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Abstract

As we move towards an aging population, it is likely that an increasing
number of people will require an increasing diversity of implants, but at a
lower cost to the society. Also, as computer technology progresses, smaller,
more powerful, and less battery intensive implants can be designed. How-
ever, present implant design methodology is highly inefficient at meeting
these goals as it suffers from non-reuse of existing knowledge by relying
heavily on custom designs and ASICs. The SiMS project was started with
the goal of creating pre-designed, pre-tested, and pre-certified toolbox of
components for biomedical implants that can be assembled in a modular

fashion for various application scenarios. One of the most important com-
ponents in such a tool-box is the processor. Designing such a processor
is a non-trivial task and previous work has concentrated on studying the
effect of changing the processor input-parameters (such as caches), one
parameter at a time. The present work represents a shift in this method-

CE-MS-2010-08 ology, as we now allow co-variation in all possible input parameters in

order to find optimal configurations in terms of the output objectives -

power, performance, and area. Towards this end, we implement ImpEDE
— “Implantable-processor Evolutionary Design-space Explorer” — a frame-
work that performs multi-objective optimization of processor parameters,
and hence gives as output a Pareto optimal set of processors. The frame-
work consists of a cache simulator and a cycle-accurate processor simulator running benchmarks and workloads
designed for medical implants, in order to simulate the optimization objectives. A popular, highly configurable,
multi-objective genetic algorithm, NSGA-II, performs the actual optimization. Supporting scripts add modularity
by acting as the interface between the genetic algorithm and the simulators, enabling easy replacement with new
simulators. The whole framework is parallelized such that extra computation cycles of the idle laboratory CPUs can
be utilized, thereby giving a considerable speedup without requiring any special hardware. We perform experiments
on the non-dominated solution fronts evolved by the framework on a sub-set of benchmarks, in order to optimize
parameters of the genetic algorithm, with an aim towards speeding up convergence. We also examine the effects of
changing the workload size run by the benchmarks. A solution Pareto optimal front consisting of optimal processor
configurations across all benchmarks is found. This front is used as a reference in order to characterize the benchmarks
in the ImpBench suite. Finally, the objective space of the reference front is compared to existing implant designs,
and a set of “generic processors” are chosen such that all the existing implant applications studied can be covered.
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Abstract

s we move towards an aging population, it is likely that an increasing number of people will require
A an increasing diversity of implants, but at a lower cost to the society. Also, as computer technology

progresses, smaller, more powerful, and less battery intensive implants can be designed. However,
present implant design methodology is highly inefficient at meeting these goals as it suffers from non-
reuse of existing knowledge by relying heavily on custom designs and ASICs. The SiMS project was
started with the goal of creating pre-designed, pre-tested, and pre-certified toolbox of components for
biomedical implants that can be assembled in a modular fashion for various application scenarios. One
of the most important components in such a tool-box is the processor. Designing such a processor is
a non-trivial task and previous work has concentrated on studying the effect of changing the processor
input-parameters (such as caches), one parameter at a time. The present work represents a shift in
this methodology, as we now allow co-variation in all possible input parameters in order to find optimal
configurations in terms of the output objectives - power, performance, and area. Towards this end,
we implement ImpEDE — “Implantable-processor Evolutionary Design-space Explorer” — a framework
that performs multi-objective optimization of processor parameters, and hence gives as output a Pareto
optimal set of processors. The framework consists of a cache simulator and a cycle-accurate processor
simulator running benchmarks and workloads designed for medical implants, in order to simulate the
optimization objectives. A popular, highly configurable, multi-objective genetic algorithm, NSGA-II,
performs the actual optimization. Supporting scripts add modularity by acting as the interface between
the genetic algorithm and the simulators, enabling easy replacement with new simulators. The whole
framework is parallelized such that extra computation cycles of the idle laboratory CPUs can be utilized,
thereby giving a considerable speedup without requiring any special hardware. We perform experiments
on the non-dominated solution fronts evolved by the framework on a sub-set of benchmarks, in order to
optimize parameters of the genetic algorithm, with an aim towards speeding up convergence. We also
examine the effects of changing the workload size run by the benchmarks. A solution Pareto optimal
front consisting of optimal processor configurations across all benchmarks is found. This front is used
as a reference in order to characterize the benchmarks in the ImpBench suite. Finally, the objective
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Introduction

In 1889, a report was published on how the application of electrical impulses to the
human heart could help control its rhythm. It was nearly 70 years later that societal
and technological conditions became favourable enough to use this knowledge. The first
clinical implant on a human patient was in 1958, Sweden — Arne Larson was given
an artificial pacemaker. It failed 2 hours later. A second one failed 2 days later. Arne
Larson went on to receive 26 pacemaker implants in his lifetime. However, despite the
initial hiccups, artificial pacemakers paved the way for a revolution of sorts in medical
technology — implants were here to stay. Since then, many new kinds of implants
have been developed. Recently, with declining chip sizes and costs, more and more
applications are emerging that could not even be conceived of before.

Today, we are in the midst of another revolution — rapidly advancing technology has
changed the way we live and work. One of the driving forces behind this revolution is
rapid adaptability. As each new discovery or social trend makes older products obsolete,
the old adage “Time is money” has never been more important. Each company tries
to model its practices around frameworks that allow for less waste from previously
generated knowledge, leading to quicker development and time to market; and hence,
increased profits. This need for reutilization is a key factor in the drive towards
modularity — components, both hardware and software, are encouraged to be modular
and flexible so that new combinations can be assembled with minimum extra effort.

It is therefore, a little surprising that medical implants have not yet benefited from
these insights. As studied by the authors of [71], medical implants are, more often than
not, still developed from scratch. This leads to longer development times and additional
costs. Ballooning health care costs and increasing social debates on medical spending
makes this practice quite unacceptable. Needless to say, the faster the new implants
come to the market, the more the patients benefit — both, in terms of improved quality
of life and reduced cost.

Digital processors lie at the heart of any embedded system designed with mod-
ular components. Medical implants, being a special case of embedded systems,
are no different. Today’s embedded designer has a large arsenal of embedded pro-
cessors to choose from, each coming with their own trade-offs and constraints in
terms of power, performance, and area. While these three objectives are important
for any processor, the class of processors for embedded systems exhibit extra constraints.

Medical implants constitute one such highly resource constrained application of
embedded systems, and as such, its core component, the processor, is also subject
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to strict limitations. For example, the implant must be small enough to fit into the
implant site. The power dissipation must not be so high that the processor heats
up and damages the surrounding tissue. Since frequent surgery to replace batteries
would be detrimental to the quality of life of the patient, as well as costly, the system
must last long enough to finish its task without running out of power. Most implant
applications perform real-time monitoring and/or control, therefore, the implant must
be able to handle these without failing. Most importantly, since the application may
be life-critical, the system must be extremely fault-tolerant and reliable — in this day
and age, receiving 26 implants, as was the case for the first pacemaker, is just not
acceptable. Since the processor is a major component of the design, it must also fulfill
all these criteria. For these reasons, generic processors available in the market now
might not work for implant applications, not least because most of them do not make
any claims on reliability.

As we can see, there is a need for processors that can be used specifically for medical
implants, and these processors must be generic enough to be used in a wide range of in
vivo applications. This work aims to facilitate the design of such processors.

1.1 Context and Motivation

One of the properties needed for modular design is the ability to choose components
based on their black-box behaviour, rather than implementation details — i.e. as long
as the behaviour of the component is accurately specified, one need not worry what
goes on inside that component. This way, one can keep a wide-array of components
with well-defined characteristics. Whenever there is a need to design an application,
components with the desired characteristics can be chosen, and interconnected to each
other with minimum knowledge of their internal working. Such design methodology has
been used with huge success in modern PC design. A PC designer just needs to know
the performance characteristics, power requirements, and pin connections of a modern
processor. He generally does not need to know how the ALU is implemented or how
the instruction pipeline works. Of course, knowing these can help improve the design
choices one makes, but at first, they are not as important as the higher-level black-box
parameters. The same principle can be used for embedded design, and consequently,
implants design. For the scope of this work, we consider the black-box parameters to
be area, power consumption, and performance of the processor — collectively known as
the objectives. As we shall see, these are not the only design goals that can be added
to the system, and other parameters may also be selected in the future. Indeed, it is
extremely important to incorporate reliability as a design goal. However, as this is the
first stage of implementation, we use a reduced set of design goals, and leave modeling
reliability as a goal for future work.

As we shall see, this work was carried out in the context of the SiMS project at
the Computer Engineering Department of Delft University of Technology. One of
the various deliverables of this project is to propose a generic processor that can be
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used for medical implants. Designing this processor is not an easy task. It may also
be the case that a one-size-fits-all approach may not be feasible given the diversity
of implants being designed, and several “generic” processors might be required that
among themselves cover a wide range of applications. Therefore, one needs to have a
system that can help to choose “good” processor configurations. This system ideally,
would map out the entire spectrum of the design space possible, listing the trade-offs
between all the objectives. From examining these trade-offs, one can choose config-
urations that fit the desired design range. A good way for representing the available
trade-offs for design is to use the concept of Pareto Optimality, which we use in this work.

Obtaining the full trade-offs spectrum as described above however, is a non-trivial
task. One must explore all possible configurations of processors, compute the corre-
sponding objectives of area, power etc, and from this, find the Pareto-dominant solutions
to be included in the final trade-off set. Since typically the design parameters that
affect a processor are numerous, computing the behaviour of all possible combinations
of these is quite difficult, if not impossible. For example, in this work, we consider 13
processor design parameters [Table 3.1] represented by 36 binary bits. If one were to
simulate all combinations, one would need to evaluate 236 = 68,719,476, 736 processor
configurations! Therefore, we need a way to approximate the trade-off points without
performing all possible simulations. Furthermore, even in an approximated scenario,
thousands of configurations might have to be considered, evaluated, and compared to
get a good approximation of the true Pareto front. Therefore, we need an automated
method for doing so. Several search and optimization algorithms are available that can
be used to perform this very task. In the next sections, we shall see why we chose a
particular variant of genetic algorithms as the optimization algorithm, and how this
algorithm works. We found that the selected algorithm had a very long computation
time, and therefore, we describe how we parallelized the algorithm. Finally, we present
several trade-off scenarios and the Pareto results the algorithm gives for each of these.

Note that although reliability is one of the major reasons for the need to design
processors specifically for implants, the present work does not directly address reliability.
Instead, we rely on the idea that processor design can be looked at from a black-box
design perspective and provide a flexible and modular framework for doing so. Given
such a framework, adding reliability as one of the black-box parameters is more easily
done, and is left as future work. For the present work, we concentrate on the following:

1. As we shall see, previous work in the project used certain simulators (XTREM
[11] and CACTI [66]). As a continuation of that work, we needed to retain the
same simulators. However, future considerations required that this simulator be
easily replaceable with another. We did not find an open source/free tool that
allowed us to perform multi-objective design space exploration modularly with
respect to different processors. Therefore, one deliverable of this work is a free
and open design space exploration framework with modular interfaces that enable
easy swapping between different processor simulators. We test the modularity of
this framework and validate the results to some extent by introducing additional
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realtime constraints in the system and observing the trends.

. In addition to the above problem, the cycle-accurate processor simulators we use
also have long simulation times. This necessitates that the DSE algorithm be run
in parallel if possible. Further more, we had limited and dynamically changing
(hardware) resources available for computation. Therefore, the above mentioned
framework is also parallel, scalable, does not need special resources (instead uti-
lizes idle computation cycles of laboratory machines), is easily deployable, and is
resistant to dynamic network changes and failures in machines while computing.

. As further performance optimization of the framework, we also experimented on
selecting design parameters (number of generations and crossover probability) for
the genetic algorithm in order to speed up its convergence and run-time.This is
done by analyzing the distance and spread metrics of the various Pareto fronts
found. As far as the authors are aware, such work does not exist in the context of
multi-objective genetic algorithms.

. We use the optimized tool for finding optimal processor configurations. The Pareto
front so found is compared to real implant applications in terms of the power,
performance and area objectives. We find that our processor configurations are
competent in covering the requirements of most of these real applications, and
suggest some design points from the front that can be used as starting points for
the “generic processors” we require.

. Finally, we demonstrate the usefulness of the framework in other related contexts
by characterizing the benchmarks in the extended ImpBench suite using our DSE
framework. This is done as follows: separate Pareto fronts are independantly
evolved for each of the benchmarks, which is compared to the front evolved that
optimizes a combination of all these benchmarks. Such a study can help processor
designers in selecting the benchmarks with appropriate characteristics — for exam-
ple a single representative benchmark that is closest in behaviour to the combined
optimization front can be used instead of the entire suite in case rapid simulations
are required. Also, processor designers may opt for a more sensitive benchmark
with wide variations in power, performance and area for the allowed range of config-
urations or a benchmark that gives lesser (and hence more predictable) variations
in objectives for the same allowed range of processor configurations. As far as
we are aware, such a characterization of benchmarks using multi-objective genetic
algorithms has not been done.



Background and Related Work

2.1 The SiMS Project

As stated previously, the practice of redesigning entire implants from scratch is wasteful.
The SiMS (Smart Implantable Medical Systems) project [24] at TU Delft aims to
address this problem.

The goal of the SiMS project is to “deliver a systematic approach (thus, a
framework) that provides medical researchers with a toolbox of ready-to-use, highly
reliable sub-systems and models in order to construct (optimal) implants for various
medical applications.” The framework is envisioned to contain hardware and software
components that are pre-tested and approved according to the required medical
standards. These components can then be mix-and-matched to create different implants
catering to different application scenarios. This will significantly reduce design time and
costs of medical implants, in addition to providing greater reliability.

Current implant design still relies heavily on custom design as can be seen from
Figure 2.1a. However, this needs to change since the goal is towards rapid development
of implants using modular hardware components. Additionally, it is typically easier to
implement more complex functionality on processors than on designs with no processing
cores or on ASICs (Application Specific Integrated circuits) — this is important as the
trend is towards implants that require more processing [Figure 2.1b]. Therefore, there is a
need for implants processors that are generic enough to cover a wide range of application
possibilities. Within the context of the project, Strydis et. al. [74] present the need for
such a generic processor and suggest a few characteristics of such a processor. Table 2.1

= full-custom = structured-custom — -
R - O with intemmal processing
O semi-custom O commercial
= no PCC B without internal processing

: : T T T 1
2002-2005 . 2002-2005

, T ,
1998-2001 . 1998-2001

1994-1997 1994-1997

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

(a) Use of commercial components is increasing (b) More implants require processing capabilities
*PCC : Processing/Controlling Core

Figure 2.1: Implant design trends over the years[73]
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’ Feature Value ‘
ISA 32-bit ARMv5TE-compatible
Pipel. depth / Datap. width 7/8-stage, super-pipelined / 32-bit
RF size 16 registers
Issue policy / Instr.window  in-order / single-instruction
I-Cache, L1 64KB, 64-way assoc. (lcc hit/170cc miss)
D-Cache, L1 32KB, 2-way assoc. (lcc hit/170cc miss)
TLB / BTB l-entry fully-assoc.
Branch Predictor 2-bit Bimodal (32-entry ret. addr. stack)
Write Buffer / Fill Buffer 2-entry / 2-entry
Mem. port no / bus width 1 port / 1 Byte
INT/FP ALUs 1/1
Clock freq. / Implem. tech. 2 MHz / 0.18 m @ 1.5 Volt

Table 2.1: XTREM (Modified) Architecture Details [74]

lists the processor configuration they used in their case study. Furthermore, Strydis
et. al. used the XTREM simulator as a base for their work and independantly explore
the effects of varying processor parameters on processor design in their papers on cache
structures[72] and branch prediction [77]. The present work being a logical extension of
their work, co-varies all such parameters, in order to get optimal configurations across
all possible parameter combinations and across all benchmarks; for the three objectives
of power, performance and area. Figure 2.2 provides an overview of the processor design
methodology followed in the SiIMS project, and the context of this work.

2.2 Related Work

The related work of this thesis falls in two major fields - that of implant design, and that
of design space exploration. The former, including existing implant design methodologies
and the consequent need for generic implants has already been studied by Strydis et.al
as part of the SiMS project. Therefore, we shall only briefly review these; the majority
of this section is a discussion of the latter topic.

2.2.1 Implant Design

We present a brief overview of a few existing implant designs studied by Strydis
[73] in Table 2.2. These designs were chosen from the study as they have listed
power, performance and area characteristics; and therefore, can be compared with the
processor configurations we derive from our exploration. This comparison is presented
in Chapter 4, Section 4.7.

The performance metric listed in these applications is the worst case time to execute
the (repetitive) task they are designed for. However, these tasks are highly application
dependant and may vary widely. One way of ensuring a fair comparison is to normalize
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Initial
Requirements

Independently _ y

Explore Together _ Design Space
Exploration

r Generates
+ More
Requirements

Design Decisions
based on Trade-off —
Information

Objective A

- Objective B

Processor Processor
| Il

Figure 2.2: Overview of the SIMS processor design methodology. Independant explo-
ration has already been done by Strydis[72, 77], we focus on the other steps

Specific Processor
Configurations

the amount of data processed in a single iteration of the task. We note that each of
these applications are simple stimulation or measurement tasks, with each loop simply
processing the ADC data. Therefore, in order to normalize, we assume each loop reads
10KB ADC data at a time (possibly buffered). This approximation is the best case
scenario for these applications as it assumes there is no (a) data-processing time or
(b) buffering times. On the other hand, as we shall see, the performance listed for
our processors is also for 10KB data, but the tasks run are the ImpBench benchmarks,
which have non-trivial processing times. Therefore, with these assumptions, the real
applications represent the worst case scenarios for our processors.

2.2.2 Processor Design

For an in-depth analysis of designing processors from design space exploration to
synthesis, the interested reader can refer to Gries[31], who contends that the two
independant problems in design space exploration (DSE) are how to evaluate a single
design point, and, how to cover the design space; and goes on to discuss both in
detail. In the context of this work, the first of the problems is not an issue, as previous
work in the project has already established the XTREM and CACTI simulators (refer
Section 2.3.6). However, the question of how to cover the design space is important.
The design space for a processor is huge, and while we would like to cover as much of
it as possible, evaluating the space for every single processor configuration possible is
virtually impossible. Many general techniques have been proposed in literature that
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‘Worst-case
Worst-case  \po gingle loo
Chipset Peak Single loop reso Exfcutionp
# Author Year Application Functionality Area Power Execu- . .
2 . . lution Time (Nor-
(mm?) (mW) tion Time . .
(msec) (bits) malized)
(sec)
Smith restoration of
et al paralyzed-muscle  stimulation/
(2) (67, 59, 1998 functionality, measurement 931750 96.00 10-00 12 08.27
58] MES
Ijtgge‘:l ICP-based diag-
()[23 22' 2000 mnosis for brain measurement  58.50 0.24 10.00 10 81.92
38]7 ’ diseases
o, G
(c)et al. 2000 spontancous Carg_ measurement  4209.67  34.00 1.00 12 6.83
[63] diac arrhythmias
Valdastri .
(d)et al. 2004 SHStricpressure o rement 16200  50.40 0.04 10 0.33
[84] monitoring
Au- continuous mon-
(c) Yeung o, itoring of AEG, stimulation/ 0 00 15 59 3.00 10 24.60
et al delivery of atrial measurement
(3] ATP
Liang
(f)et al. 2005 ENG measurement  1350.00  90.00 0.09 10 0.75
9]

Table 2.2: Overview of a few existing implant applications

explore the design space and search for optimal points. In Section 2.3.1 we take an
in depth look at the possible generic optimization techniques, and the reasons for
selecting a multi-objective genetic algorithm for this work. In this section, we shall
briefly list some tools and techniques developed specifically for design space exploration
of processors.

Hekstra et al. [35] explored the TriMedia CPU64 design using pruning — they first
probe the design space in order to identify the architectural parameters that affect
overall performance the most. The extreme values of these parameters provide ‘corner
cases’, and help in bounding the space to be explored in detail.

DESERT [81] (DEsign Space ExploRation Tool) is a meta-programmable tool for
pruning large design spaces using constraints. It represents the design space as a generic
structure based on alternatives and parameters, and therefore can be used for diverse
applications. Mohanty uses the MILAN [53] (Model based Integrated simuLAtioN) tool,
based on DESERT, for pruning design spaces of heterogeneous multi-core systems. The
authors of the Artemis (Architectures and Methods for Embedded Media Systems) [57]
also work on exploration of heterogenous multi-core environments, but focus more on
modeling and simulation than techniques for DSE.

Cho et. al [9] content that micro-architecture design is better done by considering
dynamic behaviour of workloads rather than designing for worst-case workload be-
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haviour. They use wavelet-based multi-resolution decomposition and neural network
based non-linear regression modeling to reason about workload dynamics (in terms of
performance, power, and reliability) across the micro-architecture design space.

The PICO [43] framework designed at HP Labs, given C code, outputs application
specific embedded computer systems optimized for cost vs. performance; where the
‘computer system’ consists of a EPIC/ VLIW (explicitly parallel instruction comput-
ing/very long instruction word) and an NPA (non-programmable accelerator). It uses
a space walker — which may be a heuristic, or brute force depending on the search
space — to search the design space. A ’component assembler’ outputs HDL code for the
processors specified by the space walker by assembling low-level components from their
component library.

Xie et. al [88] provide an in depth discussion on design space exploration for 3D
Integrated circuits, including CAD and design tools, and simulators. They use simulated
annealing to automatically find floorplans for the ICs.

Stijn et. al [25] evaluate various automated single and multi-objective optimizations
for exploring high performance embedded out-of-order processor designs. They found
that a genetic local search algorithm outperforms all other techniques for their applica-
tion.

Ascia, Catania and Palesi [2] propose using genetic algorithms to perform design
space exploration in processors. They apply a genetic algorithm to optimize the
memory hierarchy in terms of area, power and mean access time. However, they use a
single-objective genetic algorithm and model the fitness function as a product of the
three objectives. As we shall see in Section 2.3.2, such techniques face drawbacks that
reduces their suitability for use with design spaces whose shapes are not known in
advance!, as in our case.

Thiele et. al. [83] present domain specific design space exploration for network pro-
cessor architectures. They specify models for packet specific tasks and network traffic
(“encoding”); methods to estimate delays and queuing memory (“simulation”); and use
an evolutionary algorithm to perform multi-objective design space exploration (“opti-
mization”). This work is perhaps the closest to our work. However, to the best of our
knowledge, design space exploration with respect to implantable systems has not been
previously studied.

2.3 Background

In this section, we formally describe the terminology used in the paper, and the two major
categories of optimization - single-objective and multi-objective, and their applicability
to our case. We then give a brief overview of various optimization heuristics, why we

!Since the design space may well be non-convex, for which this method does not work
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chose genetic algorithms as our heuristic of choice, and describe terminology associated
with genetic algorithms. Finally, we give an overview of the simulators (XTREM and
CACTTI) and benchmark suite we employ (ImpBench).

2.3.1 Notes on Optimization

Optimization is defined as “an act, process, or methodology of making something (as
a design, system, or decision) as fully perfect, functional, or effective as possible;
specifically:  the mathematical procedures (as finding the mazimum of a function)
involved in this” [20]. In processor design, it would mean the process of finding as
perfect a processor as possible; perfect being subject to the design objectives we would
like to characterize the processor with.

Formally, an optimization problem is defined as [18, eqn. 2.1]:

Maximinize/Minimize f,(x), m=1,2,..., M;

subject to gj(z) >0, i=12,...J;
hio(z) = 0, k=1,2,. K;
2B >z > =12

A feasible solution to this problem will consist of an n-dimensional vector x =
(21,22, ...,2,)7 that falls within the lower and upper variable bounds (xz(.L) and xz(.U)
respectively) and satisfies the j + k constraints. The n-dimensional region where the fea-
sible solutions lie is known as the search space. We can evaluate each of the m objective
functions on every point x in the search space. The resulting m dimensional space is
known as the objective space or design space (Refer: Figure 2.3). In this work, we shall

mostly refer to it by the latter name.

2.3.1.1 Pareto optimality

Most classical optimization techniques focus on optimizing a single variable or multiple
variables with respect to a single objective. However, many real engineering prob-
lems involve more than one objective. Furthermore, for multiple-objective problems,
the objectives are often conflicting, such as minimizing chip-area while maximizing
performance. In such a problem, there is no single optimal solution. Instead, there
exist a number of solutions that are all optimal. In the absence of more case-specific
information (which may be purely qualitative, or even be absent altogether), there is
no way of saying which solution from this set of solutions is the optimal. In such cases,
the decision makers can be provided with the entire set of optimal solutions and the
trade-offs they represent. They can then make decisions based on these trade-offs and
the particular manifestation of the problem, or, when more information is available.
The most interesting set of trade-offs for a given problem is the set of Pareto points
(Figure 2.4). A point in the design space is a Pareto point if there is no objective that
dominates it. In this context, dominance is a strict partial order relation defined as
(adapted from Deb [18], Coello[10]):
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Figure 2.3: Representation of the decision variable space and the corresponding objective
space [18, Figure 5, Page 15]
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In words, this implies: the solution xo is said to dominate solution x1 if xs is no
worse than x1 in all objectives, and, xo is strictly better than x1 in at least one objective.

For example, in Figure 2.4b, E is not a Pareto-point since it is dominated by other
points - there exist points which have a lower weight given the same deflection as E, and
points that have a lower deflection given the same weight as point E. The Pareto points
are A,B,C,D because they are non-dominated in the entire feasible objective space. The
entire set of such Pareto points is known as the Pareto front.

In the context of this work, having the Pareto front of the problem available means
that the decision makers can be given the whole spectrum of trade-offs pertaining to
power, performance, and area. Since the aim is to have generic processors, they can then
choose a few of these processor configurations that between themselves are representative
of most of the medical implant applications.
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Figure 2.4: It is easier to choose design parameters (length, weight) given the Pareto
front of the objectives (deflection, weight) [18]

2.3.2 Single vs. Multi-optimization

The classical single-objective optimization methods can be used to perform multi-
objective optimization by reformulating the multi-objective optimization problem into a
single-objective one. This can either be done by combining the objectives into a single
aggregate objective [44], or by only considering one of the objectives and moving the
rest to a constraint set [51]. The first approach can be implemented, for example, with
finding the weighted sum of each of the objectives - instead of objectives X and Y,
we optimize w1 X + weY, where wl and w2 are appropriate weights. However, this is
difficult, because the objectives may be non-commensurable, their relative importance
may not be quantifiable, and, the range of values they can take may not be known
in advance. This makes it difficult to decide the weights by which each variable must
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be scaled, since even slight changes in the weights can lead to quite different solutions
[46]. The second approach also faces almost the same drawback - to reformulate the
objectives as constraints, the range of values of these former objectives must be known
in advance. In spite of these limitations, these methods are attractive because they are
simpler to understand and implement. In the first stage of implementation, we used a
single-objective Genetic Algorithms that used the weighted-sums approach for finding
the fitness of an individual. However, this was quickly abandoned as we could not
logically assign the values of the weights since there was no rationalization for choosing
one objective relative to the other without more information about the problem domain.
Also, indeed we did not have the absolute upper and lower limits of the three objectives
(power, performance, area).

