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Gene regulation
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Abstract 
Motivation: Single-cell technologies allow deep characterization of different molecular aspects of cells. Integrating these modalities provides a 
comprehensive view of cellular identity. Current integration methods rely on overlapping features or cells to link datasets measuring different 
modalities, limiting their application to experiments where different molecular layers are profiled in different subsets of cells.
Results: We present scTopoGAN, a method for unsupervised manifold alignment of single-cell datasets with non-overlapping cells or features. 
We use topological autoencoders (topoAE) to obtain latent representations of each modality separately. A topology-guided Generative 
Adversarial Network then aligns these latent representations into a common space. We show that scTopoGAN outperforms state-of-the-art 
manifold alignment methods in complete unsupervised settings. Interestingly, the topoAE for individual modalities also showed better perfor-
mance in preserving the original structure of the data in the low-dimensional representations when compared to other manifold projection meth-
ods. Taken together, we show that the concept of topology preservation might be a powerful tool to align multiple single modality datasets, 
unleashing the potential of multi-omic interpretations of cells.
Availability and implementation: Implementation available on GitHub (https://github.com/AkashCiel/scTopoGAN). All datasets used in this 
study are publicly available.

1 Introduction
A growing number of single-cell technologies allow the char-
acterization of distinct molecular features of cells, such as 
single-cell RNA-sequencing (scRNA-seq) or measuring chro-
matin accessibility at single-cell resolution (scATAC-seq). 
Despite advances in multi-modal technologies (Zhu et al. 
2020), these molecular features are mostly measured from 
different subsets of cells. Sometimes the measured modalities 
share common features, for example when spatial transcrip-
tomics and scRNA-seq are applied on the same tissue. 
Because the datasets are not measured from the same cells, 
they have to be aligned into a common space using data inte-
gration methods (Argelaguet et al. 2021).

Multi-omic data integration methods aim to find a joint la-
tent space representing information from multiple modalities. 
These methods include MOFAþ (Argelaguet et al. 2020), 
Seurat WNN (weighted nearest neighbor) (Hao et al. 2021), 
totalVI (Gayoso et al. 2021) and Mixture of Experts (Shi 
et al. 2019). These methods require the cell–cell correspon-
dence between the different omics modalities and cannot be 
applied when multiple unimodal assays are used to profile 
different cells from the same biological sample. This problem 
is referred to as diagonal integration, and represents the most 

challenging case of single-cell multi-omics data integration 
(Argelaguet et al. 2021).

Previous methods, such as MATCHER (Welch et al. 2017), 
SCIM (Stark et al. 2020), UnionCom (Cao et al. 2020), MMD- 
MA (Singh et al. 2020), SCOT (Demetci et al. 2022a), Pamona 
(Cao et al. 2022b), and uniPort (Cao et al. 2022a), have 
addressed this challenging integration task by assuming a simi-
lar cellular composition between unimodal datasets collected 
from the same tissue. MATCHER uses Gaussian processes to 
embed cells from multiple modalities onto a 1D trajectory. 
SCIM uses variational autoencoders with an adversarial objec-
tive function to learn a modality-invariant latent representation. 
UnionCom first defines geometrical matches between cells 
across different modalities and projects the different features 
onto a common latent representation which is comparable for 
the matched cells. MMD-MA minimizes the maximum mean 
discrepancy between the different modalities in the learned la-
tent space. While SCOT, Pamona and uniPort use different var-
iations of an optimal transport formulation to perform the 
integration. Many of these multi-modal alignment methods, 
however, suffer from several limitations. MATCHER and 
SCIM are not fully unsupervised as they require (partial) cell 
type annotations for each of the different modalities in order to 
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align the data. Additionally, MATCHER can only align 1D tra-
jectory structures and cannot deal with more complex struc-
tures. SCOT showed promising integration results; however, 
SCOT was originally tested on small single-cell datasets, which 
makes its scalability to realistically large single-cell datasets 
questionable. UnionCom and MMD-MA represent fully unsu-
pervised manifold alignment methods; however, both methods 
were tested on single-cell multi-omics data, in which the multi-
ple modalities were measured from the same cell, with perfect 
cell-to-cell correspondences. Although they did not exploit this 
correspondence in their methods, the integration performance 
drops significantly (as we show later) when, more realistic, data-
sets lacking this correspondence are used.

Recently, a new category of diagonal integration methods 
emerged, including bridge integration (Hao et al. 2022), 
UINMF (Kriebel and Welch 2022), and StabMap (Ghazanfar 
et al. 2023). These methods require an additional single-cell 
multi-modal dataset containing cell-cell correspondence and 
measuring the same modalities of the unimodal datasets to be 
diagonally integrated. This additional multi-modal dataset 
can act like a bridge and translate information between the 
distinct unimodal datasets guiding the data integration 
process. Moreover, GLUE (Cao and Gao 2022) is using a 
graph-based modeling of the regulatory interactions in order 
to integrate gene expression and chromatin accessibility data. 
These methods are beyond the scope of our study since they 
require an additional representative multi-modal layer.

