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Value-Sensitive Rejection of Machine Learning Predictions for Hate Speech
Detection

by Philippe Lammerts

Hate speech detection on social media platforms remains a challenging task. Man-
ual moderation by humans is the most reliable but infeasible, and machine learning
models for detecting hate speech are scalable but unreliable as they often perform
poorly on unseen data. Therefore, human-AI collaborative systems, in which we
combine the strengths of humans’ reliability and the scalability of machine learning,
offer great potential for detecting hate speech. While methods for task handover in
human-AI collaboration exist that consider the costs of incorrect predictions, insuf-
ficient attention has been paid to estimating these costs. In this work, we propose a
value-sensitive rejector that automatically rejects machine learning predictions when
the prediction’s confidence is too low by taking into account the users’ perception
regarding different types of machine learning predictions. We conducted a crowd-
sourced survey study with 160 participants to evaluate their perception of correct,
incorrect and rejected predictions in the context of hate speech detection. We intro-
duce magnitude estimation, an unbounded scale, as the preferred method for mea-
suring user perception of machine predictions. The results show that we can use
magnitude estimation reliably for measuring the users’ perception. We integrate the
user-perceived values into the value-sensitive rejector and apply the rejector to sev-
eral state-of-the-art hate speech detection models. The results show that the value-
sensitive rejector can help us to determine when to accept or reject predictions to
achieve optimal model value. Furthermore, the results show that the best model
can be different when optimizing model value compared to optimizing more widely
used metrics, such as accuracy.
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Chapter 1

Introduction

The amount of hateful content spread online on social media remains a significant
problem. Ignoring its presence can harm people and even result in actual violence
and other conflicts (Balayn et al., 2021; Council of Europe, n.d.). Many news articles
exist about events where hate spread on online platforms leads to acts of violence
(Ingram, 2018; Mashal et al., 2022; Mozur, 2018; Müller & Schwarz, 2021). One re-
search paper found a connection between hateful content on Facebook containing
anti-refugee sentiment and hate crimes against refugees by analyzing social media
usage in multiple municipalities in Germany (Müller & Schwarz, 2021). Govern-
mental institutions and social media companies are becoming more aware of these
risks and are trying to combat hate speech. For example, the European Union de-
veloped a Code of Conduct for countering illegal hate speech in cooperation with
large social media companies such as Facebook and Twitter (European Commission,
2016). This Code of Conduct requests companies to prohibit hate speech and report
yearly progress (European Commission, 2016). The most recent report from 2021
stated that Twitter only removed 49.5% of all hateful content on its platform. Face-
book is most successful in removing hate speech, claiming to have removed 70.2%
of all hateful content in 2021 (European Commission, 2016). However, one article
found in internal communication from Facebook that this percentage is much lower,
around 3-5% (Giansiracusa, 2021). Therefore, hate speech detection remains a com-
plex problem that even large institutions have not solved yet.

1.1 Problem statement

Currently, people rely on reactive and proactive content moderation methods to de-
tect hate speech (Klonick, 2018). Reactive moderation is when social media users
flag hateful content (also known as reporting) (Klonick, 2018). Proactive moderation
is done automatically using detection algorithms or manually by a group of human
moderators (Klonick, 2018). There exist different methods for automatically detect-
ing hateful content. Most use machine learning (ML) algorithms since these tend to
be the most promising for their detection performance at a large scale (Balayn et al.,
2021; Fortuna & Nunes, 2018). These algorithms range from traditional ML meth-
ods, such as support vector machines (SVM) or decision trees, to deep learning (DL)
algorithms (Fortuna & Nunes, 2018).

However, both proactive and reactive moderation methods have their limita-
tions. Proactive manual moderation of hateful content is still the most reliable so-
lution, but it is simply infeasible because of the large amount of content generated
by the many users (Balayn et al., 2021). Reactive moderation solves this problem
since the users can report hate speech themselves. Although, the problem stays that
users are still exposed to hateful content for some time. Proactive automatic mod-
eration using automated detection algorithms allows large amounts of data to be
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checked quickly without the involvement of humans. However, these algorithms
are unreliable as they often perform poorly on deployment data (Arango et al., 2019;
Balayn et al., 2021; Gröndahl et al., 2018). One study found that the F1 scores re-
duce significantly (69% F1 score drop in the worst case) when training a hate speech
detection model on one dataset and evaluating it using another (Gröndahl et al.,
2018). Furthermore, one paper found that most research in hate speech detection
overestimates the performance of the automated detection methods (Arango et al.,
2019). Likewise, the authors noticed significant performance drops when the detec-
tion algorithms were trained on one dataset and evaluated on another (Arango et al.,
2019).

Therefore, humans and machines should work together to detect hate speech.
ML models should detect hateful content automatically, and humans should make
the final decisions (human-in-the-loop) when the model is not confident enough (Hen-
drickx et al., 2021; Woo, 2020). The challenge is to determine when we can accept
ML predictions and when we need to reject them and defer them to a human mod-
erator. We focus on deciding whether to accept or reject ML predictions by taking
the context-dependent values into account. Several papers advocate for integrating
context-dependent values into the design of human-AI systems (Casati et al., 2021;
Cummings, 2006; Sayin et al., 2021; Umbrello & Van de Poel, 2021; Zhu et al., 2018).
There are benefits of correct predictions (positive value), costs of incorrect predic-
tions (negative value), and costs of rejecting predictions. More specifically, the val-
ues for false negative (FN) predictions, labelling something as non-hateful when it
is, and false positive (FP) predictions, labelling something as hateful when it is not,
might differ. We should weigh these values according to the task of hate speech de-
tection and incorporate them in the decision of accepting or rejecting ML predictions
(Sayin et al., 2021). However, value is an abstract term and can be interpreted from
different perspectives, such as economic or social, by different stakeholders, such as
the social media companies or the social media users (Cummings, 2006; Umbrello &
Van de Poel, 2021; Zhu et al., 2018). In this project, we mainly focus on integrating
human-centred social values from the perspective of social media users since they
are the most affected by the consequences of hate speech. We also focus on hate
speech detection as a binary classification problem, where a prediction for a social
media post is either positive (hateful) or negative (neutral).

1.2 Research questions

The idea of most ML models with a reject option is that we reject predictions when
the model’s confidence is too low. First, we need a metric that measures the total
value of an ML model with a reject option based on the context-dependent values.
By optimizing the value of this metric, we can retrieve an optimal confidence thresh-
old that we can use to determine when we can accept ML predictions or if we need
to reject them. Second, we need to find out how we can retrieve context-dependent
values for the task of hate speech detection. The goal is to retrieve the value ratios
by which we mean, for example, the ratio between an FP and an FN prediction.
Therefore, our research questions are as follows:

RQ How can we reject predictions of machine learning models in a value-sensitive
manner for hate speech detection?

• SRQ1 How can we measure the total value of machine learning models with
a reject option?
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• SRQ2 How can we determine the value ratios between rejections and true
positive (TP), true negative (TN), false positive (FP), and false negative (FN)
predictions?

1.3 Our work

This thesis research tackled the problems of proactive moderation by creating a
human-AI solution where the advantages of humans (cognitive abilities and abil-
ity to make judgements) and machines (automation and performance) are combined
(Woo, 2020). We did this by proposing a value-sensitive rejector for detecting hate
speech that rejects ML predictions when the prediction’s confidence is too low based
on human-centred values. To the best of our knowledge, ML with rejection has not
been used in hate speech detection before.

In this thesis, we conducted a survey study where we recruited 160 participants
to evaluate their perception of 40 different hate speech detection scenarios. Each sce-
nario simulates either a TP, TN, FP, FN, or rejected prediction in the context of hate
speech detection. We carefully selected 40 social media posts through an extensive
content analysis procedure for creating the scenarios. We proposed using the mag-
nitude estimation (ME) rating scale for retrieving the value ratios by measuring the
user perception of all scenarios. We validated the ME scale by conducting a separate
survey study with a bounded scale comprising 100 rating levels, called the 100-level
scale. The results show a high inter-rater agreement between the participants of the
ME survey, indicating that ME is suitable for retrieving human-centred values. We
also found that users tend to agree more with correct predictions than the degree
of disagreement with incorrect predictions, implying that social media users highly
appreciate correct predictions made by the social media platform. Additionally, we
found that participants agree more with each other for incorrect predictions than for
correct predictions, indicating a strong consensus over the harm. Finally, analysis of
the demographical features showed that for most scenarios, there are no differences
in the user perception between different demographic groups.

We created a value-sensitive metric that measures the total value of an ML model
for some confidence threshold based on the value ratios and a set of predictions.
We can convert any ML model into a value-sensitive rejector by finding the opti-
mal confidence rejection threshold for which the value-sensitive metric achieves the
maximum value. We applied the value-sensitive rejector, with the value ratios from
the survey study as its input, to two different datasets and three state-of-the-art hate
speech classification models: a traditional, a deep learning, and a transformer model.
We denote the first dataset as the seen dataset, a test dataset from the same source
as the training dataset of the models. We denote the second as the unseen dataset,
a test dataset from a different source, to simulate how the models would perform
in the real world on new data. The results demonstrate that the value-sensitive re-
jector can be beneficial for hate speech detection since we show that we maximize
the values of several hate speech detection models by rejecting predictions. The re-
sults with the unseen data show that hate speech detection models are susceptible to
bias, which confirms the findings from related studies. Finally, the results show that
when selecting the optimal model, using the value of our value-sensitive metric as
the optimization target might return different results than using accuracy.
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1.4 Contributions

In summary, we make the following contributions:

• We introduce the concept of rejecting machine learning predictions into the
task of hate speech detection;

• We introduce the magnitude estimation scale for measuring user perception to
correct and incorrect machine learning predictions;

• We present a value-sensitive metric for measuring the total value of a machine
learning model with a reject option;

• We demonstrate through a survey study that the magnitude estimation scale
is suitable for retrieving the value ratios of TP, TN, FP, FN, and rejected predic-
tions in the context of hate speech detection;

• We demonstrate that our value-sensitive rejector can guide us in determining
when to accept or reject machine learning predictions to obtain optimal model
values;

1.5 Thesis outline

In this thesis report, we first discuss the related work in chapter 2. Then in chapter 3,
we present the design of the value-sensitive rejector. Chapter 4 explains the design
of the survey study. In chapter 5, we present the results of the experiments of the
survey study and the value-sensitive rejector. Finally, chapter 6 discusses the results,
and chapter 7 contains the conclusion.



5

Chapter 2

Related work

In this chapter, we first define hate speech in section 2.1 and explain why it is such
a challenging topic to tackle, especially from a computer science perspective. Then,
we give an overview of the state-of-the-art solutions for automatic hate speech de-
tection in section 2.2. In section 2.3, we discuss the different methods of ML with
rejection. Section 2.4 discusses the shortcomings of standard machine metrics, such
as accuracy, to evaluate detection systems and why human-centred metrics such as
ours are promising. Finally, we discuss the main challenges of assessing the values
of (in)correct and rejected predictions in the hate speech domain.

2.1 Hate speech: definition and challenges

Different types of online conflictual languages exist, such as cyberbullying, offensive
language, toxic language, or hate speech, and come with varying definitions from
domains such as psychology, political science, or computer science (Balayn et al.,
2021). We can broadly define hate speech as “language that is used to express hatred
towards a targeted group or is intended to be derogatory, to humiliate, or to insult
the members of the group” (Balayn et al., 2021; Davidson et al., 2017). It differs from
other conflictual languages since it focuses on specific target groups or individuals
(Balayn et al., 2021).

Balayn et al. (2021) identified the mismatch between the formalization of hate
speech and how people perceive it. Many factors influence how people perceive hate
speech, such as the content itself and the characteristics of the target group and the
observing individual, such as sex, cultural background, or age (Balayn et al., 2021).
We can identify this mismatch in other related work from which there appears to be
low agreement among humans regarding annotating hate speech (Fortuna & Nunes,
2018; Ross et al., 2017; Waseem, 2016). Ross et al. (2017) reported low inter-rater
reliability scores (Krippendorff’s alpha values of around 0.2 − 0.3) in a study where
they asked humans about the hatefulness and offensiveness of a selection of tweets.
They also found that the inter-rater reliability value does not increase when showing
a definition of hate speech to the human annotators beforehand. Waseem (2016)
found a slight increase in the inter-rater reliability when considering annotations of
human experts only, but it remained low overall.

In the hate speech domain, we must be careful with creating biased detection
systems trained on biased datasets. Hate speech datasets such as Waseem and Hovy
(2016) or Basile et al. (2019) collected their data using specific keywords that can in-
troduce sample retrieval bias and annotated their data using only three independent
annotators, which might result in sample annotation bias (Balayn et al., 2021). Auto-
mated classification models will likely become biased in their predictions if we train
them on biased datasets (the garbage in, garbage out principle). This phenomenon
becomes most notable when applying pre-trained classification models to new and
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unseen data. For example, Gröndahl et al. (2018) and Arango et al. (2019) report
significant drops in F1 scores when training a hate speech classification model on
one dataset and evaluating it on another. Gröndahl et al. (2018) found that the F1
score reduces by 69% in the worst case and that the model choice does not affect the
classification performance as much as the dataset choice. Arango et al. (2019) repli-
cated several state-of-the-art hate speech classification models and found that most
studies overestimate the classification performance. These results further strengthen
our stance that we should not detect hate speech solely by machines but rather by a
human-in-the-loop approach.

2.2 Automatic hate speech detection

This section will list the literature’s state-of-the-art natural language processing (NLP)
techniques for automatic hate speech detection. This project focuses on hate speech
detection as a binary text classification problem. The goal is to label texts from social
media platforms as either hateful or not hateful. Several excellent surveys outlined
the different detection methods (Fortuna & Nunes, 2018; Schmidt & Wiegand, 2019).
First, we will discuss the different features used in the classification models. Then,
we will state the most used classification models ranging from supervised to unsu-
pervised learning.

Commonly used features are bag-of-words (BOW) (Greevy & Smeaton, 2004),
character/word N-grams (Waseem & Hovy, 2016), lexicon features (Xiang et al.,
2012), term frequency-inverse document frequency (TF-IDF) (Badjatiya et al., 2017;
Davidson et al., 2017; Rodriguez et al., 2019), part-of-speech (POS) (Greevy & Smeaton,
2004), sentiment analysis (Rodriguez et al., 2019), topic modelling (e.g. latent dirich-
let allocation (LDA)) (Xiang et al., 2012), meta-information (e.g. location) (Waseem &
Hovy, 2016), or word embeddings (Agrawal & Awekar, 2018; Badjatiya et al., 2017).
Greevy and Smeaton (2004) found that the classification performance is higher with
BOW features than with POS features. Waseem and Hovy (2016) found that char-
acter N-gram achieves higher classification performance than word N-gram. They
also found that using demographic information such as the location does not im-
prove the results significantly. Xiang et al. (2012) used a lexicon feature (whether
a social media post contains an offensive word or not) and the topic distributions
from an LDA analysis. Rodriguez et al. (2019) used TF-IDF and sentiment analy-
sis to detect and cluster topics on Facebook pages that are likely to promote hate
speech. Badjatiya et al. (2017) experimented with different word embeddings: fast-
Text1, GloVe2, and random word embeddings. They found that using pre-trained
word embeddings such as GloVe does not result in better classification performance
than using random embeddings.

Most studies use supervised learning techniques that range from traditional ML
to deep learning (DL) classification models, and a few use unsupervised learning
techniques to cluster social media posts. Support vector machine (SVM) (Davidson
et al., 2017; Greevy & Smeaton, 2004; Xiang et al., 2012) and logistic regression (LR)
(Davidson et al., 2017; Waseem & Hovy, 2016) are the most popular traditional ML
techniques for hate speech detection. Davidson et al. (2017) found that SVM and
LR perform significantly better than other traditional ML techniques, such as naive
Bayes, decision trees, and random forests. Badjatiya et al. (2017) experimented with
various configurations of word embeddings and two DL models: a convolutional

1https://fasttext.cc/
2https://nlp.stanford.edu/projects/glove/

https://fasttext.cc/
https://nlp.stanford.edu/projects/glove/
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neural network (CNN) and a long short-term memory (LSTM) model. They found
that CNN performs better than LSTM. Given the recent popularity of bidirectional
encoder representations from transformers (BERT) models (Devlin et al., 2018) in
the NLP field, studies such as Alatawi et al. (2021) found that BERT models achieve
slightly better classification performance than DL models. Rodriguez et al. (2019)
use the unsupervised learning method, k-means clustering, to cluster social media
posts to identify topics that potentially promote hate speech. Based on the findings
of these studies, we will experiment with three models in our project: LR, CNN, and
DistilBERT (a lightweight version of BERT (Sanh et al., 2019)).

2.3 Machine learning with rejection

Several related studies promoted the concept of rejecting ML predictions when the
risk of producing an incorrect prediction is too high so that a human gives the final
judgement instead (Hendrickx et al., 2021; Sayin et al., 2021; Woo, 2020). Hendrickx
et al. (2021) identified three ways of rejecting ML predictions: separated, integrated,
and dependent. A separated rejector decides beforehand whether a data sample needs
to be handled by the classification model or not (Hendrickx et al., 2021). An in-
tegrated rejector forms one whole with a classification model that we often train
simultaneously (Hendrickx et al., 2021). A dependent rejector analyzes the output
of the classification model to determine whether to reject a prediction or not (Hen-
drickx et al., 2021). Several studies have applied the reject option using one of the
abovementioned architectures (Coenen et al., 2020; De Stefano et al., 2000; Geifman
& El-Yaniv, 2017, 2019; Grandvalet et al., 2008).