The above methods provide the designer with only a single solution. By changing the
aggregation method slightly, one can reduce the impact of the weight-selection process
and, instead of a single solution, provide the designer with a Pareto-front solution.
In case of the weighted-sums-approach, this can be done by iteratively changing the
relative weights of the objectives and optimizing each of these sums. For example,
for objectives X and Y, we optimize X + w1Y, X + wsY...X 4+ w,Y. This gives us n
tradeoff points between X and Y depending on how much importance we attach to Y
relative to X. However, this approach has its own drawbacks such as inability to ensure
a uniformly distributed set of Pareto-optimal solutions, difficulty with problems having
a non-convex objective space, and no guarantees on optimality beyond satisfying the
first order optimality criteria [18, Chapter 3] [14]. The other classical methods “fixed
up” for multi-objective optimization all face similar drawbacks, summarized in Table 2.3.

Therefore, we need a technique specifically developed for multi-optimization that does
not face the above drawbacks. In the next section, we introduce NSGA-II, a Genetic
Algorithm that does exactly this.

2.3.3 Heuristic Algorithms

“Trying to find the global optimum of a multi-objective problem is an NP-Complete prob-
lem”[10]. Therefore, the best we can do is use a heuristic to approximate the solution
space. In this section, we list some of the popular meta-heuristic techniques that can be
applied to any search and optimization problem.

Random Optimization[68] At each iteration, the design space is sampled randomly,
and the design point is evaluated with respect to the optimization objective. The
best design point seen so far is saved, and the candidate solution point at the end
of a fixed number of iterations is considered the final solution. The idea is that if
the iterations are allowed to continue for a long enough time, the algorithm will
eventually encounter the optimal solution. This approach does not have problems
with local minima. However, convergence depends on the kind of design space and
the quality of solution required — if there is exactly one optimal solution, it may
not be found; on the other hand if there are several design points each having an
optimal value, then there is better likelihood of finding one of them.
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Table 2.3: Summary of methods using single objective optimization techniques to perform multi-objective optimization

[ Method | Description | Advantages | Disadvantages [ Formula | Ref]
Weighted | Select a weight w,, for | Simple, Intuitive, | Adding non- [14]
Sum each objective function | Guaranteed for | commensurable M

fm(z),  minimize the | Convex problems Objectives, Hard to | \inimize F(z) = Z Wi fo ()
weighted sum get uniform Pareto- oo
point spread, | subject to g;(z) >0, i=1,...,J;
Doesn’t work hi(z) =0, k=1,..,K;
for non-convex J;EL) <z < %(U)? i=1,..n
problems
€- Optimize one objective | Works for convex | If wrong value of [33]
Constraint| f,(z), reformulate other | and non-convex | € is selected, may o
objectives f,(x) (m # p) | problems not give any solu- Minimize  f,(z),
as constraints tion. More the | Subject to fim(2) < ém, m=1,.., M, m# p;
objectives, more €g gi(z) >0, J=1.
need to be chosen hkL(x) =0, v k=1, K;
from knowledge of IE ) <z < zi ), 1=1,..,m;
problem domain
Weighted | Generic case of Weighted | Guranteed to | Needs normaliza- [18,
Matrix Sums method. Minimize | find each Pareto- | tion of objectives Y Chaj
Method distance measure [, of any | optimal solution - Bounds of ob- M b ter
solution z from the ideal jectives must be | Minimize lp(x) = (Z Wi fim (2) Zm*p) 3]
solution z*. Dependmg on known, Need to subject to g(z) > 07m 1 Pl d;
value of p chosen, mini- independantly op- J
mize weighted sum, BEu- timize each of M h'(“L()x) =0, ) k=1 K
. . . . . <z < 1 1.....n:
clidean distance or highest objectives  before i == reeer Tl
deviation (for large p) problem is  opt-
mized (for getting
z*)
Benson’s | Similar to Weighted Ma- | If appropriate z° is | Additional con- [6]
Method trix method, excep(;c the | chosen, can find so- | straints introduced y
reference solution 2" is a | lutions in the non- | for restricting so- -
randomly chosen feasible | convex Pareto opti- | lution in region Maximize Z maz(0, (zn° = fin(@))):
non-Pareto solution. mal region dominating 29, subject to }:(1 z) < zp° m=1,..,M;
non-differentiable g;(z) >0, j=1,.J;
objective function hi(z) >0, k=1,..,K;
IEL) <z SQJEU)., i=1,...,n;
Value Also called utility function | Simple idea, if | Solution  depends [26]
Function | method. The user pro- | value function | on value function
Method vides a value function U | information is | chosen, Need a Maximize U(F(z))), F(x)=(f1 (I)""vfM(ﬁ))T
relating all objectives, this | available value function | subject to g;(x) >0, J=1 s
function is maximized applicable over the h’ka) >0, v k=1, K;
entire search space fEE )<z < 175 )~, i=1,.,m
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Hill Climbing[64] As a kind of greedy algorithm, it makes locally optimal choices at

each iteration in an attempt to find the global optima. The algorithm starts with a
random initial solution to the problem at hand. The solution is then mutated, and
if the mutation results in a better solution than the previous one, the new solution
is kept; otherwise, the current solution is retained. The algorithm is repeated until
no mutation can be found that causes a more optimal solution than the current
solution, and the current solution is returned as the result. The drawback is that
often, the algorithm gets stuck at local optima and can not find the global optimum
— although methods have been suggested to counter this. Also, for a noisy design
space, there may be problems in converging.

Simulated Anealing[45] Inspired by the annealing process in mettalurgy, each step

of the algorithm replaces the current solution by a random "nearby” solution. The
nearby solution is chosen with a probability that depends on the difference between
the corresponding function values of the current and nearby solution, as well as
a global parameter T (called temperature), that is gradually decreased during
the process. This dependency is such that the current solution changes almost
randomly when T is large, but increasingly slowly towards (local) optima as T
goes to zero. As was the case of hill climbing, this method may also get stuck in
local optima, but with a lesser likelihood of doing so, due to the initial wide range
of searches.

Tabu Search [27] This algorithm is similar to the hill climbing approach, except that

the algorithm keeps track of solutions already examined through memory struc-
tures. The solutions recently examined and discarded are marked as ’taboo’ and
therefore can not be re-visited. Therefore, the search performs faster by avoiding
unnecessary re-evaluations. Since it is so similar to the hill climber, it faces the
same drawbacks.

Ant Colony Optimization[21] The algorithm searches for an optimal path in a graph;

based on the behavior of ants seeking a path between their colony and a source
of food. Ants wander from the colony to random places in search for food and
then return to the colony. On the path they take to return, they deposit a trail
of pheromones. If an ant travelling back encounters a pheromone trail, it follows
this trail instead of a new path, thereby depositing more pheromones on it and
strengthening the path. As time passes, trails also lose pheromone. This processes
of addition and removal of pheromones eventually leaves behind optimal trails.
This behaviour is extended to the design space to find optimal solutions — ant
colony algorithms are regarded as populated metaheuristics with each solution
represented by an ant moving in the search space. Ants mark the best solutions
and take account of previous markings to optimize the search. The drawback is
that real life problems are sometimes difficult to formulate as equivalent ant-colony
problems.

Evolutionary Algorithms[28] These algorithms solve the problem of convergence lo-

cal optima, are widely studied and applied, and, in our opinion, easier to formulate
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as a search problem for our application. Detailed discussion on this algorithm can
be found in Section 2.3.4.

2.3.4 Genetic Algorithms

Evolutionary Algorithms are a class of Artificial Intelligence algorithms that mimic
Darwin’s theory of natural selection to solve search and optimization problems. Genetic
Algorithms (GAs) are a special class of Evolutionary Algorithm, defined by their
pioneers [28] as “probabilistic search procedures designed to work on large spaces
involving states that can be represented by strings.” Simple as this may sound; Genetic
Algorithms are extremely powerful and can be applied without much modification to
a large class of problems. They overcome many of the problems associated with other
search techniques, such as — the convergence does not depend heavily on the chosen
initial solution; the algorithm has mechanisms to not get stuck at local-optima; discrete,
noisy, and dynamic search spaces are efficiently handled; and the algorithm can easily
be parallelized [18, Page 82].

The basic Genetic Algorithm encodes the input variables as a string of bits,
known as a chromosome. A chromosome belongs to an individual, which represents
one particular solution point in the search domain. A collection of these individuals
forms a population. Therefore, the population represents the mutually independent
solutions under consideration. The algorithm tries to evolve the population in such a
manner that the fitness of the population minimizes (or maximizes). The fitness here
is represented by a problem-specific fitness function, and quantitatively represents the
search or optimization objective. Each evolutionary step of the algorithm creates a new
(child) population from the previous step’s (parent) population by selectively choosing
fit individuals to be propagated into the next generation. These individuals are then
subject to change via cross over (Chapter 3, Figure 3.3) — exchange of genetic material
— and mutation (Chapter 3, Figure 3.2) — destruction of some encoded information and
introduction of new, random information — in order to drive the search into new and
previously unexplored directions [86]. Some genetic algorithms ensure that the best
solutions found so far are preserved. This approach, known as elitism, helps ensure
that the random processes do not destroy good solutions; the algorithm always moves
towards a better solution, never leading to a worse one. The basic GA steps and
components are shown in Figure 2.5.

The definitions above are for a single objective genetic algorithm. In case of
multi-objective GAs, the population represents the candidate solutions that lie on
the (approximate) Pareto front. The algorithm in this case then tries to evolve the
entire solution front towards the true (but unknown) Pareto front. The selection
procedure in this case becomes slightly different than that in the single objective
version. In the single objective algorithm, deciding which individuals from a population
get to reproduce and move on to the subsequent generations is done by sorting
the individuals according to their fitness - in the simplest implementation, the top
few individuals from the sorted list get through to the next generations, others are
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Figure 2.5: Schematic and components of a Genetic Algorithm

discarded; more complicated strategies use a probabilistic selection approach on the
selected individuals. Since now we want to collectively better the entire population,
simple sorting will not work. We need a mechanism that ensures that the front found
at every generation moves forward. The algorithm that we use for this work, called
NSGA-II, uses 'non-dominated sorting’ specially designed for multi-objective GAs to ac-
complish this. The interested reader can refer to the detailed working of NSGA-II in [19].

We chose NSAGA-II as it is state of the art, and is one of the most widely used and
studied multi-objective algorithms in literature, along with its competitor, SPEA2 [90].
Moreover, the NSGA-II sources are freely available from the authors. We use a modified
version of this original source code in our work.
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benchmark name size dyn. instr.* dyn. pops*
(KB) (average) (#) (average) (#)

Compression miniLLZO 16.30 233186 323633
Finnish 10.40 908380 2208197

Encryption MISTY1 18.80 1267162 2086681
RC6 11.40 863348 1272845

Data integrity checksum 9.40 62560 86211
CRC32 9.30 418598 918872

Real applications motion 9.44 3038032 4753084
DMU4 19.50 36808080 43186673

DMU3 19.59 75344906 107301464

Stressmarks stressmotion 9.40 288745 455855
stressDMU3  19.52 124212 224791

Table 2.4: ImpBench benchmarks. (*) indicates typical values for 10 — K B workloads,
except for DMU-variants which use their own special workloads. [79]

2.3.5 Benchmarks and Workloads

The performance of a processor depends not only on its internal components but also
on the applications that run on it. Therefore, to get an accurate representation of
the suitability of a generic implant processor, we need to run a set of benchmarks
to characterize it that are representative of the application domain. The ImpBench
benchmark suite [78] is proposed for this very purpose, we use an extended version of
the ImpBench suite[79]. The applications included in the suit are classified as lossless
compression, symmetric-key encryption, data integrity, and synthetic programs that are
representative of actual applications. A brief overview of the benchmarks can be found
in Figure 2.4. We use these benchmarks for evaluating the fitness of the individuals in
our Genetic Algorithm.

The behaviour of programs also depend on the inputs given to the program. To get
a true representation of a processor, we must therefore also choose a suitable workload
and workload size for running the benchmarks. For profiling the benchmarks in the
ImpBench suit, 7 representative workloads have been selected based on real data. The
different benchmarks perform differently with respect to these workloads - the “motion”
application and the compression algorithms depend heavily on both the type of input
data and the size of the input data [75], encryption and data-integrity algorithms only
depend on the input data size [76], the DMU application is a tight kernel reading its
own fixed input values and hence does not depend on the either the input size or the
input data. All benchmarks (except DMU) show worst case behavior (in terms of IPC)
with the EMGII input type[61]. Therefore, we use EMGII as the workload for all our
experiments. We also selected the higher available workload size of 10KB. In Chapter 4
we will study the effect of changing this workload size to the lower size of 1KB.
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2.3.6 Simulators

Ideally, to characterize a given processor configuration, one would make an HDL
implementation of the processors, synthesize this, and thus compute its power, perfor-
mance and area requirements. However, we need to implement thousands of processor
configurations to feed the Genetic Algorithm (GA) in its exploration of the design space.
This process is cumbersome if done manually, and difficult to automate. Therefore,
we need simpler simulators to approximate the behaviour of the processors. These
simulators model processor behaviour as function evaluations. Needless to say, this
will introduce approximations into the values found. A designer requiring a certain
processor can select promising candidates from the design space found by the GA while
keeping this approximation in mind.

The primary simulator we use is XTREM [11], a modified version of SimpleScalar [4].
The XTREM simulator is a cycle-accurate, microarchitectural, power- and performance-
functional simulator for the Intel XScale core [74], with an average performance error of
only 6.5% and an average power error of only 4% [11]. Moreover, the simulator is open,
free, and readily available.

XTREM has a 32-bit ARMv5TE-compatible ISA with a 7/8-stage pipeline, a 32-bit
datapath, 16 registers, in-order instruction execution, and 2 MHz clock frequency. It
supports modelling of, among other things, L1 and L2 caches, different branch predictor
schemes, ALUs, write and fill buffers, memory ports, and bus width. It was chosen
because of its precision, ease of use, availability, and as mentioned before, because
previous work in the project has been done using this simulator. However, while using,
we did find flaws in the simulator. Therefore, the future work on the project should
replace this simulator.

The second simulator we use is the popular CACTT (Cache Access Latency and Power
Estimation Tool), which is “An integrated cache and memory access time, cycle time,
area, leakage, and dynamic power model” [47]. Specifically, we use CACTI 3.0, which
includes modelling support for the area of caches, caches with independently addressed
banks, fully-associative caches, a power model, technology scaling, among other things.
We use CACTI for modeling the areas of the caches and the branch prediction table,
which are used to approximate the total processor area. This is justified as the major
component of the chip area are cache structures 2rather than processing blocks, with
the processing block size hardly changing from design to design . In fact, according to
[70], caches take caches consume approximately 90% of transistor count, taking up 60%
of the area. Also, as we shall see, the way our design works, there is minimal change in
the processing blocks, but we do vary the cache configurations. Therefore, modeling the
area through the cache structures gives a good relative metric to comparison area.

'For the processor modeled by XTREM, core size is 0.13765 cm? whereas the cache size is about
0.20647 ¢cm?[70]

“The size of the ARM cores hardly changed from ARM2 (30,000 transistors) to ARM6 (35,000 tran-
sistors), whereas the cache sizes changed from no cache to 4KB cache. The total transistor count changed
from 30,000 in ARM2 to 360,000 transistors in ARM6(including MMU, caches, write back buffer)[12].
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Experimental Setup

As stated previously, there is a need for automating the optimization process that
searches for good processor configurations. In addition to this, we also need a way to
automate the process of creating different processor configurations and evaluating them.
We delegate this task to two simulators, XTREM [11] and CACTI [66]. The first takes
into account all 13 of our processor input parameters and simulates the performance and
power requirements of the processor so formed, while we use the later to approximate
the area of the processor.

We also note that the performance, and power consumed by a processor depend
heavily on the kind of application run on the processor. Many applications in turn,
themselves depend on the data input to these applications. Therefore, we also need to
select carefully what applications and data-sets we run on the processor to gather its
power and performance metrics.

Therefore, our basic experimental setup is as follows: A genetic algorithm (GA)
evolves towards finding the Pareto-front of the 3-D space consisting of processor power,
performance and area. To simulate the power, performance and area behavior of the
processors the GA considers, we use the XTREM and CACTI simulators. Since the
output of the XTREM simulator depends on the program run on that instance of the
processor, we run several benchmarks to evaluate the processor. These benchmarks
themselves depend on the input given to the benchmarks. Therefore, we run the
worst-case input data-sets on the benchmarks.

We found the above setup to be extremely slow and time-consuming. Therefore, we
parallelized the setup so that the expensive computations could run on several computers
at a time. In this way, we utilized the idle CPU times of available laboratory computers
to run our simulations faster. The final experimental setup is shown in Figure 3.1. Note
that the entire experiment was run on the Linux-based operating system Fedora 8.

3.1 Variables Chosen

The processor parameters we chose to include in the search space depended both on what
we wanted out of the processor and the capabilities and limitations of the simulators we
had. The same can be said about the ranges of these parameters; for most of them, we
used the maximum allowed range that the simulators could support, so that we could
capture as much of the design spectrum as possible. These variables are summarized in
Table 3.1

21



22 CHAPTER 3. EXPERIMENTAL SETUP

Legend

[ software crcr+)

- Supporting Scripts (Perl)

- Data

——» Software Calls

————— » Data Transfer

I Multiple Instances
Estimates
Power,
Perfo!'mance

Generates Processor Configuration

1
Estimates :
Area |

' |
|

Simulators

1
: Implant Application

: JE |Usedas |

| Input .

1

|

1

|

| -
______________ ——

Figure 3.1: Experimental Setup

3.1.1 Clock Frequency

The clock frequency of a processor affects both its power consumption and performance.
However, we found that although the XTREM simulator accepted frequency as an input,
running the simulator with different clock frequency values did not affect the results. We
tried debugging XTREM for this, but this was later abandoned due to time constraints.
In the future, it would be interesting to see the effect of clock frequency on processor
design. For the purpose of this work, XTREM runs on a default clock frequency of 2
MHz.

3.1.2 Branch Prediction

For more than two decades now, all processors, including embedded processors have used
pipelining to improve performance [36, Chapter 3]|. Pipelining overlaps the execution
of multiple instructions and thereby takes advantage of Instruction Level Parallelism
(ILP) that exists among the actions needed to execute an instruction. However, in real
programs, instructions are not completely independent of each other. Dependencies in
data means that the pipeline needs to stall for the results of one instruction before it
can proceed with the next. Branches introduce one class of these dependencies, known
as control dependencies. The stalls due to these dependencies can significantly affect
performance, given that branches on an average make 12% of the total instruction
executed [77, Table II (Derived from)].

To reduce the number of stalls from conditional branch instructions, speculative
execution takes place - the hardware tries to guess whether the branch will be taken,
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and executes the next instructions before the result of the branch instruction is known.
If its prediction is accurate, there is no loss in performance because of the branch. On
the other hand, for a failed prediction, some penalty is incurred because the system
must revert to the pre-speculative execution state and execute instructions starting at
the correct branch.

There are two kinds of branch prediction schemes, static and dynamic. In static
schemes, “The action taken does not depend on the dynamic behaviour of the branch”
[36, Chapter 3]. Two kinds of such schemes are predicted-not-taken and predicted-taken.
Static schemes have a simpler implementation, and therefore less hardware (area)
requirement. We model both these static schemes in our design. On the other hand,
using dynamic schemes may help in improving performance more by giving a better
estimation of the outcome of the branch. Dynamic prediction schemes use a buffer
to store past branch states and based on that, try and predict the current branch.
While research in branch prediction has been extensive, most of the solutions target
high-performance processors, not processor meant for embedded applications. Moreover,
most embedded CPUs do not make use of branch predictor units due to low battery
and/or power considerations. For the SiMS processor, we did not want to dismiss
branch predictors all together without some actual data, yet, extremely complex
schemes would be quite unrealistic for the application. Therefore, to strike a balance
between performance and complexity, out of the many dynamic prediction schemes
available, such as correlating predictors, tournament predictors, even neural predictors,
we select the simplest, the bimodal predictor. This last predictor uses 2 bits to store
the history of the branch, and has been proved to be as efficient as using a similar N-bit
predictor [36, Chapter 3].

To reduce the penalty for a branch, we need to know the address to fetch the next
instruction from by the end of the fetch of the branch instruction itself. Therefore, we
need to know if the as of yet undecoded instruction is a branch, and if so, what the
new program counter will be. To solve this problem, a branch target buffer (BTB) can
be maintained. This buffer has a structure very similar to that of a cache, and stores
addresses along with whether the instruction at that address is known to be a branch
or not. If it is a branch, it also stores the branch prediction (in our case, the bimodal
prediction value), and the address of the next instruction. A larger BTB table will
lead to near perfect branch prediction, i.e., maximum performance, at the same time
occupying a large chip area.

Due to the above considerations, and in keeping with the study of Strydis and
Gaydadjiev [77], the Genetic Algorithm can select the branch predictor to be taken,
not-taken, or bimodal. If the predictor is selected to be bimodal, the algorithm also
selects a BTB size. The latter is done by encoding the number of sets and the
associativity of the BTB table.

The range of the bimodal predictor was selected to be from 32 to 128 entries. This
is same as the range used by Strydis[77]; where the 4K upper limit models an ideal
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(infinite) predictor.

Finally, the Genetic Algorithm also evolves optimum values for the return address
stack (RAS). The RAS stores the address where a return instruction will point to at the
end of a procedure call, by keeping the last address from where a procedure was called
at the top of the stack. Since the procedure is likely to return to where it was called
from, RASs are highly accurate. We support RAS sizes from 0 to 8.

3.1.3 Caches

A CPU cache is a small and fast memory used for storing copies of instructions and data
that are most frequently used for processing. Caches are used to reduce the average
time taken to access memory, thereby increasing performance.

Data is stored in caches in contiguous units called blocks. In the most general cache
implementation, each block can be placed in a restricted set of places in the cache,
usually decided by (Blockaddress)MOD(numberofsets); where a set is a group of
blocks of a fixed size (say m). A block is first mapped onto a set, and then it can be
placed anywhere in the set. The size of the sets, n, is known as the associativity [36,
Chapter 5], and the cache is called an n-way associative cache. Two extreme cases of
such cache organization are direct mapped caches and fully associative caches. In the
former, a block can be placed at exactly one location (1 way associative); while the
latter allows the block to be stored anywhere in the cache.

As we increase cache sizes, we should observe an increase in performance, up to
the point where all the data needed can be found in the cache. After this, no more
performance gain can be achieved with bigger cache sizes. Also, as the cache size
increases, the access times looking for data in the cache also increase. Therefore,
larger caches than required will have a performance penalty. In addition, larger cache
sizes consume more power and take up more area. This trade-off behaviour is highly
dependent both on the application on hand, and on the input data to the application.
This makes it an interesting variable for our study.

In an implant scenario, we need ultra low power and small size. In many similar
embedded applications where moderate performance is acceptable, caches might be
considered an overkill. However, implant applications are periodic [72], and caches might
help in bringing down total energy consumption if they can increase the sleep-wake
ratio of the processor by speeding up execution, and thereby reducing the time the pro-
cessor needs to be awake. In the future, a simulator that supports modeling sleep-wake
states could be used for estimating energy, which can be included as one of the objectives.

Note that the simulator we use implements a 32-bit wide architecture. As stated by
Strydis [72], an implant processor is more likely to use a smaller word size, proposed
in the same work to be approximately 8-bit wide. The author of that work suggests
scaling down the 32-bit simulator cache results by 8x to arrive at the corresponding



3.1. VARIABLES CHOSEN 25

hypothetical 8-bit ISA used by an implant processor. Nevertheless, all cache sizes (and
the corresponding objective metrics) in this work are reported as the original 32-bit
architecture results.

We use both the Instruction and the Data caches in our optimization process, and
represent them each using block size, number of sets, and associativity. The ranges
for these are - 1 to 8192 sets, 8 to 32 words block-size, 1 to 32 way associative; where
a set size of 1 is a fully associative cache and an associativity of 1 refers to a direct
mapped cache. This leads to cache sizes from 8KB to 16MB. Although the simulators
theoretically supports a larger range of cache sizes, in practice, it was found that it
behaved erratically for larger cache sizes. Therefore, we selected the maximum possible
ranges for the three parameters based on this consideration. In addition, bigger cache
sizes are unrealistic, and are quite unlikely to found in an embedded application.

We also include the cache-hit latency as a variable. This latency depends on the
degree of pipelining in the cache access. We expect to see an increasing cache hit time
but a greater penalty on mispredicted branches and more clock cycles between the issue
of load and use of the data. Although the simulator theoretically supports variations
in both I-cache and D-cache latencies, we found that varying the I-cache latency above
the default of 1 often had the simulator hanging. Therefore, we only include D-cache
latency as a variable, which we vary from 1 to 16 clock cycles.

Finally, we also use the cache replacement policy as a variable, with the choices
being Least Recently Used (LRU), FIFO, and Random. Which policy works with a
particular cache is highly dependent on the kind of data in the cache, so we hope to find
the policy suitable for our benchmarks for a particular cache configuration.

Note that the above discussion pertains to L1 caches. At this time, low power
embedded processors hardly have even an L1 cache; hence in our opinion, .2 caches
would be an overkill, and therefore exclude them from our exploration. Other features
of the simulator that we switch off are cache flushing and I-cache compression, since both
these techniques also require more hardware complexity.

3.1.4 Buffers
Write and Fill buffers

The XTREM simulator we use models the Intel Xscale core, which includes two
buffers, the write buffer and the fill buffer. These buffers act as intermediaries between
the processor’s core and the main memory, and help achieve better performance by
decreasing the stalls due to accessing the main memory [11]. This is especially important
because of the high clock rates used by XTREM. The final implant application is likely
to have a much slower clock rate and lesser demands on performance. Therefore, we
decided to keep the buffer sizes fixed at the minimum supported by XTREM, i.e.,
exactly two entries.



26 CHAPTER 3. EXPERIMENTAL SETUP

Parameter Encoded Decoding
Name (Ref) Actual Range Range Bits | Formula Remarks
Core Clock Frequency (Freq) [1...64] [0...63] 6 n+1 Not used in current version
Branch Prediction (Bpred) Bimodal, T'aken, notTaken [0...2] 2 - bity = isBimod, bit; = isTaken
Branch Target Buffer: Number of Sets (btbysets) [32...128] [0...5] 3 2n+s Only valid for isBimod = TRUE
Branch Target Buffer: Associativity (btbgssoc) [1...32] [0...5] 3 2n Only valid for isBimod = TRUE
Branch Prediction: Return Address Stack (RAS) [0...8] [0...4] 3 floor(2"~1) -
L1 D-Cache: Number of Sets (D;,se15) [1...8192] [0...13] 4 2"
L1 D-Cache: Block Size (Dpgize) [8...32] [0...2] 2 onts
L1 D-Cache: Associativity (Dassoc) [1...32] [0...2] 3 2 -
L1 D-Cache: Replacement Policy (Djepi) forl [0...2] 2 - bitg = isFifo, bit; = isRandom
L1 D-Cache: Latency (Diatency) [1...16] [0...4] 3 floor(2™) -
L1 I-Cache: Number of Sets (I,sets) [1...8192] [0...13] 4 2"
L1 I-Cache: Block Size (Ipsize) [8...32] [0...2] 2 on+3
L1 I-Cache: Associativity (Iussoc) [1...32] [0...2] 3 2m -
L1 I-Cache: Replacement Policy (Iyepr) for [0...2] 2 - bity = isFifo, bit; = isRandom
L1 I-Cache: Latency (Iiatency) [1...16] [0...4] 3 [floor(2™) Not used in current version

Table 3.1: Processor Design Parameters considered in this work

Translation Lookaside Buffer

Translation lookaside buffers (TLB) are special address translation caches [36] to speed
up main memory accesses by caching page translations. We keep the smallest allowed
values for the Instruction and Data TLB buffers, with exactly a single entry for each.

