te r s [charac te r] += value ;
}

}
}

B.10. Use case 10 39

f unc t i on cleanup (context){
f o r (l e t charac te r i n t h i s . cha rac te r s){

context . wr i t e (character , t h i s . cha rac te r s [charac te r]) ;
}

}

B.10. Use case 10
f unc t i on setup (context){

}

func t i on map(key , value , context){
const words = value . rep lace (/[^a−zA−Z] / g , ’ ’) . toLowerCase () . s p l i t (’ ’) ;
context . getCounter (’ t o t a l ’) . increment (words . length) ;

}

func t i on combine (key , values , context){
whi le (va lues . hasNext ()) {

context . wr i t e (key , va lues . next ()) ;
}

}

func t i on g e t P a r t i t i o n (key , value , numPar t i t i ons){
var hashCode = func t i on (s){

re tu rn s . s p l i t (” ”) . reduce (func t i on (x , y){ x=((x<<5)−x)+y . charCodeAt (0) ; re tu rn x&x } ,0) ;
}
re tu rn Math . abs (hashCode (key)) % numPar t i t i ons ;

}

func t i on setup (context){

}

func t i on reduce (key , values , context){
l e t count = 0;
whi le (va lues . hasNext ()) {

count += va lues . next () ;
}
context . wr i t e (key , count) ;

}

func t i on cleanup (context){

}

C
Implementation

C.1. MapReduce Framework
In this chapter we will discuss how our implementation works. The API we have written for our
MapReduce framework is as similar as the Hadoop (v2.6.3) [18] framework so students don’t need to
get familiar with two completely different API’s. We will start this section by describing the Languages
and Technologies used to implement the MapReduce framework, after that we will proceed to describe
the components of the framework and the signatures of the functions that are part of the input.
Finally we will explain the data flow in the framework and point to some examples that show that our
framework can simulate at least the required scenarios.

C.1.1. Languages
Our framework is purely written in JavaScript and uses WebWorkers to simulate a mapper or reducer
machine. By using WebWorkers we keep the memory between all mappers and reducers separated.
Mapper and reducer implementations are defined in separate files and WebWorkers are run with only
either of those, this means a single simulated machine can only be a mapper or reducer and never both.
Communication between master and WebWorker happens through standard WebWorker messages
[15].

C.1.2. Components
Framework context
All user-defined functions except the partitioner come with a context parameter. This can be used to
call framework functions.
The api is as follows:

context . getCounter (’ exampleCounterName ’) . increment (1) ;

Master
The master components accepts input, configuration and callback functions. The master initializes
WebWorkers, configures them with user defined functions and distributes the work load. Once all
reducers are done it returns the final result but it also returns logs and errors during the processing
itself. The data is returned by calling specified callback functions.

Mapper
The mapper accepts three user-defined functions: setup, map and combine. First the setup, thereafter
map for each key value pair and finally the combiner is called. Map and combine functions have a
’values’ parameter which is an iterator: once a value is read it cannot be read again. When the mapper
is done, the result is returned back to the master through a message.
The mapper API is as follows:

func t i on setup (context){

41

42 C. Implementation

/ / de f ine va r i a b l e s tha t can be used l a t e r i n map or combine
}

func t i on map(key , value , context){
/ / context . wr i t e (a_key , a_value) to emit pa i r s

}

func t i on combine (key , values , context){
/ / context . wr i t e (a_key , a_value) to emit pa i r s

}

Partitioner
The partitioner is called for each key value pair emitted by mappers to determine to which reducer the
pair should be send.
The partitioner API is as follows:

func t i on g e t P a r t i t i o n (key , value , numPar t i t i ons){
/ / re tu rn reducer i d w i th i n i n t e r v a l [0 , numPar t i t i ons)

}

The standard Hadoop partitioner is the HashPartioner [25] which distributes keys uniformly over
the available reducers. We have implemented a similar partitioner to test if our framework works as
expected [26].

f unc t i on g e t P a r t i t i o n (key , value , numPar t i t i ons){
var hashCode = func t i on (s){

re tu rn s . s p l i t (” ”) . reduce (func t i on (x , y){
x = ((x << 5) − x) + y . charCodeAt (0) ;
re tu rn x & x ;

} , 0) ;
}
re tu rn Math . abs (hashCode (key)) % numPar t i t i ons ;

}

Reducer
The reducer accepts three user-defined functions as well: setup, reduce and cleanup. The setup in
the reducer also gets called first, secondly the reduce function for each pair and finally the cleanup
function. Just like the mapper, ’values’ in reduce and cleanup are iterators: once a value is read it
cannot be read again.
The reducer API is as follows:

func t i on setup (context){
/ / de f ine va r i a b l e s tha t can be used l a t e r i n map or combine

}

func t i on reduce (key , values , context){
/ / context . wr i t e (key , va lue) to emit pa i r s

}

func t i on cleanup (context){
/ / context . wr i t e (key , va lue) to emit pa i r s

}

C.2. Student testing framework 43

C.1.3. Data flow
A quick overview of the data flow of the framework:

• Define a configuration with input, user defined paritioner/mapper/reducer code and number of
mappers/reducers to use.

