

Guidance, Navigation and
Control of Autonomous

Vessels
An Implementation using a Control-Based

Framework
by

H.L.J. Taams

Student number: 4169131
Thesis committee: Dr.ir. T.J.J. Van den Boom TU Delft

Dr.ir. S.A. Miedema TU Delft
Ir. P. Rampen Damen Shipyards
Ir. M. Bharatheesha TU Delft
Dr. P. Mohajerin Esfahani TU Delft
Dr.ir. R.L.J. Helmons TU Delft

List of Symbols

(x̃ , ũ) A continuous or discrete state and input trajectory pair that solves a planning problem.
It is used as a time-varying reference during path execution.

αi Azimuth angle of thruster i .

θ̄ Estimated parameter vector.

ȳ(t , θ̄) Estimated model output for the estimated parameter vector θ̄.

ẋ The time derivative of the state x .

η Vector containing the x, y and ψ states of the vessel expressed in the earth-fixed coor-
dinate frame.

ν Vector containing the u, v and r velocity states of the vessel expressed in the body-fixed
coordinate frame.

τ The summation of forces acting on the vessel.

θ True parameter vector.

ũ A continuous or discrete path in the action space.

x̃ A continuous or discrete path in the state space.

BT The thruster configuration matrix.

CRB The rigid-body Coriolis and centripetal forces matrix.

I Identity matrix.

MA The added mass matrix.

MRB The rigid-body mass matrix.

T Vector of projected thrust forces.

u Input of a system.

x A point in the state space. Also referred to as state.

xG Goal state.

xI Initial state.

xr and A randomly sampled state.

y Model output.

∆t A time duration of a sampling period.

∆m Vessel displacement.

•̂ The observer estimate of • .

U Set of allowable action trajectories.

Ud Set of motion primitives.

iii

iv

ψ Heading of a vessel.

A(x) Subset of the workspace occupied by the agent for a state x .

B Breadth of the vessel.

C F Center of floatation.

COG Center of Gravity.

Dp Propeller diameter.

E An edge or set of edges.

f (•) A function operator.

G A graph with vertices V and egdes E .

J Propeller advance speed.

KT (J) non-dimensional thrust-coefficient.

L Vessel length.

Li ,x The x coordinate of the i th azimuth expressed in the body-fixed coordinate frame.

Li ,y The y coordinate of the i th azimuth expressed in the body-fixed coordinate frame.

LW L Length of the waterline.

ni Propeller rotation speed in revolutions per minute, of thruster i .

O The obstacle region.

p Pitch, the rotation speed of a vessel about yb .

P/Dp Propeller Pitch/Diameter ratio.

q Roll, the rotation speed of a vessel about xb .

r Yaw, the rotation speed of a vessel about the vertical earth-fixed axis.

T Draft of the vessel.

U Action space of a system.

u Surge, the forward speed of a vessel.

uc Constant cruise speed.

Ud A discrete action trajectory or motion primitive.

V A vertex or set of vertices.

v Sway, the sideways speed of a vessel.

Vct g Cost-to-go.

Vnear The nearest neigbouring vertex to xr and .

V AF Varience Accounted For.

W The workspace.

w Heave, the speed of a vessel along the zb axis.

X The state space of a system.

v

xb Axis of the body-fixed coordinate system {b}, positive towards the bow.

XG Goal region.

xC F Distance from the bow to C F .

xCOG Distance from the bow to COG .

X f r ee The obstacle free state space.

Xobs The state space obstacle region.

X T The state × time space.

yb Axis of the body-fixed coordinate system {b}, positive towards portside.

zb Axis of the body-fixed coordinate system {b}, positive pointing upwards.

{b} Body-fixed coordinate system.

{e} Earth-fixed coordinate system.

APF Artificial Potential Field.

ASD Azimuth Stern Drive, vessel propulsion consist of azimuth thrusters installed at the
stern.

BVP Boundary Value Problem.

DASh Damen Autonomous Ship, a 1:25 scale model of an ASD3111 Damen tug.

DP Dynamic Positioning.

DT Dynamic Tracking.

EKF Extended Kalman Filter.

GNC Guidance, Navigation and Control.

LWPR Locally Weighted Projection Regression, a supervised learning algorithm.

MPC Model Predictive Control.

NMPC Non-linear model predictive control.

PRM Probabilistic Roadmap.

RDM Rotterdamsche Droogdok Maatschappij.

RRT Rapidly-exploring Random Tree.

Abstract

This thesis report proposes a framework to implement Navigation, Guidance and Control (GNC) systems,
that enable point-to-point autonomy for displacement vessels. A model-based control approach is chosen as
the basis of the GNC systems. The resulting algorithms are implemented for verification in a 1:25 scale model
of a Azimuth Stern Drive (ASD) 3111 Damen tug named "Damen Autonomous Ship", aka DASh.

First, a compact maneuvering model that captures relevant dynamics of displacement vessel is formulated.
The dynamic model of DASh is identified using system identification. the propulsion, surge dynamics and
sway-yaw dynamics are identified separately by performing bollard pull tests, straight-line acceleration tests
and zigzag tests. The parameter estimation problem is formulated as a nonlinear optimization, using a trust-
region based solver in Matlab.

Secondly, the guidance system is automated such that it connects an initial state to a goal state with a collision
free path that satisfies all input and differential constraints of the vessel model. To this end, the kinodynamic
Rapidly-exploring Random Tree (RRT) algorithm is extended to use a maneuver automaton and optimal mo-
tion primitives in its steering function. A learned cost-to-go distance metric for the state space is formulated
to efficiently calculate distance between states, which is used to search for nearest neighbors in the kino-
dynamic RRT algorithm. The Locally Weighted Projection Regression (LWPR) learning algorithm is used to
approximate the true cost-to-go of an optimal control steering method. The performance of the planner us-
ing the learned cost-to-go distance metric is compared to a minimal curve length distance metric based on
Dubins Curves and the commonly used straight-line Euclidean distance metric. It is shown that the learned
cost-to-go and the minimal curve length distance metric result in paths of similar performance while the Eu-
clidean metric performs severely worse.

Lastly, the navigation and control systems are implemented on DASh. Due to disturbances present in real
world environments, the paths must be tracked using feedback control. State estimation for navigation,
based on position and heading measurements is performed by implementing an observer using a Extended
Kalman Filter (EKF). Non-linear model predictive control (NMPC) in combination with thrust allocation is
used to control the vessel during path execution. Due to real time requirements of DASh, the EKF, NMPC and
the thrust allocation algorithm are directly implemented in efficient C++, on the on-board computer of DASh.

Model tests for static reference tracking and time-varying reference tracking are performed on DASh. It is
shown that NMPC converges to static reference positions faster and with less control inputs compared to
traditional non-linear PD control. It is also shown that time-varying trajectories created by the kinodynamic
RRT can be executed successfully. This shows that the identified model is suitable for use in model-based
control and that the planned paths indeed satisfy the input and differential constraints of the vessel.

vii

Acknowledgments

Performing the research culminating in this thesis has been a great learning experience. I would like to thank
my thesis supervisor ir. Mukunda Bharatheesha for all the enlightening conversations we had about path
planning and optimal control. Your sharp commentary brought out the best in me. Although the agendas
were packed, the doors of dr.ir. Ton van den Boom, dr.ir. Sape Miedema and prof.dr. Rudy Negenborn were
always open. Thank you for your guidance and feedback throughout this research project.

Special thanks to my supervisor ir. Peter Rampen from Damen Shipyards. You supported me greatly and
helped me out whether I was stuck on a technical question or at a train station. I would also like to ac-
knowledge my Damen colleagues Tim van den Heuvel, Ernst-Jan Goslinga, Kees Custers, Wouter Joosten and
Sándor Iváncsics for helping me realize the Damen Autonomous Ship scale model and maintaining the RDM
office. It was a delight to work alongside Luc Prawoto, Thom Sneep and Matheus Terrivel, colleagues whom
I now consider friends. In addition, I am grateful that Damen Shipyards allowed me to pursue my combined
technical interests in offshore and control engineering during this endeavor.

I would like to thank Noor Taams, Margriet Taams and Wim Wagner for their support and help during the
scale model tests, even though the water was freezing. Thank you to Daphne Dotsios, for all her love, encour-
agement and for being an excellent camera operator during the model tests.

ix

Contents

1 Introduction 1
1.1 The Guidance, Navigation and Control Problem . 2
1.2 Report Outline . 4
1.3 Notation . 4

I Vessel Modelling and Identification 5

2 DASh Scale Model 7
2.1 DASh Particulars . 7
2.2 Propulsion Train . 9
2.3 System Architecture. 9

2.3.1 Low-level Control System . 10
2.3.2 High-level Control System . 10

2.4 Test Environment . 11

3 Ship Modelling 13
3.1 Vessel Motions and Coordinate Frames . 13
3.2 Modeling Approaches. 14
3.3 Rigid Body Dynamics . 15
3.4 Hydrodynamic Forces. 16
3.5 Control Forces . 16
3.6 Modelling of Hydrodynamic Forces . 18
3.7 Determination of Hydrodynamic Coefficients . 19

3.7.1 Parameter Identifiability . 20
3.8 Maneuvering Model of DASh . 20

3.8.1 Linear and Non-Linear Hydrodyamic Damping . 20
3.8.2 Cross-Flow Drag . 21

3.9 Complete Maneuvering Model . 22
3.10 Observer Design for Navigation . 23

4 System Identification 25
4.1 Decoupled SI approach . 25
4.2 Estimation of Body-Fixed Velocities . 25
4.3 Identification of Inertial Parameters . 26
4.4 Propeller Identification . 26

4.4.1 Propeller Identification Results . 26
4.5 Identification of Hydrodynamic Surge Parameters . 27

4.5.1 Surge Parameters Identification Results . 28
4.6 Identification of Hydrodynamic Sway and Yaw Parameters . 29

4.6.1 Sway and Yaw Parameter Identification Results . 30
4.7 Conclusion . 32

II Model-Based Guidance & Control 33

5 Kinodynamic Sampling-Based Planning 35
5.1 DASh Planning Problem . 35
5.2 Introduction to Path Planning. 36

5.2.1 Constraints in Planning . 36
5.2.2 Representation of Space . 37

xi

xii Contents

5.3 Optimal Kinodynamic Planning. 37
5.4 Kinodynamic Sampling-Based Planning . 38

5.4.1 Completeness . 38
5.4.2 Kinodynamic Rapidly-exploring Random Tree Planner 38
5.4.3 State Sampling Methods . 39
5.4.4 Nearest Neighbors . 40
5.4.5 Steering Methods . 41
5.4.6 Asymptotically Optimal Planning . 41

5.5 Decoupled Path Planning . 41
5.6 Path Planner for DASh . 42
5.7 Conclusion . 42

6 A Control-Based Framework for Kinodynamic RRT 43
6.1 The Control-Based Framework . 43

6.1.1 Cost-To-Go Distance Metric . 43
6.2 Optimal Control Methods . 44

6.2.1 Direct Optimal Control. 44
6.2.2 Non-Linear Model Predictive Control . 45

6.3 Discretization of the Action Space. 45
6.4 Fast Cost-To-Go Approximation using Learning Methods . 48

6.4.1 Learned Cost-To-Go using LWPR. 48
6.4.2 Transformation of Input Data . 48
6.4.3 Creation of Training Data . 48
6.4.4 Training the LWPR Model . 49

6.5 Kinodynamic RRT using the Optimal Control-Based Framework 51
6.5.1 Performance Criteria of Paths . 51
6.5.2 Implementation Details . 53

6.6 Planning Results . 53
6.7 Conclusion . 58

7 Verification of the Vessel Model and Control 59
7.1 Real-World Disturbances . 59
7.2 Sensor Measurements. 59
7.3 Feedback Control Loop . 61

7.3.1 Non-Linear Model Predictive Control . 61
7.4 Static Reference Tracking Results . 63
7.5 Time-Varying Reference Tracking Results . 64
7.6 Conclusion . 66

8 Conclusions & Recommendations for Future Work 69
8.1 Implementation on Real Size Vessels . 70
8.2 Collision Regulations & Other Ship Behavior . 70
8.3 Account for Uncertainty during Planning . 70
8.4 Recommendations for DASh . 70

Bibliography 73
A Measurement Setup for Propeller Thrust 79
B Thrust Allocation 81
C Coordinate Transformations 83
D LWPR settings 85
E Non-Linear PD Control 87

1
Introduction

Ships have been sailing around the world for many centuries. Navigation, Guidance and Control (GNC) of
vessels has always been the responsibility of humans, whom determined their own position and intuitively set
out routes. The helm was continuously manned to execute subtle course corrections. Over the last century,
advances in technology produced detailed digital maps, accurate position measuring systems and steering
controllers. Implemented in every new-build industrial vessel, these technologies are referred to as GNC
systems and help captains and helmsmen make informed decisions. Over time, individual GNC subsystems
have been automated resulting in autopilots for course-keeping and the Global Position System (GPS) for
reliable navigation. As a result, the human role aboard vessels has become less critical and perhaps, in the
future, obsolete. The benefits of unmanned ships could be substantial. Crew cost are mitigated and vessels
could be built without crew accommodations, saving weight and costs. On top of that, automation may lead
to safer shipping, as accidents and casualty situations are often the result of human errors [61]. A concept
design of an unmanned Damen tug in figure 1.1 reveals what vessels may look like in the future.

Figure 1.1: A concept design of an unmanned Damen tug.

The technological push towards unmanned vessels resulted in the automation of station keeping by so called
Dynamic Positioning (DP) systems and the automation of sailing between predetermined way-points by Dy-
namic Tracking (DT) systems [9]. Guidance for DT systems however remains simplistic compared to the
robotics and automotive industry that include system dynamics and behavioral planning of surrounding ve-
hicles [47, 56]. Navigation and Control on the other hand, has for decades attracted considerable attention
within the maritime industry [22, 29].

The currently installed individual guidance, navigation and control systems already largely elevate tasks that
were previously performed by skippers. Detailed and constantly updated digital maps shown the position of

1

2 1. Introduction

Observer

Navigation
state estimation

Guidance
path planning

Control

High
Level

Control
Vessel

task path input

sensors

statestate & map

Figure 1.2: A simplified representation of the GNC system to achieve autonomous sailing. GNC subsystems are displayed in green.

the vessel while also displaying information on other ships in the vicinity [72]. Course keeping control sys-
tems account for environmental forces to maintain a steady course over ground. To fully automate a vessel,
one must let the GNC systems communicate their results and give it permission to act, without the interfer-
ence of humans. The resulting system is then able to execute tasks, given by a high-level controller, by itself.

Automating the GNC systems is a only small step towards truly unmanned vessels. Tasks performed by hu-
mans such as maintenance, communications, loading, unloading and mooring will still have to be tackled.
Intermediate steps like partial automation and the tele-operation of vessels are explored in the industry. In
the drone community however, small autonomous vessels are being build for application of shore and inland
water monitoring [20, 33]. In the research community many more test platforms exist which were recently
surveyed in [63].

1.1. The Guidance, Navigation and Control Problem
This work is concerned with the automation of guidance and control systems using a model-based approach.
It is assumed a high-level controller provides a point-to-point navigation task consisting of: The initial posi-
tion of the vessel, a goal position we would like to sail to and a map of static and moving obstacles. The vessel
has to autonomously reach the goal position. The GNC subsystems must execute the following task: The nav-
igation system estimates the vessels current state and updates moving obstacles on the map. The guidance
systems plans a collision free path from the current state to the goal position. The control system determines
what control forces and moments must be exerted by the propellers and rudders, in order to follow the path.
If the tracking error becomes too large or if an unforeseen obstacles would cause a collision, a new path must
be planned. For autonomous operation, the GNC system is closely integrated and responsible for self-state
estimation, path planning and motion control. The simplified representation of the architecture and data
flow of an autonomous GNC system is shown in figure 1.2.

In the robotics community, guidance is more commonly referred to as motion planning or path planning.
Path planners for vessels do exist, but mostly to perform single operations such as station keeping or low
speed way-point tracking. A recurring approach in path planning for ships is to decouple the planning into
two stages; The first stage plans a geometrically constrained global path indexed by way-points. The global
paths avoids collision with static obstacles. The second stage performs way-point following using a local con-
troller. The controller only uses information about its immediate surrounding to reach the next way-point. It
is also responsible for path execution and to avoid collisions with moving obstacles, a functionality referred
to as Collision Avoidance (CA).

Decoupling decreases the complexity of the planning problem by breaking it up into two subproblems. The
reactive part of the planner makes the approach robust to moving obstacles and input, sensor and model
disturbances. The decoupling also results in lower computational time before path execution, as geometri-
cally constrained global paths require significantly less computational power compared to differentially con-

1.1. The Guidance, Navigation and Control Problem 3

Start

Goal

Possible collision

Figure 1.3: The decoupled approach finds a way-point indexed global path (solid blue) that is tracked using a motion controller and CA
algorithms, resulting in the dashed blue path. Directly accounting for the vessel dynamics and moving obstacles (red) results in the

dashed black path.

strained paths [48]. Yet this is also its mayor downside as differentially constrained planning approaches
account for the vessel dynamics that locally restrict the movement of the vessel such that it is guaranteed
that the control systems is able to reliably track the path. This guarantee is missing using the decoupled ap-
proach, which could result in collisions. Secondly, the decoupled approach may find longer paths compared
to differentially constrained paths that would be found by directly taking into account the moving obstacles.
Lastly, differentially constrained planning is able to optimize desirable attributes of paths, such as maximum
accelerations or fuel consumption.

All in all, the decoupled approach is simple to implement and works well at open water, but is not suited
for narrow or congested waters where the vessel dynamics play a more significant role. An illustration of the
decoupled approach and the dynamically constrained approach is shown in figure 1.3.
This thesis proposes a point-to-point planning framework that directly accounts for the vessel dynamics and
moving obstacles during path planning, while keeping the computational loads low. Therefore the following
research questions are formulated:

• How should the vessel dynamics be modelled and identified if it is to be used for guidance, navigation
and control?

• How can the dynamics of the vessel be taken into account during point-to-point path planning?

• Can the computational loads of dynamically constrained path planners be reduced to allow on-line
implementation?

The research questions will be answered based on the following assumptions

• Environmental forces acting on the vessel during path execution may be neglected.

• It is assumed perfect knowledge on the location of static and moving obstacles is available.

To underwrite the theoretical results of this thesis, the GNC algorithms will be implemented on a scale model.
Therefore the following secondary goals are formulated:

• Design and construct a scale model outfitted with hardware to enable autonomy.

• Implement the updated GNC algorithms on the scale model.

• validate the updated GNC algorithms using model tests.

4 1. Introduction

1.2. Report Outline
This report consists of two parts. The first part concerns the ship modelling and system identification of the
scale model using knowledge obtained in the Offshore & Dredging Engineering master track. The hardware
of the scale model is presented in chapter 2. A mathematical vessel model that captures relevant vessel dy-
namic with a minimal set of model parameters is proposed in chapter 3. The model parameters are identified
in chapter 4.

The second part concerns the model-based guidance and control systems predominately based on theory
learned in the Systems & Control master track. The fundamentals of guidance for our scale model is presented
in chapter 5. A control-based planning framework is presented in chapter 6 to allow for fast path planning
under differential constraints. The control performance of the scale model for static and moving reference
tracking during model testing is presented in chapter 7. The overall thesis conclusions and recommendations
for future research are given in chapter 8.

1.3. Notation
The following notational rules are implemented in this report. Vectors are denoted by bold lower-case Latin
or Greek characters (e.g. x). Matrices are denoted by Latin bold capital letters (e.g. Mr b). The identity matrix
is always denoted by I and a zero matrix or vector by 0. The size of the identity or zeros matrices is given in
superscript, e.g. 0n×m is a zero matrix with n rows and m columns. Scalars values are denoted by lower or
upper-case, non-bold, non-italic Latin or Greek characters. If parameter A is a function of b, it is displayed as
A(b). Note that A and or b may be a matrix or vector in the correct character style (e.g. Cr b (b)).

I
Vessel Modelling and Identification

5

2
DASh Scale Model

To validate the GNC algorithms discussed in this thesis, a 1:25 scale model of a Damen Azimuth Stern Drive
(ASD) 3111 Tug was custom built. The scale model was named "DASh", short for "Damen Autonomous Ship".
As the hardware aboard DASh will dictate the actuators constraints and available measurements to be used
for navigation and control, an overview of the hardware and software architecture of DASh is given first.

The hull of DASh was made by a professional model maker. Actuators, sensors and communications were
build and integrated by a mechanical engineering intern, an embedded systems intern and myself. Particular
care was taken to streamline data flow between subsystems to enable future autonomy. In this chapter, an
overview of the hardware and software architecture of DASh is given.

2.1. DASh Particulars
The hull shape of DASh enables the vessel to be highly maneuverable. DASh has a more pronounced “V
shape” in the forward section compared to traditional tugs. The vessel is course stable. An overview of DASh
is shown in figure 2.1. The ship’s particulars obtainable by direct measurements are summarized in table 2.1.
A geometric overview is given in figure 2.2.

Figure 2.1: An overview of DASh. The colored boxes on deck contain indoor positioning sensors.

7

8
2.D

A
Sh

Scale
M

o
d

el

Table 2.1: The ship particulars of DASh.

Ship Particulars
Symbol Value Unit

Length L 1.20 m
Length waterline Lwl 1.13 m
Breadth B 0.41 m
Draft T 0.25 m
Length bow to COG xCOG 0.57 m
Length bow to C F xC F 0.63 m
x-position azi. Li ,x 0.49 m
y-position azi. Li ,y 0.10 m
Displacement ∆m 39.28 kg
Propeller Diameter Dp 0.080 m
Pitch/Diameter P/Dp 0.8 -

xb

zb

L

Lwl

Li ,x

COG
C F

xC F

xCOG

yb

zb

B

Li ,y

Figure 2.2: (left) Aft view of DASh. (right) A side view of DASh. The waterline is drawn in blue. The principle dimensions, location of the center of flotation C F , the center of gravity COG and azimuths are
shown.

2.2. Propulsion Train 9

Figure 2.3: A schematic overview of the propulsion configuration.

2.2. Propulsion Train
DASh is propelled by two azimuth thrusters located at the stern. They are powered independently by two 12V
DC-motors. A 1:2.5 reduction gearbox was fitted on the motor shaft, to set a realistic range of the propeller
rotation speeds of 400 RPM to 1200 RPM. The azimuth angles are set by two 12V stepper motors. They operate
at 0.71A and have a holding torque of 1.28Nm. The stepper motors are connected to the azimuth shafts by a
belt drive. They can rotate the azimuths at a maximum speed of 1 rad/s and a step resolution of 0.45 degrees.
A top view of the propulsion train is shown in figure 2.5. The propulsion configuration is shown in figure 2.3.
The rotation speed of the propellers are controlled using a PID controller with a feed forward term for quick
convergence to the reference rotation speed. The propeller rotation speed is measured using an CUI INC
AMT102 incremental encoder. Due to significant friction in the drive lines, commanded rotational speeds
below 400 rpm tend to oscillate around the set reference speed. The influence of bad tracking at low rpm’s
during operation is unknown.

