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Preface

This thesis concludes my studies in the master’s program of Construction Management and Engineer-
ing of TU Delft. The research presented here is inspired by my interest in the field of resilience within
the civil infrastructure domain. Water distribution networks (WDNs) represent a critical infrastructure,
essential for sustaining urban life. However, they are highly susceptible to damage during earthquakes,
underscoring the need for a deeper understanding of their resilience.

To address this challenge, an optimization model was developed to simulate and optimize the pipeline
recovery sequence of WDNs. The results of this optimization were used to derive characteristic curves
of the network, providing an innovative tool for evaluating WDN resilience. These characteristic curves
allow for a detailed assessment of a network’s ability to recover from disruptions while maintaining
its functionality. This work offers decision-makers a practical and scalable tool that can be applied to
networks of various sizes and implemented in real-life scenarios. By utilizing this tool, decision-makers
are better equipped to respond to disasters, enhancing the resilience of WDNs.

I would like to express my gratitude to my supervisors, Dr. Ir. Maria Nogal Macho and Dr. Omar
Kammouh, for their invaluable guidance and support throughout this process. Their insights and advice
were instrumental in shaping this thesis. I also extend my deepest appreciation to my friends and family
for their understanding and encouragement during this time.

Vasiliki Tsioni
Delft, January 2025
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Summary

The resilience of civil infrastructure has emerged as a prominent research field in recent years. Aging
infrastructure, combined with unexpected hazards, presents challenges to the civil domain that were
often not anticipated during their design phase. Water distribution networks (WDNs), as a core compo-
nent of civil infrastructure, are integral to sustaining urban life. Spanning large areas and comprising
multiple interdependent components, WDNs are particularly susceptible to natural hazards. While con-
siderable research has been conducted on the resilience of WDN design, studies focusing on their
resilience under seismic conditions remain scarce.

This thesis delves into the area of seismic resilience inWDNs, with an emphasis on the post-earthquake
recovery phase. It proposes an easy-to-implement optimization model aimed at enhancing the re-
silience of WDNs following seismic disruptions. By incorporating hydraulic simulations, this model
aims to strike a balance between practicality and computational efficiency. The goal is to provide asset
managers with a tool that does not require high computational resources, yet avoids oversimplification,
ensuring real-world applicability.

Building on the optimization model, the research introduces the concept of characteristic curves for
WDNs. These performance curves are generated by analyzing the network under various earthquake
magnitudes and resource availability scenarios. These curves offer a scenario-independent evaluation
of network resilience, providing a visual and intuitive representation of its performance. This innovative
tool enables decision-makers to make swift and informed choices during disaster response, while also
supporting proactive preparedness efforts.

The final chapter of the thesis reflects on the limitations of the research and its practical implications
for construction management. It also provides recommendations for future research. Key limitations
include the use of a static resource allocation and the application to real-life urban WDNs where the as-
sumptions of the model will reflect reality. Future research can significantly advance resilience planning
by incorporating dynamic resource strategies. The introduction of appropriate thresholds for different
damage levels could also be incorporated in the expansion of the characteristic curves, allowing for
effective resilience planning.
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1
Introduction

1.1. Problem Statement
Water distribution networks (WDNs) are critical infrastructure systems that are responsible for securing
adequate quantities of safe, high-quality water to the public [2]. Their resilience is defined as the ability
to withstand, adapt to, and rapidly recover from the effects of a disruptive event [4]. In the event
of a catastrophic earthquake, WDNs need to recover quickly and provide water as well as assist in
firefighting and other rescue operations. Given the unpredictably in the occurrence and magnitude
of earthquakes, along with the complex interdependence of the sub-components of the networks, the
recovery process of WDNs proves to be challenging. This work aims to provide an assessment on the
resilience of WDNs by optimizing the recovery process under different seismic scenarios.

1.2. Research Gap
The majority of research on WDNs focuses on achieving optimality during the design phase of the
infrastructure. However, aging and deterioration of WDNs increase their vulnerability and the likelihood
of function interruption during and after disruptive events such as natural hazards [2]. Earthquakes,
floods and extreme weather events due to climate change are examples of natural hazards that can
threaten the infrastructure system. Scientific research on the recovery - based seismic resilience of
WDNs is scant. Instead, the focus the last two decades has been on the assessment of the resilience
of WDNs by defining metrics that will be able to encapsulate the meaning of resilience and provide
generalized assessments of the state of WDNs under normal operations. However, a unified definition
of WDN resilience appears to be lacking in the literature [9]. That results in several different metrics
being developed and tested in scientific research [2, 4, 15, 12, 3, 5, 7, 10, 8]. In terms of recovery
based resilience, the research has been focused on simulating the recovery activities and comparing
different recovery strategies [13]. Discrete event simulation model (DESM) has been used to study the
recovery process under different stress scenarios [14]. The components of the WDNs such as tanks
and pumps, were also examined in assessing their role in different recovery strategies [4]. Optimization
of the recovery sequence of pipes as ameans of assessing the seismic resilience of theWDNS has only
been introduced recently by [13]. The metric that is used to assess the performance of the system is a
satisfaction degree index (SDI) and different recovery strategies were examined which lead to different
values of the metric.

1.3. Objectives
The research field of recovery based seismic resilience of WDNs is still largely unexplored. As a key
aspect of their resilience, the recovery process after a seismic event needs to be optimized in order
to avoid large direct and indirect losses. Furthermore, since no seismic event is ever the same, the
system needs to be resilient in a non-case dependent way. That leads us to attempt at creating an
assessment tool for the resilience of WDNs, based on the recovery process under several seismic
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events.

1.4. Research Question
Based on the research gaps and the objectives of this work, as they were presented in the previous
section the main research question is formulated as follows:

Main Research Question

Can we provide a scenario - free assessment of the recovery based seismic resilience of WDNs, by
the identification of characteristic curves for system recovery?

The 3 sub-questions that are going to guide us in the effort to answer the main question are:

1. What is the appropriate metric for the assessment of the recovery-based seismic resilience of
WDNs?

2. How can we optimize the recovery process of the examined WDN under the different stress
scenarios and resource constraints?

3. How can we extend the results of the optimization process by identifying the characteristic curves
of the system?

1.5. Research Relevance
This work focuses on the research field of post-earthquake recovery of water distribution networks
(WDNs). The resilience of WDNs is evaluated through a simulation-based optimization model of the
pipeline infrastructure, given its critical role in the recovery process, as highlighted in relevant literature
[13, 9, 6]. Building on this foundation, the research aims to extend the applicability of the optimization
model by examining its performance under varying earthquake magnitudes and resource availability
scenarios. The outcomes are presented as characteristic curves, which provide a novel, scenario-
independent method for assessing the resilience of WDNs.

The introduction of characteristic curves for resilience assessment seeks to advance research on the
post-recovery resilience of WDNs. By offering a performance evaluation framework that is not tied
to specific scenarios, this approach provides a more comprehensive understanding of WDN recovery
capabilities, contributing valuable insights for both academic research and practical decision-making.

1.6. Practical Relevance
In aligning this research with current practices within theWDNs community, the proposedmodel aspires
to be practical and accessible for practitioners. The aim is the optimization model developed to be
easily applicable and achieve accurate results in the recovery process of the pipeline infrastructure,
while maintaining a strong scientific foundation that reflects the hydraulic complexities of WDNs. The
introduction of characteristic curves as a second phase of the optimization model is designed to appeal
to asset managers, engineers, and decision-makers. These curves provide an intuitive and visual
representation of the overall resilience behavior of WDNs following an earthquake event. By offering
a clear depiction of network performance, the characteristic curves serve as an easy-to-understand
tool for decision-makers, facilitating enhanced preparedness efforts. Moreover, they promote a deeper
understanding of the relationship between resilience targets and the resources required to achieve
them.

Policymakers may also benefit from the insights and conclusions of this work in their efforts to prepare
for or mitigate the impacts of earthquakes. By offering practical tools and actionable findings, this
research bridges the gap between scientific advancements and real-world applications, contributing
to the resilience and recovery of WDNs. However, this thesis also acknowledges several limitations.
The proposed optimization model is computationally intensive, especially when applied to large-scale
networks. Additionally, the study is based on predefined resource availability and earthquake scenarios,
which can differ in real life cases scenarios. Lastly, while the research is tailored for seismic recovery,
its applicability to other types of hazards or multi-hazard scenarios remains unexplored. Extending the
work to accommodate different hazard profiles would enhance its versatility and practical relevance.
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1.7. Thesis Outline
This paper-based thesis is structured into three main chapters. Chapter 1 introduces the problem state-
ment, the research gap, the objectives, the research questions and the practical and research relevance
of the study. The research paper is presented in the second chapter and includes the optimization
model and the characteristic curves for different scales of networks as well as their characterization
and conclusions on overall resilience performance. Finally, Chapter 3 concludes the research findings,
acknowledges its limitations, and discusses how this study fits into the larger framework of the field of
construction management.



2
Seismic Resilience Assessment of

Water Distribution Networks;
Optimization of the Recovery Process

and Characteristic Curves

This chapter presents the main research paper of the thesis. It begins by introducing the resilience
metric selected based on a review of the existing literature. Subsequently, it delves into the mathe-
matical formulation of the optimization model. Following the implementation of the optimization model,
the production of characteristic curves is presented. These curves are derived from the results of the
optimization and serve as an evaluating tool for resilience. To assess the applicability of the model,
networks of different scales are analyzed, and their respective results are discussed. The conclusions
drawn from the research paper provide valuable insights into the resilience of WDNs during the post-
seismic recovery phase. By aligning closely with the objectives and research questions outlined in the
introduction, this paper serves as the foundation of the thesis and underscores its contribution to the
field.
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Abstract

Water Distribution Networks (WDNs) play a pivotal role in maintaining ur-
ban resilience, especially in the aftermath of seismic disruptions. Despite their
importance, existing resilience assessments for these systems face limitations,
including the lack of a consensus on the definition of resilience and insufficient
emphasis on the recovery process. This study evaluates the seismic resilience
of WDNs by developing an optimization model to prioritize pipeline repair se-
quences. The optimized sequence is then used to generate the characteristic
curves of the network, offering an assessment on its overall performance. The
optimization is carried out using a Genetic Algorithm, while various scenar-
ios of seismic intensities and available resources are considered to generate the
characteristic curves. To assess scalability and broad applicability, the model
is tested on WDNs of varying sizes. The results offer key insights into the re-
silience of WDNs, reflecting their intrinsic behavior under seismic stress. This
integrated approach—linking resource distribution, repair scheduling, and re-
silience metrics—can guide asset managers, engineers, and policymakers in both
risk management and recovery planning for WDNs in seismic-prone regions.

