Delft University of Technology, In Partial Fulfilment of the Requirements For the Bachelor of Computer Science and Engineering

Knowing one’s opponents: Self Modeling Advantage Actor Critic for the Iterated
Prisoner’s Dilemma

Eric van der Toorn!, Neil Yorke-Smith!,

I'TU Delft

e.a.vandertoorn@student.tudelft.nl
n.yorke-smith@tudelft.nl

Abstract

A recent advancement in Reinforcement Learn-
ing is the capability of modelling opponents. In
this work, we are interested in going back to ba-
sics and testing this capability within the Iter-
ated Prisoner’s Dilemma, a simple method for
modelling multi agent systems. Using the self
modelling advantage actor critic model, we set
up a single agent model that encodes its oppo-
nents, without requiring the opponents’ actions
directly. To verify that this technique is indeed
capable of modelling opponents its capacity of
encoding opponents is tested and the trained
model is tested against several popular strate-
gies. The embedding is found to not have a
positive effect on the reward, only increasing
the randomness of the model.

1 Introduction

The real world is rife with complex social situations
which humans encounter and navigate through daily.
One of the illustrious goals of Reinforcement Learning
(RL) is to have machines that can interact with humans
within their social web [1]. Understanding others is a
crucial part of being able to interact, and is thus a topic
of interest within RL [2].

One major drawback of normal Reinforcement Learn-
ing is that it is assumed the entire environment is ob-
served, and unobserved parts of the state are not relevant
for decisions. There are many real-world cases where this
is not the case however, like traffic signal control[3], or
when facing an opponent that takes into account more
than just the last action. One technique used to under-
stand such opponents is known as Opponent Modelling,
where the agent attempts to derive the strategy of its
opponents, thus acknowledging the partial environment
and using that to achieve optimal results [4].

Usually, Opponent Modelling requires access to the op-
ponent’s observations, but Papoudakis and Albrecht re-
cently developed a new model which does not require this
information, using only local observations of the agent
itself. They achieve this by using Variational Autoen-

coders (VAEs), as developed in 2014 by Kingma and
Welling [6] to encode opponent information.

In their paper “Variational Autoencoders for Op-
ponent Modelling in Multi-Agent Systems” (VAEOM-
MAS) [5], Papoudakis and Albrecht presented the Self
Modelling Advantage Actor Critic (SMA2C), a model
which allows the encoder part of the VAE to learn op-
ponent models conditioned on only local information.
Whilst testing the application in some different scenar-
ios, ranging from the Speaker-Listener to Predator-Prey,
there was only a brief investigation of the Iterated Pris-
oner’s Dilemma, an extension of the famous Prisoner’s
Dilemma [7]. In this work, we explore this more by look-
ing into using single-agent RL within the Iterated Pris-
oner’s Dilemma (IPD) where we control a single agent
while opponents have a fixed policy.

In doing this our major goal is to test the reproducibil-
ity of the VAEOMMAS work, then investigate how to de-
termine when a representation of an opponent has been
learned. Additionally, we investigate which information
the model performs best with. As an additional expan-
sion, we look whether this model can compete success-
fully in a round-robin tournament against several differ-
ent types of opponents, taken from the first tournament
hosted by Axelrod [8], to test its capability for general-
ization within the IPD game.

This paper will start by explaining the concepts that
are involved in a background section, then follow with a
detailed description of the methodology and model used.
Then, we present the results of the experiments held,
followed by an analysis and discussion. We conclude with
a look at the reliability of this new model and potential
future paths to follow.

2 Background

In this section, we will go into the definition of reinforce-
ment learning and what problems it tries to solve, we will
go into the policies that are required in multi-agent situ-
ations also known as strategies. Then we will explain the
environment that we will be doing our experiments on,
the iterated prisoner’s dilemma, as well as the machine
learning technique that will be essential for learning op-
ponent strategies, the variational autoencoder.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a field of study and
problem-solving technique focused on a sequential
decision-making problem in which an agent interacts
with an environment [9]. For ease of understanding, we
will use the game of chess as a typical example hereof
throughout the explanation.

2.1.1 Markov Decision Process

The first step before one can use RL is to model the
problem as a Markov Decision Process (MDP). An MDP
can be defined as a tuple M = (S, A, P, R), with S the
set of states of the environment. For chess, this would
be all possible configurations of the chessboard. A is
the set of actions, the legal moves that the player can
take. P : (S,A4,8) — [0,1] is the transition function
or the chance that a certain move will lead to a certain
next state. As the moves of the opponent are part of the
system in chess, the next state in which the agent can
take action is oft uncertain. Lastly, there is a certain
numerical reward associated with each action taken at a
given state, defined by R : (S,.4) — R. This could, for
instance, be a high reward for the move that checkmates
the opponent. One important thing to note about a
Markov process is that it assumes the problem possesses
the Markov property, meaning that all future states are
conditionally dependent only on the current state, not
on the past [10].