• Create a MapReduce object with the configuration as argument

• The MapReduce framework will verify configuration and set internal variables if the configuration
is valid

• Mapper and reducer WebWorkers are created and configured with the user defined functions.
Furthermore, an event listener is attached to each WebWorker in order to retrieve result, log,
error and counter data.

• Define and set log, error, counter and result callback functions.

• Call run function on MapReduce object

• The framework will split the input of each document (default line split)

• Mappers are fed with chunks of the input with key (document id) value (line data) pairs

• Mappers process the data and while doing so they will message logs, errors, counter increments
and results back to the master. The master will in turn call its callback functions.

• The framework creates a partitioner WebWorker and provides this worker with the number of
reducers, key value pairs from the mappers and the user defined getPartition function.

• The partitioner assigns a reducer id to the key value pairs that mappers created and returns this
to the MapReduce object.

• The key value pairs now get assigned to their respective reducers based on the id returned from
the partitioner.

• Reducers process the data and while doing so they will message logs, errors, counter increments
and results back to the master. The master will in turn call its callback functions.

C.1.4. Simulating the required scenarios
In section 3.2 we discussed certain use cases that should certainly work using our solution. We have
written the code for our framework that can simulate each of these use cases, this code is tested and
gives the expected results. The implementations can be found in Appendix B.

C.2. Student testing framework
Grading student implementations is a tedious task and our client requested we would implement au-
tomatic validation of the output of jobs against a predefined expected result.

First of all we have defined a test configuration in JSON for each assignment. This JSON consists
of the name of the test, the input, the number of mappers/reducers, and expected counters/result.
An example of such JSON is as follows:

{
. . .
” t e s t s ” : [

{
”name” : ”One mapper , one reducer , s i n g l e document t e s t ” ,
” input ” : [
{
”name” : ” t e x t . t x t ” ,
” content ” : ”The dog i s i n the house ”

}

44 C. Implementation

] ,
”numMappers ” : 1 ,
” numReducers ” : 1 ,
” counters ” : {} ,
” output ” : [
{
” t e x t . t x t ” : 6

}
]

}
]

}

C.3. Front-end
For the front-end of the website we have decided to use Bootstrap, Ace, jQuery, custom css and of
course HTML. In this section we shall elaborate on these frameworks and languages. The design of
the website will also be introduced and discussed shortly.

C.3.1. Design
The website we have designed ended up having 4 types of pages: the homepage, exercise pages, an
overview page that shows available exercise pages and the submission page where the lecturer can
see the submitted solutions. We will shortly introduce each page type. The design explicitly does not
take mobile devices into account, since this is a coding environment and we do not think students will
be writing code on their phones during a lecture.

The homepage
We wanted to keep the homepage simple, since each visitor gets assigned a random identifier we did
add the easy to use Google ReCaptcha [27] as we did not to risk our system being flooded by random
IDs in case a bot spams the login form.

Figure C.1: The design of the homepage

The overviewpage
The overviewpage shows an accordion [28] where each week can expand and show the available
exercises for this week, which are linking to the corresponding exercisepage.

C.3. Front-end 45

Figure C.2: The design of the overviewpage

The exercisepage
In contrast to the simple home and overview page, the exercise page has a lot of content. At top of
the page is the exercise description (which can be folded in to save space on the page). On the left
side the MapReduce code can be written, we have split the classes mapper [19], partitioner [20] and
reducer [21] as seen in Hadoop over three tabs with code editors to write the methods that need to
be implemented.
On the right side a similar tab structure is used to display the input and output of the job. Both the
input and output will be truncated on the page to a maximum of about 10 lines, however a download
will be provided to see the full in- or output.

The lecturer page
When an active admin panel session is active, the submission button is present on the overview page
and the lecturer can click on it to view the submissions. When one or more students submitted their
code, submissions will be appear on the submissions page with an id and test score. The page groups
submissions by assignment and also tells you how many submissions there are and how many active
participants (at least one heartbeat in the last 60 seconds) there are. Furthermore, when the lecturer
clicks on a submission, a new tab is openened with the exercise page and submission of the student
filled in. This way the lecturer practically sees exactly what the student sees and could interactively
help with problems students encounter.

C.3.2. Ace
We have decided to use the Ace code editor plugin [29] for the students to write their code in. Since
we wanted students to be able to write code in the browser we wanted to give them a smooth coding
experience. Ace is highly configurable, meaning you can include only what you need. For us this meant
including the JavaScript mode, Textmate theme (to match the design we will discuss later) and the so
called language tools which allowed us to add custom autocompletion to the editors. We chose Ace
over other options like ICEcoder and CodeMirror because it is free, simple to implement, customisable
(only include what you need) and it packaged versions of Ace can be loaded for free over Content
Delivery Networks (CDN) like JsDelivr and cdnjs.