3.1.5 ALUs

The ImpBenchmark suite uses only a moderate number of arithmetic operations [78,
Figure 4a]. Out of these operations, the number of multiplication operations is likely to
be even lower. Keeping this in mind, we fixed the number of ALUs and Multipliers in
our design to a single unit of each kind. In future, simulator support can be added to
omit even the multiplier in case a more minimalist design is required.

An approximation we make when using the XTREM simulator is to include exactly
one Floating Point Unit (FPU) and one Floating Point Multiplier (FPM) in the design.
This is because the simulator we use only supports one or more FPUs and FPMs, not
zero. However, an implant is unlikely to have these units altogether. Therefore, we need
to minimize the impact of these extra units by avoiding floating point calculations. None
of the instructions executed by the simulator running the ImpBench benchmarks were
observed to be floating point instructions, thereby justifying this approximation. Note
that since we approximate the processor area by the cache sizes, these additional units
have no impact on the area.

3.1.6 Other Options Considered

Memory Ports is another feature of the XTREM simulator that cannot be disabled
altogether. Therefore, we selected the minimum ports, namely two. We decided to also
omit Memory Pipelining from the design. As with other features we have pared down
or disabled, we believe these two features go against the requirements of our processor.
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3.2 Chromosome Encoding

In the previous subsection, we listed the design parameters we are interested in for
performing the design space exploration. Genetic Algorithms optimize the information
encoded in the chromosomes of the individuals. Therefore, we need to define an encoding
for the processor parameters to convert them into a chromosomal representation that
the Genetic Algorithm can work with.

There are several chromosomal encoding strategies. The simplest is encoding each
variable as a string of 1 and 0 bits. Even in this representation, we can choose to either
directly represent the bits; or use a Gray-coded representation if we need to avoid large
jumps in the variable values and the mutation operation is found to be too disruptive
for a particular problem.

In our implementation, the mutation value is set such that only one bit is expected
to change per chromosome between successive generations. If we use a Gray coded
representation, this would mean that mutation would lead to a set of variable that is
only distance 1 from the previous set of variables - for example, all other variables being
equal, the cache size of the child is the exactly next lower size allowed than the cache
size of the parent. Since we are interested in obtaining a good Pareto-spread, rather
than in perfecting the global optimum found, Gray coding will take too long to evolve
diverse results. Also, we use an elitist strategy that saves previous good results, so even
if the mutation and crossover operations happen to be a little disruptive, good solutions
will still get preserved. Therefore, we use the simple encoded approach. Table 3.1 lists
the details of our chromosome encoding - the variables chosen, their ranges, and the
encoding and decoding rules.

An interesting experiment for future work would be to encode the chromosome with
real numbers rather than a binary bit string, and thereby ensure that the parameters get
perturbed independent of each other during crossover. This might affect the convergence
rate — for better or for worse is highly dependant on the design space.

3.3 Objectives

Gries [31], in his extensive study of processor design, lists the possible design goals that
can be used for optimization of processors. He lists the primary objectives as cost,
power dissipation, speed, and flexibility; with the last being a meta-quality that arises
from considerations such as programmability or reconfigurability. Except for this last
quality, we model the other three design goals as our objectives — with the cost metric
represented as area, power dissipation as average power, and speed as IPC. For future
work, energy consumption or combined metrics such as the energy-delay product can
be also be explicitly included as design goals.

Each candidate solution for finding the Pareto front is represented as an individual.
The variables forming the candidate solution are represented as the chromosome of
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the corresponding individual. To judge the “goodness” of the candidate solution, we
need to evaluate this solution with respect to the objectives of the problem - power,
performance, and area.

As we mentioned in the previously, we use the XTREM and CACTI simulators
for evaluating the objectives. We use a modified version of the XTREM simulator
such that it gives the breakdown for (average) power consumed by different functional
units every 10,000 cycles. For this work, we consider the sum of these power values
(averaged across the benchmarks for multiple benchmarks) as the power objective.
We represent the performance objective as Instructions per Cycle (IPC), which is
also returned by XTREM. The CACTT simulator is used to find the area occupied by
different configurations of the included cache structures. We also use the simulator to
approximate the area occupied by the branch predictor - this is justified, as branch
prediction tables have similar implementation structure as caches. We use the sum of
the I-cache, D-cache and branch predictor area values as an approximation of the area
of the entire processor. The approximation error is the area of the other components of
the processor, for example, the ALU. However, the absolute error is quite small because
the caches form a sizeable component of the total processor area. In addition, this error
is nearly constant for different configurations that we examine because we only vary the
caches and branch prediction schemes, the rest of the processor components remain the
same. Since the error remains nearly constant, it minimally affects the correctness of
the Pareto points found because the algorithm we use requires a relative measure of the
fitness objectives rather than absolute values.

The flavour of Genetic Algorithm that we use is a minimizing algorithm. However, our
objectives are minimizing area and power while maximizing performance. To convert our
problem to a fully minimizing problem, we need to take the complement of performance
as the objective encoded in our algorithm. We use IPC as the metric of performance,
which is an integer number. Therefore, we can simply use IPC*(-1) as the objective
to be minimized. Note that cycles per instruction (CPI) could have also been used:
since CPI is the inverse of IPC, it would give an identical relative ordering of processor
configurations as IPC*(-1).

3.4 Constraints

Most of the problem constraints (ranges, allowed values - such as powers of 2) have
been implicitly handled in the chromosome encoding. The missing constraint is that the
number of sets must always be less than the associativity. Therefore, this is modeled as
an explicit constraint for Bimodal table, Data cache and Instruction cache.

3.5 Benchmarks & Data Sets

We already gave an overview of the benchmarks and data sets used in this work in
Chapter 2, Section 2.3.5. In this section we describe each benchmark in more detail.
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For our main analysis (Chapter 4,Section 4.3), we optimize the algorithm for the 8
original ImpBench benchmarks (i.e. excluding the ’stress’ benchmarks):

MiniLZO [55] (abbrev. ”"mlzo”) is a light-weight subset of the LZO library (LZ77-
variant). LZO is a data compression library suitable for data de-/compression in real-
time, i.e. it favors speed over compression ratio. LZO is written in ANSI C and is
designed to be portable across platforms. MiniLLZO implements the LZO1X-1 compressor
and both the standard and safe LZO1X decompressor.

Finnish [17] (abbrev. ”fin”) is a C version of the Finnish submission to the Dr.
Dobb’s compression contest. It is considered to be one of the fastest DOS compressors
and is, in fact, a LZ77-variant, its functionality based on a 2-character memory window.

MISTY1 (abbrev. "misty”) is one of the CRYPTREC-recommended 64-bit ciphers
and is the predecessor of KASUMI, the 3GPP-endorsed encryption algorithm [48]. It is
designed for high-speed implementations on hardware as well as software platforms by
using only logical operations and table lookups. Also, MISTY1 is a royalty-free open
standard documented in RFC2994 [56] and is considered secure with full 8 rounds.

RC6 [48] (abbrev. ”rc6”) is a parameterized cipher and has a small code size.
RC6 is one of the five finalists that competed in the AES challenge and has reasonable
performance. RC6-32/20/16 with 20 rounds is considered secure.

Checksum [7] (abbrev. “checksum”) is an error-detecting code that is mainly used
in network protocols (e.g. IP and TCP header checksum). The checksum is calculated
by adding the bytes of the data, adding the carry bits to the least significant bytes and
then getting the two’s complement of the results. The main advantage of the checksum
code is that it can be easily implemented using an adder. The main disadvantage is that
it cannot detect some types of errors (e.g. reordering the data bytes). In the proposed
benchmark, a 16-bit checksum code has been selected which is the most common type
used for telecommunications protocols.

CRC32 [1] (abbrev. 7crc32”) is the Cyclic-Redundancy Check (CRC) is an error-
detecting code that is based on polynomial division. In the proposed benchmark, the
32-degree polynomial® specified in the Ethernet and ATM Adaptation Layer 5 (AAL-5)
protocol standards has been selected.

Motion (abbrev. ”motion”) is a synthetic benchmark based on the algorithm de-
scribed in the work of Wouters et al. [87]. It is a motion-detection algorithm for the
movement of animals. In this algorithm, the degree of activity is actually monitored
rather than the exact value of the amplitude of the activity signal. That is, the percent-
age of samples above a set threshold value in a given monitoring window. In effect, this
motion-detection algorithm is a smart, efficient, data-reduction algorithm.

DMU4 (abbrev. "dmu4”), is a synthetic benchmark based on the system described
in the work of Cross et al. [13]. It simulates a drug-delivery & monitoring unit (DMU).
This program does not and cannot simulate all real-time time aspects of the actual
(interrupt-driven) system, such as sensor/actuator-specific control, low-level functional-
ity, transceiver operation and so on. Nonetheless, the emphasis here is on the operations
performed by the implant core in response to external and internal events (i.e. inter-

LCRC32 generator polynomial: 2324220 4+223 4222 4210 422 4o 4010408 42" 4 ad 42t 4 2% 4 o+ 1.
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rupts). A realistic model has been built imitating the real system as closely as possible.

DMUS3 (abbrev. 7dmu3”) is an extension of “dmu4” [79]. The original "dmuj”
benchmark emulates a real-time implantable system by reading real pressure, temper-
ature and integrated-current sensory data (as provided by true field measurements by
the implant developers [13]) and by writing to transceiver module (abstracted as a file).
”dmud” emulates this in a more sophisticated manner by also accurately modeling the
gascell unit used to switch drug delivery in the implant on and off. To this end, it reads
additional input data termed ” gascell override switch” and ”gascell override value”. The
suffix numbers in both DMU benchmarks originate from multiple field-test runs using
different drug-delivery profiles: A high-low-high varying, ”bathtub” profile (#4) has
been used for “"dmu4” and a constant, flat profile (#3) has been used for "dmu3”. We
introduce it briefly here, so that the content of stressmark ”stressdmu3” will be better
understood.

Stressmotion (abbrev. stressmotion”) and stressDMU3 (abbrev. ”stress-
dmu3”) constitute a new additions to the ImpBench suite (as described in [79]), their
creation stemming from the fact that the original "motion” and “dmu4” benchmarks
have considerably long run times w.r.t. the rest of the benchmarks (see Table
4.1).  7dmu3” rather than ”dmu4” has been used for extracting a stressmark due
to its more sophisticated emulation of the DMU applications. Since all benchmarks
essentially are pieces of continuously iterated code, each stressmark is a derived,
worst-case iteration of its respective benchmark. That is, an iteration wherein the
implant is required to perform all possible operations; thus, the term ”stressmark”. The
stressmarks feature significantly shorter execution times than their original counterparts.

When we consider realtime constraints in Section 4.5, we use the miniLZO, rc6,
checksum, and the 2 stress benchmarks to calculate single loop execution times, but the
algorithm still optimizes the metrics of the original ImpBench benchmarks.

3.6 Population Size

The Pareto points that form the Pareto front are discrete. Ideally, we would like to
have all the Pareto-points possible in the result. However, we do not know how many
such points exist in the true front. Also, we may not need to know all possible points, in
design, as long as we have sufficient number of points spread over the objective space.
The number of points we choose to include is a design tradeoff - the more points we
include, the better approximation of the front we will have, but we will need to evaluate
more configurations.

The population of a Genetic Algorithm represents the set of candidate solutions.
The size of the population represents the maximum number of Pareto points that
algorithm can find. If we pick too small a size for the population, we would have lesser
tradeoffs available. On the other hand, the Genetic Algorithm is O(mN?), where m is
the number of objectives and N is the population size. So, increasing the population
size would have a significant impact on processing time.
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Additional limiting factors on choosing the population size was that the algorithm
could only accommodate multiples of 4 as the size (to facilitate the selection function,
sorting etc.), and that the number of parallel machines available was 11 (For details
on Parallelization, please refer to Section 3.11). These machines were also prone to
being unavailable, and assuming minimum 5 machines at any given time, we can
guarantee that a given generation would finish in [N/16] to [N/5] parallel steps.
The estimated run-time of the algorithm is directly proportional to the number of
parallel steps, is then given by 15,4 * P * GG, where, T4 is the average time per parallel
step, P is the number of parallel steps per generation and G is the number of generations.

We chose the population size as 20 for our experiments. We found it gave a good
spread, while not taking up too much time. In this case, there are [20/16] = 2 to
[20/5] = 4 parallel steps per generation depending on the number of machines available.
In future, the population size can be increased with a hope for a better spread of Pareto
points, ideally with a corresponding increase in computation resources.

3.7 Number of Generations

The number of generations in a Genetic Algorithm are the number of iterations the
program goes through in searching for the optimal solution. Since they are heuristic
algorithms, with an element of randomness to them, Genetic Algorithms can never guar-
antee that they will find the true global optimum. They can however guarantee that a
solution will get no worse using strategies such as population saving and elitism. The
more iterations we have of the Genetic Algorithm, the likelier it is that a better ap-
proximation of the global optimum is found. Therefore, we need to strike a balance
between the number of iterations (hence the total computing time), and the quality of
the solution found. This can be done by looking at the convergence of the algorithm.
Although this depends heavily on the type of problem at hand, typically, Genetic Algo-
rithms show a rapid improvement in the solution found in the first few iterations, after
which slower improvements are seen; the latter stage sometimes characterized by jumps
in the solution when suddenly a better solution is found. The number of generations can
be set in a single optimization case as follows - run the algorithm for a limited number of
generations or for a reduced problem set, examine the convergence behavior (how fast it
converges, how long it stays in a stable state without variation in quality of results), run
the algorithm again with the original problem based these observations from the limited
problem. Therefore, we ran our experiments on the checksum problem. The detailed
experiment setup and findings can be found in Chapter 4, Section 4.1.

3.8 Mutation

Mutation in genetics is defined as “any alteration in the inherited nucleic acid sequence
of the genotype of an organism” [60]. This alteration being random, can give the new
organism either an evolutionary advantage or disadvantage with respect to the parent
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Figure 3.2: Mutation on a sample chromosome — each bit is either toggled or left intact
depending on the mutation probability p,,

population and its peers. If the mutation is advantageous, natural selection ensures
that the new set of genes get passed on to the subsequent generations. On the other
hand, disadvantageous mutations will lead to the organisms possessing the altered gene
to die out. Hence, mutation helps create diversity in the gene pool and eventually leads
to better organisms.

From the above, we see that mutation would be useful also in our adaptation of
the Evolutionary process. The goal of the genetic algorithm is to find better solutions
to a problem. Mutation leads the algorithm into new and unexplored directions,
thereby preventing the search from stagnating at local optima [30]. There are several
strategies to implement mutation in genetic algorithms. All of them involve randomly
changing the chromosomes of the parent population in some way when creating the child
population from these chromosomes. Mutation in our binary encoded chromosome can
simply be defined as random ”bit flips” in the encoded value (Figure 3.2). The simplest
way to implement this is to select a mutation probability p,, for the algorithm. At
the mutation stage, a random number (7,) between 0 and 1 can then be generated for
every bit (b) in the chromosome. If ry is less than p,,, then bit b is toggled. Obviously,
the higher the value of the mutation probability, the more the number of bits in the
chromosome that are likely to be flipped.

Although mutation is beneficial, too much change in the chromosomal structure
disrupts the evolutionary process by destroying the good information evolved and
stored in the previous populations’ chromosomes. In fact, a very high rate of mutation
degenerates the algorithm into a very complicated random search algorithm. Therefore,
it is important to select a good value for the mutation probability p,,. Note that even
though for every problem there might be an optimal value of p,, for which the algorithm
is likely to converge the fastest; the class of Evolutionary Algorithms by nature are quite
robust to parametrical changes and even a sufficiently good value of p,, will lead to
good convergence rates. In such cases, the quality of solution found will not be affected,
though the algorithm might take more time to arrive at the solution. This is property
is important because Genetic Algorithms are random by nature - different runs of the
same algorithm might produce different results. Therefore, optimal convergence rates
are hard to find, and consequently, optimal mutation probabilities: we need to make do
with ”good enough” value of p,,.

There are a number of ways to select the mutation probability, including complicated
adaptive mutation strategies [42]. However, the simplest and most recommended strategy
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is simply setting the mutation probability as p,, = 1/n where n is the chromosome length
[5] [54]. This means that a single bit per chromosome is expected to change from the
parent to the child population. Therefore, the child chromosome is likely to vary from
the parent chromosome in exactly one attribute, that too by a hamming distance of one.
We use this approach for setting the mutation probability in our implementation of the
Genetic Algorithm.

3.9 Crossover

In nature, the parents’s genes combine to form the child’s genes, and the child inherits
some characteristics of each parent. This is an important evolutionary process - the
genes evolved up to the parent population are passed on to the child population in
a recycled manner. Consider desirable gene variations A and B, and undesirable
variations A’ and B’. Some children may end up inheriting gene A from one parent and
gene B from another, leading to an overall better individual, on the other hand, some
children will lead to an evolutionarily disadvantaged individual with genes A’ and B'.
Eventually, the latter will get weeded out from the population while the former will get
to reproduce more and pass on this good combination of genes, hence leading to an
overall increase in the quality of individuals.

This idea is important for Genetic Algorithms. Our goal is to solve a search problem
spread over several input values. In many problems, some particular input combinations
might be partial solutions to the problem [39]. By randomly combining part of the
input variables (encoded as a section of the chromosome) from one candidate solution
(parent X) to a part of the input variables from another candidate solution (parent Y'),
it may be likely that partial solutions from both chromosomes get included in a new
chromosome that solves the problem better than both X and Y.

Used carefully, crossover can lead to much quicker evolution times, and is central
to the idea of Genetic Algorithms examining more solutions in the more promising
regions of the solution space [39]. Several kinds of crossover techniques have been
proposed, with one book listing over 50 different techniques [32]. However, the main
techniques considered in literature are restricted to single-point [39], 2-point crossover,
multi-point, variable-to-variable, uniform [80] and adaptive crossover [69]. Figure 3.3
illustrates some of these techniques. However, these techniques and studies comparing
these techniques such as by Hasangebi and Erbatur [34] focus on single-objective
optimization. Although studies such as [41] have been done on techniques for real-coded
chromosomes in multi-objective optimization, we could not find similar studies on
binary coded chromosomes. Therefore, we use the single-optimization studies as a
guideline towards choosing the crossover strategy.

However, the results from the studies and strategies mentioned above do not provide
any clear consensus on which of the crossover strategies is optimal. This may be because
crossover strategies seem to be affected by the problem domain. However, 2-point
crossover seems to perform reasonably well across problem domains. In addition, it is a
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Figure 3.3: Different crossover techniques, with each square representing a single gene
(bit) in the chromosome. The top two chromosomes in each figure are the parent chro-
mosomes, and the bottom two are the resulting children after the crossover operation is
applied

simple but powerful technique. Therefore, we use 2-point crossover. Note that although
this is possibly not the optimal strategy for our particular problem, Genetic Algo-
rithms are robust enough to perform well even with good but non-optimal configurations.

In addition to the crossover strategy, it is also important to set a good “rate
of crossover”. This rate determines the percentage of chromosomes that undergo
recombination.

If the rate is too high, we may end up destroying too much information. On the
other hand, a high rate is likely to lead to more diversity in the solutions found. Unlike
mutation, crossover rates cannot be chosen simply from the chromosome size. They are
much more domain specific. We perform experiments to select crossover probability in
Chapter 4.

3.10 Selection

Natural selection is the foundation of evolution. In nature, genes of different organisms
compete to bring their respective organisms an evolutionary advantage over others [39].
For example genes that allow an animal to sense its predator from a larger distance than
others of its species may allow the animal to survive longer and have more offspring,
who in turn inherit this trait. Over generations, it is likely that the less-adapted animals
die off and there exist more animals with the particular advantageous gene. Hence, the
population as a whole improves.
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The rate at which the advantageous genes described above favored over other
variations is termed selective pressure. The degree of selective pressure depends on en-
vironmental factors for example the availability of natural resources. If the competition
to survive is higher, such as when there is a shortage of food, the selective pressure
is higher and better adapted organisms are much more favored. In times of plenty,
even less competitive organisms may survive. This process is critical to evolution. If
the selective pressure is too high, then evolution becomes extremely directed towards
organisms solely adapted to that particular pressure, and gene diversity is sacrificed. If
the pressure is too low, meaningful evolution cannot take place, since no organism is
favored over the other.

In terms of a genetic algorithm, selective pressure determines the direction the
search takes. A very high bias towards favorable individuals may lead to stagnation
at local optima points due to loss of search diversity. On the other hand, no bias re-
duces the problem to a blind random search, and prevents the algorithm from converging.

The selection process is central to the NSGA-II algorithm, and distinguishes it from
other multi-objective genetic algorithms. The authors of the algorithm perform selection
by sorting the population using a Non-dominated sorting algorithm, and then using a
binary tournament selector to decide which individuals are to reproduce. We left this
process essentially unchanged from how the authors proposed it.

3.11 Parallelization & Optimization

We found that evaluating a single individual with respect to the 8 ImpBench benchmarks
and all 7 workload sizes and two input data sizes of 10K B and 1K B, took about 900
seconds on average. Therefore, given a population size of 20 and 200 generations, a
single run of the proposed algorithm would take 20 * 200 % 900/(3600 * 24) ~ 42 days to
finish. This runtime is quite unacceptable and needs considerable speeding up in order
to be feasible. It is this reason that we reduced the workload sizes to only consider
the worst case workload of 10KB EMGII. This reduced a single evaluation to ~ 126
seconds, thereby taking down the time taken to finish to about 6 days. However, this is
also quite long and needs more speeding up. One of the most promising techniques to
make GAs faster is parallelization.

There are several different techniques proposed in literature to parallelize genetic
algorithms [29], which broadly fall into three major categories. Using terminology of
Canttu-Paz [8], these are (1) Global single-population master-slave GAs, (2) Single-
population fine-grained GAs, and (3) multiple-population coarse-grained GAs. The
master slave approach is the functional equivalent of the non-parallel GAs. The master
performs the selection, mutation and crossover. Only the evaluation of the fitness
function is parallelized amongst the slaves. Since the entire population is considered
in selection, the GA is called “Global”. In the second parallelization approach, each
processor node is (ideally) assigned exactly one individual and is responsible for evalu-
ation, and mutation of that individual. Crossover can only occur between nodes that
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are close together. This process differs from the non-parallel version in that the global
population is never taken into account, there are just local interactions. Finally, in the
multi-population approach, also known as the island model, several sub-populations are
maintained, (ideally) one population per node. Each of these sub-populations evolve
more or less independently of each other with only occasional individual exchanges
known as migration.

Out of these three approaches, the first approach is the simplest to implement and
does not change the character of the Genetic Algorithm. Moreover, it is more suitable
for our problem given that the fitness evaluation is more time consuming by orders of
magnitude than other evolutionary steps, the dynamic nature of resources available (as
we shall see) and the small population size we chose. Therefore, we use the master-slave
approach to parallelize our Genetic Algorithm.

Ideally, in the master-slave parallelization, one would require as many computation
nodes available as the population size, i.e. 20 nodes. However, we did not have as many
processors available. Therefore, the final parallelization was as follows:

Let . Population size =N
Also, let :  Number of processors = P
=Number of configurations evaluted per step

= Number of time steps = N/P {Where P is a factor of N}
Note that:  Ideal speedup =N
Actual Speedup ~ N/(N/P) = P {Where P is a factor of N}

3.11.1 Parallelization Software

Several software libraries have been developed for writing parallel programs. the most
popular libraries seem to be MPI (Message Passing Library), RPC (Remote Procedure
Call), PVM (Parallel Virtual Machine) and Java RMI (Remote Method Invocation) [50]
[62]. Out of these, RPC forms the base of most modern distributed software packages,
and is an integral part of all Unix based operating systems and is used in many system
services such as the Network File System (NFS) and the Network Information Service
(NIS). It has also been implemented for other platforms. Although RPC does not have
advanced features of the other libraries such as Load Balancing (MPI, PVM), topology
support (MPI) etc, it has a lower latency and better bandwidth utilization than the
other libraries. It turns out that we do not need the advanced features and the simple
client-server paradigm of RPC suffices for our needs. Moreover, our objective was to
parallelize the Genetic Algorithm written in C++ without much change to the base
structure and using RPC and the associated tools simply meant the fitness function
could now be called as a remote procedure on multiple machines instead of a local call.
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Therefore, we use RPC for the parallelization of our GA code.

It should be mentioned that more complicated middleware such as CORBA also exist
for parallelization, but in our simple procedural program, these seem to be an overkill and
therefore were not selected for this work. However, it must be noted that a framework
such as Condor (a high-throughput computing software framework for coarse-grained dis-
tributed parallelization of computationally intensive tasks)[82], which can transparently
scavenge idle desktop computation cycles from a given heterogeneous network, could be
an ideal software for future implementations of this project.

3.11.2 RPC

RPC provides an interface that allows the programmer to call procedures on remote
machines as if they were local procedure calls. The caller is known as the Client and the
callee is known as the Server Figure 3.4. The programmer need only implement the client
program and the procedure at the server end. The rest of the code needed for the actual
data transfer can be created by using a protocol compiler known as RPCGEN[52]. RPC-
GEN automatically generates remote program interface modules based on descriptions
written in the RPC programming language, which resembles C in syntax and semantics,
and the output code is also generated in C language. In our case, the RPC description
file consists of a description of the chromosomal data, the additional variables used to
signal various error conditions and the program and version numbers. The latter num-
bers uniquely identify the kind of server process and reside in the RPC registry of the
server. Potential clients can query this registry to find a list of appropriate procedures
that can be called. The program has been written to take full advantage of this fact.
Automatic scripts have been written that periodically check the availability of free server
machines by checking the RPC registry of candidate machines with an option to start
the server processes remotely on available machines if not already started. It is this list
that is read periodically by the client to determine available machines.

RPC calls are synchronous (blocking), with the maximum call duration is bound by
a timeout value. However, multiple calls can still be made using forking/threads. In
our program, we use forking on the client side to spawn several processes, equal to the
number of free servers available at that moment. Each of these child processes makes
a procedure call to the fitness function implemented on a single server and blocks for
the duration of the call. The result from the server is then communicated via software
piping back to the main process. Note that we refer to 'clients’ and ’servers’ according
to the RPC naming conventions, and therefore our design consists of a single client and
several servers. This is a little counter-intuitive to the traditional notion of multiple
clients serviced by a single server.