2.1.2 Learning

Every turn ¢t the agent observes s; € S, with S all possi-
ble states that the chess board can be in. Then the agent
takes an action a € A(s;), the set of all valid moves it
can take. The environment executes the action (plays
the move), and the state advances to s;y1, more com-
monly known as s’, and the agent receives a reward r.
In our example, if the agent checkmates its opponent
with move a, it receives full points. The goal of RL is to
find a way to maximize the future reward. It does this by
trying to discover the value a state has. For example, the
state from which you can checkmate the opponent has a
high value to the agent, so when the agent can finish the
game from there, this state is given more value.

2.1.3 Policies
A particular strategy is also called a policy 7. To find
a policy, the agent predicts how much reward it would
gain by following each one and chooses the one with the
maximal value. The goal is for the agent to learn optimal
policy 7*:

" = argmax, R: (1)

With R; the discounted future reward from time ¢, also
know as the value of a state with respect to a policy:

T
Ry=V"(s1) =Y *rem (2)
k=0

The discount « prioritizes rewards that are closer in the
future.

Smile: 0.99

Skin tone: 0.85
Gender: -0.73
decoder
Beard: 0.85
Glasses: 0.002

Latent attributes

v}‘;“)
)

Figure 1: Example of the latent encoding of an autoencoder.
Adapted from [13].

While one way of learning a policy is to optimize a
value-based function Q in what is known as Q-learning
[11], another is to directly parameterize the policy func-
tion with a neural network, in what is known as policy
gradient [12]. This work will focus on the latter.

To predict this amount of reward for a particular pol-
icy, we define a value function which goes through each
possible resulting state and assigns it a value, with the
more steps a particular state is from the current one, the
less value it holds to the agent currently.

2.2 Autoencoder

An autoencoder, as used in this work, is a neural network
that has learned to compress its input data. It takes
an input encodes that input into a smaller vector and
decodes it back to something as similar as possible as its
input. The error in the reconstruction can be propagated
back to train the network. As an example see fig. 1.

2.3 Variational Autoencoder

One downside of autoencoders is that they do not have
smooth transitions. That is, given two similar inputs
that encode to similar latent encodings, they could have
radically different reconstructions [14]. One way to re-
tain the continuity is to use a variational autoencoder
(VAE). This is a recently developed technique [6]. A
VAE adds a step in between the encoding and decoding.
The ‘code’, usually named z, is split into two, a p, and
a 0,. These variables are then used to sample from a
distribution, usually a multivariate Gaussian, as follows:

z2=p, +e€o, (3)

Through recombining a standardized multivariate Gaus-
sian sample ¢ with the parameters in what is known
as the “reparameterization trick”, backpropagation to-
wards the encoder is still possible. The sample z is then
passed to the decoder and used in the same manner as a
normal autoencoder. This way, the autoencoder learns
distributions, not discrete values, which forces a more
smooth and continuous representation. For an example
see fig. 2.

2.4 Tterated Prisoner’s Dilemma

The Iterated Prisoner’s Dilemma (IPD) an extension of
the well-known extension of the general sum game Pris-
oner’s Dilemma (PD). Both have been a rich source of

e N
wwar DN .
encoder /\ decoder &‘p
Beard: <t " . <0
: . :)

Latent attributes

Figure 2: Example of how the learned encoding of a Vari-
ational Autoencoder could look like. The curves are repre-
sentations of the mean and variance that the VAE encodes.
Adapted from [13]

research material since the 1950’s [7]. Definitions for
PD are manifold, for clarity we define it here once again.

Prisoner’s Dilemma

Agent 1
Cooperate | Defect
Agent 2 [Cooperate | (R,R) (T,S)
Defect (5,T) (P,P)

Table 1: Payout scheme PD

Two agents play a matrix game: each agent has to
choose between Cooperation and Defection, without be-
ing able to communicate with or observe the opponent’s
choice beforehand. Payout is given according to the ma-
trix shown in table 1, with Agents 1 and 2 receiving the
first and second part of the tuple respectively, where (in
strictly decreasing order of payout):

T is the Temptation payout, for the agent that de-
fected while the other one cooperated. As it is
tempting, it should be the largest.

R is the Reward for mutual cooperation.
P is the Penalty for mutual defection.

S is the Sucker payoff, for the agent that cooperated
while the other one defected.

Furthermore, the following should also hold: R > S"’TT,
it should not be a better tactic to interchangeably be the
sucker and the tempter rather than consistently cooper-
ating.

When we repeat the Prisoner’s Dilemma any number
of times, we get the Iterated Prisoner’s Dilemma (IPD).
The question of IPD is often whether cooperation can
evolve with repetition [8].

3 Method

This section contains the methodology used to answer
the hypothesis. It starts by defining the reinforcement
learning problem that the model will be optimizing for

and motivating why this method was chosen in particu-
lar. Following that is a description of the environment,
an adaptation of IPD. Then we explain the experiments
that we have held, from replicating the SMA2C original
paper to hosting an Axelrod tournament.

3.1 Problem overview

When tackling a dynamic environment with Reinforce-
ment Learning, we model it as a Markov Decision Pro-
cess, with an inherent assumption that the problem
obeys the Markov property as explained in section 2.1.
The situation this work looks at is when the environ-
ment contains an opponent whose state is unknown and
unobservable to the agent. The task of the agent is then
to find out what the opponent is going to do. It en-
codes the information that it does possess to attempt
to model what the opponent is thinking, allowing it to
capture that as part of the environment.