Keywords: Water Distribution Networks, resilience, optimization, recovery
sequence, characteristic curves

1. Introduction

Water Distribution Networks (WDNs) form a core component of critical
infrastructure. According to the National Protection Plan, critical infrastruc-
tures are the backbone of resilient cities; their incapacitation or destruction
could severely impact security, the economy, public health, safety, and the en-
vironment [1]. WDNs, specifically, ensure the supply of safe, high-quality water
to the public, playing an indispensable role in public health and safety [2].

∗Corresponding author

Preprint submitted to JOURNAL XXXX January 28, 2025



They support industrial demands, facilitate economic growth, and are crucial
for firefighting and rescue operations, contributing to urban and natural area
preservation.

However, their complex and interconnected nature makes them vulnerable
to both natural and human-made disasters. With components spanning large
areas - often buried beneath urban infrastructure - these systems are particularly
susceptible to natural hazards like earthquakes. Seismic waves can damage
pipelines through soil - pipe interaction, potentially affecting large areas that
are difficult to isolate and repair. Furthermore, WDNs rely heavily on other
critical infrastructure systems, such as transportation networks and electrical
grids [3]. Disruptions in these interdependent systems can cascade, further
compromising WDNs’ functionality.

The inherent uncertainty surrounding natural hazards, such as earthquakes,
combined with the direct and indirect impacts on WDNs, presents significant
challenges for asset owners tasked with ensuring functionality.

1.1. Literature Review

Traditional risk management approaches have primarily focused on physical
asset protection to mitigate the impact of hazards, aiming to quantify risks and
reduce consequences [4]. These methods, however, often assume predictable and
measurable threats, an assumption that fails under the unpredictable nature of
disasters like earthquakes. To address these limitations, the past two decades
have witnessed a shift toward resilience-based approaches. Resilience, defined
as a system’s ability to prepare for, adapt to, and recover from disruptive events
[1], emphasizes not just damage prevention but also the capacity to maintain
functionality before, during and after a hazard. Nevertheless, resilience remains
a somewhat ambiguous concept, with no universal scientific consensus on its def-
inition [5]. Consequently, various methodologies have been developed to assess
WDNs’ resilience, which can be broadly categorized into two main approaches:
the surrogate measure approach and the simulation of recovery strategies.

The surrogate measure approach employs metrics that indirectly quantify
resilience by evaluating network properties such as hydraulic redundancy, struc-
tural robustness and topological attributes. One of the most widely recognized
energy-based surrogate metrics is the Resilience Index, introduced by [6]. This
metric quantifies the surplus hydraulic power available in a network relative to
the minimum power required to deliver water at acceptable pressures, empha-
sizing hydraulic redundancy [6]. While particularly useful for looped networks,
its applicability diminishes in non-looped or sparse networks with inherently
low redundancy. Building on this concept, [7] incorporated measures of loop
diameter uniformity, combining hydraulic performance and structural reliabil-
ity to extend its utility. Similarly, [8] expanded surrogate metrics to account
for pressure deficits and pipe redundancy, balancing cost efficiency with re-
liability. Despite these advancements, energy-based metrics often oversimplify
the dynamic interactions between hydraulic, structural, and operational factors,
which limits their effectiveness under extreme conditions.
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Entropy-based methods offer an alternative by focusing on flow distribution
and redundancy within the network. [9] employed Shannon Entropy to assess
the randomness and uniformity of flow. Higher entropy values indicate greater
adaptability and robustness, reflecting increased flow redundancy. [10] extended
this concept with the Tsallis entropy, which captures non-linear relationships
in flow variability and offers a more nuanced view of network performance.
Although entropy-based metrics are intuitive and computationally straightfor-
ward, they often oversimplify hydraulic behavior and neglect structural and
economic considerations.

Graph theory provides a structural perspective on resilience by modeling
WDNs as mathematical graphs G = (N,E), where N represents nodes (con-
sumers and sources) and E represents edges (pipes). Metrics such as connectiv-
ity, clustering coefficients, and betweenness centrality are used to evaluate the
robustness of the network. [11] emphasized the importance of topological re-
dundancy and connectivity, demonstrating that networks with higher clustering
coefficients are more resilient to localized failures. [12] highlighted critical nodes
and edges by analyzing topological attributes like betweenness centrality, which
identifies bottlenecks in flow. [13] proposed a framework for sectorized WDNs,
emphasizing modularity and inter-sector connectivity to enhance resilience. Al-
though graph theory metrics provide valuable insights into network structure,
they often fail to integrate hydraulic and operational dynamics, critical for com-
prehensive resilience assessments.

Despite their widespread use, surrogate metrics face several significant limi-
tations. Energy-based approaches, such as the Resilience Index, often overlook
the interplay between hydraulic, structural, and operational factors under ex-
treme conditions, leading to an incomplete representation of system’s resilience
[6, 8]. Entropy-based methods provide valuable insights into flow distribution;
however, they do not adequately incorporate structural and economic considera-
tions, reducing their applicability to real-world scenarios [9, 10]. Similarly, graph
theory metrics emphasize structural robustness but do not account for essential
hydraulic properties, such as pressure and flow variability, which are crucial for
evaluating operational performance [11, 12, 13]. In addition, most surrogate
metrics are static and do not capture the temporal evolution of recovery pro-
cesses. They often assume idealized conditions, ignoring real-world complex-
ities such as repair prioritization, resource allocation, and inter-dependencies
between infrastructure systems. For example, metrics like the Resilience In-
dex or Shannon Entropy cannot adequately represent the cascading effects of
disruptions across interdependent systems, a limitation noted by [14] and [15].
Moreover, the computational simplicity of these metrics often comes at the
expense of accuracy and reliability under dynamic or extreme conditions, as
highlighted by [5, 16].

The second approach that can be found in the field, focuses on the simulation
of post-recovery processes as a means of assessing the resilience of WDNs. These
simulation-based approaches emphasize the temporal evolution of recovery ef-
forts following disruptive events, with particular attention to the relationship
between repair strategies, resource allocation, and system performance. They
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offer a dynamic perspective by modeling recovery in real-time and offer a re-
silience evaluation based on how effectively and quickly a network can restore
its functionality.

[17] made use of Discrete Event Simulation Models (DESMs) for WDNs, sim-
ulating key recovery activities such as pipeline inspection, isolation, and repair
scheduling. Their approach underscored the importance of repair sequencing
to minimize service disruptions and recovery time. However, DESMs are of-
ten computationally intensive and depend on detailed data inputs, including
pipeline damage states and repair resource capacities, which can restrict the
model’s scalability. Building on this framework, [15] incorporated resilience
metrics into the DESM paradigm, explicitly linking recovery processes to sys-
tem performance. Their model captured the complex inter-dependencies among
infrastructure components, such as interactions between damaged pipelines and
supporting systems like power and transportation networks. While this ap-
proach provided a more realistic depiction of recovery dynamics, it also increased
computational complexity.

Other studies have taken a more targeted approach to resilience enhance-
ment by investigating specific interventions. [18] examined strategies like ductile
retrofitting and network meshing to mitigate damages during seismic events and
accelerate subsequent recoveries, underscoring structural robustness as a vital
component of overall resilience. Additionally, [19] evaluated seismic upgrades to
pumps, considering both technical and organizational dimensions of resilience.
Similarly, [20] introduced a resilience index that integrates factors such as user
demand, system capacity (measured by tank height), and water quality, under-
scoring the importance of coordinated restoration efforts.

In addition to dynamic simulations of key restorative activities, optimization
frameworks have been developed to identify effective recovery strategies. [21]
introduces a resilience-based framework for decision-making that uses optimiza-
tion, focusing on how to coordinate interventions under constrained budgets
and uncertain seismic conditions. While the integrated approach promises more
robust decisions compared to static strategies, it requires iterative interventions
whenever new damage data become available. [14] integrated hydraulic simula-
tions into recovery modeling to assess the impact of repair sequencing on flow
distribution and pressure variability. Their study revealed critical bottlenecks
that hinder recovery by combining hydraulic and structural analyses. Despite
these insights, the dual-layer approach significantly increased computational
demands, posing challenges for large-scale or real-time applications. [5], for
instance, proposed a recovery-based optimization model that evaluates repair
prioritization strategies, including those based on damage severity, proximity,
or demand criticality. Their findings revealed that adaptive recovery strate-
gies - where repair plans are dynamically adjusted based on evolving conditions
- outperform static approaches. However, dynamic optimization often entails
significant computational load, making it challenging to apply to large-scale
networks.

Studies by [2, 5, 14, 16], emphasized damaged pipelines as the primary bottle-
neck to restoring water services after earthquakes. [16] introduced phased recov-
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ery schedules, incorporating differentiated user priorities, progressive restoration
of service levels, and variable demand patterns. Their framework explicitly mod-
eled the gradual recovery of WDN functionality, closely aligning with real-world
scenarios. This approach offered valuable insights into the dynamic interplay
between user demands and repair processes. However, it relied on granular
data, such as household-level consumption patterns and pipeline-specific dam-
age assessments, which can limit its applicability in regions lacking detailed data
infrastructure.