Besides ease of development, one of the advantages of using RPCGEN is also that
the client and servers interact through the standard interfaces created by RPCGEN.
This means that a particular client can work with multiple implementations of the
server on different platforms. This makes the design very modular and flexible - If for
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Figure 3.4: Schematic of a remote procedure call

example the processor configurations need to be evaluated differently, or using different
simulators, then only the server implementations need to be changed; the client may
only need an adjustment in the timeout values.

In order to identify the overheads of parallelization, we did some timing measure-
ments? of different parts of the code. Successive calls to the timer without any code in
between gave an average value of 1e—06 seconds. This is the error of the timer, and must
be kept in mind when comparing actual measurements. An empty RPC call 3, where
a client calls a server function, which returns immediately, gave an average of 0.00036
seconds. This time includes the time for establishing connection, marshalling data, data
transfer, and coping standard values to the return object at the server. Finally, the one-
time average IPC setup time (starting and registry of server process) was 0.130 seconds
and the parallelization overhead on the client (housekeeping of free machines available,
forking etc.) was 0.130 seconds. Clearly, all these overheads are negligible compared to
the execution time of the simulator.

3.11.3 Computing Resources Available

Due to administrative reasons, the resources available for computation were limited to
the laboratory workstations. These workstations are networked and shared by several
users. Therefore, we needed to setup the system to utilize the idle computation resources
of the workstations without disturbing other users. Therefore, the experiments were run
as low priority processes. Furthermore, these computers being public, could be switched
on or off anytime. To guard against this, the client process was run on a machine that

2all measurements are averages with a sample size of 20
3both on localhost and on other machines
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was not allowed to switch off, and, a script was run on this “always-on” machine that
periodically checked for machines that were on, but did not have the server process
running. The script automatically started the server process on these machines which
would then be discoverable by another script that periodically fed a list of available
machines to the client. In addition to the need for switching on server process to increase
availability, it might also happen that the server process dies during a call from the
client, for example due to the machine being switched off. If the server exits gracefully,
the client gets back an error code; if it does not, the client will experience a timeout
with respect to that particular server. To handle this, the client has been configured
to re-execute failed server calls. However, to guard against too many re-executions
due to errors such as the simulator failing at some input combination, only a single
re-execution per individual is allowed. If even the re-execution attempt fails, that
individual is marked as having a constraint violation and hence gets weeded out of the
population by the algorithm. The estimation for total execution time should include
the (optional) re-execution time for each generation.

An unexpected obstacle we faced was that the initial machines used for testing ran
Fedora 8 Linux. On these machines, the RPC services could be started and listed by
all users. However, on machines running newer versions of Linux, root privileges were
needed. Due to security reasons, these could not be enabled. Therefore, the configura-
tions finally used were AMD Athlon(TM) XP 2400+ @ 2000.244 MHz, with a cache size
of 256 KB, running Fedora 8 Linux. Note that one of the factors in the large computation
time is certainly the age of these machines.

3.12 Real Time Constraints

Real life implants are likely to have real-time demands on the processor performance.
For example, the processor must gather sensor data periodically, process it and perform
other tasks such as data transmission and storage. All this, it must do before the
next batch of data becomes available. In such cases it is important to design the
processor with these constraints in mind. In terms of design points, this means that
some lower-performing processors, would be eliminated from the trade-off spectrum
even though they are might have good power characteristics. In order to demonstrate
how real-time constraints can be incorporated into our design, we chose an artificial
constraint of 1 minute. As we shall see, this was a very loose constraint and did
not shape the results appreciably. Therefore, in order to further study the impact of
realtime constraints, we then ran the experiment for several other constraint values.

A conceptual implant loop given by Strydis[74] is shown in Figure 3.5. We
chose miniLZO, rc6 and checksum as the compression, encrypion and data-integrity
applications respectively. The 'DMU application’ in the block diagram actually refers
to additional processing applications. Keeping this in mind, we substitue DMU in the
block diagram with the newly created stressbenchmarks. As described previously, the
stress benchmarks constitute the worst case single iteration of the DMU and motion
benchmarks, processing 10KB of data. For each processor configuration, we run these 5
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Figure 3.5: Conceptual execution cycle of a typical implant application

applications and find the total simulated time (i.e. time it would take for the benchmarks
to run on a real processor with that particular configuration). If this time violates the
realtime deadline, a constraint violation is generated, and that configuration is deemed
unacceptable. However, the metric the algorithm optimizes remains the original 8 bench-
marks of the ImpBench suite — so that comparisons can be made between the two results.

3.13 Additional Features

Even though automated scripts take care of managing the client and servers, failures
do occur occasionally. In such a case, it is helpful to be notified immediately of the
error than manually checking on all the clients and servers, specially considering the
long execution time of the program. Therefore, the client and server have a configurable
feature to notify by email such errors with an error report and detailed log files. It is
also useful to keep track of the results, and these and the associated plot files can also
be emailed every few generations.

As mentioned before, processor evaluation takes up a significant time. Therefore, the
problem might benefit from caching the objectives of previously evaluated individuals
from past generations in case the individuals survived in future generations. Therefore,
no individual would be evaluated twice. Since this was done with the inbuilt C4++
‘map’ class, the cache lookup was very efficient and justified the extra time it took
every population evaluation. This version with result caching was run 5 times to take
into account the fact that different runs evolve different individuals. It was observed
that in practice, the actual number of cache hits was only about 2% of the individuals
evaluated. Therefore, caches do not benefit this particular problem, and were turned
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off for subsequent runs. This result also shows that in nearly all population transitions,
the newer individuals created through mutation and crossover were found to be better
by the selection mechanism.
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Experimental Results

Before we discuss the results, it may be helpful to visualize the sort of results that are ex-
pected for the problem. Consider a hypothetical problem that has as its Pareto-minimum
front a plane (say P) cutting across the x,y and z axes as shown in figure 4.1. Let this
Pareto front be unknown, and that we wish to approximate this front through a genetic
algorithm setup as described in this work. By definition, since P is the Pareto-minimum
front, all other points that satisfy the problem must be greater than or equal to the
points on P. Therefore, only the region above and including P is the feasible region. The
genetic algorithm starts with randomly chosen (feasible) points in the solution domain
which forms an approximation (say P’) of the front we are seeking. In subsequent
generations, the algorithm tries to modify points included in P’ such that P’ moves closer
and closer to P. After a sufficient number of iterations, we expect the algorithm to have
moved close enough to the true front for our purposes, and we finish this iterative process.

Note that although our problem may not have a straight forward front as in the
above mentioned hypothetical problem, we should be able to observe the solution fronts
converging in a particular direction, towards a (not necessarily regular) surface.

The population size of the genetic algorithm restricts the number of points N’ in
P’. In theory, P has N|N >> N’ points. Therefore, in order to be a good solution, P’
must not only be close to P, it must also capture the shape of P accurately. The latter
is ensured if the points in P’ are spread out evenly over a large range of values. These
two qualities are independent of each other, and we must take into consideration both
of them when comparing potential solutions.

Figure 4.2 shows a more realistic design space and Pareto-front for a minimization
problem. Note that the Pareto-optimal front is discontinuous. Figures 4.3a and 4.3b
each show two potential solutions, the former with design points that are already at the
actual front, but they are clustered and the diversity is not so good. On the other hand,
the latter solution has a good diversity but the convergence is not that good. A better
solution would be one that strikes a good balance between these two extremes.

So far, we have only talked qualitatively about the expected solutions. However, we
also need a way to quantitatively describe the relative merits of the solutions obtained.
Most of the existing methods use the actual Pareto points as a reference to evaluate the
merit of a solution. However, in a real-world optimization problem like ours, the true
Pareto front is not known. In this case, we can not directly compare the solutions to the
optimal Pareto-set to gauge their relative merits. Therefore, we shall vary the reference
solutions depending on the solutions we are trying to compare. For example, when
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Figure 4.1: Direction of convergence towards the true front in a hypothetical and ideal-
ized minimization problem

Figure 4.2: The design space of a minimization problem (blue) and it’s convex, discon-
tinuous Pareto front (green

comparing fronts from two different generations of the same run, we use the front from
the final generation as the reference solution. Furthermore, note that since each of the
three objectives have different ranges, we normalize each objective in both fronts with
respect to the extreme values of the objective in the reference front, before applying the
metrics described below.
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(a) The red points represent the Pareto front found.(b) The red points represent the Pareto front found.
The front has a good distance but poor diversity The diversity is good, but the distance is poor

We shall use Veldhuizen’s Generational Distance (GD) metric [85] to quantify the
distance between the obtained solution and a reference front:

Lo .
C—ain P (@) _ px (R)yp
Let d; = min mEZI(fm ) (4.1)
1/p
(2% a7)
Then, GD = ] (4.2)

Where @ is the solution under consideration; P* is the reference Pareto-front; M is
the total number of objective functions; and, fm(x) and f*m(x) are the m'™ objective
function values of the x'" solutions of @ and P* respectively. Note that since the
different objectives are added to each other, they need to be normalized before use.
A lower value of GD indicates a better solution, with solutions lying on the reference
solution having GD=0.

For evaluating diversity, there exist Schott’s [65] and Zitzler’s [89] metrics. The
former metric gives an estimate of the relative spacing between the points in the
solution, considering a uniform spatial distribution as the ideal:
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Here, d is the average of the distance measure d;. Although it measures the relative
spread of the solutions, this metric does not take into account the actual ranges
obtained. Therefore, we need the 2nd metric:

M 2
[¢]
Zitzler’s Metric: Sy = E (Tr'L%:Ufm mmf @) ) (4.6)

m=1

This metric calculates the length of the diagonal of a hyperbox formed by the extreme
function values observed. Therefore, it is a measure of the objective ranges but it does
not take into account the solutions in between the extreme values; thereby necessitating
the spread metric.

Deb et. al propose a single metric [18] for evaluating diversity that can be used in
place of the above 2 metrics. We use this metric for our analysis:

QI

Zde +Z|d —d|
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(4.7)
Z ds, +1Qld
m=1

Where, d; is the same distance metric described for GD, and d is their mean. Also,
d¢, is the distance between the extreme solutions of P* and @ with respect to the m'h
objective. However, this metric is closely tied to the true Pareto solution and needs
many points in the true set to give an accurate picture. When we tried this metric for
our data sets with a reference solution other than the true Pareto optimal solution, we
found it is very sensitive to even the smallest changes in 1 parameter and gave very
noisy results that are harder to compare (see Figure 4.4). Therefore, for some of the
results, we needed to smooth the data across generations in order to see macro-trends —
conclusions must be drawn compensating for this approximation.

Looking at equation (4.7), we find that it incorporates both the distances between
points within a solution front, and the distance between the solution front and the
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Figure 4.3: Pareto fronts found at various generations (Benchmark: Checksum, 10KB)

reference front. These two quantities are independent of each other and in our
opinion, may not always accurately represent the situation when simply added together.
Further study into this metric, or, proposing a new metric for comparing solution fronts
(specially in the absence of reference fronts) can be an interesting topic for further study.

The sections in this chapter are grouped as follows: First, we describe the exper-
iments to improve the performance of the tool. These consist of setting appropriate
number of generations and choosing a crossover probability. Then, we present the front
obtained by running all the benchmarks and a single workload size. We will analyze
all subsequent results with respect to this solution. This is followed by experiments
for improving the results obtained — Changing workload sizes, and an analysis of the
benchmarks. We then demonstrate the tool’s modularity by adding an additional
requirement — that of real-time performance. This also validates the tool to an extent.
Finally, as a case study, we analyze the actual processor configurations found in the
context of real applications.

Unless otherwise stated, the workload is EMGII with an input data size of 10KB.

4.1 Selecting Number of Generations

As mentioned above, genetic algorithms start with an approximation (P’') of the true
solution (P). In each generation, the algorithm attempts to improve P’ so that the
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Figure 4.4: The distance metric fluctuates widely

error between P and P’ becomes smaller. Therefore, the more the generations we allow
the algorithm, the more confident we can be of being ’close enough’ to the true front.
However, more generations means a longer run-time of the algorithm. Hence, we need
to trade off (possible) accuracy of the solutions for efficiency.

In order to see the relation between accuracy of the solution and number of
generations, we ran the fastest benchmark, checksum, for 1000 generations. Although
our goal is to optimize across all the benchmarks, checksum being the fastest gives us an
indication of the number of generations required without being prohibitively expensive
to run.

Figure 4.3 shows the solutions found at some of the early generations of algorithm,
as well as the last solution found - at generation 1000. The performance, power and
area units, are —1 x IPC, average power in mW, and approximated area in mm?
respectively. We see that the algorithm starts with a random collection of points,
and as the generations progress, the shape of the front increasingly resembles that of
the final front. At generation 80, the solution points already have a good range and
are very near the 1000th front. Also, the difference between the starting generations
and the 80th generation is much more than that between the 80th and the 1000th
generation. Around this stage, the algorithm starts concentrating on increasing
diversity in the solutions found — i.e., a more uniform spread along the Pareto front.
Let us consider a generation a little further on — a closer comparison between the
100th and 1000th generations can be seen in Figure 4.5. As can be seen, the 100th
generation continues the trend seen in the previous generations. It takes only 10% the
time taken by the 1000th generation and still manages to be very close to the final result.

In order to see the above observations quantitatively, we calculated the distance and
diversity metrics as given in equation (4.2) and (4.7) respectively. Figure 4.6 shows these
values calculated for the entire run of the algorithm; keeping combined Pareto solutions
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Figure 4.5: Comparison between solution frotns from the 100th and 1000th generations
(Benchmark:Checksum)

from many runs as the reference front. We found both metrics to be very noisy, specially
the diversity metric (see figure 4.4). Therefore, to make them easier to compare, we
smooth the data using a moving average with a span of 20 generations.

We find that the distance metric (GD) declines rapidly until about the 100th
generation, after which it fluctuates around GD=0.4 for a long time until finally
dropping to zero around generation 600. The rapid decline is of course due to the
solution fronts converging towards the reference. After generation 51, it can be seen
that the general trend is that as spread decreases, distance increases and vice versa. The
behavior from generations 100-593 are also expected - as the algorithm searches for new
solutions, the distance fluctuates. A minor rise in both GD and spread may not mean
that the front is actually further away than the one previously — since we have finite
points in the reference front, points that are the same distance from the actual front
may give slightly varying distance values from the reference front. The behavior at the
tail end reflects the fact that the reference solution is a combination of several solutions,
and therefore also contains the final solution of the run in question. The apparent
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Figure 4.6: Smoothed distance and diversity metrics over 1000 generations (Benchmark:
checksum)

rapid convergence seen therefore, is in fact the algorithm moving towards its own final
solution — a foregone conclusion. Therefore, we do not consider this region in our analysis.

Since after generation 100, the algorithm seems to oscillate between improving spread
and distance at the cost of the other; without loss of precision in both quantities at the
same time, we can stop the algorithm around generation 100. Since GAs are random by
nature, in order to be sure of getting good results, we run every subsequent experiment
for twice this time, i.e. — 200 generations. This also compensates for the smoothing we
performed.

4.2 Selecting Crossover Probability

Selecting a good value for crossover probability (p.) leads to a faster convergence of
the algorithm. The mutation probability was fixed to p,, = 1/n = 0.0769 as decided in
section 3.8 [p. 31]. The crossover probability was varied from 0 (never perform crossover)
to 1 (always cross parent genes) with a step size of 0.2 in order to examine the effects of



4.2. SELECTING CROSSOVER PROBABILITY 51

o _o0_0_o_o of
< o o 20 0 o
[T T TR T T

0.01 L L L L L L L L L 0.75 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

(a) Distance metric (b) Diversity metric

Figure 4.7: Distance and Diversity metrics for various crossover probabilities (c_p)
(Benchmark:checksum)

different crossover probabilities on the final result. In this section, we discuss the result
of this experiment and select a value of p. for the subsequent runs of the algorithm.

Note that the aim is to select a crossover probability such that the algorithm
converges faster towards the ideal front. Since running our original problem with all
the benchmarks is prohibitively time consuming, we run the crossover experiment on
a subset of the original problem — with only a single benchmark (Checksum), and use
the value of crossover probability suggested by this experiment for solving the bigger
problem. Although this might not give the optimal crossover probability for the original
problem, it will give a value that is good enough. As genetic algorithms are by nature
robust to parameter selection, and work well enough with “good enough” values, this
approximation is not likely to affect the result much. Checksum was chosen for the
experiment as it is the fastest running benchmark of all the benchmarks. In addition,
the population size was fixed at 20 individuals, and for each value of p., the algorithm
was run for 200 generations.

We found that it is harder to visibly inspect the fronts found to see which probability
evolves fronts faster '. Therefore, we created a combined Pareto front from all the
crossover probabilities. We then computed the GD and spread metrics with respect
to this combined front for each generation of the algorithm. Figure 4.7 shows the two
metrics. Note that these are the un-normalized, un-smoothed metrics. They appear less
noisy due to the fact that the number of generations plotted is much lower. We see from
the graphs that ¢p = 0.2 and ¢p = 0.6 both seem to perform the best in terms of distance
and spread. Therefore, we choose a crossover probability of 0.6.

!Nevertheless, actual comparison fronts can be found in our paper[15]
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4.3 Combined Optimization for ImpBench

With the setup tuned as above, we run an exploration to find optimal processor
configurations for the 8 benchmarks in the original ImpBench suite (refer Chapter 2).
Each individual is evaluated against all benchmarks, and the algorithm optimizes
the average performance, power and area across these benchmarks. Assuming the
benchmarks cover the application spectrum, optimizing for the average of the individual
benchmark’s metrics ensures that we get processor configurations that are expected to
work well with any real life application.

Figure 4.8 shows the Pareto front found. Although we optimize —1* I PC, the figure
reports I PC' as this is the actual measure. The area axis are shown on a logarithmic
scale because it varies widely, and we want to emphasize the points found at the
lower end of the axis. Each point is a different processor configuration, and is labeled
identically in each of the views.

The various processor configurations corresponding to the above figures are shown
in Figure 4.102. Given the objective trade offs and the corresponding processor config-
urations, appropriate design points can be chosen. A case study on selecting processor
configurations from this data by considering real implant applications is presented in
Section 4.7. We shall also use this Pareto set as the baseline with which all subsequent
results will be compared.

4.4 Impact of Workload Size

By default, we ran our experiments with 10KB of input data. In order to see the
impact of changing the data size, we also ran some experiments with 1KB of input data.
Moreover, if we find that the two data sizes do not differ much in terms of output ranges,
future experiments can be run with 1KB data without much loss of precision, and with a
reduced runtime — while 10KB data takes on an average 541 seconds to evaluate a single
individual for all benchmarks on our machines, the 1IKB data takes 349 seconds, a 35%
improvement.

Figure 4.9 shows the comparison between the fronts evolved using the two different
data sizes. We see that while the shape of the 1KB front follows that of 10KB, the
1KB processor configurations are in fact 'worse’ — in general, they have higher power,
more area, and lower performance. For example, consider Figure 4.9b. For I PC falling
between 0.05 to 0.3, The power and performance figures are nearly identical for the two
data sizes. However, for relatively higher performances, i.e, IPC' > 0.3, the 10KB data
size is able to deliver better performance in terms of power. Similarly, for the other
pairs of objectives, the 10KB points in general appear to dominate the 1KB points. We
also see similar trends for these two data sizes in Section 4.5

We believe the above behaviour may be due to the fact that the 10KB data size is

2Note: Bimodal size, BTB sets and BTB associativity are only valid for branch type of Bimodal
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Figure 4.8: Pareto front optimizing all benchmarks

better able to fill the cache and branch tables, and thereby has fewer processor stalls,
hence giving better performance for the same power/area and vice versa. As a future
study, it would be interesting to study more input data sizes.
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4.5 Extension with Real Time Constraints

As this was one of the first steps towards designing an implant processor, we wanted
to make sure that the framework was extensible, in order to facilitate the addition of
new domain specific information into the framework as it gets available. In order to
test this property of the framework, we devised a synthetic implant application with a
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Figure 4.9: Pareto fronts evolved with workload sizes of 10 KB and 1 KB

hard realtime deadline. Indeed, many implant applications have realtime requirements
so formulating a synthetic problem with such a constraint does not fall far from practice.
We used a modified version of the DMU and Motion benchmarks (called StressDMU
and Stress-Motion respectively)[16], to represent a single iteration of these (repetitive)
applications. Further, this iteration was chosen to be the worst-case iteration (in terms
of instruction-cycle count) for each of the two original benchmarks. Combined with data-
integrity checks, compression and encryption, the stress benchmarks represent an atomic
action for an implant application from data collecting, processing, to transferring. In a
real application, this atomic action must be finished, for example, before the next set of
input arrives. Therefore, we constrain the total time required for this combined operation
as a hard realtime deadline. We use 1KB data input sizes, because, as we studied before,
they run faster while giving the same general trends as the 10KB data — except for a
smaller performance distribution (at the higher end). Since realtime deadlines cutoff
performance at the lower end, this is not a problem.

We started with a relaxed initial deadline of 60 secondsFigure 4.11. We notice that
the front evolved with this deadline has almost the same ranges as the one without any
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Figure 4.11: Fronts created with and without realtime deadline. This one has a very
relaxed deadline, therefore, not much change can be seen in terms of ranges.

deadlines, except perhaps being more defined (possibly because the search space has
been reduced). We then ran successive experiments with tighter deadlines. We observed
that sharp cutoffs could be seen at the lower end of performance with tighter deadlines.
In Figure 4.12 we show two of the strictest deadlines to showcase the cutoffs. This
behaviour is exactly as expected - with tighter deadlines, only those processors that can
deliver higher performance to the applications remain feasible.

4.6 Comparative study of the benchmarks

So far in this work, we have used the benchmarks to rate processor configurations.
We propose that we can also use our tool to characterize the benchmarks themselves.
The idea is that each benchmark, with its own power and performance behaviour,
and different ways of utilizing the processor components, will lead to different fronts.
Based on the comparison between benchmark fronts, we can draw inferences on what
processor configurations the benchmarks favour, and how applicable a benchmark would
be in a given scenario as compared to another from the suite. Here, we shall present
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This is clearest in the Power-Performance graph

an overview our findings. A more in-depth study, including comparisons of the actual
hardware configurations evolved, can be found in [79].

Figure 4.13 to 4.15% show such fronts found for each of the benchmarks, with
the benchmarks grouped by category (encryption/data integrity/compression/real
applications/stress). Table 4.1 shows the relative distances and spreads of these fronts
from the standard front of Section 4.3. We refer to the latter as the all or average case
(as it evolves to optimize the average figures from all benchmarks).

Analysis the above graphs and table has revealed new information with respect
to the coverage of the design space and the hardware implications contributed by
each ImpBench component. Results indicate that, from the lossless-compression
benchmarks, "mlzo” provides better GD and similar A to ”fin”. On top of this, it also
features faster simulation times (about x3 faster, according to Table 4.1). From the

3Note that the performance metric in the axes is CPI, the inverse of IPC — in order to be consistent
with [79]
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Benchmark GD A Sim. time*

(normalized) | (average) (sec)
miniLLZO 0.082 0.383 3.07
Finnish 0.115 0.367 21.82
MISTY1 0.083 0.181 16.65
RC6 0.049 0.151 9.37
checksum 0.090 0.189 0.80
CRC32 0.111 0.285 5.46
motion 0.094 0.163 31.16
DMU4 0.085 0.174 37.25
stressmotion 0.088 0.266 1.33
stressDMU3 0.105 0.143 0.60
all 0.000 0.000 125.58

Table 4.1: Pareto-front distance and normalized-spread metrics and average simulation
time per benchmark.

symmetric-encryption benchmarks, ”"rc6” displays excellent characteristics, namely the
smallest GD and the second best A, meaning that it traces the aggregate Pareto front
with high fidelity. According to Table 4.1, it is also about twice as fast as "misty”. Of
the data-integrity benchmarks, ”checksum” performs consistently better than ”cre32”
and features the overall shortest simulation time (0.80 sec) across all full benchmarks.

As for the synthetic-benchmarks case, no single benchmark could be unanimously
ranked higher due, mainly, to the complex nature of the results. This actually shows the
usefulness of both real benchmarks which, also, feature similar simulation times (and
the largest in the whole suite). Also, looking at the new stressmarks, we can see that
although they display some variability in predicted processor specifications w.r.t. the
full synthetic benchmarks, they both track the true Pareto front closely. Careful use of
the stressmarks can seriously reduce simulation times up to x30, which is an impressive
speedup and a good tradeoff between DSE speed and accuracy.

4.7 Case Study with Real Applications

We have already listed the specifications of a few real implant applications in Chapter 2,
Table 2.2. In this section, we briefly show how our design points compare to these
applications. A more detailed study is left as future work. We use the baseline results
of Section 4.3 for our study. However, the baseline optimizes the average of the
benchmarks run. In order to make a comparison, we ran the processors in the baseline
set on the same 'conceptual SiMS application’ as was used for the realtime constraints
— a combination of miniLZO, rc6, checksum, stressdmu3 and stressmotion. We find the
combined behaviour of these benchmarks and use this for comparison.

Since the performance metric of the applications in Table 2.2 is in terms of single
loop execution time, we use the time taken by the simulated processor to run our
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Figure 4.15: Comparison of benchmark pairs - III (Stress Benchmarks)

conceptual application as the single loop execution time. Figure 4.16 shows our design
points and the case study points, where the case study points are labeled according to
the numbers in the table. From such graphs, we can design generic processors that can
cover most, if not all of the studied applications.

Let us make a short analysis. We notice that configuration #A and #E are
dominated by most of our processor points in all three dimensions. Therefore, we can
easily replace this application by one of our processors. We found that #B is dominated
in terms of execution time and area but not in terms of power. Looking at the
application [23], we see that #B is connected to an external power source. Therefore,
power is not an issue for this application, and any of the processors that dominate
it may replace it. Furthermore, we see that #D and #F are both over designed on
performance - the actual applications are gastric pressure monitoring and monitoring
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Figure 4.16: The objective space for our designs and the real implants

of AEG, which do not change very rapidly. Therefore, in our opinion, processor points
with slightly higher execution times can also safely cover these applications. As for
point #C, we find that no processor points in our design space can deliver the high
performance needed by the application. However, looking at the area and power axes,
we see that #C has considerably more area margin than our designs and more power
than #1, #5 and #2. Therefore, if our hypothetical SIMS processor were to be used for
application #C, we could use the extra power and area budget for an extra hardware
accelerator to deliver the performance required. Keeping this analysis in mind, we
can use processor design #1 or #5 for applications #A, #B, #C, #D and #E. As
for application #F, we can use #7, which can also be used for #A, #B, and #E.
Therefore, we can develop these 2 processor configurations as the generic processors
we were searching for. However, these results are considering the XTREM simulator
which is based on the XScale processor family. We expect a much better behaviour
in future when we will use processors more suitable to low power embedded applications.



Future Work and Conclusions

5.1 Conclusions

In this work, we presented a framework for multi-objective design space exploration of
implantable processors. This section, we highlight the major features of the framework
and summarize the results obtained from using it.

