
Autonomous Temperature Sensorfor Smart AgricultureSmart Measurement and Control
M.D. Huiskes
M. Miao

June 2020

Autonomous Temperature Sensorfor Smart Agriculture
Smart Measurement and Control

by
M.D. Huiskes, 4701291

M. Miao, 4684206

Delft University of Technology
Faculty of Electrical Engineering,Mathematics and Computer Science

In partial fulfilment of the requirements for the degree of
Bachelor of Science

In Electrical Engineering
To be defended in public on 30th June 2020 at 10:30 AM

Supervisors: Dr. Q. Fan TU DelftIng. R.M.A. van Puffelen TU DelftMSc. L. Pakula TU Delft

Abstract
Fruit-frost during spring is one of the main causes of damage to the harvest of fruit in orchards. Vari-ous systems using different methods of preventing spring-frost are available on the market. To determinewhen these systems should be activated, the temperature in the orchard needs to be determined.
In this project, a self-sustaining autonomous temperature sensor network is designed, which is capableof making a 3D temperature map of the orchard. The system is used to warn farmers when the threatof fruit-frost occurs and to gather data on the spatial variation of the temperature in the orchard. In thisthesis, the focus is put on designing the smart measurement and control system. This includes choosingan appropriate control unit and temperature sensors. Also, the software for the control unit is designed,which allows for a smart measurement scheme that balances energy usage andmeasurement frequency.Finally, an estimation of the energy usage of the subsystem is given based on theoretical analysis.

1

Preface
First of all, we would like to express our gratitude towards our supervisors Ing. R.M.A. van Puffelen, MSc. L.Pakula, and Dr. Q. Fan for their guidance and advice during the project. Also, we would like to thank every-one involved in the organisation of the bachelor graduation project for their flexibility during the COVID-19pandemic. Last but not least, we would like to thank our group members Arnoud Bleeker, Martijn Hubers,Robin van der Sande and RubenWijnands for their continuous support, pleasant collaboration and tremen-dous effort during the project.
For the past eight weeks, we have been working on the design for the autonomous temperature sensorfor smart agriculture project. We chose this project for its real-life applications and societal benefits. Fur-thermore, we believe that the diverse and multi-disciplinary nature of the project has greatly contributedto our personal development as electrical engineers. Even though the practical aspect of the project wascompromised due to the circumstances, it was still very educational and interesting. We hope our effortstranslate to a pleasant and informative reading experience.

Martijn Huiskes
Michael Miao

June 2020

2

List of abbreviations
ABP Activation by personalisationADC Analog to digital converterApps Application sessionASIC Application-specific integrated circuitAsync Asynchronous
CAN Controller area networkCAT5 Category 5CISC Complex instruction set computerCLK ClockCPU Central processing unitCS Chip select
EM Electro-magnetic
FM Fast mode
G... Group ...GPIO General purpose input/output
I/O Input/outputI2C Inter-IC-busIC Integrated circuit
KNMI Koninklijk Nederlands meteorologischinstituut
Lkg LeakageLoRa Long rangeLP Low powerLPRun Low power runLSE Low speed external
MCU MicrocontrollerMeas MeasurementMISO Master in slave outMOSI Master out slave in

MSI Multi-speed internal
Nwks Network session
Ppm Parts per millionPSM Power saving mode
RISC Reduced instruction set computerROI Range of interestRS Recommended standardRTC Real Time ClockRX Receive
SCL Serial clockSDA Serial dataSF Spreading factorSMAART Smart Universal AsynchronousReceiver-TransmitterSMBus System management busSPI Serial Peripheral InterfaceSS Slave selectSync Synchronous/synchronisation
Trans TransmissionTX Transmit
UART Universal Asynchronous Receiver-TransmitterUSART Universal Synchronous/AsynchronousReceiver-Transmitter
Vcc Voltage collector-collectorVdd Voltage drain-drainVss Voltage source-source
WDT Watchdog timer

3

Contents
1 Introduction 61.1 The project . 61.2 Subgroup division . 71.3 State of the Art . 71.4 Structure of thesis . 8
2 Program of requirements 92.1 Requirements of the entire system . 92.1.1 System functional requirements . 92.1.2 System non-functional requirements . 92.2 Requirements of the measurement and control subsystem 102.2.1 Subsystem functional requirements . 10
3 Component selection 113.1 Temperature sensor . 113.2 Serial communication protocols . 123.2.1 Topology . 133.2.2 Energy consumption estimation . 143.2.3 Choice of communication protocol . 153.3 Choice of temperature sensor . 163.4 Controller type . 183.5 Microcontroller specifications . 193.6 Choice of microcontroller . 203.7 General remarks for chosen components . 213.8 Summary hardware . 22
4 Software description 234.1 Core functionality . 234.1.1 Setup state . 244.1.2 Power saving state . 254.1.3 Normal state . 264.1.4 Off-season state . 304.1.5 Watchdog timer . 30
5 Power breakdown 315.1 Temperature sensor power usage . 315.2 Microcontroller power usage . 325.3 Serial communication dynamic power usage . 335.3.1 I²C . 335.3.2 UART . 345.4 Power consumption of the measurement and control system 34
6 Discussion and Conclusion 36
References 37
Appendices 39
A The top-level system 39A.1 Top-level system implementation . 39
B Maximum temperature slope 42

4

C System clock overview 43
D System overview 44
E Software parameters 45
F Set division 46
G Software function tests 47G.1 nextTimeSeg . 47G.2 closestPeriod . 48
H Software flowcharts 51H.1 Flowchart for power saving mode . 51H.2 Flowchart for normal mode . 52H.3 Flowchart for off-season mode . 53

5

Chapter 1
Introduction

In the Netherlands fruit production is a large segment of the economy. There are over 2600 fruit produc-tion companies which together use over 20,000 hectares of ground [1]. Most of these Dutch companiesfocus on the production of pears and apples. The fruit production in the Netherlands, but effectively allaround the world, faces a large problem related to spring frosts in fruit trees. If temperatures drop belowthe critical temperature, open and blooming flowers of the fruit trees can be damaged causing less fruitto grow. The frost damages are mainly caused by the formation of ice, intracellular ice formation breaksthe blossom’s tissue structure and causes a cell death [2]. Freeze injury is nowadays the biggest problemof fruit production, which causes a loss far greater than any other type of natural hazard encountered withthe production. As a result, the yield of production and distribution of fruits are restricted.
A lot of research has been done in order to obtain a reduction in the losses caused by spring frosts. Two ofthe main solutions that are provided are frost protection with sprinkler irrigation and frost protection withwind machines. The frost protection with sprinkler irrigation works using extra-cellular ice formation toprevent intracellular ice formation. Sprinkling water onto the tree’s flowers and buds causes ice nucleationon the outer surface. This then causes the freezing of the water transporting vessels which protects theflowers due to gradual dehydration [3]. Frost protection with wind machines aims to prevent intracellularice formation. By using a large windmachine or rotating fan a light wind (1.5m/s) is created which causesan instantaneous increase in temperature [4]. Because of the fan, a temperature increase is obtained ofup to 1 °C at a 15m distance from the wind machine. Due to this small increase, the flowers are protectedfrom the frost.

1.1 The project
So now there are two effective solutions used to prevent spring frosts in fruit trees. Both of these solutionshave a requirement to know the temperature of the air surrounding the trees, and their control systemsmake decisions based on these measurements. But in order to implement these solutions in large scalefruit production companies, an accurate temperature measurement is required over the whole field, ratherthan one single temperature measurement. Therefore this project focuses on the acquisition of the 3Dtemperature profile of a fruit orchard in the temperature range near the critical temperature.

Figure 1.1: A general overview of the system as a whole.