While simulation-based approaches represent significant advancements over
static metrics in assessing the resilience of WDNs, there are still challenges to be
addressed. One prominent challenge lies in the scalability of dynamic recovery
models. These models often struggle to accommodate large, complex networks
due to their computational intensity. For example, the frameworks developed
by [5, 15] require substantial processing power to simulate recovery scenarios on
a large scale, rendering them impractical for real-time decision-making in many
cases. Another critical limitation is the dependence on high-resolution data.
Recovery simulations typically require detailed inputs, such as fragility curves,
repair crew schedules, and real-time demand patterns, to generate accurate re-
sults. However, such data is frequently unavailable or unreliable, especially in
resource-constrained or disaster-affected regions, as highlighted by [14]. This
data dependency restricts the applicability of simulation-based models in areas
where comprehensive datasets are lacking. The generalizability of many recov-
ery models also poses a challenge. These models are often tailored to specific
damage scenarios or network configurations, limiting their utility in diverse or
unforeseen hazard conditions. For instance, the phased recovery framework in-
troduced by [16] demonstrates strong performance in urban environments where
detailed demand data is available but struggles to adapt to rural or developing
regions with less structured networks. Finally, resource allocation constraints
are another significant limitation. Few recovery models explicitly address the
dynamic redistribution of resources such as repair crews, equipment, or funding
during the recovery process. [15] underscore this oversight, noting the potential
for inefficiencies in resource allocation to hinder effective recovery efforts.

1.2. Contribution of this paper

The challenges of scalability, data dependency, generalizability, and resource
allocation constraints in existing simulation-based recovery models highlight the
need for further work in the field of resilience assessment and recovery planning
in WDNs. Addressing these limitations requires models that not only simulate
recovery dynamics but also adapt to diverse scenarios and resource constraints,
while providing actionable insights for decision-makers.

To address these gaps, this paper introduces a post-earthquake resilience
optimization model specifically tailored for WDNs. Its primary objective is
to determine the optimal pipeline recovery sequence, aiming to prioritize the
restoration of critical infrastructure components and ensuring a faster, more ef-
ficient return to full operational capacity. Building on an established resilience
metric, this approach refines the assessment process to emphasize rapid system
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recovery while maintaining adaptability and versatility across a broad range
of scenarios. Unlike dynamic simulation approaches, which require meticulous
fine-tuning of recovery strategies, this model eliminates the need to adjust pa-
rameters during optimization, thereby reducing execution time and complexity.

A distinguishing feature of the proposed work is its ability to capture system
behavior under varying stress levels and resource availability. By simulating
different combinations of these factors, the model produces characteristic curves.
The curves that plot the chosen resilience metric against the recovery rate of
the network, illustrate the WDNs’ response to a complete range of hazardous
scenarios. These curves provide a detailed perspective on how the system copes
with disruptions, showcasing its capacity for resilience and adaptability in the
face of changing conditions. For decision-makers, the characteristic curves can
serve as a tool to effectively plan for and manage potential seismic events.

The key contributions of this paper can be summarized as follows:

1. Surrogate metric for resilience assessment: This paper employs a refined
surrogate metric to evaluate the resilience of WDNs, providing a robust
mechanism to enhance the understanding and quantification of network
resilience.

2. Post-earthquake optimization model: It introduces an optimization model
tailored for post-earthquake recovery of WDNs. It emphasizes swift and
efficient recovery across the entire network by prioritizing critical compo-
nents and optimizing recovery sequences.

3. Characteristic curves for system behavior: The framework generates de-
tailed characteristic curves that capture WDN behavior under various haz-
ard levels and resource availability conditions. These curves offer deep in-
sights into system resilience, adaptability, and response patterns, serving
as a practical tool for resilience analysis.

4. Resilience evaluation: The paper provides an evaluation of WDN re-
silience based on the generated characteristic curves. It facilitates in-
formed decision-making, supporting resilience planning and enhancing of
WDNs, in an effort to withstand and recover from disruptions.

By addressing existing gaps and introducing these novel contributions, the
paper advances the state of the art in resilience assessment and recovery planning
for WDNs, providing practical tools for disaster preparedness and management.

The remainder of this document is structured as follows: Section 2 provides
a comprehensive description of the methodology followed in this work. Section 3
presents the numerical cases used to validate the proposed model, demonstrat-
ing its applicability and effectiveness in networks of different scale. Section 4
includes the discussion of the results. Finally, Section 5 presents the conclusions
of the work.

2. Methodology

The primary goal of this study is to enhance the resilience of WDNs in the
aftermath of seismic events, focusing specifically on the recovery of pipeline in-
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frastructure. To achieve this, an optimization model is developed to prioritize
the sequence in which damaged pipes are repaired, maximizing the network’s re-
covery efficiency. The outcome of this optimization process is extended through
characteristic curves, which provide a detailed representation of the system’s
performance under various stress levels and repair rate scenarios.

2.1. System modeling

This section describes how each component of the model is developed, es-
tablishing the foundation for accurately representing WDN performance under
both normal and seismic conditions, along with its recovery process. Figure 1
depicts the methodology’s principal steps.

Figure 1: Methodology for the seismic resilience assessment of WDNs.

2.1.1. Network modeling

In this study, theWDN is modeled to include its primary components: nodes,
pipes, pumps, and valves. The nodes, denoted by n ∈ N , includes junctions
where water is consumed or distributed, as well as reservoirs and tanks. Reser-
voirs and tanks serve as storage elements with fixed water heads or varying
water levels, depending on their role within the network. The pipes, denoted by
i ∈ P , represent the physical conduits through which water flows, forming the
backbone of the network’s connectivity and functionality. For the purposes of
this analysis, nodes and pipes are considered the primary components, as they
play the most critical roles in determining the hydraulic behavior and overall
performance of the WDN. While pumps and valves are included in the model
to ensure realistic simulation of network operations, they are excluded from the
simulation of seismic damage and the subsequent recovery process. The study
concentrates on the pipeline infrastructure within WDNs, under the assump-
tion that other network components - such as pumps and tanks - either sustain
minimal damage or can be quickly restored post-earthquake [5, 16, 20].
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2.1.2. System performance indicator

The resilience of a WDN is evaluated by examining its performance across a
time horizon sufficient to complete the restoration process following a disruptive
event. To quantitatively assess the network’s performance, the study utilizes the
Seismic Resilience Index (SRI), a metric that reflects the degree to which the
network fulfills user demands under various operational conditions [16]. Thus,
the resilience of WDNs is assessed through the levels of performance over time
by calculating the area under the curve of the performance graph as shown in
Figure 3. The overall performance of the WDN, is represented by the SRI,
defined by [16] as:

SRI =

T∑
t=1

SDI(t) (1)

where SDI(t) is the Satisfaction Degree Index at each time step t. The Sat-
isfaction Degree Index corresponds to the summation of the Node Satisfaction
Degree of the nodes of the network, for a specific time-step and is expressed as
follows:

SDI(t) =
∑
n∈N

wn ·NSDn(t) (2)

where wn represents the weight associated with each node n ∈ N , reflecting
its importance within the network. The Node Satisfaction Degree NSDn(t) for
node n at time t is the level of satisfaction of a specific node for a specific time-
step. It is calculated as the ratio between the hydraulic head that the network
has at that particular node at that time-step against the hydraulic head that
said node had before any disruptions. The NSDn(t) is given by the following
formula:

NSDn(t) = min

(
Hn(t)

Hn(0)
, 1

)
(3)

where, Hn(t) is the hydraulic head at node n at time t, and Hn(0) is the hy-
draulic head at the same node under normal pre-earthquake conditions. This
ratio ensures that each node’s satisfaction is evaluated based on how closely the
post-earthquake hydraulic head matches its normal operational head.

2.1.3. Hydraulic modeling

The recovery simulation begins with a detailed hydraulic simulation of the
network in its normal, undisturbed state. This simulation establishes a base-
line for the hydraulic head at each node, representing the pressure and water
availability across the system. This baseline serves as a reference for evaluating
the impacts of seismic events and the subsequent recovery process, providing a
critical foundation for resilience analysis.

The study employs the Water Network Tool for Resilience (WNTR), a
Python-based package specifically designed for modeling and analyzing the re-
silience of WDNs [22]. WNTR enables precise hydraulic calculations based on
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well-established fluid mechanics principles, ensuring reliability and consistency
with industry standards. The methodology follows the one used in EPANET 2,
a widely used platform for hydraulic and water quality analysis, allowing for a
robust simulation framework [23].

Key principles guide the simulation process, starting with the conservation of
mass at each node. Additionally, the conservation of energy is applied through-
out the network, modeling the effects of elevation changes, pipe friction, and
pump contributions [23]. Water flow through the pipes is calculated using the
Hazen-Williams equation [23], a widely accepted empirical formula for deter-
mining head loss due to friction.

hf = k · L ·
(
Q

C

)1.852

(4)

where hf represents the head loss due to friction, measured in meters or feet,
and k is a coefficient that depends on the pipe diameter and the unit system,
which can be metric or imperial. The term L corresponds to the length of the
pipe, measured in meters or feet, while Q denotes the volumetric flow rate,
typically expressed in cubic meters per second or gallons per minute. Finally,
C is the Hazen-Williams roughness coefficient, with higher values indicating
smoother pipe interiors that result in lower frictional losses. In the context of
this simulation, the Hazen-Williams formulation is adapted to handle negative
flows, which occur when disruptions in the network, such as damaged pipes,
cause water to flow in unintended directions.

To simulate network performance under low-pressure conditions, pressure-
dependent analysis (PDA) is incorporated [24]. Unlike demand-driven models
that assume constant water demands regardless of pressure, PDA adjusts de-
mand based on the available pressure at each node according to Equation 5:

d(t) = dmax ·min

(
p(t)

pmin
, 1

)
(5)

where d(t) represents the actual demand at time t, and dmax is the maximum
demand the network is expected to satisfy. The term p(t) denotes the available
pressure at time t, while pmin is the minimum pressure threshold required for full
demand satisfaction. This approach is particularly important for post-damage
scenarios, where reduced pressures can significantly impact the network’s ability
to meet user demands.