Considering different single-cell modalities measured from 
the same biological sample, the main assumption in integra-
tion is that the different modalities lie on the same underlying 
manifold (Sun et al. 2018). Preserving the topology of the 
datasets is crucial when constructing and integrating the dif-
ferent manifolds. Since the different modalities are measuring 
distinct features, it is necessary to first find a low- 
dimensional representation of each modality separately. 
Topological autoencoders (topoAE) have been recently intro-
duced to project high-dimensional data into a low- 
dimensional latent space while preserving the data topology 
(Moor et al. 2020). Next, these low-dimensional manifolds 
have to be aligned into a common space with minimal distor-
tion to the original topology of each data modality. 
Generative Adversarial Networks (GANs) were successfully 
used in the computer vision field (Gui et al. 2021). GANs 
were previously used to project biological datasets onto each 
other (Amodio and Krishnaswamy 2018); however, based on 
correspondence information between the datasets, and not in 
a fully unsupervised setting.

We propose scTopoGAN, a topology-preserving multi- 
modal alignment of two single-cell modalities with non- 
overlapping cells or features. scTopoGAN first finds 
topology-preserving latent representations of the different 
modalities, which are then aligned in an unsupervised way us-
ing a topology-guided GAN. scTopoGAN is fully unsuper-
vised with no requirement for cell type annotations. Our 
results show that scTopoGAN outperforms state-of-the-art 
methods, producing joint representation of distinct datasets 
with better matching between cellular populations.

2 Methods
2.1 scTopoGAN overview
scTopoGAN is designed to align two datasets measuring 
two different single-cell modalities, each measured on different 

non-matching cells. scTopoGAN consists of two steps: (i) mani-
fold projection and (ii) manifold alignment (Fig. 1). Assuming a 
lower-dimensional manifold structure for single-cell datasets 
(Bac and Zinovyev 2019), scTopoGAN first finds the manifold 
for each modality separately, with explicit preservation of the 
data topology. Then, the latent space representation of the two 
modalities is aligned in a topology-preserving manner, exploit-
ing the assumption that the topology of the cells in the two mo-
dalities is the same. This alignment step should preserve 
relevant inter-modality correspondence such that similar cell 
types should be aligned between different modalities.

2.1.1 Manifold projection
To project each modality to a lower-dimensional latent space, 
scTopoGAN uses a topoAE (Moor et al. 2020), which choo-
ses point-pairs that are crucial in defining the topology of the 
manifold instead of trying to optimize all possible point- 
pairs. A topoAE is based on the concept of persistent 
homology (Edelsbrunner and Harer 2008) which selectively 
considers edges connecting point-pairs below a certain dis-
tance threshold. These edges are used to construct local 
neighborhoods together constituting large-scale topological 
features. Similar to the Mapper method (Singh et al. 2007) 
used in scTDA (Rizvi et al. 2017), persistent homology can 
identify simple topological features, such as connected 
components/tree-like structures, as well as higher-order struc-
tures such as cycles and holes/voids. Repeating the above pro-
cedure by increasing the distance threshold, persistent 
topological features are defined as the topological structures 
which are preserved and observed in the data over a wide 
range of distance thresholds. The point-pairs constituting 
these persistent features are known as persistent pairings. 
Preserving the distances between these pairings in a lower- 
dimensional projection of the data preserves the data topol-
ogy. The loss function of the topoAE is defined as: 

L ¼ Lr þ kLt (1) 

where Lr is the reconstruction loss between the input and 
reconstructed output of the autoencoder across all cells, and 
Lt represents the topological loss, while k is the weight of the 
topological loss. The topological loss is defined as: 

Lt ¼ LXZþLZX

LXZ ¼
1
2

AX pX½ � � AZ pX½ �
�
�

�
�

�
�

�
�2

LZX ¼
1
2

AZ pZ½ � � AX pZ½ �
�
�

�
�

�
�

�
�2

(2) 

where X is the original input data and Z is the encoded latent 
representation, AX and AZ are the distance matrices in the 
original and latent spaces respectively, pX and pZ are the per-
sistent pairings in the original and latent spaces, respectively. 
A: p:½ � represent subset of distances in the space A: defined by 
the topologically relevant edges in that space p:. The term 
LXZ ensures that persistent pairings relevant to the original 
manifold are equidistant in both the original and the latent 
spaces, while LZX ensures that persistent pairings relevant to 
the latent manifold are equidistant in both spaces.
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2.1.2 Manifold alignment
We used a GAN (Goodfellow et al. 2014) to align one modal-
ity (source) to the other modality (target). The generator part 
of the GAN aims to project the source modality onto the tar-
get modality, resulting in a combined dataset. We use a single 
hidden layer generator network against a double hidden- 
layer discriminator network. The GAN was trained for 
1000 epochs.

To ensure a topology-preserving alignment of the two modal-
ities, we trained 20 different GANs and selected the GAN which 
best preserves the topological loss (Equation (2)) between the 
source data and its projection in the target data space. To do so, 
for each GAN, the topological loss is calculated from epoch 
500 every 100th epoch until epoch 1000 (six values) and then 
averaged. The topological loss was calculated for a batch size of 
1000 to balance between coverage of global structure in each 
batch and compute memory requirements. The generator net-
work of the selected GAN is then loaded into a new GAN 
model with a new discriminator network as its adversary. This 
final model is then trained for an additional 1000 epochs to ob-
tain the final aligned manifolds.