6

Figure 1.2: This figure gives an impression of how the system is installed in an orchard.
The great advantage of the acquisition of the temperature profile in contrast to a single temperature mea-surement is that it provides the ability to perform local frost protection rather than frost protection overthe whole field. This in turn provides a reduction in the use of resources such as water and electric energy.In addition, the acquisition of the temperature profile provides a valuable resource for further research onthe effectiveness of the frost protection methods.
In Figure 1.1 an overview of thewireless sensor network is shown. This sensor network consists ofmultiplesensor nodes. A sensor node consists of an energy harvesting module, a control unit, a wireless commu-nication module, and five temperature sensors, which are all integrated onto a pole as shown in Figure 1.2.The poles are positioned among the trees of the fruit orchard, and together they form a smart wirelesstemperature sensor network in the fruit orchard, as shown in Figure 1.1. In Appendix A.1 the choice of thisimplementation is explained. The design is split into three subgroups, which each focus on a different partof the system.
1.2 Subgroup division
The energy harvesting and control group is responsible for harvesting and storage of energy from ambientsources, and the distribution of energy to all components in the system. The wireless communication sub-group is responsible for communication between the end-devices and the base station. Lastly, the smartmeasurement and control group is responsible for reading sensor data and controlling the other subsys-tems, and is the focus of this thesis.
The data acquired from the sensors should be collected and converted such that it is transferable by thewireless communication module and interpretable by the base station. The subsystem is also responsiblefor managing the power consumption by controlling when certain parts are made inactive to conserveenergy. Furthermore, it adapts the frequency of the measurements done based on how close it is to thecritical temperature and the available energy in the system.
1.3 State of the Art
So to prevent fruit crop losses due to frost, the goal is to design a smart wireless temperature sensor net-work that is able to warn the farmer when parts of the fruit orchard reach a threshold temperature. Such anetwork can be classified as an Internet of Things network (IoT). IoT is based on devices that can analysesensed information and transmit information to the user. These so-called ’smart’ devices can be used invarious applications such as smart cities, smartmetering, security and emergency, industrial control, homeautomation, healthcare and in this area of research: smart agriculture [5]. Mahmoud et al. [6] state thatthe IoT is also called the third industrial revolution, which combines multiple sciences and technologieswith each other, such as data acquisition, power consumption, and wireless sensor networks. Further theystate that it is approximated that near the end of 2020, over 50 billion IoT devices will be connected overthe internet. An IoT device consists of fourmain building blocks, which are themain control Units, sensors,communication modules and power sources [6]. Since this project requires a solution which makes use

7

of these four main components and is used in agriculture, the device which is designed can be classifiedunder IoT for smart agriculture.
Currently, the use of labour is often needed to measure and monitor the temperature on a farm, and frostprotection equipment is activated manually when a critical temperature is measured [7]. Research con-ducted by Ghaemi et al. [3] shows a successful implementation of automated irrigation systems for pro-tecting blossom on peach and orange trees, where a few thermistors were connected by wires to the treeon a height of 1.5 m above ground level to measure temperature. Pierce et al. [7] implemented an on-farmwireless sensor network, which provides real-timemonitoring of the temperature with an accuracy of
0.1 °C where an alarm is triggered if the temperature reaches a predetermined threshold, and is poweredby a battery and optionally a solar panel. In the work of Sushanth et al. [8], an IoT solution is proposedwhich consists of a solar-powered Arduino board, where its temperature, humidity, and soil moisture sen-sors are connected bywire to this Arduino. If action is required, amessage is sent to anAndroid application.
In the above-described solutions of Ghaemi et al. [3] and Sushanth et al. [8], the sensors are connectedby wire to some form of a base station. When many sensors are distributed over a large orchard, in caseof an orchard 3D temperature profile, this will result in a lot of wiring. Also, possible maintenance costswill increase when wires get disconnected. Therefore, a wireless sensor network solution is proposed.Furthermore, a solution is proposed which focuses on energy harvesting instead of battery-operated only,since battery-operated solutions go together with maintenance costs, for example, periodic replacementof batteries, and have a limited lifetime. Furthermore, the individual nodes of the above-proposed solutionsare not able towork together smartly to form a smart system. These requirements finally lead to the designof a wireless, self-sustainable smart sensor network.
1.4 Structure of thesis
First of all, the program of requirements is given in Chapter 2. After that, the choices of hardware for thesubsystem are elaborated in Chapter 3. Based on the selection of hardware, suitable software is developedwhich is explained in Chapter 4. Following this, a breakdown of the power consumed by the subsystem isdiscussed in Chapter 5. Finally, the thesis is concluded in Chapter 6.

8

Chapter 2
Program of requirements

The goal of the project is to develop an autonomous and self-sustaining system that makes a 3D temper-ature profile of an orchard and gives a warning when the threat of fruit-frost occurs. To get a clear viewof what functionalities the system should have, a list of requirements is made. The requirements are di-vided into functional and non-functional requirements, which are further subdivided into mandatory andtrade-off requirements.
2.1 Requirements of the entire system
2.1.1 System functional requirements
Mandatory requirements:

1. The system must create a 3D temperature map.
2. The system must harvest its energy from ambient sources.
3. The system must communicate wirelessly to a base station.
4. The system must alert the end-user when a programmed critical temperature is reached.
5. The system must store the measured temperature data.
6. The system must be scalable in terms of the number of nodes it can support.
7. The system must be scalable in terms of the number of functions it can perform.

Trade-off requirements:
8. The system should preferably support over-the-air firmware updates.
9. The system should preferably have self-diagnosis.

10. The system should preferably have energy-level monitoring.
11. The system should preferably have bi-directional communication.

2.1.2 System non-functional requirements
Mandatory requirements:
12. The system must be able to function in a 10-hectare field.
13. The system must be able to measure temperatures between −10 °C and 10 °C.
14. The system must measure with an accuracy of ±0.5 °C.
15. The system must have nodes with five temperature sensors at different heights.
16. The system must support a maximum of 2.5 meters between sensor and control unit.
17. The system must support one node per 100m2.
18. The system must have a lifespan of at least 20 years in normal operating conditions.
19. The system must operate during spring.
20. The system should measure the temperature at each node in the orchard at least once per hour.
21. The component cost of an end-device must be in the order of €100 or lower.

Trade-off requirements:
22. The system should preferably have an adaptive temperature measurement frequency.
23. The system should preferably measure the temperature at each node in the orchard at least onceper half-hour.

9

2.2 Requirements of the measurement and control subsystem
2.2.1 Subsystem functional requirements
Mandatory requirements:
24. The subsystem must communicate with the wireless communication module via UART.
25. The subsystem must be able to read an analogue input.
26. The subsystem must be able to write a digital output.
27. The subsystem must support five temperature sensors. (see Appendix A.1)
28. The subsystem must have a configurable alarming-temperature.
29. The subsystem must only transmit during its assigned time-slot [9].

Trade-off requirements:
30. The subsystem should preferably have an adaptive temperature measurement frequency based onavailable energy and temperature.
31. The subsystemshould preferably alert the base stationwithin 5minutes of reaching the user-configuredalarming-temperature.

10

Chapter 3
Component selection

To fulfil its task, the Measurement and Control subsystem consists of twomain parts. Firstly, temperaturesensors are required to gather information from the environment of the node. Five of these sensors arerequired to gather enough information for an accurate 3D temperature map. The information gathered bythese sensors needs to be transmitted to a base station via the wireless communication module, whichis a requirement of the system. However, the sensor is unable to properly interface with the wirelesscommunicationmodule, and therefore an intermediary control unit is needed. This control unit is also usedto adapt the frequency of the measurements1 according to the measured temperature and the availableenergy. The control unit should, therefore, also be able to read out the available energy in the storagesystem. In this chapter, the hardware to perform these tasks is chosen systematically. First, the choice ofthe temperature sensor is considered, followed by the choice of the control unit. The chapter is concludedwith a selection of optimal components for the project.
3.1 Temperature sensor
There are many different temperature sensors available on the market with different specifications. Themost important specifications to consider are listed below.
Digital or analogue
Both digital or analogue temperature sensors can be used. However, digital sensors have the advantagethat they have an ADC built-in and that the output is already a numeric value of a temperature value thatis interpretable by the control unit. The output signal of an analogue sensor would first have to be con-verted into a digital value using an ADC and subsequently into a temperature using a model of the sensorbehaviour. Since there is a distance of up to 2 meters that the signal has to travel over, as specified by Re-quirement 16, noise can be introduced in the signal. A digital implementation is less susceptible to noiseand is therefore preferred over an analogue implementation.
Temperature measurement range
The temperature sensor should at least be able to measure the temperature in the range of interest (i.e.-10°C to 10°C), as is specified by Requirement 13. However, a wider measurement range is advantageousas it increases the applicability of the system in another climate or other weather situations.
Energy consumption
A low power implementation is required as the node needs to be self-sustaining. Therefore, power usageshould be as low as possible. The power consumption of the sensor consists of two main parts: the run-ning mode power consumption and standby power consumption. During standby, the sensor consumesless power as it is not measuring the temperature, and various internal components are turned off. Thenegative temperature change in the Netherlands over the last twenty years was 8.3°C/hour at maximum,which is found in Appendix B. For this design, the maximummeasurement frequency is chosen to be onceevery 5 minutes. This ensures that a temperature change of 1 degree can be detected. Consequently,the sensor can spend most of its time in standby mode, thereby limiting its power consumption. Thisis quantified in Chapter 5. For this reason, the focus is on sleep-mode power consumption rather than

1In this chapter, and the remainder of the thesis, one measurement is defined as a collection of sensor readouts of the 5 sensorsof a node at a certain time.

11

running-mode power consumption. An estimation of the power consumption at a given measurement fre-quency can be made using the standby current, active current and conversion time at a certain operatingvoltage. This is explained in further detail in Section 3.3.
Accuracy
The measured temperature should not deviate more than 0.5°C from the actual temperature, as specifiedby Requirement 14. The accuracy of the measurement consists of two factors: the round off error and theuncertainty of the measurement. The total deviation can be characterised by Equation 3.1.