C.3.3. Bootstrap
To build our front-end we did not want to start completely from scratch, during design we explicitly kept
in mind a clear row/column structure so it would be very easy to build using the Bootstrap framework.
Bootstrap also has build in support for tabs and accordions which is made building the overview- and

46 C. Implementation

Figure C.3: The design of the exercisepage

Figure C.4: The submissions button being displayed

C.4. Back-end 47

Figure C.5: The lecturer page with one submission

Figure C.6: The ace editor with the textmate theme

exercisepages a lot easier.

C.3.4. jQuery
Bootstrap builds upon the jQuery framework, therefore we decided to use it in our webpages’ javascript
as wel. jQuery makes DOM selections very easy and there was no need for any other framework as all
the functionalities we needed were available in either jQuery or native javascript.

C.4. Back-end
The backend of our website will be written in PHP in combination with WordPress. The hosting ma-
chine will be very likely CentOS-based as this is typically the setup of a server that our client receives
from the TU Delft. As defined in our system requirements in Table 3.1, our system has to be platform
independent. Therefore we have chosen a WordPress backend, since this runs on both Windows and
Unix-based Operating Systems. In this section we will elaborate on how we have set up the backend
of the website.
As described in Subsubsection 3.3.1 we have chosen to use Wordpress as our CMS. Creating a custom
Wordpress website requires a few things, a Theme, optionally one or more plugins for extra function-
alities and some custom database tables in addition to the Wordpress tables.

C.4.1. Wordpress theme ’Trifle’
A Wordpress theme purely defines the ’skin’ of the website, for us this means our custom design. We
transformed the html we had build into templates, each pagetype getting its own template. For a
description of all pagetypes see Section C.3. In the backend a template can then be chosen to define
what type of page the administrator is creating (i.e an exercisepage or perhaps a new overview page).
The theme also includes all css files, images and the javascript page controller to style and operate
the pages correctly. However it also includes the JavaScript files of the MapReduce framework as this
is technically part of the front-end and there was no cleaner way of incorporating the framework into

48 C. Implementation

the website. The theme also includes a special functions file, here we have defined a function that
is executed on the ’publish_page’ hook. This function extracts the uploaded input zip and transforms
it into a JSON format in combination with other fields filled in for the exercise and stores it into the
database. This function simultanously extracts the tests zip and incorporates this into the assignment
JSON before storing it in the database, the format of this zip is described in D.2.2. Where this is stored
will be elaborated on in Subsection C.4.3.

C.4.2. Wordpress plugins
In our Wordpress installation we have included two plugins, the popular Advanced Custom Fields (ACF)
plugin [30] and our own newly created plugin ’Custom API’ which builds upon the Wordpress REST
API. We will continue to elaborate on each plugin.

Advanced Custom Fields
The ACF plugin allows its users to define conditional logic to display certain input fields depending
on which template has been selected. In this system this mainly affects the exercisepages as there
is nothing to configure regarding the home, overview and submissions pages. We have used ACF to
define all the fields we needed for the Exercise pages (e.g the exercise description or the input of the
job). For an overview of the fields we have defined see Appendix A.

Custom API plugin
We have also implemented our own REST API in Wordpress, this API can be used for example to get
exercise data or submit an assignment. The defined endpoints are:

GET /wp−j son / ap i / v1 / r e g i s t e r
This endpoint takes a querystring parameter ’g-recaptcha-response’ as input, first validates this with
Google, if it is validated correctly (i.e the user is not a bot) then a cookie will be generated in the
database and returned to the user. The cookie is required to get access to the rest of the endpoint.

GET /wp−j son / ap i / v1 / submiss ions /<ID>
This endpoint fetches a submission with a given identifier from the database. First checks the authen-
tication cookie and will return a HTTP status 401 unauthorized in case the cookie is invalid.

POST /wp−j son / ap i / v1 / submiss ions / c reate
This endpoint takes a ’submission’ parameter, which should be the properly formatted JSON containing
the users functions. The JSON should be structured as seen below. It also checks the authentication
cookie and will return a HTTP status 401 unauthorized in case the cookie is invalid.

{
mapper_setup : <mapper . setup code>,
mapper_mapper : <mapper .map code>,
mapper_combine : <mapper . combine code>,
p a r t i t i o n e r _ p a r t i t i o n e r : <p a r t i t i o n e r . g e t p a r t i t i o n code>,
reducer_setup : <reducer . setup code>,
reducer_reducer : <reducer . reduce code>,
reducer_c leanup : <reducer . c leanup code>

}

GET /wp−j son / ap i / v1 / assignment/<ID>
This endpoint fetches an assignment with a given identifier from the database. As described in Sub-
section C.4.1 the assignments are stored in a JSON format in the database. It also checks the authen-
tication cookie and will return a HTTP status 401 unauthorized in case the cookie is invalid.