The azimuth angles are controlled using a stepping scheme, that rotates towards the reference at constant
speed until it is reached. The azimuth angles are measured using CUI INC AMT203 absolute encoders with a
measurement accuracy of 0.2 degrees.

The four blade azimuth propellers have a diameter Dp of 80 millimeter. The propeller is fitted inside a
nozzle with an inner diameter of 82 millimeter. The propeller has a pitch of 64 millimeter, resulting in a
pitch/diameter ratio of 0.8.

DASh is powered by two generic 12V, 10Ah lead acid batteries connected in series. Two stable voltages are
needed during operation: A 12V voltage circuit to power the propulsion train and a 5V voltage circuit to power
the micro controllers and other remaining subsystems. Since battery voltages will drop during operation, two
DC/DC converters in cascaded configuration stabilize the voltages from 24V to 12V and from 12V to 5V. An
on/off switch can be used to power on or off the entire system.

2.3. System Architecture
The system architecture can roughly be divided in two parts: The Low-Level and the High-Level control sys-
tem. The Low-level system directly controls actuators and handles communication with sensors. Sensor data
is shared with the High-Level control system that performs all GNC tasks. Actuator references are sent back

10 2. DASh Scale Model

Figure 2.4: The complete software architecture of DASh, including the low-level control, high-level control and user interface.

to the low-level system.

2.3.1. Low-level Control System
The low-level control systems comprises a main controller, DC and Stepper motors, propulsion train sensors
and an Arduino Nano that handles the communication with radio controller. A TI CC32XXµc micro controller
from Texas Instruments is implemented as a main controller. It tracks the propeller rotation speeds and
azimuth angle references sent by the high-level controller. The TI CC32XX host a webserver that displays
the current sensor readings. The webserver can also be used as an user interface to control the actuators
directly. Finally, the actuators can be controlled directly using a radio controller (hand held joystick). The
radio controller overrides any task set by the high-level controller or webserver and thus also acts as a kill
switch in case unwanted autonomous behavior is observed.

Figure 2.5: (left) The propulsion train in the aft of the vessel powering two azimuth propellers. (right) The following electrical
components are named clockwise, starting from the right. Two 12V, 10Ah lead acid batteries, two DC/DC converters. The TI CC32XX µc

board (red) placed on a custom cable management PCB (green). The BeagleBone Black with USB-hub (black) and USB WiFi adapter
(white).

2.3.2. High-level Control System
The high-level control systems consists of a BeagleBone Black Revision C, an Arduino Uno, the indoor po-
sitioning system Pozyx [46] and ultra sonic distance sensors. The BeagleBone is a master to the lower level
TI CC32XX µc controller. The planar x, y position and heading measurements are gathered by the Pozyx and
sent to the BeagleBone via an Arduino Uno. The Arduino Uno also gathers data from 6 ultra sonic distance

2.4. Test Environment 11

sensors, mounted in green housings on deck. The beagleBone runs a Debian 9.2 Linux operating system and
handles the computationally heavy GNC algorithms. Its terminal can be accessed over WiFi via SSH (Secure
Shell communication protocol). Future modules can be easily implemented on the BeagleBone due to its
high compatibility. An overview of the total architecture is given in figure 2.4.

2.4. Test Environment
DASh was tested in the water basin at the RDM innovations dock in Rotterdam. The rectangular 10 x 20 meter
basin has a water depth of 0.7 meter and is outfitted with a wave making system. The tank is free from external
disturbances such as wind. The water temperature is not controlled. Ambient air temperature is controlled
using floor heating. No towing carriage is present on which captive tests could be performed. The water basin
is shown in figure 2.6.

Figure 2.6: The water basin at the RDM Innovation dock.

3
Ship Modelling

In the previous chapter, the 1:25 scale model DASh was presented. In this chapter the equations of motions
of DASh are determined based on rigid-body dynamics. The necessity of a detailed vessel model is threefold.
Firstly, it is an be used in observer and control design to estimate unmeasured states, filter measurement, and
apply model-based control methods. Secondly, a model-based approach in planning and control allows the
user to understand the inner workings of the algorithms, in contrast to model-free learning methods where
decisions are made by obscured layers of neural nets e.g. Thirdly, using a generic vessel model allows the
algorithms to be easily transferred to other vessels using their respective dynamics.

Various types of vessels exist with fundamentally different dynamics such as planing vessels, sailboats and
semi-submersibles. This work only covers the modelling of of displacement vessels such as DASh in which
lift caused by buoyancy forces dominates relative to hydrodynamic forces. Most commercially operated ves-
sels are displacement vessels.

3.1. Vessel Motions and Coordinate Frames
A displacement vessel is modelled as a single rigid body with six Degrees Of Freedom (DOF) which fully define
the position, rotation and velocities of the vessel. Existing models used for speed prediction, time-domain
simulation and motion controller design are based on rigid-body dynamics. To describe ship motions and
their respective names, a body-fixed reference frame {b} is defined with origin Ob , as shown in figure 3.1. The
orthogonal axes xb , yb and zb in {b} are directed along the principle axis of the vessel:

• xb is positive towards the bow.

• yb is positive towards portside.

• zb is positive pointing upwards.

x

y

z

xb

yb

zb

u (surge)

v (sway) w (heave)

p (pitch)

q (roll)

r (yaw)

Ob

Oe

Figure 3.1: The earth-fixed coordinate system {e} on the left and body-fixed coordinate system {b} on the right.

13

14 3. Ship Modelling

velocities along xb , yb and zb are referred to in shipping as surge, sway and heave velocity, denoted by u, v
and w , respectively. Rotational velocities about the xb , yb and zb axes are referred to in shipping as pitch, roll
and yaw, denoted by p, q and r . The linear velocities (u, v, w) are defined positive along the body-fixed axes.
The angular pitch, roll and yaw velocities (p, q,r) are positive according to the right hand rule applied to the
axes of {b}. The vessel position and orientation in space are captured in an earth-fixed reference frame {e}
with origin Oe . The x, y and z coordinates capture the position of Ob and the Euler angles (φ,θ,ψ) describe
the orientation of the vessel.

Following the notation of SNAME [66], the forces acting on the rigid body at Ob in the direction of xb , yb

and zb are denoted as X , Y , and Z . The moments about xb , yb and zb are denoted as K , M and Z .

3.2. Modeling Approaches
Two distinct modelling approaches can be found in literature that have their focus on different types of vessel
motions. Maneuvering models aim at modelling vessels traveling at constant forward speed in calm waters.
Hydrodynamic coefficients of the model are assumed to be frequency independent. As a result, maneuvering
models neglect the influence of wave excitation on the in-plane speed of vessels.

Sea-keeping models have a particular focus on dynamics as a result of wave excitations. This is done by in-
troducing frequency dependent hydrodynamic coefficients that more accurately model dissipation forces1.
As a result, sea-keeping models better estimate pitch, roll and heave motions of the vessel in waves.

Guidance and navigation tasks are specified in the x, y-plane which implies control of position and heading
and the surge, sway and yaw modes. In this situation, correct modelling of low frequency surge, sway and yaw
modes is of more importance than modelling the high frequency roll, pitch and heave modes. For a longitudi-
nally and metacentrically stable ship, the pitch, roll and heave in calm waters are small φ= θ = p = q = w ≈ 0
and may be neglected. The resulting 3 DOF maneuvering model is used for guidance, navigation and control
of the vessel [64, 81], as shown in figure 3.2.

x

y

ψ

xb

yb

zb

u

v

r

Figure 3.2: The 3 DOF earth-fixed coordinate system {e} and body fixed coordinate system {b}.

1also known as fluid memory effects

3.3. Rigid Body Dynamics 15

3.3. Rigid Body Dynamics
The equations of motion are determined using the Newton-Euler equation for a rigid body with respect to
the body-fixed reference frame. The origin of this frame does not have to coincide with the Center of Gravity
(COG) of the vessel. Let the origin Ob coincide with the Center of Flotation C F , placed at the centroid of the
water plane area. Roll and pitch in calm water will be about this point. Assuming a 3 DOF representation, if
the position of COG in {b} is denoted by rg = [

xg yg
]

the rigid body dynamics are given by

m[u̇ − vr −xg r 2 − yg ṙ] = X

m[v̇ +ur − yg r 2 +xg ṙ] = Y

Iz ṙ +m[xg (v̇ +ur)− yg (u̇ − vr)] = N

(3.1)

Coriolis and Centrifugal forces arise as a result of the rotation of the body-fixed frame with respect to the in-
ertial frame. A full derivation of (3.1) can be found in [24]. The forces X , Y and N are a summation of forces
acting on the hull:

Hydrostatic forces. A ship floats as a result of the hydrostatic pressure acting on its hull, exerting a restoring
force. If the hull shape and mass distribution of the ship is engineered properly, the ship is metacentrically
stable. This means it floats upright and can right itself under roll or pitch angles.

Hydrodynamic forces. During free sailing, several hydrodynamic forces act on the hull of the ship. These
forces are caused by the interaction of moving fluids along the hull of the vessel. An overview of hydrody-
namic forces is given in section 3.4.

Environmental forces. External forces which are not related to hydrostatic or hydrodynamic forces are often
stochastic in nature. Forces as a result of wind and waves are directionally dependent and vary in size.

Control forces. The control forces result from the propulsion, rudder lift forces, stabilizer fins or other con-
trollable surfaces. These inputs are used to control the motion of the vessel.

The summation of these forces are the input to the rigid-body dynamic model

τ=
X

Y
N

=τhs +τh yd +τw i nd +τw ave +u (3.2)

Where u are the control forces, which are also referred to as control inputs. Assuming portside starboard
symmetry, the COG is located at a distance xg from C F and yg = 0, simplifying the equation further. Using a
matrix notation, equation (3.1) can be compactly written as

MRB ν̇+CRB (ν)ν=τ (3.3)

MRB is the rigid-body inertia matrix, CRB (ν) is a matrix containing rigid-body Coriolis and centripetal forces

MRB =
m 0 0

0 m mxg

0 mxg Iz

 , CRB (ν) =
 0 0 −m(xg r + v)

0 0 mu
m(xg r + v) −mu 0

 (3.4)

where Iz is the rotational moment of inertia about the vertical axis. The vector ν contains the vessel velocities
in the body-fixed frame

ν=
u

v
r

 (3.5)

The vector η contains the vessel coordinates in the earth-fixed inertial frame

η=
x

y
ψ

 (3.6)

16 3. Ship Modelling

The total vessel state is denoted as x = [
ηT νT]T

. The coordinate frames are related by the kinetic relation

η̇= R(ψ)ν=
cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0
0 0 1

u
v
r

 (3.7)

where R(ψ) is the rotation matrix around the vertical axis of the inertial frame. The rigid body dynamics in
(3.1) and (3.7) lay at the foundation of various maneuvering models.

3.4. Hydrodynamic Forces
The interaction of moving fluids and the vessels hull and propellers give rise to various hydrodynamic flow
phenomena.

Potential damping models the effect of fluid pressure forces on the vessel hull as if it travels through an
ideal fluid. Damping refers to the fact the forces are generated that oppose the direction of movement of the
vessel, thus reducing the energy in the system [40]. The magnitude of the force can be modelled linearly with
speed, but is dependent on the (wave) frequency.

Inertial fluid forces arise if a body in fluid accelerates or decelerates. Fluid particles around the hull will
have to accelerate in tandem with the vessel resulting in inertial fluid forces. This is phenomena is modelled
by increasing the original mass of the vessel with an Added Mass term.

Viscous Damping results from the laminar or turbulent fluid boundary layer on the vessels hull. Its mag-
nitude scales quadratically with speed due to turbulence. Damping forces as a result of a boundary layer is
also referred to as skin friction.

Wave drift damping accounts for the added resistance for vessels in waves. Its scales quadratically with the
wave height and will dominate resistance terms in the surge direction in high seas.

Damping due to vortex shedding occurs if bodies with sharp edges travel through viscous fluid. The shed-
ding of an eddy introduces a drag force that scales quadratically with fluid speed.

Lifting forces are the result of pressure differences acting on the sides of the vessel due to sideways motion.
The body of the vessel acts as a wing creating a lift force perpendicular to the direction in which the vessel is
moving. Fluids that flow from side to side by going underneath the vessel give cause to non-linear damping
forces. The influence of these flows are referred to as cross-flow drag, which is a non-linear function of sway
and yaw velocities. The cross-flow drag becomes dominant in tight turns during which large sway velocities
occur, relative to the surge velocities.

The modelling of all phenomena and their respective interactions results in models with a large amount of
parameters. If in-depth knowledge of flow around the wetted surface is required, Computational Fluid Dy-
namics (CFD) methods can approximately predict fluid flow based on the Navier-Stokes equations and fluid
boundary conditions. CFD is however computationally expensive and unsuited to be used as a maneuvering
modelling method.

3.5. Control Forces
The control forces arise from the reaction forces of any controllable actuator on the vessel. In this work only
the azimuth thruster will be discussed, as it the only type of actuator found on DASh. The force generated
by a propeller is called thrust. The total thrust T per propeller depends on the flow of water entering and
exiting through its blades. Factors such as the inflow speed, the shape of the hull and density of the water all
influence the hydrodynamic forces acting on the propeller.

A popular empirical model discusses the properties of a propeller in uniform flow. This particular test sit-
uation is also referred to free running or open water condition. In this condition it is assumed the propeller
travels at constant advance speed Va through a stationary fluid with density ρ. The relation between the

3.5. Control Forces 17

thrust T and the propeller diameter Dp and its rotational speed n is captured in the non-dimensional thrust
coefficient KT (J), given by

KT (J) = T

ρD4n2 (3.8)

The thrust coefficient if a function of the advance ratio J , which defines the angle of attack of the propeller
blade with respect to the fluid flowing into the propeller. It is defined as:

J = Va

nDp
(3.9)

The values of Kt (J) can be found in an open water propeller diagram for the particular propeller, one of which
is shown in figure 3.3.

Figure 3.3: An open water propeller diagram.

According to Blanke [8] the thrust coefficient for a range of J may be linearly approximated as

Kt (J) = γ0 −γ1 J (3.10)

where γ0 > 0 and γ1 > 0. Substituting (3.10) into (3.8) and grouping the constants, the approximate formula
for thrust becomes

T = Tnnn2 +Tnunu (3.11)

Where Tnn and Tnu are constants based on the propeller properties. For ease of notation, the thrust forces Ti

of both azimuth propellers i = 1,2 can be projected on the body-fixed xb and yb axis. The resulting projected
forces Ti ,x and Ti ,y are a function of the azimuth angle αi and are calculated as

T =


T1,x

T1,y

T2,x

T2,y

=


T1 cos(α1)
T1 sin(α1)
T2 cos(α2)
T2 sin(α2)

 (3.12)

Resultant control input u acting on C F can be calculated using

u = BT T (3.13)

where BT is the constant thruster configuration matrix describing the position of all thrusters

18 3. Ship Modelling

α1

T1

T1,x

T1,y

α2

T2

T2,x

T2,y

l1,x = l2,x
l1,y

l2,y

COG

Figure 3.4: The thruster layout and projected thrust forces.

BT =
 1 0 1 0

0 1 0 1
−|l1,y | |l1,x | −|l2,y | −|l2,x |

 (3.14)

where li ,x and li ,y are the absolute distances from COG to the axis of the azimuth in x and y directions of the
body fixed frame. and u are the system inputs. A sketch of the actuator forces are shown in figure 3.4.
Since the input dimension of T is higher than the dimension of u, equation (3.13) is underdetermined and
has no unique solution. Optimization methods that minimize T are used to determine a optimal solution,
given a desired u. These optimizations are referred to as thrust allocation algorithms and can take maximum
thrust constraints and azimuth rotation constraints into account. A complete approach for fixed and rotat-
able thrusters is presented in [76]. An overview of thrust allocation methods is surveyed in [38]. The thrust
allocation used in DASh is based on the constrained minimization of a quadratic cost function using a Se-
quential Quadratic Programming (SQP) solution. Details of this implementation can be found in appendix
B.

3.6. Modelling of Hydrodynamic Forces
In literature, two approaches to parametrize the hydrodynamic forces dominate. The first approach was
pioneered by the Japanese Mathematical Modelling Group (MMG) that advocated to empirically calculate
the forces acting on individual modules of the ship. Concrete methods to do so were first presented by Inueo
[36]. Hydrodynamic forces are defined per module and by summation the total force can be found

Xhyd = XH +XR +XP

Yhyd = YH +YR +YP

Nhyd = NH +NR +NP

(3.15)

where the subscript stand for the interaction with the hull, rudder and propeller forces. Using empirical
methods, each force can be estimated separately. A generalized MMG approach is presented in [80].

The second approach is to parametrize all hydrodynamic and input forces using a Truncated Taylor series
expansion, also referred to as the Abkowitz model [1]. The fit is based on experimental data obtained from
captive or free-running model tests. The resulting model contains multiple non-linear terms. A Taylor series
expansion to approximate the hydrodynamic force in the surge direction is given as:

Xhyd =X0 +Xu∆u +Xu∆u2 +Xuuu∆u3 +Xv v v2 + (Xr r +mxg)r 2+
Xδδδ

2 + (Xvr +m)vr +Xrδrδ+Xvδvδ
(3.16)

3.7. Determination of Hydrodynamic Coefficients 19

Input

u(t)

y(t)
System output ȳ(t)

Model output ȳ(t |θ̄)

Prediction error e(t |θ̄)

5

+

−

System Filter

Model

Parameter
Estimation

Figure 3.5: The structure of system identification methods. After performing model tests, the prediction error between the system
output and the model output is minimized using a parameter estimation algorithm.

Here δ is the angle of the rudder. The model is parametrized around a design velocity u0. To utilize the model
at speeds other then the design speed the delta operator is used

∆u = u −u0 (3.17)

The Abkowitz model is sensitive to over parametrization due to the large amount of coupling parameters
between states. In contrast to the MMG model, the truncated Taylor series regression models the total hy-
drodynamic forces as a result of ship velocities and control inputs. Modelling of forces as shown in equation
(3.16) results in complex maneuvering models that consists of 40 to 150 hydrodynamic parameters [70]. Nev-
ertheless, the Abkowitz model is widely used and does provide adequate results for the prediction of vessel
maneuvering.

In this thesis a combination of the MMG and Abkowitz model will be used. The propulsion forces and hy-
drodynamic forces will be superimposed, similar to the MMG model. The hydrodynamic forces acting on the
hull will be modelled using a truncated Taylor series, similar to the Abkowitz model.

3.7. Determination of Hydrodynamic Coefficients
Traditionally the numerical determination of hydrodynamic parameters is done by means of towing tank
tests. A scale model is fixed to a towing carriage that imposes a surge and sway speed while measuring the re-
sultant hydrodynamic and damping forces. Multiple test are carried out such as straight-line, rotating-arm or
planar-motion-mechanisms tests. The goal is to isolate several parameters for identification per test, making
their numerical identification straight forward. To determine a complete maneuvering model, a large series
of towing tank tests is needed, making identification time consuming and expensive.

System Identification (SI) is a field of mathematics that use statistical methods to build models of dynamic
systems based on system output measurements. Let θ be the true parameter vector defining all numerical
constants in the vessel model. SI techniques try to find the best approximation θ̄ of the true parameter vec-
tor, by minimizing the prediction error between the (filtered) system output y(t) to the model output ȳ(t |θ̄)
under identical inputs u(t), as shown in figure 3.5.

Using SI, it is possible to determine a multitude of parameters when provided with output measurements
of free-running tests. In contrast to towing tank tests, SI methods are able to determine many parameters
from a single dedicated run, greatly reducing the time and cost compared to towing tank tests. A big plus is
that SI can directly determine the maneuvering model on any scale, including real-size vessels. The identified
parameters avoid any bias that may normally result from scaling parameters obtained using towing tests[70].

Various parameter estimation algorithms have been used in literature to estimate vessel parameters from sys-
tem output measurements. One of the earlier methods used the Extended Kalman Filter (EKF) by augmenting
state variables to include the parameters. Their numerical value is obtained during the a posteriori update

20 3. Ship Modelling

of the EKF [25, 79]. A popular method is the Least Squares (LS) method as used in [65]. Global optimization
methods such as simulated annealing were successfully used to identify a linearized maneuvering model in
[70]. An adaptive parameter estimation was performed for a non-linear vessel model using a backstepping
procedure in [11]. However, only six parameters were identified. In [14] an Opposition-Based Particle Swarm
Optimization was performed to identify twelve parameters in a linear heave-pitch model. The methods con-
sistently returned good fits on the measurement data. Bhattacharyya and Haddara [7] used artificial neural
networks to identify hydrodynamic derivatives based on spectral analysis methods resulting in an adequate
vessel model. Neural Networks methods do however have defects, as they require large training data sets, are
susceptible to over fitting and easily settle in a sub-optimal solution.

3.7.1. Parameter Identifiability
The proper choice of model is important when using SI methods. Models with few parameters are easier to
identify as the sensitivity of the output with respect to a change in a parameter, is higher. As a result, SI opti-
mizations converge more quickly. Performing SI for models with a very large amount of parameters will result
in over fitting. In this scenario the fitted parameters correspond to closely to the training measurements and
will fail to predict general movements. In contrast, if too little parameters are present in the model, the system
can become under-modelled and will fail to correctly capture the vessel dynamics. A trade-off must be made
between model complexity and being under-modelled.

Not all parameters in the MMG and Abkowitz models can be identified using SI techniques. Take for example
equation (3.3). Neglecting wind and wave forces, it can be rewritten to

ν̇=−M−1
RB CRB (ν)ν+M−1

RB BT u +M−1
RBτhyd (3.18)

Based on measurements of ν, only the matrices M−1
RB CRB and M−1

RB BT can be determined, but the matrices
MRB , CRB (ν) and BT cannot be obtained separately [50]. The parameters in these matrices are badly identi-
fiable. Determining one of the matrices beforehand, using other methods, allows us to identify the remaining
parameters. In literature, most of the time the inertia terms in matrix MRB are determined using slender-body
theory [71], CFD calculations, empirical formula or captive model tests. The thruster configuration matrix BT

contains only geometric information and can be determined by direct measurement.