Accuracy = Eround−off + Euncertainty =
resolution

2
+ uncertainty ≤ 0.5°C (3.1)

Here E denotes the error in °C. The resolution is dependent on the temperature range of the sensor andthe number of bits that it uses to represent the data. This accuracy is only required in the temperaturerange of interest (-10°C to 10°C), as specified by Requirement 13.
Error checking
To ensure reliable transfer of temperature measurements from the sensors, error checking is desirable.Especially since the design requires relatively longwires, whichmay introduce significant amounts of noise.Also, interference from EM radiation from for example the wireless communication module, power supplyor external sourcesmight deteriorate the signal quality. Themost basic implementation of error checking isthrough the use of a parity bit, which is built into some serial communication protocols. Othermore reliabletechniques exist such as checksum computations and cyclic redundancy checks (CRC). Some sensorshave these error checking techniques built-in. Other forms of error checking can also be implemented byfor example looking at the transmitted data. If the data deviates too much from the expected values, anew measurement can be issued.
Cost
The cost of the components for the subsystem should beminimised such that Requirement 21 is satisfied.
Compatibility / Communication protocol
In case a digital sensor is used, the communication protocol that the sensor uses should ideally be sup-ported by the control unit so no additional conversion has to take place. Off-the-shelf digital sensors usuallyinterface with data transfer protocols such as UART (Universal Asynchronous Receiver-Transmitter), SPI(Serial Peripheral Interface), I²C (Inter-IC) or SMBus (System Management Bus). The latter is based onand generally compatible with I²C but supports higher data-rates. Other protocols exist, such as OneWireand CAN (Controller Area Network), but these are generally not used by off-the-shelf temperature sen-sors. Most temperature sensors make use of UART, I²C or SPI. These three communication protocols arediscussed in more detail.
3.2 Serial communication protocols
A comparison of the properties and limitations of the three most common communication protocols canbe found in Table 3.1. The importance of the specifications is considered, and an optimal communicationprotocol is chosen.

12

Table 3.1: Comparison of different serial communication techniques [10] [11] [12] [13] [14].
UART/USART I²C SPIType Async/Sync Async/Sync SyncTypical data rate 9.6kb/s - 256kb/s 100kb/s - 400kb/s (FM I²C) 5 Mb/s - 20 Mb/s2

Maximum slaves 1 1008 Limited to number of pinsMultiple masters No Yes NoError checking Yes (parity bit) No NoData frame size 5-8 bits 8 bits N/ANumber of wires 2n 2 3+nDuplexity Full-duplex Half-duplex Full-duplexAck. scheme No Yes NoTopology Star Bus Star
Here (a)sync means (a)synchronous and FM I²C means Fast-Mode I²C, which runs at 400kb/s instead ofthe 100kb/s in normal mode. The maximum number of slave devices on an I²C bus depends on the num-ber of bits used for addressing (7 or 10 bits). For the calculation of the required number of wires, n is thenumber of sensors in the design. Half-duplex means that there can be bidirectional communication, butinformation can only be sent in one direction at a given time. Full duplex means that there can be simulta-neous bidirectional communication.
For this design, some parameters are not of importance. The type, number of masters, data frame sizeand duplexity are therefore not included in the decision matrix. The focus of the design choice is on thetopology and power consumption of the different communication techniques.
3.2.1 Topology
The topology of the different communication techniques determines the number of wires and interfacesthat are needed between the control unit and temperature sensors. A bus topology is preferred over a startopology in terms of practicality, as fewer cables and connectors are needed. UART uses separate datalines for each of the sensors, and for each sensor, there is a receive and a transmit line. This means that 10lines need to be drawn to support the 5 sensors. I²C uses 1 data-line which is used for both transmissionand reception (SDA) alongwith a clock line (SCL) controlled by themaster device. These are shared amongthe 5 sensors, meaning that only 2 wires are needed in total. SPI uses 1 data bus for communication frommaster-to-slave (MOSI) and a separate bus for slave-to-master communication (MISO). Furthermore, SPIrequires a single clock signal line (clk) and multiple slave/chip select (SS) lines. The different topologiesare illustrated in Figure 3.1, where Rx and Tx stand for receiver and transmitter respectively, SDA for serialdata and SCL serial clock. MOSI and MISO stand for master-out-slave-in and master-in-slave-out, and SSfor slave-select.

Figure 3.1: Comparison of topologies of different communication protocols. Only data pathsare shown.

2In theory the speed of SPI can go higher than the specified value, but for the SPI temperature sensors no values higher than 20Mb/s were found.

13

3.2.2 Energy consumption estimation
For the energy consumption estimates done in this section, the wire capacitance of a CAT5 cable can beused, which is typically around 56 pF/m [15]. Also, 4-way ribbon cables could be used, which have a lowertypical capacitance of 50 pF/m [10], but are more susceptible to noise. As a reference, the capacitance ofa CAT5 cable is therefore used to make the energy consumption estimation for the different serial proto-cols. The largest distance that needs to be covered by the cable is between the control unit and the lowestpositioned sensor, which is 2.5 meters as indicated by Requirement 16. Temperature sensors and controlunits typically have between 5 pF and 10 pF 3 capacitance on their input/output pins (I/O pins). The dy-namic energy consumption of different protocols per transmission per sensor for different payload sizesare shown in Table 3.2. What should be kept in mind is that the static energy consumption will be differentfor each protocol depending on the control unit and temperature sensors, which will be considered whenchoosing the components.
UART
UART operates using 10 or 11-bit data frames containing 1 byte of data, a start-bit, stop-bit, and an optionalparity bit. For the calculations, the configuration with parity bit is chosen. The length of the cables variesper sensor, ranging from 50 cm to 250 cm, depending on at what height the sensor is placed. This leadsto an average cable length of 1.5 meters, which has a capacitance of Ccable = 84 pF .The average dynamic energy consumed Edyn,UART by 1 transmission to and from 1 sensor can be esti-mated using Equation 3.2.

Edyn,UART = (Ccable + CMCU + Csensor) ∗ V 2
dd ∗ ntrans (3.2)

Here CMCU is the capacitance of the MCU serial interface pin, Csensor is the capacitance of the sensorserial interface, Vdd the supply voltage and ntrans is the number of signal digital logic transitions on the line.
The value of ntrans depends on the contents of the payload and the size. For a power estimation, a sce-nario is considered where every consecutive bit has a 50% chance of being a transition, meaning that thenumber of transitions equals half the number of bits transmitted.
SPI
SPI does not work with data frames, but with continuous data transmission, which has the advantage thatno stop and start bits are needed. It does however use a clock line, which continuously makes transitionsbetween 0 and 1. For the power calculation, it is assumed that every consecutive bit has a 50% chanceof being a transition. This means that the data line has on average 4 transitions per data byte. The clockline has 8 transitions per byte. Furthermore, the slave select has 1 transition per message. Equation 3.2 isused to calculate the dynamic energy consumption. Here the total sensor capacitance Csensor should be5 times the capacitance of an individual sensor because multiple sensors are connected to the same bus.
I²C
I²C uses an open-drain configuration, which means that a pull-up resistor is needed. The value of thisresistor depends on the rise time specified for I²C, the bus capacitance of the cable that is driven and thevoltage parameters of the sensor/MCU. Theminimumvalue of the resistor can be calculatedwith Equation3.3, where Vdd stands for the supply voltage, Vol for the voltage for which a sensor interprets the voltageas a logic 0, and Iol for the current at low-level [16].

Rmin =
Vdd − Vol

Iol
(3.3)

The values for Vol and Iol vary per sensor and MCU, and are found to be typically around 0.4 V and 3 mArespectively for a value4 of 1.8 V for Vdd. This observation is made by looking at the datasheets of sensorsand control units discussed in Section 3.2.3 and Section 3.6. This results in a minimum resistor value of
467 Ω.

3This estimation for the I/O capacitance has been found by looking at the datasheets of the components that are selected inSection 3.5 and Section 3.6.

14

The maximum resistor value Rmax can be calculated using Equation 3.4 [16].
Rmax =

tr
0.8473 ∗ Cbus

(3.4)
Here tr = 1µs is the rise time defined for I²C running in normal mode, which supports clock rates up to
100 kHz [16]. This results in a maximum resistor value of 5901Ω.
The power consumed by the resistor when the line is pulled low can be found using Equation 3.5.