2.2 Datasets
2.2.1 Peripheral blood mononuclear cells (PBMC) dataset
The peripheral blood mononuclear cells (PBMC) dataset con-
sists of healthy human PBMCs, simultaneously profiling gene 
expression (RNA) and chromatin accessibility (ATAC) from 
the same cells using the 10x multiome protocol. The dataset 
was downloaded from the 10x Genomics website (https://sup 
port.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1. 
0.0/pbmc_granulocyte_sorted_10k). The “Full PBMC” dataset 
contained 11 910 cells, profiling 36 601 genes and 108 377 
peaks, having one-to-one correspondence between the two mo-
dalities, and including 7 major cell classes (CD4 T cells, CD8 T 
cells, Monocytes, NK cells, Dendritic cells, B cells, and HSPC) 
which are further divided into 20 cell subclasses.

To simulate a realistic data in which the cell–cell corre-
spondences do not exist between the two modalities, we gen-
erated the “Partial PBMC” dataset where we randomly 
removed 30% of the cells (after preprocessing) from both 
RNA and ATAC independently stratified across the different 
cell classes. This results in a total of 7349 cells for each mo-
dality, including 2100 cells which have no corresponding 

cells in the other modality. In this case, the “Partial PBMC” 
dataset represents an example with partial correspondence.

2.2.2 Bone marrow (BM) dataset
The original bone marrow (BM) dataset consists of human 
bone marrow cells, simultaneously profiling gene expression 
(RNA) and protein expression (antibody-derived tags, ADT) 
from the same cells using the CITE-seq protocol (Stoeckius 
et al. 2017). The dataset contained 30 672 cells, profiling 
17 009 genes and 25 ADT, with cell-cell correspondence be-
tween both modalities, and including 5 major cell classes (T 
cells, B cells, Mono/DC cells, NK cells, and Progenitor cells), 
further categorized into 27 different cell subclasses. For the 
purpose of our study, we randomly selected 10 235 cells from 
each modality independently in a stratified manner across the 
cell classes. In this case, the “BM” dataset does not contain 
any cell–cell correspondences between the two modalities.

2.2.3 scGEM dataset
The scGEM dataset measures the continuous differentiation 
trajectory of human fibroblast reprogramming to induced 
pluripotent stem cells (iPS), simultaneously profiling gene ex-
pression (RNA) and DNA methylation (MET) from the same 
cells (Cheow et al. 2016). The scGEM dataset was also used 
for evaluation by UnionCom and SCOT. The dataset con-
tained 177 cells, measuring 34 genes and 27 methylation 
states, and is composed of five developing cell states starting 
from fibroblasts (BJ), going through three intermediate states 
(d8, d16Tþ, d24Tþ), and finally differentiating into iPS.

2.3 Data preprocessing
We performed all data preprocessing using the Seurat v4.0 R 
package (Hao et al. 2021). For the PBMC dataset, we filtered 
out cells with RNA count below 1000 or above 25 000, cells 
with ATAC count below 5000 or above 70 000, and cells with 
mitochondrial percentage above 20%, resulting in a total of 
10 412 cells. Further, the RNA modality is normalized using 
SCTransform (Hafemeister and Satija 2019), selecting the top 
3000 variable genes. The ATAC modality was normalized using 
the RunTFIDF function using a scaling factor of 10 000, fol-
lowed by finding the top peaks using the FindTopFeatures 
function with min.cutoff¼q0. Next, we reduced the dimension-
ality of the RNA and ATAC data to 50 dimensions using princi-
pal component analysis (PCA) and latent semantic indexing 

Figure 1. scTopoGAN overview. scTopoGAN consists of two stages: (1) Manifold projection using topological autoencoders to obtain a low-dimensional 
embedding (manifold) for each modality independently. (2) Manifold alignment using a GAN. Hereto, 20 different GAN models are trained with random 
initializations. Then that model is selected which has the minimum average topological loss. The selected model is further trained for 1000 additional 
epochs to produce the final alignment.
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(LSI), respectively. These 50-dimensional datasets are used as in-
put to the scTopoGAN workflow.

For the BM dataset, the RNA modality was normalized using 
a scaling factor of 10 000 followed by log-transformation. The 
top 2000 variable genes were selected, next the data was scaled 
and centered. The ADT modality was centered log-ratio (CLR) 
normalized, scaled and centered. The RNA data was reduced to 
50 dimensions using PCA, while dimensionality reduction was 
not necessary for the ADT modality which only had 25 features. 
The scGEM dataset was obtained from (Demetci et al. 2022a) 
in a preprocessed form, no further preprocessing was applied.

2.4 Benchmarking methods
For the manifold projection step, we compared the perfor-
mance of the topoAE with a standard variational autoen-
coder (VAE) (Kingma and Welling 2014), which is used for 
manifold projection in SCIM (Stark et al. 2020), and a regu-
lar autoencoder (AE). Further, we used uniform manifold ap-
proximation and projection (UMAP) (McInnes et al. 2018) as 
a base-line for the manifold projection evaluation. Next, we 
compared the alignment performance of scTopoGAN with 
the state-of-the-art methods UnionCom, MMD-MA, 
and SCOT.