C.4.3. Custom Database Tables
• Table wp_assignments for storing assignment data by id of wp_posts: id: INT(11), assignment:
LONGTEXT

C.5. Testing 49

• wp_custom_users for keeping track of cookies and active participants: id: INT(11), cookie: VAR-
CHAR(45), lastheartbeat: INT(11)

• wp_submissions for storing submissions of users by userid of table wp_custom_users and assign-
mentid of table wp_assignments: userid: INT(11), assignmentid: INT(11), submission: LONG-
TEXT, timestamp: INT(11)

C.4.4. Anonymous login
The anomymous login works relatively simple with the Google recaptcha implemented on the home-
page. The user checks the ”I am not a robot” box, perhaps has to perform one of the ReCaptchas
puzzles and then presses ’login’. A GET request is done to the login form backend, where the google-
recapcha-response parameter is passed on to the registration endpoint, which in turn validates the
response and returns the cookie. The form backend then sets this cookie and redirects the user to the
overview page. From this moment on the user has its valid cookie and can use this to get assignments
and submit solutions.

C.5. Testing
In order to guarantee that our framework works as expected, we have employed two types of test-
ing: QUnit [31] and Selenium [32]. QUnit is used to test that our framework runs MapReduce jobs
with the correct output whereas Selenium is used to test whether our site works as expected. In other
words we have separated website and framework testing. For QUnit we have individually tested frame-
work components: mapper, reducer and mapreduce as a whole. For each component we have tested
whether running a job leads to expected job output, counters and errors all individually. Furthermore,
for mapreduce as a whole we have tested whether jobs with single reducer/mapper works, whether
jobs with multiple mapper/reducers work and last but not least, whether all our 10 use cases run and
give the expected result. For Selenium we have tested if the navigation and functionality of the website
works as expected. For example, we have tested if clicking on an assignment actually redirects you to
the exercise page. Other tests include for example whether you can fill in the MapReduce code, press
on run and get job output.

D
Using the system

D.1. Installing the website
In this quick step by step guide we will give a general guide how Trifle can be setup by a developer.
Steps may be different depending on the type of Operating System that is used. These steps we provide
are done on a CentOS machine.

• Install Apache

• Install MySQL

• Clone Trifle repository in /var/www/html folder

• Load database using dump.sql file

• Visit <url>/wp-admin to login to the admin panel using credentials: user: admin password:
OeDvfACs2gm (change this after first login)

• Visit <url>/ to login to the student/lecture view (lecture view can only be used when you have
an active admin panel session)

D.2. Using Wordpress
In this section we will discuss how to use Wordpress in combination with our custom theme ’Trifle’.
Trifle uses the two plugins described in Subsection C.4.2 which do not require the user to configurate
anything.

D.2.1. Page hierarchy
Before we go in depth on how to set up the pages we will discuss the hierarchy of the pages. This is
actually very simple, in wordpress the homepage, overview page and lecturer page will be defined on
the same level (root level). Then each exercisepage will have to be defined with the overview page as
parent. To visualise the hierarchy we have included a small diagram below.

D.2.2. Setting up the first pages
Now that the global hierarchy is clear we will proceed to explain how to set up the pages in the website.
The setup consists of the following steps:

• Creating the login page (and setting it as the homepage)

• Creating the overview page

• Creating the lecturerpage

• Creating an exercise page

51

52 D. Using the system

Figure D.1: A graphic representation of the hierarchy of page types within the website

Now we will continue to go in depth on each of these steps. Before starting, please go to the URL of
your instance of the website (which you have defined during the installation) and append /wp-admin
to this URL. Here you can log into the Wordpress administrator area with your admin account. This
page will be the starting point for the rest of the guide.

Creating the login page
Once logged in the wp-admin area you can create a new page by hovering over the ’pages’ menu item
on the left and selecting ’new page’. There really is nothing to configure about the loginpage, all you
have to do is set the template to ’LoginPage’ on the bottom right of the page.

Figure D.2: Creating a new page in Wordpress
Figure D.3: Setting a template in Wordpress

Creating the overview page
In a similar fashion the overview page is created, the only difference being the template that needs to
be selected is the OverviewPage template.

Creating the Lecturer page
Just like the overview and login page the lecturer page is created, needs no configuration except the
template has to be set to ’LecturerPage’. The only difference between the other pages is that the parent
should be the previously created overview page.

D.2. Using Wordpress 53

Creating an exercise page
Creating an exercise page requires some preparation before you can create it in Wordpress. Start off
by collecting the input in separate .txt files and zipping these documents in a single zip archive. Make
sure the file names are somewhat descriptive as these will be shown on the exercisepage and used as
docIds in the MapReduce framework just like in Hadoop.
Once the zip is ready, create a new page, select the ’ExercisePage’ template and make sure to also
set the parent to the earlier created Overview page. Several new fields will now appear which need to

Figure D.4: Selecting the overview page as parent of the exercise page

be filled in. In the ’General’ tab week number, amount of mappers and reducers can be filled in and
input zip can be uploaded. A description of the exercise can be provided in the wysiwyg editor on the
page. In the ’Editor settings’ tab there are options to hide editors from view, pay close attention, if an
editor is hidden, the default code set in the matching editors textarea will be executed when a student
works on the assignment. The default code for each editor can be modified, these fields default to an
empty function except for the combine and getPartition functions. The combine function defaults to
the elementary combiner (which simply emits each key/value pair again) this function can be found in
Appendix A. Finally the getPartition function defaults to the HashPartition as described in section C.1.2.