Coenen et al. (2020) developed a separated rejector that rejects data samples be-
fore passing them to the classification model. They used different outlier detection
techniques, such as the one-class SVM, to detect data samples unfamiliar with the
training data (Coenen et al., 2020).

Dependent rejectors are the most commonly used (De Stefano et al., 2000; Geifman
& El-Yaniv, 2017; Grandvalet et al., 2008). Grandvalet et al. (2008) experimented with
SVMs with a reject option. Geifman and El-Yaniv (2017) developed a dependent re-
jector that rejects data samples based on a predefined maximum risk value and the
coverage accuracy of the classification model. De Stefano et al. (2000) were among
the first to develop a dependent rejector for neural networks. The authors developed
a confidence metric for determining the optimal rejection threshold (De Stefano et
al., 2000). This threshold is calculated based on a set of predictions with their cor-
responding confidence values and a set of cost values: the cost of incorrect, correct,
and rejected predictions (De Stefano et al., 2000).

Geifman and El-Yaniv (2019) developed an integrated rejector by extending the
work from Geifman and El-Yaniv (2017). They integrated the reject option in the
training phase of a DL classification model by including a selection function in the
last layer of the DL model.

In this work, we apply the dependent way since it allows for using the reject op-
tion in any classification model (Hendrickx et al., 2021). As opposed to the integrated
way, by following the dependent way, we are free to use any classification model,
and we do not have to retrain the underlying model whenever we make modifica-
tions to the dependent rejector. We believe that the separated way is not optimal
either since we still want to decide whether to accept or reject predictions based on
the output of the classification model. The most relevant work in dependent re-
jectors is from De Stefano et al. (2000) since their confidence metric considers the
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value of (in)correct and rejected predictions. While their metric measures only the
effectiveness of the reject option and is based on the values of correct, incorrect, and
rejected predictions, our metric measures the total value of the ML model with the
reject option and is based on the values of TP, TN, FP, FN, and rejected predictions.
While they experimented with a range of different cost values, we go further by
employing an emperical approach, which determines the cost values based on how
users feel regarding machine predictions using a survey study with crowd workers.
Therefore, we obtain a rejection threshold that captures the implications of machine
predictions from a human perspective.

2.4 Evaluation metrics

Most hate speech-related studies evaluate their classification methods using stan-
dard machine metrics such as accuracy, precision, recall, or F1. Classification models
with a reject option are often evaluated by analyzing the model’s accuracy and cov-
erage. Nadeem et al. (2009) proposed using accuracy-rejection curves to plot the
trade-off between accuracy and coverage so that different classification models with
a reject option can be compared. Casati et al. (2021), Olteanu et al. (2017), Röttger
et al. (2020), and Sayin et al. (2021) recognized the shortcomings of machine metrics,
such as accuracy and found a gap in the evaluation of hate speech detection systems.

Röttger et al. (2020) found it hard to identify the weak points of classification
models using machine metrics, such as accuracy. Therefore, the authors presented a
suite that consists of 29 carefully selected functional tests to help identify the model’s
weaknesses (Röttger et al., 2020). Each test checks criteria, such as coping with
spelling variations or detecting neutral content containing slurs (Röttger et al., 2020).
Our approach is different since we focus on measuring the value of classification
models with a reject option.

Olteanu et al. (2017) promote using human-centred metrics that measure the human-
perceived value of hate speech classification models. They found that for the same
precision values, the perceived value changes depending on the user characteristics
and the type of classification errors (an offensive tweet labelled as hate (low impact)
and a neutral tweet labelled as hate (high impact)) (Olteanu et al., 2017).

Casati et al. (2021) propose to develop new metrics for evaluating ML models
with a reject option that considers domain-specific values.

Sayin et al. (2021) suggest that new metrics should be developed for measur-
ing the value of human-AI systems that take the costs of incorrect predictions into
account.

Our work aligns with the latter three studies since we create a human-centred
metric for evaluating hate speech classification models with a reject option that in-
corporates human value derived from a survey study.

2.5 Value assessment

Fjeld et al. (2020) outlined eight principles of AI systems, such as fairness and discrim-
ination (e.g. preventing algorithmic bias), human control of technology (e.g. the system
should request help from the human user in difficult situations), and promotion of
human values (e.g. we should integrate human value in the system). Sayin et al.
(2021) and Casati et al. (2021) suggest we should identify context-specific values and
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incorporate them in the design of a hybrid human-AI system. We adhere to the sug-
gestions of these studies in our project since we develop a hate speech classification
model with a reject option that incorporates human value.

As explained in the Introduction, we have costs of incorrect and rejected predic-
tions and gains of correct predictions. We can express the costs of incorrect (FP and
FN) and rejected predictions as negative values and the gains of correct (TP and TN)
predictions as positive values. We should weigh these values according to the task
of case hate speech detection (Sayin et al., 2021). However, value is a broad term,
and its definition depends heavily on the context.

Several works discuss the value-sensitive design (VSD) approach that describes
how different types of value, such as privacy, can be integrated into a socio-technical
system’s design (Cummings, 2006; Umbrello & Van de Poel, 2021; Zhu et al., 2018).
According to the VSD approach, it is critical to understand the system’s stakehold-
ers, and we can retrieve their values either conceptually (e.g. from literature) or em-
pirically (e.g. through survey studies) (Cummings, 2006; Umbrello & Van de Poel,
2021; Zhu et al., 2018).

We consider two different stakeholders: the social media platforms and the users.
The goal is to find out whether we can retrieve the value ratios between rejection,
FP, FN, TP, and TN predictions from the perspective of both stakeholders. We would
like to know whether an FN prediction is, for example, two times worse than an FP
prediction. The main challenge is to express all values using a single unit. First,
we could define the values using a quantitative measure, such as time or money
spent/saved. Second, we could define the values using a qualitative measure, for
example, by analyzing people’s stance towards the consequence of incorrect predic-
tions in hate speech detection.

In this section, we try to assess the values of both stakeholders empirically and
conceptually and explain why we eventually go for an empirical analysis of the val-
ues of social media users only.

2.5.1 Quantitative assessment

In this section, we explain the difficulties of using quantitative measurements to
define the values of TP, TN, FP, FN, and rejected predictions in hate speech detection.
We do this by following the conceptual approach for both stakeholders by looking
at some related work to see if the empirical approach is possible.

First, we look at the social media company as a stakeholder. We can retrieve the
value of rejection by looking at how much time a human moderator spends on av-
erage to check whether some social media post contains hateful content or not. We
can convert this into money by considering the moderator’s salary. We could also
argue that the value of a TP and a TN prediction is equal to the negative value of
rejection since we saved human effort by having the classification model produce
a correct prediction. The problem, however, starts to arise when we look at the FP
and the FN predictions. How can we express the values of FP and FN predictions
regarding money or time saved/spent? The main problem is that most social media
companies are not transparent about moderating hate speech (Klonick, 2018). So it
is infeasible to assess the values of social media companies either conceptually or
empirically. When looking at the consequences of FN predictions, we can also look
at governmental fines. For example, Germany approved a plan where social media
companies can be fined up to 50 million euros if they do not remove hate speech in
time (“Social media firms faces huge hate speech fines in Germany”, 2017). How-
ever, this is location-specific, and it is unclear how this applies to individual cases
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of hate speech. Defining the value of FP predictions is even more difficult. It is
unclear how filtering out too much content would affect the company regarding
money/time lost. Therefore, we abstain from estimating the values where the com-
panies are the main stakeholders.

Second, we look at the social media users as a stakeholder. Both FP and FN pre-
dictions have negative consequences on the users. Having too many FP predictions
might violate the value of Freedom of Speech since we are filtering out non-hateful
posts and, therefore, we cause suppression of free speech. One paper found through
a survey that most people think some form of hate speech moderation is needed,
but they also worry about the violation of freedom of speech (Olteanu et al., 2017).
Having too many FN predictions might harm individuals or even result in acts of
violence (Council of Europe, n.d.). Therefore, we must figure out how to weigh
the values of FP and FN predictions accordingly. We abstain from using time as a
unit since it does not make sense to express the consequences of hate speech or the
benefits of freedom of speech in time. Therefore, we want to look at the value of
freedom of speech and hate speech from an economic perspective. However, we no-
ticed a lack of research in this area. There is one paper where they tried to develop
an economic model for free political speech by looking at the First Amendment to
the United States Constitution (Posner, 1986). The First Amendment restricts the
government from creating laws that could, for example, violate Freedom of Speech
(“The Constitution”, n.d.). Posner (1986) explained that the lack of research in this
area is because most economists do not dive into the legal domain regarding free
speech, and free speech legal specialists refrain from doing economic analysis (Pos-
ner, 1986). The proposed economic model from the paper includes the cost of harm
and the probability that speech results in violence (Posner, 1986). However, the au-
thors do not elaborate on how we can define the probability and the costs. Another
paper did speculate on this topic by explaining why doing a cost-benefit analysis of
free speech is almost impossible (Sunstein, 2019). The authors explained that there
are too many uncertainties (Sunstein, 2019). We can assume that there are values of
free speech, but it is too difficult to quantify them (Sunstein, 2019). Terrorist organi-
zations use free speech to recruit people and call for acts of violence online (Sunstein,
2019). At the same time, most other hateful posts will never result in actual acts of
violence (Sunstein, 2019). Therefore, value assessment using quantitative measure-
ments is already tricky for specific cases, let alone in general. There is a nonquantifi-
able risk that acts of violence will happen in the unknown future (Sunstein, 2019).
However, suppose we know this probability, there are still too many uncertainties.
To calculate the actual costs of hate speech (the FN predictions), we also need to
know the number of lives at risk and how we should quantify the value of each life
(Sunstein, 2019). The authors claim that analyzing the benefits of free speech is even
more challenging (Sunstein, 2019). They conclude their work by saying that there
are too many problems to empirically evaluate the costs and benefits of hate speech
detection (Sunstein, 2019).

Therefore, we believe that using quantitative measurements, such as money, is
impossible to assess the values of predictions for both stakeholders in hate speech
detection.

2.5.2 Qualitative assessment

From section 2.5.1, we concluded that from related work, it appears that we can-
not retrieve the quantitative values conceptually and empirically. Instead, we will
focus on the qualitative measurement of values: what is people’s stance towards



2.5. Value assessment 11

(in)correct and rejected predictions in hate speech detection? We only consider the
social media users as the stakeholder in the qualitative assessment since they are
the most affected by the consequences of hate speech detection. We will empirically
assess social media users’ value through a survey. In our survey, we ask social me-
dia users what their stance (disagree-agree) is towards TP, TN, FP, FN, and rejected
predictions in hate speech detection. Conceptual analysis is impossible since no re-
lated studies have tackled this problem. The closest work is from Ross et al. (2017),
where the authors asked human subjects to rate a selection of tweets on hatefulness
using a 6-point Likert scale and to indicate whether they think it should be banned
from Twitter or not. Like Ross et al. (2017), we could use the Likert scale as our
measurement scale. However, we first explain why Likert scales are unsuitable for
retrieving ratio values. Then we explain why the magnitude estimation technique
seems promising for our use case.

Likert

Likert scales are a common choice in academic research for retrieving the opinions
of a group of subjects. Likert scales are multiple Likert-type questions (items) where
subjects can answer questions with several response alternatives (Boone & Boone,
2012). For example, we could use a bipolar scale with seven response alternatives
ranging from ‘strongly disagree’ to ‘strongly agree’, including a ‘neutral’ midpoint.
Figure 2.1a shows an example of a five-point Likert item. However, there is much
discussion in the literature about how we should analyze these Likert scales (Allen
& Seaman, 2007; Boone & Boone, 2012; Murray, 2013; Norman, 2010). The scale
of the questions is ordinal, which means that we know the responses’ ranking, but
we do not have an exact measurement of the distances between the response items
(Allen & Seaman, 2007). For example, we know that ‘strongly agree’ is higher in rank
than ‘agree’, but not the exact distance between the two responses and whether it is
greater than the distance between the ‘neutral’ and the ‘somewhat agree’ responses.
Therefore, we technically cannot use parametric statistics, such as calculating the
mean, when analyzing the data (Allen & Seaman, 2007). Other papers argue that we
can treat a Likert scale consisting of multiple Likert items as interval data; therefore,
applying parametric statistics will not affect the conclusions (Boone & Boone, 2012;
Murray, 2013; Norman, 2010). So, we can calculate mean scores for TP, TN, FP, FN,
and rejected predictions and compare these with each other. For example, we can
then verify that the mean value of FN predictions is smaller than the mean value of
FP predictions and conclude that FN predictions are worse than FP predictions. An-
alyzing Likert scales would, at most, provide us with interval data (data for which
we know the order, and we can measure the distances, but there is no actual zero
point (Allen & Seaman, 2007)). However, we need to have ratio data in this project
since we want to know the value ratios between the TP, TN, FP, FN, and rejected
predictions.

Magnitude estimation

We concluded in the previous section that Likert scales are unsuitable since they do
not provide ratio data. In this research, we want to experiment with the magnitude
estimation (ME) technique. The ME technique originates from psychophysicists,
where human subjects must give quantitative estimations of sensory magnitudes
(Stevens, 1956). For example, in one experiment, human subjects are asked to as-
sign any number that reflects their perception of the loudness of a range of sounds
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DisagreeStrongly disagree Neutral Agree Strongly agree

(A) Likert

-1 ...-100 0 1001 2-2...

(B) 100-level

0 0.01 3000-100 ?-?

(C) ME

FIGURE 2.1: Visualizations of all three bipolar rating scales: a five-
point Likert item, the 100-level scale, and the ME scale.

(Stevens, 1956). If the human subjects perceive the succeeding sound as twice as
loud, they should assign a number to it that is twice as large. Researchers applied
the ME technique to different types of physical stimuli (e.g. line length, brightness,
or duration) and showed that the results are reproducible and that the data has ratio
properties (Moskowitz, 1977). Other works have shown that the ME technique is
also helpful for rating more abstract types of stimuli, such as judging the relevance
of documents (Maddalena et al., 2017; Roitero et al., 2018), the linguistic acceptabil-
ity of sentences (Bard et al., 1996), the strength of political opinions (Lodge et al.,
1976; Lodge & Tursky, 1979), and the usability of system interfaces (McGee, 2004).
Therefore, we think that ME is a promising method for retrieving the value ratios of
the different types of predictions in hate speech detection.

The main advantage of ME is that it provides the ratio scale properties we need.
Another advantage is that the scale is unbounded compared to other commonly
used response scales, such as Likert. For example, suppose the subject provides a
‘strongly disagree’ judgment for the first stimulus. Suppose we then present an even
worse stimulus. The subject is now limited to the response items in the Likert scale
and can only give the same ‘strongly disagree’ judgement. We do not have this prob-
lem using ME because the subject is always free to assign a more significant value of
disagreement. Figure 2.1c shows an example of a bipolar ME scale where any pos-
itive or negative numerical value is allowed, including decimal values. However,
there are two drawbacks to using ME in our use case. First, we need to normalize
the results since each subject uses a different range of values. Second, since ME has
not been applied to the hate speech domain before, we need to validate the ME scale
to verify that it measures what we want to know.

The data needs to be normalized since each subject can use any value they like.
For example, one may give ratings using values of 1, 2, and 10, while another may
use 100, 200, and 1000. Geometric averaging is the recommended approach for nor-
malizing magnitude estimates since it preserves the ratio information (Maddalena
et al., 2017; McGee, 2004; Moskowitz, 1977). However, as opposed to the unipo-
lar scales (with only positive values) used by Bard et al. (1996) and McGee (2004)
and Maddalena et al. (2017), we cannot apply geometric averaging to bipolar scales
(disagree-agree). By including 0 (neutral) and negative values (disagree), we can-
not use geometric averaging anymore because it uses log calculations (Moskowitz,
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1977). Using the algorithmic mean is also not an option since it would destroy the ra-
tio scale properties (Moskowitz, 1977). Therefore, we can normalize the magnitude
estimates for bipolar scales by dividing all estimates of each subject by the maximum
given value (Moskowitz, 1977). This way, all magnitude estimates are in the range
[-1, 1] while maintaining the ratio properties.