2.5 Downstream analysis
We tested downstream analysis tasks performed on the inte-
grated data. First, we performed unsupervised clustering to 
reconstruct the original cell classes from each dataset. We 
used the Leiden graph-based clustering (Traag et al. 2019) 
and adjusted the resolution to match the number of clusters 
to the number of cell classes per dataset. Second, we per-
formed cross-modality prediction using the “Full PBMC” 
and the “BM” datasets. When predicting ATAC from RNA 
(“Full PBMC” dataset), for each RNA cell we define the 50- 
nearest neighboring ATAC cells and perform a weighted 
nearest-neighbor regression, previously described in 
(Abdelaal et al. 2020), to predict the corresponding ATAC 
expression. Similarly, we predicted RNA from ATAC (“Full 
PBMC” dataset), ADT from RNA and RNA from ADT 
(“BM” dataset).

2.6 Evaluation metrics
To evaluated the manifold projection, we used the Silhouette 
score (Rousseeuw 1987) which assesses the separation be-
tween the cell classes. The Silhouette score ranges from −1 to 
1, where a higher value indicates better separated classes. 
Additionally, we calculated the Kullback–Leibler divergence 
KLr between the density estimates of the input data and its 
latent space representation (Moor et al. 2020). The KLr cal-
culation requires the pairwise distance matrices of the origi-
nal input data and its latent representation. Gaussian kernel 
of size r (we used r ¼ [0.01, 0.1, 1]) is applied for each point 
to estimate its density based on the distances to other points. 
The KLr value quantifies the dissimilarity between the den-
sity estimates in both spaces (input and latent), thus lower 
values (� 0) indicate better manifold projection performance.

To evaluate the manifold alignment, for each cell in one 
modality, we determine its k-neighboring cells from the other 
modality in the final aligned common space (k¼ 5, Euclidean 
distance). Next, we compare the class/subclass annotation of 
that cell with the majority vote of its neighbors and check 
whether it is a match or not. We report the percentage of cells 
with matching cell class/subclass denoted as the Celltype 

matching and the Subcelltype matching scores, respectively. 
Additionally, to evaluate the ability of the methods to mix 
the different modalities, we calculated the Local Inverse 
Simpson’s Index (LISI) using the batch (dataset) identifiers 
(Korsunsky et al. 2019), and report the average batch LISI 
score calculated over 10 different runs.

Finally, to evaluate the downstream analysis tasks, we used 
the Adjusted Rand Index (ARI) to evaluate the clustering as-
signment obtained in comparison with the cell class labels. 
For the cross-modality prediction task, we calculated the 
Spearman correlation between the original measured and pre-
dicted features.

2.7 Implementation details
To train the topoAE, we used a learning rate of 1e−03, batch 
size of 50, latent size of 8 dimensions, and an architecture of 
two hidden layers followed by batch normalization and recti-
fied linear unit (ReLU) activation. For the hyperparameter k, 
we tested values ranging from 0.5 to 3.0 as recommended by 
(Moor et al. 2020). The hidden layers are both of size 32, ex-
cept for the “BM” ADT data (input dimensions¼25), the 
size of the hidden layers is 16. We used the same architecture 
for VAE and AE. For all autoencoder models, we split the 
data into 80% training and 20% validation. We trained the 
models for a minimum of 50 epochs and a maximum of 200 
epochs, with an early stop if the validation loss did not im-
prove for 10 consecutive epochs (after the initial 50 epochs).

For the GAN model, we used a generator hidden layer of 
size 30 and a discriminator hidden layers of sizes 60 and 30, 
batch size of 512 and learning rates of 1e−03 and 1e−02 for 
the generator and discriminator, respectively. We followed 
previous work using GANs to stabilize the training process 
(Radford et al. 2016) by sampling initialization weights from 
a normal distribution N(0,0.02), and using a Leaky ReLU as 
the activation function for the discriminator with an activa-
tion value of 0.2, while using ReLU activation for the genera-
tor. UnionCom and MMD-MA were trained for 1000 epochs 
using default hyperparameters settings. We tested the follow-
ing learning rate values [1e−2, 1e−3, 1e−4, 1e−5] for 
UnionCom, and [1e−3, 1e−4, 1e−5, 1e−6, 1e−7] for MMD- 
MA. We reported the best result obtained for each dataset. 
For SCOT, we used the recent version SCOTv2 (Demetci 
et al. 2022b), and tested the following hyperparameters 
settings and reported the best result obtained for each data-
set, � ¼ [0.001, 0.01, 0.1] and q ¼ [0.01, 0.1, 1.0]. For all 
models, input datasets were randomly shuffled to ensure cell– 
cell correspondence is not implicitly provided to the model. 
The PyTorch version 1.7 was used in all experiments.