5.1.1 Framework

Multi-objective design space exploration can help designers in making intelligent choices
about processor design by making available the Pareto optimal set of processor config-
urations. In our case, the optimality criteria was based on minimizing power and area
and maximizing performance. We saw that genetic algorithms are best suited for such
design space exploration, and we chose to use a popular state-of-the-art multi-objective
genetic algorithm (NSGA-II). This algorithm is supported by a cycle-accurate simulator
(XTREM) and a cache-simulator (CACTI), which together simulate the three objec-
tives. Interface scripts connect the algorithm and simulators. The major features of the
framework are summarized as follows:

Parallel The framework was parallelized using RPC, with a single “client” running the
evolutionary part, and multiple “servers” for the computation-intensive simulation.

Modular The client-server model and the supporting script interfaces ensure that we
need only change the interfacing script in order to change the simulator.

Configurable The framework is highly tunable, and reads all of its properties through
simple configuration files. This includes both the parallelization properties (list of
allowed machines) and genetic algorithm properties such as the number pf opti-
mization variables, their size and ranges.

Scalable The above two properties also make the framework scale very easily with the
number of computing resources available. With the population size of 20, the
speedup is almost [20/N] with N machines available for use.

Adaptive and Reliable The network is periodically checked for free machines out of
the list of possible machines. The framework also periodically tries to start new
server processes in idle machines. In case a machine fails midway in simulating
a given individual, re-computation is attempted on another machine. In order
to prevent possibly infinite re-computations due to bad processor configurations
that themselves cause the server to fail, the number of times re-computation is
attempted is fixed to a pre-configurable number (2 in our case). In order to prevent
network related losses, the TCP protocol is used for data transfer.
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5.1.2 Experimental Results

After designing and implementing the framework, we used it for various experiments.
These are summarized as follows:

Selecting number of generations We introduced the distance and diversity metrics
which have been proposed in literature for comparing the ideal Pareto front and
solution fronts from using multi-objective genetic algorithms. However, we use
these metrics to analyze the quality of the solutions found (in a reduced problem)
over the generations, in order to determine how long we need to run the algorithm
for (for the full problem). We found that the algorithm solution front rapidly
approaches the Pareto front until generation 100 after which the front stabilizes and
does not seem to improve one metric much without degrading the other. Therefore,
we select the number of generations equal to 200 as a conservative measure. As far
as we know, these metrics and such an analysis has not so far been used in order
to set the number of generations.

Selecting crossover probability The crossover probability was set by comparing the
diversity and distance metrics of the fronts found by various crossover probabilities
with a combined front (approximating the ideal front) found by running many
instances of the (reduced) problem. We believe such an analysis is also unique to
this work.

Changing workload size We experimented with changing the workload size from the
default of 10KB to a lower size of 1KB, in order to see if we could speedup the
framework by using the lower size. We found that the larger workload gave a higher
performance for the same power/area as the smaller size. Since the characteristics
were noticeably different, we continued to work with 10KB data.

Addition of realtime constraints Realtime constraints were added to the framework
as a constraint violation in the genetic algorithm; and formulated as the maxi-
mum time allowed to finish an envisioned task consisting of one encryption, one
compression, and one data-integrity benchmark along with two real-world stress-
benchmarks. Starting with a time-constraint of 60 seconds, where we found was
met by almost all benchmark configurations; the constraint time was incrementally
lowered. At violation times of 2 seconds and 1 seconds each, we see clear cut-offs
(as compared to no-constraint run) at the lower performance end, with a more
severe cutoff for 1 second than for 2 second deadline.

Characterization of benchmarks We used the framework for studying the bench-
marks in the extended ImpBench suite. Separate Pareto fronts were independantly
evolved for each of the benchmarks. These ‘benchmark’ fronts were presented in
relation to the front evolved through the optimization of the combination of all
original ImpBench benchmarks (‘average front’). Designers can use such a charac-
terization in order to choose which benchmarks to run. For example, it can be seen
that stressDMU3 has very competitive spread and distance metrics while having
the lowest run-time of all the benchmarks. Therefore, if a designer were to use
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only stressDMU3 instead of the entire suite, he would save 99.5% of the runtime
while maintaining comparable accuracy in the fronts obtained.

Choosing generic processors Finally, we compared 6 real-life implant applications
to our Pareto front. By looking at the points in the Pareto optimal front that
dominate the real-life implants, and by making case-specific design allowances (for
example in one application, power is not an objective), we propose a set of 2
processors that between themselves can meet the requirements all these real-world
implant scenarios.

5.2 Future Work

Throughout this work, an attempt has been made to identify improvements that can be
made, or further experiments that can be done. In this section, we list some of these
grouped by various categories.

5.2.1 Framework Improvements

In this section we list some of the features that are needed, and some experiments that
may (or may not) improve the framework itself.

5.2.1.1 Algorithmic Improvements

Some of the experiments that can be tried with the genetic algorithm are:

Solution Preservation Currently, the algorithm only maintains the solution as the
evolving population. Therefore, the final solution can only be as large as the
population size. Therefore, some points that are actually non-dominated may be
lost in favour of others that, for example, may be improving the diversity of the
overall solution. A useful improvement would be to save a separate set, unrestricted
by size, of all the non-dominated points.

Real Variable Encoding It may be interesting to see if the convergence or quality
of the solutions improve if the variables are encoded as real variables instead of
binary as they are in this work. Real encoding per variable with an appropriate
crossover operator can stop crossover from disrupting the contents of the variables,
thereby preserving more information. This may nor may not be useful, but is a
simple and interesting experiment.

5.2.1.2 Parallelization Changes

The current framework uses Remote Procedure Calls for parallelism. However, newer
versions of Linux do not support user-mode RPC. Therefore, the parallelization
framework needs to be changed to a more supported library. In order of desirability,
this new framework can be — MPI (least effort), XML-RPC, or Java RMI. The last two

also contribute in making the system more modular.
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5.2.1.3 Increasing Modularity

Although much attempt has been made in the current work towards modularity, the
following additional changes may be incorporated for further improvement:

Object Oriented Approach From the experience of the present work, we believe con-
verting the framework to an object oriented approach will go a long way in making
the system more modular. As our final goal, we would like to support many dif-
ferent simulators. This is made much easier by the template based object oriented
approach — users may submit their own fitness function object, which can be more
modularly (and dynamically) loaded on to the framework.

XML support An alternative to the above approach is support for standard XML
interfaces to the framework — users may submit their own simulators following the
XML template.

Both of these approaches also make it possible for the users to run their own
(possibly propriety) simulators on their own systems, and use our genetic framework
remotely.

5.2.1.4 New Analysis Metrics

We found that metrics for comparing Pareto fronts were not very well studied, with
each author giving their own metric for comparison. A single good metric for represent-
ing the quality of a Pareto front, in the absence of the ideal front for reference, is needed.

5.2.2 Accuracy and Granularity Improvements

The results given in this work are limited by the accuracy of the simulators we use,
which were a legacy from previous work in the project. Future work in the project may
improve the accuracy/granularity of the results by the following means:

5.2.2.1 Better Cycle Accurate Simulation

We found many issues with the XTREM simulator:

e Changing frequency is not supported

e Memory leaks — running XTREM through a memory checker tool shows many
memory leak problems

e Area analysis is not supported thereby necessitating the use of another simulator.
Simulation of core-area would be appreciated

Therefore, work has already begun to use the Xeemu[37]| simulator, which is an
improvement over XTREM.
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5.2.2.2 Support for Synthesis

Although we model a lot of the simulator features, we can get more accurate results if
we also support synthesis. Lisatek [40] is a tool developed by CoWare that may help in
describing modular components that can be encoded into the design space explorer, at
the same time providing support for synthesis.

5.2.3 Support for Additional Features
5.2.3.1 Variable Frequency

As mentioned before, XTREM does not support variable frequencies. In subsequent
explorations, we would also like to include frequency as part of the exploration.

5.2.3.2 Instruction Sets

We do not have support for changing instruction sets in this work. Lisatek, one of
the new simulators under consideration, supports changing instruction sets. However,
modeling instruction sets such that they can be changed by an automated design space
explorer may make for challenging and interesting future work.

5.2.3.3 Reliability

Reliability is an important requirement of the SiMS processor. We would like to have
reliability as one of the design space exploration objectives, so that we make design
decisions based on optimal tradeoffs between reliability and power, performance and
area. However, there is no easy method to model reliability such that an automated
framework can selectively introduce various grades of fault tolerance.

5.2.3.4 Processor Sleep and Performance states

Many embedded processors have one or more ’sleep states’. During time of inactivity,
the processor switches off some components in order to conserve power. This comes at
a loss of performance as it usually takes some time to restore the functionality when
required. Similarly, some processors also support voltage/frequency scaling in order to
tradeoff power and performance. These states may become very important in a resource
constrained application such as implants. Therefore, it would be interesting to model
these for exploration.
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Abstract—The demand for biomedical implants keeps in-
creasing. However, most of the current implant design method-
ologies involve custom-ASIC design. The SiMS project aims to
change this process and make implant design more modular,
flexible, faster and extensible. The most recent work within
the SiMS context provides ImpEDE, a framework based on a
multiobjective genetic algorithm, for automatic exploration of
the design space of implant processors. The framework pro-
vides the processor designer with a Pareto front through which
informed decisions can be made about specific implant families
after analyzing their particular tradeoffs and requirements. A
highly efficient, parallelized version of the genetic algorithm
is also used to evolve the front and has as its objectives the
optimization of power, performance and area. In addition, we
illustrate the extensibility of our framework by modifying it
to include a case study of a synthetic implant application with
hard realtime deadlines.

Keywords-Design-space exploration; simulation; optimiza-
tion; genetic algorithms; biomedical microelectronic implant;
power consumption

I. INTRODUCTION

Each company aims at organizing its design process
around frameworks that allow for reuse of previously gener-
ated knowledge, leading to quicker development and shorter
time to market. This need for reutilization has, surprisingly,
not touched medical implants which — as shown in [1] —
are more often than not, still developed from scratch. Yet,
ballooning healthcare costs and increasing social debates
on medical spending make this practice quite unacceptable.
Besides, the faster new implants come to the market, the
more patients benefit both in terms of quality of life and
reduced cost.

From an engineering standpoint, medical implants con-
stitute one highly resource-constrained class of embedded
systems. For example, an implant must be small enough to
fit into the implantation site. The peak power consumption
must not be so high that the processor heats up and damages
the surrounding tissue. Since frequent surgery to replace
batteries would be detrimental to the quality of life of the
patient, as well as very costly, the system must last long
enough to provide its task without running out of power.
Most implant applications perform real-time monitoring
and/or control, therefore, the implant must be able to handle
these without failing. Most importantly, since the application

may be life-critical, the system must be extremely fault-
tolerant and reliable.

A core component of an implant, its processor must
also fulfill all the above criteria. Given these strict design
limitations, currently existing, general-purpose processors
are not ideal for implant applications. There is, instead,
a need for new processors that are better suited for use
in a wide range of implant applications. Accordingly, and
as part of the ongoing SiMS project [2], effort has been
put on developing a novel biomedical-implant processor.
Optimal cache and branch-prediction subsystems for this
processor have already been studied in [3], [4]. These studies
have offered many design insights yet provide local and,
by necessity, biased optimizations. It is, yet, well-known
that the global optimization of multiple design objectives —
such as performance, power and area — across all processor
subsystems is a non-trivial task. One must explore all pos-
sible processor configurations, compute the corresponding
design objectives and find the Pareto-dominant solutions
to be included in the final trade-off set. Since, typically,
the design parameters that affect a processor are numerous,
computing the behavior of all their possible combinations is
quite hard, if not impossible. For example, by considering
13 processor design parameters represented by 36 (binary)
bits, if one were to simulate all combinations, one would
need to evaluate 236 = 68,719, 476, 736 different processor
configurations to identify the true Pareto front — an unrealis-
tically high number. To make things worse, in this new field
of implant processors there is no established set of processor
characteristics that would allow meaningful limiting of the
above number of potential configurations.

We therefore need a way to realistically approximate
this ideal trade-off set without performing all possible sim-
ulations. Furthermore, even in an approximated scenario,
thousands of configurations might still have to be evaluated
and compared to get a good approximation of the true Pareto
front. Hence, we need an automated method for doing so.

In this paper we present a novel framework intended for
the systematic, rapid and adaptable design-space exploration
(DSE) of processor architectures suitable for biomedical
implants. The framework is termed ImpEDE (Implant-
processor, Evolutionary, Design-space Explorer) and pro-
vides careful investigation of the processor design space



through the use of a particular genetic-algorithm (GA) vari-
ant called NSGA-II, along with cycle-accurate simulations,
considering realistic design constraints imposed by our prior
knowledge of the field. This implementation featured a
very long computational time and, therefore, a parallelized
version of the algorithm has also been implemented and de-
scribed in the current document. Concisely, the contributions
of this work are:

o A first yet educated attempt towards the systematic,

automated and accurate design of implant processors;

o A fine-tuned toolset that delivers optimized implant-

processor configurations across multiple first-order (e.g.
performance, power) and second-order (e.g. hard real-
time deadlines) objectives; and

e A freely available parallelized version that can be

expanded with additional design objectives and con-
straints and extended to applications classes other than
implants.

The rest of the paper is organized as follows: section II
briefly discusses other DSE toolsets available and explains
the necessity for the current framework. Section III provides
the overview and organization of ImpEDE while section
IV discusses the performed customizations and selected
parameters for making the framework ideal for architectural
exploring of implant processors. Section V displays the
validity of ImpEDE by presenting actual DSE results for our
targeted implant processor and illustrates its flexibility by
extending it with exploration under hard realtime constraints.
Overall conclusions and future work are drawn in section VI.

II. RELATED WORK

A large number of design-space exploration tools have
been presented in the past, targeting generic DSPs [5]
to network processors [6] and, more recently, multicore
processors [7], [8]. For an extensive overview of different
approaches, the interested reader can refer to Matthias Gries
[9].

One of the proposed methods is to employ Genetic
Algorithms for design-space exploration purposes. Ascia et
al. [10] have attempted to optimize processor subsystems
yet the search-and-optimize algorithm they used is working
only on a single objective at a time. Ghali and Hammani
[11], on the other hand, have made use of a multiobjective
setup, similar to ours, but address the optimization of Turbo
decoders. Stijn et al. [12] have investigated various, auto-
mated, GA-based, single- and multi-objective DSE methods
for custom processors, but focus on out-of-order flavors only.

To the best of our knowledge, none of the investigated
tools was explicitly concerned with implantable systems.
Yet, the field of biomedical, microelectronic implants is
new and fast-progressing and, as discussed in the previous
section, it calls for particular design constraints such as ultra-
low power consumption, high fault-tolerance levels and tight
execution deadlines.
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What is needed is a fresh top-down approach to the
field where implant applications are extensively profiled in a
properly fine-tuned environment and the findings are used to
drive an (automated, if possible) design-exploration effort for
a suitable implant device. Setting up such an environment is
a non-trivial problem as its specific parameters are either un-
known or undisclosed, subject to tight proprietary controls.
Building on our previous knowledge, with this work, we
attempt to put together a multiobjective, DSE environment
powered by suitable biomedical benchmarks and workloads.
Also, we attempt to fine-tune this environment to the goal
at hand by providing the first — in our knowledge — tool to
offer bounded DSE. Last, we make this tool freely available
for further improvement, expansion and dissemination of
information.

III. FRAMEWORK ORGANIZATION

Before introducing the DSE framework, we first have to
identify the nature of the problem we attempt to solve: In
designing our implant processor, we have formulated our
problem as a multiobjective-minimization problem, with the
objectives being processor latency, average power consump-
tion and area cost. This is a set of first-order objectives
typically optimized for in digital design. In the future and
as the framework matures, we wish to add more objectives
in our design effort such as fault coverage and more con-
straints such as hard realtime deadlines. In later sections,
we will exemplify the latter by imposing a hard deadline on
execution time (i.e. latency).

Since our objectives are minimizing area and power while
maximizing performance, in order to convert our problem to
a fully minimizing problem, we need to take the complement
of performance as the objective encoded in our framework.
We use IPC as the metric of performance. Therefore, we can



simply use IPC*(-1) as the objective to be minimized. ' For
the rest, we use the metrics mm? and mW as the area and
the power objectives, respectively.

With these objectives in mind, we have designed the
multiobjective, DSE framework shown in Fig. 1. At first,
the selected GA (NSGA-II) generates valid processor con-
figurations (i.e. a set of parameters) — also known as
”chromosomes” — that are fed to a cycle-accurate, perfor-
mance and power simulator (XTREM) and to a cache-area
simulator (CACTI). The processor simulator also accepts
as inputs implant-related benchmarks and assorted datasets
(ImpBench). Then, both simulators execute and their result-
ing performance, power and area figures are fed back into the
waiting GA which uses them to evaluate the optimality of the
currently simulated processor configuration. This process is
repeated a number of times equal to the preset chromosome
population, then a few best-performing chromosomes —
based on their fitness results — are selected, processed and
propagated to the next round of optimizations, also known
as generation. With each successive generation, increasingly
better chromosomes are found and promoted; that is, we
are approaching the true Pareto front for our DSE problem.
Figure 2 shows the progress of the front at various evolution
stages for a particular run of our framework. Although paper
space limitations do not allow for an extensive analysis of
all components used?, in the following subsections, we will
describe in more detail the components of the framework
as well as the choices made on the GA parameters such
as the population size, the number of generations and the
chromosome-selection policy used.

A. Genetic algorithm: NSGA-II

The classical single-objective optimization methods can
be used to perform multiobjective optimization by reformu-
lating the multiobjective optimization problem into a single-
objective one. This can either be done by combining the
objectives into a single aggregate objective [14] or by only
considering one of the objectives and moving the rest to a
constraint set [15]. When designing this framework, we first
used a single-objective GA that employed the weighted-sums
approach for finding the fitness of an individual. However,
this was quickly abandoned as we could not logically assign
the values of the weights since there was no rationalization
for preferring one objective over another without more
information about the problem domain. Besides, there was
no way of knowing the absolute upper and lower limits
of the three objectives (performance, power, area). Finally,
such approaches suffer from being unable to find solutions
to problems having non-convex fronts. Therefore, special

Note that cycles per instruction (CPI) could have also been used: since
CPI is the inverse of IPC, it would give an identical relative ordering of
processor configurations as IPC*(-1).

2An extensive analysis can be found in [13].
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instances).

Framework-generated Pareto solutions (i.e. implant-processor

algorithms were formulated for multi-objective problems
[16].

NSGA [17] was one of the first GAs that evolve Pareto
front solutions to multi-objective problems. NSGA-II [18] is
the successor of NSGA that overcomes some of the limita-
tions faced by the former. NSGA-II evolves Pareto fronts
using an elitist approach and uses density and crowding
distance metrics to ensure well spread out points along the
front, at the same time having a lower computational com-
plexity than its predecessor. It has therefore become in its
own right widely accepted and used in diverse applications
such as [19] and [20]. Due to its superiority over other
algorithms, popularity, ease of use and availability, we use
it as our algorithm of choice.

B. Processor & cache simulators

In the current version of our DSE framework, evaluation
of the performance and power consumption of a given
chromosome (i.e. processor configuration) has been based on
the XTREM [21] simulator. XTREM simulator is a cycle-
accurate, microarchitectural, power and performance simu-
lator for the Intel XScale core [22]. It models the effective
switching node capacitance of various functional units inside
the core, following a similar modeling methodology to the
one found in Wattch [23]. XTREM has been selected for
its straight-forward functionality but mostly for its accuracy
in performance and power modeling. It exhibits an average
performance error of 6.5% and an average power error of
4% compared to real hardware.

XTREM allows monitoring of 14 different functional
units of the Intel XScale core: Instruction Decoder (DEC),
Branch-Target Buffer (BTB), Fill Buffer (FB), Write Buffer
(WB), Pend Buffer (PB), Register File (REG), Instruction
Cache (I$), Data Cache (D$), Arithmetic-Logic Unit (ALU),



Table T
ARCHITECTURAL DETAILS OF (MODIFIED) XTREM.

| Feature | Value |
ISA 32-bit ARMVSTE-compatible
Pipeline depth / width | 7/8-stage pipeline / 32-bit
RF size 16 registers
Issue policy in-order

Instruction window
I/D Cache L1 (separ.)
BTB

Branch Predictor

Ret. Address Stack
I/D TLB (separ.)
Write Buf. / Fill Buf. 2-entry / 2-entry
Mem. bus width 8-bit (1 mem. port)
INT/FP ALUs 1/1

Clock frequency 2 MHz

Implem. technology 0.18 um @ 1.5 Volt

single-instruction

VAR size&assoc. (1-cc hit / 170-cc miss lat.)
VAR size, fully-assoc. / direct-mapped

VAR (4-cc mispred. lat.)

VAR size

1-entry / 1-entry

Shift Unit (SHF), Multiplier Accumulator (MAC), Internal
Memory Bus (MEM), Memory Manager (MM) and Clock
(CLK). We have extensively used XTREM in our previous
studies on the implant processor and, in order to match our
application field better, we have disabled many of XTREM’s
architectural parameters. In this case, however, we wish to
allow for some degree of freedom in the processor design
parameters so that the GA can explore a wider range of
possible configurations. We have, thus, ended up with the
(modified) XTREM characteristics summarized in Table I°.
Performance/power figures have been checked and scaled
properly with the changes. In the next section IV, we shall
go through the selected simulator parameters and the way
they have been encoded in the GA. It should be noted that
flexible wrapper scripts have been used to provide the input
to and capture the output of XTREM. As a result, the internal
framework structure has been kept highly modular allowing
for porting faster, more accurate or more powerful simulators
in the future.

For evaluating the area cost of each chromosome, we have
made the valid approximation that the subsystem dominating
our envisioned implant processor is the cache (which holds
also true for modern general-purpose processors). Further-
more, as can be seen from Table I, more adjustable param-
eters include some cache-like structure in them. Therefore,
for quantifying each chromosome’s area cost, we have used
CACTI, a well-known, cache-area estimation tool. CACTI
v3.2 has been primarily used since it is suitable for modeling
simpler (older) cache-like structures (such as the BTB) and
at an implementation technology identical to the one of the
simulator (180 nm). However, the wrapper scripts we have
created (Fig. 1) can also handle CACTI versions 4.1 and
6.0, if desired.

3Values denoted with VAR’ indicate adjustable parameters by the GA.

Table II
IMPBENCH [24] BENCHMARKS. COLUMNS DENOTED WITH A (*)
INDICATE AVERAGE VALUES FOR 1 — K B INPUT WORKLOADS.

| Benchmark type Name Size (KB) #Instr.*  Sim. time* (sec) |
Compression miniL.ZO 16.30 199,163 3.07
Finish 10.40 852,663 21.82
Encryption MISTY1 18.80 1,268,465 16.65
RC6 11.40 864,930 9.37
Data integrity checksum 9.40 62,869 0.80
CRC32 9.30 419,159 5.46
Real applications  motion 9.44 859,371 31.16
DMU 19.50 36,808,268 37.25

C. Biomedical benchmarks & workloads

Eight suitable benchmark applications have been used
for execution on XTREM for evaluating different chro-
mosomes. They comprise the ImpBench benchmark suite
[24] and consist of lossless data compression algorithms,
symmetric-key encryption algorithms and data-integrity al-
gorithms as well as representative code based on real
biomedical applications. The benchmarks represent antici-
pated common tasks running on future implant processors
and exhibit varied characteristics, as shown in Table II.

Typical biomedical readouts are often highly periodic
signals (e.g. heart beat) or stable signals (e.g. blood tem-
perature) which can, under specific circumstances, display
gradual or abrupt changes in value (e.g. a sudden muscle
contortion). We have collected and used various represen-
tative workloads capturing both stable as well as rapidly
changing patterns. The original data has been provided from
the BIOPAC (R) Student Lab PRO v3.7 Software. Paper-
size limitations do not allow for an extensive description of
the various workloads; a concise overview of the workload
details is provided in Table III. Since reported literature [1]
has revealed that typical implant data-memory sizes range
from 1 KB to 10 K B, workloads of both sizes (1 KB and
10 K B) have been profiled.

Each chromosome represents a particular processor in-
stance onto which each all benchmarks except DMU (which
runs on a single, hard-coded input) are fed with each of the
7 workloads (of (1 KB or 10 K B)) and are executed. This
accounts for a total of 50 benchmark runs for the 1 KB
case and another 50 for the 10 K B case. As we shall see
in subsection III-D, this is a substantial amount of (cycle-
accurate) simulation time. In order to get practical results in
our limited time frame and without loss of generality, for
this paper we have selected and executed only the EMGII
workload as it displays worst-case performance characteris-
tics. In so doing, we have limited the number of runs to 8§
per workload size. We, nonetheless, explore the design space
for both sizes in order to investigate the effect workload size
has on the Pareto-optimal solutions.



Table III
BIOMEDICAL WORKLOADS WITH DOUBLE-PRECISION (8-BYTE) DATA
SAMPLES OF SIZES 1-KB AND 10-KB.

| Dataset name size (Bytes) ~ Samples (#)  duration (sec) |
Electromyogram II (EMGII) 1147 / 9605 144 / 1201 0,288 /2,402
Electroencephalogram (EEGI) 984 / 9616 123 / 1202 0,615/ 6,010
Electrocardiogram (ECGI) 912 /9615 114 / 1202 0,114 / 1,202
Respiratory Cycle I (RCI) 1192 / 9520 149 / 1191 1,490 / 11,910
Pulmonary Function I (PFI) 1184 / 9240 148 / 1155 1,480 / 11,550
Skin Temperature (AEP) 1120 / 9736 140 / 1217 0,700 / 6,085
Blood Pressure (BP) 1128 / 9545 141/ 1198 0,282 / 2,396

D. Parallelization & optimization

As shown in Table II, evaluating a single processor config-
uration (i.e. one GA individual) with a single input (EMGII)
and a single data size (1KB), across all 8 benchmarks takes
on an average 125.58 seconds. Assuming the 10K B work-
loads run 10x as slow as the 1K B workloads, except for
the DMU benchmark and, considering optimization across
all 7 Workload types, a full run of the GA with a population
size of 20 and 200 generations will take approximately 343
days per result. We do not consider the GA run times in this
calculation as the execution overhead of the parallelized GA
was found to be negligible, contributing only 0.13 seconds
per generation.

Since this run-time is quite prohibitive, we parallelized the
evaluation stage of the GA so that different individuals are
evaluated on idle CPUs of the group’s laboratory machines.
Hence, the speedup offered by our parallelized version is
equal to ~ P/[P/N1], where P is the population size and
N is the number of computers available. During the runtime
of the GA, support scripts periodically search for and prepare
free machines for the algorithm to use; these machines are
used on the lowest priority in order to not disrupt regular
usage. Therefore, this framework is expandable, modular and
requires minimum dedicated resources.

It turns out that at any given time, we had around 20
machines available for computation. Therefore, the runtime
has been effectively reduced to about 17.5 days for each
run. As discussed before, we reduced this time further by
only considering the worst-case input for each benchmark,
EMGII, and we performed separate runs for each of the input
sizes of 1 KB and 10 K B.

IV. FRAMEWORK FINE-TUNING

In the previous section, we went through the various
building blocks of the DSE framework. Adjusting the frame-
work to target implant processors requires, however, fine-
tuning of the GA parameters and proper encoding (i.e.
representation) of the chromosomes. In what follows, we
go through such details that make our framework suitable
for implant-processor design.