Most papers that use the ME method in a new domain apply some form of vali-
dation. Cross-modality validation is a technique that is often applied to validate the
ME results (Bard et al., 1996). Psychophysicists compare the magnitude estimates
to the physical stimuli by analyzing their correlation (Bard et al., 1996). In the case
of estimating line lengths, we can easily vary the line length, for example, by show-
ing a line that is twice as long as the previous line. Subjects can then estimate the
line length using a number twice as large. However, this becomes more difficult
in the social and psychology domains. In hate speech detection and other social
science and psychology applications, we do not have an exact measure of the stim-
ulus (Bard et al., 1996). However, related work has shown that ME is still a suitable
technique for eliciting opinions about different types of non-physical stimuli (Bard
et al., 1996; Lodge & Tursky, 1979; Maddalena et al., 2017; McGee, 2004). We can
validate the magnitude estimates by adopting the cross-modality technique but in-
stead compare judgements against judgements (Bard et al., 1996; Lodge & Tursky,
1979). Some papers analyze the correlation between different ME scales for valida-
tion, such as handgrip measurements or drawing lines (Bard et al., 1996; Lodge et al.,
1976). Others compare ME with another validated scale that can be of any type. For
example, in Maddalena et al. (2017), which is about judging the relevance of docu-
ments, the authors compared the ME scale with two validated ordinal scales for the
same dataset (Maddalena et al., 2017). In Roitero et al. (2018), the authors applied
cross-modality analysis between a bounded scale that consists of 100 levels (now
known as the 100-level scale) and the ME scale and found that they were positively
correlated. In our work, we follow the approach from Roitero et al. (2018), as we
also validate our findings by checking the correlation between the ME scale and the
100-level scale. Figure 2.1b visualizes a bipolar 100-level scale.
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Chapter 3

Value-sensitive rejector

As concluded in chapter 2, there is a need for value-sensitive metrics to measure ML
models’ performance, especially for social-technical applications such as hate speech
detection. We also concluded that manual human moderation is the most effective
and that most automatic hate speech detection methods do not perform well on
unseen data. Therefore, in this project, we focus on creating a human-AI solution
for detecting hate speech by rejecting ML predictions in a value-sensitive manner.
We do this by taking the value ratios of TP, TN, FP, FN, and rejected predictions into
account. Chapter 4 will explain how we assess these values. We assume that we
know these values for the remaining part of this chapter.

In this chapter, we explain how we create a value-sensitive dependent rejector by
introducing a value-sensitive confidence metric that measures the total value of an
ML model with a reject option. In 3.1, we explain how we construct the confidence
metric. In 3.2, we provide an overview of how we use the value-sensitive rejector,
and in 3.3, we discuss how we apply the rejector to some state-of-the-art hate speech
classification models. Refer to Appendix C for the source code of our value-sensitive
rejector.

3.1 Value-sensitive metric

The idea of rejecting ML predictions using a confidence threshold is that for some
threshold value τ in the range [0, 1], we accept all predictions with confidence values
greater than or equal to τ and reject all predictions with confidence values below τ.
We use a confidence metric to find the optimal rejection threshold that is based on
the work of De Stefano et al. (2000). Here, we introduce our confidence metric as
the value function V(τ) that measures the total value of an ML model and rejection
threshold τ. We can determine the optimal rejection threshold by finding the τ value
for which V(τ) is the maximum. The value of V(τ) depends on the values of TP, TN,
FP, FN, and rejected predictions, and we calculate it for a set of predictions with their
corresponding confidence values and actual labels. We denote the values of TP, TN,
FP, FN, and rejected predictions as Vtp, Vtn, Vf p, Vf n, and Vr, respectively. We derive
the subsets of TP, TN, FP, and FN predictions from a set of predictions based on the
predicted and actual labels.

We should be free to use any value for Vtp, Vtn, Vf p, Vf n, and Vr since we do
not know which values will come from the survey study in chapter 4. However,
for constructing our metric, we can define several conditions if we assume that Vtp
and Vtn are positive values (gains) and Vf p, Vf n, and Vr are negative values (costs).
For each τ value in [0, 1], we would like to know whether the model with the reject
option is more effective (increased V(τ)) or less effective (decreased V(τ) value). We
define the following conditions:
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1. The value of incorrect predictions should be lower than that of rejected predic-
tions. Otherwise, adopting the reject option serves no purpose.

2. Correct accepted predictions should increase the value of V(τ), while incorrect
accepted predictions should decrease the value of V(τ).

3. Correct rejected predictions should decrease the value of V(τ), while incorrect
rejected predictions should increase the value of V(τ).

We can formulate the first condition as follows:

Vf p + Vf n

2
< Vr, (3.1)

We can convert the latter two conditions into the following equations:

∂V
∂Ftp

+
∂V
∂Ftn

> 0,
∂V
∂Fr

tp
+

∂V
∂Fr

tn
< 0, (3.2a)

∂V
∂Ff p

+
∂V

∂Ff n
< 0,

∂V
∂Fr

f p
+

∂V
∂Fr

f n
> 0, (3.2b)

where Fp and Fr
p are the fractions of accepted and rejected predictions, respectively

and p ∈ [tp, tn, f p, f n]. We create a linear V(τ) function and assume that the input
values are known constants. Subsequently, we can formulate V(τ) as:

V(τ) = ∑
p
(Vp − Vr)Fp(τ) + ∑

p
(Vr − Vp)Fr

p(τ), (3.3)

where p ∈ [tp, tn, f p, f n] and where Fp(τ) and Fr
p(τ) are the fractions of accepted

and rejected predictions dependent on the rejection threshold τ. Conditions 3.2a are
satisfied by default since we assume that Vtp and Vtn are positive and Vr is negative.
Conditions 3.2b are satisfied since we assume that Vf p, Vf n, and Vr are negative and
that condition 3.1 holds. We can retrieve the Fp and the Fr

p values by computing
the integrals over the probability density functions (PDF) of the confidence values
(denoted as x) of the predictions with type p. We compute the PDFs so that the
calculation of the optimal rejection threshold is less sensitive to confidence outliers
in the set of predictions. We denote Fp by taking the integral over the interval [τ, 1],
and Fr

p by taking the integral over the interval [0, τ]:

Fp(τ) =
∫ 1

τ
Dp(x)dx Fr

p(τ) =
∫ τ

0
Dp(x)dx, (3.4)

where Dp is the PDF of all predictions of type p. By inserting the integrals from 3.4
into 3.3, we get our final value function:

V(τ) = ∑
p
(Vp − Vr)

∫ 1

τ
Dp(x)dx + ∑

p
(Vr − Vp)

∫ τ

0
Dp(x)dx (3.5)

We can now use 3.5 to calculate the total value of an ML model for all thresholds
τ ∈ [0, 1]. The theoretical optimal rejection threshold is equal to the τ value for
which we achieve the maximum value of V(τ). We can find the optimal rejection
threshold τO using the following formulation:

τO where V(τO) = max{V(τ) : τ ∈ R ∧ 0 ≤ τ ≤ 1} (3.6)
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FIGURE 3.2: Deployment phase: flow diagram that visualizes how
the value-sensitive rejector uses the optimal rejection threshold τO
and the prediction confidence c to determine when to accept or re-

ject a prediction from unseen data in deployment.

3.2 Overview of the value-sensitive rejector

This section provides an overview of how we use our value-sensitive rejector. We
distinguish a training phase and a deployment phase of the rejector. In this project,
we mainly focus on the training phase since we do not apply the rejector in the
wild. Figures 3.1 and 3.2 visualize how we train the rejector and how we can use
it in deployment to accept or reject predictions, respectively. In figure 3.1, we show
the training phase of the rejector. In this phase, we use our value-sensitive metric
from section 3.1 to calculate the optimal rejection threshold τO. We use the follow-
ing inputs in this calculation: the values from the crowdsourced survey and a set of
predictions that consist of the confidence values and the predicted and actual labels.
Figure 3.2 shows how we can apply the trained rejector to unseen data in deploy-
ment. We accept all predictions for which the confidence value c is greater than
or equal to the optimal rejection threshold τO and, otherwise, reject them so that a
human moderator handles the prediction.

3.3 State-of-the-art

This section will explain how we apply the value-sensitive rejector to some of the
state-of-the-art automatic hate speech detection models. In this experiment, we aim
to find out three things. First, we want to determine how the value-sensitive rejector
behaves on different models and datasets. Second, we want to know whether value-
sensitive rejection can benefit hate speech detection. Finally, we compare the values
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of our value-sensitive metric to the values of machine metrics such as accuracy and
check whether they give different results.

3.3.1 Models

We experiment with three different hate speech detection models based on the find-
ings from related work in section 2.2. The first model is a traditional ML model.
We implement the LR model with character N-gram from Waseem and Hovy (2016)
since this model achieved the best performance compared to other traditional ML
models (Davidson et al., 2017). We select the second model, a DL model, based on
the findings from Agrawal and Awekar (2018) and Badjatiya et al. (2017). We choose
a CNN model initialized with random word embeddings since both studies found
that this configuration provides state-of-the-art classification performance. We im-
plement the CNN model based on the work of (Agrawal & Awekar, 2018). Finally,
our third model is a BERT-based model, given its recent popularity in the NLP do-
main. We use the DistilBERT model since it is faster to train and smaller than BERT
models while achieving similar performance (Sanh et al., 2019). We implement all
models in Python. We implement the LR model with scikit-learn1, the CNN model
with TensorFlow2, and the DistilBERT model with a combination of Hugging Face3

and PyTorch4. We use Google Colab5 to train all models.

3.3.2 Hyperparameter optimization

We perform hyperparameter optimization on all three models. For the CNN model,
we apply random search to optimize the values of the learning rate, batch size, and
the number of epochs. For the DistilBERT model, we apply population based train-
ing (PBT) (Jaderberg et al., 2017) implemented in Tune (Liaw et al., 2018), to optimize
the values of the batch size, learning rate, and the number of epochs since Tune. PBT
combines random search and hand tuning by discovering potentially optimal hy-
perparameter values along the way to reduce optimization time (Jaderberg et al.,
2017). For the LR model, we use the LogisticRegressionCV model from scikit-learn
that automatically optimizes the C value (inverse of regularization strength) of the
LR model.

3.3.3 Calibration

The problem with most neural network models is that they are often not calibrated
(Guo et al., 2017; Sayin et al., 2021). We define calibrated models as models where the
confidence values of the predictions are equal to the probabilities that the predicted
labels are correct. However, most neural networks tend to be sensitive to producing
both low- and high-confident errors (Guo et al., 2017; Sayin et al., 2021). A well-
calibrated model that achieves a low accuracy score can still be valuable since we
can reject all low-confident incorrect predictions and only accept the high-confident
correct predictions (Sayin et al., 2021). In our project, we aim to have calibrated
models since calculating the optimal rejection threshold depends on the confidence
values of the predictions.

1https://scikit-learn.org/
2https://www.tensorflow.org/
3https://huggingface.co/
4https://pytorch.org/
5https://colab.research.google.com/

https://scikit-learn.org/
https://www.tensorflow.org/
https://huggingface.co/
https://pytorch.org/
https://colab.research.google.com/
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Guo et al. (2017) experimented with different calibration methods. They eval-
uated the results using the expected calibration error (ECE), which measures the
difference between the expected confidence and accuracy (Guo et al., 2017). They
found that the temperature scaling method is the most effective. In temperature
scaling, we divide the model’s output logits with a temperature value of T to soften
the probabilities of the final softmax function in the model’s architecture (Guo et al.,
2017). This T value is initially set to 1 and optimized by minimizing the negative log-
likelihood (Guo et al., 2017). Please note that temperature scaling does not change
the model’s accuracy but only rescales the distribution of the confidence values (Guo
et al., 2017).

As we experiment with two neural networks (DistilBERT and CNN), we apply
temperature scaling to calibrate both models. However, calibration with tempera-
ture scaling does not guarantee perfect calibration. Therefore, high-confident incor-
rect predictions and low-confident correct predictions can still occur after calibra-
tion. Nevertheless, it is still valuable to calibrate the models since it also benefits
human interpretation of the confidence values and, therefore, the interpretation of
the optimal rejection threshold.

The Logistic Regression model is well-calibrated by default since, under the
hood, it optimizes the log-loss function, which measures the difference between pre-
dicted confidence values and the actual labels. Therefore, we do not have to apply
temperature scaling to the Logistic Regression model.

3.3.4 Datasets

We train all models on the Waseem and Hovy (2016) dataset consisting of 16K tweets
labelled racist, sexist, or neutral. We converted the ’racist’ and ’sexist’ labels to ’hate’
labels to create a binary classification setting. Furthermore, we split the dataset into
a train and test dataset according to an 80:20 ratio. For the CNN and the DistilBERT
models, we split the training set up into a training set and a validation set accord-
ing to a 75:25 ratio. We use this validation set to calibrate the trained models by
finding the optimal T value for the temperature scaling method. We preprocess the
data by tokenizing all URLs, user mentions, and emojis since these do not contain
any valuable information. We split all hashtags up into separate words using the
WordSegment6 library. The remaining parts of the preprocessing, such as remov-
ing whitespaces and stop words or the tokenization process, are dedicated to the
different frameworks we use per model.

We apply the value-sensitive rejector to two test datasets: the seen and unseen
dataset. The seen dataset is the test set from the Waseem and Hovy (2016) dataset.
The unseen dataset is a test set from the Basile et al. (2019) dataset that consists of
10K English tweets labelled as either hateful (against immigrants or women) or not
hateful. We use the unseen dataset to simulate how the models would perform in a
realistic use case when a model is trained on one dataset and applied to a different
dataset.

We want to study the effect of bias and how this affects the results when using
our value-sensitive metric for evaluating the models with a reject option. We expect
that the accuracy of the predictions on the unseen dataset is significantly lower than
the accuracy of the predictions on the seen dataset, in line with the findings of related
studies by Arango et al. (2019) and Gröndahl et al. (2018). Therefore, we also expect
that the output value of our value-sensitive metric for the unseen dataset will be

6https://pypi.org/project/wordsegment/

https://pypi.org/project/wordsegment/
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lower and that the optimal rejection threshold will be higher (meaning that we need
to reject more predictions).

3.3.5 Probability density functions

Since our value-sensitive rejector depends on the PDFs of the confidence values of
the TP, TN, FP, and FN predictions, we need to empirically estimate these PDFs as we
do not know the actual underlying distributions. We use the kernel density estima-
tion (KDE) method provided by Statsmodels7 for estimating these PDFs. With KDE,
we estimate the PDF by weighing the confidence values from a set of predictions
using a kernel function, a gaussian density function since it is the most commonly
used, for each possible confidence value in the range [0, 1]. If there are many pre-
dictions with a confidence value around 0.8, then the KDE estimate will be higher
around that point. The kernel function used in the KDE method also depends on
a bandwidth (smoothness) value. A small bandwidth value results in an estimated
PDF with much variance, while a high bandwidth value results in an estimated PDF
with much bias. We use maximum likelihood cross-validation to find the optimal
bandwidth value.

3.3.6 Application of the value-sensitive rejector

We apply the training phase of the value-sensitive rejector (refer to figure 3.1) to
all three models for both the seen and the unseen datasets. Therefore, we use our
metric from section 3.1 to calculate the total value V(τ) (formula 3.5) at all possible
rejection thresholds (τ) for all different setups. We determine the optimal rejection
threshold τO using the formulation from 3.6. Since we have a binary classification
setting (hate or not hate), all confidence values will always be greater than or equal
to 0.5. So if τ ∈ [0.0, 0.5], we accept all predictions and if τ = 1.0, we reject all
predictions. Therefore, we only calculate the total value of all predictions for the
range τ ∈ [0.5, 1.0].

The first goal is to check the rejector’s behaviour on different models and datasets.
We can analyze this by plotting V(τ) for the range τ ∈ [0.5, 1.0], measuring the re-
jection rate (RR, percentage of rejected predictions), and measuring the accuracy of
the accepted predictions. The second goal is determining whether the rejector can
enhance hate speech detection. If the total value of a model for some optimal rejec-
tion threshold (0.5 < τO < 1.0) is positive, then we know that the reject option can
be beneficial for that specific model. The final goal is to compare the value-sensitive
metric to machine metrics such as accuracy. We accomplish this by comparing the
V(τO) values and the accuracies of all models.

7https://www.statsmodels.org/

https://www.statsmodels.org/
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Chapter 4

Survey study

The second part of this research is to find out how we can determine the value ratios
between TP, TN, FP, FN, and rejected predictions. We conducted a literature study
in section 2.5 and concluded that we want to empirically estimate the social values
from the perspective of the social media user. In section 2.5.2, we found that ME is
a promising technique for estimating subjective value ratios. Therefore, this chapter
discusses how we apply the ME technique in a crowdsourced survey study.

We design a survey study to ask participants the degree to which they agree or
disagree with the decisions of a fictional social media platform called SocialNet. We
show the participants different scenarios representing TP, TN, FP, FN, and rejected
predictions in the context of hate speech detection. The TP and TN scenarios mean
that SocialNet successfully detects whether a post is hateful or not, respectively. The
FP scenario means that SocialNet incorrectly predicts a non-hateful post as hateful,
while the FN scenario implies that SocialNet incorrectly predicts a hateful post as
non-hateful. For example, in the FN scenario, the survey shows a hateful post to
the participant and explains that SocialNet did not identify the post as hate speech.
Then, participants indicate their degree of agreement/disagreement using a scale,
and we aggregate the answers per scenario type to obtain the value ratios.

The structure and preparation of our crowdsourced survey study follow the pre-
registration plan for social psychology suggested by Van’t Veer and Giner-Sorolla
(2016). In a pre-registration plan, we describe the hypothesis, procedure, and analy-
sis before conducting the crowdsourced survey study to increase scientific credibil-
ity, increase reproducibility and reduce bias (Van’t Veer & Giner-Sorolla, 2016). It is
essential to select the statistical methods for the analysis part beforehand to prevent
ourselves from selecting the statistic that best fits the collected data. The content of
this chapter reflects the final version of the pre-registration plan created after con-
ducting the pilot survey.