3.1.1 Environment and Observations

To model the game as a reinforcement learning task, we
describe it as a modified MDP: M = (S, A, P,R). The
environment in which this investigation takes place is
that of the Iterated Prisoner’s Dilemma, as explained
in section 2.4. This is a matrix game without a state,
leaving us with a choice of what our agent observes.

As we wish to investigate whether it is possible to learn
what the opponent is thinking without looking into his
mind, the state that is observed was decided to be the
joint previous action. As the action space A = {C, D},
Cooperate (C) or Defect (D), the joint action has 4 pos-
sibilities. Additionally, we need a state to represent the
start of an episode, so as not to introduce any bias. Thus,
S = {CC,CD,DC,DD,d}, where d is only active the
first state after the game has been reset.

The choice of rewards is arbitrary as long as the rules
for IPD are followed. In this work, we chose to stick
with the same values as the authors of SMA2C, with
(T,R,P,S) = (3,2,0,—1), for the respective Tempta-
tion, Reward, Punishment, and Sucker payouts. Using
these values we define a reward function R that maps
state-actions to rewards. Because the environment is
not completely observed, this mapping function and the
transition function P are stochastic, with a given action
resulting in one of two states with different rewards, re-
gardless of what the previous state was. For instance,
if the action chosen is to Cooperate, the resulting state
and reward could be either CC and 2 or CD and —1,
depending on what the opponent does.

3.1.2 Multi-Agent learning

This work is focused on the case of single-agent learning
with the state of the opponent hidden from the agent.
The problem modelled in this work was chosen because
it is simpler than the multi-agent setup. However, this
system can be naturally extended to a multi-agent en-
vironment by allowing other agents to take the place of
the hard-coded opponents.

Observations

AGENT

Critic < |

lError

Actor T ?

Actions

Rewards

ENVIRONMENT

Figure 3: Flowchart of the A2C model, adapted from [15].

3.2 Approach

As a methodology for learning the best policy, we use
an adaptation of the Advantage Actor Critic (A2C) gra-
dient optimization method, known as the Self Modeling
A2C (SMA2C). What follows is a brief explanation of
the original A2C method, after which the changes made
by SMA2C are discussed.

3.2.1 Advantage Actor Critic
Advantage actor critic is the synchronous version of
Asynchronous Advantage Actor Critic, a variation of the
actor critic method [16]. In this method one uses two net-
works to decide on a policy, the actor and the critic. The
actor is responsible for taking actions while the critic per-
ceives the results in the form of rewards and ‘criticizes’
the actor’s actions. This allows the critic network to es-
timate the value function of the system, while the actor
decides the policy. An illustration of the flow of data
is shown in fig. 3. In A2C the critic optimizes the ad-
vantage using the difference between the return R and
the state value V(s,0,) , with 6, the parameters to be
optimized, usually with a loss of Mean Squared Error
(MSE)

A(s,0,) =R —V(s,0,) (4)

Then, the value gradient update for the critic becomes

AV (0,) = (5(/1((;9)2) (5)

And the performance gradient update is:

AJ(0) = Voln w(at|st, 0)(A(s, 0,) (6)

3.2.2 Self Modeling Advantage Actor Critic

To allow the agent to model its opponent an additional
network is added which acts as a form of preprocessor on
some additional factors in the input. The changes can
be seen in fig. 4. This network is the encoder part of a
variational autoencoder (see section 2.3 for details), and
is henceforth referred to as the encoder. The encoder
receives as its input the following: The state of the en-
vironment s, the previous action a;_1, and the reward
just obtained 7;. The encoder internally uses a recurrent
layer to learn historical behaviour, requiring the addition

Algorithm 1: Training SMA2C

Require: Set of opponents T, episode length [
Require: encoder L : (S, A, R,d) = Z
Require: actor network P : (S,2) -+ A
Require: critic network C': (S,7) - R
Require: environment Ep : T — (S, R)

1 Pick opponent A_; € T

2 00,70 +— Ea_, // reset the environment
3 a9+ 0 // initial action
4 01,79 < E(ao)

5 O < array of size [

6 fort =1to !l do

7 et < L(ot,at_l,rt_l,dt_l) // encode
8 a; < P(et,01) // decide action
9 0141,7 +— Elay) // perform action
10 store (o0, ag,r¢) in O

11 end

12 Replay(O) // Gradient ascent

AGENT

Critic.

Rewards

f———»| Encoder (-Code—

Error

ENVIRONMENT

Actor o

]

Figure 4: Flow diagram of the SMA2C network

of a reset parameter d, only true if the environment has
been reset. The final encoding z is generated using the
reparameterization trick, explained in section 2.3.

3.3 Training

Running the algorithm is done as described in algo-
rithm 1. The major difference, when compared to stan-
dard A2C, is that the encoding is first generated from
the inputs and added to the input that the standard A2C
network receives.

3.3.1 Updating the gradients

In SMA2C we back-propagate the loss from the A2C
network into the encoder network, allowing it to optimize
for that loss as well. As such, we do not need to add a
custom loss on top of the typical A2C loss [5].