P =
V 2
dd

R
(3.5)

This consumption is sustained over the period where the line is transmitting a logic 0. This time t the lineis draining current through the pull-up resistor is determined by dividing the number of 0-transmissions(n0) by the data rate. Here it is assumed that half of the transmitted bits is a 0. The energy consumed pertransmission can then be calculated by Equation 3.6.
E = P ∗ t = P ∗ n0

f
(3.6)

As no real-life measurement is performed and different pull-up resistor values cannot be tested physically,
Rmin = 467 Ω is chosen as pull-up resistor value when using I²C. This is done as the smallest resistorvalue yields the most stable signal. This is also the implementation with the highest power consumption,and in the power calculation therefore a worst-case scenario is assumed.
Overview
An overview of the energy consumed per transmission by each of the protocols is provided in Table 3.2.The power consumed by I²C greatly depends on what resistor value is chosen. Ideally, to minimise thepower consumption, a large resistor is desirable. However, this leads to a less stable and less reliablesignal. In practice, a value between the minimum and maximum should be chosen, which minimises thepower consumption while maintaining stable communication.

Table 3.2: Dynamic energy consumption of different serial communication protocols.
Energy consumption for: UART I²C SPI

Rmax Rmin1 data byte [nJ] 2.0 120.8 1527.4 8.410 data bytes [nJ] 20.2 614.9 7776.0 78.4100 data bytes [nJ] 202.2 5556.4 70262.6 778.2
3.2.3 Choice of communication protocol
Some parameters are not important for this design and are therefore omitted from the decision matrix.Data rate affects the amount of time the transmission takes. During this time the control unit and thesensor should be active, meaning that at lower data rates both the control unit and sensor are active fora longer period of time, and therefore consume more energy. However, the frequency of operation ofthe control unit is expected to be below the maximum data rates of the listed protocols. Therefore, themaximum data rate is not important as the data rate is limited by the operating frequency of the controlunit. Error checking is not considered, as it is something that would be beneficial if implemented already,but it is not required. The UART protocol implements optional error checking with a parity bit, which —while it could be useful — is far from ideal. Also duplexity is not considered, as simultaneous bi-directionalcommunication is not required.In Table 3.3 the decisionmatrix is shown comparing the features of the different communication protocols.The criteria are given a weight from 1 to 10 depending on their importance. The different serial communi-cation protocols are then given a score from 1 to 10 for each of the criteria. The final weighted score thengives an indication of what option is preferred, where a high score is better.

4The Vdd = 1.8 V is a typical minimum value for the operating voltage of temperature sensors

15

Table 3.3: Decision matrix for the communication protocol
UART I²C SPICriterion Weight Score Weighted Score Weighted Score WeightedDynamic power consumption 8 8 64 5 40 7 56Topology 6 5 30 8 48 6 3694 88 92

Dynamic power consumption has been given a high weight because it contributes to the total power con-sumption of the system. As the system should be self-sustaining the power consumption should be aslow as possible. The topology has been given a lower weight as it mostly influences the practicality of thesystem, but is less essential than power consumption. As can be seen, the final scores are close to eachother, and, therefore, sensors with UART, I²C and SPI are all considered.
3.3 Choice of temperature sensor
For this design, only digital temperature sensors are considered as they are less susceptible to noise. An-other constraint is that it should operate with an accuracy of ±0.5° C within the temperature range ofinterest specified by Requirement 13. As a low-power implementation is crucial for this system, the focusis on low power temperature sensors. From the available options, a decision is made based on powerconsumption, accuracy, interfaces, error checking capabilities and cost. In Table 3.4, multiple low poweroptions are compared.
In this table, the average current is calculated in the situation where the sensor does 1 measurement ev-ery 5 minutes. Here the assumption is made that the average current consumed by the sensor linearlyscales with the number of measurements done within a certain time frame. The value for 1 measurementper 5 minutes is found by linearly interpolating between the standby current and the average current at acertain frequency listed in the datasheet (varies per sensor), as is illustrated in Figure 3.2. Here ’A’ standsfor the number of conversions per second when 1 measurement is done per 5 minutes, and ’B’ standsfor the conversion frequency for which the average current consumption is listed in the datasheet. Hereconversion is defined as the process of acquiring analogue data and converting it to a digital output. Thiscalculation is necessary as not all datasheets mention the power consumption for the same frequency ofmeasurements.

Figure 3.2: Illustrative graph showing the way the average current for a temperature sensor isfound for one measurement every 5 minutes. (Not on scale)
The number between brackets in the interface fields indicate the number of I²C addresses that can be set.On an I²C bus, each sensor should have a unique address, so here the amount of addresses determinesthe number of required interfaces on the control unit. Furthermore, ROI means the range of interest. Theprices are based on the largest purchase quantity (≤ 10000) listed on Farnell (STM, TI and Microchip Inc.),Digi-Key (AMS and Max) and Mouser (Tyco Electronics). It should be noted that out of the selection ofsensors that meet the requirements of the system, both UART and SPI are only supported by 1 singlesensor family.

16

Table 3.4: Specifications of selected temperature sensors.
Model STTS22HTR [17] AS6212 [18] TMP102AIDRLT [19]Manufacturer STM AMS TITemperature range [°C] -40 to 125 -40 to 125 -40 to 125Resolution 16 bits 16 bits 12 bitsAccuracy in ROI typical [°C] 0.25 ≤ 0.2 5 0.5Accuracy in ROI max [°C] 0.5 0.2 2.0Error checking N/A N/A N/AInterface I²C (2) I²C (8) I²C (4)Voltage range [V] 1.5 - 3.6 1.71 - 3.6 1.4 - 3.6Standby current (max) [µA] 0.50 0.10 0.50Active current (max) [µA] 180 - 6 - 7
Average current [µA] 0.51 0.10 0.52Bulk price per unit €0.588 €1.125 €0.717
Model TMP107BIDR [20] TSYS02S [21] MAX31723 [22]Manufacturer TI Tyco Electronics Maxim integratedTemperature range [°C] -40 to 125 -40 to 125 -55 to 125Resolution 14 bits 16 bits 12 bitsAccuracy in ROI typical [°C] 0.125 0.5 0.3Accuracy in ROI max [°C] 0.4 0.5 2Error checking N/A CRC N/AInterface SMAART/UART8 I²C (1) SPIVoltage range [V] 1.7 - 5.5 1.5 - 3.6 1.7 - 3.7Standby current (max) [µA] 3.8 0.14 2.00Active current (max) [µA] 300 420 1150Average current [µA] 3.84 0.20 2.77 9
Bulk price per unit €1.41 €1.03 €1.80

The resolution of the sensors in terms of the temperature of a sensor with an n-bit resolution can becalculated by Equation 3.7.
Resolution =

1

2n−8
(3.7)

Here 8 is subtracted from n because 8 bits are needed to represent the integer range from -40 to 125, andthe remaining bits are used for the numbers after the decimal point. This results in a resolution of 0.0625°C and 0.00391 °C for 12 and 16 bits respectively. Some sensors also provide the option to decrease theresolution to conserve energy.
To choose the most suitable temperature sensor, a decision matrix is made in which the specificationsare evaluated and weighted. Here the same scoring system is used as before in Table 3.3. The totalweighted score that results for each of the sensors then indicates which sensor should be used for thedesign.

5The typical accuracy was not listed in the datasheet, but this should at least be better than the maximum-confidence accuracy.6 The active current was not listed in the datasheet and therefore no comparison can be made.7See Footnote 68SMAART is a proprietary technology by Texas Instruments that is compatible with the UART interface.9This value is calculated using the active current and conversion time.

17

Table 3.5: Decision matrix for the temperature sensor
STTS22HTR AS6212 TMP102AIDRLTST-Microelectronics AMS Texas InstrumentsCriterion Weight Score Weighted Score Weighted Score WeightedTypical accuracy in ROI 5 8 40 8 40 6 30Error checking 7 6 42 6 42 6 42Interface 10 5 6 30 8 40 6 30Average current 11 9 6 54 9 81 6 54Bulk price per unit 5 8 40 7 35 8 40206 238 196
TMP107BIDR TSYS02S MAX31723Texas Instruments Tyco Electronics Maxim IntegratedCriterion Weight Score Weighted Score Weighted Score WeightedTypical accuracy in ROI 5 9 45 6 30 7 35Error checking 7 6 42 9 63 6 42Interface 12 5 8 40 6 30 8 40Average current 13 9 4 36 8 72 4 36Bulk price per unit 5 6 30 7 35 6 30193 230 183

The typical accuracy in the temperature range of interest has been given a weight of 5 as a hard constraintwas already put on this value, meaning that all sensors have a typical accuracy of ±0.5 °C in the temper-ature range of interest. Any additional accuracy is preferred, but not necessary. Error checking is given aweight of 7 as it improves the reliability of the data transfer between the sensors and control unit, whichis desirable in case noise is present. The interface has been a low weight as there is no clear preferencein the type of interface (as seen in Table 3.3). However, some I²C sensors support less than 5 separateaddresses on one bus, meaning that multiple busses have to be used. This means that the advantage ofthe simple topology offered by I²C is diminished. Average current is the largest contributor in the score aslimiting power consumption is important due to the self-sustaining nature of the system.
Based on the total scores presented in Table 3.5, the AS6212 comes out as the preferred choice, withthe TSYS02S as a good alternative.
3.4 Controller type
Controllers can be implemented on computers, commercially available off-the-shelf microcontrollers orcustom-fabricated chips. Implementation of a computer-based system can easily be dismissed for thefollowing reasons. Computers are designed for general use purposes, and therefore not optimised for alimited number of application-specific operations, which leaves a lot of unnecessary overhead. This gen-erally comes at the cost of increased power usage, speed, physical dimensions, and price. Application-specific integrated circuit (ASIC) chips are specifically designed for the task at hand, but require significantfinancial investment and add more complexity to the design. The cost is only justified for large scale pro-duction of products due to the fixed cost that comes with production [23]. Therefore custom fabricatedchips are not suitable for the design of a prototype and low-volume products.
The commercially available microcontrollers have a low power consumption relative to computers andare cheaper. They can often provide the necessary computing power for many embedded applications un-der low power conditions. Compared to custom-fabricated chips, microcontrollers do not require a hugeinvestment and are more readily available. Therefore microcontrollers are the most compelling option,especially for a prototype design. For large scale production, a custom fabricated chip might be a moreinteresting option. However, for this research, a microcontroller implementation will be explored.