In section 4.1, we make a hypothesis about the ME method and the value ratios.
Section 4.2 contains all details about the survey setup. Finally, in section 4.3, we
elaborate on the analysis of the survey results. Refer to Appendix C for the source
code of the experimental setup and analysis of our survey study.

4.1 Hypotheses

We listed several hypotheses about the value ratios and the ME method before we
conducted the survey experiment. The goal is to reflect on the hypotheses in the
discussion to explain why specific results were expected or unexpected.

• We hypothesize that the values of FP and FN are negative and that the value
of an FN is lower than an FP. We believe that both FP and FN predictions
harm social media users; therefore, we think both values should be negative.
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We believe that allowing hateful content to be publicly visible does more harm
to social media users than filtering out neutral content. Therefore, we think an
FN’s value is lower than an FP’s.

• We hypothesize that the values of TP and TN are both positive and that the
value of a TP is greater than a TN. We believe that both TP and TN predictions
positively impact social media users; therefore, we think both values should
be positive. We believe predicting hateful content correctly is more valuable
to social media users than correctly predicting non-hateful content. Therefore,
we think a TP’s value is greater than a TN’s.

• We hypothesize that the rejection value is negative and greater than the av-
erage value of an FP and an FN. The critical assumption of using ML models
with a reject option is that the negative value of rejection should always be
greater than the negative value of an incorrect decision. Otherwise, rejecting
predictions serves no purpose.

• We hypothesize that FP and FN’s absolute magnitudes are greater than TP
and TN’s. We believe that social media users find the harm of incorrect predic-
tions more critical than the benefits of correct predictions.

• We hypothesize that ME is a suitable technique for retrieving the value ra-
tios. ME seems like a promising technique for retrieving ratio data from judge-
ments about hate speech detection scenarios. We use a 100-level numerical
scale for validation. We expect that both scales are correlated and will give
similar judgements. Although we also expect the 100-level scale to be suitable
for retrieving opinions about the different hate speech detection scenarios, it
does not provide the ratio data we need. We also expect that the inter-rater re-
liability for the 100-level scale will be higher than for the ME scale since the ME
scale provides more response freedom. We also expect this since the authors
of Roitero et al. (2018) concluded that the inter-rater reliability of the 100-level
scale is higher than the ME scale when rating the relevance of documents.

4.2 Method

This section discusses the complete setup of the survey experiment and how we use
both scales.

4.2.1 Scales

We use ME as the primary scale of our survey experiment. As we concluded in
section 2.5.2, we must also validate the ME scale. We validate the ME scale through
cross-modality validation by comparing the results of the ME scale with another
scale, as explained in section 2.5.2. The secondary scale is a bounded scale of 100
levels, called the 100-level scale, and we use this scale for four reasons. First, given
the limited budget, it is impractical in this project to use other ME scales, such as
measuring the intensity of the participants’ handgrips to express their judgements.
Second, there is no suitable dataset we can use for validation that contains human
ratings of different scenarios in hate speech detection. Third, we concluded in 2.5.2
that Likert scales have limited response freedom. Finally, in Roitero et al. (2018), the
authors concluded that the 100-level scale has several advantages over ME in terms
of usability and reliability. The 100-level scale is easier to understand than ME, does
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not require normalization, and provides more flexibility than a Likert scale (Roitero
et al., 2018). Therefore, we create two separate surveys with the same scenarios
where half of all participants use the 100-level scale and the other half use the ME
scale. Both scales are bipolar scales since the participants should be able to either
disagree or agree with the scenarios.

4.2.2 Normalization

The ME scale is unbounded and, therefore, provides a lot of response freedom. For
example, suppose we first show a scenario, and the participant provides a value
(e.g., 100) to indicate the degree of agreement. Suppose we next present a scenario
that the participant agrees with more. The participant can always provide a higher
value (e.g., 125). However, the results need to be normalized as different partici-
pants rate the agreement/disagreement degree differently. As explained in section
2.5.2, we cannot use standard normalization methods such as geometric averaging
as we use bipolar scales with negative values. Therefore, we normalize the results
by dividing the magnitude estimates of each participant by their maximum estimate.
We multiply the normalized magnitude estimates by 100 for the sake of clarity. This
way, all magnitude estimates are in the range [−100, 100] while maintaining the ratio
properties.

4.2.3 Design

This section lists all independent, dependent, confounding, and control variables
analyzed in our experiment.

Independent variables

Independent variables are the different hate speech detection scenarios we show to
the participants (TP, TN, FP, FN, and rejection). We inform the participants in the
case of TP and FP scenarios that SocialNet ranks the hateful post lower on their
feed. The users then need to spend more effort finding the post since they need to
scroll longer before it becomes visible.

Initially, in the pilot survey, we explained that detected hateful posts are re-
moved, which could be controversial. Also, we found that participants agreed more
with the TP and TN scenarios compared to the degree to which they disagreed with
the FP and FN scenarios. Therefore, we decided to explain that hateful posts are
ranked lower and that incorrect predictions might cause harm to social media users.
We did this to prepare the participants to focus on evaluating harm (instead of giving
rewards).

We inform participants in the rejection scenarios that a human moderator needs
to check the post (that can be either hateful or not hateful) within 24 hours. Mean-
while, the post remains visible with its original rank on the user’s feed. We use 24
hours based on the German NetzDG law, which allows the government to fine social
media platforms if they do not remove illegal hate speech within 24 hours (Tworek
& Leerssen, 2019).

• True Positive Show a hateful post to the user and explain that SocialNet de-
tected hate and ranked the post lower on people’s feeds.

• True Negative Show a non-hateful post to the user and explain that SocialNet
did not detect hate and allowed the post.
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• False Positive Show a non-hateful post to the user and explain that SocialNet
detected hate and ranked the post lower on people’s feeds.

• False Negative Show a hateful post to the users and explain that SocialNet did
not detect hate and allowed the post.

• Rejection

– Show a hateful post to the user and explain that SocialNet was uncertain
whether the post was hateful or not. An internal moderator will need to
check the post within 24 hours. Meanwhile, the post remains visible.

– Or show a non-hateful post to the user and explain that SocialNet was
uncertain whether the post was hateful or not. An internal moderator
will need to check the post within 24 hours. Meanwhile, the post remains
visible.

Confounding variables

Confounding variables are the different demographic characteristics:

• Nationality People from different nationalities might have different percep-
tions and definitions of hate speech and opinions about how we should deal
with it.

• Ethnicity People from different ethnicities might have different perceptions
and definitions of hate speech and opinions about how we should deal with it.

• Age People of different ages might have different perceptions and definitions
of hate speech and opinions about how we should deal with it.

• Education People with different educational statuses might have different per-
ceptions and definitions of hate speech and opinions about how we should
deal with it.

• Sex According to Gold and Zesch (2018), there is no significant difference in
how men and women perceive hate. However, we still report sex as a con-
founding variable since we want to analyze if there are genuinely not any dif-
ferences.

Control variables

We define two control variables: the measurement scales and the content of the so-
cial media posts we show to the participants. We control the measurement scale
variable by randomly assigning a participant to use either the 100-level or the ME
scale to rate the scenarios. Regarding the scales, as described before, we choose ME
as our primary scale and use the 100-level scale for validation. We leave the study of
other scales to future work. We control the content of the social media posts in two
manners. First, we present all scenarios for all participants randomly to reduce bias.
Second, we sample the social media posts for the survey from existing datasets. We
explain the selection procedure in section 4.2.5.

• Scales The first group of participants must answer the questions using the ME
scale. The second group needs to answer the questions using the 100-level
scale.
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• Content of the posts We sample all social media posts from existing datasets
and present them to the participants in random order.

Dependent variables

Our dependent variables are the response values, reliability, validity and the value
ratio of TP, TN, FP, FN, and rejection scenarios. Refer to section 4.3 for the reasoning
and calculation of the following dependent variables.

• Response values All response values the participants give to the different sce-
narios with either the ME or the 100-level scale.

• Reliability The inter-rater reliability measured using Krippendorff’s alpha,
where values larger than 0.8 indicate reliable conclusions, and values larger
than 0.6 indicate tentative conclusions (Krippendorff, 2004).

• Validity Convergent validity, if two different measures measure the same thing
(Fitzner, 2007). Measured by calculating the correlation between the magni-
tude estimates and the response values from the 100-level scale.

• Value ratios of TP, TN, FP, FN, and rejection scenarios Measured by calculat-
ing the median of the normalized magnitude estimate response values of each
scenario question and then calculating the mean over the resulting values to
come up with the final value for that scenario type.

4.2.4 Planned sample

This section discusses how we pick the sample size and recruit the participants, and
this section explains which stopping and exclusion rules we apply.

Sample size

There are 4.55 billion active social media users1. We choose a 90% confidence interval
and 10% margin of error (MOE) for this study. So 90% of the time, our observations
will fall within a 10% interval (Olson & Kellogg, 2014). According to Olson and Kel-
logg (2014), we need a sample size of 68 participants per survey type to reach the
desired confidence interval and MOE values. We choose 10% MOE since we have a
limited budget. We first conduct a pilot survey for 12 participants per scale to gather
feedback and check if we need to improve things before the actual experiment. We
want to determine the average workload using the pilot survey and whether re-
ducing the MOE by increasing the number of participants is possible. For the pilot
survey, we use 24 participants. Therefore, in total we need 2 ∗ 12 + 2 ∗ 68 = 160
participants. Of the recruited participants, 50% identified as female. Half of the
participants are assigned the ME scale, and the other half the 100-level scale.

Participants

We use the Prolific platform for recruiting online participants for the survey study.
We use the following inclusion criteria for our participants:

• 18 years of age and older since we show offensive language in the experiment.

1https://datareportal.com/reports/digital-2021-october-global-statshot

https://prolific.co
https://datareportal.com/reports/digital-2021-october-global-statshot


26 Chapter 4. Survey study

• Fluent in English.

• Approval rating over 90% on the Prolific platform.

• Use one of the following social media platforms regularly (at least once a
month): Facebook, Twitter, YouTube, LinkedIn, Pinterest, Google Plus, Tum-
blr, Instagram, Reddit, VK, Flickr, Vine.co, Meetup, ask.fm, Snapchat, TikTok,
Medium.

Every participant is paid based on the hourly wage of 9.0 GBP (about 10,67 Euro),
indicated as good pay by the platform2. We use the following exclusion/rejection
criteria:

• Participants who fail the two attention checks. We include two instructional
manipulation checks to check if the user pays attention to the survey3.

• Participants who do not complete all questions.

• Participants who disagree with the informed consent before the start of the
survey. We are not allowed to collect and process their data if they do not
consent.

We select a balanced set of participants in Prolific, among which 50% are men and
50% are women.

4.2.5 Data

Depending on the assigned survey group, all subjects must judge several TP, TN, FP,
FN, and rejection scenarios using either the ME or the 100-level scale. We select the
posts used in the scenarios from a public dataset (Basile et al., 2019) that contains
13,000 English tweets. Each tweet is annotated with three categories: hate speech
(yes/no), target (generic group or an individual), and aggressiveness (yes/no). There-
fore, we have one neutral and four groups of hateful tweets: generic target + aggres-
sive, individual target + aggressive, generic target + non-aggressive, and individual
target + aggressive. For the rejection scenarios, we need both neutral and hateful
tweets. Therefore, we need at least eight tweets per scenario type (TP, TN, FP, FN,
and rejection). We need 40 tweets, where 20 are hateful, and 20 are not hateful, to
create 40 different scenarios.

We want to select the most representative tweets from the dataset. Randomly se-
lecting the tweets from the dataset is insufficient as the dataset might contain sample
retrieval bias, as explained in section 2.1. We might retrieve too many similar tweets
about the same topic when randomly selecting the tweets. Therefore, we perform
content analysis to create a selection of tweets that is as representative and diverse
as possible. We provide an overview of our selection process in figure 4.1.

We exclude all tweets that contain Twitter replies and mentions since they have
unclear contexts. Then we preprocess all tweets by removing the URLs and hash-
tags. Finally, we use clustering analysis to select 40 tweets for our study. We perform
latent semantic analysis (LSA) and k-means clustering on each group of tweets.

We use the term frequency-inverse document frequency (TF-IDF) to represent
all documents and their words, also known as terms, in a matrix where the term
frequencies indicate how important that term is to the document (Aggarwal & Zhai,

2https://prolific.co/pricing
3https://researcher-help.prolific.co/hc/en-gb/articles/360009223553

https://prolific.co/pricing
https://researcher-help.prolific.co/hc/en-gb/articles/360009223553
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FIGURE 4.1: Flow diagram that visualizes how we perform content
analysis to cluster and select the tweets for our survey study.

2012). The term frequencies are multiplied by the inverse document frequency so
that terms that often occur in all documents, such as stop words, will end up with a
lower value in the matrix (Aggarwal & Zhai, 2012).

Then, we use singular value decomposition (SVD) for dimensionality reduction
to transform the output matrix of the TF-IDF step. The transformed matrix is more
suitable for text clustering techniques since documents with similar terms are now
grouped (Aggarwal & Zhai, 2012). The combination of TF-IDF and SVD is also
known as LSA and is suitable for clustering purposes (Aggarwal & Zhai, 2012).

Finally, we apply the unsupervised learning technique k-means to the output
of the LSA method to cluster all tweets into k clusters. We calculate the silhouette
coefficient to determine the optimal cluster size (k value) for the neutral tweets and
the four groups of hateful tweets. The silhouette analysis indicates setting k as large
as possible.

We select the five nearest data samples to each cluster centroid. From this se-
lection, we manually choose one tweet per cluster using a majority vote from three
group members to create the final set of 40 tweets. Based on the silhouette coef-
ficient, we use a cluster size of 20 for the neutral tweets and select one tweet per
cluster to collect 20 neutral tweets. Furthermore, we use a cluster size of 5 for each
group of hateful tweets to collect 20 hateful tweets.

Refer to appendix A.1 for the resulting list of all scenarios.

4.2.6 Procedure

In figure 4.2, we present the procedure of the two surveys, one where participants
use the ME scale and another where participants use the 100-level scale. We use
LimeSurvey4 as our survey tool. The survey first presents the informed consent
policy and excludes participants that do not agree with it. Next, we show introduc-
tory texts to the participants to explain what we expect from them and to explain
the structure of the survey. Using the ME scale, we first present a training phase
where the participants need to estimate five different line lengths using any positive

4https://www.limesurvey.org/

https://www.limesurvey.org/
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FIGURE 4.2: Flow diagram that visualizes the procedure of the survey
study. We assign half of the participants to the ME survey and the

other half to the 100-level survey.

value to get familiar with using the ME scale. Then, we randomly present two atten-
tion checks and 40 scenarios representing the TP, TN, FP, FN, and rejection scenarios
(with eight scenarios per type). Each scenario contains several questions with the
same structure. The first question is whether participants think the post is hateful
(yes/no). The second question is whether participants agree, disagree, or are neutral
with SocialNet’s decision. In the case of nonneutral, we ask a third question about
the degree to which participants agree or disagree with the machine’s decisions, us-
ing either the ME or 100-level scale, depending on their group. There is no time limit
for answering the questions, and all data is anonymous. Finally, we inform the par-
ticipants not to put personal identifiers in their answers. Refer to Appendix A for all
presentation texts, the informed consent, and some scenario examples.
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4.3 Analysis

First, we calculate the value ratios between the TP, TN, FP, FN, and rejection sce-
narios in hate speech detection using the survey’s results. Second, we analyze the
quality of our survey method by looking at two aspects: reliability and validity.

4.3.1 Value ratios

The survey study aims to determine the value ratios between the TP, TN, FP, FN,
and rejection scenarios in the context of hate speech detection. The metric from
section 3.1 takes these numerical values as input to calculate the optimal rejection
threshold. We do not need to know the absolute values but only the relative values.
For example, if we set all values to 1, we retrieve the same optimal rejection threshold
as setting all values to 1000. We use a bipolar scale for question 3 in the survey
since we ask the participants the degree to which they agree, disagree, or are neutral
with the decision of SocialNet. For both scales, we convert disagreement values to
negative values, neutral values to 0, and agreement values to positive values. Since
we found that the data of both scales is skewed after conducting the pilot survey,
we first apply the median to the individual questions’ results. Then we calculate the
mean value over the resulting values to retrieve the final aggregated value ratios.
For example, to calculate the aggregated Vtp values for both scales, we use:

VME
tp =

1
n

n

∑
i=1

r̃ME
i,tp

where n is the total number of TP scenarios, and r̃ME
i,tp is the median

response value of TP question number i rated by all participants with the
ME scale.

V100L
tp =

1
n

n

∑
i=1

r̃100L
i,tp

where n is the total number of TP scenarios, and r̃100L
i,tp is the median

response value of TP question number i rated by all participants with the
100-level scale.

We apply the same calculations for the remaining scenario types. The results should
give us an understanding of how the participants feel towards the different scenar-
ios: TP, TN, FP, FP, and rejection. We define the value ratios we need for the metric
using the aggregated values of the TP, TN, FP, FN, and rejection scenarios rated with
the ME scale since the ME scale provides us with ratio data. We do not use the ag-
gregated values of the 100-level scale for our metric since the 100-level scale does
not provide ratio data, but we still present them.