Regardless of the identifiability example above, the estimated parameter vector θ̄ may still deviate from the
true parameter vector θ as a result from simultaneous drift of parameters. This happens when parameters
can change their value in relation to each other, without impacting the output of the model. Identified nu-
merical values for parameters can thus result in correct mathematical fits but have no physical meaning [35].
The drift of nonlinear parameters, also called multicollinearity, is commonplace in SI and can be shown sta-
tistically by checking the correlation between parameters when performing SI using difference methods [50].

Multicollinearity of parameters can be diminished by removing parameters with strong linearly dependence.
Direct modification of the model in this way is a effective method to reduce the multicollinearity but comes
at the cost of possible under-modelling. Parameter drift may also be reduced by rewriting the model using
a difference method [51]. The input and output measurements are rewritten, but the parameters that must
be identified remain the same. The new structure of the model may be less sensitive to multicollinearity. If
possible, it is valuable to perform measurements where parts of the system are not excited, to identify the
parameters for a subsystem first.

3.8. Maneuvering Model of DASh
Based on the considerations in previous sections, a maneuvering model is proposed that is complex enough
to capture the dynamics of the vessel, but compact enough to be identifiable with SI methods. The model
presented here is based on the vectorial maneuvering model [23] and uses the rigid-body dynamics from
equation (3.1).

3.8.1. Linear and Non-Linear Hydrodyamic Damping
The hydrodynamic excitation terms are modelled as a resultant force when the hull moves through the water.
Analogous to Fedyaevsky and Sobolev [21] and Norrbin [54], the following non-linear representation for the
hydrodynamic reaction forces is used, based on a truncated Taylor series:

3.8. Maneuvering Model of DASh 21

Xhyd =Xu̇ u̇ +Xuu +X |u|u |u|u +Xuuuu3

Yhyd =Yṙ ṙ +Yv̇ v̇Yv v +Yr r

+Y|v |v |v |v +Y|v |r |v |r +Y|r |v |r |v +Y|r |r |r |r
Nhyd =Nṙ ṙ +Nv̇ v̇ +Nv v +Nr r +N|v |v |v |v

+N|v |r |v |r +N|r |v |r |v +N|r |r |r |r

(3.19)

All parameters X•, Y• and N• follow the SNAME notation. The absolute operator is introduced in the second
order modulus terms e.g. |u|u, such that the sign of a quadratic term is preserved and thus damping terms
always act in the opposite direction of motion. The non-linear representation is valid for all feasible vessel
velocities.

The terms Xu̇ , Yṙ , Yv̇ , Nṙ and Nv̇ are referred to as added mass which model the fluid inertia forces by adding
a directionally dependent virtual mass. The linear parameters Xu ,Yv ,Yr ,Nv and Nr capture the linear effect
of potential damping forces in calm waters.

The viscous damping forces, normally calculated in surge direction as

Xvi sc =−1

2
ρSC f (u)|u|u (3.20)

whereρ is the water density, Xvi sc the viscous damping force, S the wetted surface of the hull, C f is the dimen-
sionless flat plate friction coefficitent which depends on the Reynolds number2. Both the viscous damping
forces and damping due to vortex shedding are captured in the regression by the quadratic terms X |u|u , Y|v |v ,
Y|r |r , N|v |v and N|r |r parameters.

3.8.2. Cross-Flow Drag
The more complex phenomena of cross-flow drag induce nonlinear lift forces in sway direction and moments
in yaw if the vessel is has a sway velocity or yaw rate |v | > 0, |r | > 0. The lift forces are determined by integra-
tion of the drag forces along the length of the vessel

Ycr oss =−1

2
ρ

∫ LW L
2

− LW L
2

T (x)C 2D
d (x)|v +xr |(v +xr)d x

Ncr oss =−1

2
ρ

∫ LW L
2

− LW L
2

T (x)C 2D
d (x)x|v +xr |(v +xr)d x

(3.21)

Where C 2D
d (x) is two dimensional cross-flow drag coefficient for the cross section at position x. An approx-

imate constant value for C 2D
d based on vessel breadth B and draft T , can be found in the Hoerner’s curve

[34] in figure 3.6. Solving the integrals of equation (3.21), the lift forces consists of quadratic terms and cou-
pled terms in sway and yaw. The coupled terms depend on the product of |v |r and |r |v , and therefore the
cross-flow drag forces are captured by curve fitting to the coupled second order modulus terms

Ycr oss =Y|v |v |v |v +Y|v |r |v |r +Y|r |v |r |v +Y|r |r |r |r
Ncr oss =N|v |v |v |v +N|v |r |v |r +N|r |v |r |v +N|r |r |r |r

(3.22)

which are already included in equation (3.19).

The model of hydrodynamic forces presented here is not able to capture the hydrodynamic forces from flow
phenomena separately. Instead terms in the regression simultaneously represent various forces resulting for
different phenomena e.g. the quadratic terms model viscous damping and cross-flow drag. As such, the
model parameters have no clear physical meaning in what forces they represent.

2The Reynolds number is a dimensionless quantity that predicts the occurrence of certain flow patterns, based on flow velocity and fluid
viscosity.

22 3. Ship Modelling

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

1

1.5

2

Figure 3.6: Hoerner’s two dimensional cross-flow drag coefficient C 2D
d , based on vessel geometry.

3.9. Complete Maneuvering Model
With the addition of the hydrodynamic added mass, the rigid body inertia matrix and Coriolis and centripetal
matrix are expanded to account for the extra inertia. The model given by (3.1) and (3.19) can elegantly be
rewritten in a vectorial setting

η̇= R(ψ)ν (3.23)

M ν̇+C (ν)ν+D(ν)ν= Bu +ω (3.24)

y = H x +κ (3.25)

Modelling noiseω and measurement noise κ is assumed to be white noise. The resulting inertia matrix is

M = MRB +MA =
m 0 0

0 m mxg

0 mxg Iz

+
−Xu̇ 0 0

0 −Yv̇ −Yṙ

0 −Nv̇ −Nṙ

 (3.26)

and Coriolis and centripetal matrix

C (ν) =CRB +C A =
 0 0 −m(xg r + v)

0 0 mu
m(xg r + v) −mu 0

+
 0 0 Yv̇ v +Yṙ r

0 0 Xu̇u
−Yv̇ v −Yṙ r −Xu̇u 0

 (3.27)

The damping matrix D consists of a linear part DL

DL =
−Xu 0 0

0 −Yv −Yr

0 −Nv −Nr

 (3.28)

and a non-linear part DN L that is dominant at high speeds

DN L(ν) =
−X |u|u |u|−Xuuuu2 0 0

0 −Y|v |v |v |−Y|r |v |r | −Y|v |r |v |−Y|r |r |r |
0 −N|v |v |v |−N|r |v |r | −N|v |r |v |−N|r |r |r |

 (3.29)

D(ν) = DL +DN L(ν) (3.30)

The output matrix is defined as
H = [

I 3×3 03×3] (3.31)

3.10. Observer Design for Navigation 23

The hydrodynamic model presented in this section does not model frequency dependent wave drift, dissi-
pation and potential damping. For the modelling of DASh this is a valid assumption considering there is no
explicit wave excitation in the water basin in which it operates. Also, the surge dynamics are decoupled from
the sway and yaw dynamics under the assumption that the hull is symmetric about the x y-plane. The in-
fluence of current is also neglected. It is however relatively simple to include the current velocity uc in the
model by rewriting equation (3.23) using the relative relative velocity vector νr = ν−νc instead of ν. This is
valid assuming the ocean currents are constant and irrotational.

3.10. Observer Design for Navigation
The measurable system output y(t) consists of the x and y position and the heading angle ψ. To estimate
unmeasured states, an observer is employed based on the Extended Kalman Filter (EFK). If the system is ob-
servable, the EKF can reconstruct unmeasured states and removing noise from state estimates. Observability
and Controllability of the vessel model is proven in [52].

Let the continuous time model equations (3.23) be rewritten to the form

ẋ = f (x ,u)+ω (3.32)

y = H x +κ (3.33)

The implementation of a discrete time EKF consists of a prediction and update step. Let the state estimate
x̂(0) = x0 and error covariance matrix P̂ (0) = I be the systems initial conditions. The sampling period is
denoted by Ts . Let J (x̂) be the Jacobian of the system. The prediction step in the discretized system using a
simple Euler integration becomes

x̄(k) ≈ x̂(k −1)+Ts · f (x̂(k −1),u(k −1)) (3.34)

Φ(k) ≈ I +Ts J (x̂) (3.35)

P̄ (k) =Φ(k)P̂ (k −1)ΦT (k)+T 2
s Q (3.36)

the predicted state x̄(k) and error covariance P̄ (k) are updated after receiving the most recent measurement
y(k)

K (k) = P̄ (k)H T [HP̄ (k)H T +R]−1 (3.37)

x̂(k) = x̄(k)+K (k)[y(k)−H x̄(k)] (3.38)

P̂ (k) = [I −K (k)H]P̄ T (k)[I −K (k)H]T +K (k)RK T (k) (3.39)

Where the diagonal, positive definite, design matrices Q and R represent the variance of model and mea-
surement noise. The state estimate x̂(k) contains the filtered position η̂ and estimated body-fixed velocities
ν̂. This observer for the non linear vessel model will be used to gather velocity measurements for the system
identification and model-based control in the second part of this report.

4
System Identification

In this chapter the unknown parameters of the maneuvering model of DASh are identified. The vessel model
provided in chapter 3 was constructed to have maximum parameter identifiability while not under modelling
its dynamics. Without the access to a towing tank, the system parameters matrices M , C (ν) and D(ν) and the
propeller thrust are identified by direct measurement or by using Least Squares and unconstrained non-linear
parameter estimation algorithms that minimizing the prediction error between system output measurements
and model output.

4.1. Decoupled SI approach
A effective method to reduce parameter drift and bad identifiability of parameters, is to decouple the planning
problem into multiple subproblems. In order of appearance, the SI is decoupled into an identification of

1. inertia parameters

2. propeller thrust

3. surge parameters

4. sway and yaw parameters

The respective parameters to be identified are captured in parameter vectors θ = [
θ1 θ2 θ3 θ4

]T
. Their

contents are displayed in in table 4.1. Parameter vectors found in earlier parts are held constant when used
in later parts. This allows is to identify the model step by step. This approach is only possible if parameters
can be isolated when performing experiments. This is indeed the case for the maneuvering model, as will be
shown in section 4.5. Parameters in the rigid-body Mass matrix will be determined

Table 4.1: Vessel parameters vectors to be identified.

Decoupled subsystem Parameter Vector Parameters
Inertia θ1 m, Iz , xg

Propeller Thrust θ2 Tnn

Surge θ3 Xu , Xuu , Xuuu , Xu̇

Sway and Yaw θ4
Yv , Y|v |v , Y|r |v , Yr , Y|v |r , Y|r |r , Yv̇ , Yṙ

Nv , N|v |v , N|r |v , Nr , N|v |r , N|r |r , Nv̇ , Nṙ

4.2. Estimation of Body-Fixed Velocities
The parameters that need to be identified are part of equation (3.24), which is a non-linear differential equa-

tion in ν. Using the observer, the measurements y = [
x y ψ

]T
are filtering with using a simplified version

of the EKF from section 3.10. The simplified model has the Coriolis and non-linear damping matrix set to
zero. The inertia matrix and linear damping matrices reduced to diagonal matrices M = mI and DL =−10I ,

25

26 4. System Identification

Table 4.2: Numerical values for the inertia parameters θ1

Parameter Value

m 39.28
Iz 4.76
xg 0.0585

respectively. The resulting EKF acts as a low-pass filter using the linearized vessel dynamics, which returns
an estimate of the body-fixed velocities ν̂ = [

û v̂ r̂
]
. As equation (3.23) is just a non linear mapping of ν

to η̇, the identification is performed using just the body-fixed velocity estimate ν̂ and equation (3.24).

4.3. Identification of Inertial Parameters
Vessel mass m was determined by direct measurement. The location of the COG was determined by mea-
suring the mass at two support struts using two scales. Solving for the equilibrium of moments returns the
position xCOG , on the longitudinal vessel axis. Movable weights in the vessel are used to position the COG
midships. The location of the center of flotation xC F at the centroid of the waterline is obtained by direct
measurement. See figure 2.2 for the definition of the lengths. The relative location of the COG in the body-
fixed coordinates equals xg = xC F − xCOG . The rotational inertia Iz about the vertical axis is approximated as
if the vessel is a slender rod of homogeneous density

Iz = 1

12
mL2 (4.1)

The numerical values of the inertial parameter vector θ1 is displayed in table 4.2.

4.4. Propeller Identification
For identification of the propeller, parameter vector θ2 must be estimated. Propeller thrust is normally es-
timated using open water propeller diagrams of systematic propeller series like the Wageningen B series,
Kaplan Series or (M)AU Series. These propeller series have been extensively tested in open water conditions
and provide empiric solutions for thrust estimation in the form of the thrust coefficient Kt (J), as shown in
equation (3.8).

The thrust exerted by the propeller on the vessel depends on the flow speed of the fluid entering it. Due
to the absence of a towing tank, the advance of DASh speed cannot be superimposed on the model. It is nei-
ther possible to impose a constant flow speed of the fluid in which the propeller is suspended. As such, the
parameter Tnu that relates the advance speed, propeller rotation speed and the thrust, cannot be determined.

However, it is possible to measure propulsion forces if the vessel is stationary In shipping these measure-
ments are called bollard pull tests. Using a scale, rope and pulley system detailed in appendix A, the tension
in the line as a result of propulsion forces can be measured if the vessel is stationary. The approximate formula
for propeller thrust at low speeds is fitted

T = Tnnn2 (4.2)

Note that the decrease in thrust due to non zero inflow speed is neglected by omitting the unidentifiable term
Tnunu. The input is thus only correctly modelled at low velocities where its influence is small. As a result, the
thrust decrease due to positive surge speed will instead be partly captured by higher order damping terms
e.g. Xu , X |u|u , Xuuu obtained using System Identification.

4.4.1. Propeller Identification Results
The measured thrust at constant rotation speeds is shown in figure 4.1. Using Least Squares, Tnn was identi-
fied to be Tnn = 6.2941e −06, assuming both propellers give the same amount of thrust at the same rotation
speed. The normalized root mean squared error (NRMSE) of measurements y is defined as

N RMSE = 100%

ymax − ymi n

√√√√ 1

k

k∑
i=1

(y − ŷ)2 (4.3)

4.5. Identification of Hydrodynamic Surge Parameters 27

0 200 400 600 800 1000 1200
0

5

10

15

20

Figure 4.1: The bollard pull force measurements.

where y is the measured value and ŷ the estimated value at time or experiment k. A normalization term
subtracts the highest measured output ymax from the smallest measured output ymi n in its denominator.
The LS fit for the thrust measurements has a low NRMSE of 0.26%. The behavior of the thrust at zero advance
speed is well modelled using the quadratic equation (4.2) based on visual inspection of figure 4.1 and the low
NRMSE.

4.5. Identification of Hydrodynamic Surge Parameters
The identification methods presented here first decouples the surge state from the sway and yaw states. The
vessel is straight-line stable, ensuring it sails in surge motion given positive thrust. The sway and yaw remain
small v ≈ r ≈ 0 and the vessel dynamics of equation (3.23) reduce to the a 1 DOF model

(m −Xu̇)u̇ −Xuu −X |u|u |u|u −Xuuuu3 = 2Tnnn2 (4.4)

As model test can be performed in pure surge direction, this procedure has successfully decoupled the surge
dynamics and its parameters related to surge. Note there is no linear relation between any parameter, avoid-
ing parameter drift.

For a constant propeller rotation speed n, the surge speed of the vessel will stabilize at its terminal veloc-
ity. A series of terminal velocity test have been performed. Since u̇ = 0 at terminal velocity, the parameters
Xu , X |u|u and Xuuu are identified solving the linear system of the form Ax = b for a set of k terminal velocity
measurements ui=1...k at constant propeller rotation speed ni=1...ku1 u1|u1| u3

1
...

...
...

uk uk |uk | u3
k


 Xu

X |u|u
Xuuu

=

−2Tnnn2
1

...
−2Tnnn2

k

 (4.5)

Since x is the only unknown, a Least Squares solution is given as x = (AT A)−1 AT b. These values are then used
as an initial guess in a non-linear optimization problem that identifies the parameter vectorθ3 = [Xu X |u|u Xuuu Xu̇].
The System Identification Toolbox of Matlab is used to estimate θ3 by solving an unconstrained nonlinear op-
timization problem with cost function

V =
K∑

k=1

(
1

N

N∑
t=1

eT (t , θ̄,k)W e(t , θ̄,k)

)
(4.6)

where W is a weighing scalar and e(t , θ̄,k) is the prediction error for the k th experiment defined as

e(t , θ̄,k) = u(t ,k)− ŷ(t , θ̄,k) (4.7)

and the model output ŷ(t ,k) is calculated using

ȳ(t , θ̄,k) =
∫ t

t0

(
1

m −Xu̇
(Xuu +X |u|u |u|u +XuuuU 3 +2Tnnn2

k)

)
d t +u0,k (4.8)

28 4. System Identification

Table 4.3: Surge parameters fitted from terminal velocity data using LS.

Parameter Value

Xu -1.66
X |u|u -9.49
Xuuu 1.77

for the same inputs n and initial surge state u0,k for experiment k. Each run started at zero surge speed
u0,k = 0. The trust region reflective algorithm of the Matlab Optimization Toolbox is used to solve the non-
linear optimization problem. The search is terminated after 50 iterations of the optimization algorithm. Ter-
mination also occurs at the termination tolerance on the loss function of 10e−5 or at the termination tolerance
on the estimated parameter values reaches 10e−6. Convergence of this optimization is not trivial. Bad initial-
izations of θ3 resulted in physically meaningless fits with very large added mass terms. A good initial guess
for Xu , X |u|u , Xuuu has shown to increase convergence of the fit to rational values of Xu̇ .

4.5.1. Surge Parameters Identification Results
A series of constant propeller rotation speed test were performed for various n. In figure 4.2 the forward
terminal velocities are plotted against the amount of forward thrust.

-1.5 -1 -0.5 0 0.5 1 1.5
-15

-10

-5

0

5

10

15

Figure 4.2: The terminal surge velocity for various amounts of forward thrust.

Using the Least Squares fitting approach the surge parameters for Xu , X |u|u and Xuuu were determined. Their
numerical values are displayed in table 4.3.
The non-linear optimization was ran on a set of five experiments K = 5. The first three consists of pure surge
motion in which the terminal velocity is reached under constant propeller rotation speed. Experiment 4 and
5 had their propeller rotation speed stepwise varied, resulting in acceleration and deceleration of the vessel.
These experiments are more rich, in the sense that it contains more information on the surge dynamics in
which u̇ 6= 0. Experiment 1 to 4 were used as a training set on which the parameters were identified. Experi-
ment 5 is the test data set, on which the quality of the fit can be accessed. To asses the quality of the estimated
model the Variance Accounted For (V AF) for each state of each individual experiment k is calculated as

V AF (y(t), ȳ(t , θ̄,k)) =
(

1−
1
N

∑N
t=1 ||y(t ,k)− ȳ(t , θ̄,k)||22

1
N

∑N
t=1 ||y(t ,k)||22

)
·100% (4.9)

The measured system output y(t ,k) and model output ŷ(t , θ̄,k) with the optimized parameters and the V AF
for each experiment, are shown in figure 4.3. The prediction error is lower for a higher V AF , which has a
maximum value of 100%. The optimized parameter values are given in table 4.4.

4.6. Identification of Hydrodynamic Sway and Yaw Parameters 29

Table 4.4: Optimized parameter vector θ3 using Non-Linear Least Squares optimization

Parameter Value

Xu -0.46
X |u|u -13.04
Xuuu 3.46
Xu̇ -5.10

0 5 10 15 20 25 30 35 40 45
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4.3: The surge experiments with measured system output y(t ,k) (black dotted) and model output ȳ(t , θ̄,k) (colored) with
estimated surge parameters.

Visual inspection of figure 4.3 shows a good fit between the dynamic surge behavior of the vessel and the
estimated model. The V AF of all experiments, including the test data of experiment 5, exceeds values of 94%,
indicating good alignment between the identified model and real surge dynamics. The surge speed under
constant propeller thrust shown no large steady state error, confirming that the truncated Taylor series of the
third order does not under-model damping in surge direction.

4.6. Identification of Hydrodynamic Sway and Yaw Parameters
In contrast to the surge dynamics, the sway and yaw dynamics cannot be decoupled from the vessel dynam-
ics due to coupling terms in C (ν). Instead a System Identification run is performed on the complete system
dynamics with previously found parameters in θ1, θ2 and θ3 held constant.

The experiments performed to excite the sway and surge dynamics are the so called zig-zag maneuvers, rec-
ommended by the ITTC. In the zigzag test, a vessel is brought to a constant surge velocity. A predetermined
steering action, such as a rudder angle or azimuth angle, is executed until a certain change in the heading
is achieved. From that moment the opposite steering angle is executed until the opposite heading angle is
reached, and so on. Following this protocol, a vessel will ’zigzag’ along the initial surge direction. A figure of
the commanded steering angle and heading during a zigzag test is shown in figure 4.4. The propeller rotation
speed is held constant during the test.

Although the zigzag test is not proven to be the an optimally designed experiment, it is chosen due to its
widespread industry usage and obvious excitation of the sway and yaw dynamics. In [55] an example is pro-
vided wherein free running zigzag test were used to identify a vessel model, that was shown to also correctly

30 4. System Identification

steering angle

first execute

second execute

overshoot

heading angle

time [s]

angle [r ad]

starboard

portside

Figure 4.4: The commanded steering angle and heading during a zigzag test.

Table 4.5: Identified sway and yaw parameters of θ4 using the Non-Linear Least Squares optimization for the zigzag experiments.

Parameter Value Parameter Value

Yv -7.30 Nv -2.75
Y|v |v -18.93 N|v |v 16.58
Y|r |v -97.25 N|r |v -57.07
Yr -1.71 Nr -4.80
Y|v |r -46.68 N|v |r -32.65
Y|r |r -61.91 N|r |r -81.04
Yv̇ -0.20 Nv̇ -18.41
Yṙ -2.31 Nṙ -3.59

predict steady-state turning of vessels. This increases the belief that zigzag test adequately excite sway and
yaw dynamics at positive surge speeds, as identified parameters are valid for multiple turning maneuvers.
However, in section 4.6.1 it is shown this is not the case for DASh.

Four zigzag experiments were performed at the constant propeller speeds in rpm n = [
450 500 550 600

]
.