A. Chromosome encoding

Since GAs optimize the information encoded in the chro-
mosomes, we needed to define a chromosomal represen-

tation for the processor parameters that the GA can work
with. There are several chromosomal encoding strategies,
the simplest being encoding each variable as a string of 1
and O bits. In this work we chose this encoding rather than
real encoding [25] since the processor parameters encoded
are integer values. Each chromosome is encoded as shown
in Table IV. The table lists the processor variables chosen,
their ranges as well as the encoding and decoding rules. The
included variables are in agreement with the ones in Table I.

The processor parameters we chose to include in the
search space depended both on what we wanted out of
the processor and the capabilities and limitations of the
simulators we had. As can be seen from Table IV, clock
frequency has been encoded but was not used in this version
of the GA; we found that running the simulator with different
clock frequency values did not affect the results. For the
purposes of this work, XTREM runs on a default clock
frequency of 2 MHz, typical for implant processors.

The Write Buffer and the Fill Buffer included in XScale
and shown in Table I help achieve better performance by
hiding memory-access stalls when the core is running at
a high clock frequency (e.g. 200 M H~z). This is hardly
the case for an implant processor; therefore, we did not
encode the two buffers but rather fixed their sizes at the
minimum supported by XTREM, i.e. exactly two entries. For
similar reasons, Translation Lookaside Buffers (I/D-TLBs)
have been excluded from the GA and fixed to a single-entry
structure each.

As can be seen from Table IV, I-cache and D-cache
structures have also been encoded in the chromosome.
Although the simulator theoretically supports adjustable I-
cache and D-cache latencies, we found that varying the
I-cache latency above the default value of 1 often had
the simulator hanging. Therefore, we only include D-cache
latency as a variable, which we vary from 1 to 16 clock
cycles. Note also that the above discussion pertains only to
L1 caches. At a stage where embedded applications hardly
have even an L1 cache, we think having L2 caches would be
an overkill, and therefore exclude them from our exploration.
This is also in agreement with the results in [3].

Except for the processor parameters, also their ranges
have been defined: i) by the minimum and maximum al-
lowed range that the simulators could support — so that we
could capture as much of the design spectrum as possible
— and ii) by the previous profiling studies within the SiMS
Project [2].

B. Population size

The size of the population represents the maximum
number of Pareto points the algorithm can find. If we
pick too small a size for the population, we would have
lesser tradeoffs available. On the other hand, the GA is
O(mN?), where m is the number of objectives and N
is the population size. Keeping these factors in mind, we



Table IV

PROCESSOR DESIGN PARAMETERS CONSIDERED IN THIS WORK, ENCODED AS 36 CHROMOSOMAL BITS.

Parameter Encoded Decoding Remarks
Name (Ref) Range Range Bits Formula
Core Clock Frequency (F'req) [1...64] [0...63] 6 n+1 Not used in current version
Branch Prediction (Bpred) Bimodal, Taken,notTaken [0...2] 2 - bitg = isBimod, bity = isTaken
Branch Target Buffer: Number of Sets (btb_nsets)  [32...128] [0...5] 3 on+s Only valid for isBimod = TRUE
Branch Target Buffer: Associativity (btb_assoc) [1...32] [0...5] 3 2" Only valid for isBimod = TRUE
Branch Prediction: Return Address Stack (RAS) [0...8] [0...4] 3 floor(2™™1) -
L1 I/D-Cache: Number of Sets (I /D_nsets) [1...8192] [0...13] 4 2n -
L1 I/D-Cache: Block Size (I/D_bsize) [8...32] [0...2] 2 ont3 -
L1 I/D-Cache: Associativity (I /D_assoc) [1...32] [0...2] 3 2" -
L1 I/D-Cache: Replacement Policy (I /D_repl) forl [0...2] 2 - bity = isF'ifo, bit1 = isRandom
L1 D-Cache: Latency (D_latency) [1...16] [0...4] 3 floor(2™) -
L1 I-Cache: Latency (I_latency) [1...16] [0...4] 3 floor(2™) Not used in current version

0.9

081 4

0.7H b

0.6 b

0.5~

Generation

0.4r

031

01

I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000
Metric

Figure 3. Smoothed distance and diversity metrics over 1000 generations
(Benchmark: checksum)

chose a population size of 20, which also coincided with
the number of machines we expected to be free at any given
time. Therefore, the entire population could be evaluated at
once in parallel.

C. Number of Generations

The number of generations represent the time the GA is
allowed to reach the Pareto front. We observed that the GA
converges rather rapidly to a front, then tries to increase
its spread in the subsequent generations. After this, the GA
reaches a sort of ‘stable state’ where it is unable to improve
the spread without degrading the distance from the front,
and vice versa. We can limit the number of generations at
this phase, in order to reduce computation time. We use a
reduced problem set - that of only optimizing the checksum
benchmark, and run this for a large number of generations
(1000) in order to approximate the number of generations
needed, then use this as a guide to selecting the number of
generations for the full problem.

We use Deb’s metric (A) [16] to quantify the diversity
(spread) of the solutions and Veldhuizen’s Generational
Distance (GD) [26] metric to quantify the distance of the

solution front from the ‘true’ Pareto front*. We found both
metrics to be very noisy, specially the diversity metric.
Therefore, to make them easier to compare, we smooth the
data using a moving average with a span of 20 generations.
Figure 3 shows the resulting metrics. We observer that GD
declines rapidly until about the 100th generation, after which
it fluctuates around GD=0.4 for a long time until finally
dropping to zero around generation 600. The rapid decline
is of course due to the solution fronts converging towards
the reference. After generation 51, it can be seen that the
general trend is that as spread decreases, distance increases
and vice versa. The behavior from generations 100-593 are
also expected - as the algorithm searches for new solutions,
the distance fluctuates. A minor rise in both GD and spread
may not mean that the front is actually further away than the
one previously — since we have finite points in the reference
front, points that are the same distance from the actual front
may give slightly varying distance values from the reference
front. The behavior at the tail end reflects the fact that
the reference solution is a combination of several solutions,
and therefore also contains the final solution of the run in
question. The apparent rapid convergence seen therefore, is
in fact the algorithm moving towards its own final solution
— a foregone conclusion. Therefore, we do not consider this
region in our analysis.

Since after generation 100, the algorithm seems to os-
cillate between improving spread and distance at the cost
of the other; without loss of precision in both quantities at
the same time, we can stop the algorithm around generation
100. Since GAs are random by nature, in order to be sure of
getting good results, we run every subsequent experiment for
twice this time, i.e. — 200 generations. This also compensates
for the smoothing we performed.

D. Mutation

There are a number of ways to select the mutation prob-
ability, including complicated adaptive mutation strategies

4Since we do not know the true front (by problem definition itself), we
approximate it by computing a combined front consisting of mutually non-
dominating points from the results of 10 separate runs of the algorithm.
We call this the ‘reference front’.




——p=00 - — -p =02 - - p=04 p,=0.6 ——p=0.8 — - -p_=1.0

0.01 I I I I
0

I I I I I
20 40 60 80 100 120 140 160 180

(a) Distance metric

]
200

7":::0'0 - = 7pc:0.2 - pc:0.4

pc:0.6 7pc:0.8 - _pc:1.0

"o 20 40 60 80 100 120 140 160 180 200

(b) Diversity metric

Figure 4. Distance and Diversity metrics for various crossover probabilities (P.) over 200 generations (Benchmark:checksum)

[27]. However, the simplest and most recommended strategy
is simply setting the mutation probability as p,, = 1/n
where n is the chromosome length [28]. This means that
a single bit per chromosome is expected to change from
the parent to the child population. Therefore, the child
chromosome is likely to vary from the parent chromosome in
exactly one attribute, that too by a hamming distance of one.
We use this approach for setting the mutation probability in
our implementation of the GA, i.e p,,, = 1/36.

E. Crossover probability

Crossover allows chromosomes to exchange information
that may lead to better chromosomes that combine the
”good qualities” of the parent chromosomes. Used carefully,
crossover can lead to much quicker evolution times, and is
central to the idea of Genetic Algorithms examining more
solutions in the more promising regions of the solution space
[29]. Therefore, it is important to set a good crossover proba-
bility P,, which determines the percentage of chromosomes
that undergo recombination at each generation. As in the
case of number of generations, we used a reduced problem
set — running only checksum with the 1 — K B EMGII input
for 200 generations with different crossover probabilities.
Figure 4 shows the two metrics for the Pareto fronts resulting
from each value of P, 3. Keeping in mind the discussion
from Section IV-C, we see from the graphs that P. = 0.2 and
P, = 0.6 seem to lead to the fastest convergence and best
values for the two metrics over the course of the generations,
and therefore P, = 0.2 is chosen for subsequent runs.

SNote that in this case, these are the un-normalized, un-smoothed metrics.
They appear less noisy due to the fact that the number of generations plotted
is much lower than in Section IV-C

V. SELECTED RESULTS & VALIDATION

In this section, the correct functionality of the framework
is demonstrated. Also, an expansion of the framework with
a hard realtime deadline leading to constrained design is
illustrated.

A. Implant-processor results

Having prepared and fine-tuned the framework to the best
of our knowledge, we move on to testing it by running it
with all the benchmarks, once for each of the two workload
sizes. We call these the baseline results. Figure 5 shows the
projections of the Pareto front evolved on the 3 Cartesian
planes (performance, power, area)).

We readily see in both rows of results that the algorithm
reaches the “front” by generation #40. After this, the points
spread out and a wider Pareto front is found. We see
from Fig. 5b and Fig. 5d that the 10 — K'B workloads
have a wider front w.r.t. performance. We anticipate this
to be so because the bigger workload increases processor
utilization by allowing the caches and branch predictor table
to fill and, hence, minimizing processor stalls. This higher
performance also leads to a corresponding increase in the
power consumption as can be seen from the power axes in
Fig. 5b and Fig. Sc.

On the contrary, we see slightly bigger area-utilization
solutions for the smaller workload. Although measurements
with more workload sizes are needed to draw safe con-
clusions, this area trend may again be due to “cold-start”
effects; that is, due to the fact that when small workloads
are processed, poor CPU utilization occurs since the cache
structures do not have enough time to fill, pushing the GA
towards larger structures in the hopes of minimizing cache
stalls.
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B. Framework expansion

As this was one of the first steps towards designing an im-
plant processor, we wanted to make sure that the framework
was expandable, in order to facilitate the addition of new
domain specific information into the framework as it gets
available. In order to test this property of the framework, we
devised a synthetic implant application with a hard realtime
deadline. Indeed, many implant applications have realtime
requirements so formulating a synthetic problem with such
a constraint does not fall far from practice. We modified
the DMU and Motion benchmarks (called StressDMU and
StressMotion respectively), to represent a single iteration
of these (repetitive) applications. Further, this iteration was
chosen to be the worst-case iteration (in terms of instruction-
cycle count) for each of the two original benchmarks.

Combined with data-integrity checks, compression and
encryption, the stress benchmarks represent an atomic action
for an implant application — from data collecting, processing,
to transferring — as exemplified in Fig. 6. In a real applica-
tion, this atomic action must be finished, for example, before
the next set of input arrives. Therefore, we constrain the total
time required for this combined operation as a hard realtime
deadline.

Out of the ImpBench set, we chose checksum, miniLZO
and RC6 as the data-integrity, compression and encryption
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Baseline DSE results for 1 KB and 10 K B workloads running on all benchmarks.

algorithms, respectively. We obtain the simulated execution
time of the processor configuration under investigation from
the simulator output. In case the deadline is violated, the
processor configuration is deemed to be unacceptable. On
the other hand, if the deadline is met, we calculate the
objectives of the configuration by combining with the rest of
the benchmarks in the test suite (including “normal” DMU
and Motion). Therefore, the fitness metric remains the same
as the baseline case.

Figure 7 shows the Pareto front evolved with a deadline
of 1 second, and also with a slightly relaxed deadline of
2 seconds. As expected, the stricter deadline encourages
processor configurations that have a higher performance, but
at the same time take slightly more power and area.

VI. CONCLUSIONS & FUTURE WORK

Although reliability is one of the major reasons for the
need to design processors specifically for implants, the
present work does not directly address reliability. Instead,
it starts off with the idea that processor design can be
looked at from a black-box design perspective and provides
a flexible and modular framework for doing so. Given such
a framework, adding reliability as one of the optimization
objectives is the next logical step, left as future work. We
would also like to expand the simulator models with more
parameters such as (off-chip) memory, effectively allowing
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Figure 6. Conceptual block diagram of simulated implant application [30].

for System-on-Chip exploration. In order to overcome the
aforementioned limitations of XTREM, we are considering
the XEEMU [31] simulator as a candidate for the next phase
of the framework.

Conclusively, in this paper we have developed ImpEDE,
a novel, multiobjective, framework that provides high-level
DSE of biomedical-implant processors, populated by suit-
able biomedical benchmarks and assorted workloads. Im-
pEDE organization is described in detail and its function-
ality is fine-tuned based on our previous experience (e.g.
processor parameter values and ranges) and new findings
(e.g. crossover probability, workload size). Restricted by
its simulator components, the current framework version
can deliver (near) Pareto-optimal processor solutions, co-
optimized across performance, power consumption and area

Performance

150 +
140 %

Power

100

-0.2 -0.1 0

Performance

-0.3

-0.05 +
+ +

no deadline
deadline = 2 sec
X deadline = 1 sec

-0.1

-0.15

+
-0.25 +

+
><;KX+ *x

x Ky X
%

-0.3

-0.35 s+ sk ¥ 4

-0.4
10

Area

DSE results expanded with hard realtime deadlines of 2 seconds and 1 second for 10 K B workloads running on all benchmarks.

utilization. In view of potentially more optimization goals
and benchmarks, we have paid attention to making the
framework modular and expandable. Furthermore, we have
provided a parallelized, versatile version of the framework
which offers execution speedup roughly equal to the num-
ber of processor available, without dedicated hardware re-
sources. Last, it has been our intension to make the proposed
framework a freely accessible tool, available to everyone
online for further studies and improvements.
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Abstract—Implants are nowadays transforming rapidly from
rigid, custom-based devices with very narrow applications to
highly constrained albeit multifunctional embedded systems.
These systems contain cores able to execute software programs
so as to allow for increased application versatility. In response
to this trend, a new collection of benchmark programs for
guiding the design of implant processors, ImpBench, has al-
ready been proposed and characterized. The current paper
expands on this characterization study by employing a genetic-
algorithm-based, design-space exploration framework. Through
this framework, ImpBench components are evaluated in terms of
their implications on implant-processor design. The benchmark
suite is also expanded by introducing one new benchmark and
two new stressmarks based on existing ImpBench benchmarks.
The stressmarks are proposed for achieving further speedups
in simulation times without polluting the processor-exploration
process. Profiling results reveal that processor configurations
generated by the stressmarks follow with good fidelity - except
for some marked exceptions - ones generated by the aggregated
ImpBench suite. Careful use of the stressmarks can seriously
reduce simulation times up to x30, which is an impressive speedup
and a good tradeoff between DSE speed and accuracy.

Index Terms—Implant, benchmark suite, stressmark, profiling,
genetic algorithm, Pareto, kernel, power, energy.

I. INTRODUCTION

In 1971, Abdel Omran in his - now - classic article on
epidemiologic transition [1] has investigated the historical
demography of populations, theorizing about three distinct
periods of health transition: i) the era of pestilence and famine,
ii) the era of receding pandemics, and iii) the era of man-
made diseases. In the eve of the 21st century, Omran’s theory
has been verified as we are surely going through the third
era of man-made, non-communicable diseases, better known
as degenerative or chronic diseases. Characteristic of this
transition has been a general pattern shift from dominating
infectious diseases with very high mortality at younger ages,
to dominating chronic diseases and injury, with lower overall
mortality but peaks at older ages [2]. What makes chronic
diseases an issue of interest is the presence, in developed
countries, of a prevailing demographic trend of an ageing
population.

Not all countries have undergone this transition in the same
fashion, albeit developed countries are well into the transition
path described by Omran. Yet, Omran’s theory intended on

E-mail: C.Strydis @tudelft.nl

stressing the fact that, when progressing from high to low
mortality rates, all populations involve a shift in the causes
of death and disease. True enough, developing and, primarily,
developed countries are manifesting the effects predicted by
the theorized shift such as low fertility rates, population
growth, increased heart-disease and cancer rates. Given the
two latter trends, the healthcare sectors strive for policy and
institutional adaptation so as to safeguard the provision of
healthcare services.

In addition to policy and institutional adaptations and up-
dates, the healthcare sector has benefited from technological
advancements coming from the disciplines of medicine as
well as microelectronics. A technological niché of biomedical
engineering that has particularly contributed is implantable
microelectronic devices which act as a means to deal with
monitoring and/or treatment of chronic patients. With the
implantable pacemaker being the first and perhaps most well-
known implant type - 299,705 such devices have been regis-
tered in Europe alone, by the year 2003 [3] - the road is being
paved for numerous other applications [4]. An ever expanding
implant list already contains monitors of body temperature,
blood pressure or glucose concentration; also, intracardiac
defibrillators (ICDs) and functional electrical stimulators for
bladder control, for blurred eye cornea and so on.

Although biomedical implants have come a long way in
terms of size and functionality, these days another shift in
implant design is manifesting gradually. Nowadays, implant
designers are taking advantage of the more widespread use of
microprocessors while attempting shorter development times
and more versatility out of traditionally hardwired implant
devices. For these reasons they are opting for devices im-
plementing their functionality based on software programs.
That is, implants are transforming into fully-blown, embedded
systems built around processor cores [5], [6], [7]. This shift is
depicted in Fig. 1.

In this context, it becomes apparent that a day when
definition of implant processors will be based on established
“implant benchmarks” is not far. In anticipation of this, a novel
suite of implant-processor benchmarks, termed ImpBench, has
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been previously proposed and characterized [9]'. Since its
release, it has been put to good use in exploring efficient
implant processors [10], [11] and in the work of others [12]. In
this paper, we primarily attempt to expand the original charac-
terization study with extensive, new results acquired through
use of ImpEDE, a genetic-algorithm-(GA)-based, design-space
exploration (DSE) framework [13]. Through using ImpEDE,
we effectively investigate the sensitivity of different processor
attributes (e.g. cache geometries) to the various benchmarks
in ImpBench. We also update the suite with a new benchmark
and two new, so-called ’stressmarks”, bringing ImpBench to
version 1.1. Concisely, this paper contributes in:

o Providing a novel and sound methodology, based on
GAs, of evaluating benchmark characteristics in terms of
resulting processor configurations;

o Identifying a representative (subset of) benchmark(s) for
substituting the whole suite in simulations, thus achieving
radically shorter DSE times;

o Updating the ImpBench suite to version 1.1 by proposing:
(a) a more sophisticated version of the DMU benchmark,
and (b) two derived stressmarks for enabling shorter
simulation times while biasing the exploration process
insignificantly or, at least, predictably; and

o Reporting/amending errata of the original work and giv-
ing further clarifications, where needed.

The rest of the paper is organized as follows: section II
gives an overview of previously proposed benchmark suites.
In section III, the details of the components of ImpBench
v1.1 are briefly reproduced. Section IV provides the details
of our selected profiling testbed for benchmark evaluation.
Section V presents, reflecting upon various metrics, the par-
ticular characteristics of each benchmark and its effect on the
processor properties under investigation. The stressmarks are
also introduced and evaluated. A summarizing discussion of
the results is included in VI while overall conclusions and
future work are discussed in section VII.

II. RELATED WORK

A large number of benchmark suites has already been
proposed for various application areas, making covering the
whole domain a far from trivial attempt. Instead, in this section
we briefly discuss well-known and freely available benchmark
suites, and mostly ones targeting the embedded domain, as is
our implant case. The latest SPEC benchmark suite, CPU2006

! Available online: http://sims.et.tudelft.nl/, under "downloads”.

[14], targets general-purpose computers by providing pro-
grams and data divided into separate integer and floating-point
categories. MediaBench [15] is oriented towards increased-
ILP, multimedia- and communications-oriented embedded sys-
tems. The Embedded Microprocessor Benchmark Consortium
(EEMBC) [16] licenses “algorithms” and “applications” or-
ganized into benchmark suites targeting telecommunications,
networking, digital entertainment, Java, automotive/industrial,
consumer and office equipment products. It has also provided
a suite capable of energy monitoring in the processor. EEMBC
has also introduced a collection of benchmarks targeting mul-
ticore processors (MultiBench v1.0). MiBench [17] is another
proposed collection of benchmarks aimed at the embedded-
processor market. It features six distinct categories of bench-
marks: automotive, industrial, control, consumer devices and
telecommunications. MiBench bears many similarities with
EEMBC, however it is composed of freely available source
code. NetBench [18] has been introduced as a benchmark
suite for network processors. It contains programs representing
all levels of packet processing; from micro-level (close to
the link layer), to IP-level (close to the routing layer) and
to application-level programs. Network processors are also
targeted by CommBench [19], focused on the telecommu-
nications aspect. It contains eight, computationally intensive
kernels, four oriented towards packet-header processing and
four towards data-stream processing.

Compared with our own prior work [9], the new version
of the ImpBench suite introduces a more detailed variation
of the (originally described) DMU benchmark and two stress-
marks, that is, two benchmarks based on DMU and motion
and exhibiting worst-case execution (i.e. stress) behavior. A
further novelty of the current work is the employment of
a GA-based, DSE framework and analytic metrics in order
to characterize the old and new ImpBench benchmarks. In
effect, this paper extends the previous work in both terms
of content and methodology. To the best of our knowledge,
no benchmark suite has been published before to address the
rising family of biomedical-implant processors. What is more,
no characterization study has utilized GAs before to explore
the benchmark properties and their implications on the targeted
processor.

III. IMPBENCH V1.1 OVERVIEW

In Table I are summarized all original and new Imp-
Bench benchmarks. The significance and pertinence of these
benchmarks to the implant context has been illustrated in
[11]. The Table further reports binary sizes (built for ARM)
and averaged, dynamic instruction/pop counts so as to give
a measure of the benchmark complexity. We maintain the
original grouping into four distinct categories: lossless data
compression, symmetric-key encryption, data-integrity and real
applications®. By including groups of different algorithms

’In the original ImpBench paper [9], real applications have also been
called “synthetic benchmarks”. However, this term is inaccurate and has,
thus, been completely omitted from this work on. A suitable alternative to
“real applications” could be the term “kernel”.



TABLE I
IMPBENCH V1.1 BENCHMARKS.

benchmark name size dyn. instr.* dyn. pops*
(KB) (average) (#) (average) (#)

Compression miniLZO 16.30 233,186 323,633
Finnish 10.40 908,380 2,208,197

Encryption MISTY1 18.80 1,267,162 2,086,681
RC6 11.40 863,348 1,272,845

Data integrity checksum 9.40 62,560 86,211
CRC32 9.30 418,598 918,872

Real applications motion 9.44 3,038,032 4,753,084
DMU4 19.50 36,808,080 43,186,673

DMU3 19.59 75,344,906 107,301,464

Stressmarks stressmotion 9.40 288,745 455,855
stressDMU3 19.52 124,212 224,791

(*) Typical 10 — K B workloads have been used, except for DMU-
variants which use their own, special workloads.

performing similar functionality in ImpBench, benchmarking
diversity has been sought for capturing different processor
design aspects. This diversity has already been illustrated
in [9] and will be further elaborated in section V. In this
version of ImpBench (v1.1), real applications have been
expanded with "DMU3” and a new category stressmarks has
been added, featuring "stressmotion” and “stressDMU3”. The
original, modified and extended components of the ImpBench
benchmark suite are reproduced below.

MiniLZO (shorthand: ”mlzo”) is a light-weight subset of
the LZO library (LZ77-variant). LZO is a data compression
library suitable for data de-/compression in real-time, i.e. it
favors speed over compression ratio. LZO is written in ANSI
C and is designed to be portable across platforms. MiniLZO
implements the LZO1X-1 compressor and both the standard
and safe LZO1X decompressor.

Finnish (shorthand: "fin”’) is a C version of the Finnish
submission to the Dr. Dobb’s compression contest. It is con-
sidered to be one of the fastest DOS compressors and is, in
fact, a LZ77-variant, its functionality based on a 2-character
memory window.

MISTY1 (shorthand: “misty”) is one of the CRYPTREC-
recommended 64-bit ciphers and is the predecessor of KA-
SUMI, the 3GPP-endorsed encryption algorithm. MISTY1
is designed for high-speed implementations on hardware as
well as software platforms by using only logical operations
and table lookups. MISTY1 is a royalty-free, open standard
documented in RFC2994 [20] and is considered secure with
full 8 rounds.

RC6 (shorthand: “rc6”) is a parameterized cipher and has a
small code size. RC6 is one of the five finalists that competed
in the AES challenge and has reasonable performance. Further,
Slijepcevic et al. [21] selected RC6 as the algorithm of choice
for WSNs. RC6-32/20/16 with 20 rounds is considered secure.

Checksum (shorthand: “checksum”) is an error-detecting
code that is mainly used in network protocols (e.g. IP and TCP
header checksum). The checksum is calculated by adding the
bytes of the data, adding the carry bits to the least significant
bytes and then getting the two’s complement of the results.
The main advantage of the checksum code is that it can be
easily implemented using an adder. The main disadvantage is
that it cannot detect some types of errors (e.g. reordering the

data bytes). In the proposed benchmark, a 16-bit checksum
code has been selected which is the most common type used
for telecommunications protocols.

CRC32 (shorthand: “crc32”) is the Cyclic-Redundancy
Check (CRC) is an error-detecting code that is based on
polynomial division. The main advantage of the CRC code is
its simple implementation in hardware, since the polynomial
division can be implemented using a shift register and XOR
gates. In the proposed benchmark, the 32-degree polynomial®
specified in the Ethernet and ATM Adaptation Layer 5 (AAL-
5) protocol standards has been selected (same as in Net-
Bench)*.

Motion (shorthand: “motion”) is a kernel based on the
algorithm described in the work of Wouters et al. [22]. It is
a motion-detection algorithm for the movement of animals.
In this algorithm, the degree of activity is actually monitored
rather than the exact value of the amplitude of the activity
signal. That is, the percentage of samples above a set threshold
value in a given monitoring window. In effect, this motion-
detection algorithm is a smart, efficient, data-reduction algo-
rithm.

DMU4 (shorthand: “dmu4”), formerly known as DM U3, is
a real program based on the system described in the work
of Cross et al. [6]. It simulates a drug-delivery & monitoring
unit (DMU). This program does not and cannot simulate all
real-time time aspects of the actual (interrupt-driven) system,
such as sensor/actuator-specific control, low-level functional-
ity, transceiver operation and so on. Nonetheless, the emphasis
here is on the operations performed by the implant core in
response to external and internal events (i.e. interrupts). A
realistic model has been built imitating the real system as
closely as possible.