10Here the scores are based on the addresses supported by the I²C interfaces of the sensors.11Average current usage for 1 measurement per 5 minutes.12See Footnote 10.13See Footnote 11.

18

3.5 Microcontroller specifications
Many off-the-shelf microcontrollers are available, and an appropriate microcontroller has to be chosenwhich fits the requirements of this project. The most important aspects to consider when comparingdifferent microcontrollers are listed below.
Number of I/O ports
There should be at least 2 GPIO pins present on the chosen microcontroller to interface with the energy-level monitoring circuit.
Power usage & management
When quantifying the power usage of a microcontroller, different power categories need to be taken intoaccount.
First and foremost, standby power is the power used while the microcontroller is waiting for an internal orexternal event to wake up the CPU to process data, make decisions and communicate with other systemcomponents [24]. For many low power sensing applications, the microcontroller spends the majority of itstime in this state [25], often making it the largest factor in energy consumption. This is verified in Section3.6.
The device can be periodically woken-up from the low-power operatingmode using a Real-time clock (RTC)timer, which keeps track of the date and time on the device. It is therefore vital that the RTC is kept activeduring this low-power mode. Secondly, the peripheral power is the power used by peripherals such as anADC, comparator and digital interfaces of themicrocontroller with other components. Finally, active poweris the power that is consumed while the microprocessor is actively performing tasks.
Clock frequency
A higher clock frequency results in a faster and more responsive system, as the clock frequency deter-mines how many instructions are executed in a certain amount of time. A high clock speed is preferredand can be crucial in high-speed applications. However, the contribution of the clock speed to the on-timeof the microcontroller is marginal since that the microcontroller software is relatively simple and few oper-ations are done. Therefore clock speed is not a priority for this design. As high clock speed and power areinherently related, the choice of high clock speed should not come at a detriment to the power consump-tion.
Operation voltage
To minimise power consumption, a low operation voltage is desirable. Furthermore, the operation voltageof the microcontroller should ideally match with that of the other components attached to it, so that novoltage conversions are needed to supply the different components. It should be noted that lowering theoperation voltage puts a constraint on the maximum clock speed of the microcontroller.
Memory size
The microcontroller has memory modules for instructions and data. The instruction memory should belarge enough for the program to fit on the microcontroller. The size of the data memory module mainlydepends on the accuracy of the measurements, and the amount of data that needs to be sent every trans-mission. MCUs with the same specifications can often be bought with various memory configurations,which only affects the rest of the MCU in terms of price.
Ports and Interfaces
To properly interface with external components like the sensors and communication module, the chosenmicrocontrollermust have enough serial communication interfaces. At least one I²C interface is needed forthe communication with the temperature sensors, and one UART interface is needed for communicationwith the wireless communication module. It should be noted that some microcontrollers have pins thatcan be programmed to interface using either I²C or UART, but not both at the same time.

19

Cost
The cost of the components must be minimised such that the total cost of the system does not exceedthe requirement specified by Requirement 21.
3.6 Choice of microcontroller
For this design,microcontrollers from low-power families of several well-established brands are compared.Furthermore, the microcontroller should have at least one I²C interface, one UART interface and an RTC.In Table 3.6 the specifications of 6 microcontrollers are compared.

Table 3.6: Specifications of selected microcontrollers
Model SI1060-A-GM [26] EFM32ZG [27] ATmega328PB [28]Manufacturer Silicon Laboratories Silicon Laboratories Microchip Technology Inc.Family Si106x EFM32 ATmega32Core size [bits] 32 32 8Architecture RISC RISC AVR® enhanced RISCMax clock speed 25 MHz 24 MHz 20 MHzOperating voltage [V] 1.8-3.6 1.98-3.8 1.8-5.5Running current [µA/MHz] 160 114 - 16
Low power current [µA] 14 0.6 0.9 1.3Bulk price per unit [€] 3.51 0.905 1.04

Model STM8L152K8Y6TR [29] STM32L431KBU6TR [30] STM32L151CBT6TR [31]Manufacturer ST-Microelectronics ST-Microelectronics ST-MicroelectronicsFamily STM8L STM32L4 STM32L1Core size [bits] 8 32 32Architecture CISC RISC RISCMax clock speed 16 MHz 80 MHz 32MHzOperating voltage [V] 1.8-3.6 1.71-3.6 1.65-3.6Running current [µA/MHz] 200 84 214Low power current [µA] 15 1.4 1.4 1.2Bulk price per unit [€] 0.97 1.85 1.81
A few of these factors are unimportant to the design. The clock speed is left out because speed is not cru-cial for this application, and themicrocontroller spendsmost of its time in a low-powermode. The smallestratio between running current and low power current of the selected MCUs is 60 for the STM32L431. At aclock frequency of 1 MHz and ameasurement frequency of once every 5 minutes, this MCU would have tobe active for 5 seconds per measurement to have the same active energy consumption as standby energyconsumption. This translates to 5 million clock cycles per measurement for the active current to have thesame contribution to energy consumption as the low power current. This is assumed to be far beyond thenumber of operations needed for this design. Furthermore, the running current is not considered due toits minimal contribution to the total power consumption. All other factors are weighed and scored in Table3.7 in a similar way as with the other two decision matrices in Table 3.3 and Table 3.5.

14See Footnote 16.15The running current was not listed in µA/MHz. The running current at 1 MHz is 240 µA16The current of the lowest power mode that supports the RTC and that continues code execution after wake up.

20

Table 3.7: Decision matrix for the microcontroller
SI1060-A-GM EFM32ZG ATmega328PBSilicon Labs Silicon Labs Microchip Technology Inc.Criterion Weight Score Weighted Score Weighted Score WeightedMinimum operating voltage 8 6 48 5 40 6 48Low power current 8 9 72 7 56 5 40Bulk price per unit 5 4 20 7 35 7 35140 131 123

STM8L152K8Y6TR STM32L431KBU6TR STM32L151CBT6TRST-Microelectronics ST-Microelectronics ST-MicroelectronicsCriterion Weight Score Weighted Score Weighted Score WeightedMinimum operating voltage 8 6 48 7 56 8 64Low power current 8 5 40 5 40 6 48Bulk price per unit 5 7 35 6 30 6 30123 126 142
Both the minimum operating voltage and the low power current are given a high weight of 8, as they bothcontribute to the power consumption of the system. Cost is given a lower weight as it is less importantthan power consumption.
From this decision matrix, it can be concluded that the STM32L151CBT6TR is the best-suited option forthis design, with the SI1060-A-GM and EFM32ZG as good alternatives.
3.7 General remarks for chosen components
Microcontroller - STM32L151CBT6TR
The chosen STM32L151CBT6TRmicrocontroller features multiple low power modes [31, Chapter 3.1]. Thelowest-power running mode is the low-power-run-mode (LPRun), with the multi-speed internal RC oscil-lator (MSI) set to 65.536 kHz as clock source. To minimise the power consumption, this clock source ispre-scaled by 0.5, such that fHCLK = 32.768 kHz, which is the clock speed used by the MCU core andmemory. This clock frequency is also from which the peripheral clock is derived. Furthermore, by default,the 16 MHz HSI (High-Speed Internal) clock source is used for the ADC, and this cannot be changed.
For the RTC the low-speed external (LSE) oscillator is used, which makes use of an external crystal forhigher accuracy. This is done because of the timing requirements set by the wireless communication timeslot scheme. All nodes are assigned a time slot in which they are allowed to send, asmentioned in Require-ment 3. The maximum allowable time drift is 356.4 ms at a transmission rate of once every 5 minutes. Ahigher drift might lead to collisions in wireless transmissions.
For the external oscillator, the ABS07-166-32.768kHz-T crystal [32] is chosen as an external crystal witha frequency of 32.768 kHz, which is the frequency required for the LSE oscillator. The chosen oscillatorhas a load capacitance of CL = 7 pF which is the maximum recommended value specified by the MCUdatasheet [31]. For a crystal, the accuracy of the frequency produced by the crystal is strongly dependenton fabrication tolerances and the temperature. The chosen oscillator features a maximum fabrication tol-erance of±10 ppm17. The crystals on themarket with better fabrication tolerances have load capacitanceshigher than 7 pF , and are therefore not compatible with the MCU. The relation for the accuracy in ppm asa function of the temperature for the chosen crystal is given in Equation 3.8.