The set steering angle of both azimuth propellers were 10◦/−10◦ and the heading angle to reach before chang-
ing the steering angle was 10◦/−10◦. The zigzag experiment 2 at n = 500 is used as test data, experiment 1, 3
and 4 are used as the training data set (K = 3). The same cost function is minimized as defined in equation

(4.6). However, now the model output is extended to y(t ,k) = [
u v r

]T
and the diagonal weighing matrix

becomes

W =
0.1 0 0

0 1 0
0 0 1

 (4.10)

The model output is now calculated as

ȳ(t , θ̄,k) =
∫ t

t0

(−M−1C (ν)ν−M−1D(ν)ν+M−1Bu(t ,k)
)

d t +ν0,k (4.11)

The optimization is performed using the same optimization algorithm and termination conditions as used in
section 4.5.

4.6.1. Sway and Yaw Parameter Identification Results
The identified parameters of θ4 are shown in table 4.5. Various parameter initialization were used, but best
convergence was achieved at θ4 = 0. The model output of the identified model and the V AF per state are
shown in figure 4.5, for each experiment.
Visual inspection shows a good fit between the surge, yaw and sway dynamic of the vessel and the estimated
model. The V AF values for surge and yaw remain above 69% for all experiments. the V AF for sway is sig-

4.6. Identification of Hydrodynamic Sway and Yaw Parameters 31

0 5 10 15 20 25 30
-0.2

0

0.2

0.4

0.6
Experiment 1

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6
Experiment 2

0 5 10 15 20

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Experiment 3

0 5 10 15 20 25 30
-0.4

-0.2

0

0.2

0.4

0.6
Experiment 4

Figure 4.5: The zigzag experiments with measured system output y(t ,k) and estimated model output ȳ(t , θ̄,k). The V AF is displayed
per state of each experiment.

nificantly lower with values between 47.9% and 61.3%. The sway tends to diverge more quickly compared
to surge or sway predictions. Increasing the weight on the sway in W results in only marginally increases of
the V AF for sway, at the cost of yaw. The test data of experiment 2 shows increased divergence of the sway
prediction after 14 seconds.

The fully identified model is used to predict a maneuver of which a trajectory is shown in figure 4.6. The
model is unable to correctly predict future vessel positions over the long time horizon of the maneuver. The
prediction of states x̄, ȳ and ψ̄ diverge quickly after entering the first right turn at t ≈ 23. Model output on the
position and heading remain valid for a period of only a few seconds. The prediction of the velocity states ū,
v̄ and r̄ are of similar quality compared to the zigzag tests.

Most likely, the bad prediction of x̄, ȳ and ψ̄ is a result of the choice to perform identification on just the esti-
mated body-fixed velocities ν̂. The velocity states were obtained with a low-pass filter that uses a simplified
vessel model, described in section 4.2. Filtering with this model, incorporated information of the simplified
model into the velocity estimates, resulting in a poor estimation of the true system dynamics. Nevertheless
their were reasons to do so. Firstly, a direct measurement of body-fixed velocities was not available. Secondly,
the parameter estimation algorithm was not able to converge when identifying the 6 DOF model based on
the noisy measurements of x, y and ψ.

Although imperfect, the identified model can still be used in model-based controllers such as Model Pre-
dictive Control (MPC), as long as the MPC prediction horizon is small. For prediction horizons up to ±4
seconds the model returns and adequate prediction of the state, in longer prediction horizons the model will
provide bad long term predictions, resulting in worse control inputs. Keeping the prediction horizon below 4
seconds allows NMPC to stabilize and control the vessel, as will be shown in chapter 7.

32 4. System Identification

0 5 10

-2

0

2

4

6

8

10

12

14

16

18

20 25 30 35 40 45 50 55

0

5

10

15

20

20 25 30 35 40 45 50 55

-0.5

0

0.5

1

Figure 4.6: Measured system output of a turning maneuver and the estimated model output. (left) The sailed and predicted trajectory.
(top right) Measured and predicted position. (bottom right) Measured and predicted body-fixed velocities.

4.7. Conclusion
In this chapter all propeller and hydrodynamic parameters of the nonlinear vessel model of equation (3.23)
have been identified. The identification consisted of four steps. First, the inertia matrix was obtained. Sec-
ondly, bollard pull tests were performed to obtain the thrust characteristics at zero advance speed. It is as-
sumed the estimated propeller thrust remains valid at low advance speeds. Thirdly, the surge dynamics were
decoupled from the vessel model, allowing surge parameters to be identified individually, decreasing the
chance of parameter drift. An initial guess for hydrodynamic surge damping terms was obtained by apply-
ing a Least Squares fit on terminal velocities for a set measurements performed at constant forward thrust.
Using non-linear optimization, the prediction error between a training set of measured system outputs and
model output. Surge parameters were identified using a training data set of 4 surge experiments. The test
data set consisted of one surge experiment that scored a Variance Accounted For (V AF) value of 95.1%. Vi-
sual comparison of measured and modelled output in figure 4.3 and the high value for the V AF imply good
identification of surge dynamics. Lastly sway and yaw parameters were determined using non-linear opti-
mization by performing free running zigzag tests. A training data set consisted of 3 zigzag experiments at
different surge velocities. A test data set consisted of 1 zigzag test that scored a V AF of 47.9% for sway and
80.3% for yaw. Although the relatively low V AF , figure 4.5 shows the model is able to capture the sway and
yaw behavior.

The output prediction of the turning maneuver shows the identified model is unable to correctly predict
states x, y and ψ over a long time horizon. However, the identified model can be used for model-based con-
trol methods such as MPC, as long as its prediction horizon is shorter than ±4 seconds. Otherwise, the state
estimates will diverge quickly from the true system.

The identified vessel model will be used for the guidance and control systems in the following chapters.

II
Model-Based Guidance & Control

33

5
Kinodynamic Sampling-Based Planning

In previous chapters the hardware of DASh was presented and a mathematical model of its dynamics was
identified. In this chapter, a kinodynamic sampling-based path planner is proposed to be used as a guidance
system. In combination with a motion controller, the planner enables the vessel to navigate its environment
autonomously. To start, the planning problem for DASh is defined after which relevant sampling-based path
planning principles are introduced on which the framework in chapter 6 will expand. At last, the choice of
planner to be implemented in DASh is detailed.

5.1. DASh Planning Problem
The movement of DASh is constrained by obstacles in its environment and the capabilities of its azimuth
thrusters and its dynamics, of which the vectorial representation is repeated here from chapter 3

η̇= R(ψ)ν (5.1)

M ν̇+C (ν)ν+D(ν)ν= u +ω (5.2)

x =
[
η

ν

]
(5.3)

The location and heading of the vessel is captured in η= [x y ψ]T and the body-fixed surge, sway and yaw
velocity in ν= [u v r]T . Modelling noise ω is assumed to be a zero mean white noise process. A derivation
of the complete model can be found in chapter 3. The equation of motions locally constrain the movement
of DASh. Also, the propeller forces are finite and impose input constraints on the model.

DASh

Other vessel

Basin wall

Other vessel

xG

Figure 5.1: The planning environment of DASh planning problem. DASh is colored in green, static obstacles in gray and the dynamic
obstacles in red.

35

36 5. Kinodynamic Sampling-Based Planning

Path Planning Algorithms

Geometric Constraints Differential Constraints

Static
Environment

Dynamic
Environment

Static
Environment

Dynamic
Environment

Figure 5.2: A classification of path planning algorithms.

A guidance system is responsible for the creation of a path between an initial state xI and the goal state
xG . Algorithms that achieve this goal are called path planners. The goal of DASh is to navigate the 10 by 20
meter basin at the Rotterdamse Droogdok Maatschappij (RDM) Campus. Inside the tank other stationary and
moving vessels will be present. It is assumed the other vessels do not react to DASh and will not try to avoid
collisions. A top view of the planning environment is given in figure 5.1.

5.2. Introduction to Path Planning

Important planning principles and terminology are introduced in this section. A direct focus is placed on
sampling-based planners, as it is the most promising approach to solving kinodynamic planning problems.

5.2.1. Constraints in Planning

The complexity of planning problems is governed by the constrains a path has to satisfy. Let the object or
robot for which a path is planned be referred to as the agent. If the movements of an agent are constrained by
obstacles in the environment, a path must be planned under geometric constraints. If the allowable actions
or transitions of the agent are strongly governed by its dynamics, a path must be planned under differential
constraints. Planning under differential constraints is also referred to as kinodynamic planning. In case mov-
ing obstacles are present one must plan within a dynamic environment, else the environment is said to be
static. An overview of planning algorithms based on these classifications is shown in figure 5.2.

The interested reader is encouraged to lookup Geometrically constrained planners such as the Reduced Visi-
bility Graph planner in static environments [53], or generalized velocity obstacle planning for safely navigat-
ing amongst dynamic obstacles [74]. Differentially constrained planners are often based on the kinodynamic
Rapidly-exploring Random Tree [48].

The complex spatial and dynamical constraints on the agents state pose the largest challenge in planning
and distinguishes path planning from ordinary control problems. DASh and displacement vessels in general
are strongly locally constrained by their dynamics. To illustrate; displacement vessels are slow to accelerate,
decelerate and suffer from drift in corners due to their large inertia.

Surprisingly, kinodynamic planners are rarely implemented in autonomous vessels. The majority of literature
on guidance and path planning for ships use a geometrically constrained planner [23, 31, 45, 69]. The paths
are defined by way-points connected by collision free straight line segments. A path-following controller in
combination with collision avoidance algorithm [67] is used to account for moving obstacles and the vessel
dynamics during execution. These methods have no guarantee that the planned path is dynamically feasible
or is optimal with respect to any metric other than path length.

5.3. Optimal Kinodynamic Planning 37

5.2.2. Representation of Space
Broadly speaking, one wishes to minimize the dimension of the space in which to perform path planning to
reduce the computational load. For a dynamic system like DASh, the minimal set of independent parameters
describing the position and velocities of the agent is the state space X . The physical space in which the agent
and obstacles reside is called the workspace, which is often a 2D space W ∈R2 or 3D space W ∈R3. The space
the agent occupies at state x is denoted by A(x). The space occupied by static and moving obstacles is called
the obstacle region O(t). The set of states that lead to collision is state space obstacle region Xobs , defined as

Xobs = { x ∈ X | A(x)∩O(t) 6= ; } (5.4)

The algebraic complement of Xobs is the free state space

X f r ee = X \ Xobs (5.5)

Let a kinodynamic planner create a path for a differentially constrained agent with dynamics ẋ = f (x ,u). A
feasible path is defined as a sequence of states x̃ ∈ X f r ee accompanied by a sequence of control inputs ũ ∈U ,
where the action space U is the set of allowed control inputs. An example of a geometrically and differentially
feasible path is shown in figure 5.3. Note that planning under differential constraints result in smooth paths,
compared to the jagged geometrically constrained path, that would be harder to execute without tracking
error.

xI

xG

X f r eeXobs

Xobs

Figure 5.3: A geometrically constrained (solid) and differentially constrained (dotted) feasible path from xI to xG in the state space X .

5.3. Optimal Kinodynamic Planning
In the majority of planning problems, it is not only important to reach the goal state with a feasible path,
but also minimize a performance measure such as travel time, path length or energy consumption. Given
an initial state x(0) = xI and goal state xG , the optimal state and input trajectory, denoted by x̃ : t → X and
ũ : t →U connect xI to xG while minimizing a cost function Φ(x̃ , ũ). The planning problem can be rewritten
as an optimization:

min
x̃∈X f r ee , ũ∈U , T>0

Φ(x̃, ũ, t)

(5.6)

subject to ẋ(t) = f (x(t),u(t)). ∀t ∈ [0,T]

x(0) = xI

x(T) = xG

The trajectory duration is set by the decision variable T . The value of Φ(x̃ , ũ, t) at the optimal solution is
called the cost-to-go. The globally optimal solution to this optimization is extremely difficult to find. Without
including the differential constraints, the optimization in (5.6) has been shown to quickly become intractable
for state dimensions of 3 or higher due to the complex spatial constraint x̃ ∈ X f r ee . Planning for a polyhedral

38 5. Kinodynamic Sampling-Based Planning

agent with polyhedral obstacles in three dimensional space has been shown to be PSPACE-hard1 in [59]. Due
to the proven complexity, it is unreasonable to search for a solution (5.6) directly.

5.4. Kinodynamic Sampling-Based Planning
Sampling-based planning is the most popular approach for differentially constrained planning in high di-
mensions. Sampling-based planners explore the free state space by discretization. The connectivity of X f r ee

is captured by (pseudo)randomly sampling states called vertices, and connecting them with edges using a
steering method. A collision detection module checks if vertices or edges are collision free and if so, they are
added to a graph (or tree). The inherent bias towards unexplored regions allow quick identification of the
free state space. At the base of kinodynamic sampling-based planners stand the Rapidly-exploring Random
Tree (RRT) [48] and the Probabilistic Roadmap (PRM) [42]. Over the years, many improved sampling-based
planners have emerged, but they still share the same core routines that will be explained in the next section.

The counterpart to sampling-based planners are combinatorial path planning methods. Combinatorial ap-
proaches try to map the complete free state space, preserving the continuity of the space. In geometrically
constrained planning problems of low dimension, combinatorial methods outperform sampling-based plan-
ners as they are able to reliably find minimum distance paths. However, the approach struggles in high di-
mensional spaces or when planning under differential constraints. For more information on combinatorial
planning the reader is referred to [47].

5.4.1. Completeness
A path planner is called complete if it guarantees to find a path if one exist or correctly report that it does
not. The guaranteed solution is a very desirable characteristic in path planners, but is not always present. A
planning approach is said to be incomplete is it does not guarantee to find a solution, even though one exist.
Forms of completeness in decreasing strength are:

• complete

• resolution complete

• probabilistic complete

• incomplete

Combinatorial methods are complete. This is due to their ability to capture X f r ee in a continuous and com-
plete manner. Sampling-based methods capture the connectivity of the state space by sampling and building
a graph G . If the vertices of G are dense in X f r ee , the connectivity is captured appropriately and a solution can
be found. To obtain a dense graph, often many samples are needed and path planning algorithms require an
increasingly longer runtime. If random sampling methods are used, sampling-based algorithms are proba-
bilistic complete. This means that if a solution exist, the probability of find a feasible path converges to one as
the amount of samples goes to infinity.

Planning methods that in some way discretize a space in the planning problem are resolution complete.
This level of completeness guarantees to find a solution if that discretization has reached a certain level of
resolution. Discretization of any space leads to a loss information. This may result in planners becoming
incomplete, an example of which will be shown in section 6.6.

5.4.2. Kinodynamic Rapidly-exploring Random Tree Planner
The Kinodynamic RRT algorithm iteratively solves a string of routines to grows a graph G . Let a vertex be de-
noted by V and an edge by E . Inputs to the kinodynamic RRT algorithm are the initial state xI , free state
space X f r ee and the steering time ∆t . A circular goal region XG ∈ X f r ee is defined around xG such that
XG = { x ∈ X f r ee | ‖x − xG‖2 < rG } for a small scalar value rG . Increasing the size of the goal state is a nec-
essary condition to find a path as the chances of randomly sampling the goal state during planning are zero.

A graph G is initiated with a single vertex at xI . The following routines are then performed:

1PSPACE-hard is an expression to characterize the computational complexity of a problem

5.4. Kinodynamic Sampling-Based Planning 39

1. State Sampling: A state xr and is randomly sampled in X f r ee .

2. Nearest Neighbor: Given xr and , this routine searches and returns the nearest vertex Vnear in the graph
G based on the used distance metric.

3. Steering Method: A steering method connects Vnear to xr and by a trajectory pair (x̃ , ũ) over a time
period of ∆t seconds. If xr and is not reached, a new node xnew is returned which has made maximal
progress towards xr and .

4. Collision Checking: The trajectory pair is checked to be in X f r ee , using a collision checker. Only if the
path is collision free, xnew and the trajectory pair are added to G as a vertex and edge, respectively. If
the path is in collision, the algorithm returns to the state sampling routine.

5. Goal Reached: If xnew lies inside the goal region XG a feasible path is contained in G and the algorithm
is terminated. Graph search methods such as A* [32] or Dijkstra’s algorithm [17] can be used to extract
the path from G . If xnew ∉ XG the algorithm returns to the state sampling routine.

The extension of a graph towards xr and using the kinodynamic RRT algorithm is shown in figure 5.4. Pseudo
code for the kinodynamic RRT algorithm is provided in algorithm 1.

Algorithm 1 Kinodynamic Rapidly-exploring Random Tree

Input: Initial state xI , Goal region XG , free state space X f r ee , action space U , integration time ∆t
Output: Graph G

1: function BUILDRRT(xI , xG)
2: G .init(xI)
3: for i ← 1 to K do
4: xr and ← SAMPLERANDOMSTATE()
5: Vnear ← NEARESTNEIGHBOR(xr and ,G)
6: (x̃ , ũ, xnew) ← STEERINGMETHOD(Vnear , xr and ,∆t)
7: if x̃ ∈ X f r ee and ũ ∈U then
8: G .addVertex(xnew)
9: G .addEdge(Vnear , xnew , x̃ , ũ)

10: end if
11: if any V ∈ XG then
12: return G
13: end if
14: end for
15: end function

xI

Vnear xr and

xnew

(x̃ , ũ)

Figure 5.4: Extension of a graph G towards a randomly sampled node xr and using a steering method resulting in the trajectory (x̃ , ũ)
ending at xnew .

The kinodynamic RRT subroutines may be improved upon, depending on the agent’s dynamics, state or
workspace. Several improvements are discussed in the following sections.

5.4.3. State Sampling Methods
Sampling-based planners originally sampled states uniformly over the search space. The probability of draw-
ing samples from a wide unexplored region is thus higher than in narrow regions, a phenomena called Voronoi

40 5. Kinodynamic Sampling-Based Planning

bias. This bias causes sampling-based methods to quickly explore the free state space.

Information about the environment can be used to sample states at a certain location. This is called in-
formed sampling and is employed in several planners [3, 10, 60, 73]. The main purpose of biased sampling
is to accelerate computation times. One of the commonly used biased sampling method is to replace a ran-
domly sampled node by the desired goal state. The probability of occurrence is often chosen equal to 5%.
As a result, information of the goal state allows the RRT to operate in more than just an exploratory manner,
but be slightly guided to the goal state. As a result, less state samples are needed to reach te goal region. This
method will also be used in the kinodyanmic RRT for DASh.

5.4.4. Nearest Neighbors
A steering method should connect the sampled state to the closest vertex in G . This vertex is called the near-
est neighbor. To define the proximity of one state to another in absence of obstacles, a distance metric must
be formulated. To have maximum expansion of the RRT, it is paramount to have a good distance metric and
correctly connect nearest neighboring states. Bad distance metrics result in larger than necessary graphs, re-
sulting in less optimal paths overall. For example, a good distance metric for a geometrically constrained
planning problem in a two dimensional planar space would be the Euclidean distance. In this case, the
straight line distance between two points in the state space is the shortest connection possible.

In the state space of dynamic agents no straight forward distance measures exist. An agent’s state often con-
sists of a set of translations, angles, velocities and accelerations. Combining these unrelated metrics into a
single scalar distance requires arbitrary weights to be applied to all variables. The resulting scalar encodes no
information about the constrained relationship between positions and velocity [30]. A correct distance met-
ric is especially important in sampling-based planners, as it significantly improves the planners performance,
as shown in [12]. An intuitive example of problems with distance in the state space is depicted in figure 5.5.

u

xi ni t

x1x2

x1x2

Phase plot

x

u

Figure 5.5: An example of distance in state space for a two dimensional vessel model ẋ = u. A vessel at xi ni t with positive surge speed u
is connected to goal state x1 (red) and x2 (green). The straight-line (Euclidean) distance between xi ni t and both goal states is equal.

However, x1 is easier to reach, as it is located in front of the vessel.

Instead, the ideal distance metric for dynamic agents should be expressed in a cost necessary to travel be-
tween points in the state space. This distance metric is the cost-to-go, earlier introduced in section 5.3 [48].
Sadly, the computation of the true cost-to-go is as complicated as solving the original planning problem. As a
best alternative, the optimal cost-to-go of the linearized system is used [30, 49]. Linearizing the dynamics al-
lows for quick optimal cost computations. The improvement of the linearized cost-to-go above the Euclidean
distance as a distance metric drops off with increasing non-linearities in the system.

A workaround where the computationally expensive cost-to-go were moved to an a priori phase were pro-
posed in [6, 78] in which a learning algorithm estimates the optimal cost-to-go. The learned model is able to
quickly return approximations of the optimal cost-to-go during planning, reducing the overall planning time.
A similar approach using machine learning was used in [5] to quickly determine cost-limited reachability sets

5.5. Decoupled Path Planning 41

in [5]. A planner using the cost-to-go approximations was implemented in real-time fashion for a quad rotor
in a environment with static obstacles [4]. In chapter 6 the performance of the learned distance metric is
compared to the Euclidean distance metric and a minimal curve length metric, when applied to the DASh
planning problem.

5.4.5. Steering Methods
The steering methods is responsible for connecting two states. In geometric planning, this task is as easy
as connecting the states with a straight line to get the shortest path. If differential constraints are present,
this creates a two-point boundary value problem (BVP) with the initial and goal states as constraints. If an
efficient two-point BVP solver is available that can quickly connect states xnear to xr and in the absence of
obstacles, this should be used as steering method. Using an efficient BVP, all issues regarding kinodynamic
planning are removed for sampling-based planner. However, solving the two-point BVP is often very costly,
or a solution may not exist for complex dynamics. Instead an approximate state input pair can be found using
optimization methods as will be discussed further discussed in chapter 6.

For nonholonomic systems that are bound by a minimum turning radius, Dubins’s paths [18] or Reeds and
Shepp’s curves [58] can be used to quickly connect states with a minimal distance path. This steering method
is often used for wheeled robots as it is optimal under the set constraints and computationally inexpensive.

In absence of a good steering method, a viable approach is to sample the action space to obtain a sequence
of inputs. If done multiple times, one can integrate the system forwards for all inputs [19]. The most promis-
ing control input is kept, and the path added to the tree. This method is rather slow as it requires multiple
forward integration steps per pulled node. Instead, the action space U of the system can be discretized to a
set of a priori calculated input sequences called motion primitives. A set that densely covers the time-limited
reachable set2 maximizes the expansion towards sampled nodes, leading to quick exploration of the state
space.

5.4.6. Asymptotically Optimal Planning
An asymptotically optimal sampling-based planner named RRT* was introduced in [41]. It features a rewire
routine. After sampling a random state, it is connected to multiple nearest neighbors. The path to the new
state with the lowest cost is then added to the tree. A rewire step then checks if any of the nearest neighbors
can be reached via the new node, with a lower cost path. If so, the nodes are rewired. The RRT* planner will
therefore reach the optimal solution if ran for an infinite amount of time.