DMU3 (shorthand: "dmu3”) is an extension of “dmu4”.
The original "dmu4” benchmark emulates a real-time im-
plantable system by reading real pressure, temperature and
integrated-current sensory data (as provided by true field
measurements by the implant developers [6]) and by writing to
transceiver module (abstracted as a file). "dmu3” emulates this
in a more sophisticated manner by also accurately modeling
the gascell unit used to switch drug delivery in the implant
on and off. To this end, it reads additional input data termed
“gascell override switch” and “gascell override value”. The
suffix numbers in both DMU benchmarks originate from
different field-test runs using different drug-delivery profiles:
A high-low-high varying, "bathtub” profile (#4) has been used
for "dmu4” and a constant, flat profile (#3) has been used for
“dmu3”. Due to its affinity with "dmu4”, ”dmu3” will not be
analyzed further in this paper. It has been briefly introduced,

3CRC32 generator polynomial: 232 4 226 4 223 4 222 4 516 4 212 4
e 420 a8 " 4 ad 4t 2 41

4Erratum correction: In both the original and current ImpBench paper,
the standard Ethernet CRC32 has been used, although erroneously reported
as being ITU-C CRCI16. Reasons for maintaining this CRC32 version here
include the fact that CRC16 is too weak to guarantee data integrity in mission-
critical applications as implants are.

5The original benchmark DMU has been renamed to DMU4, to differentiate
it from the new addition DMU3. See main text for further details.



TABLE II
ARCHITECTURAL DETAILS OF (MODIFIED) XTREM.

| Feature Value | Feature Value |
ISA 32-bit ARMvVS5TE-compatible Ret. Address Stack VAR size
Pipeline depth / width 7/8-stage, super-pipelined / 32-bit I/D TLB (separ.) VAR size / VAR size
RF size 16 registers Write Buf. / Fill Buf. VAR size / VAR size

Issue policy / Instr. Window
I/D Cache L1 (separ.)

BTB

Branch Predictor

in-order, single-instruction

VAR** (4-cc mispred. lat.)

VAR** size/assoc. (1-cc hit / 170-cc miss lat.)
VAR** size, fully-assoc. / direct-mapped

Mem. bus width 1B (1 mem. port)
INT/FP ALUs 1/1

Clock frequency 2 MHz

Implem. Technology 0.18 ym @ 1.5 Volt

(**) Values denoted with VAR’ indicate adjustable parameters by the GA. For complete parameter ranges refer to [13].
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Fig. 2. Framework organization.

though, so that the content of stressmark stressdmu3” will
be better understood.

Stressmotion (shorthand: ”stressmotion’) and stressDMU3
(shorthand: ”stressdmu3”) constitute a new addition to the
ImpBench suite, their creation stemming from the fact that the
original "motion” and “dmu4” benchmarks have considerably
long run times w.r.t. the rest of the benchmarks (see Table I).
“dmu3” rather than “dmu4” has been used for extracting a
stressmark due to its more sophisticated emulation of the DMU
applications. Since all benchmarks essentially are pieces of
continuously iterated code, each stressmark in fact is a derived,
worst-case iteration of its respective benchmark. That is, an
iteration wherein the implant is required to perform all possible
operations; thus, the term “stressmark”. As we will see in the
following analysis, the stressmarks feature significantly shorter
execution times.

With the exception of the DMU-based benchmarks that
use their own internal input data, all other benchmarks come
with a full complement of physiological workloads (e.g. EEG,
EMG, blood pressure, pulmonary air volume). Without loss of
generality, for this paper we have selected and executed only
the 10 — K B EMG workload ("EMGII_10.bin”, see [23] for
details) as it exhibits worst-case performance characteristics
and, thus, provides a lower-bound for processor design.

IV. EXPERIMENTAL SETUP

As evaluation framework for our characterization, we have
employed ImpEDE, a previously proposed, GA-based, mul-
tiobjective, DSE framework for investigating Pareto-optimal

implant-processor alternatives [13]. An overview of the frame-
work is shown in Fig. 2. Optimization (minimization) objec-
tives within the framework are: processor performance (in
CPI), processor total area utilization (in mm?) and processor
average power consumption (in mW). As shown in the same
figure, a well-known GA (NSGA-II [24]) has been selected
for traversing the design space. It generates valid processor
configurations also known as ”chromosomes”. Compromising
between unrealistic execution times and quality of results, all
full runs of the GA have been allowed to evolve for 200
generations with a population size of 20 chromosomes per
generation.

Within the framework, chromosome performance and power
metrics are provided by executing the ImpBench benchmarks
on the XTREM processor simulator [25]. XTREM is a cycle-
accurate performance and power simulator of Intel’s XScale
embedded processor. It allows monitoring of 14 different
subsystems, the most pertinent to our study being: Branch-
Target Buffer (BTB), Instruction Cache (I$), Data Cache
(D$), Internal Memory Bus (MEM) and Memory Manager
(MM). While we have kept some XTREM parameters fixed
in order to model implant processors more accurately, we
have purposefully left some others variable for the GA to
explore their optimal settings, as summarized in Table II.
For quantifying each chromosome’s area cost, we have used
CACTI v3.2, a well-known, cache-area estimation tool.

ImpEDE has primarily been used for exploring promising
implant-processor configurations. However, in this work we
employ it as a means of characterizing the various ImpBench
benchmarks in terms of the different directions they push the
GA-based optimization process. In short, we wish to compare
the Pareto-optimal fronts of the ImpBench benchmarks and to
identify differences in resulting processor configurations.

V. BENCHMARK CHARACTERIZATION

The first characterization study of ImpBench [9] has focused
on illustrating its novelty and variation - thus, its significance
- with respect to the most closely related MiBench suite.
In the following analysis, we investigate further important
attributes within the updated suite. Namely, we address the
below questions:

(a) What is the aggregate Pareto front of optimal processor
configurations, as driven by the whole ImpBench suite?
What are the implications in predicted processor-hardware
resources?
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(b) What is the contribution to the aggregate Pareto front of
each separate benchmark? What is the contribution to the
predicted hardware resources?

(c) What is the complexity (in simulation time) of ImpBench
as a whole and of its components? With respect to the
previous questions, can a representative ImpBench subset
with significantly shorter simulation times be identified?

A. Lossless compression

Each complete run of our DSE framework evolving chro-
mosomes for 200 generations, results in - at most - 20 Pareto-
optimal, implant-processor configurations. Three-dimensional
plots can be produced, revealing the shape of the true® Pareto
curve. Figure 3 illustrates, across the three objectives, three
such fronts: the aggregate Pareto front P*7 labeled in the plots
as “all” and used as the reference front, and two Pareto fronts
formed when only "mlizo” and ”fin” benchmarks are used for
the GA evolutions.

Figure 3a depicts clear power and performance cut-offs
for all three cases with a wide dispersion of chromosomes,
indicating a very well-defined design space. We can observe
that both compression algorithms achieve a quite distributed
performance-power front, yet “mizo” is closer to the aggregate
“all” than "fin” and is, thus, a better candidate for substituting
“all”. Figure 3b reveals that, in terms of area, "mizo” is also
closer matching “all”, even though it appears to be having
slightly higher area requirements.

To better understand what these area requirements might
translate to in a real processor core, we have put together
Fig. 4. In this Figure, boxplots are drawn for different subsys-
tems of the explored processors. Each boxplot has been created
by either running the GA with a single benchmark or the
whole ImpBench. Statistics (min, max, median etc.) have been

In a real-world optimization problem like ours, the true Pareto front
is not known. Therefore, we make the reasonable assumption (and have
verified to the best of our equipment’s capabilities in [13]) that the aggregate
front P* reached after 200 generations matches the true Pareto front P.i.e.
|[P* — P| = 0. This means that the Pareto front at generation 200 is
considered our reference front for comparisons.

"The aggregate Pareto front P* has resulted from running the GA with all
original ImpBench benchmarks. That is, "dmu3” and both stressmarks are
excluded, since they are covered by "dmu4”.
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Final Pareto-fronts (after 200 generations) for lossless-compression benchmarks on 10 — K B workloads.

calculated based on the evolved population of 20 processor
solutions that reside on the Pareto front. In the current analysis,
we will focus on a limited number of observations from this
Figure. However, Fig. 4 contains a large amount of information
and can offer the interested reader more predictions on the
various processor during architectural exploration.

For the case of lossless-compression benchmarks, Fig. 4
reveals that ”"mlzo” tends to lead to processors with slightly
higher provisions, in particular in the L1 D-cache (D$, hereon)
subsystem compared to “all” and “fin”. For instance, "mizo”
requires, on average, a D$ of 64 K B size® compared to 4 K B
for "fin” and 8 KB for “all” (see Figs. 4h, 4i and 4j). By
observing the rest of the plots in Fig. 4, it becomes apparent
that, in an overall, "mlzo” is very close (slightly worse) to
“all” in terms of performance and power but - if it substituted
the whole ImpBench in the processor DSE - it would lead to
more area-hungry processor configurations. Therefore, "mlzo”
would be an interesting replacement for ImpBench, always
giving worst-case design boundaries. ’fin”, on the other hand,
is more obscure in this respect requiring, on average, smaller
D$ but larger BTB structures than “all”.

All Pareto fronts () evolved from single-benchmark runs,
present similar (but not identical) 3D-plots. Since results are
numerous, we have chosen to also use arithmetic metrics to
evaluate the benchmarks in a more quantitative and, thus, more
reliable manner. For quantifying the distance between each
single-benchmark Pareto front ) and the reference (aggre-
gate) Pareto front P*, we have chosen to use Veldhuizen’s
Generational-Distance (G D) metric [26]:

L I I R ORI
et i = min mz::l(fm =)
(S ar)”
Then, GD=-—""_"7/
Q|

where @ is the solution under consideration; P* is the refer-
ence Pareto-front, M is the total number of objective functions,

81t holds that: cachesize = Ftsets % blocksize % associativity.
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TABLE III
PARETO-FRONT DISTANCE AND NORMALIZED-SPREAD METRICS AND
AVERAGE SIMULATION TIME PER BENCHMARK.

Benchmark GD A Sim. time®*#*

(normalized) (average) (sec)
miniLZO 0.082 0.383 3.07
Finnish 0.115 0.367 21.82
MISTY1 0.083 0.181 16.65
RC6 0.049 0.151 9.37
checksum 0.090 0.189 0.80
CRC32 0.111 0.285 5.46
motion 0.094 0.163 31.16
DMU4 0.085 0.174 37.25
stressmotion 0.088 0.266 1.33
stressDMU3  0.105 0.143 0.60

| all 0.000 0.000 | 125.58 |

(***) Measured on a dual-core, AMD Athlon(TM) XP 2400+
@ 2000.244 MHz, cache size 256 KB running Fedora 8 Linux.

and f,,'™ and f* ) are the m™-objective-function values
of the x™ solutions of ) and P*, respectively. The lower the
value of GD, the closer the distance between ) and P* and
the better the solution, with GD = 0 for solutions lying on
the reference front.

For quantifying diversity, we have used Deb et. al’s spread
metric A [27]:
Q]

M
> dh, + > |di—d|
m=1 i=1

M —
S ds, +1Qld

m=1

A:

where d; is the same distance metric described in GD, and
d is their mean and d¢, is the distance between the extreme
solutions of P* and ) with respect to the m" objective.
Distance and spread calculations for each benchmark are
accumulated in Table III. Numbers verify the visual observa-
tions we have made based on Fig. 3. The sharper matching
of "mlzo” to "all”, as compared with "fin”, is revealed here
by the distances of the two compression benchmarks; 0.082
and 0.115, respectively. In fact, “mizo” features the second
smallest GD to “all” after "rc6”, to be discussed next.
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Final (after 200 generations) Pareto-fronts for symmetric-encryption benchmarks on 10 — K B workloads.

The spread, A, of the compression benchmarks, though, is
the worst across ImpBench and is slightly better for “fin”
than it is for “mizo” (0.367 and 0.383, respectively), which
is especially discernible in Figs. 3b and 3c. Wider spreads
(i.e. smaller A’s) should imply a wider choice of (optimal)
processor configurations from which to pick, as shown in
Fig. 4. From the same Figure we can see that, for the two
compression algorithms, BTB sets and BTB associativity vary
inversely, resulting in the same overall range of BTB sizes.
However, as boxplots in the Figure reveal, "fin” displays
significantly wider ranges in D$ sizes than “mlizo”. This
difference could account for the difference in A’s since all
other range differences between the two benchmarks are small.

B. Symmetric encryption

In Fig. 5 are plotted aggregate, “misty” and “rc6” Pareto
fronts. Although results are more “noisy” than in the case of
the compression benchmarks, it is clear that both encryption
benchmarks are closer to “all”, with “rc6” practically being
on top of it. This is supported by the GD values in Table III
which reveals that, in fact "rc6” and “misty” respectively
display the 1Ist and 3rd smallest GD’s overall. Inspection of
all three plots of Fig. 5 further reveals that "misty” consumes
less power but requires more area than “rc6” (and, thus,
“all”) while scoring better performance than either of them.
This agrees with existing literature [23] and with the targeted
applications of MISTY1 which are low-power, embedded sys-
tems. Its increased area requirements w.r.t. “all” are manifest
in Table 4 across the set and associativity (median) sizes
of both the I$ and D$ caches. On the other hand, "rc6”
features slightly reduced area w.r.t. “all”, mainly due to a
lower (median) associativity degree in both cache structures.

In terms of diversity of solutions, “misty” is somewhat
more clustered than "rc6” (see Fig. 5a) and expectedly has
a somewhat larger A. Yet, both benchmarks display good
spreads with “rc6” ranking overall 2" best. This essentially
means that a number of diverse (optimal) processor configura-
tions exists for servicing either benchmark. In particular "rc6”
is a highly scalable application, which can lead to diverse
processors while maintaining low area requirements (as seen
above). To be precise, Fig. 4 reveals that "rc6” leads to
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processors with at least x4 smaller BTB, I$ and D$ structures
without sacrificing processor flexibility. For instance, the D$-
set boxplot (Fig. 4h) of "rc6” indicates most popular sizes
from 16 to 64 entries.

In terms of D$ miss latency, “rc6” is also more relaxed
compared to “misty”. It allows for latencies up to 8 cycles
(which is similar to what the aggregate run indicates) while
“misty” can tolerate maximum miss penalties of 5 cycles
(median). That “misty” can lead to overestimations in latency
(and overall performance) can also be clearly seen by its
increased CPI w.rt. ”all” in Fig. 5c. To sum up, for the
case of the encryption benchmarks, if "misty” was selected
alone to drive the exploration process, it would underestimate
performance and power costs and overestimate area costs.

C. Data integrity

“checksum” and “crc32” Pareto fronts are illustrated, along
with aggregate, “all” Pareto fronts in Fig. 6. Compared to
“all”, ”checksum” is somewhat slower and requires more area.
“cre32” is even slower and results in processor-area costs X2
those of “all”. As an indication of the different area ranges
involved, from Figs. 4b and 4c, “all” leads the exploration to
a median BTB size of 2 KB while "checksum” to 3 K B and
“cre32” to 4 K B. These observations are corroborated by the
GD of "checksum” being equal to 0.090 and that of “crc32”
being worse and equal to 0.111.

“crc32” is also more irregularly distributed than “check-

(b) Power consumption, avg. (mW) — Area (mm?2)

Power Area

(c) Area (mm?2) — CPI (-)

Final (after 200 generations) Pareto-fronts for real applications on 10 — K B workloads.

sum”, therefore its A (0.285) is much worse than that of
“checksum” (0.189) which is following “all” more closely.
Similarly to "rc6”, “checksum” offers a wide spectrum of
processor alternatives, while “crc32” results in more clustered
solutions. It should be noted that this clustering is not always
a downside of a benchmark, especially in cases where we are
interested in neighboring alternatives in the same design niche.
It offers finer resolution within the area of interest.

The proximity of “checksum” to “all” is also reflected
in Fig. 4 on the identical boxplots for the D$ miss latency
and the RAS size. Yet, “checksum”’s simpler structure seems
to favor the simpler branch-prediction technique ALWAYS
TAKEN while the more complex “crc32” tends towards the
more powerful BIMODAL predictor. Overall, “checksum”
appears capable of substituting “all” in simulations but we
should always account for the observed increase in area and
decrease in performance of the resulting processor configura-
tions. “crc32”, on the other hand, features the second worst
GD after ’fin” and its A is mediocre. Combined with its high
area costs, it should not be considered in most cases as a good,
single substitute for "all”.

D. Real applications & stressmarks

In Fig. 7, Pareto fronts for the real applications “motion”
and "dmu4” are compared with “all”. The plots reveal good
fitting and dispersal of the solutions for both benchmarks,
and GD/A figures agree with these observations. Power and
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performance ranges are similar to “all”, yet area ranges are
significantly different. Although “motion” has a much simpler
functionality than “dmu4”, it incurs disproportional area costs:
on average 32 KB for the BPRED/BTB, 120 KB for the
D$ and 5 KB for the I$, as opposed to “dmu4” which
promotes processors with small average sizes: 2 KB, 3 KB
and 1.8 K B, respectively.

Regarding branch-prediction hardware, “motion” presents
unexpected results, too. It almost exclusively favors config-
urations equipped with a BIMODAL branch predictor. Con-
versely, “dmu4” opts mainly for the simpler static predictors
ALWAYS TAKEN and ALWAYS NOT-TAKEN. On the other
hand, “dmu4” appears to suffer more from increased D$
miss latencies, compared to the average case. In effect, "all”
evolves processor configurations with latencies up to 8 cycles
while "motion” drives latencies up to 10 cycles and "dmu4”
only up to 5 cycles. As opposed to the preceding benchmarks,
in this case, "motion” and “"dmu4” display diverse properties
which cannot be covered fully by either single one of them.
This is to be expected for benchmarks (in essence, kernels)
emulating implant applications. If one real benchmark had to
be selected as representative for this group, “dmu4” would be
the safer choice.

In order to compare the characteristics of the real bench-
marks, above, and the newly-created stressmarks, we have
plotted Fig. 8, where the Pareto fronts of all four programs
are being shown. Plot 8a reveals that, in terms of performance
and power, "stressmotion” has a close distance to “motion”
albeit a slightly worse spread. In terms of hardware require-
ments, “stressmotion” relaxes design requirements compared
to ”"motion”: BPRED/BTB 4 KB, D$ 12 KB and 1$ 2 KB
on average. In an overall, though, by combining ”stressmo-
tion” from Fig. 8 with “all” from Fig. 7, we can see that
“stressmotion” is actually closer to the aggregate Pareto line
than “motion”, as verified by the respective G D’s. Essentially,
Vstressmotion” can track the Pareto front better than the full
“motion” benchmark, albeit with somewhat more clustered
solutions.

”stressdmu3”, on the other hand, follows “all” with some-
what less fidelity than "dmu4” but displays a better spread.
As Fig. 8 indicates, both "stressdmu3” and “dmu4” fronts
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Final (after 200 generations) Pareto-fronts for real applications and stressmarks on their respective workloads.

are residing in the same locus of solutions. Yet, “stress-
dmu3” achieves slightly lower performance and drives pro-
cessor resources slightly up compared to "dmu4”, as follows:
BPRED/BTB 22.5 KB, D$ 15 KB and I$ 2 K B on average.

As far as branch-prediction requirements are concerned,
GA evolutions reveal the following: As stressmarks run for
a short period of time (one or a few iterations only), branch-
predictor distributions in the barcharts of Fig. 4a are relatively
unaffected. The simpler scheme ALWAYS TAKEN is mostly
expanded but, other than that, both stressmarks bear distribu-
tions similar to "all”.

Conclusively, the new stressmarks track the true Pareto front
closely, each either scoring better in GD or A. It is interesting
to notice that, while they have not contributed to the true
Pareto front (i.e. they have not been used in the aggregated-
benchmark simulations), the solutions they evolve are highly
comparable and in the same locus as the aggregate solutions.
This fact attests to their prediction quality and, provided that
attention is paid to the differences they exhibit (as discussed
above), they can offer reliable substitutes for the full real
applications.

VI. DISCUSSION

The previous analysis has unveiled new information with
respect to the coverage of the design space and the hardware
implications contributed by each ImpBench component. In this
context, results indicate that, from the lossless-compression
benchmarks, “mizo” provides better GD and similar A to
“fin”. On top of this, it also features faster simulation times
(about x 3 faster, according to Table III). From the symmetric-
encryption benchmarks, "rc6” displays excellent characteris-
tics, namely the smallest GD and the second best A, meaning
that it traces the aggregate Pareto front with high fidelity.
According to Table III, it is also about double as fast as
“misty”. Of the data-integrity benchmarks, “checksum” per-
forms consistently better than “crc32” and features the overall
shortest simulation time (0.80 sec) across all full benchmarks.

For the real-applications case, no single benchmark could
be unanimously ranked higher due, mainly, to the complex
nature of the results. This actually shows the usefulness of
both real benchmarks which, also, feature similar simulation



times (and the largest in the whole suite). Last, analysis of the
new stressmarks has revealed that, although they display some
variability in predicted processor specifications w.r.t. the full
real applications, they both track the true Pareto front closely.
Careful use of the stressmarks can seriously reduce simulation
times up to x30 (see Table III), which is an impressive
speedup and a good tradeoff between DSE speed and accuracy.

The above results indicate highest-ranking benchmarks
within the ImpBench suite, however this is not to say that
the poorest-performing ones are redundant. The findings of
the original analysis [9] indicate that each benchmark in
ImpBench exhibits diverse characteristics (e.g. pop mixes) and
should not be dropped from consideration when considering
implant-processor design. On the contrary, this study comes as
a complement and extension of the original ImpBench study.

VII. CONCLUSIONS

In view of more structured and educated implant proces-
sors in the years to come, we have carefully put together
ImpBench, a collection of benchmark programs and assorted
input datasets, able to capture the intrinsic of new implant
architectures under evaluation. In this paper, we have extended
the suite with an additional benchmark and two stressmarks.
The stressmarks proposed, feature fraction-of-the-original-
time execution times and, provided that their peculiarities are
taken into account by the designer, they can considerably en-
hance and speedup processor-profiling times. We have, further,
expanded our characterization analysis to include predictions
on actual implant-processor configurations resulting from the
use of this suite as a profiling basis. ImpBench is a dynamic
construct and, in the future, more benchmarks will be added,
subject to our ongoing research. Among others, we anticipate
simple DSP applications as potential candidates as well as
more real applications like the “artificial pancreas”, a crucial
application nowadays for diabetic patients.
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Abstract— The extremely limited resource budget available witnessed in the same Figure. However, such designs are ad-
to medical implants makes it imperative that they are desiged  hoc, are not consistently designed with the restricteduieso
in the most optimal way possible. The limited resources incide limitations of implants in mind, as exemplified for power in

- but are not limited to - battery life, expected responsiverss . . . . .
of the system and chip area. We have already detailed the Fig. 1b, and introduce huge design/testing times and costs.

design of a design-space exploration (DSE) tool specificall It is, therefore, becoming apparent that "smart”, pre-
geared towards finding the Pareto-optimal design front. In his designed and pretested components are needed, that are

paper, we choose processor configurations from the Pareto- s : . )
optimal processor set found by the DSE using real implants specifically geared towards medical implants. Such compo

as case studies. We find that even under the extremely biased N€NtS must cover targe application rangein _orQer to be
constraints that we use, our processor(s) perform better tan ~economical as well as reliable and safe. This is the express

many of the real implants. This provides strong hints towards  goal of the SiMS project [5]. Our final goal is to design a
designing an implant processor with more realistic design (so-called SiMS) generic, low-power implant processor or

_consnderatlons t_hat is generic enough to cover most, if notlla processor family, for covering a large part of the implant
implant applications. dormain

. INTRODUCTION In this paper, we present the results of an automated,
The market for biomedical-implants is slowly but surelydesign-space-exploration (DSE) effort performed to ident

expanding with a rising number of applications. Whilesuch SiMS processor candidates. We, further, select a rumbe
at first restricted to the field of pacemakers [2], implant®f representative, real implant applications in the litera
have now diversified and cover nearly all bodily systemsand explore the possibility of covering them with a few of
from musculoskeletal, to circulatory, to neural [3]. Moveg, the identified processors. It should be noted that this study
recent trends in global healthcare [4] are pushing towardecuses on the microarchitectural aspects of the SiMS pro-
"smarter” implants with increased capabilities. An extedd cessor, thus no Instruction-Set-Architecture (ISA) asialys
study performed on more than 60 different implantabl@resent. Concisely, the contributions of this work are:
systems attests to this claim [1]. For the 12-year study ) ) ) _
period 1994 — 2005, Fig. 1a reveals an increasing number® To propose Pa_lreto-optlmal, .alternatlve microarchitec-
of implants charged with non-trivial processing duties and  tural configurations for the SiMS processor;
featuring in-system memory blocks. Every year, about 12% ¢ 10 make a proof-of-concept, first attempt at fitting a

more implants perform some complex processing task(s) single (or a few) of the identified configurations to real
vivo while 17% more implants are designed with sizeable Implant applications; _
memories on them. o To propose a new, realistic, worst-case workload mix

However, such provisioning comes at a cost. As Fig. 1b  for future implant processors; and
reveals, even though operational voltages are dropping in® Along with the previously generated DSE toolset and
agreement with shrinking process-technology trends,ampl the new workload mix, to provide a complete frame-
power consumption exhibits an aggregate increase of!15%  WOrk enabling the implant designer to make informed
A third, related trend has also been observed: It has decisions about resource allocation for future implant
been common practice so far to custom-design the hardware d€sign.
for each implant application, often completely from schatc

. . . . The paper is organized as follows: section Il gives an
(see Fig. 1c). Although this was easier for the simpler de(iverview of related works in the field. Section Il goes

vices, designing a processing-capable core for every Imuplathrough the experimental tools used for enabling this study

application is not practical due 1o large development angnd the synthesis of the implant workload used. In section

deployment costs. Thereforg, the use of commermal, @ﬁ'th IV a concise presentation of the implant study cases is given
shelf (COTS) components is also gradually increasing, Fection V contains, in detail, the findings of this work.

IFor the observed dip in the middle years 1998 — 2001 a biasiifgca  OVeTall conclusions and future work are drawn in section
is responsible in the sampled data; see [1] for a detailetaraton. VI.



——w/ intern. proc. -#-w/ intern. mem. (mW) )  full-cus st d-cus! s s ] O coreless
5 s

100% — —
40%

30% 20 - -2 40%
20% 15 - 15 30%
10 1 20%
10% on
5 - 05 10%
0% 0 “o0 0%

1994-1997 1998-2001 2002-2005 1994-1997 1998-2001 2002-2005 1994-1997 1998-2001 2002-2005

(a) More implants require processing capabilitié®) Implants exhibit decreasing voltage but increds} Use of commercial components is increasing at
and memories. ing power needs. the expense of full-custom design.
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Fig. 1. Implant trends over the survey period 1994 — 2005 [1].