∆f(T) = β(T − T0)2 + f0 (3.8)
Here ∆f is the frequency deviation in ppm as a function of the temperature (T), β the frequency deviationconstant in ppm/°C2, T0 the turn-over temperature and f0 the frequency deviation in ppm at the turn-overtemperature. Furthermore, the drift can further increase due to the ageing of the crystal. According to thedatasheet of the oscillator, ageing is±3 ppm in the first year. For crystals in general, most ageing happensin the first year of operation, after which the contribution of ageing asymptotically decreases. During the

17ppmmeans parts per million, where 1% = 10000ppm

21

first 10 years, a worst-case drift of ±10 ppm is typical, but in practice, the drift is usually smaller [33]. Toaccount for ageing effects of the crystal, 13 ppm is added to the frequency tolerance, resulting in a totaltolerance of±23 ppm, which is an estimation for the expected time drift in the 20-year lifetime of the prod-uct.
The frequency drift of the oscillator as a function of temperature is plotted in Figure 3.3. Here a toler-ance worst-case tolerance of ±23 ppm is taken, a turnover temperature of T0 = 25 °C and a frequencydeviation constant of β = −0.036 ppm/°C as is specified by the datasheet.

Figure 3.3: Frequency deviation vs temperature for the ABS07 crystal oscillator
To compensate for the frequency drift of the oscillator, periodic time synchronisation with the base stationis needed. The full reasoning and explanation for this can be found in [9]. A complete diagram of the clocksand pre-scalers used can be found in Appendix C.
Temperature sensor - AS6212
The chosen AS6212 temperature sensor features a single-shot mode, in which the temperature sensorcan do a single measurement when asked to, and then go to sleep till the next request. The clock fre-quency of the peripherals is set at 32.768 kHz on the MCU, and therefore the I²C clock speed is also setto 32.768 kHz, so no extra clock source is needed. Furthermore, the datasheet of the sensor states that a
10 nF decoupling capacitor is needed on the V dd line.
LoRa module - RN2483A
For the wireless communication module, the RN2483A is used. The reasoning for the choice of the wire-less communication module can be found in [9]. The RN2483 uses a UART interface to communicatewith the MCU and accepts a set of ASCII commands as input. The set of commands can be found in thecommand reference guide [34].
On the UART interface of the STM32L151CBT6TR, the oversampling rate is set to 8 by default and can-not be lowered. As the clock frequency of the peripherals is set at 32.768 kHz on the MCU, the UARTinterface should operate at a Baud rate of 32.768 kHz/8 = 4096 bits/s.
3.8 Summary hardware
In this design, the AS6212 is chosen as the temperature sensor. For each node, 5 of these sensors are con-nected to an STM32L151CBT6TRmicrocontroller using the I²C protocol. The microcontroller is connectedto a wireless communication module with a UART interface. Furthermore, two GPIO pins are connectedto the monitoring circuit of the energy storage system. An overview of the whole system can be found inAppendix D.

22

Chapter 4
Software description

In this project, the microcontroller is used to regulate the number of temperature measurements and isused to control the different components and data traffic of the system. Furthermore, to conserve energy,the frequency of the measurements should be adaptable based on the available amount of energy and thecurrent temperature. An algorithm is devised to make a well-considered trade-off between measurementfrequency and energy usage. In this chapter, the algorithm and its implementation in code are discussed,as well as tests on the different functions within it. The code itself can be found in a GitHub repository [35].
For this project, the Arduino compatible Nucleo L432KC development board from STM is used as a proto-typing board. This development board is equipped with an STM32L432KC microcontroller which, like thechosen microcontroller, is based on the STM32 series. The development board features similar capabili-ties as the chosen microcontroller and is therefore suitable for testing code.
Different programming frameworks can be used to program the Nucleo L432KC, such as Arduino, Mbedand STM32Cube. Mbed and STM32Cube provide more features than the Arduino framework but are morecomplicated and harder to debug. Arduino is very well documented, provides a simple and clear program-ming environment and has a great amount of pre-made libraries that can be used. The STM32duino libraryis used to control the low-power modes and the RTC of the Nucleo board. Due to the limited amount oftime, the Arduino framework is, therefore, deemed most suitable to develop a proof of concept.
A draw-back that comes with choosing the Arduino framework is that fewer low-power modes are avail-able in the STM32duino library than are present on the microcontroller. Therefore, the ideal power modeshave to be substituted by their closest counterpart. This limits the ability to test the behaviour of the chipin the desired power modes. The higher power usage is not an issue as the Nucleo board, in this case, ismainly used to test software behaviour. When the actual product is implemented, the STM32L151CBT6TRmicrocontroller would be usedwith the STM32Cube orMbed framework instead of the development boardwith the Arduino framework.
In the code that is presented in this chapter, the deep-sleep-mode serves as a substitute for the stop-modethat would be used in an actual implementation without development board. Furthermore, the low-power-run-mode is replaced by the regular run mode.
4.1 Core functionality
In essence, the software has threemain tasks: setting up the wireless communicationmodule, reading outsensor data and controlling the frequency of temperature sensors and transmissions. After boot up, thesystem first enters a setup state in which all settings are configured, a connection with the LoRa networkis established, and a time-slot is assigned. After this, the system enters one of two main modes of oper-ation: normal operation and off-season operation. The two modes differ in what they focus on achieving.In normal operation, the system focuses on providing as many measurements as its energy level allowsand howmany are necessary. In off-season mode18, the system focuses on maintaining enough power totransmit consistently with a lower measurement frequency, as during a part of the off-season period lessenergy can be harvested due to shorter days. The farmer can adjust what period of the year the systemshould be in what state via the base station.

18Here off-season is defined as the period of the year where no fruit frost occurs. The user can put the system in off-seasonmodefrom the base station.

23

However, since transmitting measurements and receiving information is energy consuming, it is impor-tant to make sure that there is enough energy in the system to do the transmission. Before measuringthe temperature, the system first reads out the state of charge of the energy harvesting module. If notenough energy is present, the system should wait for a certain amount of time before attempting anothermeasurement/transmission. Checking the energy level and determining what operation mode is used, isdone in the power saving state. An overview of the functionality of the software is provided in Figure 4.1.Each of the states is elaborated in more detail in the following sections.

Figure 4.1: A top level overview of the software. Here threshold_PSM is one of the configurableparameters of the system, which are explained in Table E.1
4.1.1 Setup state
In the setup state, the software first configures the settings of the MCU, which include settings like theRTC time format, ADC resolution and wake-up sources. Following that, the system attempts to join thewireless network. Since this process makes use of wireless transmissions, the energy level is checkedbeforehand (further explained in Section 4.1.2). If enough energy is present, the system continues with thejoin procedure. If there is too little energy, the MCU enters sleep mode for 5 minutes before attemptingagain. If the attempt to join is unsuccessful, it means that there was a collision in the transmission. Thesystem then waits a random time between 1 second and 5 minutes before attempting again in order toavoid another collision. Once the system has successfully joined the network, the program continues tothe power saving state.
Join procedure
The join procedure involves setting up the UART baud rate of the wireless communication module, joiningthe network and obtaining a time-slot. To set the UART baud rate, a break condition is sent, after which theautomatic baud-rate detection of the wireless communicationmodule matches its baud-rate to that of theMCU. Through the established UART connection, several commands are sent to the wireless communica-tionmodule. These include setting the pre-programmed unique device ID, the spreading factor, the networksession key and the application session key, which are necessary for activation-by-personalisation (ABP),which is the join procedure chosen by the wireless communication group [9]. Finally, the system attemptsto join the network via ABP. If the UART communication is successful, the wireless communicationmodulereplies with "ok". If the wireless transmission also completes successfully, the module returns "accepted"if the node has been accepted to the network. The MCU then requests a time slot from the base station.This is done by sending a request message to the base station. The base station then returns the currenttime, a free time slot, the critical temperature, and whether the off-season functionality should be turnedon or off. This concludes the join procedure. This mode is not used anymore unless the system restartsafter a shut-off, or an error occurs in the network.