4.3.2 Reliability

Reliability is about whether we can trust our results and if we get consistent results
(Fitzner, 2007). We do this by mainly looking at inter-rater reliability. Different par-
ticipants should give approximately the same judgements to the same scenarios. We
measure the inter-rater reliability using Krippendorff’s alpha (Krippendorff, 2004;
Maddalena et al., 2017). We calculate the inter-rater reliability value for the complete
survey’s data for the normalized ME and 100-level values. We use the inter-rater re-
liability scores to compare the ME scale with the 100-level scale. We also separately
study the inter-rater reliability values for the different types of scenarios (TP, TN,
FN, FP, and rejection). This experiment does not consider other types of reliability,
such as test-retest reliability. Guaranteeing test-retest reliability would require us to
redo the complete experiment at a different time for the same participants, which is
infeasible for this project, given the limited time and budget.
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4.3.3 Validity

Validity is about whether we are measuring the things we want to measure (Fitzner,
2007). The main goal of this aspect is to validate if we can use the ME technique
to measure participants’ opinions about hate speech detection scenarios. There are
multiple types of validity, but we focus mainly on convergent validity (part of con-
struct validity), content validity, and face validity (Fitzner, 2007). Construct validity
checks whether there is an agreement between a theory and a measurement device
or procedure (Fitzner, 2007). Convergent validity is about the correlation between
different measures to see if they measure the same phenomenon (Fitzner, 2007).
Content validity is about letting experts review the proposed research questions and
procedure (Fitzner, 2007). Face validity is a subjective type of validity, and it is about
why we think the questions and proposed procedures are valid (Fitzner, 2007).

We analyze convergent validity by performing cross-modality validation. Fol-
lowing the approach from Roitero et al. (2018), we analyze the correlation between
the ME scale and the 100-level scale. We can verify that they measure the same
phenomenon if we find that both scales are positively correlated. However, we can
also expect a low correlation since the ME scale is a (normalized) unbounded scale,
and the 100-level scale is bounded. Nevertheless, we think both scales give sim-
ilar results, meaning that high ME responses should correspond to high 100-level
scale responses and low ME responses to low 100-level scale responses. To guaran-
tee content validity, we let experts (the supervisors of this thesis project) check the
pre-registration report before conducting the experiments. We tackled face validity
in section 2.5 by arguing why we think the ME technique is suitable for measuring
people’s opinions about hate speech detection scenarios. We exclude other forms of
validity from this experiment because they are irrelevant or infeasible. For exam-
ple, external validity is about the degree to which the findings can be generalized to
other settings or groups (Fitzner, 2007). We think people with different demographic
characteristics perceive hate speech differently since people have other norms and
values. We believe that if we conduct this experiment using different groups of
participants, we might retrieve different value ratios. Therefore, we decided not to
create too many participant inclusion criteria but take a random sample of global
social media users. We would have to experiment with multiple groups with differ-
ent demographic characteristics to analyze external validity. We left this for future
work to investigate in full detail. However, we still try to analyze if we can find any
differences between participants with different demographic characteristics in the
dataset we retrieve (refer to section 4.3.4).

4.3.4 Demographics

As we conduct the survey study only once for a group of participants, among which
50% are men and 50% are women, the remaining demographic characteristics can be
quite diverse. Nevertheless, we verify whether there are any significant statistical
differences between groups of participants with different demographic characteris-
tics. We expect that demographic characteristics influence people’s perception of
hate speech and how we should deal with it. Therefore, we apply several statistics
to the results of each scenario to analyze if we can find differences between different
demographic groups.

Prolific provides information about the demographic characteristics of the par-
ticipants, out of which we analyze six features: sex, student (whether they are still
a student or not), continent, nationality, language, and ethnicity. We manually add
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the continent feature based on the values of the nationality feature. Most features
overlap with our pre-defined confounding variables from section 4.2.3, where fea-
tures such as nationality, continent, and language are highly correlated. We exclude
age as almost all participants fall between 20 and 30 years old.

We have multiple groups (more than two) for nationality, ethnicity, and language
and two groups for the features student, sex, and continent (since we found only two
continents in the demographic data of all participants). We apply either analysis of
variance (ANOVA) (parametric) or Kruskal-Wallis (non-parametric) when we have
more than two groups. Furthermore, we apply an unpaired two-sample t-test (para-
metric) or the Mann-Whitney U Test (non-parametric) when we have exactly two
groups.

First, we check if we can apply the parametric statistics by checking if their as-
sumptions hold in our dataset. If not, then we use the non-parametric tests. We
apply ANOVA and the t-test when the data meets the following three conditions: ho-
mogeneity of variance (each population has the same variance), normality (the data
of each population is normally distributed), and independence (the observations are
independent of each other) (Howell, 2012). We use Bartlett’s test of homogeneity of
variances and the Shapiro-Wilk test of normality to check if we can apply ANOVA
and the t-test. We obey the independence condition since we collect the data of all
participants independently.

ANOVA and the t-test can be robust to violations of the homogeneity of variances
and the normality assumptions (Howell, 2012). However, if one of the assumptions
is violated, then it is essential to keep the sample sizes as equal as possible (Howell,
2012).

Finally, for the multi-group features (nationality, language, and ethnicity), we ap-
ply pairwise statistical tests (Mann-Whitney U or t-test) between all groups. We only
do this for the scenarios where we find significant differences between the groups
through ANOVA/Kruskal-Wallis.

However, we now may introduce Type I errors as we perform many pairwise
statistical tests between all groups. As a result, we might incorrectly reject the null
hypothesis for some pairwise tests, meaning that we find significant differences
between some groups while there are none. Therefore, we perform the post hoc
Benjamini-Hochberg procedure to correct the p values of the pairwise test results to
control the Type I errors.
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Chapter 5

Results

This chapter presents the results of the survey study (chapter 4) and the experiments
with the value-sensitive rejector (chapter 3). We first present the results of the survey
study as the experiments with the value-sensitive rejector depend on the outcomes
of the survey study.

The goal of the survey study was to retrieve the value ratios of TP, TN, FP, FN,
and rejected predictions in hate speech detection from the perspective of the social
media user. We retrieved the value ratios using the ME scale. We validated the ME
scale by conducting a separate survey using a bounded scale of 100 levels, called the
100-level scale.

We defined three goals of the experiments with the value-sensitive rejector. First,
we want to analyze how the rejector behaves on different models and datasets. Sec-
ond, we want to find out if rejecting predictions increases the utilities of the ML
models in terms of the value of our value-sensitive metric. Finally, we want to com-
pare the value-sensitive metric against machine metrics such as accuracy.

Section 5.1 covers the results of the complete survey study that we collected after
conducting the pilot survey, and section 5.2 covers the results of the experiments
with the value-sensitive rejector.

5.1 Survey study

We collected the responses of all participants to all scenarios for both surveys: one
group that uses the ME scale and another that uses the 100-level scale. All partici-
pants had to answer two/three questions per scenario, dependent on the choice of
the second question.

The first question asked whether the participant found the content of the social
media post hateful or not. Figure 5.1 presents the results of the first question by
showing the percentages of participants who find the content hateful or not hateful
for each scenario. We summed the ME and the 100-level survey responses since this
question was the same for both surveys. Most participants agreed with the ground
truth label of the social media posts. Please note that according to the ground truth
label, REJ1, REJ2, REJ5, and REJ6 are hateful, and REJ3, REJ4, REJ7, and REJ8 are not
hateful. So most participants found the posts used in the TP and FN scenarios hate-
ful, and those used in TN and FP scenarios not hateful. For the rejection scenarios,
most found the posts of REJ1, REJ2, and REJ6 hateful and REJ3, REJ4, and REJ8 not
hateful. However, we found three posts where a significant number of participants
tended to disagree with the ground truth label (more than or equal to 40%): FN5,
REJ5, and REJ7.

The second and third questions asked whether the participant agreed/disagreed
or was neutral about SocialNet’s decision and to what degree. Figure 5.2 shows the
response values to the second and third questions of all scenarios for both scales.
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FIGURE 5.1: Stacked bar charts that show the percentages of partici-
pants who find the content of the social media post used in the scenar-
ios hateful or not hateful. Each bar is a summation of the responses

to both surveys, as this question was the same for both.

Participants generally agreed with the TP and TN scenarios and disagreed with the
FP, FN, and rejection scenarios. For both scales, participants disagreed the most with
scenarios FN3 and FN7 and agreed the most with scenarios TN3 and TN6.

The following sections tackle the different parts of the survey analysis: section
5.1.1 presents the value ratios required for our value-sensitive rejector, section 5.1.2
presents the reliability analysis, and section 5.1.3 the validity analysis. Finally, sec-
tion 5.1.4 shows the results of the demographic analysis.

5.1.1 Value ratios

We need the value ratios between TP, TN, FP, FN, and rejected predictions in the
context of hate speech detection to use our value-sensitive rejector from chapter 3 for
calculating the optimal rejection threshold. We calculated the value ratios following
the approach from section 4.3.1. Table 5.1 shows the resulting values (v) from the
ME and the 100-level surveys. Positive and negative values indicate agreement and
disagreement, respectively. For both scales, participants disagreed the most with
the FN scenarios and agreed the most with the TN scenarios. The final values of
both scales follow the same order: Vf n < Vf p < Vr < Vtp < Vtn. Participants gave
the highest absolute response values to the TN scenarios. We also observed that
participants provided greater absolute response values to the TP and TN scenarios
than to the FP and FN scenarios.

5.1.2 Reliability

As explained in section 4.3.2, we measured the interrater reliability between the par-
ticipants using Krippendorff’s alpha. Table 5.1 shows Krippendorff’s alpha (α) val-
ues for both scales. In the last row of the table, we computed the α values over the
responses to all scenarios. The ME scale seemed more reliable than the 100-level
scale. According to Krippendorff (2004), the results of the ME scale are reliable,
while the results of the 100-level scale are likely to be unreliable.
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FIGURE 5.2: Boxplots of the responses of all participants to all scenar-
ios for both scales.

We also computed the α values for each group of scenarios of the same type (TP,
TN, FP, FN, or rejection). Participants using the ME scale tended to agree with each
other on the FP and FN scenarios, while they tended to disagree on the rejection
scenarios. For the 100-level scale, we see that participants have low agreement on all
scenario types.

5.1.3 Validity

We analyzed the validity of the ME method by performing cross-modality validation
between the ME and the 100-level scale (refer to section 4.3.3). Figure 5.3 shows the
correlation between the ME scale and the 100-level scale. The Shapiro-Wilk test of
normality showed that both the median (normalized) ME scores and the median
100-level scores do not follow a normal distribution (p < 0.05). We calculated the
median because when we look at figure 5.2, we can see that the data of both scales
are skewed and contain many extreme outliers. We calculated the Spearman and
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ME 100-level

α v α v

TP 0.07 18.15 0.04 77.00
TN 0.10 36.32 0.11 86.31
FP 0.39 -16.69 0.07 -51.00
FN 0.92 -28.08 0.14 -62.43
Rejection -0.31 -4.82 0.07 -16.37

All 0.78 — 0.44 —

TABLE 5.1: Krippendorff’s alpha (α) and the scenario values (v) for
TP, TN, FP, FN, and rejection scenarios for the ME and 100-level

scales.
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FIGURE 5.3: Correlation plot between the median normalized mag-
nitude estimates and the median 100-level scores per question.

the Kendall correlation statistics as these are non-parametric and, therefore, do not
require the normality assumption. Spearman returned a 0.98 and Kendall a 0.89
correlation between the ME and the 100-level scales (p < 0.05), indicating that both
scales are highly correlated.

5.1.4 Demographics

We followed the approach from section 4.3.4 to analyze whether statistically signif-
icant differences exist between groups with different demographic characteristics.
We focused on six features: sex, student, continent, nationality, language, and eth-
nicity.

We only used non-parametric statistical tests to analyze the demographic dif-
ferences for two reasons. First, we found that the assumptions of normality and
homogeneity of variances were violated in our dataset when looking at the different
groups for all features. Second, we found that for most features, except sex, the sam-
ple sizes of the feature groups were not equal. We used Mann-Whitney U to verify a
significant difference between the two groups, and we used Kruskal-Wallis for more
than two groups.

Table 5.2 shows the resulting p values for all scenarios and all features. We found
that there are no significant differences between men and women. We found only
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three scenarios with significant differences for the student and continent features.
We found the most significant differences when looking at nationality and language.
We observed five scenarios with non-hateful posts and ten scenarios with hateful
posts where there is at least one feature with significant differences between the
groups. Scenarios FP7 and REJ4 have the most features (4) with significant differ-
ences. Scenarios TP6, FN5, and REJ1 have the second most features (2) with signifi-
cant differences.

Table B.1 shows the p values of the statistical tests for the aggregated scenarios
(TP, TN, FP, FN, and rejection) and all features. We aggregated the scores by calcu-
lating the mean response value to all scenarios of the same type, e.g. TP, for each
participant. Then we applied the statistical tests to the aggregated scores. We found
the most significant differences in the aggregated scores of the FP scenarios.

Finally, we conducted pairwise Mann-Whitney U tests to check if there were any
significant differences between pairs of groups for the multi-group features: nation-
ality, language, and ethnicity. Tables B.2, B.3, and B.4 present the resulting p values
of the pairwise Mann-Whitney U tests for the features of nationality, language, and
ethnicity, respectively. We did not find many pairwise significant differences for
most of these scenarios and the three features. We found the most pairwise differ-
ences (four out of the six pairs) for scenario FN5 and the nationality feature.

5.2 Value-sensitive rejection

We experimented with our value-sensitive rejector following the approach from sec-
tion 3.3.6. We produced a set of predictions for each experimental setup, applied our
value-sensitive rejector to each setup, and collected the results for analysis.

We used all three models (LR, DistilBERT, and CNN) to produce predictions for
both the seen and unseen datasets. Therefore, we ended up with six different sets
of predictions. Then, for each set of predictions, we created the PDFs using KDE
for all predictions of the same type (TP, TN, FP, and FN). The PDFs were necessary
for calculating the total value of the models with the reject option. Figures B.1 and
B.2 show all PDFs for the seen and unseen datasets, respectively. We observed that all
three models were more confident in their correct predictions (TP and TN) than their
incorrect predictions (FP and FN) for both the seen and unseen datasets. All three
models were also more confident in their correct predictions for the seen dataset
than the unseen dataset. The CNN and LR models have similar PDFs and seem
more calibrated since the PDFs of the correct predictions are skewed towards 1.0. In
contrast, the PDFs of the incorrect predictions follow a more uniform distribution.
The DistilBERT model is less calibrated than the other two models. We recognize
this in the PDFs of the incorrect predictions in figures B.1 and B.2 of the DistilBERT
model by looking at the large density values around the high confidence values.

We applied the value-sensitive metric from section 3.1 to the three models and
the two datasets using the PDFs and the ME values (Vtp, Vtn, Vf p, Vf n, and Vr) from
the survey. Figure 5.4 presents the total value of all models with the reject option
(V(τ)) for all possible rejection thresholds (τ ∈ [0.5, 1.0]) and the ME values from
table 5.1. The diamond-shaped markers indicate the optimal rejection threshold (τO)
for which the model achieves the highest total value (V(τO)). Positive V(τ) values
indicate that the model for rejection threshold τ is valuable, and negative values
indicate that the costs of incorrect accepted/rejected predictions exceed the gains of
correct accepted/rejected predictions. For all models, we got τO ≈ 0.5, meaning
that all models achieve the highest total value when all predictions are accepted.
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Two groups More than two groups

Sex Student Continent Nationality Language Ethnicity

TP1 0.506 0.371 0.982 0.095 0.117 0.108
TP2 0.268 0.201 0.387 0.300 0.330 0.464
TP3 0.680 0.276 0.577 0.160 0.046 0.138
TP4 0.756 0.441 0.774 0.137 0.175 0.568
TP5 0.392 0.011 0.387 0.152 0.106 0.341
TP6 0.260 0.097 0.682 0.002 0.006 0.215
TP7 0.342 0.730 0.059 0.241 0.400 0.238
TP8 0.495 0.015 0.246 0.568 0.387 0.190
TN1 0.430 0.480 0.554 0.307 0.260 0.449
TN2 0.567 0.382 0.633 0.595 0.716 0.833
TN3 0.393 0.866 0.766 0.443 0.298 0.432
TN4 0.104 0.171 0.059 0.245 0.251 0.201
TN5 0.290 0.199 0.964 0.304 0.177 0.296
TN6 0.521 0.510 0.608 0.815 0.748 0.600
TN7 0.224 0.878 0.050 0.108 0.223 0.314
TN8 0.191 0.417 0.327 0.168 0.761 0.872
FP1 0.270 0.545 0.065 0.093 0.333 0.174
FP2 0.337 0.114 0.155 0.008 0.164 0.195
FP3 0.561 0.509 0.889 0.793 0.725 0.205
FP4 0.278 0.860 0.908 0.267 0.186 0.344
FP5 0.847 0.445 0.220 0.269 0.554 0.194
FP6 0.774 0.266 0.555 0.758 0.409 0.486
FP7 0.391 0.784 0.015 0.026 0.020 0.010
FP8 0.624 0.837 0.681 0.544 0.225 0.705
FN1 0.337 0.213 0.317 0.261 0.668 0.558
FN2 0.791 0.928 0.759 0.967 0.974 0.823
FN3 0.990 0.752 0.480 0.504 0.455 0.182
FN4 0.511 0.573 0.450 0.549 0.856 0.965
FN5 0.306 0.467 0.802 0.001 0.009 0.349
FN6 0.109 0.113 0.928 0.012 0.084 0.436
FN7 0.871 0.677 0.093 0.107 0.046 0.148
FN8 0.776 0.009 0.819 0.949 0.363 0.117
REJ1 0.799 0.734 0.544 0.021 0.012 0.168
REJ2 0.644 0.202 0.741 0.295 0.258 0.749
REJ3 0.803 0.815 0.108 0.425 0.482 0.133
REJ4 0.985 1.000 0.002 0.014 0.036 0.002
REJ5 0.133 0.994 0.570 0.111 0.036 0.090
REJ6 0.244 0.195 0.716 0.061 0.166 0.664
REJ7 0.911 0.853 0.942 0.997 0.996 0.020
REJ8 0.157 0.167 0.944 0.901 0.741 0.108

TABLE 5.2: Individual: an overview of the statistical differences be-
tween different groups of participants for various demographic char-
acteristics for each scenario in the ME survey. Each cell contains
the p value of either the Mann-Whitney U test for two groups or
the Kruskal-Wallis test for more than two groups. The grey cells
with bold text indicate significant statistical differences between the

groups for that feature and scenario type.
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Figure 5.4 shows that all models’ V(τO) values are greater for the seen data than for
the unseen data. The total value of all models decreases for increasing values of the
rejection threshold.