[l. RELATED WORK by current and future applications in the field.sfstematic
structuredapproach to the problem, supported by the rapid

In the past_, avery I'm'ted. number of attempts has be? dvances of late in microelectronics technology [13], make
made to design implants with some degree of modulantg

for making them capable of adapting to different appliaatio uch a venture finally realistic.
scenarios. 1. EXPERIMENTAL SETUP
Fernald et al. [6], [7] has come up with a modular Our work so far has been focused on investigating the
microprocessor architecture which accepts various pergdh design space of implant processors for proposing one or a
modules such as sensors, actuators and transceiverscépplifew processor architectural configurations able to supaort
tion flexibility is underpinned by a dual ring-bus interc@ah  number of implant applications. This task is difficult tokbec
linking an arbitrary number of modules to the processingcoras we have repeatedly encountered the following problems:
which is a fully featured 16-bit. P (PERC), based on Hector  Implant applications (and their requirements) are very
[8]. Command and data packets, traveling across each bus, diverse, mirroring the wide range of potential pathoses
have predefined, consistent structures and plugged modules in the human body. To make matters worse, biomedical
are built to interface to them. implants are a relatively new field, traditionally domi-
Contrary to the additive nature of the above design, Smith  nated by a handful of companies which are extremely
et al. [9], [10] has addressed the problem of flexibility from  protective of their product designs. With literature being
a subtractive angle. An implantable stimulator device with  limited, consensus in the "application domain” cannot
provisions for a large set of peripherals was designed.rGive  be easily established.
a specific application, unutilized components of the ihitia « A systematic approach and established operational pa-
baseline design are removed, resulting in a reduced system, rameters for designing processors specifically tailored to
sewn to the application needs and with lower power/area implant applications does not yet exist. Thus, a number
requirements than those of the base design. of educated assumptions is necessitated for introducing
Valdastri et al. [11] has presented a versatile implantable boundaries to the design problem.
platform that provides multi-channel telemetry of meadure « Verified tools for modeling the desired processors and
biosignals. Its versatility resides in its ability to suppo exploring the design space are not readily available.
different types of sensors and to allow for easy reprogram- The ones used are best-effort ones which introduce
ming so as to fulfill different application requirements. To accuracy errors and deviations between simulated and
demonstrate the correctness of the concept, a specific case actual results. These deviations are not linear and, thus,
study is implemented for gastric-pressure monitoring Wwhic cannot be easily predicted in advance.
is a PCB-mounted assembly, supporting up to 3 sensorExcept, perhaps, for the first item in this list, all above
channels. This implant can transmit digitally modulatetada problems are well-known and have already been encountered
to an external receiver over a wireless link with robust erroin other application fields. If we are to attempt a first take on
control. a (few) processor(s) capable of serving a number of implant
Last, Salmons et al. [12] has performed a design and corapplications, we need to fill the missing information with
parative study between an ASIC-based and a microcontrollesome further estimations. However, we will have to ensure
based microstimulator device for restoring functionatity that these estimations will be drawn so that the resulting
paralyzed muscles. Analysis has shown that, if carefullynplant-processor architectures are guaranteed to cheer t
designed with low-power modes and checked for softwanargeted applications underorst-case conditiondn effect,
bugs, the latter version is beneficial to the ASIC with respeave will intentionally overprovision our processor(s) siity.
to development and testing costs. For this study to become possible, a number of components is
The work presented here is original in that it attempts toequired. In the following subsections, we briefly introduc
develop a truly generic and low-power processor architectuthese components along with their capabilities and limita-
while at the same time providing the performance needdtbns.



TABLE |
ARCHITECTURAL DETAILS OF (MODIFIED) XTREM.

| Feature Value | Feature Value |
ISA 32-bit ARMV5TE-compatible Ret. Address Stack VAR size
Pipeline depth / width 7/8-stage, super-pipelined / 32-bit I/D TLB (separ.) VAR size / VAR size
RF size 16 registers Write Buf. / Fill Buf. VAR size / VAR size
Issue policy / Instr. Window  in-order, single-instruction Mem. bus width 1B (1 mem. port)
I/D Cache L1 (separ.) VAR size/assoc. (1-cc hit / 170-cc ras$ | INT/FP ALUs 11
BTB VAR size, fully-assoc. / direct-mapped Clock frequency 2 MHz
Branch Predictor VAR (4-cc mispred. lat.) Implem. Technology 0.1&m @ 1.5 Volt
- \ TABLE I
Legend
IMPBENCH V1.1 BENCHMARKS. (*) INDICATES TYPICAL VALUES FOR
&
PR — » Software (C/C++)
! [ suevortng srpts (Per) 10 — K B WORKLOADS, EXCEPT FORDMU-VARIANTS WHICH USE
[ > Genetic Algorithm
| ! W o THEIR OWN SPECIAL WORKLOADS
I
} } —— » Software Calls
| Estimates . .
! Power, »Data Transfer benchmark name size dyn. instr.* dyn. pops*
! Performance Generates Processor Configuration © Mulipl Insances (KB)  (average) (#) (average) (#)
Estmates | s 3 Compression miniLZO 16.30 233186 32363
i | Simulators mplant Applicaton Finnish 10.40 908380 220819
i i 1 U XTREM |usedas_| N Encryption MISTY1 18.80 1267162 208668
} IPC : (Processor Simulator) Input . RC6 11.40 863348 127284
I
i CACTI Data integrity checksum 9.40 62560 8621
——————————————————— (Cache Simulator) CRC32 9.30 418598 91887
Wi Script
— Real applications  motion 9.44 3038032 475308
DMU4 19.50 36808080 4318667
Fig. 2. Overview of ImpEDE exploration framework. PMU3 1959 75344906 10730146
‘ Stressmarks stressmotion 9.40 288745 455851;3
A. Exploration framework stressDMU3 ~ 19.52 124212 22479

As (automated) exploration tool we have employed Im-
PEDE, a previously proposed multiobjective, DSE frame('Jlay, yet it fails in a number of ways, a crucial one being

\t/vorktfor |nvlejt|g?;;1t|ng Pa_reto-ofpttr;ma;l, mplaniprocgsab . that it models a low-power, high-performance embedded
ernatives [14]. An overview of the framework is shown Inprocessor, which is kind of "overshoot”; it does not exactly

Fig. 2. Opt|m|zat|qn (m|n|m|zat_|on)_ol:yecuves within thefitting our implant application domain. Another shortcogin
f“”.‘me".vo”‘ aremaximum execution timn sec), total area s that XTREM does not simulate any (off-chip) memory,
utilization (in mm?) andtotal average power Consumptlonthus making system-level simulations difficult. Last, our

(in mW)f'_ Under “total’, protc(ejssAor ‘;]‘S we_II tﬁs (Oﬁ'd;_'p) long usage of XTREM has revealed a number of bugs and
memory figures are aggregated. S Shown in the same 'gufﬁodeling inaccuraciésmost of which have been solved by a

? weII—.knotvr\:n dGA. (NSGA-lI lt[15]) haf beepd selected fornewer simulator XEEMU [18]. We are currently busy porting
raversing the design space. It generates valld processer Co e\ 1 our framework; in the meantime, XTREM has

figurations also known as "chromosomes”. Compromsmgeen maintained in our exploration chiefly for reasons of

between unrealistic execution times and quality of reSUIt%wailability and ease of use. We have combined readouts from

all full runs of the GA have been allowed to evolve for 20 EEMU regarding memory power consumption and have
generations with a population size of 20 chromosomes pﬁbdated the power metric in our exploration accordingly.

eneration. By ;
9 For quantifying each chromosome’s area cost, we have

. : . X =" “"sed CACTI v3.2, a well-known, cache-area estimation tool.
ecution time) and power metrics are provided by utlllzmg].he total area cost has been calculated by summing the

XTREM, a cycle-accurate, performance and power XScal i ;
: o ixed) net processor and (off-chip) memory area, based on
processor simulator [16]. XTREM allows monitoring of 14? ) P ( P) y

. . - related literature, and the per-case cache (BTB, I$, D$,etc.
different subsystems, the most pertinent to our study belngaseol on CACTI estimations.

Branch-Target Buffer (BTB), Instruction Cache (I$), Data

Cache (D$), Internal Memory Bus (MEM) and Memoryg giomedical workload

Manager (MM). While we have kept some XTREM pa- o )

rameters fixed in order to model implant processors more ' "€ last component missing from the above framework is
accurately, we have purposefully left some others variapffe biomedical workloads that will be fed into the simulator

for the GA to explore their optimal settings, as summarizelf drive the exploration process. We are essentially istece
in Table B. in benchmarks representative of the actual workloads that

will be fed in real implants, in terms dlnctionalas well

While XTREM has been very useful in our studies to

2Values denoted with 'VAR’ indicate adjustable parameteysttie GA.
For complete parameter ranges refer to [14] SFor an extensive list, see [17].



TABLE Il
IMPEDE-EVOLVED PROCESSOR CONFIGURATIONS

conf. | BPRED BTB RAS | L1-1$ L1-D$ Mem | Ex. Time Power Area
sets  assoc sets  bl.size  assoc repl sets  bl.size assoc repl lat.
() #) #) ) #  (bits) #) ) (#)  (bits) #) () | (@#co) (sec) W)  (mm?)
1 bimod 64 8 8| 4096 16 32 FIFO 4096 16 1 FIFO 2 27.465 17.539  2521.34
2 bimod 128 8 2 256 16 16 LRU 4096 8 2 LRU 16 37.166 15.368 394.53
3 bimod 64 32 0 256 16 16 RAND 1024 32 2 FIFO 1 1.790 123.143 400.92
5 taken 1| 1024 32 32 RAND 16 16 16 FIFO 8 26.143 13.842  1325.34
6 | nottaken 8| 1024 16 4 FIFO 512 32 2 FIFO 1 1.433 63.217 327.10
7 bimod 128 8 4| 2048 16 8 FIFO 4096 32 1 LRU 1 1.751 93.200 659.94
8 taken 0 16 32 8 RAND 512 32 4 RAND 8 2.777 74.860 299.37|
9 bimod 128 2 4 64 32 8 LRU 128 32 16 FIFO 8 2.181 63.288 327.61
10 bimod 32 16 8 128 8 2 FIFO 16 32 8 RAND 1 4.516 87.887 243.68
11 bimod 64 8 1 256 16 4 FIFO 64 32 16 FIFO 2 1.951 93.366 298.79
12 | nottaken 4 16 8 2 FIFO 64 8 2  RAND 8 35.571 88.153 215.30
13 bimod 64 4 2 8 16 1 FIFO 128 32 2 RAND 16 6.834 69.729 227.71
14 | nottaken 2 64 16 2 LRU 16 32 16 FIFO 16 4.605 67.197 250.99
15 | nottaken 2 16 8 4 FIFO 32 32 2 FIFO 4 6.823 80.947 218.21
16 | nottaken 2 8 32 2 LRU 64 16 2 FIFO 1 24.463 71.681 218.84
17 | nottaken 1 32 16 16 FIFO 16 32 4 LRU 8 2.868 69.781 238.62|
18 bimod 128 2 8 64 8 16 FIFO 16 32 16 FIFO 2 2.222 90.816 268.36|
19 bimod 32 1 8 64 16 16 LRU 128 32 32 FIFO 4 1.922 74.419 421.30
20 | nottaken 1 128 16 4 LRU 64 32 4  RAND 16 3.395 62.336 236.57|

MM:SS
00:00

Every processor configuration (or chromosome) evolved
through IMpEDE is made to execute this whole sequence of
benchmarks, representitige busiest (i.e. worst-case) itera-

Temperature DM Drug release rate
Pressure stressDMU3 .

. Motion stressmotion Activity factor
00:04

logged raw

esvoee) - [T00TH100THO0THOOT ] tion in the implant's operational lifetime. Thexecution-time
e metric is calculated as the accumulation of execution times
00:06 = . . .
Tomo .4 S (ool of all involved benchmarks while theower-consumption

metric is calculated as the weighted average of the power
consumptions of all involved benchmarks with each one’s
execution time used as the weighting coefficient.

00:07

XXXX]XXXX]

[ -] data with

Checksum
TxD
* (indicative

Fig. 3. Conceptual block diagram of simulated implant aggtion (based
on [4]).

To push the worst-case, processor-design envelope further
and without loss of generality, we u$é— K B EMGII as the
input dataset to the above benchmarks. It features a iealist
size and has been shown to evoke the longest execution times
among the available physiological datasets [14].
as of timing behavior. To represent these workloads, we
make use of the benchmarks found in ImpBench v1.1 [19], It should be noted, last, that all ImpBench benchmarks
comprising compression, encryption, data-integritytsgtic  (and, thus, the ones currently used) are kernels simulating
and stress benchmarks (see Table II). the processing load of an implant processor. Thereforg, the

As indicated also by the benchmarks, implant functionalitguffer from certain modeling limitations: they have no way
is a largely iterative process wherein sensors are perioda) of modeling the behavior of any implant peripherals
cally read, actuators are periodically enabled and praogss (biosensors/bioactuators), and subsequently (b) of ateur
tasks are periodically triggered. A general, typical wodd modeling any externally triggered (timing or other) events
mix for future implants has already been presented in [4].e. they have no sense of real time. This is a well-known
Concisely, a synthetic application (DMU-variant) exesuteproblem in benchmarking (event-driven) embedded systems.
(manipulating sensors and actuators) and periodicallyefwh It can be addressed (and has been, in our case) by introducing
10 KB of logged data are collected) compression, encryptiogxtra code in the benchmarks to imitate the passage of
and data-integrity tasks are invoked on the data. time and the occurrence of external events (e.g. timerngsens

In this case, and in order to provide realistimrst-case interrupt). This, of course, has to be done in a careful tashi
SiMS-processor design, we update this workload mix as fols it can potentially pollute simulation results in terms of
lows: Per benchmark category, we select the fastest exgcuttiming behavior, executed instruction mix and so on.
algorithm - i.e.miniLZO for compressionRC6 for encryp-
tion and checksunfor data integrity. As for the synthetic Under all above considerations, ImpEDE has been al-
benchmark, we replace it byoth stressmarkstressmotion lowed to run over significant periods of time in search of
and stressDMU3which simulate a single-iteration, worst- optimal SiMS-processor configurations. Results are given i
case instance of the regular benchmaridtionandDMU3, Table Ill. Each one of the 19 entries is a Pareto-optimal,
respectively. This combination of benchmarks is depicted inon-dominated solution to the problem. Performance, power
Fig. 3. and area metrics are also reported for each entry.

XXHXX[XKXX




TABLE IV
STUDY CASES OF REAL IMPLANTABLE APPLICATIONS(TAKEN FROM [1]).

case | Author Pub. | Application Power Sensor  Sampl. ADC  Core Cofe Ex.Time Power  c/s Area
Year source count rate  resol.  arch. freq. Worst-case Peak Total
) #) (Hz)  (bits) () (MHz) (sec)  (MW)  nm?)
A Smith et al. [9], [10], | 1998 | restoration of paralyzed RF-ind. 2 100 12 FSM 1 34.1333 96.00 937.5
[20] muscle, MES
B Eggers et al. [21],| 2000 | ICP-based diagnosis fof RF-ind. 1 100 10 no 0.12 81.9200 0.24 58.50
[22], [23] brain diseases
C | Rollins et al. [24] 2000 | continuous ECG for| battery (ext.) 8 1000 12 FSM 0.8533 34.00 4209.6
spontaneous cardia
arrhythmias
‘ D ‘ Valdastri et al. [11] ‘ 2004 ‘ gastric-pressure monitoj battery 1 25000 10  8-biuC 4 ‘ 0.3277 50.40 162.00‘
ing
E | Au-Yeung etal. [25] | 2004 | continuous AEG, deliv-| battery 4 333 10  8-biuC 8 6.1502  115.30 5106.0
ery of atrial ATP
| F | Liang et al. [26] | 2005 | ENG | RF-ind. 1 11000 10  8-biuC nia | 0.7447  90.00  1350.0q
V. | MPLANT STUDY CASES sampling rate, as shown in Table IV. This rate (or frequency)

itgnifies (when inverted) the maximal amount of time they
ave to read a sensory sample and process it before the next
ample arrives. In effect, this is the worst-case execution
e of the implant. Note that we might have used the 'Core
equency’ as a measure of the processing rate but this would

accurate only for designs with very simplistic cores as
A, #B and #C. For the rest of the cases whereby a;fdll

For selecting representative study cases of the impla
application domain, we draw upon the extensive surve
performed by Strydis et al. [1] who has investigated mor
than 60 cases of experimental as well as commercializ
implantable devices. The selected applications will hel
provide diverse operational requirements for our targete

SIMS processor(s). . . X ;
In order for a direct comparison (and fitting) with the's used, the core frequency is much hlgh(_er (typically three
candidate SiMS processor(s) to be made possible, we h oréjers of magnitude) than the actual sampling frequency and

. : us, does not reflect the real-time deadlines of the implant
to place the study cases in the same design space as the one

traversed by ImpEDE. That is, we need to know the worst: However, the performance metric for the study cases (as

case execution time, the power consumption and the area c&ef inverse of the sampling rate) is not yet completely nor-

of each of the studied implantable systems. This requiréme alized With_ respect to t_hat of our processor_configurgtions
limits the number of eligible systems to only 6, as shown he reason is that, as discussed in the previous section, we

[ . . .
Table IV, yet the scope of applications addressed is diveri&a\’e made our processor configurations consume EMG input

As illustrated, actual implant-chipset sizes have been e ata of 10 K'B. The study cases, on the other hand, are

ployed for the area metric. By ‘chipset are implied theassigned (by design) the task of consuming a single sample

dimensions of any design and assembly type ranging fro%f size equal to the ADC resolution used (eSghits), from
fully integrated and multi-chip module (MCM) to PCB- each sensor they have on-board. Therefore, for each study

mounted. Figures were also available for the implant Chip(:Tase_to collect0 [.(B.Of. sample data, a longer execution
time is needed which is inversely proportional to the number

only size (inmm?) - e.g. processor die but no supporting ¢ Jabl Th lized ; .
PCB - and for the implant package size (inn?). However, O 2Vallabie SENSOrs. The normalized, Worst-case exatutio
IIg'ne is then given by:

the chipset area was finally preferred so as to allow mo
direct and fair comparisons with the XTREM processor ET,orm = 10 K Byte (1)
plus off-chip memory. Needless to say, we have insisted in FxNxS§’

including the memory in this study as the initial analysise(s

section 1) revealed rising trends in memory usage for futurﬁ, is the ADC resolution (in bits) and is the number of

|mXIanfts. L d th working sensors on the implant. This is the execution time
S far-as power _consgmptlon IS_concerned, the moi;fiven in Table IV. It should be noted that formula (1) does
frequ_ently reported flgure_ in the actual implantable SySte'_Thot account for any further processing of the data once ac-
is active (peak) power which was the power measured dur"hqjired. On the contrary, our evolved processor configunatio

fl_J” loagf;g; 'S(‘j the power simulated bly XTREM as Wle”'IFerform significant processing tasks, as discussed inosecti
since 0es not support any low-power or sleely g This has been done to promote our effort in designing

modes of operation, and it has been used here as the pov‘fﬁ{blant processors under worst-case constraints.
consumption metric.

Last, for the performance metric, some estimations had
to be made to bring the real and simulated systems at
the same level of comparison. All case studies are devicesSince we have investigated 3 design metrics, the design
with periodic monitoring windows, thus exhibit a specificspace is a cube, as shown in Fig. 4a. In this Figure, our

where I’ is the sampling frequency (in Hz) of the sensor(s),

V. EXPLORATION RESULTS
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Fig. 4. Comparison of study cases and DSE resultslfo¥ B workloads running on the selected benchmarks.

processor design points (denoted with numbers) and the cafiein fact, is the point in the 3D space with the lowest power
study points (denoted with letters) have been plotted. Farofile (0.24 mW) across processor configurations and study
clarity purposes, 2D Figs. 4b, 4c and 4d have also beamases alike. It is, therefore, an outlying, marginal implan
plotted. The bounding boxes around the study cases represease in terms of power. Looking at the application details
10% confidence intervals to compensate for the uncertainfgl], we see that, indeed, #B is a minimal device measuring
introduced when trying to fit the study cases in the desigimtra-cranial pressure and consuming such low power that it
space. Coupled with our worst-case design constraintsethdés connected and sufficiently powered by an external power
intervals guarantee an extra measure against errors. source (i.e. power is RF-induced transdermally). Theesfor
From the Figures, we notice that implant devices #AOWer Is not an issge for. this application and any of the
processors that dominate it across the other two dimensions

and #E are dominated by most of our processor poin : ; )
in all three dimensions. Therefore, we can easily replac(?ay replace it. Although all configurations are mutually non

these applications (restoration of paralyzed musclealatri (i;nlna;e;j,ﬂhkely candidates could be configurations #20,
electrogram, anti-tachycardia pacing) by any one of OLﬁ an '

processor configurations. Furthermore, we see that devices #C, #D and #F are both

Device #B, on the other hand, is largely dominated iroverdesigned for performance. Of those, devices #C and #F
terms of execution time and area but not in terms of powerespectively perform continuous-ECG and ENG monitoring,



which are both quite demanding in terms of throughput Even so, as future work, we wish to expand our DSE
(as indicated also by their reported sampling rates). Weamework to also optimize for system reliability. To do so
observe, however, that both devices behave significantlye need to introduce a fourth metric (one currently con-
worse than most processor configurations in terms of ars#&ered is fault coverage) and expand our tools accordingly
and worse than about half in terms of power. Given that thesaurthermore, we are already busy porting XEEMU to our
applications are high-performance ones (in the context sfystem as a more error-free and accurate replacement for
biomedical implants), if we would like to address them withXTREM.
our envisioned SIMS processor, we could trade the observed
area and power margin for an exth@rdware accelerator
capable of delivering the extra performance required. Good This work has been partially supported by the ICT Delft
candidates for such an accelerated processor could be c&esearch Centre (DRC-ICT) of the Delft University of
figurations #5, #20 and #6. Technology. Many thanks are due to Erik de Vries and Eef
Device #D, on the other hand, performs gastric-pressukéartman for their excellent technical support, primarity i
monitoring at an extremely high sampling rate 2f kH>  Setting up and operating the DSE computer cluster. Without
(the highest across all study cases). Nevertheless, gasttiem, this work would not have been possible.
pressure does not change that rapidly, therefore, in our
opinion processor points with much higher execution times
(the original x10, i.e. around3 — 4 sec) can also safely [1] C. Strydiset al, “Implantable microelectronic devices: A comprehen-
cover the application of device #D. Processor configuration g'c‘)’gge"'ew’" Computer Engineering, TU Delft,” CE-TR-2008, Dec.
#17, #20 and #14 can make this time deadline and, give[lz] R. Sanders and M. Lee, “Implantable pacemakers Pinceedings of
the fact that they also exhibit better power and area metrics the IEEE vol. 84, Mar. 1996, pp. 480-486.

: : :[3] F. Nebeker, “Golden accomplishments in biomedical eegring,”
than #D, they could be considered as good solutions for thi& in IEEE Engineering in Medicine and Biology Magazinel. 21,

application. Piscataway, NJ, USA, May - June 2002, pp. 17-47.
With the above analysis in mind, we can see that thg4l C. Strydis and G. Gaydadjiev, “The Case for a Generic tmpl

minimalistic processor confiquration #20 is one of the most Processor,” in30th Annual International Conference of the IEEE
p g Engineering in Medicine and Biology Society (EMBC’0&ugust

promising ones across all studied devices. It is intergstin 2008, pp. 3186-3191.
to mention that its characteristics (no sophisticated BBRE [5] “Smart implantable Medical Systems,” http://simsedelft.nl.

. ] K. Fernald, T. Cook, T. M. lll, and J. Paulos, “A Micropressor-
scheme, both L1 caches present with 1$ Iarger than D Based Implantable Telemetry System,” lBEEE Computer vol. 24,

etc.) agree with the partial findings of a previous study on  Mar. 1991, pp. 23-30.
BPRED and cache scheme for biomedical implants [27][7] K. Femald, B. Stackhouse, J. Paulos, and T. Miller, "Astyn

s Architecture for Intelligent Implantable Biotelemetry stnuments,”
Of course, this is not to say that the rest of the SqueSted in Proceedings of the Annual International Conference of tREH

configurations from the above analysis are not interesting Engineering in Medicine and Biology Society (EMB®)I. 11, Nov.
solutions. Keep in mind that all considered configuratiaes a 1989, pp. 1411-1412.

) . B . . . [8] T. M. etal., “The Hector Microprocessor,” iRroceedings of the IEEE
non-dominated, Pareto-optimal solutions of the desigeepa International Conference on Computer Design (ICCI986, pp. 406—

In fact, in the future we tend towards a highly structured,  411.
systematic, implant-design approach in which a small fiamil [9] B. Smith, Z. Tang, M. Johnson, S. Pourmehdi, M. Gazdikguckett,

- . . . . and P. Peckham, “An externally powered, multichannel, anfable
of processor Conﬁguratlons 1S deS|gned and is able to cover stimulator-telemeter for control of paralyzed muscle, THEE Trans-

a large part of (if not all) the implant application field. actions on Biomedical Engineeringol. 45, 1998, pp. 463-475.
[10] S. Pourmehdi, P. Strojnik, P. Peckham, J. Buckett, andSBith,
“A custom-designed chip to control an implantable stimuiaand
VI. CONCLUSIONS telemetry system for control of paralyzed muscles,” Antificial
Organs vol. 23, May 1999, pp. 396-398.
In this paper, we have presented a complete approaph] P. Valdastri, A. Menciassi, A. Arena, C. Caccamo, andDArio,

towards the systematic, educated and automated microar- ‘An implantable telemetry platform system for in vivo maning
of physiological parameters,” ilEEE Transactions on Information

chitectural _sp_ecification of processors for biomedical; _mi Technology in Biomedicina/ol. 8, Sept. 2004, pp. 271-278.
croelectronic implants. We have provided 19 Pareto-optim@?2] S. Salmons, G. Gunning, I. Taylor, S. Grainger, D. Hitgs, J. Black-

processor alternatives investigating a large set of harlwa ~ hurst, and J. Janvis, *ASIC or PIC 2 Implantable stimulatoased
h | h dD h tri b h on semi-custom CMOS technology or low-power microcongroll
parameters such as |-cache and D-cache geometries, branch- grchitecture,” inMedical Engineering & Physicsvol. 23, 2001, pp.

prediction policy and memory latency. To the best of our  37-43.

knowledge, we have also provided the first comparisoi3l |- T. R. for Semiconductors (ITRS), “[online] availabl
9 P P http://www.itrs.net/common/2004update/2004update, h2004.

between the ?UggeSted processor configuration_s and existiflg) p. Dave, C. Strydis, and G. N. Gaydadijiev, “ImpEDE: A Mdimen-
documented implantable devices across a wide range of sional Design-Space Exploration Framework for Biomedingdlant

applications. To manage this. we have established a means Processors,” iffo appear in: Proceedings of the 21th IEEE Interna-
’ tional Conference on Application-specific Systems, Agchires and

of direct comparison based on careful assumptions that take processors (ASAP'10pUlY 7-9 2010.
into account the unavoidable inaccuracies of our toolsoln §15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Faditigt

’ Evolutionary Computationvol. 6, pp. 182-197, 2000.

Worst-_ca_se co_n_d|t|o_ns, 1.€. they_are_ suitably provisiofed [16] G. Contreraset al, “XTREM: A Power Simulator for the Intel XScale
the mission-critical implant applications. Core,” in LCTES'04 2004, pp. 115-125.
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