If a efficient two-point BVP solver or state to state steering method is available, state-of-the-art asymptoti-
cally optimal planners such as Informed RRT* [27], Fast marching trees (FMT*) [37] or Batch informed Trees
(BIT*) [28] can be used. For more information and a comparison of these planners the reader is referred to
[28].

5.5. Decoupled Path Planning
The decoupled planning approach was discussed in the chapter 1. Decoupled trajectory planning is a hi-
erarchical method that can plan under differential constraints by first planning a global path in a lower di-
mension. Secondly the path is transformed to handle non-holonomic 3 constraints. Thirdly, the path is time
parametrized such that it satisfies the differential constraints[57]. The weakness of this scheme is the uni-
directional passing down of fixed intermediate solutions between steps. The receiver might not succeed as
a result of an unfortunate choice made by the step before. In the example of chapter 1 this resulted in an
inefficient path with the possibility of collisions, resulting in an incomplete planner. Hence completeness is
lost and optimality is sacrificed. This motivates us to directly take the differential constraints into account
during planning.

2The time-limited reachable set contains all states that can be reached from the current state within a certain time period while satisfying
input constraints.

3Non-holonomic constraints are constraints on the state velocities e.g. cars cannot have a velocity perpendicular to the direction of
travel of the wheels.

42 5. Kinodynamic Sampling-Based Planning

5.6. Path Planner for DASh
The sampling-based kinodynamic approach to path planning mitigates the drawbacks of the decoupled plan-
ning approaches found in literature. The resulting paths are guaranteed to be feasible and executable under
the set input constraints.

In the literature report [68], the kinodynamic RRT has been chosen to be implemented for two reasons. First,
it finds feasible and executable paths. Secondly, in the absence of an efficient BVP solver for the vessel model,
asymptotically optimal planners would introduce immense computational loads.

5.7. Conclusion
In this chapter an introduction to path planning approaches and their difficulties has been given. Based on
the requirements and properties of planners, the kinodynamic RRT planner was proposed, which will use the
vessel model identified in chapter 4. The core routines of the planner were presented and possible improve-
ment on the subroutines were discussed. In the following chapter a framework is presented to implement
a computationally cheap distance measure and steering method to minimize the time and path cost of the
kinodynamic RRT.

6
A Control-Based Framework for

Kinodynamic RRT

In this chapter, a control-based framework is presented that improves upon the standard kinodynamic RRT
algorithm. The framework uses a learned approximation of the cost-to-go as a distance metric for the state
space of the vessel. The cost-to-go is calculated using forward integration of the vessel under non-linear
model predictive control (NMPC). Since the NMPC is too computationally expensive to be used in the kino-
dynamic RRT algorithm directly, a maneuver automaton is defined to constrain vessel movements to a set of
trim states and motion primitives. To test the effectiveness of the proposed distance metrics, the performance
of paths generated using different distance metrics are compared.

6.1. The Control-Based Framework
The framework aims to improve kinodynamic sampling-based planners for any observable and controllable
agent with linear or non-linear dynamics ẋ(t) = f (x(t),u(t)) with input constraints umi n ≤ u ≤ umax . Com-
pared to geometric sampling-based planning, kinodynamic planners run into several extra challenges related
to the distance metric and the steering method. Both challenges are addressed by the proposed framework.

The motivation for this framework has two sources. Firstly, the bulk of cost-to-go metrics for kinodynamic
planners are based on the linearization of the agent’s dynamics, as discussed in section 5.4.4. The cost-to-go
approximation becomes inaccurate as the system becomes more non-linear. Secondly, the optimal control
method of this framework that is used to formulate the cost-to-go distance metric, can also be used as a time-
varying reference tracking controller during path execution. As a result, the cost-to-go objectives during path
planning and path execution are the same, underpinning the correct use of the created distance metric.

6.1.1. Cost-To-Go Distance Metric
No natural distance metric is available to select nearest neighbors in the state space, particularly if input con-
straints are present. A widely accepted notion, is that the ideal distance metric of a dynamic agent is equal
to the true cost-to-go between states [47, 48]. In this case the cost is specified by an objective function that
captures the desired behavior of the agent. Finding the true cost-to-go requires the solution to a NP-hard Two
Point Boundary Value Problem (BVP). Methods to solve BVP’s are non trivial and do not exist for most non-
linear systems. An ideal cost-to-go metric is not crucial for sampling-based methods to function. However,
non optimal nearest neighbors will be selected for expansion, embedding suboptimal edges in the graph,
while this could be avoided.

A good metric can improve the results of sampling-based planners as shown in [12]. In kinodynamic plan-
ning literature, various methods to retrieve a cost-to-go are employed. In [2] a genetic algorithm was used
to approximate a cost-to-go between states. In [43] the lie group structure of the non-linear system was ex-
ploited to formulate a metric based on the shortest distance path in the configuration space. The cost-to-go
used in this work consists solely on the sequence of control inputs ũ needed to traverse between states. The
cost-to-go Vct g is defined as

43

44 6. A Control-Based Framework for Kinodynamic RRT

Vct g =
∫ Tend

0
u(t)T Ru(t) (6.1)

Where R = I 3x3 is the constant, positive definite input weighing matrix and Tend the time of arrival at the
desired state. The control-based cost is based on similar efforts in [62, 78]. In an NMPC objective function,
a quadratic penalty on the state error would also be present. This penalty is omitted in the cost-to-go as this
error on the difference in state is a bad distance metric for the state space, a conclusion that will be made on
the results presented in this chapter. Also note that a trajectory is always captured by a state and input pair
(x̃ , ũ) where one will uniquely define the other based on the initial states and vessel dynamics.

To quantify the cost-to-go most literature tend to use direct optimal control methods. Li and Todorov de-
termined a locally-optimal cost-to-go based on linearized system dynamics [49]. The approach consists of
the iterative improvements of the cost under a Linear Quadratic Regulator(iLQR). The linearization enables
quick computations and as a result the cost converges quickly, even in high dimensional systems. The major
downside to this method is the inability to account for constraints in the action space. A similar method is
employed by Glassman et al [30] that used a cost-to-go of an Affine Quadratic Regulator (AQR). Improved
exploration of the state space was demonstrated, but its performance decreased quickly with increasingly
non-linear dynamics. The cost-to-go of equation (6.1) will be calculated using non-linear optimal control
methods, eliminating the approximation error made by linearization. In more recent efforts in [4, 78] re-
sorted to indirect optimal control to determine the cost-to-go by numerically solving two-point Boundary
Value Problems (BVP).

6.2. Optimal Control Methods
In this section optimal control of the vessel model 3.24 is explored to calculate the cost-to-go and double as
steering methods. Direct optimal methods are preferred for steering, as they find globally optimal solutions
when using multi-start, or locally optimal solutions without multi-start. It is shown that direct optimal control
has poor convergence performance for the vessel model. A non-linear model predictive control (NMPC)
approach is proposed instead based on good convergence properties.

6.2.1. Direct Optimal Control
The cost-to-go Vct g between initial state x0 and terminal state xT can be found by solving the following opti-
mal control problem

min
u(t)∈U , T>0

Vct g +Tend

(6.2)

subject to ẋ(t) = f (x(t),u(t)). ∀t ∈ [0,Tend]

umi n ≤ u ≤ umax

x(0) = x0

x(T) = xT

In general, this optimization problem can be solved without discretization using dynamic programming, or
indirect optimization methods [16]. Dynamic programming recursively computes an optimal feedback con-
trol law for all x0 and t , ultimately resulting in a Hamilton-Jacobi-Bellman (HJB) partial differential equation.
Numerical methods to solve the HJB exist but suffer tremendously of the "curse of dimensionality" restricting
solutions to low dimensional systems only. Indirect optimization methods rewrite the optimality condition to
be contained inside the systems equations of motion, only to arrive at a BVP. The approach is also referred to
as "first optimize, then discretize". Numerical solutions to the BVP are difficult to compute due to numerical
instability, especially if input constraints are present.

Direct optimal control methods first discretize the input trajectory and obtain a nonlinear programming
problem (NLP) of finite dimension. Numerical optimization methods can solve these finite problems and
elegantly handle inequality constraints. This approach is often referred to as ’first discretize, then optimize’.
The approach has its drawbacks: direct optimizations may not converge and fail to find a solution depending

6.3. Discretization of the Action Space 45

on the initialization of the NLP. The direct optimization methods are however preferred in real world applica-
tions [16].

To test the convergence properties of direct optimal control for the vessel model, a optimization algorithm
was implemented for the identified vessel dynamics of equation (5.2) in the Automatic Control and Dynamic
Optimization (ACADO) Toolbox, written in C++. ACADO uses a multiple shooting sequential quadratic pro-
gramming (SQP) algorithm for solving constraint NLPs. A more in-depth discussion on solving NLPs using
ACADO can be found in [16].

The convergence of the NLP using SQP for an inital state of x0 and a terminal state xT is troublesome for
the vessel model. Convergence of the NLP using a Mayer term objective Tend and integral of the input in the
objective function, is only achieved for one in three optimizations. The SQP used to solve the NLP can fail to
converge for several reasons. The Hessian of Lagrangian functions are approximated in each SQP iteration,
they may be ill-conditioned leading to a lack of convergence. Secondly, the input constraints may be too
strong, and no solution exists. Relaxing the NLP by omitting the the input constraints yielded no improve-
ments on the convergence. A more robust optimization approach is needed.

6.2.2. Non-Linear Model Predictive Control
Non-linear model predictive control (NMPC) recursively finds an optimal input that minimizes a cost over
a smaller finite prediction horizon. The terminal state constraint x(T) = xT is omitted and replaced by a
penalty on the distance to the goal state in the objective function. For a prediction horizon with N samples
of ∆t seconds, NMPC solves the following optimization at each time step

min
ũ∈U

V (x̃ , ũ) =
N∑

i=1
(x(i∆t)−xT)T Q (x(i∆t)−xT)+

N∑
i=1

u(i∆t)T Ru(i∆t)

(6.3)

subject to ẋ(t) = f (x(t),u(t)). ∀t ∈ [0, N∆t]

x(0) = xI

where the cost consists of a penalty on the state error and control inputs with positive definite weighing ma-
trices Q and R , respectively. Depending on the cost function, NMPC is mainly used for reference tracking
and has been shown to be a robust control method. During execution, only the first entry of the solution
ũ(0) is applied to the vessel. At the next time step, the optimization is performed all over again. The vessel
is propagated under NMPC control until it reaches the region XT = { x ∈ X f r ee | ‖x − xT ‖2 < ε } for a small
scalar value ε. Based on the hypothesis that using NMPC, a locally optimal trajectory is obtained between x0

and xT , provided the states are close to each other. The cost-to-go of the NMPC trajectory in terms of input
is denoted as Vct g (x0, xT) and can be found by recursively solving (6.3) and integrate for a predetermined
sampling period ∆t .

The NMPC optimization was implemented using ACADO. For the vessel dynamics of DASh, propagation
under NMPC always converges to the terminal state. Figure 6.1 illustrates the convergence performance of
NMPC for a static reference trajectory. Although direct optimal control is favorable as it finds lower cost-to-go
paths to x0 to xT , the reliability of the NMPC allows us to create a dense training data set for the cost-to-go in
section 6.4. An interesting feature of using the NMPC is that it allows to tune the ratio of the penalty on the
state in and input using weighing matrices Q and R . This ratio determines the desirable behavior for which
in turn we find the cost-to-go.

6.3. Discretization of the Action Space
The NMPC itself, is an excellent steering function. It intrinsically handles input and dynamic constraints in
a locally optimal manner. It can however not be used directly in the kinodynamic RRT, as its averaged com-
putation time of ±2.10 seconds to connect two states is too long. Instead the action space is discretized to a
finite set of N discrete action trajectories denoted by Ud = {U1(x) U2(x) ...UN (x)}. The action trajectory is
defined as discrete piecewise constant series of inputs over a finite time period ∆t .

46 6. A Control-Based Framework for Kinodynamic RRT

0 5 10 15 20 25 30 35 40
-0.5

0

0.5

1

1.5

0 5 10 15 20 25 30 35 40
-2

0

2

4

6

Figure 6.1: Convergence of NMPC towards static reference state.

Stationary Slow Forwards Fast ForwardsSlow Backwards

Right Turn

Left Turn

Right Turn

Left Turn

Right Turn

Left Turn

Figure 6.2: an automaton with trim states (ovals) and motion primitives (arrows).

A discrete trajectory Ud (x) ∈ Ud is called a motion primitive. The system dynamics using motion primitives
can then be modelled using a discrete-time state transition model

xk+1 = fd (xk ,Ud) (6.4)

where xk = x((k −1)∆t) and the action trajectory Ud (x) ∈Ud applied to the system over the time period from
(k −1)∆t to (k)∆t . In theory, a motion primitive must be present for any state (x) the vessel is currently in. To
limit the set of primitives, a maneuver automaton is used [26].

A maneuver automaton (or automaton) consists of states of constant velocity called trim states and motion
primitives that steer the agent between the trim states. An elaborate automaton for a vessel that can turn
in place, sail backward, sail forward at low and high speeds and perform predetermined turns, is shown in
figure 6.2. The current trim state of the vessel determines the available motion primitives. The automaton
can be formulated for any autonomous agent that has stabilizable trim states. The automaton used for DASh
is shown in figure 6.4. It consists of only one constant forward surge trim state and a set of left and right turn
motion primitives. If deemed necessary, the automaton can be extended with more trim states and primi-
tives. However, the shown automaton is detailed enough to solve the planning problems in section 6.5. Note
that the discretization of the input space weakens the completeness of a planner, if its is not sampled densely
[47]. The influence of the discretization for path planning for DASh will be discussed in section 6.6.

Since we wish to find paths with a low overall cost-to-go, the motion primitive set Ud of right and left turns
is generated using the NMPC controller. As a result, the motion primitives have a minimal cost-to-go when
used in the steering method routine. The primitives can be determined a priori, dramatically decreasing the
computation time of the local planning routine within kinodynamic RRT. The discretized steering function
concatenates one primitive on the state of the nearest vertex, using the predetermined discrete set of motion

6.3. Discretization of the Action Space 47

primitives Ud , valid at the current trim state. The primitive that minimizes the distance between the end
node of the motion primitive and xr and is returned. Pseudo-code of the steering function is given in algo-
rithm 2.

Let the constant surge trim state be xtr i m = [• • • uc 0 0]T , where uc is the forward cruise speed
and • can be any value. The set if minimal cost-to-go turning primitives for uc = 0.10 m/s and a desired
turn angle ψd , is shown in figure 6.3. The primitives are created using a slightly modified model predictive
controller that enforces a change in heading, while minimizing the control inputs, sway and deviation of the
surge speed with respect to the forward cruise speed. The resulting series of control inputs satisfy the input
and differential constraints of the identified vessel model.

-1 0 1 2 3 4
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 6.3: Motion primitives valid at trim state xtr i m = [· · · uc 0 0]T .

Algorithm 2 Steering method using motion primitives

Input: Randomly sampled state xr and , nearest neighbor Vnear , motion primitive set Ud

Output: Trajectory pair (x̃ , ũ), Trajectory end node xnew

1: function STEERINGMETHOD(Vnear , xr and , G)
2: Di st ← 0
3: mi nDi st ← inf
4: for all primitives Ud in Ud do
5: (x̃ ′, ũ′, x ′

new) ← fd (Vnear ,Ud)
6: Di st ← GETDIST(x ′

new , xr and)
7: if Di st < mi nDi st then
8: (x̃ , ũ, xnew) ← (x̃ ′, ũ′, x ′

new)
9: mi nDi st ← Di st

10: end if
11: end for
12: return (x̃ , ũ, xnew)
13: end function

48 6. A Control-Based Framework for Kinodynamic RRT

Constant Surge

Left Turn

Right Turn

Figure 6.4: The simple maneuver automaton consisting of one trim state and turning motion primitives.

6.4. Fast Cost-To-Go Approximation using Learning Methods
The cost-to-go is expensive to compute. The computational time spend on computing the distance between
nodes per RRT iteration, grows linearly with the amount of vertices in G . To use the cost-to-go by calculating
a connecting trajectory using NMPC quickly becomes computationally excruciating. Using cost-to-go as a
distance measure, its computation time must be decreased significantly.

6.4.1. Learned Cost-To-Go using LWPR
Instead of using a simplified heuristic as a distance metric, machine learning methods can be trained to find
approximate values of cost-to-go Ṽct g (x0, xT), as proposed in [6, 78]. Learned models are able to more quickly
return learned values by avoiding the online use of NMPC entirely. In this work the supervised learning algo-
rithm Locally Weighted Projection Regression (LWPR) [77] is used for this purpose, as it is well-suited to ap-
proximate non-linear functions in high dimensions. For a piecewise constant input sequence ũ = [u1, ...,uk]
that connects x0 to xT , the learned algorithm approximates the cost-to-go

V̂ct g (x̃ , ũ) ≈Vct g (x̃ , ũ) =∆t
K∑

i=1
ũT

i Rũi (6.5)

Let s denote the input to the LWPR model and V̂ct g (s) be the approximated cost. The output is determined
by weighing K locally linear modelsΨk (s), called receptive fields, in the form

V̂ct g (s) = 1

W (s)

K∑
k=1

wk (s)Ψk (s), W (s) =
k∑

k=1
wk (s) (6.6)

Here wk (s) is a local receptive field that weights the validity of the k th linear model. wk (s) is modelled as a
Gaussian

wk (s) = exp

(
1

1

2
(s −ck)T Dk (s −ck)

)
(6.7)

where ck is the center of the k th linear model and Dk is its distance metric, setting the size of the locally linear
model.

6.4.2. Transformation of Input Data
To simplify the computation of the distance metric between a state xI and xT , we exploit the structure of
the automaton of DASh. The automaton constrains the reachable state spaces of DASh to the defined trim
states. In case of DASh, the automaton contains one trim state xtr i m = [· · · uc 0 0]T , which has three
free variables: The x and y position and the heading ψ. As a result, any distance computation performed
between two trim states, depends on 6 free variables defined in the earth-fixed coordinate state denoted by
{n}. To reduce the input dimension of the LWPR to 3 free variables, the terminal state xT is expressed in the
body-fixed coordinate frame of xI , denoted by {b}. The definition of the earth-fixed and body-fixed frame was
provided in section 3.1. The transformation is shown in figure 6.5. The transformation does not influence the
trajectory between the states and doesn’t change the a cost-to-go of a path. The change between states is
now captured by the position of xT expressed in {b} denoted by xb,T = [xb,T yb,T ψb,T]. Details on this
transformation are given in appendix C.

6.4.3. Creation of Training Data
The cost-to-go is obtained by controlling the vessel under NMPC control until the state of the vessel enters
the small goal region around the goal state. It is not possible to cover the full domain of xb ∈ (−∞,∞) and
yb ∈ (−∞,∞) as this would require an infinitely large training data set. The terminal states of the training

6.4. Fast Cost-To-Go Approximation using Learning Methods 49

x

y

xb

yb

{e}

{b}

xb

yb

{b}

xT

xb,T

Figure 6.5: Transformation of the terminal state in the earth-fixed {e} to the body-fixed coordinate system {b}. The initial state x0 is
displayed in green and terminal state xT in white.

-2

0

2

5

5
0

0
-5

-5

Figure 6.6: The uniform set of terminal states used for training of the LWPR model.

data are restricted to the set Str ai n = { xb , yb |
√

x2
b + y2

b < d }. The scalar d describes the maximal Euclidean

distance from the initial state at the origin. Terminal states in Str ai n are generated on an uniformly spaced
grid with a resolution of 0.5 meters for xb and yb , and 2π

18 radians forψb , resulting in a set of 12198 data points.
Due to portside-starboard symmetry, all samples are mirrored along the xb-axis while maintaining the same
cost. 80% of these data points are selected at random and used as a training set. The remaining 20% of points
are used as the test data set. The set of terminal states Str ai n is shown in figure 6.6. All terminal states have
been reached using NMPC control. Note that the trained LWPR model will in turn only be valid for inputs
s ∈ Str ai n . It is expected that during planning, the cost for points outside Str ai n must be determined. In this
case an infinite cost will be returned. The implementation in pseudo-code of the learned cost-to-go in the
nearest neighbor search function is shown in algorithm 3.

6.4.4. Training the LWPR Model
The LWPR is trained by normalizing the inputs xb to their respective ranges. The most important tuning
matrix is the positive definite distance metric Dk , that sets the size of the receptive fields. Initializing the
diagonals of Dk = c · I with too small values of c results in large receptive fields that over generalizes the cost-
to-go over a large region. Initializing the diagonals of Dk with too large values of c results in small receptive
fields which can lead to allocation of too many receptive fields and over fitting [77]. Both extremes lead to an
increase in the prediction error of the LWPR.

The Normalized mean squared error of the predictions for the training data and test data for different ini-
tialization of receptor field sizes is shown in figure 6.7. Over fitting starts occurring at initial values for c of

50 6. A Control-Based Framework for Kinodynamic RRT

Algorithm 3 Nearest neighbor search

Input: Randomly sampled state xr and , Graph G , trained LWPR model on the domain Str ai n

Output: Nearest Neighbor Vnear

1: function NEARESTNEIGHBOR(xr and ,G)
2: cost ←∞
3: mi nCost ←∞
4: Vnear ←;
5: for all vertices V in G do
6: if xr and ∈ Str ai n then
7: cost ← GETLWPRCOSTTOGO(V , xr and)
8: else
9: cost ←∞

10: end if
11: if cost < mi nCost then
12: mi nCost ← cost
13: Vnear ←V
14: end if
15: end for
16: return Vnear

17: end function

0 100 200 300 400 500 600
0

0.05

0.1

0.15

c[−]

Figure 6.7: The NMSE on the model predictions on the training data set and the test data for various initialization values of Dk = c · I .

500. The final model is initialized with c = 400, minimizing the NMSE at 0.0170. With the proper initializa-
tion of Dk , LWPR runs an update rule that adapts the size of receptive fields automatically to further decrease
prediction errors.

In figure 6.8 the trend of error between the predictions and true cost values are shown. The prediction error
is minimal if all data points are located on the black dotted line. A deviation of this line shows the magnitude
of the prediction error. Closer inspection shows good prediction performance for data points with low true
cost-to-go. Predictions of high cost-to-go data tend to be less precise and slightly under estimate the true
cost-to-go. Inevitably outliers are present when using learning methods. In figure 6.9, a histogram shows the
distribution of the squared errors (SE) of predicted costs. The amount of outliers is limited.