To further examine how V(τ) behaves when we only consider punishing in-
correct predictions instead of rewarding correct predictions, we applied the metric
again, setting Vtp and Vtn equal to zero. The metric’s conditions 3.2b and 3.2a were
still satisfied when we did this. Figure 5.5 presents the total value (V(τ)) again for
the updated values Vtp = 0 and Vtn = 0. We found that τO of all models moved
towards 1.0, meaning that rejecting predictions is now more beneficial for the total
value of the models. All models achieve the highest V(τ) value when τ ∈ [0.7, 0.9]
for seen data and when τ ∈ [0.9, 1.0] for unseen data.

Table 5.3 shows the specific values of τO, the accuracies of the accepted predic-
tions, and the rejection rates (fraction of rejected predictions). The first two rows
show that the accuracies of all models dropped when we applied the models to un-
seen data. The last two rows (where Vtp = 0 and Vtn = 0) show that we achieved
higher accuracies of accepted predictions for increasing optimal rejection thresholds.
For all models, we rejected less than 30% of all predictions for the seen data and a
large fraction for the unseen data. The DistilBERT model achieved the highest accu-
racies of accepted predictions for all configurations. For the seen data, it achieved
an accuracy of accepted predictions of 92.6% while rejecting only 25.2% of all pre-
dictions. For the unseen data, it rejected the least amount of predictions (92.3%) and
achieved the highest accuracy of accepted predictions (88.1%). The CNN model
performs the worst for all configurations regarding the accuracy of accepted pre-
dictions. The CNN model achieved the highest value for the unseen data when all
predictions were rejected, indicating that it is not valuable to use the CNN model.

Table 5.4 compares the results of our value-sensitive metric with machine metrics
like accuracy. For all models, it presents the total value for the optimal rejection
thresholds (V(τO)), the total value when all predictions are accepted (V(0)), and the
accuracies when all predictions are accepted. First, we compared the accuracy of the
original model with V(0), as in both cases, all predictions were accepted. In the first
two rows, both the accuracy and V(0) indicate that the DistilBERT model performed
the best for both the seen and unseen datasets. In the last two rows (where Vtp = 0
and Vtn = 0), both metrics indicate that the DistilBERT model performed the best
for the seen dataset but got different results for the unseen dataset. For the unseen
dataset, according to the accuracy, the DistilBERT model performed the best, while
the CNN model performed the best according to V(0). All V(0) values in the last
row show that none of the models is valuable for unseen data when we accept all
predictions.

When we look at the V(τO) values in table 5.4, we see that all models are valu-
able for the optimal rejection threshold. The DistilBERT model achieved the high-
est V(τO) values in all configurations except for the unseen data with Vtp = 0 and
Vtn = 0, as the LR model achieved a higher total value. This result is interesting
as we can see from table 5.3 that for the DistilBERT model, the accuracy of the ac-
cepted predictions is higher, and the rejection rate is lower than for the LR model. By
comparing V(τO) with V(0) in the last row of the table, we can see that all models
become valuable when we adopt the optimal rejection threshold.
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FIGURE 5.4: V(τ) functions of all models with Vtp = 18.15, Vtn =
36.32, Vf p = 16.69, Vf n = 28.08, Vr = 4.82.
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FIGURE 5.5: V(τ) functions of all models with Vtp = 0.0, Vtn = 0.0,
Vf p = 16.69, Vf n = 28.08, Vr = 4.82.

LR DistilBERT CNN

τO Acc RR τO Acc RR τO Acc RR

Seen data 0.500 0.847 0.000 0.502 0.850 0.000 0.500 0.835 0.000
Unseen data 0.500 0.640 0.000 0.500 0.640 0.000 0.500 0.629 0.000

Seen data (Vtp = Vtn = 0) 0.783 0.910 0.250 0.878 0.926 0.252 0.756 0.898 0.278
Unseen data (Vtp = Vtn = 0) 0.994 0.752 0.958 0.948 0.881 0.923 0.999 - 1.0

TABLE 5.3: The optimal rejection thresholds (τO), the accuracy of the
accepted predictions (Acc), and the rejection rates (RR) of all models

for both datasets.

LR DistilBERT CNN

V(τO) V(0) Acc V(τO) V(0) Acc V(τO) V(0) Acc

Seen data 27.707 27.707 0.847 28.001 27.996 0.850 27.291 27.291 0.835
Unseen data 15.689 15.689 0.640 15.823 15.823 0.640 14.868 14.868 0.629

Seen data (Vtp = Vtn = 0) 2.688 1.158 0.847 3.041 1.448 0.850 2.490 0.901 0.835
Unseen data (Vtp = Vtn = 0) 3.668 -3.605 0.640 3.606 -3.489 0.640 3.365 -3.322 0.629

TABLE 5.4: The maximum total values of the models for the optimal
rejection threshold (V(τO)), the total value of the models when all
predictions are accepted (V(0)), and the accuracies (Acc) of all mod-

els.
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Chapter 6

Discussion

The main goal of this project was to propose a way of rejecting ML model predic-
tions in a value-sensitive manner for hate speech detection. We split this up into two
parts. First, we wanted to determine how we could measure the total value of ML
models with a reject option. We proposed a value-sensitive metric that measures the
total value of an ML model for some rejection threshold, where we reject and accept
all predictions with a confidence value below and above the threshold, respectively.
This calculation is based on a set of predictions and the value ratios between TP, TN,
FP, FN, and rejected predictions. By maximizing the total value, we can find the op-
timal rejection threshold. Second, we wanted to develop a method for determining
these value ratios necessary for the metric’s calculations. We proposed to estimate
the value ratios in a large survey study using the ME scale. The results from chapter
5 showed several key findings:

• The survey’s results indicated that the ME technique is suitable for retrieving
the value ratios from human ratings to hate speech detection scenarios since
the results passed both the reliability and validity analyses.

• Social media users appreciate correct predictions more than they detest in-
correct predictions, especially content correctly identified as non-hateful and,
therefore, not banned from the platform.

• Social media users agree more on rating the negative value of incorrect predic-
tions than the positive value of correct predictions.

• We did not observe significant statistical differences for most scenarios be-
tween groups of participants with different demographical characteristics.

• The experiments with the seen data showed that our value-sensitive rejector
maximizes the utility of hate speech detection models in terms of the value
of our value-sensitive metric when we consider not rewarding correct predic-
tions.

• The experiments with the unseen data demonstrated that hate speech detec-
tion models are susceptible to bias, affecting the results of our value-sensitive
rejector since we had to reject more predictions when we considered not re-
warding correct predictions. Also, the results showed that when using our
value-sensitive metric, the best model selected can be different compared to
using accuracy.

This chapter analyzes the results from chapter 5 in greater detail. First, we dis-
cuss the main findings of the survey study in section 6.1 and our value-sensitive
rejector in section 6.2. Finally, we highlight some limitations of our approach in sec-
tion 6.4 and give some recommendations in section 6.5.
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6.1 Survey study

In each scenario, we first asked the participant to indicate if they thought the social
media post was hateful or not. We found three scenarios for which more than 40%
disagreed with the ground truth label (FN5, REJ5, and REJ7). We also recognized
this in the ME response values since participants generally were neutral about these
scenarios. Scenarios FN5 and REJ5 are annotated as non-aggressive hate speech tar-
geted at a generic group and seem less hateful than the other posts, and the neutral
post in REJ7 contains an offensive slur. Given the nature of these social media posts
used in these scenarios, it might explain the larger disagreement between partici-
pants in annotating it as hateful/non-hateful for these scenarios.

We simulated the TP, TN, FP, FN, and rejection scenarios by asking the second
and third questions where the participant had to provide a response value using
either the ME or the 100-level scale to express their agreement or disagreement with
SocialNet’s decision. We analyze the resulting response values by looking at three
aspects. First, we analyze the value ratios from the survey that uses the ME scale in
section 6.1.1. Then we discuss whether the ME technique passes the reliability and
validity analyses in sections 6.1.2 and 6.1.3. Finally, we analyze the results of the
demographic analysis in section 6.1.4

6.1.1 Value ratios

Regarding the value ratios, most results align with our hypotheses. The resulting
values of both the ME and the 100-level scale follow the same order (Vf n < Vf p <
Vr < Vtp < Vtn). We noticed that participants disagreed the most with scenarios FN3
and FN7. According to the annotations given by Basile et al. (2019), both scenarios
are hate speech targeted at an individual and contain aggressive speech. The results
of FN3 and FN7 might suggest that participants are more likely to disagree with FN
predictions for aggressive hate speech targeted at individuals.

As expected, we found that participants disagree with the FP, FN, and rejected
predictions, that the value of an FN is lower than an FP, and that the average value of
an FP and an FN is lower than the rejection value. The results show that participants
find a hateful post that is not detected worse than a non-hateful post detected as
hate speech. This finding is in line with our hypothesis that tolerating hate speech
(FN predictions) harms social media users more than forbidding neutral speech (FP
predictions). The value of rejection is the closest to 0 (neutral) because, according
to our formulations in the survey, rejected predictions only reduce the value by the
human moderation effort and do not cause much benefit or harm since the human
moderator needs to handle the prediction within 24 hours.

However, two things were somewhat surprising. First, participants appreciated
correct predictions more than incorrect predictions since participants gave higher
absolute values to TP and TN scenarios than FP and FN scenarios. We expect par-
ticipants to give lower absolute response values to correct predictions since it is
expected from the automatic detection algorithms to produce correct predictions.
However, we look at this from a computer science perspective, where we want to
prevent incorrect predictions, whereas the participants might think producing cor-
rect predictions is more critical. Second, we were surprised that the TN value was
greater than TP, while we expected the opposite to hold. One possible reason could
be that people disagree more on what is considered hateful among the TP scenarios,
as seen in figure 5.1. This observation is in line with the findings of Ross et al. (2017),



6.1. Survey study 43

as the authors found low agreement among participants regarding labelling social
media posts as hate speech.

6.1.2 Reliability analysis

According to the Krippendorff’s alpha values (α), the results of the ME scale are re-
liable, indicating that the ME technique is suitable for estimating the value ratios.
Contrary to our hypothesis, the results indicated that the 100-level scale is less reli-
able than the ME scale. We would expect many participants to give response values
of -100, 100, or 0 as the 100-level scale is bounded, and, therefore, we would expect
higher alpha values for the 100-level scale compared to the ME scale.

In general, the results also showed low alpha values when we computed it for
each group of scenarios with the same type (TP, TN, FP, FN, and rejection). Users
tend to agree more on incorrect predictions than on correct predictions, indicating
that participants agree more on the harm caused by incorrect predictions. We can ex-
plain the low reliability values by looking at the calculation of Krippendorff’s alpha.
In this calculation, we measure the difference between the expected difference and
the observed difference. When we consider the response values to all scenarios, the
values tend to follow the same trend; positive values for correct predictions and neg-
ative values for incorrect and rejected predictions. When we consider the response
values to the scenarios of the same type, e.g. all TP scenarios, the values seem more
randomly distributed as each participant uses a different positive response value to
the TP scenarios. Therefore, when considering all scenarios, the observed difference
between the response values is closer to the difference expected by chance, resulting
in higher alpha values.

6.1.3 Validity analysis

The cross-modality validation between the ME and the 100-level scales showed that
the response values to both scales are highly correlated, indicating that we validated
the ME technique for measuring people’s opinions about different hate speech de-
tection scenarios. The S-shaped curve in figure 5.3 is because for two reasons. First,
the magnitude estimates are skewed towards 0 because of the normalization proce-
dure. Second, the 100-level scores are skewed towards the upper and lower bounds
of 100 and -100 as the participants are more likely to assign the highest or lowest
value.

6.1.4 Demographic analysis

We analyzed several demographic features (sex, student, continent, nationality, lan-
guage, and ethnicity) to see if significant differences exist between groups of partic-
ipants in the response values to all scenarios.

For all scenarios, we found no differences between men and women. This finding
is in line with the work of Gold and Zesch (2018), as the authors did not find any
differences between men and women and how they perceive hate.

For the remaining five features, we found significant differences between groups
of participants for only a small number of scenarios. Furthermore, for the scenar-
ios and features with more than two groups (nationality, language, and ethnicity)
where we found significant differences, we often did not find any significant pair-
wise differences between the groups. These results indicate that for our dataset,
people with different demographic characteristics tend to give the same judgements



44 Chapter 6. Discussion

to different hate speech detection scenarios. Nevertheless, the results show that peo-
ple with different nationalities, languages, and ethnicities are more likely to differ in
their opinions about hate speech detection scenarios than people of different sex or
student status.

We found the most group differences for scenarios FP7 and REJ4 (both containing
non-hateful posts) among all features. It is unclear why FP7 had so many significant
differences, as the post is neutral and not about any sensitive topic. However, the
social media post used in REJ4 is about refugees, which can be a politically sensi-
tive topic. People with different demographic characteristics, such as continent, lan-
guage, nationality, or ethnicity, could have different opinions about this topic. There
were few pairwise group differences for both scenarios and the features of national-
ity and language. However, we observed differences for two of the three pairwise
combinations for the ethnicity feature and both scenarios. Nevertheless, given these
results, there is not enough evidence to explain why scenarios such as FP7 and REJ4
cause more group differences than other scenarios.

Also, we found that hateful social media posts are more likely to cause group
differences than non-hateful posts, as we have more scenarios with group differences
that contain hateful posts (10 in total) than non-hateful posts (5 in total).

We observed the most pairwise significant differences for scenario FN5. Scenario
FN5 contains a hateful social media post about building the wall across the border
between the United States and Mexico. There are five posts about building the wall,
both hateful and non-hateful. For four out of the five posts, we found at least one
feature with significant differences between the groups of participants, suggesting
that group differences depend on the topic of the social media post.

6.2 Value-sensitive rejection

We analyze three aspects of our value-sensitive rejector. First, we analyze how the re-
jector behaves when applied to different hate speech detection models and datasets
(the seen and unseen datasets). The seen dataset is a test set sampled from the same
dataset as the training set. In contrast, the unseen dataset is a test set sampled from
a completely different dataset to simulate how the models perform on new and un-
familiar data. Second, we study whether value-sensitive rejection of ML predictions
can be beneficial for hate speech detection. Finally, we compare our value-sensitive
metric to machine metrics such as accuracy.

We observed that the three hate speech detection models are not well-calibrated,
meaning many high-confident incorrect and low-confident correct predictions exist.
Therefore, when we apply a rejection threshold, we have the problem of accepting
many incorrect predictions or rejecting many correct predictions. Nevertheless, we
observed that the models are more confident in the correct predictions than the in-
correct predictions, making the value-sensitive rejector still useful.

The results of our value-sensitive metric were very similar for all three models
and both datasets. When we consider all value ratios, accepting all predictions seems
the most valuable for both the seen and unseen data. This result is not surprising as
the absolute magnitudes of TP and TN are greater than the absolute magnitudes
of FP and FN, and there are more TP and TN predictions than FP and FN predic-
tions. Therefore, the gains of accepting all correct predictions outweigh the costs of
accepting all incorrect predictions for all models and datasets.

We believe it is more critical to focus on punishing incorrect predictions, as we
want to minimize harm to social media users. Therefore, in the second part of the
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experiments with the value-sensitive rejector, we no longer focused on rewarding
correct predictions, implying Vtp = 0 and Vtn = 0. As a result and according to the
formulation of the value-sensitive metric (formula 3.5), accepted correct predictions
increase the total value by the value of rejection (Vr) and correct predictions that
are rejected decrease the total value by the value of rejection. For the seen data,
the results of the optimal rejection threshold show that by not rewarding correct
predictions, a significant fraction of the predictions can be accepted from all three
models and a smaller fraction rejected. All three models with the optimal rejection
threshold are valuable for the unseen data, but very few predictions can be accepted,
and the majority are rejected. The high optimal rejection thresholds for the unseen
data also demonstrate that hate speech detection models are susceptible to bias, in
line with the findings of related studies by Arango et al. (2019) and Gröndahl et al.
(2018). When we accept all predictions, all three models are valuable for the seen data
but invaluable for the unseen data, putting the viability of all models into question.
Therefore, the results show that our value-sensitive rejector can benefit hate speech
detection and help us determine when to rely on the ML models.