3 Results
3.1 Topological autoencoder produced better 
manifold projections compared to other methods
Before integrating different data modalities, it is crucial to ac-
quire a proper low-dimensional embedding of each modality 
separately. For this manifold projection task, we used a 
topoAE which has been shown to produce reliable topology 
approximations (Moor et al. 2020). To the best of our 
knowledge, topoAEs have not been applied on biological 
datasets which, compared to classical datasets used in ma-
chine learning, contain continuous topological structures 
(Rizvi et al. 2017). Using both RNA and ATAC modalities of 
the “Full PBMC” dataset, and both RNA and ADT of the 
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“BM” dataset, we compared the manifold projection perfor-
mance of the topoAE with three other methods (Table 1). All 
methods were used to reduce the 50-dimensional (PCA or 
LSI) data or the 25-dimensional ADT data to 8 dimensions, 
additionally UMAP was used to produce 
2-dimensional embedding for visualization purpose. 
Furthermore, we tested different settings for the topological 
loss weight k of the topoAE. Results show that topoAE is the 
best method in preserving the original data density estimates 
having overall the lowest KL0:01 value, except for the PBMC 
ATAC data, where VAE is performing better in terms of den-
sity preservation. Similar conclusion can be obtained when 
using larger r values of 0.1 and 1. However, UMAP obtained 
the highest Silhouette score producing better separation be-
tween different cell classes across all datasets.

Further, to qualitatively compare the low-dimensional 
manifolds produced by each method, we generated 
two-dimensional UMAP embeddings of the 8-dimensional 
manifolds of the topoAE, VAE and AE, in comparison with 
the 2-dimensional UMAP embeddings (Supplementary Fig. 
S1). Overall, all methods obtained similar maps with good 
separation between the cell types, however, VAE could not 
group the CD8 populations for the PBMC data separate from 
the CD4 T cells. Taken together, topoAE showed better per-
formance in producing low-dimensional manifolds preserving 
the original density of the data, with comparable perfor-
mance in terms of cell type separation compared to other 
autoencoder models.

3.2 Minimum topological loss ensured manifold 
alignment instead of superposition
After obtaining the lower-dimensional manifold of each mo-
dality using topoAEs, these manifolds are integrated into one 
common space. We applied the scTopoGAN manifold align-
ment on the “Full PBMC” dataset, aligning the ATAC mo-
dality (source) to the RNA space (target). We observed an 
inconsistency in the alignment performance when training 
multiple GANs initialized with different weights. Although 
their different losses were more or less equal, the Celltype 
matching score (see Section 2.6) of 40 different GANs was 
37.1 ± 16.5% (mean ± standard deviation). We visualized the 
resulting alignments for the best and the worst models 
(Fig. 2). Both GANs achieve a good superposition of the 
ATAC manifold onto the RNA manifold, aligning the ATAC 
data to match the shape of the RNA data. However, the 
worst GAN produced a poor alignment of cell classes, e.g. 
projecting T cells to Monocytes (Fig. 2A and B). Whereas, the 
best GAN correctly aligns most cell classes (Fig. 2C and D).

To quantify how distorted the source manifold is after pro-
jection to the target space, we inspected the topological loss 
between the source data and the projected source. Using the 
“Full PBMC” dataset, we performed 40 experiments using 
identical GAN architectures but different random initializa-
tions, trained for 1000 epochs. GAN training showed that 
the generator and discriminator losses stabilized around 400 
epochs. Therefore, we calculated the topological loss from 
epoch 500 to 1000 every 100 epochs, between the input 
ATAC (source) manifold and the output ATAC manifold 
projected onto the RNA space. To interpret the topological 
losses, we correlated them with the Celltype and the 
Subcelltype matching scores at the same epochs, resulting in a 
negative Pearson correlation of −0.73 and −0.67, respec-
tively. This negative correlation indicates that GANs with 
low topological loss (i.e. preserving the topology of the 
source data after alignment) tend to produce better manifold 
alignment. This observation promoted us to train 20 different 
GANs and select the model with the minimum average topo-
logical loss (see Section 2.1.2) as the final scTopoGAN 
model. We chose to train 20 base GANs as that showed to 
cover a wide range of alignment scores.

3.3 scTopoGAN outperforms  
state-of-the-art methods
We benchmarked scTopoGAN against UnionCom, MMD- 
MA and SCOT. First, we tested the four methods using all 
three datasets (“Full PBMC,” “Partial PBMC,” and “BM”), 
and evaluated the results using the Celltype and Subcelltype 
matching scores (Table 2). Shuffling the input data and ran-
dom sampling of the batches in each iteration (in the case of 
scTopoGAN) ensured that the cell–cell correspondence is not 
implicitly captured by any of the methods. scTopoGAN out-
performed all other methods based on both scores for the 
“Full PBMC” and “Partial PBMC” datasets, producing joint 
embeddings with better cell type separation. However, SCOT 
produced the highest Celltype and Subcelltype matching 
scores for the “BM” dataset, followed by comparable perfor-
mance between scTopoGAN and UnionCom, while MMD- 
MA ranked last.