2.1.4. Seismic modeling and damage assessment

The next step in the model involves creating the disaster scenario and eval-
uating its impact on the WDN. This process begins with simulating a seismic
event, which is defined by the earthquake’s magnitude and the geographic lo-
cation of its epicenter. The seismic intensity at different locations within the
WDN is determined by calculating the peak ground acceleration (PGA) and
peak ground velocity (PGV ) based on the attenuation model selected, as func-
tions of the distance from the epicenter.
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To assess the damage caused by the seismic event, fragility curves are em-
ployed following the methodology outlined by [25]. Fragility curves provide a
probabilistic representation of the likelihood that a pipeline will reach or ex-
ceed a specific damage state under given seismic conditions. In this analysis,
the fragility curves are parameterized by the pipe repair rate and the pipe
length. They define the probability of damage as a function of seismic inten-
sity, incorporating empirical and analytical data on pipeline performance during
earthquakes. Mathematically, the fragility curve for a pipeline is expressed as
a cumulative distribution function (CDF ), which relates the probability of ex-
ceeding a damage state (P (D > d|IM)) to the seismic intensity measure IM ,
such as PGA or PGV . The CDF is given by:

P (D > d|IM) = Φ

(
ln(IM)− ln(IMd)

βd

)
(6)

where Φ is the standard normal cumulative distribution function, IMd is the
median seismic intensity at which the pipeline is expected to reach the damage
state d, and βd is the logarithmic standard deviation, representing the variability
in the damage threshold. These parameters are typically derived from empirical
data and prior studies of pipeline performance under seismic loading [25].

For the purposes of this analysis, two distinct damage states are considered:
”No Damage” and ”Damage.” The ”No Damage” state represents pipes that
remain fully functional, while the ”Damage” state corresponds to pipes that are
completely impaired along their entire length, rendering them unable to carry
water flow. To simplify the modeling process, minor damages and leaks are
excluded from consideration, focusing solely on major failures that significantly
disrupt network functionality. The likelihood of each pipe’s damage state is
determined by sampling from the fragility curve using an exponential distribu-
tion, which is well-suited for modeling the stochastic nature of seismic damage
[25, 26]. For a pipe with length L and repair rate λ, the probability density
function PDF of damage over the length of the pipe can be expressed as:

P (Damage) = λ · e−λ·L (7)

Here, λ represents the repair rate, which is influenced by the seismic intensity
and pipe properties, while L is the pipe length. Pipes that are sampled as
undamaged retain their full functionality. Conversely, pipes classified as dam-
aged are considered completely inoperative and are removed from the hydraulic
model. This means that the damaged pipes are treated as closed, and water flow
is redirected around the impaired sections. This assumption was considered in
order to simplify the repair process, without having to consider different ways
of addressing minor or major damages for the pipes. This reconfiguration alters
the network’s hydraulic behavior, introducing new constraints and potentially
increasing head losses in alternative paths.

With the network now in its post-damage state, a hydraulic simulation is
performed to calculate the updated hydraulic head at each node, reflecting the
immediate impact of the earthquake. This simulation adheres to the principles
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of conservation of mass and energy described in the earlier section, ensuring
that the recalculated flows and pressures accurately represent the disrupted
state of the network. The post-damage simulation captures the SDI, providing
a quantitative basis for evaluating the network’s degraded performance.

2.1.5. Recovery modeling

The recovery process for the WDN begins immediately following the seismic
event which is designated as day 0 in the simulation. This period marks the
start of a structured and systematic effort to restore the damaged network, with
repairs continuing over T days, the total recovery time required to fully repair
the network under the specific scenario of the earthquake magnitude and the
repair rate of the available crews. By definition, the recovery time T cannot
exceed the maximum recovery time Tmax, which is determined as the number of
days needed to restore full functionality to the network, under the most intense
scenario of the highest magnitude and the lowest available repair rate.

The recovery process relies on the recovery sequence, denoted as X, which
specifies the order in which the damaged pipes will be repaired and is the prod-
uct of the optimization model. Mathematically, X is represented as a one-
dimensional vector of length D, where D is the number of damaged pipes and
P is the total number of pipes in the network, such that D <= P . The sequence
X = [x1, x2, . . . , xD] defines the repair order, with xi representing the position
of the i-th damaged pipe in the sequence.

Repair crews are assumed to have a fixed daily repair capability, referred to as
the repair rate, which is measured in meters of pipeline that can be repaired per
day. This repair rate, denoted by R, is a critical parameter in the simulation,
reflecting the resources of the repair effort. The crews are considered fully
equipped and ready to begin repairs immediately following the seismic event.
Importantly, repairs are modeled as non-preemptive; once a crew starts repairing
a pipe, they must complete the repair of that pipe before moving to the next
one in the sequence.

The recovery sequence X is transformed from a one dimensional vector into
a matrix X̄ for the purposes of the simulation. This matrix tracks the repair
status of each pipe over time, with dimensions P × (Tmax/∆t), where ∆t is the
time-step that is chosen to divide the recovery period. In this case the time-step
selected corresponds to one day, therefore ∆t = 1. The above transformation
is necessary, since the recovery sequence X contains only the order with which
every damaged pipe is to be repaired. However, the time that is necessary for
every repair is an important aspect of the recovery process. The matrix X̄ trans-
lates the recovery sequence X into the damaged state of every damaged pipe for
every day of the recovery process. Each entry X̄it indicates the proportion of
pipe i that remains damaged at day t. Initially, X̄it = 1 for all damaged pipes:

X̄it = 1 ∀t ∈ {1, 2, . . . , Tmax}.

The repair process unfolds iteratively, with repair crews addressing the pipes
sequentially based on the order defined in X. At the beginning of each day, the
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available repair capability is initialized to the predefined repair rate R. The crew
then assesses the remaining length of the pipe currently under repair, denoted
as Ji, which represents the length of pipe i that has yet to be repaired. If the
remaining length is less than or equal to the available repair rate, the pipe is
fully repaired that day. This means it is marked as fully functional, and the
remaining repair rate is reduced by the length of the repaired pipe. The matrix
X̄ is updated to reflect that X̄it = 0, indicating that no further repairs are
required for this pipe.

For pipes where the remaining length exceeds the daily repair rate, only a
portion of the pipe is repaired, equivalent to said available repair rate. The
remaining length is reduced accordingly, and X̄it is updated to reflect the pro-
portion of the pipe still requiring repair. In this scenario, the repair rate for the
day is depleted to zero, and the repair of the pipe continues into the next day.
The process iterates through the recovery sequence until either the daily repair
rate is exhausted or all pipes in the sequence have been addressed. X̄it offers a
collective view of the recovery process for every time-step of its duration.

At the end of each day, a hydraulic simulation is conducted to update the
state of the WDN. This recalculates the hydraulic head at each node, incorpo-
rating the restored functionality of the repaired pipes. The Satisfaction Degree
Index SDI is recalculated after each simulation, providing a quantifiable mea-
sure of the network’s improving functionality as repairs progress.

This process continues until all damaged pipes have been fully repaired or
the recovery period concludes. By iteratively updating the repair status matrix
X̄ and recalculating network performance metrics, the model provides a detailed
and realistic representation of the post-disaster recovery effort. This structured
approach ensures that repair resources are systematically allocated, enabling an
efficient and effective restoration of the WDN.

2.2. Recovery strategy optimization

This section presents the mathematical formulation of the proposed opti-
mization model, which determines the most effective recovery strategy for a
damaged WDN. The primary objective is to maximize network resilience by
optimizing the sequence in which damaged pipelines are repaired.

The recovery strategy is represented by the vector X = [x1, x2, . . . , xD],
where each element xi denotes the repair order of the i-th damaged pipe. Each
variable xi is an integer constrained within the range [0, D], with D being the
total number of damaged pipes. The objective of the optimization model is to
maximize network resilience by minimizing the negative of the time-weighted
SDI over the recovery period T . The objective function is formulated as:

min
X

−
T∑

t=1

SDIt(X)

t
(8)

This formulation penalizes slower recovery strategies by weighting earlier im-
provements in the network’s performance more heavily. Rapid recovery is a
main characteristic of better resilience, as delays in functionality restoration
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have negative impacts on consumers and overall network functionality. The
inclusion of the time factor t ensures that the optimization process prioritizes
strategies that achieve restoration efficiently. As illustrated in Figure 2, faster
recovery curves demonstrate higher resilience, as reflected by the area under the
curve. The time-penalized objective function promotes strategies that achieve
restoration in the shortest possible time.

The optimization problem is subject to several constraints ensuring practical
and feasible recovery strategies:

Order constraint: The order in which the damaged pipes are repaired must
be feasible and remain within the total number of damaged pipes:

0 ≤ xi ≤ D, ∀i ∈ D (9)

This ensures repair actions are applied only to damaged pipes within the net-
work, as represented by the set D. It prevents assigning repair actions to un-
damaged pipes and guarantees that the repair process is directed only towards
pipes that require intervention.

Permutation constraint: Each damaged pipe must be repaired exactly once,
and the order of repairs must be unique:

xi ̸= xj , ∀i ̸= j, i, j ∈ D (10)

This constraint enforces that no two pipes can be repaired simultaneously or re-
ceive duplicate repair assignments. In practical terms, it ensures that the repair
crew attends to each pipe once and only once. This constraint is essential to
avoid any overlap or redundancy in the repair sequence, which would otherwise
compromise the efficiency of the recovery strategy.