3.4 Experiments

This section contains an overview and an in-depth expla-
nation of the experiments done for this work. Starting
with the replication experiment and followed by the ex-
pansions on that model, a third experiment holds the

created model and tests its performance against that of
several other strategies.

3.4.1 Opponent Strategies

When testing a model’s learning to understand oppo-
nents, it is important to control what the model faces,
both during training and testing. For these experiments,
we will be testing the model against the following strate-
gies, as defined in the Axelrod package [17]. While far
from the only ones (the package itself contains more than
100), these are easy to understand, and the Tit for Tat
strategy has been shown to perform outstandingly re-
gardless of its simplicity [8].

e The Cooperator, always cooperates, regardless of
what its opponent does.

e The Defector, always defects, regardless of what its
opponent does.

e The Tit for Tat strategy starts by cooperating with
its opponent and then does whatever its opponent
did last.

3.4.2 Replication

This work is largely focused on the work by Papoudakis
and Albrecht [5], and as such it is our primary goal to test
whether we can replicate the results they achieved. In
section 5.1 of their work, they set up their experiment as
an agent facing two possible policies: The defector, who
always defects, and the Tit-For-Tat, a policy that starts
by cooperating and then does whatever its opponent did
previously. For our replication, we use the same payout
matrix and the same number of time steps per episode
(25). We compare our results by comparing our mean
score graph to the one displayed in their work.

3.5 Expansions

To expand on the model described in 3.4.2, we experi-
ment with changes to the model as well as the environ-
ment. An ablation study is done by removing inputs
from the encoder model. We remove the reward and ob-
servation from the inputs to the encoder and test its im-
pact on performance. Then, we test other strategies for
the agent to learn, firstly a simple cooperator stratagem,
and then the original players of the Axelrod tournament
[17].

3.6 Evaluation

Testing the accuracy of the model is not as simple as tak-
ing the reward and seeing if it increases, as the randomly
picked opponents have a very different maximal score
that can be attained. With a timestep of 25, against
the Defector, which always defects, the maximal score
is -1, obtained by always defecting after the first turn.
Contrarily, against Tit For Tat, the maximal score is 50,
obtained by always cooperating. To simplify this, we al-
low the optimal policy to be constant, at the expected
maximal value of 24.5.

input: | [(1, 8)]
encoder_input: InputLayer
ouput: | (1, 8)]

t: 1,8
encoder fc: Dense
)

it: 1, 10;
encoder fel: Dense
8

input: | (1, 5)
VAE _reshape: Reshape
ouput: | (1,5, 1)

VAE_LSTM: LSTM L5
-)

input: | (1, 20) input: [(1, 20)
z_mean: Dense z_log_var: Dense
ouput: | (1,2) ouput: | (1, 2)
input: | [(1,5
abservaton_input: InputLayer |2 | 1091
output: | [(1, 5)]

2 Lambda |24t [(1,2),@,2)]
[Cinput: [10,2), 1,51

output: (1,2)
. 1: Concatenate
[oupue [,7) |

.

input: 1,5
acor_hiddenl: Dense
6]

input: | (1, 3)
action_probabilities: Dense
output: [(1,2)

Figure 5: Model of the actor network, critic only uses a dif-
ferent output layer

4 Results

This section contains the details for running the experi-
ments, the results obtained through running the experi-
ments, as well as a brief analysis of these results.

4.1 Training details

For the sake of reproducibility, it is important to clarify
the many variables that have been set and used, espe-
cially the hyperparameters.

4.1.1 Environment details

For matrix games like the iterated prisoner’s dilemma,
the state can be quite ambiguous. In this work, we chose
to treat the joint action as the state, which was passed
to the model as a one-hot encoding. The rewards for
the actions were kept to 3,2,0,and — 1 for Temptation,
Reward, Penalty, and Sucker respectively, and scaled to
between [—1, 1] using a MinMaxScaler [18], to effectively
standardize the scores while allowing for reversal. Stan-
dardization is applied to speed up gradient descent and
prevent floating-point errors [19].

4.1.2 Network details

As displayed in fig. 5, the input of the model is trans-
formed into the encoding and that is then combined with
the original input as the input to the A2C network. For
the pure A2C network, the embedding is not added to
the input of the A2C network and is thus skipped. In
terms of variables, we set the discount factor v to be
0.999, a fairly typical value, and set the learning rates
of the actor and critic to be 0.0015 and 0.005, or half
of that, respectively. Exact configurations for each run

used within this work and many more can be found in
the run files in appendix A.1.

4.2 Replication

For the replication of the VAEOMMAS study [5], we use
the same episode length and 4000 episodes, or 100,000
timesteps. The results from the original study are shown
in fig. 6. Using several different configurations', and run-
ning them at least 10 times with a random seed, we vi-
sualized the results in fig. 7. We see that both A2C and
SMA2C are learning and result in better policies than
a purely random policy. On average, the A2C policy
performs better, although it has a wider spread of its
eventual policy rewards, as can be seen in fig. 8. To find
out why the score of the SMA2C agent is lower, we also
visualize the scores for a single training episode in fig. 9
and see that the A2C network is more concentrated, in-
dicating that the SMA2C network has more randomness.