SE = (
V̂ct g (x̃, ũ)−Vct g (x̃, ũ)

)2
(6.8)

Using the learned approximation of the cost-to-go increases the speed of the nearest neighbor search signif-
icantly. Using the learned LWPR representation, algorithm 3 returns an approximate cost V̂ct g (x̃, ũ) within
0.0204 seconds, on average. An speedup factor of approximately 100. However, the model is only able to
return a valid cost approximation if the terminal state is within 10 meters of the initial state. This is a direct
result of the created training data set that only explores terminal states close to the origin.

6.5. Kinodynamic RRT using the Optimal Control-Based Framework 51

0 500 1000
0

500

1000

0 500 1000
0

500

1000

Test data set Training data set

Figure 6.8: Comparison of true and predicted cost-to-go of the training and test data sets.

0 0.5 1 1.5 2 2.5 3 3.5 4

105

0

0.2

0.4

0.6

0.8

1

Figure 6.9: Histogram of the squared errors on the test data set.

6.5. Kinodynamic RRT using the Optimal Control-Based Framework
The proposed cost-to-go distance metric influences the cost of paths found using the kinodynamic RRT us-
ing the automaton in the steering function. First, nearest neighbors are chosen based on minimal cost-to-go,
resulting in the extension of vertices that can make maximum progress towards sampled nodes. Secondly,
nearest neighbors are extended towards randomly pulled states using minimum cost-to-go primitives, re-
ducing the overall cost of path within G . As a result, X f r ee is explored with minimal cost-to-go edges. The
direct influence on performance is measured by comparing the cost-to-go distance metric to the popular
Euclidean (or straight-line) distance metric and a distance metric based on Dubins curves.

6.5.1. Performance Criteria of Paths
The influence of the distance metric in kinodynamic RRT is studied by comparing three performance criteria
for three different distance metrics; cost-to-go, Euclidean, minimal path length Dubins curves. The hypoth-
esis of their influence on paths created using kinodynamic RRT is given in table 6.1.
The Euclidean distance metric is defined as

VEucl = ‖xI −xG‖2 (6.9)

The Euclidean distance metric computes the straight-line distance between states. Although often a valid

52 6. A Control-Based Framework for Kinodynamic RRT

Table 6.1: Hypotheses on the influence of distance metrics in the kinodynamic RRT planning algorithm.

Distance
Metric

Properties
Expected influence

during planning
Distance metric

computation time [s]

cost-to-go
Minimum control inputs

required to traverse between states
Reduce overall cost-to-go

of paths
0.0204

Euclidean
Minimal straight-line

distance between states
Decrease performance 0.0008

Dubins
Minimal length path under

turning radius constraint
Reduce the path length 0.0011

metric in geometric planners, the different units (e.g. m/s and r ad) of states result in a meaningless, dimen-
sionless distance if applied to the state of a dynamic agent. Planning under the Euclidean distance metric will
still result in feasible paths as the planning problems are mostly governed by the in-plane coordinates x and
y . Therefore is expected to be a bad distance metric to be used in kinodynamic planning. On the upside, the
average computation time between two states of the Euclidean distance is only 0.0008 seconds.

A Dubins curve is the shortest curve that connects two states on a Euclidean plane denoted by x = [
x y ψ

]T
,

given a minimum turning radius of the agent. Let S be a straight path and R and L a right and left turn with
maximum curvature, respectively. It is proven that the set {S,LRL,RLR,LSL,LSR,RSL,RSR} of concatenated
turns and straight lines can connect two states on the Euclidean plane with a minimum distance curve [18].
Three examples of minimal distance Dubins curves are given in figure 6.10.

Figure 6.10: Dubins curves of the combination LRL (top), RSR (left) and LSR (right). Initial states are in green, terminal states in red.
The dotted circles indicate the minimal turning radius.

Typically the Dubins curves are used in non-holonomic systems such as cars with a well defined minimal
turning radius. Although the vessel model of equation (3.23)-(3.24) is a holonomic system, the motion primi-
tives in figure 6.3 bear a resemblance to the Dubins curves as turns have minimal sway under constant surge
speed. The minimal turning radius found among the motion primitives is ±1.8 meters. Using a subspace[
x y ψ

]T
of the state space, the length of a Dubins curve is easily computable and returned within 0.0011

seconds. It can be used as a distance measure in order to decrease the length of path found using the kinody-
namic RRT.

6.6. Planning Results 53

6.5.2. Implementation Details
The nearest neighbor function, the steering function and the kinodynamic RRT of algorithm were imple-
mented in matlab, as an extension to the geometric RRT and graph functions in the Robotics Toolbox of Peter
Corke [13]. The kinodynamic RRT creates a graph of the free state space until a vertex reaches the goal region
or if a predetermined number of 500 states are sampled.

A goal sampling bias of 5% was used. The goal region is defined in the x-y plane and has a radius of 2 meter
to avoid problems with resolution completeness near the goal state. To determine the performance of the
various distance measures, additional improvements on state sampling, steering or collision checking as sur-
veyed in [19], were not implemented. Although such modifications could benefit the planners performance,
it would cloud the influence of the distance metric which would in turn hinder their comparison.

6.6. Planning Results
The performance measures of the kinodynamic RRT were determined by testing the algorithm on three differ-
ent maps; the Harbor map, the Islands map and the RDM map. Due to the randomness in the state sampling
routine, paths are created in a non-deterministic way. This means that every run of the kinodynamic RRT
returns a different path. To determine the influence of the distance metrics, the planning problem was ini-
tialized twenty times with a different random state sampling sequence.

The planning success rate is the percentage of initializations that succeeded to find a feasible path. The over-
all cost-to-go is the integral of input as defined in equation (6.1) along the complete path. The path length on
the x,y-plane is noted in other to confirm or reject the hypothesis that the Dubins metric results in shorter
paths. The average runtime per path can be used to compare the on-line implementability of the planners.
Finally, the amount of sampled nodes needed to find a feasible path are provided to determine the expan-
siveness of graph G for the various distance metrics. Note that the performance measures are an average of
feasible paths. Paths that did not reach the goal region were excluded in the calculation of the averaged per-
formance measures.

In the following pages, a visual comparison of the of the kinodynamic RRT graph under the learned cost-
to-go, Euclidean and Dubins metric is shown per map, for an identical sampling scheme of 500 states. The
resulting graphs and their progress towards the goal state are shown in figure 6.11, 6.12 and 6.13. The static
obstacles are shown in gray, the goal region in green and moving obstacles in red with their respective oscil-
lating paths in black. The RDM map is the only map that contains moving obstacles.

The remained of this page is intentionally left blank. Planning results per map are displayed on the next pages.

54 6. A Control-Based Framework for Kinodynamic RRT

Figure 6.11: (top left) The harbor map. The graph G in red after sampling 500 states using the cost-to-go (top right), the Euclidean
(bottom left) and the Dubins distance metric (bottom right). Static obstacles are shown in gray and the goal region in green. The path in

G with maximal progress towards the goal state is highlighted in blue.

Table 6.2: Average performance of 20 paths for the Harbor map

Map: Harbor
Distance
Metric

Succes
Rate %

Overall
cost-to-go

Path
Length [m]

Runtime [s]
Sampled

States
Cost-to-go 40% 209.7 17.9 28.16 71
Euclidean 0% - - - -
Dubins 70 % 217.9 17.3 1.32 80

The Harbor map contains small and narrow passages that have to be navigated in order to reach the goal. As
the vessel dynamic locally constrains the state space it is important to used a good distance metric, to avoid
incompleteness. Inspection of graphs G in figure 6.11 shows the superior exploration using the cost-to-go
and Dubins metric, compared to the Euclidean metric. The Euclidean metric is unable to explore the free
space on the map as it gets stuck at the first corner on the map. This can be the result of two factors: Too little
samples (500) have been pulled, but actually the planner is probabilistically complete, or the discretization
of the action space into motion primitives is too sparse and the planner is not resolution complete.

The averaged path performance measures are displayed in table 6.2. The cost-to-go and Dubins metric have
similar performance in terms of the overall cost-to-go, path length and the amount of sampled nodes before
finding a feasible path. A higher success rate of of 70% is observed for the Dubins metric while also sporting
a significantly shorter computation time.

6.6. Planning Results 55

Figure 6.12: (top left) The Islands map. The graph G in red after sampling 500 states using the cost-to-go (top right), the Euclidean
(bottom left) and the Dubins distance metric (bottom right). Static obstacles are shown in gray and the goal region in green. The path in

G with maximal progress towards the goal state is highlighted in blue.

Table 6.3: Average performance of 20 paths for the islands map

Map: Islands
Distance
Metric

Succes
Rate %

Overall
cost-to-go

Path
Length [m]

Runtime [s]
Sampled

States
cost-to-go 100% 452.0 42.1 32.5 135
Euclidean 90% 645.9 46.5 3.6 210
Dubins 100% 439.0 42.3 2.8 136

The Islands map of figure 6.12 is a spacious, open map. A visual comparison of graphs G shows good ex-
ploration of the free space using the cost-to-go and Dubins metric. The Euclidean metric shows improved
exploration compared to the Harbor map, but still fails to reach the goal region after sampling 500 states.

The averaged path performance is displayed in table 6.3. The success rate has significantly improved, due
to the openness of the map. The Euclidean metric results in an high overall cost-to-go paths, a factor 1.5
higher compared to the cost-to-go and Dubins distance metric. On average, more state samples samples are
needed to find a feasible path, confirming its decreased expansiveness. Again, the performance of the cost-
to-go and Dubins metric is very similar. The overall cost-to-go is marginally lower using the Dubins metric,
while the shortest path length is obtained by using the cost-to-go metric. The average runtime of the Du-
bins metric low at 2.8 seconds, compared to the impractically long runtime of the cost-to-go metric at 32.5
seconds.

56 6. A Control-Based Framework for Kinodynamic RRT

Figure 6.13: (top left) The Islands map. The graph G in red after sampling 500 states using the cost-to-go (top right), the Euclidean
(bottom left) and the Dubins distance metric (bottom right). Static obstacles are shown in gray, the goal region in green. Moving

obstacles in red move along the straight-line paths depicted in black. The path in G with maximal progress towards the goal state is
highlighted in blue.

Table 6.4: Average performance of 20 paths for the RDM map

Map: RDM
Distance
Metric

Succes
Rate %

Overall
cost-to-go

Path
Length [m]

Runtime [s]
Sampled

States
cost-to-go 100% 223.3 19.0 15.2 42
Euclidean 100% 284.6 20.1 1.6 51
Dubins 100% 222.4 18.5 1.4 38

The RDM map is of the same size as the real water basin. Four moving obstacles are present which move back
and forth along the black lines shown in the top left image of figure 6.13.

The small size and openness of the maps resulted in a 100% success rate of all planners. Visual inspection
show the increased expansiveness of the graphs created using the cost-to-go and Dubins metric. The Eu-
clidean metric under-performs resulting in the longest paths with a highest overall cost-to-go. Paths created
using the cost-to-go and Dubins metric perform similarly, resulting in low overall cost-to-go paths of similar
lengths, requiring about 40 sampled states before finding a feasible path. Again, the Dubins metric has a sig-
nificantly lower computation time compared to the cost-to-go metric.

To gain futher insight into the runtime, a breakdown of the computation times per RRT routine is given in

6.6. Planning Results 57

Table 6.5: Computation time breakdown for the "Islands" map using the learned cost-to-go metric.

Sampled
States

Runtime [s]
% in Nearest

Neighbors
% in Steering

method
% in Collision

Checking
% in Other

50 5.9 68 13 4 15
100 24.3 85 6 2 7
150 52.6 90 4 1 5
200 94.5 93 3 1 3
250 147.5 94 2 1 3

Table 6.6: Computation time breakdown for the "Island" map using the Dubins curve distance metric.

Sampled
States

Runtime [s]
% in Nearest

Neighbors
% in Steering

method
% in Collision

Checking
% in Other

50 1.1 10 65 20 5
100 2.2 13 67 19 1
150 3.2 17 65 18 0
200 4.5 20 63 17 0
250 5.8 25 60 15 0

table 6.5 and 6.6 when using the cost-to-go metric and the Dubins metric, respectively. The percentage of
computation times is given per RRT routine: Nearest neighbors search, steering method and collision check-
ing. The time spent in other routines included state sampling, graph operations, communication between
routines and goal checking is grouped into the "Other" category. All percentages are rounded to integers.

Using the learned cost-to-go metric, the majority of the time is spend in the nearest neighbor search. For
increasingly large graphs the nearest neighbor search will compare the distance between more and more ver-
tices, increasing the computation time. The cost-to-go metric seams to slow for planning, but note that a
single distance computation using the LWPR model takes 0.0204 seconds on average, while the NMPC takes
2.10 seconds. This is a speedup of a factor 100 or two orders of magnitude. The learning step is the critically
enabling feature to find paths in a reasonable time. As an indication, the amount of distance computations
quickly increases with the amount of vertices in graph G , as shown in figure 6.14. Any graph that requires
more then a hundred vertices to find a feasible path (e.g. the Islands map) would require ±1e4 metric com-
putations resulting in a runtime of several hours.

Using the Dubins metric during planning, most time is spend in the steering method. The length of a minimal
distance Dubins curve can be quickly computable, resulting in very fast planning.

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10
104

Figure 6.14: The amount of computed distances with increasing size of graph G for the "Islands" map using the learned cost-to-go
metric.

58 6. A Control-Based Framework for Kinodynamic RRT

6.7. Conclusion
A framework was proposed to implement a cost-to-go distance metric and a maneuver automaton into the
kinodynamic RRT planner, in order to decrease the computation times and overall cost-to-go of paths. The
proposed automaton of DASh constrained the obtainable velocities to a single trim state. Turning maneuvers
were calculated a priori using NMPC to find minimal cost-to-go motion primitives. The simplified steering
method concatenated motion primitives on the state of the nearest neighboring vertex, resulting in a com-
putationally inexpensive expansion of G .

The computationally expensive cost-to-go distance metric based on the NMPC cost, was approximated us-
ing the LWPR learning method algorithm. By generating a training data set and performing learing a priori
to planning, the learned approximation of the cost-to-go can be calculated a factor of 100 times faster. The
resulting kinodynamic RRT planner is able to find paths for the presented planning problems in about half a
minute.

The hypothesis of the influence of a distance metric on path found using kinodynamic RRT was tested by
comparing three distance metrics, each with a different objective. The cost-to-go tries to minimize the cost-
to-go between states, which should minimize the overall cost-to-go of the complete path. The Dubins curves
distance metric minimizes the path length between states under minimal turning radius constraints, which
is expected to result in shorter paths. The Euclidean metric minimizes the straight-line distance between
states, which is a bad measure of distance in the state space. Therefore it is expected that path found using
this metric are longer and less efficient compared to the cost-to-go and Dubins metric.

The Euclidean metric was shown to be unsuited for use in kinodynamic RRT, under performing compared
to the other metrics. The hypothesis that the Euclidean metric has a negative effect on the performance of
the kinodynamic RRT is therefore confirmed.

The results indicate that the framework allows for relatively fast path planning using the cost-to-go metric, in
which paths were found within approximately half a minute. However, the hypothesis of the influence of the
cost-to-go metric has on found paths, does not hold. The Dubins distance metric is equal to the cost-to-go
metric in terms of overall cost-to-go, path length and expansiveness. Based on the results in section 6.6, we
can state that the hypothesis can neither be confirmed or rejected due to the lack of a performance baseline.
For implementation purposes, the Dubins metric is preferred based on it low computational cost, returning
paths in a fraction of the time compared to using the cost-to-go metric.

One possible explanation for the similar planning performance of the Dubins and cost-to-go metric is the
close relation between the path length and cost-to-go for our vessel. The vessel is only locally constrained by
its dynamics. To determine the quality of the optimal control-based framework using the cost-to-go metric, it
should be applied to an agent with stronger dynamical constraints e.g. an under actuated vessel or oil tanker
with stricter input constraints and larger system inertia terms. The cost-to-go for these systems should cap-
ture distance in the state space more accurately compared to a geometric approximation, such as the Dubins
metric.

Overall, the planning performances measures in tables 6.2, 6.3 and 6.4 have shown that the performance
of kinodynamic RRT vary considerably, depending on the used distance measure. The Dubins metric and
cost-to-go metric of the optimal control-based framework compare favorably to the widely used Euclidean
metric. However, the Dubins metric requires significantly less runtime to return feasible paths.

7
Verification of the Vessel Model and

Control

The guidance and control algorithms presented in earlier chapters are verified using a 1:25 ASD 3111 scale
model called "Damen Autonomous Ship", aka DASh, at the water basin of the Rotterdamse Droogdok Maatschap-
pij (RDM) in Rotterdam. First, it is verified that the identified vessel model can be used in a non-linear model
predictive controller (NMPC) to stabilize DASh at a static reference position. The performance of NMPC in
static reference tracking is compared to the more traditional proportional derivative (PD) controller. Sec-
ondly, it is verified that time-varying references created with the kinodynamic RRT planner can be executed
using NMPC. The real-time capabilities of the kinodynamic RRT planner are not tested, as the planner is not
directly embedded into the DASh board computer.

7.1. Real-World Disturbances
No noticeable wind, wave or other environmental disturbances were present at the indoor RDM water basin.
However, it is certain that several unknown and unmodeled forces act on DASh during testing. First and fore-
most is the effect of waves generated by the vessel itself. The concrete basin walls reflect the waves, causing
wave disturbances throughout the basin. Furthermore it was observed that DASh drifted around the basin
when its actuators were stationary. It is expected this was caused by low velocity water currents and air draft.
Unmodeled dynamics will also influence the movement of DASh which was proven using the turning maneu-
ver in section 4.6.1. Results showed that long term forward model predictions diverged from the observed
output under the same control inputs.

In combination with the unknown environmental forces, it is unrealistic to assume that open-loop control
can be used to execute the planned paths without tracking error. A feedback control loop must be imple-
mented to minimize any deviations from the planned path. Using the identified vessel model, NMPC is used
as a reference tracking controller. The unmeasured states are estimated using the Extended Kalman Filter
(EKF), which was presented in section 3.10.

7.2. Sensor Measurements
As discussed in chapter 2, DASh is outfitted with a Pozyx indoor positioning sensor. The basin was equipped
with four stationary ultra wide-band (UWB) anchors that communicate with a Pozyx UWB receiver installed
on DASh. The Pozyx provides the measurement ymeas = [xr ecei ver yr ecei ver], at every sampling period. The
xr ecei ver and yr ecei ver positions are determined by triangulation of distances to the anchors, based on the
communiction latencies of each anchor. The receiver is placed midships, 0.40 meter in front to the COG .
The heading ψ is measured using a BNO055 digital compass. The BNO055 runs an embedded sensor fusion
algorithm that corrects the heading based on and inertial measurement unit (IMU) and a gyrocompass. The
location of the COG and system output is determined as

59

60 7. Verification of the Vessel Model and Control

ymeas =
xr ecei ver +0.4cos(ψ)

yr ecei ver −0.4sin(ψ)
ψ

 (7.1)

To determine the measurement noise, a measurement test series at static positions throughout the basin
was performed. Results are displayed in figure 7.1. Large noise on the state measurements is observed with
measurement errors of up to 5 meters(!). These measurements are regarded as outliers and are mainly present
in the upper part of basin for y ≥ 8.

0 5 10

-5

0

5

10

15

20

0 20 40 60 80 100 120 140 160
-4

-2

0

2

4

6

8

10

12

14

16

Figure 7.1: Measurements at static positions through out the basin. Large measurement noise and outliers are present, especially in the
upper part of the tank. Pozyx anchor positions are given in green.

The source of the outliers is unknown. It is assumed that one of the anchors at the lower part of the basin
periodically loses its connection to the receiver located on DASh. Triangulation is then performed using three
anchors instead of four, leading to a vastly different position. The positional change is of such magnitude it
cannot be regarded at measurement noise and therefore an outlier filter is implemented. The filter rejects
any measurements that fall outside the tank or a distance greater then 1 meter from the moving average of
the last 10 measurements. Let dist(y(i), y(j)) be the Euclidean distance between position y(i) and y(j), the
outlier filter first classifies the latest measurement

• if ymeas (t) lays outside the tank, then ymeas (t) is an outlier.

• if dist
(

ymeas (t), mean([ymeas (t −∆t), ..., ymeas (t −10∆t)]
)≥ 1 is true, ymeas (t) is an outlier.

Based on the classification, the following actions are performed:

• if ymeas (t) is not an outlier, y(t) = ymeas (t).

• if ymeas (t) is an outlier, y(t) = y(t −∆t).

• if the last 10 measurements are classified as outliers, assume the next received measurement is not an
outlier such that y(t) = ymeas (t).

The last step ensures the outlier filter is able to recover in case of a sequence of wrongfully classified outliers.
Using this filter the amount of outliers is significantly decreased, resulting in a more stable EKF and less jitter
in the control action.

7.3. Feedback Control Loop 61

7.3. Feedback Control Loop
The NMPC, EKF, outlier filter and the thrust allocation algorithm were embedded on the BeagleBone Black
Revision C board computer. Due to the real-time requirement for feedback control, all algorithms were coded
in the efficient C++ to minimize computation times. The kinodynamic RRT path planner was not directly em-
bedded, precomputed trajectory pairs (x̃ , ũ) were stored on the board computer that acted as time-varying
references. At the start of every test the digital compass and inertial measurement unit (IMU) were calibrated.
The control loop displayed in figure 7.2 runs at 10 H z, the highest frequency at which the position measure-
ments can be obtained. The system dynamics are relatively slow and can easily be captured at this frequency.

At system startup, the initial state of the vessel is determined by taking the mean of 10 position measure-
ments. The time-varying reference (x̃ , ũ) generated by the planner is passed to the NMPC. At every sampling
period, the following steps are performed: Upon receiving a measurement ymeas from the sensor drivers, the
EKF estimates the vessel state x and feeds it to the NMPC. The NMPC computes the optimal control inputs
over the control horizon. Only the first input u of this sequence is sent the the thrust allocation algorithm,
which find the optimal azimuth angles αi and propeller rotation speed ni for each azimuth thruster, while
accounting for the non-linear actuator constraints. The actuator drivers execute the given commands.

Trajectory Pair
(x̃ , ũ)

NMPC
u Thrust

Allocation

αi ,ni
Actuator Drivers

DASh

Outlier Filter
y ymeas

EKF
x̂

Figure 7.2: The control loop of DASh. Algorithms in green boxes are implemented on-board and run in real time.

7.3.1. Non-Linear Model Predictive Control
The precomputed discrete trajectory pairs (x̃ , ũ) are treated as a time dependent state reference x̃(t) and
input reference ũ(t). The NMPC performs the following optimization at each time step

min
∆u

N∑
i=1

(x̂(i∆t)− x̃(i∆t))T Q (x̂(i∆t)− x̃(i∆t))+
N∑

i=1
(u(i∆t)− ũ(i∆t))T R1(u(i∆t)− ũ(i∆t))+ ...