Head constraints: The hydraulic head at each node in the network must
remain within a predefined range during the recovery process. These constraints
ensure the network operates within safe and acceptable performance limits:

Hmin ≤ Hn,t(X) ≤ Hmax, ∀n ∈ N ,∀t ∈ {1, . . . , T} (11)

Additionally, the minimum head Hmin must be non-negative to ensure a physi-
cally feasible operation:

Hmin ≥ 0 (12)

2.3. Resilience assessment & Characteristic curves

To evaluate the broader performance during the recovery phase, the near-
optimal recovery strategy is analyzed under diverse scenarios, including varying
earthquake intensities and different repair rates for multiple repair crews. For
each scenario, the calculated SRI values are used to generate characteristic
curves, which visually represent the relationship between network resilience and
recovery rates.
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Figure 2: Example of characteristic curves depicting the system’s recovery capacity.

Optimal recovery behavior is characterized by a network that achieves max-
imum performance with the lowest repair rate, as shown in Figure 2. The
construction of characteristic curves involves two components: the performance
matrix for the selected resilience metric and the recovery rate. The performance
matrix is derived from the SDI values, which capture the WDNs performance
at every time-step t as demonstrated in Equation 2. These values are computed
based on the optimal repair sequence for various earthquake intensity levels
and represent the dynamic state of the network during recovery. The matrix is
structured such that each row corresponds to a specific damage level l and each
column to a discrete time-step t, forming a two-dimensional array of perfor-
mance metrics. The dimensions of the matrix are determined by m ⊆ M, the
number of damage levels M considered in the analysis, and Tmax, the maximum
recovery time required under the most severe scenario.

The average performance of the network for a given hazard level is calculated
by averaging the SDI values over Tmax, the total time required to fully recover
the network under the worst-case conditions. This approach ensures that the
performance matrix accounts for the network’s performance at its most vulnera-
ble state, providing a robust foundation for evaluating resilience across different
scenarios. Mathematically, the performance matrix is represented as:

SDIm,t =


SDI(1, 1) SDI(1, 2) . . . SDI(1, Tmax)
SDI(2, 1) SDI(2, 2) . . . SDI(2, Tmax)

...
...

. . .
...

SDI(M, 1) SDI(M, 2) . . . SDI(M,Tmax)

 (13)

This formulation ensures that the performance matrix captures the temporal
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recovery dynamics of the WDN for various hazard levels, forming the basis for
constructing characteristic curves and evaluating resilience metrics.

Figure 3: Resilience curve illustrating the repair rate as the secant of the SDI curve.

In parallel, the recovery rate is defined as the average hydraulic head that
is regained by the whole network over the total of the recovery period and is
measured in m/day. It is calculated as the secant of the SDI curve for each
combination of damage level and repair rate, providing a quantitative measure
of the efficiency of recovery efforts. The recovery rate is particularly valuable for
comparing scenarios with different resource constraints and damage intensities,
offering insights into how resource allocation impacts the pace of recovery. Fig-
ure 3 illustrates an example of the resilience curve with a secant line representing
the recovery rate.

The characteristic curves generated from this analysis are instrumental for
evaluating the WDN’s performance under diverse stress scenarios. They provide
decision-makers with a clear understanding of whether the available resources
are sufficient to address specific levels of network damage and allow for the
identification of critical thresholds where additional resources may significantly
enhance recovery efficiency. Furthermore, the curves underscore the importance
of proactive planning and preparedness, as they highlight the relationship be-
tween resilience and resource allocation across different damage levels.

3. Application cases

To illustrate the applicability of the proposed model, this section presents
its implementation across two distinct case studies involving WDNs. The first
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case study focuses on a small, standardized benchmark network commonly used
for evaluating WDN models. This network provides a controlled environment to
validate the core functionality of the proposed model. The second case involves
a scalable network that approximates the characteristics of a small, real-world
water distribution system.

3.1. Case 1

3.1.1. Case description

The first case study is a modified version of Network 1 from the EPANET
example set, provided by the US Environmental Protection Agency (EPA).

Figure 4: Illustration of Network 1 from
the EPANET example set and the location
of the epicenter of the earthquake.

Pipe IDs Length (km)
”10” 3.2
”11” 0.8
”12” 1.6
”21” 1.6
”22” 0.7
”31” 0.6
”110” 0.6
”111” 2.1
”112” 0.8
”113” 3.0
”121” 3.0
”122” 0.9

Table 1: Pipe names and corresponding
lengths for Network 1.

This network comprises 12 pipes, 9 junctions, 1 pump, 1 tank, and 1 reservoir,
as illustrated in Figure 4. The junctions’ demands are modeled to follow a 24-
hour demand pattern, reflecting realistic variations in water usage over time.
To enhance the applicability of the case study, the pipes’ lengths were modified
slightly from their original values in Network 1. These changes were made
to introduce variability in pipe lengths, as the original configuration included
groups of pipes of uniform length. This adjustment prevents the optimization
algorithm from converging prematurely on solutions influenced by uniform pipe
lengths, ensuring a more realistic evaluation. The total length of the network’s
12 pipes amounts to 19 km, while the length of every pipe can be seen in Table
1.
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Figure 5: Kilometers of broken pipes and number of broken pipes versus earthquake magni-
tudes for Network 1.

The epicenter of the simulated earthquake is located at the bottom left corner
of the network, as can be seen in Figure 4. Earthquake magnitudes ranging
from 6.0 Mw to 9.0 Mw were considered to assess their impact. The relation-
ship between earthquake magnitudes and the extent of damage is depicted in
Figure 5.

3.1.2. Optimal recovery strategy

As was discussed in Section 2, the recovery strategy is generated by a GA.
This section presents the results for one severe scenario, where the earthquake
magnitude reaches 9.0 Mw and there is available only one repair crew with a
daily repair rate limited to 25 m/day. For this case, we compare the optimal
repair strategy, produced by the GA, to two baseline strategies for prioritizing
broken pipes. The first is based on average demand where the priority of the
pipes is given in descending order of the average demand for their start and
end nodes. The second is based on the average hydraulic head. According to
this one, pipes are ranked by the average hydraulic head at their start and end
nodes, giving priority to those that potentially carry higher pressure.

Figure 6 displays the SDI trajectories for all three approaches. Each discrete
step in the optimal curve marks the completion of a pipeline repair. Notably,
the optimal (red) strategy rises more quickly and achieves a final SRI of 0.831,
surpassing both the head-based strategy (blue, 0.536) and the demand-based
strategy (yellow, 0.255). Although perfect resilience, i.e., SRI = 1, was not
achievable for the optimal strategy, due to the extended recovery period, 90%
of the SDI is restored within the first year and 9 out of 12 pipes were fully
repaired during this time.

The recovery curve for the optimal sequence, highlights a rapid initial restora-
tion, followed by a gradual ascent to full functionality as repairs progressed.
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This pattern reflects the prioritization of critical pipes during the early recovery
phases, with subsequent efforts focused on restoring the network’s remaining
capacity. In contrast, both of the fixed strategies under-perform. The priority
for pipes with the highest values of hydraulic head and demand accordingly,
results in an inefficient behavior. The demand based approach, does not make
use of the connectivity of the network. It focuses on repairs for pipes that once
repaired, seem to not contribute to the reinstating of the flow and the accumula-
tion of high SDI. That is evident from the trajectory of the SDI curve, where
the recovery of almost all the pipes needs to be completed in order for the final
repairs to restore the flow and increase the SDI value close to 1.0. The head
based approach, produces a curve that is more similar to the optimal one. That
is expected since the hydraulic head is the driving factor for the prioritization
of the pipe. However, it still fails to exploit the redundancy of the network and
aim to repair the most important pipes according to the highest SDI. Instead,
it targets pipes with the same high value of hydraulic head, even though they
are not all necessary for the restoration of flow in the network. This results to a
slower restoration of the SDI and a smaller resilience for the network’s recovery
process, reflected in a smaller value of the SRI.

Figure 6: SDI curve for network 1 for the optimal recovery sequence and for the fixed strate-
gies.

The results of the GA’s search process are provided by the box-plot in Fig-
ure 7, which illustrates the progression of solution quality across generations.
During the early generations, the interquartile ranges were wide, reflecting sig-
nificant exploration by the algorithm. This variability ensured that the GA
explored a diverse set of potential recovery sequences. By generation 14, the in-
terquartile range had narrowed considerably, indicating that the population was
converging toward high-performing solutions. Full convergence was achieved in
generation 17, with minimal variability in fitness values thereafter.
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Figure 7: Box-plot of the results of the GA search for Network 1.

The presence of outliers in later generations highlights the algorithm’s on-
going exploratory processes, even after convergence. These outliers represent
alternative solutions explored by the GA, which helps maintain diversity within
the population. However, their limited impact on the overall fitness values sug-
gests that the convergence to the optimal solution is robust. The algorithm’s
ability to balance exploration and exploitation reinforces confidence in its per-
formance.

3.1.3. Characteristic curves

This section presents the characteristic curves for Network 1, illustrating the
restorative behavior of the network under varying earthquake magnitudes and
different levels of available repair resources. These curves provide a comprehen-
sive representation of the system’s performance as it responds to stress scenarios,
independent of the specific earthquake magnitudes and recovery resources.

Figure 8 depicts the SRI achieved by the network during the repair process,
based on the optimal recovery sequence. The results are presented as a function
of recovery rate, defined as the average restoration rate from the start to the
completion of the recovery process. Each distinct line in the graph corresponds
to a specific number of repair crews, with repair rates ranging linearly from 25
m/day (1 crew) to 150 m/day (6 crews). Points along each line represent the
ascending magnitude levels from 6.0 Mw on the top of every curve to 9.0 Mw
on the bottom.
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Figure 8: Characteristic curves of SRI as a function of recovery rate for varying repair rates
in Network 1.