Further, we qualitatively compared the performance of 
scTopoGAN against other methods in order to interpret their 
performances. We visualized the final alignment results for 

Table 1. Manifold projection evaluation results.a

Dataset Method Silhouette score KL0:01

PBMC 
RNA 

topoAE (k¼ 0.5) 0.272 ± 0.014 0.059 ± 0.007
topoAE (k¼ 1.0) 0.267 ± 0.017 0.051 ± 0.005
topoAE (k¼ 2.0) 0.277 ± 0.013 0.045 ± 0.007
topoAE (k¼ 3.0) 0.274 ± 0.006 0.044 ± 0.004
VAE 0.211 ± 0.008 0.074 ± 0.014
AE 0.263 ± 0.018 0.081 ± 0.012
UMAP (8 dimensions) 0.356 0.290
UMAP (2 dimensions) 0.319 0.284

PBMC 
ATAC 

topoAE (k¼ 0.5) 0.095 ± 0.015 0.075 ± 0.042
topoAE (k¼ 1.0) 0.071 ± 0.010 0.090 ± 0.045
topoAE (k¼ 2.0) 0.053 ± 0.004 0.123 ± 0.043
topoAE (k¼ 3.0) 0.047 ± 0.013 0.063 ± 0.031
VAE 0.150 ± 0.034 0.031 ± 0.014
AE 0.228 ± 0.019 0.080 ± 0.026
UMAP (8 dimensions) 0.318 0.182
UMAP (2 dimensions) 0.336 0.164

BM 
RNA 

topoAE (k¼ 0.5) 0.431 ± 0.024 0.036 ± 0.006
topoAE (k¼ 1.0) 0.396 ± 0.011 0.024 ± 0.003
topoAE (k¼ 2.0) 0.391 ± 0.012 0.018 ± 0.003
topoAE (k¼ 3.0) 0.375 ± 0.009 0.017 ± 0.003
VAE 0.301 ± 0.023 0.034 ± 0.006
AE 0.455 ± 0.008 0.055 ± 0.005
UMAP (8 dimensions) 0.541 0.064
UMAP (2 dimensions) 0.510 0.063

BM 
ADT 

topoAE (k¼ 0.5) 0.360 ± 0.012 0.047 ± 0.003
topoAE (k¼ 1.0) 0.357 ± 0.006 0.044 ± 0.007
topoAE (k¼ 2.0) 0.347 ± 0.005 0.044 ± 0.004
topoAE (k¼ 3.0) 0.351 ± 0.003 0.040 ± 0.004
VAE 0.272 ± 0.022 0.124 ± 0.009
AE 0.405 ± 0.026 0.146 ± 0.037
UMAP (8 dimensions) 0.427 0.178
UMAP (2 dimensions) 0.291 0.213

a Reported results for different AE models are computed over 10 
different runs (mean ± std). Bold values indicate the best method for 
each dataset.
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all three datasets (Fig. 3). For the “Full PBMC” and “Partial 
PBMC” datasets, scTopoGAN showed better mixing of the 
RNA and ATAC modalities compared to UnionCom, MMD- 
MA, and SCOT, while keeping the cell classes separable 
(Fig. 3A and B). The “BM” dataset is more challenging to 
correctly match the smaller cell classes; however, 

scTopoGAN produced better alignment and mixing of the 
RNA and ADT modalities compared to other methods 
(Fig. 3C). Next, we quantitatively evaluate the mixing of the 
modalities using the batch LISI score. In line with the qualita-
tive assessment observed in the UMAP (Fig. 3A–C), results 
show that scTopoGAN had the highest batch LISI score 

Figure 2. GAN alignment versus superposition. Plots show UMAP embeddings of the final alignment of two GAN models, showing (A, B) worst GAN 
model performing good superposition of the two manifolds, but bad alignment in terms of cell classes (8.2% Celltype matching score), and (C, D) best 
GAN model with good alignment projecting the correct cell classes across the two modalities (70.4% Celltype matching score). Each UMAP is plotted 
twice, once colored with the cell classes showing how well different cell classes are separated, and once colored with the modality of origin showing 
how well different modalities are mixed.

Table 2. Benchmarking scTopoGAN against UnionCom, MMD-MA and SCOT.a

Dataset Method Celltype matching (mean ± std) % Subcelltype matching (mean ± std) % Batch LISI score

Full PBMC scTopoGAN 61.7 ± 8.6 41.3 ± 6.5 1.49
UnionCom 34.8 ± 10.9 22.9 ± 7.2 1.10
MMD-MA 28.3 ± 6.4 10.5 ± 4.8 1.01
SCOT 18.9 ± 1.1 2.4 ± 0.2 1.01

Partial PBMC scTopoGAN 72.5 ± 5.1 45.1 ± 1.8 1.49
UnionCom 30.2 ± 7.7 15.5 ± 6.4 1.08
MMD-MA 30.1 ± 7.4 8.6 ± 7.7 1.00
SCOT 13.0 ± 0.8 2.6 ± 0.2 1.01

BM scTopoGAN 50.9 ± 14.7 22.5 ± 5.4 1.41
UnionCom 51.8 ± 3.7 20.9 ± 2.6 1.07
MMD-MA 38.8 ± 17.9 10.4 ± 8.4 1.01
SCOT 90.5 ± 0.0 31.6 ± 0.0 1.02

scGEM scTopoGAN 58.8 ± 0.0 1.4
UnionCom 51.1 ± 0.9 1.8
MMD-MA 32.2 ± 19.3 1.4
SCOT 59.6 ± 1.3 1.7

a Reported results are computed over 10 different runs. Bold values indicate the best method for each dataset.
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Figure 3. Qualitative comparison of scTopoGAN, UnionCom, MMD-MA, and SCOT. Plots show UMAP embeddings of the final alignment produced by 
each method when applied on (A) Full PBMC dataset, (B) Partial PBMC dataset, (C) BM dataset, and (D) scGEM dataset. Each UMAP is plotted twice, 
once colored with the cell classes showing how well different cell classes are separated, and once colored with the modality of origin showing how well 
different modalities are mixed.
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(optimal value is 2) across all three datasets compared to 
other methods (Table 2), which shows overall superior inte-
gration performance for scTopoGAN.