Episodic Reward

—— SMA2C
A2C

[—

0 10000 20000 30000 40000 50000 60000 70000
Time steps
Episodic return

Figure 6: Original results from [5].
is 24.5

Optimal average return

4.2.1 Embeddings

The embeddings created in the original paper, as seen in
fig. 10 is vastly different from the one our trained model
creates, shown in fig. 11. The trained embeddings from
our replication, found by running the trained model 100
times against both the Defector and Tit For Tat poli-
cies, converge around the same area for all three tested
agents, contrary to how they have no overlap in fig. 10.
This seems to indicate that the input is not used. Adding
to this, a pure A2C agent shows the same or better per-
formance, as can be seen in fig. 7

4.3 Expansions

4.3.1 Cooperator

To test whether a trained agent is capable of facing dif-
ferent opponents, we first see how its embeddings change
when facing an unseen strategy. On fig. 10, one can see

'Run configurations and results can be found in ap-
pendix A

Scores over episodes

—— aZc-4k

—— random
~—— smaZc-4k

— — max average

Score

o 1000 2000 3000 4000

Episode

Figure 7: Results from this replication, rolling average of
mean scores with window size of 500. Every line represents
10 experiments. Dashed line represents optimum policy.

(a) A2C.

(b) SMA2C.

Figure 8: Individual rolling averages from experiments train-
ing for both A2C and SMA2C. Same axes for easy compari-
son.

(a) A2C.

(b) SMA2C.

Figure 9: Single experiment scores, with rolling averages
(window size 200). Dashed line represents optimal policy.

that the average encoding of the cooperator falls in the
same area as the TFT and Defector strategies, so the em-
bedding doesn’t seem to be changing depending on the
opponent policy. When a trained agent faces the coop-
erator, they always cooperate, which is the suboptimal
strategy. This is likely because it has learned to cooper-
ate when the opponent cooperates from the Tit For Tat
policy.

4.3.2 Performance against different strategies

To test the results of our algorithm on these different
strategies, we created a wrapper around the best per-

Embeddings Visualization

@ Opponent One
Opponent Two

c
[]
% % .:o
qc) 05 s’ o °
o (] .o" 3° o
=R >4, S
o 0.0 '}.‘..:.-.. e
e} L Y X
o . l. %
@O -05 LS
w [] ...
[]
L]
-1.0
-15 =10 =05 00 0.5 1.0 15 20

First Dimension

Figure 10: Original embeddings from [5].

e Cooperator (before)
s Defector {before)
* TFT (before)
® Cooperator (after)
Defector (after)
TFT (after)

Before After

Figure 11: Embeddings obtained in this work. Single run, x
and y axes are the respective dimensions of the embedding.
Left column shows embeddings before training, right column
after training. From top to bottom the rows indicate the
Cooperator, Defector, and Tit For Tat strategy.

forming model® to function as a strategy within the
Axelrod package [17]. Then, we hosted a tournament
with the same strategies as Axelrod’s first tournament
and added our model to the pool. The results of one
of these tournaments are visualized in fig. 12, showing
that the model had comparatively small variance in its
mean reward throughout the tournament. Our agent
consistently got a mean of at least 1.6 points per turn,
allowing it to win 5 out of 10 tournaments and remain in
the top half the rest of the tournaments. It was capable
of consistently cooperating while also retaliating when
‘attacked’ with Defection.

4.3.3 Ablation study on SMA2C inputs
Using several subsets of the inputs, we tested whether
the model required all its diverse inputs. Using just the

2Run identifier: 1592552683-sma2c-noseed-10000-smaller-
mid

Figure 12: Box plot of mean score per turn, using same payoff
matrix. Tournament consisted of 100 repetitions of a round
robin, each game was 25 turns.

joint action as input would result in purely random de-
cisions without improvement, or quick convergence to
either constant defection or cooperation, which were un-
desired results.

5 Conclusion

To conclude this work, a recently developed technique
for training a Reinforcement Learning agent, the SMA2C
model, was replicated and expanded using the Iterated
Prisoner’s Dilemma. It was shown that using variational
autoencoders to create embeddings for the A2C model
does not improve results for simple IPD strategies over
the basic A2C model, because the A2C model can per-
form better even without the embedding being given.

This is likely because the embeddings are not opti-
mized to represent the opponent model correctly, as they
are shown to not have significant differences when facing
different policies. Instead of helping the A2C network
decide, the embedding then only adds a random factor,
which reduces its consistency. The goal of this work was
to test the new network under several circumstances and
see how it would hold itself together. While it does not
seem to be the best model for the Iterated Prisoner’s
Dilemma, this could also be due to the lack of complex-
ity and state involved in the network.

5.1 Discussion

The results of this work were unfortunately not as conclu-
sive as we would have hoped. Most results for SMA2C
showed a positive increase, but with different learning
rates and layer sizes, we also got no convergence or con-
vergence on defection only. In machine learning and es-
pecially RL, one must never be surprised about failure
given the number of hyperparameters that need to be ad-
justed and the stochastic nature of learning, especially
when there is so little time to tune. An effort was initially
made to allow this to be done using the Distributed RL
library RLlib [20], which failed due to the complexities
involved in adding the VAE and its stateful components.