Finally, we compared the results of our value-sensitive metric with machine met-
rics like accuracy. If we accept all predictions, we find that both metrics indicate
that the DistilBERT model performed the best. However, when we consider not
rewarding correct predictions for unseen data, both metrics return different results.
According to our value-sensitive metric, the CNN model is the best, while accuracy
indicates that either the LR or DistilBERT model is the best. We think that the CNN
model has a higher total value as it produces fewer FN predictions (which are costly)
than the other two models.

We see some interesting things when we compare the value-sensitive metric for
the optimal rejection thresholds with the accuracy metric. For most configurations,
both metrics return the same results, namely that the DistilBERT model is the best.
However, when considering not rewarding correct predictions for the unseen data,
we see that the LR model performs the best and gets a slightly higher total value
than the DistilBERT model for the optimal rejection threshold. What makes this
finding interesting is that while the accuracies of the original models are the same,
we would expect that the DistilBERT has a higher total value because the DistilBERT
model has a higher accuracy of the accepted predictions and a lower rejection rate.
One explanation might be that we found that the LR model achieves a higher total
value since it rejects more FN predictions and accepts fewer FN predictions than the
DistilBERT model for the optimal rejection threshold.

6.3 Implications

Related studies recognized machine metrics’ shortcomings, such as accuracy (Casati
et al., 2021; Olteanu et al., 2017; Röttger et al., 2020). While Röttger et al. (2020)
focused on evaluating hate speech detection models by presenting a suite of au-
tomated tests, we focused on improving existing hate speech detection models by
adopting a reject option. Olteanu et al. (2017) claim that we need more human-
centred metrics that take the perceived cost of incorrect decisions into account in-
stead of using abstract metrics such as precision. They state that this perceived
cost should depend on the context of the specific problem and the type of incor-
rect decisions (Olteanu et al., 2017). Our work aligns with theirs as we presented a
value-sensitive metric that considers human value and conducted a survey study to
retrieve the perceived value of social media users for TP, TN, FP, FN, and rejected
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predictions in hate speech detection. Casati et al. (2021) promoted the use of value-
sensitive metrics. They recognized the limits of machine metrics such as accuracy,
as two models could have the same accuracy, but one model could be more valuable
than the other (Casati et al., 2021). Our experiments demonstrated this difference
as we found that the best model according to our value-sensitive metric could be
different from the best model according to the accuracy metric. We believe these
findings can benefit industry and research, as many domains exist where tasks can-
not be fully automated and where human-AI solutions, such as our value-sensitive
rejector, can increase the utility of ML models.

Regarding the survey study, we got several interesting findings. Social media
users appreciate correct hate speech predictions more than they detest incorrect pre-
dictions. However, in terms of inter-rater reliability, they agree more on recogniz-
ing the harm caused by incorrect predictions than the gain from correct predictions.
Overall, the inter-rater reliability values of all scenarios of the same type were low.
This observation is in line with the findings of Ross et al. (2017), where the authors
also found low Krippendorff’s alpha values when asking participants to annotate
hate speech. We did not find many significant differences between groups of dif-
ferent demographical characteristics. Like Gold and Zesch (2018), we did not find
any differences between men and women and how they perceive hate. However, we
found more differences when looking at other demographical features, such as na-
tionality, language, or ethnicity, implying that these features are more likely to cause
group differences.

Regarding the hate speech detection models, we found that BERT models are
indeed promising for hate speech detection, given the recent popularity of BERT
models for NLP applications (Alatawi et al., 2021; Edwards, 2021). The results with
all three hate speech detection models also demonstrated the impact of dataset bias
since we found significant performance drops in terms of both the value of our
value-sensitive metric and the accuracy metric. The experiments with the unseen
data resulted in lower total values and accuracies compared to the seen data, indicat-
ing that hate speech datasets are biased. Once we train hate speech detection models
on such biased datasets, the models also become biased. Our results fit the findings
of previous studies where the authors found a significant performance drop when
they trained models on one dataset and evaluated them on another (Arango et al.,
2019; Gröndahl et al., 2018).

Regarding the methodology, we believe the ME technique is interesting for social
science-related problems where the goal is to retrieve human-perceived value ratios.
We showed how we could use the value ratios in a value-sensitive metric that mea-
sures the total human-perceived value of ML models with a reject option. We further
demonstrated how we could create a human-AI solution for hate speech detection
by using the value-sensitive metric to calculate the optimal rejection threshold. We
used the optimal rejection threshold to determine when we could trust machine pre-
dictions and when we needed to pass machine predictions to a human moderator.

6.4 Limitations

In this section, we list the limitations of the survey study and the value-sensitive
rejector.

Regarding the survey study, we had a limited sample size of 68 participants per
scale due to a constrained budget. We expect more reliable results when experiment-
ing with larger sample sizes.
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Second, we limited the number of scenarios to eight per type, each including ei-
ther a hateful or non-hateful post depending on the scenario type. We expect the
results to be more reliable if the experiment had been repeated several times with
additional sets of social media posts for multiple groups of participants. Neverthe-
less, we believe the results are still reliable since we performed a content analysis
procedure for selecting the most representative social media posts for our experi-
ment.

Third, dealing with hateful content on social media platforms remains controver-
sial, even for governmental institutions and social media companies. We believed
the results would differ when we used different descriptions in the scenarios. Ini-
tially, we explained in the pilot survey that SocialNet removes hateful posts. After
gathering the results, we noticed that participants assigned larger absolute values
to the TP and TN scenarios than to the FP and FN scenarios. Therefore, we de-
cided to update the descriptions to rank posts lower instead of removing posts and
explained that it is expected from detection systems to produce correct predictions
and that incorrect predictions might cause harm to social media users. After updat-
ing the descriptions, we did not notice any difference as participants still assigned
larger absolute values to TP and TN scenarios. Nevertheless, we still believe that us-
ing different descriptions would give different results as we think that people have
different opinions about how we should deal with detected hate speech.

Finally, we should point out the limitations of the demographic analysis. We did
not apply any demographical constraints when gathering participants for the survey
study. As a result, the demographical characteristics of the participants were entirely
random, and the sample sizes were relatively small. For example, most participants
in our experiment lived in South Africa or Poland, and we only had five partici-
pants from Spain. Although the sample sizes were large enough for the statistical
tests, they were not large enough to represent the populations of entire countries.
We did not find enough evidence that people with different demographic character-
istics have different opinions about hate speech detection scenarios. However, if we
repeated the experiment with larger sample sizes, we expect to find more group dif-
ferences for some demographical features, such as nationality. At the same time, we
also believe that for the features where we did find significant differences between
demographic groups, some of them might have happened by chance. Either because
participants did not understand the scenario, their lack of English, or because they
rushed through the survey.

Regarding our value-sensitive rejector, we believe our approach has several lim-
itations.

First, the rejection threshold is calculated empirically and depends highly on the
choice of the test dataset. As we have seen in our experiments, we retrieved different
optimal rejection thresholds for different test datasets (the seen and unseen datasets).
Factors such as sample retrieval or sample annotation bias (refer to section 2.1) explain
why we got different results for the seen and unseen datasets. Therefore, when using
the value-sensitive rejector, it is essential to use a test set that is as similar to real-
world data as possible.

Second, we think using well-calibrated models in the value-sensitive rejector is
best. Although calibration methods such as temperature scaling can improve ex-
isting classification models, these techniques are limited as we still observed many
high confident errors.
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6.5 Recommendations

We believe that future research on social-science-related problems, such as hate speech
detection, should focus more on creating human-AI collaboration solutions and that
these solutions should take human value into account. We noticed that most re-
search in hate speech detection focuses solely on creating fully-automated classifica-
tion models with accuracy as its optimization target. We think solutions such as ML
with rejection are promising to increase the utility of classification models for tasks
that cannot be fully automated, such as hate speech detection. Furthermore, we
showed the limitations of machine metrics, such as accuracy, as they do not consider
the context of the problem. We found through our survey study that different types
of machine errors have different costs according to the social media users. Therefore,
we think that future work should also focus more on developing value-sensitive or
human-centred metrics.

Given the limitations of our survey study, we suggest repeating our experiment
with larger sample sizes to increase the reliability of the results. Also, we think it
would be interesting to study which factors influence the user perception of hate
speech detection scenarios. We believe that user perception depends on many fac-
tors, such as the scenario’s description, the post’s topic, whether the post is offensive
or not, and the post’s target(s). Finally, we think it would be interesting for future
research to study the effects of demographical characteristics in more detail by re-
peating the experiment for different demographic groups with larger sample sizes.

Given the limitations of our value-sensitive rejector, it would be interesting to
create a hybrid solution of our value-sensitive rejector and (un)known unknown
detection techniques. By (un)known unknowns, we mean the low confident cor-
rect and high confident incorrect predictions. If the underlying classification model
of our value-sensitive rejector is not well-calibrated, then we end up with many
(un)known unknowns. We suggest future work to combine (un)known unknown
detection techniques with our value-sensitive rejector so that less correct and more
incorrect predictions are rejected and that more correct and less incorrect predictions
are accepted. Finally, as the optimal rejection threshold is calculated empirically on
a hate speech dataset, we should prevent ourselves from using biased datasets. We
used datasets that were collected using specific keywords and annotated by only
three annotators. Therefore, we suggest using datasets where sample retrieval and
sample annotation bias are prevented as much as possible, for example, by collect-
ing only the most representative data samples or by annotating the data by a large
group of annotators with diverse demographic characteristics.



49

Chapter 7

Conclusion

This research aimed to tackle the problems of automatic and manual proactive mod-
eration of hate speech on social media platforms. We presented a human-AI solu-
tion for hate speech detection where we reject machine learning (ML) predictions
in a value-sensitive manner. In the first half of this project, we formulated a value-
sensitive metric for measuring the total value of an ML model with a reject option
based on the implications of true positive (TP), true negative (TN), false positive
(FP), false negative (FN), and rejected predictions. We used the value-sensitive met-
ric to determine the optimal confidence threshold for which the model achieves the
maximum total value. In practice, we accept all ML predictions with confidence
values above the optimal threshold and reject all below the threshold so that the
human moderator makes the final judgement. In the second part, we designed a
survey study to determine the value ratios between TP, TN, FP, FN, and rejected
predictions in the context of hate speech detection from the perspective of social me-
dia users. We proposed using the magnitude estimation (ME) scale for measuring
user perception of different hate speech detection scenarios.

The survey study uncovered several findings. We showed that ME is a reliable
technique for measuring the value ratios. We validated the results by showing the
correlation with the results from a separate survey study using a 100-level scale.
We found that participants mostly appreciate the correct predictions while strongly
agreeing with the harm of incorrect predictions. The demographic analysis showed
that participants with different demographical characteristics do not differ in their
perception of most hate speech detection scenarios. However, these results are solely
indicative due to the small sample sizes of the demographic groups in our data.

To demonstrate the utility of our value-sensitive rejector, we experimented with
three state-of-the-art hate speech detection models on two real-world hate speech
datasets. We got several interesting findings when focusing on minimizing harm.
The results show the utility of our value-sensitive rejector in guiding the decision
of accepting or rejecting machine learning predictions. The results show that the
value-sensitive rejector maximizes the utility of hate speech detection models when
optimizing value for data familiar to the model’s training data, as only a small frac-
tion of the predictions were rejected. In line with the findings from related research,
we found that hate speech detection models are susceptible to bias, resulting in a
large fraction of the predictions being rejected when applying the value-sensitive
rejector to unfamiliar data.
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Appendix A

Survey

This appendix contains all the presentation material of the survey: scenarios, con-
sent, explanation texts, and some examples of scenarios.

A.1 Scenarios

No. Text H T A

TP1 CBS: Driver an Illegal Alien was drunk, high at time of fa-
tal Donna crash that killed 6 year old girl. Yet another vic-
tim whose life was stolen by an illegal alien.When will you end
this?#BuildTheWall #NoAmnesty #NoDACA #DeportThemAll

Y G Y

TP2 What do you call a woman who has lost 95% of her intelligence?
Divorced

Y G N

TP3 first goes to bitch ass janelle. FUCK YOU MESSY MF ASS BITCH
i literally was on a call with her and her dumb ass twisted my
words and ran to tattle on me to ari. like it legit made her pussy
wet to go and talk shit abt me so fuck u ill come beat ur ass thats
why u stole a listers

Y I Y

TP4 Soccer players go down more than my bitch on my dick Y I N
TP5 #BuildThatWallNow I do not want those vile thugs in our coun-

try! #EndChainMigration #EndSanctuaryCities #EndVisaLottery
#AngelFamlies

Y G Y

TP6 Crimes committed by ILLEGAL immigrants should be pub-
lic information everywhere like in Texas. More illegal aliens
were arrested for homicide in the past 7 years in a single state
than deaths by mass shooting in the other 49 states combined!
#SendThemBack #BuildTheWall

Y G N

TP7 You smoke too much stfu pussy Y I Y
TP8 Your skank ass disgusts me so much Y I N

TABLE A.1: All true positive scenarios used for the survey. The texts
are from the Basile et al. (2019) dataset. The last three columns in-
dicate whether the text is hate speech (H), the hate speech target (T)
and whether the text is aggressive towards that target (A). ’Y’ means
yes, ’N’ means no, ’G’ stands for group target and ’I’ for an individual

target.
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No. Text H T A

TN1 How many immigrant kids were reunited with their parent to-
day?

N - -

TN2 I like to tell people that I drink every night cause I can’t sleep but
at this point it’s just a blatant lie cause I’ve been tired for years

N - -

TN3 It’s what I do, it’s who I am N - -
TN4 Just walked past this women and she goes ’Hello you cunt’ I’m

crying :( :(
N - -

TN5 #MeToo Not all men, far from it, sexually abuse
women.However, all women have experienced sexual ha-
rasment.So not all men, but all women.

N - -

TN6 I never smile and I hate to brag but I can say ’cheese’ without
smiling too

N - -

TN7 Our Table at the Museum of Jewish Heritage - A Living Memorial
to the Holocaust For the Immigrant Arts & Women’s Empower-
ment Summit

N - -

TN8 You can’t be pro -sexual liberation (for women especially) and be
anti -hoe by calling people you don’t like slut, hoe, whore

N - -

TABLE A.2: All true negative scenarios used for the survey. The texts
are from the Basile et al. (2019) dataset. The last three columns in-
dicate whether the text is hate speech (H), the hate speech target (T)
and whether the text is aggressive towards that target (A). ’Y’ means
yes, ’N’ means no, ’G’ stands for group target and ’I’ for an individual

target.

No. Text H T A

FP1 I was never properly taught how to put on makeup. The only
looks I have are fancy whore or daytime slut.

N - -

FP2 omg and pussy boys voicemail wishing me a happy birthday was
the absolute best I appreciate you so much, thank you pussy boy
<3

N - -

FP3 Ontario concerns were not listened at immigration meeting in
Ottawa For illegal crossing

N - -

FP4 Rape is DISGUSTING. No woman or man deserves to go through
something as traumatic as that. Nothing can ever justify rape.
Rape is a choice.

N - -

FP5 Ann Coulter calls Cory Booker a ’hysterical woman’ N - -
FP6 How far can you go down the rabbit hole ? N - -
FP7 I don’t run from my problems, I laugh at them and act like they

don’t exists like a normal human being
N - -

FP8 Is there historical precedent for a state killing its own people, as
a consequence of which many of them become refugees, then,
without providing any guarantees or safety, they ask for people
to return and the neighboring countries try to push people back
into the dictatorship?

N - -

TABLE A.3: All false positive scenarios used for the survey. The texts
are from the Basile et al. (2019) dataset. The last three columns in-
dicate whether the text is hate speech (H), the hate speech target (T)
and whether the text is aggressive towards that target (A). ’Y’ means
yes, ’N’ means no, ’G’ stands for group target and ’I’ for an individual

target.
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No. Text H T A

FN1 Why do women have periods? Because they deserve them Y G Y
FN2 Fuck hoes a bitch ain’t nothin women be trippin bruh Y G N
FN3 I want this stupid bitch out of my head I’ve never even liked her

lmao I just basically want to rape her
Y I Y

FN4 Hoe asss bitch what the fuck Y I N
FN5 We Need a WALL #BuildThatWall Y G Y
FN6 Don’t you hate how girls just Whore around because they never

got daddy’s attention ?? And so they have to interfere in rela-
tionships.. hoe

Y G N

FN7 You mother fucking piece of trash stupid fucking idiot hoe i hope
you fucking die in hell son of a father fucking fuck bitch whore
you fucki

Y I Y

FN8 It’s like it’s always the ones YOU CARE FOR THE LEAST that be
talking so much shit like bitch I’m not even paying attention to
you lil whore

Y I N

TABLE A.4: All false negative scenarios used for the survey. The texts
are from the Basile et al. (2019) dataset. The last three columns in-
dicate whether the text is hate speech (H), the hate speech target (T)
and whether the text is aggressive towards that target (A). ’Y’ means
yes, ’N’ means no, ’G’ stands for group target and ’I’ for an individual

target.