Additionally, we quantified the computational complexity 
of the different methods. In terms of memory requirements, 
scTopoGAN memory requirement is almost constant with 
the number of cells, due to the fixed batch size. For the three 
datasets (“Full PBMC,” “Partial PBMC,” and “BM”), 
scTopoGAN is the least memory-demanding method 
(Supplementary Table S1), while SCOT was the fastest 
method in terms of computation time.

In order to test the robustness of scTopoGAN when pre-
sented with more realistic integration scenarios, we per-
formed the following downsampling experiments using the 
“Full PBMC” dataset: (i) First, in a more realistic setup, the 
two modalities will have different number of cells. We evalu-
ated the effect of changing the total number of cells across 
modalities, where we kept the RNA modality fixed and tested 
the integration performance of scTopoGAN when aligning 
90%, 80%, … , 10% of the ATAC modality, downsampled 
in stratified manner across cell types, thus keeping the cell 
type proportions similar across modalities. The results show 
a robust alignment performance until the ATAC data has 
only 30% of the original number of cells, at which we ob-
served a drop in the average Celltype matching score (blue 
solid line, Supplementary Fig. S2). (ii) Second, in reality the 
cell type proportions across modalities will vary. To test such 
effect, we kept the RNA modality fixed and downsampled 
90%, 80%, … , 10% of cells from one specific cell type from 
the ATAC modality. Here, we used the three largest cell pop-
ulations (Monocytes, CD4 T cells, and CD8 T cells) as vary-
ing the proportions of these populations should have the 
largest effect on the ATAC data manifold. We performed this 
experiment for each of the three populations separately. 
Initially, we observed a robust alignment performance when 
50% or less of one cell population is removed (dashed lines, 
Supplementary Fig. S2); however, the alignment performance 
slightly decreased compared with the downsampling per-
formed in a stratified manner across all cell types. This sug-
gests that matching of the cell type proportions affects the 
overall data manifold to some degree. Furthermore, results 
show more variability in the alignment performance when 
60% or more of one cell population is removed from the 
ATAC side (dashed lines, Supplementary Fig. S2).

3.4 scTopoGAN performs well on continuous 
differentiation data
The previously tested datasets are mainly composed of dis-
continuous structures having discrete cell classes. However, it 
is interesting to test the integration performance on develop-
mental data, which is mainly composed of continuous struc-
tures. Thus, we tested scTopoGAN on the “scGEM” dataset, 
which consists of a continuous differentiation trajectory from 
fibroblasts to iPS. In comparison to other methods, SCOT 
and scTopoGAN were the top performing methods with 
comparable Celltype matching scores (Table 2), while 
UnionCom ranked third and MMD-MA ranked last.

Investigating the UMAP embeddings of the integration 
showed that scTopoGAN, MMD-MA, and SCOT were able 
to capture the continuous differentiation trajectory along the 
five states in the correct order (Fig. 3D). However, 
UnionCom splits the data into two groups. Additionally, all 
methods showed good mixing between the two modalities. 

When evaluated quantitatively using the batch LISI score (op-
timal value is 2), UnionCom ranked first, followed by SCOT, 
while scTopoGAN and MMD-MA ranked third with similar 
scores (Table 2). Overall, these results show the ability of 
scTopoGAN to align data containing continuous cellu-
lar structures.

3.5 Post alignment downstream analysis
After a successful integration, we assessed the usability of the 
integrated/aligned data in downstream analysis. We tested 
two downstream tasks using the “Full PBMC” and “BM” 
datasets: (i) unsupervised clustering of the aligned data, aim-
ing to reconstruct the known cell classes, and (ii) cross- 
modality prediction using nearest-neighbor regression ap-
plied on the aligned data (see Section 2.5). For the “Full 
PBMC” dataset, clustering the aligned data using 
scTopoGAN yielded the highest ARI when compared to the 
original cell classes, followed in order by SCOT, UnionCom, 
and MMD-MA (Table 3). For the “BM” dataset, 
scTopoGAN ranked second behind SCOT, followed by 
MMD-MA and lastly UnionCom.

For the cross-modality prediction, we found that this task 
is quite challenging given the relatively low correlations 
obtained in general across all methods. Results show that 
scTopoGAN outperformed all other methods when predict-
ing ATAC from RNA using the “Full PBMC” dataset, with a 
median Spearman correlation of 0.044 (Supplementary Fig. 
S3), in comparison to 0.005, 0.001, and −0.024 for 
UnionCom, MMD-MA, and SCOT, respectively. Similarly, 
scTopoGAN performed best when predicting RNA from 
ATAC (0.011), compared to UnionCom (0.002), MMD-MA 
(0.001), and SCOT (−0.005). Using the “BM” dataset, when 
predicting ADT from RNA, scTopoGAN ranked third 
(0.170) after SCOT (0.335) and UnionCom (0.332), while 
MMD-MA (0.077) ranked last (Supplementary Fig. S3). 
Finally, SCOT was the best method for predicting RNA from 
ADT (0.036), followed in order by scTopoGAN (0.005), 
UnionCom (0.003), and MMD-MA (0.001). Overall, the 
aligned data using scTopoGAN had the best downstream 
analysis performance for the “Full PBMC” dataset and was 
the runner-up for the “BM” dataset, showing the potential 
usage of the aligned data by scTopoGAN for further down-
stream tasks.