5.1.1 Why not a Multi-Armed Bandit problem?
One decision that had to be made was whether to model
this as a multi-armed bandit problem (MAB), a simpler

case of reinforcement learning where there is no state for
the environment [21]. In other words, the MAB assumes
that the next action is not dependent in any way on
the previous action. Within IPD all but the most basic
of tactics use the history of the opponent’s actions or
their actions to determine what to do. This makes it
more than just a MAB as there is not necessarily an
observable state but there is a state that opponent has
which you do not have access to.

5.1.2 Future work

The most exciting future study for this work would be
pitting it against other learning agents and thus introduc-
ing true non-stationarity [3]. Additionally, it would be
very interesting to see the result of running the SMA2C
on Sequential Social Dilemmas to test whether it can un-
derstand the opponent in more complicated situations
[22].

One metric that would be of great use for continu-
ing this study is the Mutual Information Neural Esti-
mation (MINE) metric, which estimates how accurately
an embedding holds information [23]. Using this met-
ric to estimate whether the embeddings are useful could
strengthen our hypothesis that they are currently not,
and help us find a way to train them to be more so.

In closing, we would like to thank the author of the
VAEOMMAS paper, Georgios Papoudakis, for helping
us set up the model and granting aid when requested.

6 Responsible Computer Science

Machine learning and reinforcement learning are a field
of study that is central to many reproducibility issues
[24]. Because of a continuous drive for innovation and
many competing research institutions, few papers focus
on reproducing results and verifying them and there are
also lacking descriptions of mythology for methodologies
and the lack of data in many papers [25]. This paper cen-
tres around a reproduction of the paper by Papoudakis
and Albrecht while adding new experiments and tests for
one of the examples that they used. We have shown that
instead of much better performance than A2C, SMA2C
could perform even worse. Contrary results are not al-
ways desired, but they allow us to realise flaws in our
theories, which open up the pathway to improved scien-
tific study. To aid in that effort, code for these experi-
ments is made open-source and written in a way that is
hopefully reproducible, along with all the data used for
graphing our results. The methodology is explained in
detail such that readers can recreate the experiments if
so desired.

In terms of ethical issues, this work in itself does not
pose much risk, centring around the reproduction and
extension of another paper as it did. However, the gen-
eral research topic of being able to recognize what your
‘opponent’ is thinking, of course, could have many impli-
cations when taken to its limit. Knowing how someone
will react to our actions could prevent many dramatic
miscommunications with disastrous consequences.

Research into the prisoner’s dilemma has led to some
interesting insights into human trust as well as percep-
tion. This game has been put to the test with real hu-
mans which did not create as much cooperation as was
expected and further research on this topic could lead
us to understand in which circumstances human cooper-
ation is stimulated.

References

[1] Applying AI for social good | McKinsey. URL:
https : / / www . mckinsey . com / featured -
insights /artificial- intelligence / applying- artificial -
intelligence-for-social-good.

[2] Finnegan Southey et al. “Bayes’ Bluff: Opponent
Modelling in Poker”. In: Proceedings of the 21st
Conference on Uncertainty in Artificial Intelli-
gence, UATI 2005 (July 2012), pp. 550-558. URL:
http://arxiv.org/abs/1207.1411.

[3] Sindhu Padakandla, Prabuchandran K. J, and Sha-
labh Bhatnagar. “Reinforcement Learning in Non-
Stationary Environments”. In: (May 2019). DOI:
10.1007/s10489-020-01758-5. URL: http://arxiv.
org /abs/1905.03970%20http: / /dx.doi.org/10.
1007/s10489-020-01758-5.

[4] Stefano V. Albrecht and Peter Stone. “Au-
tonomous Agents Modelling Other Agents: A Com-
prehensive Survey and Open Problems”. In: Artifi-
cial Intelligence 258 (Sept. 2017), pp. 66-95. DOL:
10.1016/j.artint.2018.01.002. URL: http://arxiv.
org /abs/1709.08071 %20http: / /dx.doi.org/10.
1016/j.artint.2018.01.002.

[6] Georgios Papoudakis and Stefano V. Albrecht.
“Variational Autoencoders for Opponent Modeling
in Multi-Agent Systems”. In: arXiv e-prints (Jan.
2020). URL: http://arxiv.org/abs/2001.10829.

[6] Diederik P. Kingma and Max Welling. “Auto-
encoding variational bayes”. In: 2nd International
Conference on Learning Representations, ICLR
2014 - Conference Track Proceedings. Interna-
tional Conference on Learning Representations,
ICLR, Dec. 2014.

[7] Graham Kendall, Xin Yao, and Siang Yew Chong.
The Iterated Prisoners’ Dilemma. Vol. Volume 4.
World Scientific, May 2007, p. 272. ISBN: 978-981-
270-697-3. DOI: doi:10.1142/6461. URL: https:
//doi.org/10.1142/6461.