...
N−1∑
i=1
∆u(i∆t)T R2∆u(i∆t) (7.2)

subject to ˙̂x(t) = f (x̂(t),u(t)) ∀t ∈ [0, N∆t] (7.3)

u(k∆t) = u((k −1)∆t)+∆u(k∆t) k = 1, ..., N (7.4)

x̂(0) = xI (7.5)

with the estimated state x̂ , prediction horizon N and positive definite diagonal weighing matrices Q , R1 and
R2. The vessel model is rewritten in the incremental-input-output (IIO) form, by addition of equation (7.4).
This allows large input changes ∆u to be penalized with weighing matrix R2, reducing nervous actuator be-
havior. Normally, the IIO formulation would omit the penalty term on the input offset (u(i∆t)− ũ(i∆t)),
resulting in a controller with a pure integrator which is able to handle drift terms in the noise [75]. This be-
havior is especially desirable for steady state tracking, as the cost function is able to go to zero.

In this implementation the penalty on the input offset (u(i∆t)− ũ(i∆t)) is maintained as it helps the thrust
allocation algorithm to correctly predict future azimuth angles along the trajectory. As a result, large azimuth
rotations during execution are reduced when the cost on the state penalty (Q) is small. The thrust allocation

62 7. Verification of the Vessel Model and Control

algorithm is able to better track the proposed inputs resulting in improved tracking of the path overall. Note
that to avoid large objective costs when the cost on the state penalty is small, we choose the weights of R1 low
compared to R2.

The trajectory pair (x̃ , ũ) is a unique pair of discrete sequences, in which the one defines the other. It can
be argued that the penalty on the input offset (u(i∆t)− ũ(i∆t)) should be removed, as the state reference
x̃ contains all information present in ũ via the dynamic relation ẋ = f (x ,u), which in our case might, and
probably will, deviate from the real system dynamics. Nevertheless, implementation of the NMPC without
the penalty on the input offset introduced large delays of the input, due to (often) unnecessary large thruster
rotations. As the thrust allocation algorithm only allocates for the next time step, it was not able to cope with
the large variations in the inputs.

7.4. Static Reference Tracking Results 63

7.4. Static Reference Tracking Results
The NMPC for static reference tracking is tuned as follows

Q = diag(
[
10 10 10 1 1 1

]
)

R1 = I 3×3

R2 = 2.5I 3×3

N = 20

∆t = 0.1

(7.6)

The convergence of the NMPC for a static reference tracking test with initial state xI =
[
1 9 1

2π 0 0 0
]
,

state reference x̃ = [
3 9 1

2π 0 0 0
]

and a zero input reference ũ = 03×1 is shown in figure 7.3. DASh
successfully converges to the static reference with a settling time of ±48 seconds for the x and y states. The
controller prioritized to rotate the vessel and sail backwards towards the reference position. Once arrived
there is corrected it’s heading, overshooting the reference by 36 degrees. Significant measurement noise on
the y position causes large oscillation in the control inputs. Regardless, the static reference position is kept
without steady-state offset. Increasing the length of the prediction horizon N significantly impacts the perfor-
mance of the NMPC resulting in high control inputs and overshoot. This is caused by the decreasing quality of
long term predictions using the identified model, as discussed in section 4.6.1. The system becomes unstable
for N ≤ 50.

0 1 2 3 4 5

5

6

7

8

9

10

11

12

13

0 20 40 60 80 100 120 140
0

2

4

6

8

10

0 20 40 60 80 100 120 140
-1

-0.5

0

0.5

1

Figure 7.3: States and control inputs for the static reference tracking test under NMPC with initial state xI = [1 9 1
2π 0 0 0], state

reference x̃ = [3 9 1
2π 0 0 0] and a zero input reference ũ = 03×1.

To compare the performance of the NMPC, the same static reference tracking test is performed using a non-
linear PD controller. The control law and a proof of its stability is described in appendix E. It is shortly re-
peated here

u =−Hm ν̇+RT (ψ)(−Kp η̃−Kd η̇) (7.7)

where x = [ηT νT]T and η̃ = η−ηr e f er ence is the reference tracking error. Kp is the proportional feedback
term, Kd the damping term and Hm is a damping term on accelerations. The following tuning of the param-
eters are used

Hm = 03×3, Kp = diag(
[
0.7 0.7 0.7

]
), Kd = diag(

[
1.8 1.8 4

]
) (7.8)

64 7. Verification of the Vessel Model and Control

The tuning matrix Hm is set to zero to avoid nervous control actions as a result of large measurement noise.
Test results using the non-linear PD control for static reference tracking are are shown in figure 7.4. The PD
controller successfully steers DASh to the static reference with a settling time of ±63 seconds. No overshoot
is present on x, y or ψ. The behavior of the planner is different from the NMPC as the vessel sails towards the
static reference with a pure sway velocity. The added resistance of traveling in sway requires larger control
inputs, over a prolonged period of time. Compared to the NMPC, the non-linear PD has a longer settling
time and uses higher control inputs. Note the the noise on the position measurements introduce jitter in the
control signals. As a result, the vessel is never truly stationary, but always correcting its position using small
bursts of thrust. Improved position sensors could mitigate this problem.

-1 0 1 2 3 4 5

4

5

6

7

8

9

10

11

12

13

14

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

0 10 20 30 40 50 60 70 80
-3

-2

-1

0

1

2

Figure 7.4: States and control inputs for the static reference tracking test under non-linear PD control with initial state
xI = [1 9 1

2π 0 0 0], state reference x̃ = [3 9 1
2π 0 0 0] and a zero input reference ũ = 03×1.

7.5. Time-Varying Reference Tracking Results
The NMPC for tracking time-varying references is tuned with larger penalties on the positional tracking error

Q = diag(
[
30 30 50 1 1 1

]
)

R1 = I 3×3

R2 = 2.5I 3×3

N = 20

∆t = 0.1

(7.9)

The performance of the NMPC will not be compared to the non-linear PD controller, as that type of controller
only reacts to a reference error at the current time step. Since no information about the future reference is
used to arrive at a control input, it is unable to converge to the time-varying references by default.

To determine the performance of the NMPC controller for time-varying reference, three tracking tests are
performed. Each trajectory consists of a series concatenated constant surge speed motion primitives deter-
mined in section 6.3, at a cruise speed of uc = 0.1 m/s. The resulting references are an equal representation
of paths created by the kinodynamic RRT algorithm. Test results are displayed in figure 7.5, 7.6 and 7.7. In
each test, the initial state of DASh is located at the start of the trajectory with a zero velocity. Note that the
initial reference of the trajectory has a nonzero surge velocity equal to uc . Therefore, DASh will have to catch
up to the time-varying reference.

7.5. Time-Varying Reference Tracking Results 65

0 2 4 6 8 10

-2

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90
-2

-1

0

1

2

3

Figure 7.5: States and control inputs for the time-varying reference tracking test 1.

0 2 4 6 8 10

-2

0

2

4

6

8

10

12

14

16

0 50 100 150
-2

0

2

4

6

8

10

0 50 100 150
-2

-1

0

1

2

3

4

Figure 7.6: States and control inputs for the time-varying reference tracking test 2.

0 2 4 6 8 10

-2

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80
-2

0

2

4

6

8

10

0 10 20 30 40 50 60 70 80
-4

-2

0

2

4

6

Figure 7.7: States and control inputs for the time-varying reference tracking test 3.

66 7. Verification of the Vessel Model and Control

In test 1 of figure 7.5 good tracking performance is observed. An initial offset in x due to the zero surge ve-
locity of the initial state, is quickly diminished. An increase in measurement noise is observed on the y state
resulting in a slight steady state offset.

In test 2 good tracking performance is observed during the start of the test. However, the tracking error
increases quickly after t = ±120 seconds, after which the vessel diverges from the time-varying reference.
Similar behavior is observed in test 3 after t = ±50 seconds. The behavior is caused by inaccurate heading
measurements of the digital compass.

Large changes in the magnetic field in which the basin is situated cause the internal sensor fusion of the
BNO055 digital compass to trust solely on the integration of its gyro meter. The returned heading will then
start to drift. Incorrect estimation on the heading cause the control system to become unstable. The mag-
netic field was mapped by measuring the magnetic north using an analog compass and the BNO055 digital
compass. Results are displayed in figure 7.8. Measurements were started from node 1 to 9 and a clear drift of
the digital compass is observed between successive nodes. The overall change of the magnetic north can be
as high as 30 degrees. Bad heading measurements influence the stability of the NMPC controller. At too large
heading offset, the vessel becomes instable.

0 2 4 6 8 10

-2

0

2

4

6

8

10

12

14

16

Node =1 Node =2 Node =3

Node =4Node =5Node =6

Node =7 Node =8 Node =9

Figure 7.8: The analog compass and BNO055 heading measurements. The BNO055 was re-calibrated before measuring node 1 and 5.

7.6. Conclusion
The static and time-varying reference tracking test show the NMPC is able to control the position and speed
of DASh. Static reference tracking test show the superior control capabilities of the NMPC compared to more
traditional non-linear PD control. It can be concluded that the identified non-linear vessel model can indeed
be used in model predictive control and stabilize the systems, even though long term model predictions are
of bad quality, in as shown in section 4.6.1. An important tuning parameter in this case is the prediction hori-
zon, limiting the influence of incorrect long term model predictions within the NMPC optimization.

7.6. Conclusion 67

Secondly, the NMPC is capable to track time-varying references produced by the kinodynamic RRT with only
small offsets, as long as correct heading measurements are available. This observation underpins the hypoth-
esis that kinodynamic planning results in executable paths, without large tracking errors.

Regarding the hardware off DASh, the current digital compass slowly drift from the true heading, after which
the vessel becomes unstable. In future model tests, a more reliable heading sensor should be implemented.
The large measurement noise on the position causes jitter in the control signal. By implementing more reli-
able sensors, its influence can be reduced.

8
Conclusions & Recommendations for

Future Work

The goal of this thesis was to create and implement guidance, navigation and control systems that enable
autonomous point-to-point sailing of the scale model called "Damen Autonomous Ship", aka DASh, shown
in action in figure 8.1. In order to prototype the autonomous vessel, a model-based approach was used. The
following research questions were answered

• How should the vessel dynamics be modelled and identified if it is to be used for guidance, navigation
and control?

The formulation of a compact non-linear vessel model that captured the most important expected hydrody-
namic phenomena, enabled the efficient identification of DASh without the use of towing tank experiments.
The identified dynamics were used in the kinodynamic Rapidly-Exploring Random Tree (RRT) path planner
to formulate a dynamically feasible and collision free trajectory from the initial state to the goal state.

• How can the dynamics of the vessel be taken into account during point-to-point path planning?

The identified dynamics were used in the kinodynamic Rapidly-Exploring Random Tree (RRT) path planner
to formulate a dynamically feasible and collision free trajectory from the initial state to the goal state.

• Can the computational loads of dynamically constrained path planning be reduced to allow on-line
implementation?

The computationally expensive kinodynamic RRT was modified to use a learned ideal distance metric based
on the cost-to-go, and steering method constrained by a maneuver automaton. Particular attention was given
to the influence of distance metrics during kinodynamic planning. The learned, supposedly ideal, cost-to-
go distance metric was outperformed by the computationally cheap Dubins curve distance metric, which
had superior performance in all simulation environments. The Euclidean metric was shown to be inept in
capturing distance in the state space, badly under performing compared to the other distance metrics. The
planner allowed differentially constrained paths to be planned in under half a minute using the cost-to-go
metric. Using the Dubins curve distance metric planning could be sped up to find paths in under 3 seconds,
fast enough to allow on-line implementation, due to the slow dynamics of real-sized vessels.

The navigation and control algorithms were implemented in a real-time manner on-board DASh. It was
shown that a predetermined path could successfully be executed under non-linear model predictive control
(NMPC), using the identified vessel dynamics. Measurement noise on the vessel position and drift of the
heading sensor had a large impact on the performance of DASh, limiting model test durations to ±1 minute.

Based on those results, it can be concluded that the presented framework for the identification, path plan-
ning and control using the identified vessel model, successfully enabled autonomous point-to-point sailing
on DASh.

69

70 8. Conclusions & Recommendations for Future Work

Figure 8.1: DASh at full throttle.

8.1. Implementation on Real Size Vessels
The algorithms found in the proposed framework can be implemented in real size vessels. However, at this
scale the influence of environmental forces cannot be negated and should be accounted for in the vessel
model. This can be done in a few ways. Firstly, all environmental forces can be grouped and represented as
a heading dependent disturbance. Its heading and amplitude can be estimated using an observer [23, 52].
The disturbance can be accounted using a feedforward term in the controller. Environmental disturbances
can also be accounted for during planning, ensuring dynamic feasibility of the path beforehand, instead of
during path execution.

8.2. Collision Regulations & Other Ship Behavior
On every sea, river or canal, collision regulations (COLREGS) apply. Priority of vessel movements and right-
of-way are governed by these regulations. The influence of the COLREGS or the behavior of other ships in
reaction to the actions of our own ship, have not been investigated in this work. For real-world implementa-
tion it is recommended to modify our proposed approach to include these factors.

8.3. Account for Uncertainty during Planning
In the proposed framework, the kinodynamic RRT planner used a deterministic vessel model to determine
future vessel states. In the real world, an inherent uncertainty is present which arises as a result of state
estimation, environmental disturbances and modeling errors, as well as changes in the model such as com-
ponent failures or a change in vessel mass. The uncertainty of model movement can be accounted for during
planning by employing a probabilistic approach to the propagation of the vessel and obstacles. One can then
plan paths that have the highest probability to be successfully executed.

8.4. Recommendations for DASh
The DASh scale model served as a good platform for the verification of the navigation and control algorithms.
The linux-based board computer runs the control loop in efficient C and C++code, allowing real-time execu-
tion of the GNC algorithms. However, the current code is difficult to expand upon to test or prototype new
GNC algorithms. The writer proposes to install a robotic friendly operation system on the board computer,
such as the Robot Operating System (ROS), that allow quick prototyping.

The current hardware of DASh can be improved in several ways. The azimuth thrusters require significant
torque in order to rotate, due to static friction. There is also a large amount of friction on the propeller shafts.
This results in large overshoots of the propeller rotation speed upon startup, resulting in unwanted thruster
forces. It is therefore advisable to install new azimuths, as well as a bow thruster to improve the maneuver-
ability.

8.4. Recommendations for DASh 71

A bottleneck during implementation was the drifting heading measurement and noisy position measure-
ments. To improve the performance and reliability of DASh it is recommended to replace the Pozyx sensor
with a more robust measurement system using e.g. cameras, radar or LIDAR.

Bibliography

[1] MA Abkowitz. Lectures on ship hydrodynamics—-steering and manoeuvrability, report no. Hy-5. Hy-
drodynamics Department, Hydro-and Aerodynamics Laboratory, Lyngby, Denmark, 1964.

[2] Juan Manuel Ahuactzin, Depto De Ing, and Emmanuel Mazer. Manipulation Planning for Redundant
Robots : A Practical Approach. The International Journal of Robotics Research, 17(7):731–747, 1998.

[3] Baris Akgun and Mike Stilman. Sampling Heuristics for Optimal Motion Planning in High Dimensions.
In International Conference on Intelligent Robots and Systems, 2011.

[4] Ross Allen and Marco Pavone. A Real-Time Framework for Kinodynamic Planning with Application to
Quadrotor Obstacle Avoidance. In AIAA Guidance, Navigation, and Control Conference, pages 5021–
5028, 2016.

[5] Ross E Allen, Ashley A Clark, Joseph A Starek, and Marco Pavone. A Machine Learning Approach for
Real-Time Reachability Analysis. In International Conference on intelligent Robots and systems, pages
2202–2208, 2014.

[6] Mukunda Bharatheesha, Wouter Caarls, Wouter Jan Wolfslag, and Martijn Wisse. Distance Metric Ap-
proximation for State-Space RRTs using Supervised Learning. In International Conference on Intelligent
Robots and Systems, 2014.

[7] S. K. Bhattacharyya and M. R. Haddara. Parametric identification for nonlinear ship maneuvering. Jour-
nal of Ship Research, 50(3):197–207, 2006.

[8] M. Blanke. Ship Propulsion Losses Related to Automated Steering and Prime Mover Control. PhD thesis,
Technical University of Denmark, Lyngby, Denmark, 1981.

[9] Morten Breivik, Stig Kvaal, and Per Østby. From Eureka to K-Pos: Dynamic Positioning as a Highly
Successful and Important Marine Control Technology. In IFAC Conference on Manoeuvring and Con-
trol of Marine Craft, volume 48, pages 313–323, 2015. doi: 10.1016/j.ifacol.2016.01.001. URL http:

//www.sciencedirect.com/science/article/pii/S2405896316000021.

[10] Brendan Burns and Oliver Brock. Single-Query Motion Planning with Utility-Guided Random Trees. In
International Conference on Robotics and Automation, pages 3307–3312, 2007.

[11] Manuel Haro Casado. Identification of the nonlinear ship model parameters based on the turning test
trial and the backstepping procedure. Ocean Engineering, 32:1350–1369, 2005. doi: 10.1016/j.oceaneng.
2004.11.003.

[12] Peng Cheng and Steven M Lavalle. Reducing Metric Sensitivity in Randomized Trajectory Design. In
International Conference on Intelligent Robots and Systems, 2001.

[13] P.I. Corke. Robotics, Vision & Control. 2017, publisher=Springer.

[14] Yuntao Dai, Liqiang Liu, and Shanshan Feng. On the Identification of Coupled Pitch and Heave Motions
Using Opposition-Based Particle Swarm Optimization. Mathematical Problems in Engineering, 2014:
1–10, 2014.

[15] Christiaan de Wit. Optimal Thrust Allocation Methods for Dynamic Positioning of Ships. Electric Engi-
neering, Mathematics and Computer Science, (July), 2009.

[16] Moritz Diehl, Hans Georg Bock, Holger Diedam, Pierre-brice Wieber, Moritz Diehl, Hans Georg Bock,
Holger Diedam, Pierre-brice Wieber Fast, and Direct Multiple. Fast Direct Multiple Shooting Algorithms
for Optimal Robot Control. 2009.

73

http://www.sciencedirect.com/science/article/pii/S2405896316000021
http://www.sciencedirect.com/science/article/pii/S2405896316000021

74 Bibliography

[17] E W Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische Mathematik, (1):269–271,
1959.

[18] Lester E Dubins. On curves of minimal length with a constraint on average curvature, and with pre-
scribed initial and terminal positions and tangents. American Journal of mathematics, 79(3):497–516,
1957.

[19] M Elbanhawi and M Simic. Sampling-Based Robot Motion Planning: A Review. In IEEE ac-
ces, volume 2, pages 56–77, 2014. ISBN 2169-3536. doi: 10.1109/ACCESS.2014.2302442. URL
files/545/ElbanhawiandSimic-2014-Sampling-BasedRobotMotionPlanningAReview.

pdf{%}5Cnfiles/546/articleDetails.html.

[20] Marie Eve, Thomas Posch, Jakob Pernthaler, and Roland Y Siegwart. Autonomous Inland Water Moni-
toring: Design and Application of a Surface Vessel. Robotics & Automation Magazine, 19(1):62–72, 2012.

[21] K.K. Fedyaevsky and G.V. Sobolev. Control and stability in ship design. 1964.

[22] Thor Fossen and Tristan Perez. Kalman filtering for positioning and heading control of ships and off-
shore rigs. IEEE Control Systems Magazine, 29(6):33–46, 2009. ISSN 08880611. doi: 10.1109/MCS.2009.
934408.

[23] Thor I. Fossen. Handbook of marine craft hydrodynamics and motion control. 2011. ISBN
9781119991496.

[24] Thor I Fossen. Handbook of marine craft hydrodynamics and motion control, 2011.

[25] Thor I. Fossen, Svein I. Sagatun, and Asgeir J. Sørensen. Identification of dynamically positioned ships.
Modeling, Identification and Control, 17(2):153–165, 1996. ISSN 03327353. doi: 10.1016/0967-0661(96)
00014-7.

[26] Emilio Frazzoli, Munther Dahleh, and Eric Feron. Robust Hybrid Control for Autonomous Vehicle Motion
Planning. Phd thesis, Massachusetts Institute of Technology, 2001.

[27] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. Informed RRT *: Optimal
Sampling-based Path Planning Focused via Direct Sampling of an Admissible Ellipsoidal Heuristic. In
International Conference on intelligent Robots and systems, 2014.

[28] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. Batch Informed Trees (BIT *):
Sampling-based Optimal Planning via the Heuristically Guided Search of Implicit Random Geometric
Graphs. In International Conference on Robotics and Automation, 2015.

[29] Reza Ghaemi, Soryeok Oh, and Jing Sun. Path following of a model ship using model predictive control
with experimental verification. Marine Engineering, pages 5236–5241, 2010.

[30] Elena Glassman and Russ Tedrake. A Quadratic Regulator-Based Heuristic for Rapidly Exploring
State Space. In International Conference on Robotics and Automation, pages 5021–5028, 2010. ISBN
9781424450404.

[31] Inger Berge Hagen. Collision Avoidance for ASVs Using Model Predictive Control. (February), 2017.

[32] Peter E Hart, Nils J Nilsson, and Raphael Bertrom. Formal Basis for the Heuristic Determination of
Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.

[33] Gregory Hitz, François Pomerlesau, Francis Colas, and Roland Siegwart. State estimation for shore mon-
itoring using an autonomous surface vessel. Springer Tracts in Advanced Robotics, 109:745–760, 2016.
ISSN 1610742X. doi: 10.1007/978-3-319-23778-7_49.

[34] S.F. Hoerner. Fluid Dynamic Drag. Hartford House, 1965.

[35] Wei Yuan Hwang. Cancellation effect and parameter identifiability of ship steering dynamics. Interna-
tional Shipbuilding Progress, 29(332):90–102, 1981.

files/545/Elbanhawi and Simic - 2014 - Sampling-Based Robot Motion Planning A Review.pdf{%}5Cnfiles/546/articleDetails.html
files/545/Elbanhawi and Simic - 2014 - Sampling-Based Robot Motion Planning A Review.pdf{%}5Cnfiles/546/articleDetails.html

Bibliography 75

[36] S Inoue, M Hirano, K Kijima, and J Takashina. A practical calculation method of ship maneuvering
motion. Int. Shipbuild Prog., 28(325):207–222, 1981.