24

4.1.2 Power saving state
After the join procedure, the system enters the power saving state. Here, it measures whether there isenough energy for a measurement and a transmission. If there is enough energy, this state is immediatelyexited. Otherwise, the system enters the low power mode for 5 minutes, after which the energy level ismeasured again. The energy level is then compared to the last level, to get an indication of how muchenergy is harvested during the last 5 minutes. Based on this energy harvesting rate, a prediction can bemade on how long the system has to be in a low power mode to have enough energy for a transmission.This estimated duration is limited to a minimum of 1 minute and a maximum of 15 minutes. This mini-mum of 1 minute is set to make sure the system does not measure too often as it approaches the energythreshold for transmissions, thereby draining unnecessary amounts of energy. The maximum of 15 min-utes makes sure the system does not sleep for too long, as the temperature slope calculation is only validfor short periods of time. After the system wakes up after the calculated duration, the energy is checkedonce again, and if enough energy is present, the time to the next available transmit window is calculated,and a wake-up alarm is set for that time. A flowchart of this function can be found in Figure H.1.
Check energy
The function checkEnergy calculates how many transmissions can be done in 12 hours with the currentenergy level and the worst-case energy consumption. The value of 12 hours is chosen as in the buddingseason nights can be up to 12 hours long [36]. During the night no energy can be harvested, meaningthat the current energy level has to last through the whole night. The system has to be able to calculatehow many transmissions can be done throughout one night to determine at what frequency measure-ments should be done. This is done by measuring the currently available energy, and quiescent energyconsumption of the whole system. Based on this, an estimation can be made on how much energy is leftfor transmissions, and how many transmissions can be done in 12 hours.
The energy stored in the super-capacitor of the energy harvesting system can be found using the volt-age over the supercapacitor. The energy harvesting module provides a voltage between 0 V and 1.7 V ,which is a scaled-down version of the actual super-capacitor voltage that ranges from 0 V to 5.3 V . Toread this voltage, themonitoring circuit first needs to be activated, which is done by providing a digital-highoutput to the diode of the circuit. The system then has to wait for 3ms before the voltage has settled. Thevoltage is then read with a GPIO pin that is configured as ADC, and the value can be used to calculate theenergy stored via Equation 4.1. Here the capacitance is equal to the super-capacitor capacitanceC = 15F .Also, it should be noted that the energy in the voltage range between 0 V and 3.3 V is not accessible.

Etotal =
1

2
∗ C ∗ (Vadc ∗

5.3

1.7
)2 − 1

2
∗ C ∗ 3.32 (4.1)

The quiescent energy consumption of the whole system (MCU, sensors, serial communication, wirelesscommunication and power harvesting) in a worst-case scenario 34.7 µW , which is calculated from thevalues given in the energy harvesting report [37]. Additionally, there is a worst-case leakage current of thesuper-capacitor itself of 85 µA. These values are used to calculate the power usage with Equation 4.2.
P = Pquiescent + Ilkg,c ∗ V ∗

5.3

1.7
(4.2)

If this power is sustained over the period of 12 hours, the remaining energy left for transmissions can becalculated with Equation 4.3.
Etrans = Etotal − 12 ∗ 60 ∗ 60 ∗ P (4.3)

Using the fact that a single transmission consumes about 0.04968 J [37], the number of transmissionsthat can be done is calculated using Equation 4.4. This number is returned by the function.
Ntrans =

Etrans

0.04968
(4.4)

In Figure 4.2, the number of transmissions that can be done with the available energy level at a certainmeasured voltage is plotted. At a measured voltage of around 1.15 V the system has just enough energyto sustain the nodes energy consumption without transmitting.

25

Figure 4.2: The number of transmissions that can be cone with the available energy corre-sponding to the measured voltage.
4.1.3 Normal state
In the normal state, the system has to actively measure to check for fruit frost. The measurement fre-quency is adaptive, and transmissions with temperature measurements can be done either every 5, 10, 15,20 or 30 minutes. The frequency is limited to a maximum of 1 measurement per 5 minutes. This value ischosen as the maximum temperature slope during spring is−8.3 °C per hour as is found in Appendix B. Achange −1 °C can thus happen in 7 minutes. It is therefore decided to measure at once per 5 minutes tobe able to detect such changes. The minimum frequency of once per 30 minutes is set in order to complywith both Requirement 20 and Requirement 23. The exact measurement frequency is determined with thecurrent energy level and temperature.
Firstly, upon entering the normal operation state, the system transmits its current energy level calculatedwith the checkEnergy function and its temperature data, which it has acquired using the tempMeasureme c
nt and transmit functions. Following this, the system calculates the time of the next transmission. Aflowchart for the whole normal state function can be found in Figure H.2.
Temperature measurements
The temperature measurements are acquired from the sensors via an I2C interface with the function te c
mpMeasurement. This function puts the sensor in single-shot by changing the configuration register of thesensor. After the sensor is done converting, it puts the measured value in the tvalue-register, from whichit can be read from the MCU. The interpretation of the bits is done as prescribed in the datasheet of thesensor [18]. This process is repeated sequentially for the 5 sensors. The data from the sensors is put inan array for transmission.
Transmission
When a transmission needs to be done in normal mode, the transmit function is called. The energy-levelalong with the temperature are first converted into hexadecimal. Subsequently, the two hexadecimal val-ues are put together in a single string following the format described in the report of the wireless commu-nication part [9]. Then the string containing the data is sent along with a transmission command to theRN2483 communication module over the UART interface. Every transmission, there is a probability thatthe node receives a downlink message that synchronises the system, adjusts the time-slot and criticaltemperature if necessary, and indicates whether off-season mode should be activated. If no down-linkmessage is received within 20 transmissions, it can be assumed that the system has failed and that itshould rejoin the network [9]. Here the same request function is called as in the join procedure whichreturns a new time slot and the current system time.

26

Calculating the next transmission time
After themeasurement and transmission of the temperature data has been completed, the time of the nexttransmission is determined. The system first calls the checkEnergy function and determines the numberof transmissions the system can still do within the next 12 hours with the current energy level. Based onthe number of transmissions possible with the current energy, themaximummeasurement frequency thatcan be sustained for 12 hours is calculated. The results achieved with this process are illustrated in Figure4.3.

Figure 4.3: The number of measure-ments that can be done as function ofmeasured voltage.
Figure 4.4: The time between measure-ments as function of temperature fordifferent energy levels

After that, the temperature is measured using the tempMeasurement function, which returns the temper-atures from the 5 sensors. Subsequently, closestPeriod finds the minimum measurement frequencyneeded to detect a temperature under the critical temperature. From the resulting two measurement fre-quencies, which are based on the current temperature and the available energy, the minimum frequency ischosen as the operating frequency. This is done so that the system can always sustain itself for 12 hoursin the chosen operating mode, and the measurement frequency which is closest to the frequency neededto detect fruit frost is chosen. In Figure 4.4 the time between measurements is plotted as a function oftemperature for different energy levels with a critical temperature of Tc = 0 °C. Here 1 energy unit is de-fined as the amount of energy needed for 1 transmission. As can be seen, moremeasurement frequenciesare available if enough energy is present in the system. Also, when the temperature is close to the criticaltemperature, the measurement frequency increases.
For the design, it is desirable to have a constant flow of temperature measurements at the base station,even at lowmeasurement frequencies. Therefore, the system should ideally spread out the transmissionsof different nodes over time.
Every hour is split into 12 time-segments of 5 minutes. During each time-segment, only a certain set ofnodes can transmit data. This ensures that there are transmissions during all time-segments. For eachof the measurement frequencies there is a different number of sets (Nset,total = 12/fmeas) where fmeasis the number of measurements per hour. To determine which nodes belong to a certain set, the nodesare assigned a group number from 0 to 11 upon fabrication. The set-number of a node (nset) can be foundusing the total amount of sets Nset,total and the group number ngroup with Equation 4.5. The set numberranges from 0 to (Nset,total − 1).

nset = ngroup (mod Nset,total) (4.5)
A quantitative representation of the set division of the different groups at the various measurement fre-quencies is given in Table F.1.

27

To determine which set can transmit in what time-segment Equation 4.6 can be used. Here tsset is the setcontaining all time segment numbers of a particular set.
tsset = {Nset,total ∗ k + nset | tsset <= 11 | k = {0, 1, 2, ...}} (4.6)

To further illustrate this concept, two examples will be given. First a case with fmeas = 2 measurementsper hour, followed by a case with fmeas = 4 measurements per hour.
2 measurements per hour For this example, the procedure is followed for a node with group number 0.At the specified measurement frequency, there are 6 sets, each containing nodes from 2 different groups.Here group 0 belongs to set 0. The time segments that belong to this set are found to be time segment 0and 6. Thismeans that the node can transmit during its time-slot in these time segments. These segmentscorrespond to the minute 0 to 5 and minute 30 to 35 respectively. An illustration of this concept is shownin Figure 4.5. Here the time segments corresponding to set 0 are coloured in blue. On the right, the nodesthat can transmit at this time in at this measurement frequency are coloured.