In the ’Student tests’ tab tests can be added as a zip file. The zip should have the following
properties: On root level in the zip there should be folders for each test. The name of this folder will
be used as the name of the test. In each folder there should be 3 items, a .txt file named ’config’, and
two folders, one named ’input’ and one named ’output’.

• test (Folder) - Mandatory

– ’config.txt’ (File) - Mandatory
This text file should only contain two numbers, the amount of mappers on the first line, the
amount of reducers on the second line. An example with 2 mappers and 3 reducers would
mean the file only contains:
2
3

– input (Folder) - Mandatory
This folder contains all files that will be used as input for the test.

– output (Folder) - Mandatory This folder contains the files that contain the output exactly
seen as on the website. An important aspect is that each reducer outputs its own file. So
for each reducer there should be a file named after the index of that reducer. So in the
example with 3 reducers there would be 3 files in this folder: ’0.txt’, ’1.txt’ and ’2.txt’.

⋄ ’0.txt’ - Mandatory
This file (and the same file for higher index reducers as explained earlier) contain the
output of the reducer with this index. the file contains key value pairs on each line, key
and value separated by comma.

⋄ ’counters.txt’ - Optional
Finally there is one optional file with the same structure as the other files in this folder.
It should only be present if counters have to be tested as well. Each line should contain

54 D. Using the system

a counter name (ask the students to use this name in their exercises) and the value this
counter should return. Like the key value pairs this should be comma separated. If for
example a counter called ‘total‘ should have the value 420 then the file should contain
total,420

When an assignment page is submitted, the zip gets parsed and the tests are added to the assignment
data in the database. The student test data is downloaded once a student opens an assignment page.

Figure D.5: Adding tests to an assignment

When students run or submit code for an assignment that has student tests, the student test framework
runs these tests and presents the result to the student. When submit is pressed, the result for the tests
are uploaded together with the student code to be viewed by the lecturer. The student code is tested
for job output and counter output and students can see test results for both separately. Finally you

Figure D.6: Viewing test score, student view

Figure D.7: Viewing test score, lecturer view

can also publish this page, it will also show up on the overview page under the selected week. From
this point on more exercise pages can be added to ones liking.

D.3. Using the website 55

D.3. Using the website
When a student visits Trifle for the first time, he or she will be presented with a login page on which
only a captcha has to be filled in to sign in. Once that is done, a cookie will be set that will be valid for
a maximum of 24 hours after inactivity. This way, students can use the site anonymously.

After signing in, students get redirected to the overview page on which two things can be done:
sign out and selecting an assignment. Assignments are grouped by week number to keep the overview
organised. When a student clicks on an assignment the student gets redirected to the exercise page
of the assignment.

Figure D.8: Exercise page

Our user test has shown that the navigation is easy and Trifle is intuitive to use. Assignment de-
scription, test score and tooltips help students to understand what they are asked to do and complete
an assignment even faster. Tooltips are shown when you hover over the ’(i)’ icon. Code for different
parts of the system, input, logs and output can be viewed when you click on its designated tab. Jobs
can be run when you click on the run button and code (together with the test score) can be submitted
when clicked on submit. Input and output data can be downloaded by clicking the download button
for students that want to see the data in a text editor of their preference.
Implementations must be written in JavaScript and there are only four non-standard JavaScript meth-
ods that have to be used.

• context.getCounter(’test’).increment(1); in order to increment the counter ’test’ with one.

• context.write(’abc’, 5) in order to emit the key value pair ’abc’,5.

• values.hasNext() in order to check if an iterator has any more values.

• values.next() to retrieve the next value of an iterator.

E
Project description

Hadoop is currently taught in the second year of the Computer Science Bachelor at TU Delft. Hadoop is
one of the most popular frameworks for distributed processing on large clusters. Due to our setting (a
university course) we have no access to a ”real” cluster and instead all lab assignments of the course
are conducted through a virtual machine containing a single-machine Hadoop setup.

This setup has one main issue: some important aspects of Hadoop (e.g. no sharing of memory
between Mappers and Reducers, or the non-default partitioning of keys) cannot be taught in the lab.
While the students learn - in theory - how those issues influence programming in Hadoop, they often
cannot apply these concepts as they do not experience these issues first-hand.

The project proposed here should SIMULATE the workings of Hadoop on a cluster. The goal is not
to develop a fully-fledged Hadooop simulation, but to focus on those specific aspects of Hadoop that
cannot be taught in the current VM setup. In additon, the solution should enable the lecturer to use
the tool during in-class exercises for a more interactive teaching than is currently possible.