[37] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. Fast marching tree : A fast marching
sampling-based method for optimal motion planning in many dimensions. The International Journal
of Robotics Research, 34(7):883–921, 2015. doi: 10.1177/0278364915577958.

[38] Tor A. Johansen and Thor I. Fossen. Control allocation - A survey. Automatica, 49(5):1087–1103,
2013. ISSN 00051098. doi: 10.1016/j.automatica.2013.01.035. URL http://dx.doi.org/10.1016/

j.automatica.2013.01.035.

[39] Steven G. Johnson. The NLopt nonlinear-optimization package. http://ab-initio.mit.edu/nlopt, 2017.
[Online; accessed 21-March-2018].

[40] J.M.J. Journée and W .W. Massie. Offshore Hydromechanics. 2001. doi: 10.1016/S0013-4686(01)00879-9.

[41] Sertac Karaman and Emilio Frazzoli. Sampling-based Algorithms for Optimal Motion Planning. The
International Journal of Robotics Research, 30(7):20, 2010. ISSN 0278-3649, 1741-3176. doi: 10.1177/
0278364911406761. URL http://arxiv.org/abs/1005.0416.

[42] Lydia E Kavraki, Petr Svestka, Jean-Claude Latombe, and Mark H Overmars. Probablistic Roadmaps for
Path Planning in High-Dimensional Configuration Spaces. IEEE Transactions on Robotics and Automa-
tion, 12(4):566–580, 2002. doi: 10.1109/70.508439.

[43] Jongwoo Kim and James Keller. Design and Verification of Controllers for Airships. In International
Conference on Intelligent Robots and Systems, volume 1, pages 54–60, 2003.

[44] S Klanke and S Vijayakumar. A Library for Locally Weighted Projection Regression - Supplementary
Documentation. http://wcms.inf.ed.ac.uk/ipab/slmc/research/software-lwpr, 2008. [Online; accessed
30-March-2018].

[45] Yoshiaki Kuwata, Michael T. Wolf, Dimitri Zarzhitsky, and Terrance L. Huntsberger. Safe maritime au-
tonomous navigation with COLREGS, using velocity obstacles. IEEE Journal of Oceanic Engineering, 39
(1):110–119, 2014. ISSN 03649059. doi: 10.1109/JOE.2013.2254214.

[46] Pozyx Labs. Pozyx Indoor Positioning System. https://www.pozyx.io/, 2017. [Online; accessed 13-
December-2017].

[47] Steven M. LaValle. Planning Algorithms. Cambridge University Press, New York, NY, USA, 2006. ISBN
0521862051.

[48] Steven M. LaValle and James J. Kuffner. Randomized Kinodynamic Planning. Proc. IEEE Int’l Conf. on
Robotics and Automation (ICRA’99), (May):1–7, 1999. ISSN 1050-4729. doi: 10.1109/ROBOT.1999.770022.
URL http://ijr.sagepub.com/cgi/content/abstract/20/5/378.

[49] W. Li and E. Todorov. Iterative linear quadratic regulator design for nonlinear biological movement sys-
tems systems. In In Proceedings of the International conference on informatics in control, Automation
and Robotics, pages 1–8, 2004.

[50] Weilin Luo. Parameter Identifiability of Ship Manoeuvring Modeling Using System Identification. Math-
matical Problems in Engineering, 2016, 2016.

[51] Weilin Luo, Carlos Guedes Soares, and Zaojian Zou. Parameter Identification of Ship Ma-
noeuvring Model Based on Particle Swarm Optimization and Support Vector Machines. Vol-
ume 5: Ocean Engineering, 138(October):V005T06A071, 2013. ISSN 0892-7219. doi: 10.1115/
OMAE2013-11078. URL http://proceedings.asmedigitalcollection.asme.org/proceeding.

aspx?doi=10.1115/OMAE2013-11078.

[52] Shah Muhammad. Dynamic Positioning of Ships: A nonlinear control design study. PhD thesis, 2012.

[53] Nils J Nilsson. A Mobile Automaton: An Application of Artificial Intelligence Techniques, 1969.

http://dx.doi.org/10.1016/j.automatica.2013.01.035
http://dx.doi.org/10.1016/j.automatica.2013.01.035
http://arxiv.org/abs/1005.0416
http://ijr.sagepub.com/cgi/content/abstract/20/5/378
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?doi=10.1115/OMAE2013-11078
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?doi=10.1115/OMAE2013-11078

76 Bibliography

[54] NH Norrbin. Theory and observation on the use of a mathematical model for ship maneuvering in deep
and confined waters, 8th symp. Naval Hydrodynamics, Pasadena, California, USA, 1970.

[55] P Oltmann. On the influence of speed on the manoeuvring behaviour of a container carrier. 1996.

[56] Scott Drew Pendleton, Hans Andersen, Xinxin Du, Xiaotong Shen, Malika Meghjani, You Hong Eng,
Daniela Rus, and Marcelo H Ang Jr. Perception, Planning, Control, and Coordination for Autonomous
Vehicles. Machines, 5(6), 2017. doi: 10.3390/machines5010006.

[57] Quang Cuong Pham. A general, fast, and robust implementation of the time-optimal path param-
eterization algorithm. IEEE Transactions on Robotics, 30(6):1533–1540, 2014. ISSN 15523098. doi:
10.1109/TRO.2014.2351113.

[58] James Reeds and Lawrence Shepp. Optimal paths for a car that goes both forwards and backwards.
Pacific Journal of Mathematics, 145(2):367–393, 1990. ISSN 0030-8730. doi: 10.2140/pjm.1990.145.367.
URL http://msp.org/pjm/1990/145-2/p06.xhtml.

[59] John H Reif and Micha Sharir. Motion Planning in the Presence of Moving Obstacles. In 25th IEEE
Symposium on Foundations of Computer Science, pages 144–151, 1985.

[60] Samuel Rodriguez, Xinyu Tang, Jyh-Ming Lien, and Nancy M Amato. An Obstacle-Based Rapidly-
Exploring Random Tree. In International Conference on Robotics and Automation, pages 895–900, 2006.

[61] Anita M Rothblum. Human Error and Marine Safety, 2000. URL www.bowles-langley.com/

wp-content/files{_}mf/humanerrorandmarinesafety26.pdf.

[62] D J Scheeres and M J Holzinger. The Control Distance Metric and Constraints on Maneuvering Satellites.
In International Conference on Information Fusions, pages 2035–2042, 2012.

[63] Matteo Schiaretti, Linying Chen, and Rudy R. Negenborn. Survey on Autonomous Surface Vessels: Part II
- Categorization of 60 Prototypes and Future Applications. 2017. ISBN 9783319684956.

[64] Roger Skjetne, Øyvind N. Smogeli, and Thor I. Fossen. A Nonlinear Ship Manoeuvering Model: Identifi-
cation and adaptive control with experiments for a model ship. Modeling, Identification and Control, 25
(1):3–27, 2004. ISSN 03327353. doi: 10.4173/mic.2004.1.1.

[65] Roger Skjetne, Øyvind N. Smogeli, and Thor I. Fossen. MODELING, IDENTIFICATION, AND ADAPTIVE
MANEUVERING OF CYBERSHIP II: A COMPLETE DESIGN WITH EXPERIMENTS. pages 203–208, 2004.

[66] SNAME The Society of Naval Architects and Marine Engineers. Nomenclature for Treating the Mo-
tion of a Submerged Body Through a Fluid, 1950. URL http://kom.aau.dk/{~}nickoe/random/

Sname1950.PDF.

[67] Thomas Statheros, Gareth Howells, and Klaus Mcdonald-maier. Autonomous Ship Collision Avoid-
ance Navigation Concepts , Technologies and Techniques. (2008):129–142, 2017. doi: 10.1017/
S037346330700447X.

[68] H Taams. Path planning for the asd-tug - literature review. 2017.

[69] Ken Teo, Kai Wei Ong, and Hoe Chee Lai. Obstacle Detection , Avoidance and Anti Collision for MERED-
ITH AUV. In OCEANS, pages 1–10, 2009.

[70] A Tiano and M Blanke. Multivariable identification of steering and roll motions. Transactions of the
Institute of Measurement and Control, 19(2):63–77, 1997. doi: 10.1177/014233129701900202.

[71] Serge Toxopeus. Validation of slender-body method for prediction of linear manoeuvring coefficients
using experiments and viscous-flow calculations. In ICHD2006 7th International Conference on Hydro-
dynamics, pages 589–598, 2006.

[72] Marine Traffic. Automatic Identification System. www.marinetraffic.com, 2017. [Online; accessed 5-
Februari-2017].

http://msp.org/pjm/1990/145-2/p06.xhtml
www.bowles-langley.com/wp-content/files{_}mf/humanerrorandmarinesafety26.pdf
www.bowles-langley.com/wp-content/files{_}mf/humanerrorandmarinesafety26.pdf
http://kom.aau.dk/{~}nickoe/random/Sname 1950.PDF
http://kom.aau.dk/{~}nickoe/random/Sname 1950.PDF

Bibliography 77

[73] Ioan A. Şucan and Lydia E. Kavraki. Kinodynamic motion planning by interior-exterior cell explo-
ration. Springer Tracts in Advanced Robotics, 57:449–464, 2010. ISSN 16107438. doi: 10.1007/
978-3-642-00312-7_28.

[74] Jur Van Den Berg, Stephen J. Guy, Ming Lin, and Dinesh Manocha. Reciprocal n-body collision avoid-
ance. Springer Tracts in Advanced Robotics, 70(STAR):3–19, 2011. ISSN 16107438. doi: 10.1007/
978-3-642-19457-3_1.

[75] Ton van den Boom. Lecture Note for the Course Model Predictive Control. DCSC Delft University of
Technology, 2013.

[76] Aleksander Veksler, Tor Arne Johansen, Francesco Borrelli, and Bjornar Realfsen. Cartesian thrust allo-
cation algorithm with variable direction thrusters, turn rate limits and singularity avoidance. 2014 IEEE
Conference on Control Applications, CCA 2014, (3):917–922, 2014. doi: 10.1109/CCA.2014.6981453.

[77] Sethu Vijayakumar, Aaron D Souza, and Stefan Schaal. Incremental Online Learning in High Dimen-
sions, 2005.

[78] W J Wolfslag, M Bharatheesha, T M Moerland, and M Wisse. RRT-CoLearn : towards kinodynamic plan-
ning without numerical trajectory optimization. IEEE Robotics and Automation Letters, 3(3), 2018.

[79] Hyeon Kyu Yoon and Key Pyo Rhee. Identification of hydrodynamic coefficients in ship maneuvering
equations of motion by Estimation-Before-Modeling technique. Ocean Engineering, 30:2379–2404, 2003.
doi: 10.1016/S0029-8018(03)00106-9.

[80] H Yasukawa Y Yoshimura. Introduction of MMG standard method for ship maneuvering predictions.
Journal of Marine Science and Technology, 20(1):37–52, 2015. doi: 10.1007/s00773-014-0293-y.

[81] Huarong Zheng, Rudy R Negenborn, and Gabriel Lodewijks. Trajectory tracking of autonomous vessels
using model predictive control. 19 Th World Congress the Internation Federation of Automatic Control,
pages 8812–8818, 2014. ISSN 14746670. doi: 10.3182/20140824-6-ZA-1003.00767.

A
Measurement Setup for Propeller Thrust

The thrust delivered by a propeller depends on the flow speed of the fluid entering the propeller and it ro-
tational speed. Due to the absence of a towing tank, only free running test could be performed. As a result,
it was not possible to superimpose an advance speed on the propeller. Instead thrust measurements at zero
advance speed were performed. These test are called bollard pull tests and are often performed by tugs.

Using a scale, rope and pulley system shown in figure A.1, the tension in the line as a result of propulsion
forces can be measured while the vessel is stationary.

A large weight (20 kg) was placed on the scale. A rope attached to the weight was placed over both pulleys and
attached to the deck of DASh, directly above its COG . The rope between the weight and the left pulley runs
parallel to the direction of gravity. Neglecting the mass of the rope, the tension in the rope will decrease the
measured weight on the scale, by and equal amount. The accuracy of the scale is 0.1 gram. Control measure-
ments on the scale, rope and pulley system were performed with known weights, suspended from the right
pulley. The decrease in weight on the scale due to the tension in the rope was exactly the same as weighing
their mass directly.

Figure A.1: A scale, rope and pulley force measuring setup to determine propeller thrust at various rotational velocities.

All bollard pull tests were performed by delivering forward thrust with both propellers. Due to the elasticity
of the rope, the thrust value oscillated when the thrust changed. The thrust was only measured when the
oscillations died down and it reached a constant value.

79

B
Thrust Allocation

Control algorithms for vessels often return a generalized force command u = [X Y N]T . The generalized
force consists of forces and moments that must be exerted on the vessel, in order to achieve its control objec-
tive. The task of the thrust allocation algorithm is to generate commands for each individual thruster so that
the resultant force matches the generalized force command. Using the same notation for the thruster com-
mand as found in section 3.5, the thrust allocation algorithm solves the underdetermined system of linear
equations

u = BT T (B.1)

which has an infinite amount of solutions. Thrust allocation algorithms fund the optimal solution limits
the overall amount of thrust and large input variations. An optimization based solution, similar to [76], is
implemented in DASh. The thrust allocation algorithm is ran at every sampling period Ts . The azimuths

are constrained by a maximum thrust constraint
√

T 2
i ,x +T 2

i ,y ≤ Tmax and a maximum rotation constraint

|α̇i | ≤ α̇max for thrusters i = 1,2. Both constraints can be linearized:

Maximum thrust can be constrained by defining a set of N linear inequality constraints of the form
cos(ρ1) sin(ρ1)
cos(ρ2) sin(ρ2)

...
...

cos(ρN) sin(ρN)


[

Ti ,x

Ti ,y

]
≤ Tmax (B.2)

where ρ is an equally spaced vector of N elements in the domain [0, 2π). For a maximal approximation error
of ε, the amount of linear equations should exceed N = round(π/arccos(1− ε

Tmax
)). An elaboration upon the

approximation error can be found in [15]. A visual example of the linear approximation for the maximum
thrust constraint is shown in figure B.1.

Rotation Constraints are implemented by restricting the rotation per iteration to the largest possible rotation
angle ∆α= Ts ˙αmax . Resulting in the inequality constraints[

sin(αi −∆α) −cos(αi −∆α)
−sin(αi +∆α) cos(αi +∆α)

][
Ti ,x

Ti ,y

]
≤ 0 (B.3)

In figure B.1 the reachable azimuth angles are displayed in green.

To avoid an optimization iteration to become infeasible, a slack variable is introduced into to following equal-
ity constraint

u = BT T + s (B.4)

81

82 B. Thrust Allocation

Ti ,x

Ti ,y

Tmax

αi +∆α

αi −∆α
αi

Figure B.1: The maximum thrust constraint of an azimuth thruster is shown as a black dotted line. The linear approximation is shown in
a black solid line. Due to a maximum rotations step ∆α per iteration, only thruster settings in the green cone can be reached within a

single sampling period Ts .

The goal is to match the generalized force command using minimal thrust, thus minimizing the entries of T
and s. Large input changes between the previous input Tpr ev and T increase the wear on the azimuths, and
should therefore be avoided. To this end the following cost function is minimized

J (s,u) = T T HT + (T −Tpr ev)T M(T −Tpr ev)+ sT Qs (B.5)

Let I be an identity matrix of the correct dimension. The matrices H = I , M = 0.1I and Q = diag([20, 40, 30])
are readily tuned diagonal weighing matrices. The resulting optimization problem can be solved using Se-
quential Quadratic Programming. Implementation of this algorithm on the Beaglebone Black is performed
using the open source Non-Linear Optimization Toolbox (NLopt) [39]. The algorithm is terminated when
changes of the estimated input are less then 10e−5, or after a runtime of 0.09 seconds. The latter ensures the
algorithm can run in real time at 10 hz, but in some cases sacrifices optimality .

C
Coordinate Transformations

Let p be a point defined in the earth-fixed frame {e} as pe = [x y]T and in the body-fixed frame {b} as
pb = [xb yb]T . If the coordinates of pe , the origin of the body-fixed frame Oe

b = [xe
Ob

ye
Ob

]T expressed in
{e} and the rotation θ of {b} relative to {e} is given, pb can be calculated.

p

{e}

{b}

{c}

θ

Figure C.1: Point p and the earth-fixed {e}, body-fixed {b} and intermediate coordinate frame {c}.

To simplify the transformation, a intermediate coordinate frame {c} is defined, which has its axis aligned with
{e} and its origin overlaps with origin of {b}. A visual representation of the frames is shown in figure C.1. By
extending the position vector pe = [x y 1]T it can easily be expressed in {c} using the translation matrix

pc = T c
e pe =

1 0 −xe
Ob

0 1 −ye
Ob

0 0 1


x

y
1

 (C.1)

To express p in the body-fixed frame, only a rotational transform of angle θ remains to complete the coordi-
nate transformation.

pb = R(θ)pc =
 cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

xc

yc

1

 (C.2)

83

D
LWPR settings

For reproducibility all settings for the training of the LWPR model are provided in table D.1. Based on a train-
ing data set of 12198 unique cost-to-go points, 80% was used for training, and 20% for testing. The tunable
settings are elaborately discussed in the supplementary documentation [44]. Receptive field sizes are updated
using the Incremental Delta Bar Delta (IDBD) algorithm by setting the meta_rate to TRUE. Unmentioned set-
tings have the default values. The resulting model has 2104 receptive fields and a single query is returned
within 0.0204 seconds.

Table D.1: Settings of the LWPR model upon training.

Setting Value

norm_in [10 10 2π]
init_D 400I 3×3

diag_only TRUE
wgen 0.15
w_prune 0.8
meta TRUE
meta_rate 200
update_D FALSE
kernel Gaussian
cutoff 0.01

85

E
Non-Linear PD Control

In this section the multiple-input multiple-output Non-linear PD Controller with Acceleration Feedback as
found in [23] is synthesized for the identified vessel model of chapter 4. The following control law is consid-
ered

τcont r ol =−Hm ν̇+RT (ψ)τpd (E.1)

τpd =−Kp η̃−Kd η̇ (E.2)

where Hm , Kp and Kd are constant positive definite matrices and τpd is the feedback from the PD controller
based on the state error η̃=η−ηd . This results in the following closed loop system

M∗ν̇+ [
C (ν)+D(ν)+K ∗

d (ψ)
]
ν+RT (ψ)Kp η̃= 0 (E.3)

where

K ∗
d (ψ) = RT (ψ)Kd R(ψ)

M∗ = M +Hm

using the following Lyapunov function candidate which consists of a kinetic and potential energy term

V (η̃,ν) = 1

2
νT M∗ν+ 1

2
η̃T Kp η̃ (E.4)

Time differentiation along η̃ and ν gives:

V̇ =νT M∗ν̇+ η̇T Kp η̃ (E.5)

=νT (
M∗ν̇+RT (ψ)Kp η̃

)
(E.6)

substitute (E.3) into (E.5) yields

V̇ =νT (− [
C (ν)+D(ν)+K ∗

d (ψ)
]
ν
)

(E.7)

Since C (ν) is skew symmetric, νT C (ν)ν= 0 and we obtain

V̇ =−νT [
D(ν)+K ∗

d (ψ)
]
ν (E.8)

Using LaSalle’s invariance principle, all trajectories of the system will converge to

V̇ =−νT [D(ν)+K ∗
d (ψ)]ν≡ 0 (E.9)

for all trajectories in the set
Ω= {(η̃,ν) :ν= 0} (E.10)

For ν = 0 implies ν̇ = 0 and from (E.3) we conclude that M∗ν̇ = −RT (ψ)Kp η̃ only holds for η̃ = 0. Therefore
the largest invariant set in Ω is the equilibrium point (η̃,ν) = (0,0). Since V (x) > 0, for all x 6= 0, V (0) = 0 and
V (x) →∞, as ‖x‖→∞, the equilibrium point is Globally Asymptotically Stable (GAS).

87

	Introduction
	The Guidance, Navigation and Control Problem
	Report Outline
	Notation

	I Vessel Modelling and Identification
	DASh Scale Model
	DASh Particulars
	Propulsion Train
	System Architecture
	Low-level Control System
	High-level Control System

	Test Environment

	Ship Modelling
	Vessel Motions and Coordinate Frames
	Modeling Approaches
	Rigid Body Dynamics
	Hydrodynamic Forces
	Control Forces
	Modelling of Hydrodynamic Forces
	Determination of Hydrodynamic Coefficients
	Parameter Identifiability

	Maneuvering Model of DASh
	Linear and Non-Linear Hydrodyamic Damping
	Cross-Flow Drag

	Complete Maneuvering Model
	Observer Design for Navigation

	System Identification
	Decoupled SI approach
	Estimation of Body-Fixed Velocities
	Identification of Inertial Parameters
	Propeller Identification
	Propeller Identification Results

	Identification of Hydrodynamic Surge Parameters
	Surge Parameters Identification Results

	Identification of Hydrodynamic Sway and Yaw Parameters
	Sway and Yaw Parameter Identification Results

	Conclusion

	II Model-Based Guidance & Control
	Kinodynamic Sampling-Based Planning
	DASh Planning Problem
	Introduction to Path Planning
	Constraints in Planning
	Representation of Space

	Optimal Kinodynamic Planning
	Kinodynamic Sampling-Based Planning
	Completeness
	Kinodynamic Rapidly-exploring Random Tree Planner
	State Sampling Methods
	Nearest Neighbors
	Steering Methods
	Asymptotically Optimal Planning

	Decoupled Path Planning
	Path Planner for DASh
	Conclusion

	A Control-Based Framework for Kinodynamic RRT
	The Control-Based Framework
	Cost-To-Go Distance Metric

	Optimal Control Methods
	Direct Optimal Control
	Non-Linear Model Predictive Control

	Discretization of the Action Space
	Fast Cost-To-Go Approximation using Learning Methods
	Learned Cost-To-Go using LWPR
	Transformation of Input Data
	Creation of Training Data
	Training the LWPR Model

	Kinodynamic RRT using the Optimal Control-Based Framework
	Performance Criteria of Paths
	Implementation Details

	Planning Results
	Conclusion

	Verification of the Vessel Model and Control
	Real-World Disturbances
	Sensor Measurements
	Feedback Control Loop
	Non-Linear Model Predictive Control

	Static Reference Tracking Results
	Time-Varying Reference Tracking Results
	Conclusion

	Conclusions & Recommendations for Future Work
	Implementation on Real Size Vessels
	Collision Regulations & Other Ship Behavior
	Account for Uncertainty during Planning
	Recommendations for DASh

	Bibliography
	Measurement Setup for Propeller Thrust
	Thrust Allocation
	Coordinate Transformations
	LWPR settings
	Non-Linear PD Control