The graph reveals several trends. For low earthquake magnitudes, such as 6.0
Mw, the network is capable of achieving full recovery i.e, SRI = 1, regardless of
the repair rate. However, for higher earthquake magnitudes, such as 9.0Mw, the
resilience of the system diminishes and is dependent on the repair resources. At
a repair rate of 25 m/day, the network is unable to achieve a resilience metric of
1.0 with the SRI reaching only 0.810, due to the extended recovery time. As the
repair rate increases, the SRI value increases with the highest value achievable
being 0.970 for the maximum available repair rate of 150 m/day. This indicates
that for severe damage scenarios, even the maximum available repair resources
are insufficient to fully guarantee the maximum desirable level for the network’s
resilience.

In terms of the recovery rate of the network, it is interesting to note that
for small magnitudes we can observe that an increase in available repair crews,
directly translates to a proportional increase in recovery rate. This demon-
strates a linear relationship between repair resources and recovery efficiency.
Conversely, that is not the case with increasing magnitudes. As the damage
severity becomes greater, the recovery rate does not scale linearly with the re-
pair rate. For 6.0 Mw, the recovery rate increases proportionally to the repair
rate, however, for 9.0 Mw, the increase in recovery rate is only about one-third
of the increase in repair rate. This diminishing return highlights the complexity
of the network’s performance as the extent of damage becomes more severe. In
the cases of greater damage extent, the recovery process needs to target several
pipes before a sufficient amount of them has been restored. By creating a path-
way of critical pipes that will serve the network and provide adequate pressure
to the consumers, the restoration process continues until the full repair of all
the pipes of the network. This process is reflected in slower recovery rates.

At lower repair rates (e.g., 25 m/day), the network recovers slowly, with the
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recovery rate close to 0.005 m/day, emphasizing the need for increased resources
to mitigate prolonged disruptions. With increased repair rates (e.g., 150 m/day
), near-total recovery can be achieved in shorter time-frames and greater recov-
ery rates. However, it is necessary to examine the cost of the investment against
the benefit of recovery in terms of time and functionality. According to the char-
acteristic curves, for greater damage levels, the increase in repair resources is
not guaranteeing a similar extent of increase for the recovery rate or the re-
silience metric of the network. That would mean that a different deployment of
resources is perhaps necessary to address the needs of the network.

Figure 9 shifts focus to the influence of earthquake magnitudes on recovery
dynamics. It examines SRI as a function of recovery rate for seismic intensities
ranging from 6.0 Mw to 9.0 Mw. The graph highlights how initial damage
levels, dictated by earthquake magnitude, impact the recovery trajectory.

Figure 9: Characteristic curves of SRI as a function of recovery rate for varying earthquake
magnitudes in Network 1.

For lower earthquake magnitudes, such as 6.0 Mw, the network experiences
minimal initial damage, reflected in higher starting SRI values. It is interesting
to note that the different magnitudes can be clustered into three separate groups
based on the network’s behavior. For magnitude 6.0 Mw, the network is prac-
tically unbothered. Magnitudes until 7.0 Mw result in small damages, where
the SRI is close to 0.95 for one crew, while being able to recover quite easily,
making evident that 3 crews are more than enough. However, for magnitudes
greater that 7.5 Mw, the extent of the damage becomes important enough, so
that the available resources are not able to fully restore the network and the
proportionality of their increase is not reflected in the recovery rate.

The recovery curves for higher earthquake magnitudes display a steeper
slope, signifying slower progress in restoration despite an increase in repair re-
sources. Again, this highlights the significance of the initial damage, since one
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might otherwise expect a linear correlation between resource availability and
recovery rate.

3.2. Case 2

3.2.1. Case description

The network selected for the second case study is Network 3, in the EPANET
example set, provided by the US Environmental Protection Agency (EPA).

Figure 10: Illustration of Network 3 from
the EPANET example set and the location
of the epicenter of the earthquake.

Pipe IDs Length (km)
”20” 0.03
”40” 0.03
”50” 0.03
”60” 0.3
”101” 4.3
”103” 0.4
”105” 0.7
”109” 1.2
”111” 0.6
... ...

”330” 3.0
”333” 0.9

Table 2: Pipe names and corresponding
lengths for Network 3.

The EPANET Network 3 is based on the North Marin Water District (NMWD)
in Novato, CA. NMWD serves a population of around 64,000 people over an
area of about 100 mi2. A significantly larger and more complex system with 118
pipes, 92 nodes, 2 pumping stations, 3 tanks, and 2 constant head reservoirs,
illustrated in Figure 10. The network was used as part of a water quality study of
the system [27]. The demand pattern of this network follows a 24-hour pattern
like in the Section 3.1, while the total length of the network’s 118 pipes amounts
to 150 km. Table 2 presents a fraction of the lengths of the network’s pipes,
while the full table is available in the Appendix.
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Figure 11: Kilometers of broken pipes and number of broken pipes versus earthquake magni-
tudes for Network 3.

The earthquake epicenter is located close to the top left corner of the network.
Earthquake magnitudes ranging from 6.0 Mw to 9.0 Mw were considered to
assess their impact, resulting in varying numbers of broken pipes across the
network, as can be seen in Figure 11.

3.2.2. Optimal recovery strategy

The discussion initially focuses on the most vulnerable state of the network:
a scenario with the highest earthquake magnitude and only one available re-
pair crew. Figure 12 presents the recovery of hydraulic performance, measured
using the SDI, comparing the near - optimal recovery sequence, with the two
baseline strategies. Similarly to the first numerical case, the near - optimal
strategy outperforms both of the baselines. The SRI for this scenario is calcu-
lated to be 0.698, reflecting the network’s reduced resilience under such limited
repair resources. Still, an improvement over the value of 0.372 for the average
head based strategy and the 0.272 for the average demand based strategy. The
optimal strategy seems to offer the fastest initial restoration of critical pipes,
resulting in an early jump for the SDI values in Figure 12. Overall, the SDI
curve has a convex-looking appearance, prioritizing pipes that have the biggest
influence on the metric, as was expected from the definition of the optimization
problem. However, that is not the case for the other two baseline strategies. The
blue curve, the average head based strategy, spends the first 800 days repairing
pipes with small impacts on the SDI and then its slope increases, exhibiting
an undesirable performance in terms of the resilience, as it is not promote high
early recovery. A similar behavior can be observed in the average demand based
strategy, where for almost half of the recovery time the SDI remains close to
zero and then, after the reparation of a lot of less critical pipes, there is enough
flow in the network to increase the SDI levels.
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Figure 12: Recovery curve of Network 3 with one crew (25 m/day repair rate).

The complexity of Network 3 is evident in the graph, which shows a more
intricate recovery curve compared to the smaller network in Section 3.1. The
inefficiency of having only one repair crew is also apparent, as full recovery takes
nearly 2500 days (approximately 6.5 years). Such a prolonged recovery period
would be unacceptable in real-world scenarios. In this scenario, the network
undergoes continuous repair for approximately 3.5 years, during which the SDI
steadily improves, reaching 80% of full recovery. Following this phase, there is a
plateau lasting more than one year, during which the SDI remains unchanged.
That is attributed to the repair process of a single pipe with a length of 14
km. At a repair rate of 25 m/day, this pipe alone requires more than 500 days
to repair, explaining the stagnation in the SDI during this period. Similar
plateaus are observed in the two baseline strategies, however they are evident
in different times, highlighting the difference in prioritization for the pipe.

Given the slow recovery associated with one crew, two more cases are chosen
to be presented. Both of these cases have magnitude 9.0 Mw while the repair
rate of the first is 75 m/day corresponding to 3 crews and the second has repair
rate of 150 m/day, corresponding to 6 crews. For the case of 3 repair crews and
a repair rate of 75 m/day, the near-optimal strategy of the GA had an SRI
equal to 0.896, while the average head strategy an SRI of 0.791 and the average
demand strategy an SRI of 0.757. The total recovery period concluded within
3 years. The results are shown in Figure 13.
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Figure 13: Recovery curve of Network 3 with three crews (repair rate of 75 m/day).

Figure 14 shows the results for 6 repair crews and a repair rate of 150 m/day,
the near-optimal strategy of the GA had an SRI equal to 0.948, while the
average head strategy an SRI of 0.895 and the average demand strategy an
SRI of 0.879.

Figure 14: Recovery curve of Network 3 with three crews (repair rate of 150 m/day).

The performance of the near - optimal solution and that of the baseline
strategies for the two additional cases, remains relatively the same, with small
deviations. The importance of the increased repair rate is reflected on the
recovery time. For a crew of 6 people, the recovery is complete in under 500
days compared to 2500 for one crew. That means that there is an almost
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proportional decrease of recovery time with the increase of recovery resources.
However, in terms of the resilience metric, there was only an increase of around
one quarter.

The results of the GA for the scenario of magnitude 9.0 Mw and repair rate
25 m/day are provided by the box plot shown in Figure 15. The plot shows that
the presence of outliers is more pronounced in this case compared to Section
3.1. While the results indicate that the algorithm is approaching the optimal
solution, the variability and persistence of outliers suggest that additional runs
are necessary to refine the solution and ensure convergence.

Figure 15: Box plot of GA training for Network 3 with one crew (repair rate of 25 m/day).

The GA results for Network 3 demonstrate the challenges posed by the in-
creased scale and complexity of the network. While the algorithm successfully
identifies high-performing recovery sequences, the computational demands and
slower convergence highlight the need for further optimization and additional
computational resources.

3.2.3. Characteristic curves

In this section, the characteristic curves for Network 3 are presented, follow-
ing the same approach as in the first numerical case. While the general trends
already observed hold for this larger and more complex network, Network 3
introduces additional challenges due to its scale and intricacy.
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Figure 16: Characteristic curves of SRI as a function of recovery rate for varying repair rates
in Network 3.

Figure 16 illustrates the relationship between the SRI and the recovery rate
for different repair capacities in Network 3. Similar to Section 3.1, each line
represents a specific number of repair crews, with repair rates ranging from 25
m/day (1 crew) to 150 m/day (6 crews). The points along the lines correspond
to varying earthquake magnitudes starting from magnitude 6.0 Mw to 9.0 Mw.