[8] R Axelrod and W. Hamilton. “The evolution of
cooperation”. In: Science (1981). ISSN: 0036-8075.
DOI: 10.1126/science.7466396.

[9] Afshin OroojlooyJadid and Davood Hajinezhad.
“A Review of Cooperative Multi-Agent Deep Re-
inforcement Learning”. In: arXiv e-prints (Aug.
2019). URL: http://arxiv.org/abs/1908.03963.

[10] A Markov. Theory of algorithms.
Academy of Sciences of the USSR, 1954.

Moscow:

https://www.mckinsey.com/featured-insights/artificial-intelligence/applying-artificial-intelligence-for-social-good
https://www.mckinsey.com/featured-insights/artificial-intelligence/applying-artificial-intelligence-for-social-good
https://www.mckinsey.com/featured-insights/artificial-intelligence/applying-artificial-intelligence-for-social-good
http://arxiv.org/abs/1207.1411
https://doi.org/10.1007/s10489-020-01758-5
http://arxiv.org/abs/1905.03970%20http://dx.doi.org/10.1007/s10489-020-01758-5
http://arxiv.org/abs/1905.03970%20http://dx.doi.org/10.1007/s10489-020-01758-5
http://arxiv.org/abs/1905.03970%20http://dx.doi.org/10.1007/s10489-020-01758-5
https://doi.org/10.1016/j.artint.2018.01.002
http://arxiv.org/abs/1709.08071%20http://dx.doi.org/10.1016/j.artint.2018.01.002
http://arxiv.org/abs/1709.08071%20http://dx.doi.org/10.1016/j.artint.2018.01.002
http://arxiv.org/abs/1709.08071%20http://dx.doi.org/10.1016/j.artint.2018.01.002
http://arxiv.org/abs/2001.10829
https://doi.org/doi:10.1142/6461
https://doi.org/10.1142/6461
https://doi.org/10.1142/6461
https://doi.org/10.1126/science.7466396
http://arxiv.org/abs/1908.03963

[16]

Christopher J. C. H. Watkins and Peter Dayan. “Q-
learning”. In: Machine Learning 8.3-4 (May 1992),
pp. 279-292. ISSN: 0885-6125. DOI: 10.1007 /
bf00992698.

Volodymyr Mnih et al. “Human-level control
through deep reinforcement learning”. In: Nature
518.7540 (Feb. 2015), pp. 529-533. ISSN: 14764687.
DOI: 10.1038/naturel4236.

Jeremy Jordan. Variational autoencoders. 2018.
URL: https://www.jeremyjordan.me/variational-
autoencoders/.

Jesse FEngel, Matthew Hoffman, and Adam
Roberts. “Latent Constraints: Learning to Gen-
erate Conditionally from Unconditional Genera-
tive Models”. In: 6th International Conference on
Learning Representations, ICLR 2018 - Conference
Track Proceedings (Nov. 2017). URL: http://arxiv.
org/abs/1711.05772.

Asynchronous actor — critic training - Learn Unity
ML-Agents - Fundamentals of Unity Machine
Learning. URL: https:/ /subscription . packtpub.
com/book/game development,/9781789138139/4/
ch04lvllsec34/asynchronous-actor-critic-training.
Volodymyr Mnih et al. “Asynchronous Methods
for Deep Reinforcement Learning”. In: 33rd Inter-
national Conference on Machine Learning, ICML
2016 4 (Feb. 2016), pp. 2850-2869. URL: http://
arxiv.org/abs/1602.01783.

Vince Knight et al. Axelrod-Python/Axelrod:
v4.9.1. Apr. 2020. DOI: 10 . 5281 / ZENODO .
3744465.

F Pedregosa et al. “Scikit-learn: Machine Learn-
ing in {P}ython”. In: Journal of Machine Learning
Research 12 (2011), pp. 2825-2830.

R Reed and RJ MarksIl. Neural smithing: super-
vised learning in feedforward artificial neural net-
works. 1999. URL: https://books.google . com /
books 7 hl = en & Ir = &id = TCATDgAAQBAJ &
oi = fnd & pg = PR5 & dq = Neural + Smithing :
+Supervised + Learning + in + Feedforward +
Artificial+Neural+Networks&ots=8i2gY WZ-gp&
sig=9QO0dyAEkUmcxralwO77yl_ SyFKg.

Eric Liang et al. “RLIlib: Abstractions for Dis-
tributed Reinforcement Learning”. In: 35th Inter-
national Conference on Machine Learning, ICML
2018 7 (Dec. 2017), pp. 4768-4780. URL: http://
arxiv.org/abs/1712.09381.

Michael N. Katehakis and Arthur F. Veinott.
“MULTI-ARMED BANDIT PROBLEM: DE-
COMPOSITION AND COMPUTATION” In:
Mathematics of Operations Research 12.2 (May
1987), pp. 262-268. ISSN: 0364765X. DOI: 10 .
1287 /moor.12.2.262.

Joel Z. Leibo et al. “Multi-agent Reinforcement
Learning in Sequential Social Dilemmas”. In: Pro-
ceedings of the International Joint Conference on
Autonomous Agents and Multiagent Systems, AA-

MAS 1 (Feb. 2017), pp. 464-473. URL: http://
arxiv.org/abs/1702.03037.