No. Text H T A

REJ1 niggas think bitches supposed to suck their lil ass dick and not
give a bitch head too, like that’s not how it works whore !

Y G Y

REJ2 FUCKING FUCK SHIT PISS MOTHERFUCKING BITCH TIT
CUNT FUCKING SLUT

Y I N

REJ3 Ever been so hungover that your stomach feels like it’s eating
itself

N - -

REJ4 Lifesaving aid on Cabeza is a drop of water in the desert: pre-
cious but not nearly enough. We must stop the forces that force
people to cross in the West Desert: #WelcomeRefugees, #SafePas-
sage for ALL migrants, stop the economic &amp; political vio-
lence the US wages on Latin America

N - -

REJ5 Only men have a dick they can insert without consent, and
women doing other shit. Not that women can’t rape & sexually
harass either.

Y G N

REJ6 Bitch shut the fuck up and dont talk about Afghanistan Y I Y
REJ7 Pokemon Gooooooo fuck yourself N - -
REJ8 Jesus Sex Trafficking is grim. A lot of these women were dam-

aged by something happening to them and that’s where the pimp
took advantage

N - -

TABLE A.5: All rejection scenarios used for the survey. The texts are
from the Basile et al. (2019) dataset. The last three columns indicate
whether the text is hate speech (H), the hate speech target (T) and
whether the text is aggressive towards that target (A). ’Y’ means yes,
’N’ means no, ’G’ stands for group target and ’I’ for an individual

target.
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A.2 Consent

You are being invited to participate in a research study titled "Costs of predictions
in hate speech detection". This study is being done by Philippe Lammerts from the
TU Delft.

The purpose of this research study is to find out what social media users think of
different scenarios of hate speech detection on social media. It will take you
approximately 22 minutes to complete. These scenarios consist of two things. First,
we show a specific social media post that can be either hateful or not hateful. You
need to indicate if you feel that the post is hateful or not. Second, we explain how
the social media platform dealt with this post. You need to indicate whether you
agree/disagree/are neutral about the platform’s decision. The results of the survey
will be used in my thesis.

As with any online activity, the risk of a breach is always possible. To the best of
our ability, your answers in this study will remain confidential. We will minimize
any risks by making this survey completely anonymous. Therefore, please do not
provide any personal information anywhere. The anonymous results might be
shared publicly in the future.

Your participation in this study is entirely voluntary, and you can withdraw at any
time.

Warning: some of the scenarios used in this experiment contain harmful and
offensive content that may make some people feel uncomfortable.

Feel free to contact me with any questions or feedback you might have.

A.3 Introduction

A.3.1 ME scale

• You will be presented with a series of different scenarios.

• For each scenario, you need to answer two questions.

• We will explain the exact instructions later.

• But first, we will let you familiarize yourself with a scale called Magnitude
Estimation.

A.3.2 100-level scale

• You will be presented with a series of different scenarios.

• For each scenario, you need to answer two questions.

• We will explain the exact instructions in the next page.
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A.3.3 Introduction

You will be presented with a series of different scenarios.

• Each scenario describes a situation of a social media user who wants to post a
specific message on a fictional social media platform we now call SocialNet.

• These posts can be neutral or contain hateful content.

• SocialNet uses automated detection systems for detecting hate speech.

• When doing the study, you should be aware that it is expected for SocialNet
to correctly classify hate speech. Wrong classifications are undesirable as they
may cause harm to people.

Each scenario describes one of the following situations for a specific social media
post:

1. You are a user of the SocialNet platform and have not seen this post on your
main feed because SocialNet’s automated detection system is confident that
it is hateful.

• You can still find this post when you scroll down your feed since Social-
Net ranks hateful posts lower.

• If the post is not hateful after all, then the detection system was incor-
rect. This neutral post is now ranked lower on people’s feeds with the
consequence that the post cannot easily reach the author’s followers.

• If the post is indeed hateful, then the detection system was correct.

2. You are a user of the SocialNet platform and just saw this post on your main
feed because SocialNet’s automated detection system is confident that it is
not hateful.

• This post remains visible on other people’s main feeds as well.

• If the post is hateful after all, then the detection system was incorrect. This
hateful post is now visible on people’s main feeds with the consequence
that they can get harmed.

• If the post is indeed not hateful, then the detection system was correct.

3. You are a user of the SocialNet platform and just saw this post on your
main feed because SocialNet’s automated detection system was not confi-
dent enough in whether it was hateful or not.

• An internal human moderator at SocialNet needs to look at it within at
most 24 hours.

• Meanwhile, the post remains visible on people’s main feeds.

A.4 Scale explanations

A.4.1 ME scale

The following text is based on the survey setup from Moskowitz (1977).
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For each scenario, you need to answer two questions:

1. First, you need to indicate whether you feel that this post is hateful or not
hateful.

2. Second, your task is to tell how you feel about SocialNet’s decision.

• If you feel neutral about SocialNet’s decision, this value will be equal to
0.

• If you (dis)agree with the decision from SocialNet, you need to assign any
number that is greater or equal to 0 that reflects how much you (dis)agree
with the decision.

• Assign any number that seems appropriate to you.

• A large number means you (dis)agree a lot, while a small number means
you (dis)agree a little.

• If you (dis)agree twice as much with the current decision as with the pre-
vious one, you need to assign a number that is twice as large as the previ-
ous number.

• Or, if you (dis)agree half as much with the current decision as with the
previous one, you need to assign a number that is half as large as the
previous number.

• You can use any number or decimal you want, but make each assignment
proportional to your subjective impression.

• Please try to not only use appropriate numbers but also avoid restricting
your choice of numbers from 1 to 10.

• Try to remember which values you used before and to compare succeed-
ing scenarios with each other.

Don’t worry, we will provide the same explanations in the questions as well.

A.4.2 100-level scale

For each scenario, you need to answer two questions:

1. First, you need to indicate whether you feel that this post is hateful or not
hateful.

2. Second, your task is to tell how you feel about SocialNet’s decision.

• If you feel neutral about SocialNet’s decision, this value will be equal to
0.

• If you (dis)agree with the decision, you need to indicate how much you
(dis)agree by assigning any number between 1 and 100.

• A large number means you (dis)agree with it a lot, while a small number
means you (dis)agree with it a little.

• Try to make each number match the intensity as you perceive it.

Don’t worry, we will provide the same explanations in the questions as well.
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A.5 Training phase ME

“As a warm-up task, to familiarize you with magnitude estimation, you will be
shown a sequence of five lines, one at a time.

• For each line, enter a number into the text box below the displayed line. This
number should reflect your perception of the length of the line. You may use
any numbers that seem appropriate to youwhole numbers or decimals. How-
ever, you may not use negative numbers or zero.

• For each subsequent line, enter a number that reflects your perception of its
length, relative to the previous line. For example, if you feel that the current
line is twice as long as the previous, then you should assign a number that is
twice as large as the number you used previously.

Don’t worry about running out of numbersthere will always be a larger number
than the largest you use, and a smaller number than the smallest you use. Note:
The magnitude estimation scores are not intended to be an estimate of the length in
any particular measurement units, such as centimeters.” (Maddalena et al., 2017)

A.6 Examples

A.6.1 FN scenario with ME scale

WARNING: the example used in this section contain content that may make some
people feel uncomfortable.

Suppose we have the following post:
“I want this stupid bitch out of my head I’ve never even liked her lmao I just basically want
to rape her” (from Basile et al. (2019))

Question 1:
Please indicate whether you feel that this post is hateful or not hateful.
**Select input with options: ’hateful’ or ’not hateful’**

Question 2:
You are a user of the SocialNet platform and just saw this post on your main feed
because SocialNet’s automated detection system is confident that it is not hateful.

• This post remains visible on other people’s main feeds as well.

• If the post is hateful after all, then the detection system was incorrect. This
hateful post is now visible on people’s main feeds with the consequence that
they can get harmed.

• If the post is indeed not hateful, then the detection system was correct.

• You should be aware that it is expected for SocialNet to correctly classify hate
speech. Wrong classifications are undesirable as they may cause harm to peo-
ple.

Please indicate whether you agree, disagree, or are neutral about SocialNet’s
decision.
**Select input with options: ’agree’, ’neutral’, or ’disagree’.**
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Question 3 (only visible when ’agree’ or ’disagree’ are selected):
Please indicate how much you agree/disagree with SocialNet’s decision using any
positive number.
**Show ME input field that allows all positive values greater than 0.**

A.6.2 FP scenario with 100-level scale

Suppose we have the following post:
“Ontario concerns were not listened at immigration meeting in Ottawa For illegal
crossing” (from Basile et al. (2019))

Question 1:
Please indicate whether you feel that this post is hateful or not hateful.
**Select input with options: ’hateful’ or ’not hateful’**

Question 2:
You are a user of the SocialNet platform and have not seen this post on your main
feed because SocialNet’s automated detection system is confident that it is hateful.

• You can still find this post when you scroll down your feed since SocialNet
ranks hateful posts lower.

• If the post is not hateful after all, then the detection system was incorrect. This
neutral post is now ranked lower on people’s feeds with the consequence that
the post cannot easily reach the author’s followers.

• If the post is indeed hateful, then the detection system was correct.

• You should be aware that it is expected for SocialNet to correctly classify hate
speech. Wrong classifications are undesirable as they may cause harm to peo-
ple.

Please indicate whether you agree, disagree, or are neutral about SocialNet’s
decision.
**Select input with options: ’agree’, ’neutral’, or ’disagree’.**

Question 3 (only visible when ’agree’ or ’disagree’ are selected):
Please indicate how much you agree/disagree with SocialNet’s decision using any
positive number from 1 to 100. If you feel neutral about SocialNet’s decision, select
neutral in the field above.
**Show a numerical slider with values between 1 and 100.**

A.6.3 Rejection scenario with 100-level scale

Suppose we have the following post:
“Ever been so hungover that your stomach feels like it’s eating itself” (from Basile et al.
(2019))

Question 1:
Please indicate whether you feel that this post is hateful or not hateful.
**Select input with options: ’hateful’ or ’not hateful’**
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Question 2:
You are a user of the SocialNet platform and just saw this post on your main feed
because SocialNet’s automated detection system was not confident enough in
whether it was hateful or not.

• An internal human moderator at SocialNet needs to look at it within at most
24 hours.

• Meanwhile, the post remains visible on people’s main feeds.

Please indicate whether you agree, disagree, or are neutral about SocialNet’s
decision.
**Select input with options: ’agree’, ’neutral’, or ’disagree’.**

Question 3 (only visible when ’agree’ or ’disagree’ are selected):
Please indicate how much you agree/disagree with SocialNet’s decision using any
positive number.
**Show a numerical slider with values between 1 and 100.**
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Appendix B

Results

This appendix contains the remaining demographic analysis of the survey results
from section 5.1.4 and the experiments with the value-sensitive rejector from section
5.2.

B.1 Demographic analysis

This section contains some additional tables about the demographic analysis. Ta-
ble B.1 shows the group differences for the aggregated scenario types (TP, TN, FP,
FN, and REJ). Tables B.2, B.3, and B.4 show the pairwise group differences for the
nationality, language, and ethnicity features, respectively.

Two groups More than two groups

Sex Student Continent Nationality Language Ethnicity

TP 0.302 0.032 0.286 0.218 0.109 0.242
TN 0.726 0.379 0.204 0.190 0.216 0.281
FP 0.699 0.933 0.073 0.020 0.040 0.037
FN 0.961 0.150 0.847 0.478 0.438 0.584
REJ 0.835 0.625 0.496 0.271 0.103 0.068

TABLE B.1: Aggregated: an overview of the statistical differences be-
tween different groups of participants for various demographic char-
acteristics for each aggregated scenario type in the ME survey. Each
cell contains the p value of either the Mann-Whitney U test for two
groups or the Kruskal-Wallis test for more than two groups. The grey
cells with bold text indicate significant statistical differences between

the groups for that feature and scenario type.
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South Africa Poland Portugal Spain

South Africa 1.000
Poland 0.077 1.000
Portugal 0.077 0.009 1.000
Spain 0.119 0.083 0.613 1.000

(A) TP6

South Africa Poland Portugal Spain

1.000
0.755 1.000
0.261 0.261 1.000
0.026 0.038 0.050 1.000

(B) FP2

South Africa Poland Portugal Spain

South Africa 1.000
Poland 0.342 1.000
Portugal 0.304 1.000 1.000
Spain 0.043 0.304 0.220 1.000

(C) FP7

South Africa Poland Portugal Spain

1.000
0.034 1.000
0.150 0.011 1.000
0.045 0.011 0.679 1.000

(D) FN5

South Africa Poland Portugal Spain

South Africa 1.000
Poland 0.095 1.000
Portugal 0.622 0.095 1.000
Spain 0.104 0.095 0.104 1.000

(E) FN6

South Africa Poland Portugal Spain

1.000
0.088 1.000
0.227 0.088 1.000
1.000 0.227 0.388 1.000

(F) REJ1

South Africa Poland Portugal Spanish

South Africa 1.000
Poland 0.098 1.000
Portugal 0.098 1.000 1.000
Spain 0.098 0.422 0.422 1.000

(G) REJ4

TABLE B.2: Nationality: an overview of all pairwise Mann-Whitney
U tests between the different nationalities for all scenarios where
we found significant differences between all nationalities using the
Kruskal-Wallis test. Each cell contains the p value of the Mann-
Whitney U test between two groups of different nationalities. We cor-
rected all p values with the Benjamini-Hochberg procedure. The grey
cells with bold text indicate significant statistical differences between

the two nationalities.
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English Polish Portugese Spanish

English 1.000
Polish 0.561 1.000
Portugese 0.352 0.283 1.000
Spanish 0.176 0.258 0.142 1.000

(A) TP3

English Polish Portugese Spanish

1.000
0.089 1.000
0.119 0.007 1.000
0.522 0.089 1.000 1.000

(B) TP6

English Polish Portugese Spanish

English 1.000
Polish 0.321 1.000
Portugese 0.321 1.000 1.000
Spanish 0.019 0.444 0.321 1.000

(C) FP7

English Polish Portugese Spanish

1.000
0.070 1.000
0.209 0.011 1.000
0.647 0.164 0.838 1.000

(D) FN5

English Polish Portugese Spanish

English 1.000
Polish 0.895 1.000
Portugese 0.439 0.721 1.000
Spanish 0.049 0.309 0.548 1.000

(E) FN7

English Polish Portugese Spanish

1.000
0.076 1.000
0.387 0.076 1.000
0.149 0.711 0.096 1.000

(F) REJ1

English Polish Portugese Spanish

English 1.000
Polish 0.063 1.000
Portugese 0.063 1.000 1.000
Spanish 0.599 1.000 1.000 1.000

(G) REJ4

English Polish Portugese Spanish

1.000
1.000 1.000
0.489 0.452 1.000
0.105 0.152 0.105 1.000

(H) REJ5

TABLE B.3: Language: an overview of all pairwise Mann-Whitney U
tests between the different spoken languages for all scenarios where
we found significant differences between all spoken languages using
the Kruskal-Wallis test. Each cell contains the p value of the Mann-
Whitney U test between two groups of languages. We corrected all p
values with the Benjamini-Hochberg procedure. The grey cells with
bold text indicate significant statistical differences between the two

languages.

White Mixed Black

White 1.000
Mixed 0.552 1.000
Black 0.028 0.028 1.000

(A) FP7

White Mixed Black

1.000
0.776 1.000
0.002 0.776 1.000

(B) REJ4

White Mixed Black

1.000
0.016 1.000
1.000 0.112 1.000

(C) REJ7

TABLE B.4: Ethnicity: an overview of all pairwise Mann-Whitney
U tests between the different ethnicities for all scenarios where
we found significant differences between all ethnicities using the
Kruskal-Wallis test. Each cell contains the p value of the Mann-
Whitney U test between two groups of ethnicities. We corrected all p
values with the Benjamini-Hochberg procedure. The grey cells with
bold text indicate significant statistical differences between the two

ethnicities.
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B.2 Probability density functions

This section contains the probability density functions of the predictions of all mod-
els to both the seen (figure B.1) and the unseen (figure B.2) datasets. They help us
understand the value-sensitive metric results in figures 5.4 and 5.5.
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FIGURE B.1: Seen data: probability density functions of the confi-
dence values of all predictions for the seen data estimated with kernel

density estimation.

0.4 0.6 0.8 1.0
Confidence value

0

2

4

6

D
en

si
ty

LR
DistilBERT
CNN

(A) TP

0.4 0.6 0.8 1.0
Confidence value

0.0

2.5

5.0

7.5

10.0

12.5

D
en

si
ty

LR
DistilBERT
CNN

(B) TN

0.4 0.6 0.8 1.0
Confidence value

0

2

4

6

D
en

si
ty

LR
DistilBERT
CNN

(C) FP

0.4 0.6 0.8 1.0
Confidence value

0

2

4

6

D
en

si
ty

LR
DistilBERT
CNN

(D) FN

FIGURE B.2: Unseen data: probability density functions of the con-
fidence values of all predictions for the unseen data estimated with

kernel density estimation.



65

Appendix C

Source code

The source code of this thesis project can be found on GitHub:
https://github.com/delftcrowd/smart_rejector_for_hate_speech

https://github.com/delftcrowd/smart_rejector_for_hate_speech
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