Several key differences emerge due to the increased complexity of Network
3. Unlike the smaller network in the first numerical case, where a magnitude
6.0 Mw earthquake had no noticeable impact on the network’s resilience at
lower repair rates, Network 3 experiences a drop in SRI even at the lowest
magnitude. This reflects more intricate inter-dependencies within the network,
which make it more sensitive to seismic events. At higher magnitudes, such
as 9.0 Mw, the SRI fails to reach 1.0, even with the maximum number of
repair crews. For the lowest magnitude, 6.0 Mw, the network also cannot fully
recover, achieve SRI = 1 with the available resources, highlighting the need
for greater investments in repair capacities to address the larger damage scope
of a complex network. The trend of proportional increase of the recovery rate
with an increase of the repair rate for earthquakes of small magnitudes is also
evident here. However, the nominal recovery rates achieved in Network 3 are
lower, reflecting the challenges posed by its scale and complexity. Network 3 is
larger and more complex than Network 1 and that difference is reflected in the
characteristic curves of Figure 16.

Figure 17 shifts the focus to the effect of earthquake magnitudes on the
recovery dynamics of Network 3. The graph examines the SRI as a function of
recovery rate for seismic intensities ranging from 6.0 Mw to 9.0 Mw.
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Figure 17: Characteristic curves of SRI as a function of recovery rate for varying earthquake
magnitudes in Network 3.

The trends observed in the first case are generally consistent, but Network 3
exhibits some notable differences due to its scale. Even for lower magnitudes,
such as 6.0 Mw, the SRI begins at a lower value, particularly at small recovery
rates. This contrasts with the first case, where the SRI remained unaffected
at lower magnitudes. The added complexity and interconnections in Network 3
makes it more vulnerable, even to moderate seismic stresses. At higher magni-
tudes, such as 9.0 Mw, the network’s initial SRI is significantly reduced, and
the recovery process is slower. Even with the highest repair rates, the net-
work struggles to achieve full recovery. This highlights the increased resource
demands of larger systems and the limitations of existing repair rates. The di-
minishing gap between SRI curves for different magnitudes as recovery rates
increase underscores the importance of scaling repair resources proportionally to
the severity of seismic events. Additionally, the slower recovery rates observed
in Network 3 emphasize the challenges of achieving similar levels of efficiency
as seen in smaller networks.

4. Discussion

This study aims to develop an optimization model to enhance the resilience
of WDNs after seismic events. The focus was on determining optimal repair
sequences for damaged pipelines, maximizing recovery efficiency. By combin-
ing recovery simulations with characteristic curves, the proposed work offers a
comprehensive approach to enhance the resilience of WDNs.

The optimal repair sequence generated by the GA consistently achieves
higher SRI values than the fixed strategies. Overall, the resilience curve of the
optimal strategy performs better than the benchmark strategies, by prioritiz-
ing critical pipes and promoting faster initial recovery of the system. Moreover,
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the optimal strategy maintains its positive performance for networks of different
sizes, in contrast with the benchmark strategies which exhibit greater variability
in their performance. The characteristic curves reflect the recovery properties of
the network and provide valuable insights into the relationship between resource
allocation, recovery rates, and resilience. The offer a visual representation of the
achievable levels of resilience and recovery rate for different damage levels and
available resources. The complexity of different networks is reflected in their
shape, providing a possible classification tool for comparable networks.

The study’s findings align with existing research, emphasizing the impor-
tance of pipeline recovery optimization in enhancing WDN resilience and the
utility of GA as a means of solving optimization problems. The integration of
characteristic curves into the analysis represents a novel contribution. The char-
acteristic curves offer a comprehensive view in the resilience of the system and
provide a connection between the available resources, the initial damage levels
and the recovery of the system. This study also provided new insights into the
scalability challenges faced by larger networks, emphasizing the need for tailored
recovery strategies. Contrary to earlier research and existing practice suggest-
ing near-linear benefits from additional resources, our results—particularly in
the more complex network—indicate a more nuanced reality. By interpreting
the characteristic curves of the examined networks, it is evident that for greater
damage severity, the increased resources while speeding recovery, they are not
able to provide a comparable restoration process. While resource allocation
remains crucial, simply adding more crews does not automatically yield propor-
tional improvements; instead, optimal planning could be a solution to realize
meaningful resilience gains.

Building on that consideration, the current model assumes that repair crews
work serially on a single pipe at a time. While this simplification makes the
model easier to implement and analyze, it does not leverage the potential ben-
efits of deploying multiple crews simultaneously across different parts of the
network. A more complex implementation that allows for parallel crew opera-
tions could significantly enhance the network’s recovery capacity. However, such
an approach would increase the computational complexity and require more ad-
vanced optimization strategies to manage the coordination and prioritization of
multiple repair teams effectively. The computational intensity of the GA is also
poses limitations on the existing model, especially for larger networks. For the
second case study, the computational demands required leveraging the Delft-
Blue supercomputer at the Delft High Performance Computing Centre (DHPC)
[28]. This reliance on high-performance computing highlights a key limitation
of the approach when applied to expansive or highly interconnected networks.
Balancing these complexities with practical applicability remains a challenge for
future iterations of the model.

For asset managers and water authorities, the model offers a valuable tool for
prioritizing pipeline repairs and optimizing resource allocation, enabling more
efficient and effective recovery efforts. The introduction of characteristic curves
provide significant advantages for the resilience analysis of WDNs. They can
enable decision-makers to prepare and plan for desirable recovery outcomes. By
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capturing the behavior of the networks, the curves facilitate strategic resource
allocation, ensuring that investments are directed toward maximizing recovery
efficiency. These curves also simplify complex recovery dynamics into actionable
insights, helping asset managers, engineers, and policymakers make informed
decisions.

Future work should aim to enhance the optimization model by incorporating
dynamic resource allocation to reflect real-world constraints and variability in
repair resources. Additionally, applying the model to more complicated and
extensive networks would ensure its scalability and relevance to real-world ap-
plications, making it a valuable tool for large urban systems. The model could
also be improved by assigning different weights to network nodes, reflecting the
varying criticalities of system users such as hospitals, shelters, and industries,
to better evaluate their impact on the SRI. The characteristic curves could be
further developed by incorporating acceptable thresholds tailored to specific im-
pacts of different hazard levels, enabling a more nuanced analysis of resilience.
Expanding the scope of the work to address additional hazards beyond earth-
quakes, such as floods, wildfire, or man-made attacks, would increase its ap-
plicability. Finally, integrating an economic component to evaluate the costs
associated with the resource allocations suggested by the characteristic curves
would provide decision-makers with insights into the financial implications of
various recovery strategies, ensuring both efficiency and cost-effectiveness.

5. Conclusions

This study introduces an optimization method for determining the most
effective pipeline repair order, yielding significantly higher resilience indices
compared to pre-existing fixed-priority strategies. It effectively maintains im-
proved recovery outcomes regardless of network size, underscoring its capacity
for broader application. Furthermore, the creation of characteristic curves of-
fers a comprehensive perspective on system recovery by mapping the relation-
ship between resource allocation, initial damage level and recovery aspects of
the system. From a policy making standpoint, these curves can serve as a tool
for resilience network classification and optimal investment decisions, especially
in cases of significant initial damage where the connection between increased
resources and effective recovery is less straightforward.

The present study focuses on a static resource allocation, where the number
and deployment of repair crews remain constant throughout the recovery pro-
cess. Future research can significantly advance resilience planning by incorpo-
rating dynamic resource strategies. The introduction of appropriate thresholds
for different damage levels could also be incorporated in the expansion of the
characteristic curves, allowing for effective resilience planning.
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APPENDIX

Figure 18: Box-plot of GA training for Network 3 with three crews (repair rate of 75 m/day).

Figure 19: Box-plot of GA training for Network 3 with six crews (repair rate of 150 m/day).
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Pipe IDs Length (km) Pipe IDs Length (km)

”20” 0.03 ”195” 0.01

”40” 0.03 ”199” 0.06

”50” 0.03 ”201” 0.36

”60” 0.37 ”202” 0.03

”101” 4.32 ”203” 0.15

”103” 0.41 ”204” 1.39

”105” 0.77 ”205” 0.40

”107” 0.45 ”207” 0.41

”109” 1.20 ”209” 0.15

”111” 0.61 ”211” 0.20

”112” 0.35 ”213” 0.78

”113” 0.51 ”215” 0.37

”114” 0.61 ”217” 0.16

”115” 0.60 ”219” 0.11

”116” 0.50 ”221” 0.70

”117” 0.83 ”223” 0.35

”119” 0.66 ”225” 0.85

”120” 0.22 ”229” 1.22

”121” 0.57 ”231” 0.19

”122” 0.62 ”233” 0.03

”123” 0.61 ”235” 0.22

”125” 0.46 ”237” 0.36

”129” 0.28 ”238” 0.13

”131” 0.98 ”239” 0.43

”133” 0.24 ”240” 0.15

”135” 0.27 ”241” 0.27

”137” 1.98 ”243” 0.37

”145” 0.84 ”245” 0.30

”147” 0.62 ”247” 1.30

”149” 0.42 ”249” 0.50

”151” 0.50 ”251” 0.62

”153” 1.07 ”257” 0.48

”155” 0.67 ”261” 0.67

”159” 0.27 ”263” 0.59

”161” 0.31 ”269” 0.63

”163” 0.36 ”271” 0.24

”169” 1.39 ”273” 0.15

”171” 1.05 ”275” 0.01

”173” 0.63 ”277” 0.67

”175” 0.89 ”281” 0.13

”177” 0.61 ”283” 0.13

”179” 0.13 ”285” 0.01

”180” 0.05 ”287” 0.42

”181” 0.15 ”289” 0.28

”183” 0.18 ”291” 0.33

”185” 0.02 ”293” 0.33

”186” 0.03 ”295” 0.44

”187” 0.39 ”297” 0.19

”189” 0.01 ”193” 0.01

”191” 0.23 - -

Table 3: Complete table with pipe name and lengths for Network 3.
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3
Conclusions

This chapter presents the findings of this research and draws conclusions. Section 3.1 provides an-
swers to the main research question and sub-questions posed at the beginning of this thesis, emphasiz-
ing the key insights. Section 3.2 addresses the limitations of this research and finally, Section 3.3 offers
a reflective analysis linking the study’s findings to the field of construction management engineering.