57

F
Raw benchmark results

59

60 F. Raw benchmark results

61

62 F. Raw benchmark results

63

G
User test questionnaire

65

66 G. User test questionnaire

67

68 G. User test questionnaire

69

H
Infosheet

Title
Hadoop in the browser

Organisation
Web Information Systems

Date of presentation
24 June 2016 at 10:00

Description
The lecturer of the Big Data Processing (BDP) course approached us with the request to im-
plement a tool that helps students understand the principles of MapReduce. At the moment
some principles cannot be taught in currently used environments like the Cloudera Virtual Ma-
chine (VM). For practical assignments a Cloudera VM is used to start Hadoop jobs. This VM
is slow, cannot be used interactive and it cannot be used to teach all MapReduce principles like
true memory separation in a real cluster. In order to overcome these and other shortcomings
we have looked at several options and decided to build a web-based simulation of MapReduce.
This solution has several advantages over other options such as Cloudera. It runs on all pop-
ular Operating Systems without installation, enables the lecturer to give interactive lectures
by getting real-time insights in students approaches to problems and allows teaching of some
MapReduce principles that cannot be taught with currently available tools.

Members of the Project Team
Hasan Bilen

Hasan is a movie lover and a passionate Computer Science student building real-time
back-end systems at a Dutch IT company. Hasan mainly focussed on the database, API
and student testing.

Marc Zwart
Marc is a Computer Science bachelor student at the TU Delft. Working as a web-developer
at Tam Tam, a Dutch digital agency alongside his studies. Marc was responsible for the
user interface and setting up the Wordpress website.

Both team members have contributed to the MapReduce simulation framework, unit testing, preparing
the report and final project presentation.

Coach: Dr. Thomas Abeel TU Delft
Client: Dr. Claudia Hauff TU Delft
Contact person: Dr. Thomas Abeel T.Abeel@tudelft.nl
Contact person: Dr. Claudia Hauff C.Hauff@tudelft.nl
Contact person: Marc Zwart marcdevin@hotmail.com
Contact person: Hasan Bilen hasanbilen38@gmail.com

The final report for this project can be found at: http://repository.tudelft.nl

71

http://repository.tudelft.nl

I
SIG Feedback

In this appendix we shortly discuss the feedback received from SIG and what we did with this feedback.

I.1. SIG Feedback on code quality
This is the feedback we received from SIG, it is not written by us
De code van het systeem scoort bijna 3.4 sterren op ons onderhoudbaarheidsmodel, wat betekent dat
de code gemiddeld onderhoudbaar is. De hoogste score is niet behaald door een lagere score voor
Unit Size. Voor Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is. Het
opsplitsen van dit soort methodes in kleinere stukken zorgt ervoor dat elk onderdeel makkelijker te
begrijpen, te testen en daardoor eenvoudiger te onderhouden wordt. Binnen de langere methodes
in dit systeem, zoals bijvoorbeeld de ’$(document).ready’-methode, zijn aparte stukken functionaliteit
te vinden welke ge-refactored kunnen worden naar aparte methodes. Commentaarregels zoals bi-
jvoorbeeld ’//make sure ace is loaded’ en ’//surpress warning in console’ zijn een goede indicatie dat
er een autonoom stuk functionaliteit te ontdekken is. Het is aan te raden kritisch te kijken naar de
langere methodes binnen dit systeem en deze waar mogelijk op te splitsen. Voor Duplicatie wordt er
gekeken naar het percentage van de code welke redundant is, oftewel de code die meerdere keren
in het systeem voorkomt en in principe verwijderd zou kunnen worden. Vanuit het oogpunt van on-
derhoudbaarheid is het wenselijk om een laag percentage redundantie te hebben omdat aanpassingen
aan deze stukken code doorgaans op meerdere plaatsen moet gebeuren. In dit systeem is er duplicatie
te vinden html bestanden, bijvoorbeeld tussen overviewpage.html, regels 1-19 en lecturerpage.html,
regels 1-19. Dit soort duplicatie can opgespoord worden door het gebruik ven partials. In dit bepaalde
voorbeeld kunnen jullie een header partial maken dat door de twee bestanden aangeroepen zou wor-
den. Over het algemeen scoort de code gemiddeld, hopelijk lukt het om dit niveau te verbeteren tijdens
de rest van de ontwikkelfase. Als laatste nog de opmerking dat er geen (unit)test-code is gevonden in
de code-upload. Het is sterk aan te raden om in ieder geval voor de belangrijkste delen van de func-
tionaliteit automatische tests gedefinieerd te hebben om ervoor te zorgen dat eventuele aanpassingen
niet voor ongewenst gedrag zorgen.

I.2. Taking advantage of the SIG Feedback
There was some constructive and some non-constructive feedback we received from SIG, as the feed-
back was written in Dutch we include a short list in English that summarizes the feedback:

• Unit size was too large (especially the document.ready() method)

• There is redundancy in the HTML files, like the header which is present on each page

• There was no unit testing found

So to start of, we had a critical look at out unit size, we drastically decreased this by splitting functional-
ities wherever possible. This did make our code a lot easier to read. The redundancy in the HTML files
was a bit non-constructive as the HTML files are stored in the repository purely as a demo. This demo

73

74 I. SIG Feedback

is also a good backup in case something would happen to the wordpress templates. The redundancy
SIG spoke of is not present in these templates. So we left the demo HTML as it is. The fact that no
unit tests were found is quite flabbergasting since on the root folder of the repository we send to them
there was a folder ’tests’ which included two test suites, one QUnit suite which tested the framework
and a Selenium suite which tested the interface’s behaviour. So there was little to nothing to improve
on this part, we did update the repositories README.md to instruct the reader to set up the wordpress
website and go to the ’[domainname]/tests’ URL to run the QUnit test suite and instructions on how to
run the Selenium test suite.