4 Discussion
We present scTopoGAN, a method to integrate multi-modal 
single-cell data with non-overlapping cells or features. 
scTopoGAN is fully unsupervised and relies on the 

Table 3. Clustering evaluation of the aligned data using scTopoGAN, 
UnionCom, MMD-MA and SCOT.a

Dataset Method Cell class ARI (mean ± std)

Full PBMC scTopoGAN 0.63 ± 0.08
UnionCom 0.27 ± 0.03
MMD-MA 0.19 ± 0.05
SCOT 0.38 ± 0.01

BM scTopoGAN 0.41 ± 0.12
UnionCom 0.23 ± 0.02
MMD-MA 0.38 ± 0.08
SCOT 0.47 ± 0.00

a Reported results are computed over 10 different runs. Bold values 
indicate the best method for each dataset.
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assumption that different single-cell modalities measured 
from the same tissue have the same underlying manifold, 
hence the topological structure of these modalities should be 
similar. To perform manifold alignment, scTopoGAN uses a 
GAN in combination with a topological loss guiding the se-
lection of the best performing GAN. We would like to stress 
that although the topological loss idea was inspired based on 
the evaluation using the cell type annotations, these annota-
tions are not at all used by scTopoGAN (the topological loss 
is fully unsupervised).

We showed that scTopoGAN outperforms current state- 
of-the-art methods; however, the best Celltype matching 
obtained was �70% which shows how difficult and challeng-
ing the task of diagonal integration is. Although the topologi-
cal loss calculation is capable, in most cases, to select the 
generator model with relatively good alignment performance, 
it is important to note that training the generator is quite a 
difficult task since the generator has no ground to link cells 
between the source and the target data.

For manifold projection, we used topoAEs and showed 
their ability to preserve the structure of the data in the low- 
dimensional embedding. topoAEs showed better results 
compared to VAE, AE, and UMAP. However, UMAP still 
produced the best separation between the cell classes. 
Nevertheless, this evaluation is biased toward UMAP, as 
these cell classes were defined using clustering analysis, where 
UMAP is used to interpret the clusters and annotate them.

Further, it was previously shown that topoAEs have supe-
rior performance to PCA and regular autoencoder (Moor 
et al. 2020). Therefore, it might be interesting to explore the 
applicability of topoAEs in other single-cell analysis tasks. 
One example is trajectory inference studying the differentia-
tion trajectory of cells using scRNA-seq datasets (Saelens 
et al. 2019). Most trajectory inference methods rely on a 
lower-dimensional representation of the data, where topoAEs 
can be applied to produce low-dimensional space preserving 
the topology of the inter-cellular relationships in the data.

When tested on the continuous structured “scGEM” data-
set, scTopoGAN was able to align and reconstruct the differ-
entiation trajectory across different cell states, with 
comparable performance to other methods. However, it is 
worth noting that this extremely small sized dataset repre-
sents quite a challenge to scTopoGAN, which is a deep- 
learning based model usually requiring large quantity of data 
point to be properly trained.

The main assumption of scTopoGAN, different modalities 
measured from the same tissue have the same underlying 
manifold structure, is not completely true. Although this as-
sumption is based on the fact that the cell pool where differ-
ent modalities sample from is the same, hence similar cellular 
structure, different modalities are measuring different molec-
ular features capturing different views of this cellular struc-
ture. As a result, the underlying manifolds of each modality 
are not identical; however, for the tested datasets, we showed 
that there is enough similarity between these manifolds that 
can be used to perform the data integration.

A major limitation in the current scTopoGAN workflow is 
the requirement of training multiple GAN networks in order 
to choose the best model based on the topological loss. It is 
evident that the quality of the alignment achieved is limited 
by the best alignment obtained in this set of GAN models. 
Here, we trained 20 different GAN models which is computa-
tionally expensive and there is no guarantee that the selected 

GAN model is the best possible solution for the tested data-
set. Future improvement in this direction can incorporate the 
topological loss as a regularization term in the overall loss 
function of the GAN. This will guide the GAN to minimize 
the topological loss during training, thus eliminating the need 
to train multiple GAN models.

In all our experiments, we used the RNA modality as the 
target modality to which other source modalities (ATAC or 
ADT) were aligned. The choice of the target modality has an 
impact on the final alignment performance. Furthermore, we 
did not fine-tune the hyperparameters used for each dataset. 
Optimizing these hyperparameters specifically for each data-
set may improve the overall results.

In conclusion, scTopoGAN opens new opportunities in 
studying complex tissues as it represents a step toward better 
integration of multiple molecular views without the restric-
tion that these are measured from the same cell.

Supplementary data
Supplementary data are available at Bioinformatics 
Advances online.
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