3.1. Response to Research Questions
In section 1.4 of this thesis 3 research questions were posed to guide the research into responding to
the main research question. The main research question was:

Can we provide a scenario - free assessment of the recovery based seismic resilience of WDNs, by
the identification of characteristic curves for system recovery?

The first sub-question that was posed was:

What is the appropriate metric for the assessment of the recovery-based seismic resilience of WDNs?

The answer to this question was derived through a literature review. Research in the field of WDN
resilience has predominantly focused on two main approaches for developing metrics to quantify re-
silience. The first involves surrogate metrics based on energy theory, graph theory, or a combination
of the two. These methods are computationally efficient and offer insights into network performance;
however, they often lack a direct connection to real-world service outcomes. The second approach uti-
lizes simulation-based methods to model the performance of WDNs under disruptive scenarios. These
simulations provide a deeper understanding of network behavior and recovery processes, albeit at the
cost of increased computational complexity.

This research adopts a simulation-based assessment of resilience, as the simulation of post-earthquake
recovery sequences was identified as a gap in the current literature that warrants further exploration.
Among the various metrics considered in the existing literature, the Seismic Resilience Index (SRI)
introduced by [13] was selected as the most suitable for this study. The SRI is defined as the summation
of the network’s Satisfaction Degree Index (SDI) over a discrete time period. The SDI represents the
average satisfaction level of consumers with the water service, reflecting how effectively the network
meets consumer demand at any given time. According to [13], the significant function for WDNs is to
satisfy consumer demand. Unlike metrics that focus on the structural reliability, which primarily evaluate
the physical attributes of the system, consumer demand provides a functional perspective. It focuses
on how effectively the network performs its primary role—meeting the needs of end-users by delivering
adequate water supply.

By addressing the first sub-question and selecting the appropriate resilience metric to quantify the
resilience of WDN, we establish a foundation for advancing the analysis. This selection allows us
to proceed to the second sub-question, which focuses on how to optimize the recovery process of a
damaged WDN using the chosen metric.

5
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The second sub-question that was posed was:

How can we optimize the recovery process of the examined WDN under the different stress scenarios
and resource constraints?

The answer to this question lies in the development of the optimization model presented in the thesis
paper. The proposedmodel determines the optimal repair sequence for damaged pipelines tomaximize
network resilience. The selected metric SRI, is used to evaluate the recovery strategies but with a slight
modification. To incentivize the selection of recovery strategies that achieve the fastest recovery with
the highest consumer satisfaction, the metric is modified in the optimization model. Specifically, the
Satisfaction Degree Index (SDI) at each time-step is divided by the time-step itself. This modification
penalizes slower recovery strategies by weighting earlier improvements in network performance more
heavily. As a result, the optimization algorithm is driven to prioritize strategies that achieve the quickest
restoration of services, ensuring that consumer satisfaction is maximized as soon as possible.

The performance of the optimization algorithm is evaluated by comparing it to a fixed recovery strategy
predetermined based on standard practices. In the fixed strategy, the sequence of pipe repairs is
determined by the average hydraulic head each pipe provides to the network. This approach aligns
with common practices in the WDN community. The curve of the SDI generated by the optimization
algorithm and the corresponding numerical value of the SRI are juxtaposed with those obtained from the
fixed strategy. The comparison highlights the proposed optimization model’s enhanced performance,
as it results to quicker restoration of the network with higher SRI values.

In terms of computational complexity, the algorithm is tested on networks of varying scales. The results
demonstrate promising outcomes, as the optimization algorithm is capable of achieving the optimal
solution for small to medium-sized networks. The optimization model is then applied to combinations
of different levels of earthquake magnitudes and available resources, to evaluate its performance for
different configurations of earthquake hazards. That results of this work provide the answer to the final
sub-question.

The third research sub-question was:

How can we extend the results of the optimization process by identifying the characteristic curves of
the system?

As discussed in the previous sub-question, the optimization model is applied to various combinations of
earthquakemagnitudes and available resources. The results are then used to compile the characteristic
curves of the network. These curves map the relationships between earthquake magnitude, available
recovery resources, recovery rate, and the overall performance metric, the Seismic Resilience Index
(SRI). Characteristic curves are intrinsic to a WDN and dependent on its structural properties, such
as the number of pipes and junctions, the network’s connectivity and topology, and the length and
configuration of its pipes. By capturing these aspects, the curves provide valuable insights into the
achievable recovery targets, depending on the seismic levels and the available resources for recovery
efforts.

The characteristic curves serve several purposes. During an earthquake event, they act as an assess-
ment tool for decision-makers, enabling efficient resource allocation to minimize recovery time and
maximize network resilience. In preparation for seismic hazards, these curves can help define the re-
source requirements and guide strategic investment to improve the robustness and recovery capacity
of the network. Additionally, the curves are adaptable to networks of various sizes and complexities,
facilitating comparisons and performance benchmarking across different systems. A significant advan-
tage of characteristic curves is their ability to offer a scenario-free assessment of network resilience.
By distilling the complex recovery process into a visual representation they provide a practical tool
for decision makers. This visual representation of the relationships between performance metrics and
recovery dynamics supports both immediate decision-making during emergencies and long-term plan-
ning for seismic hazard preparedness.

In conclusion, this research successfully addresses the main question: Can we provide a scenario-free
assessment of the recovery-based seismic resilience of WDNs by identifying characteristic curves for
system recovery?
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Through the development of the optimization model and the compilation of characteristic curves, the
study provides a way of evaluating and enhancing the resilience of WDNs under seismic hazards. The
chosen metric, assesses the resilience of WDN based on a system’s function, the satisfaction of con-
sumer demand. The optimization model leverages this metric, modified to prioritize rapid recovery, to
determine optimal repair sequences and proves to outperform the benchmark strategy with which it
is compared. By applying the model across various earthquake magnitudes and resource scenarios,
the results demonstrate the feasibility of constructing characteristic curves, which map the interplay be-
tween seismic stress levels, resource availability, recovery rates, and overall resilience. These curves
offer a scenario-free assessment of network performance, providing decision-makers with a practical
tool for resource allocation during emergencies and strategic planning for seismic preparedness. Ul-
timately, this work bridges the gap between theoretical resilience metrics and real-world applications,
contributing valuable insights and tools to enhance the resilience and recovery of critical water distribu-
tion infrastructure.

3.2. Research Limitations
Although this research offers considerable contributions in the assessment and optimization of recovery-
based seismic resilience of WDNs, it is important to acknowledge several limitations. First, the pro-
posed optimization model is computationally intensive, particularly for large-scale networks, which may
limit its practical application without further refinement or the use of heuristic approaches. Second, the
study assumes predefined resource availability and earthquake scenarios, which may not fully capture
the uncertainty and variability inherent in real-world conditions. Third, while the characteristic curves
provide valuable insights, they are derived based on network-specific properties, meaning their appli-
cability to other networks requires careful adaptation. Lastly, the study does not explicitly account for
cascading effects or inter-dependencies with other infrastructure systems, which could significantly in-
fluence recovery dynamics in complex urban environments. Addressing these limitations in future work
could further enhance the applicability and robustness of the proposed framework.

3.3. Reflection & Connection to the CME program
This reflection aims to highlight the relevance of the research to the field of construction management
engineering. The Construction Management and Engineering (CME) master’s program at TU Delft
emphasizes innovative strategies for managing, maintaining, and optimizing critical infrastructure.

This study on WDNs aligns with the CME program’s focus by tackling the challenges of infrastructure
resilience and decision-making under uncertainty. Traditional risk management in civil engineering has
often concentrated on mitigating risks under predefined scenarios, focusing on expected hazards and
their quantifiable consequences [1]. However, this approach falls short in addressing the cases where
the hazards cannot be easily quantified, or the adverse consequences are not easily imagined. By
shifting to resilience-based strategies, which emphasize the ability of systems to absorb shocks, adapt
to changing conditions, and recover functionality swiftly [11], this study embraces a paradigm shift in
infrastructure management.

The Seismic Resilience Index (SRI) is chosen as the most suitable metric for evaluating the perfor-
mance of WDNs under seismic hazards, placing consumer demand at the forefront of resilience as-
sessment. This metric forms the foundation for informed decision-making and aligns with the CME
program’s emphasis on providing tools to assess and enhance critical infrastructure holistically. The
introduction of an optimization model builds upon this metric by providing the optimal repair strategy
for the pipeline infrastructure. The model’s integration of hydraulic simulations, fragility modeling, and
meta-heuristic optimization reflects the interdisciplinary approach championed by the CME program,
combining technical expertise with strategic resource management. A key outcome of this work is the
development of characteristic curves that capture the dynamic behavior of WDNs under varying stress
levels and resource allocations. These curves provide a visual and quantitative representation of recov-
ery trajectories, illustrating the trade-offs between resource availability, recovery speed, and network
performance.

For asset managers, these tools are invaluable for making informed decisions about resource allocation,
repair prioritization, and long-term investments in retrofitting or upgrading vulnerable components. By
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enabling infrastructure professionals to anticipate disruptions and plan effectively, the study supports
the CME program’s mission to equip future engineers with the knowledge and skills to manage resilient,
adaptable, and sustainable infrastructure systems. This synergy underscores the relevance of the
research to the program’s broader objectives, preparing graduates to tackle the complexities of modern
infrastructure management with innovative, resilience-oriented approaches.
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