Bibliography

[1] Big Data Processing study guide, http://www.studiegids.tudelft.nl/a101_
displayCourse.do?course_id=40230 (), accessed: 2016-05-01.

[2] TI2736-B: Big Data Processing, http://www.st.ewi.tudelft.nl/~hauff/TI2736-B.
html (), accessed: 2016-05-01.

[3] J. Dean and S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, Commun.
ACM 51, 107 (2008).

[4] Apache Hadoop, https://hadoop.apache.org/, accessed: 2016-05-25.

[5] Cloudera VM, https://www.cloudera.com/documentation/enterprise/5-3-x/
topics/cloudera_quickstart_vm.html, accessed: 2016-05-25.

[6] S. Grissom and M. J. Van Gorp, A practical approach to integrating active and collaborative learning
into the introductory computer science curriculum, in Journal of Computing Sciences in Colleges,
Vol. 16 (Consortium for Computing Sciences in Colleges, 2000) pp. 95–100.

[7] J. J. McConnell, Active learning and its use in computer science, ACM SIGCSE Bulletin 28, 52
(1996).

[8] T. Briggs, Techniques for active learning in CS courses, Journal of Computing Sciences in Colleges
21, 156 (2005).

[9] L. Thomas, M. Ratcliffe, J. Woodbury, and E. Jarman, Learning styles and performance in the
introductory programming sequence, ACM SIGCSE Bulletin 34, 33 (2002).

[10] L. C. Kats, R. G. Vogelij, K. T. Kalleberg, and E. Visser, Software Development Environments on
the Web: A Research Agenda, in Proceedings of the ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software, Onward! 2012 (ACM, New York,
NY, USA, 2012) pp. 99–116.

[11] R. Reis, Pierre Volschenk-TP Msg.# 1146 Designing and Delivering Effective Lectures, (2012).

[12] N. McIntosh, Delivering effective lectures, JHPIEGO Strategy Papers (1996).

[13] WebLab: Learning Management System., https://weblab.tudelft.nl/, accessed: 2016-
05-26.

[14] P. Garrity, T. Yates, R. Brown, and E. Shoop, WebMapReduce: An Accessible and Adaptable Tool
for Teaching Map-reduce Computing, in Proceedings of the 42Nd ACM Technical Symposium on
Computer Science Education, SIGCSE ’11 (ACM, New York, NY, USA, 2011) pp. 183–188.

[15] WebWorker API and browser compatibility, https://developer.mozilla.org/en-US/
docs/Web/API/Web_Workers_API/Using_web_workers, accessed: 2016-06-10.

[16] JavaScript browser compatibility, https://kangax.github.io/compat-table/es5/, ac-
cessed: 2016-05-21.

[17] WordPress CMS, http://wordpress.org/, accessed: 2016-06-16.

[18] Overview (Apache Hadoop Main 2.6.3 API), https://hadoop.apache.org/docs/r2.6.3/
api/, accessed: 2016-05-30.

[19] Mapper (Hadoop 2.4.1 API), https://hadoop.apache.org/docs/r2.4.1/api/org/
apache/hadoop/mapreduce/Mapper.html, accessed: 2016-05-21.

75

http://www.studiegids.tudelft.nl/a101_displayCourse.do?course_id=40230
http://www.studiegids.tudelft.nl/a101_displayCourse.do?course_id=40230
http://www.st.ewi.tudelft.nl/~hauff/TI2736-B.html
http://www.st.ewi.tudelft.nl/~hauff/TI2736-B.html
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
https://hadoop.apache.org/
https://www.cloudera.com/documentation/enterprise/5-3-x/topics/cloudera_quickstart_vm.html
https://www.cloudera.com/documentation/enterprise/5-3-x/topics/cloudera_quickstart_vm.html
http://dx.doi.org/10.1145/2384592.2384603
http://dx.doi.org/10.1145/2384592.2384603
https://weblab.tudelft.nl/
http://dx.doi.org/10.1145/1953163.1953221
http://dx.doi.org/10.1145/1953163.1953221
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://kangax.github.io/compat-table/es5/
http://wordpress.org/
https://hadoop.apache.org/docs/r2.6.3/api/
https://hadoop.apache.org/docs/r2.6.3/api/
https://hadoop.apache.org/docs/r2.4.1/api/org/apache/hadoop/mapreduce/Mapper.html
https://hadoop.apache.org/docs/r2.4.1/api/org/apache/hadoop/mapreduce/Mapper.html

76 Bibliography

[20] Partitioner (Hadoop 2.4.1 API), https://hadoop.apache.org/docs/r2.4.1/api/org/
apache/hadoop/mapreduce/Partitioner.html, accessed: 2016-05-21.

[21] Reducer (Hadoop 2.4.1 API), https://hadoop.apache.org/docs/r2.4.1/api/org/
apache/hadoop/mapreduce/Reducer.html, accessed: 2016-05-21.