Mohamed Ishmael Belghazi et al. “MINE: Mutual
Information Neural Estimation”. In: (Jan. 2018),
pp. 1-44. URL: http://arxiv.org/abs/1801.04062.
Matthew Hutson. Artificial intelligence faces repro-
ducibility crisis. Feb. 2018. DOI: 10.1126/science.
359.6377.725.

Adriano Rivolli et al. “Characterizing classifica-
tion datasets: a study of meta-features for meta-
learning”. In: arXiv e-prints (2018). URL: http://
arxiv.org/abs/1808.10406.

A Code
Code for this project can be found at https://github.
com/Pluriscient /sma2c-ipd

A.1 Runfiles

Runfiles for each respective run can be found on the
github repository under the outputs folder.

https://doi.org/10.1007/bf00992698
https://doi.org/10.1007/bf00992698
https://doi.org/10.1038/nature14236
https://www.jeremyjordan.me/variational-autoencoders/
https://www.jeremyjordan.me/variational-autoencoders/
http://arxiv.org/abs/1711.05772
http://arxiv.org/abs/1711.05772
https://subscription.packtpub.com/book/game_development/9781789138139/4/ch04lvl1sec34/asynchronous-actor-critic-training
https://subscription.packtpub.com/book/game_development/9781789138139/4/ch04lvl1sec34/asynchronous-actor-critic-training
https://subscription.packtpub.com/book/game_development/9781789138139/4/ch04lvl1sec34/asynchronous-actor-critic-training
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
https://doi.org/10.5281/ZENODO.3744465
https://doi.org/10.5281/ZENODO.3744465
https://books.google.com/books?hl=en&lr=&id=7C4TDgAAQBAJ&oi=fnd&pg=PR5&dq=Neural+Smithing:+Supervised+Learning+in+Feedforward+Artificial+Neural+Networks&ots=8i2gYWZ-gp&sig=9QOdyAEkUmcxraIwO77y1_SyFKg
https://books.google.com/books?hl=en&lr=&id=7C4TDgAAQBAJ&oi=fnd&pg=PR5&dq=Neural+Smithing:+Supervised+Learning+in+Feedforward+Artificial+Neural+Networks&ots=8i2gYWZ-gp&sig=9QOdyAEkUmcxraIwO77y1_SyFKg
https://books.google.com/books?hl=en&lr=&id=7C4TDgAAQBAJ&oi=fnd&pg=PR5&dq=Neural+Smithing:+Supervised+Learning+in+Feedforward+Artificial+Neural+Networks&ots=8i2gYWZ-gp&sig=9QOdyAEkUmcxraIwO77y1_SyFKg
https://books.google.com/books?hl=en&lr=&id=7C4TDgAAQBAJ&oi=fnd&pg=PR5&dq=Neural+Smithing:+Supervised+Learning+in+Feedforward+Artificial+Neural+Networks&ots=8i2gYWZ-gp&sig=9QOdyAEkUmcxraIwO77y1_SyFKg
https://books.google.com/books?hl=en&lr=&id=7C4TDgAAQBAJ&oi=fnd&pg=PR5&dq=Neural+Smithing:+Supervised+Learning+in+Feedforward+Artificial+Neural+Networks&ots=8i2gYWZ-gp&sig=9QOdyAEkUmcxraIwO77y1_SyFKg
https://books.google.com/books?hl=en&lr=&id=7C4TDgAAQBAJ&oi=fnd&pg=PR5&dq=Neural+Smithing:+Supervised+Learning+in+Feedforward+Artificial+Neural+Networks&ots=8i2gYWZ-gp&sig=9QOdyAEkUmcxraIwO77y1_SyFKg
http://arxiv.org/abs/1712.09381
http://arxiv.org/abs/1712.09381
https://doi.org/10.1287/moor.12.2.262
https://doi.org/10.1287/moor.12.2.262
http://arxiv.org/abs/1702.03037
http://arxiv.org/abs/1702.03037
http://arxiv.org/abs/1801.04062
https://doi.org/10.1126/science.359.6377.725
https://doi.org/10.1126/science.359.6377.725
http://arxiv.org/abs/1808.10406
http://arxiv.org/abs/1808.10406
https://github.com/Pluriscient/sma2c-ipd
https://github.com/Pluriscient/sma2c-ipd

	Introduction
	Background
	Reinforcement Learning
	Markov Decision Process
	Learning
	Policies

	Autoencoder
	Variational Autoencoder
	Iterated Prisoner's Dilemma

	Method
	Problem overview
	Environment and Observations
	Multi-Agent learning

	Approach
	Advantage Actor Critic
	Self Modeling Advantage Actor Critic

	Training
	Updating the gradients

	Experiments
	Opponent Strategies
	Replication

	Expansions
	Evaluation

	Results
	Training details
	Environment details
	Network details

	Replication
	Embeddings

	Expansions
	Cooperator
	Performance against different strategies
	Ablation study on SMA2C inputs

	Conclusion
	Discussion
	Why not a Multi-Armed Bandit problem?
	Future work

	Responsible Computer Science
	Code
	Runfiles