[22] L. Li and W. Chou, Design and describe REST API without violating REST: A Petri net based
approach, inWeb Services (ICWS), 2011 IEEE International Conference on (IEEE, 2011) pp. 508–
515.

[23] D. Crockford, The application/json media type for javascript object notation (json), (2006).

[24] J. Sutherland, N. Harrison, and J. Riddle, Teams That Finish Early Accelerate Faster: A Pat-
tern Language for High Performing Scrum Teams, 2014 47th Hawaii International Conference on
System Sciences 0, 4722 (2014).

[25] HashPartitioner Hadoop, https://hadoop.apache.org/docs/r2.6.3/api/org/
apache/hadoop/mapreduce/lib/partition/HashPartitioner.html (), accessed:
2016-05-22.

[26] JavaScript hashCode implementation, http://werxltd.com/wp/2010/05/13/
javascript-implementation-of-javas-string-hashcode-method/ (), accessed:
2016-05-22.

[27] reCAPTCHA: Easy on Humans, Hard on Bots, https://www.google.com/recaptcha/
intro/index.html, accessed: 2016-05-15.

[28] Accordion (GUI), https://en.wikipedia.org/wiki/Accordion_(GUI), accessed: 2016-
05-21.

[29] Ace - The high performance code editor for the web, https://ace.c9.io/, accessed: 2016-
05-10.

[30] ACF | Advanced Custom Fields Plugin for WordPress, https://www.
advancedcustomfields.com/, accessed: 2016-04-29.

[31] QUnit: A JavaScript Unit Testing framework., https://qunitjs.com/, accessed: 2016-06-16.

[32] Selenium - Web Browser Automation, http://www.seleniumhq.org/, accessed: 2016-06-
16.

https://hadoop.apache.org/docs/r2.4.1/api/org/apache/hadoop/mapreduce/Partitioner.html
https://hadoop.apache.org/docs/r2.4.1/api/org/apache/hadoop/mapreduce/Partitioner.html
https://hadoop.apache.org/docs/r2.4.1/api/org/apache/hadoop/mapreduce/Reducer.html
https://hadoop.apache.org/docs/r2.4.1/api/org/apache/hadoop/mapreduce/Reducer.html
http://dx.doi.org/ http://doi.ieeecomputersociety.org/10.1109/HICSS.2014.580
http://dx.doi.org/ http://doi.ieeecomputersociety.org/10.1109/HICSS.2014.580
https://hadoop.apache.org/docs/r2.6.3/api/org/apache/hadoop/mapreduce/lib/partition/HashPartitioner.html
https://hadoop.apache.org/docs/r2.6.3/api/org/apache/hadoop/mapreduce/lib/partition/HashPartitioner.html
http://werxltd.com/wp/2010/05/13/javascript-implementation-of-javas-string-hashcode-method/
http://werxltd.com/wp/2010/05/13/javascript-implementation-of-javas-string-hashcode-method/
https://www.google.com/recaptcha/intro/index.html
https://www.google.com/recaptcha/intro/index.html
https://en.wikipedia.org/wiki/Accordion_(GUI)
https://ace.c9.io/
https://www.advancedcustomfields.com/
https://www.advancedcustomfields.com/
https://qunitjs.com/
http://www.seleniumhq.org/

	Context
	About the Big Data Processing course
	MapReduce
	Hadoop
	Current MapReduce teaching methods

	Problem definition
	Shortcomings Cloudera VM
	Effective teaching model
	Requirements
	State of the art
	Website with backend that runs Hadoop jobs
	Multi VM approach
	P2P VM approach
	Client-side simulation

	Choice motivation

	Technical choices & Implementation
	Solution specific MoSCoW overview
	Use cases
	High level system design
	Server
	Browser (Lecturer)
	Browser (Student)
	MapReduce framework
	Custom MapReduce framework

	Implementation
	Software methodology

	Research & results
	Benchmarks
	Setup
	Benchmarked use cases
	Graphical results

	User test
	General results
	Questionnaire results
	Suggestions from participants
	Remarks client

	Discussion
	The resulting implementation
	Recommendations based on benchmarks
	Feedback from testers

	Recommendations for the BDP course
	Future work

	Defined custom fields
	Use cases code examples
	Use case 1
	Use case 2
	Use case 3
	Use case 4
	Use case 5
	Use case 6
	Use case 7
	Use case 8
	Use case 9
	Use case 10

	Implementation
	MapReduce Framework
	Languages
	Components
	Data flow
	Simulating the required scenarios

	Student testing framework
	Front-end
	Design
	Ace
	Bootstrap
	jQuery

	Back-end
	Wordpress theme 'Trifle'
	Wordpress plugins
	Custom Database Tables
	Anonymous login

	Testing

	Using the system
	Installing the website
	Using Wordpress
	Page hierarchy
	Setting up the first pages

	Using the website

	Project description
	Raw benchmark results
	User test questionnaire
	Infosheet
	SIG Feedback
	SIG Feedback on code quality
	Taking advantage of the SIG Feedback

	Bibliography