Figure 4.5: For a measurement frequency of twice per hour, groups 0 and 6 can transmit intime segment 0 and 6.
In this same example, a node with group number 7 ends up in set 1 (coloured in red). Given that it alsomeasures twice per hour, it can transmit between minute 5 and 10 as well as between minute 35 and 40.This is illustrated in 4.6.

Figure 4.6: For a measurement frequency of twice per hour, groups 1 and 7 can transmit in timesegment 1 and 7.

28

4 measurements per hour At a measurement frequency of 4 measurements per hour, there are only 3sets containing 4 groups each. A node with group number 0 belongs to set 0. The node can thus transmitduring time-segment 0, 3, 6 and 9, as can be seen in Figure 4.7.

Figure 4.7: For a measurement frequency of 4 times per hour, groups 0, 3, 6 and 9 can transmitduring time segment 0, 3, 6, and 9.
In the same example, a node with group number 7 ends up in set 1. It can transfer during time-segment 1,4, 7 and 10, as can be seen in Figure 4.8.

Figure 4.8: For ameasurement frequency of 4 times per hour, groups 1, 4, 7 and 10 can transmitduring time segment 1, 4, 7 and 10.
After the available time segments have been calculated, the node determines what time segment is clos-est to the one it is currently in. This is done by the function nextTimeSeg, which is tested in Appendix G.1.Then, a wake-up alarm is set for that time and the system enters its low power mode. When it wakes upfrom this mode, it returns to the power saving mode where the cycle is repeated again.
The advantages of the group and set system are not limited to temporal spreading. It has the addedbenefit that it also allows the measurements of one time-segment to be spread over the whole field asopposed to just a single area. The nodes can be placed in the field such that nodes with different groupnumbers are placed together as is shown in Figure 4.9. This maximises the probability that at least 1 mea-surement is received from each of the areas indicated by the boxes. The closestPeriod function is testedin Appendix G.2.

29

Figure 4.9: An example of how the group numbers can be distributed over a field of about 1hectare.
4.1.4 Off-season state
The off-season state is an operation mode that specialises in maximising the uptime of the system whenthe farmer is not particularly interested in frequent temperature measurements. The farmer can indicatevia the base station when this mode should be active. This mode is necessitated since, during winter, earlyspring and late autumn little solar energy can be harvested. To avoid complete outages that would requirethe nodes to have to reconnect to the network, energy usage should be decreased. Since no fruit frostoccurs during these periods, because the trees do not have fragile blossoms or buds, there is no needfor frequent temperature updates at the base station. Instead, multiple temperature measurements canbe collected and transmitted together at the same time. There is also no need for dynamic temperaturemeasurements, so the system can lower its measurement frequency down to a fixed 1 measurement perhour.
The wireless communication module supports payload sizes that can be large enough to transmit data ofup to 4 different measurements at once. By sending multiple measurements over the same transmission,less energy is lost due to the overhead of the protocol. In the program, measurements made at 4 differenttimes are stored in an array. When the array is full after 4 hours, the system transmits the data to thebase station. This is done in a similar way as during normal operation. However, the system rejoins after5 transmissions without confirmation [9]. A flowchart of the off-season state can be found in Figure H.3.
4.1.5 Watchdog timer
The watchdog timer (WDT) is used to detect and resolve malfunctions due to software failures. A resetsequence is triggered on the MCU if no reset signal is provided within a certain time window. This windowis programmed to have the maximum value of 32.8 seconds to minimise the number of times the systemhas to wake up from sleep. At the beginning and end of every function call, the watchdog is reset. Duringthe low power mode, the system wakes up periodically every 30 seconds to reset the timer.

30

Chapter 5
Power breakdown

To get an estimate on how much power the measurement and control subsystem uses, first the powerusage of the different components is looked at separately, after which a worst-case power usage of thewhole measurement and control system is calculated. In this chapter, all calculations are based on themost power-consuming mode of the system, which is when it measures once every 5 minutes. Further-more, all components are supplied with a voltage of Vdd = 1.8V .
The following factors contributing to power are considered:
Temperature sensor

• Standby power: the power used by the temperature sensor when it is in standby mode.
• Active power: the power used by the temperature sensor when it is actively measuring the tempera-ture and sending data over I²C.

Microcontroller
• Stop mode power: power usage when the MCU is in stop mode with all peripherals turned off.
• Active power usage: power used when the MCU is in LP run mode, where the CPU is active.
• Peripheral power usage: power usage by the different peripherals of the MCU, such as the I²C- andUART interface and the WDT.

I²C
• Dynamic power usage: Power used by the transmission of logic zeros on the I²C data-bus and clockline.

UART
• Dynamic power usage: power consumed by the transitioning between a logic high and low on thedata lines.

First, the power usage of the temperature sensor is discussed, followed by the power usage of MCU andcommunication protocols. To conclude an overview of the found results is presented in Table 5.3 andTable 5.4.
5.1 Temperature sensor power usage
The average power usage of the temperature sensor can be calculated by multiplying the average runningcurrent and the operating voltage, which results in an average power usage of 0.2 µW . In Table 5.3 thispower usage is multiplied by 5 to take all 5 sensors into account. The peak instantaneous current of thesensor is not listed in the datasheet. The value found for the peak instantaneous current in Table 5.3 isdeduced from the datasheet values by using Equation 5.1. By subtracting the standby power from theaverage power given in the datasheet for 4 conversions per second, the additional energy consumed by 4measurements can be found. Dividing by 4 then gives the additional energy consumed by a single conver-sion. This energy can then be divided by the conversion time to find an approximation for the power usageduring one conversion. This is added on top of the standby power usage to find the peak instantaneouspower. A visual representation of how this calculation works can be found in Figure 5.1. Here the areascoloured in blue represent the additional energy consumed by the sensors due to the conversions, whichis equal in both graphs. Here the assumption is made that the power consumption is constant during

31

conversion, and the sensor can immediately switch between active and standby mode. This assumptionis based on a figure found in the datasheet of the temperature sensor where the power usage over time isdepicted in a similar manner [18, Figure 16].
Pactive = Econv/tconv + Pstandby =

Pavg@4Hz − Pstandby

4
∗ 1

tconv
+ Pstandby (5.1)

Figure 5.1: Figure illustrating the way the peak power usage of the AS621x temperature sensoris found using the average current given in the datasheet for 4measurements per second. (Noton scale)

5.2 Microcontroller power usage
The microcontroller spends most of its time in a low power mode. For the chosen MCU this is the stopmode, as this is the lowest power mode which keeps the RTC active while maintaining the program state.This is important since the software is developed such that the program should continue where it left offwhen it entered its low power mode. The MCU periodically exits this state to perform a measurement anda transmission in its low-power-run-mode (LPrun). This mode is chosen as it is the mode with the lowestpower usage while being able to operate the I²C and UART interface and perform calculations. Without anyperipherals on, and the MCU core running at fcore = 32 kHz, the MCU uses 24 µA of current in low-power-run-mode while executing code from flash memory and keeping the RTC on, which results in a runningpower of 43.2 µW in the low-power-run-mode. This, however, does not include the peripheral power usedby the MCU.
To obtain the total active power, the MCU peripheral power should be added to the running power. TheMCU peripheral power consists of the power used by the I²C and UART interfaces, GPIO pins, ADC, RTCand watchdog timer. The power contributions in the LPrun mode are divided into frequency-dependentpower contributions and static power contributions. An overview of the frequency-dependent power us-age of the peripherals is provided in Table 5.1 and the static power contributions of the peripherals arelisted in Table 5.2.

Table 5.1: Overview of frequency-dependent MCU power usage in LPrun mode
Peripheral Current per MHz [µA/MHz] Current at 32KHz [µA] Power usage at 1.8 V at 32KHz [µW]UART 7.5 0.2 0.4I²C 6.5 0.2 0.4GPIO (x2) 7 0.2 0.4ADC 9.0 0.3 0.5Total 30.0 1.0 1.7

32

Table 5.2: Overview of static MCU power usage in LPrun mode 19

Peripheral Static power consumption [µW]MCU (LPrun mode) 43.2RTC 0.85WDT 0.45Total 44.5
Adding the frequency-dependent and static MCU peripheral power to the LPrun mode power, the totalpower used by the MCU in LPrun mode equals Plpr = 46.2 µW .
In stop mode, the MCU consumes a current of 1.2 µA, meaning that it uses 2.2 µW of power. This alreadyincludes the power used by the RTC. During this mode, all peripherals but the watchdog timer and RTC areswitched off. Adding the peripheral power used by the WDT gives a total power usage of Pstop = 2.65 µWin stop mode.
The average power cannot accurately be calculated since the active time of theMCU is unknown. However,an assumption can be made on the contribution of the active power usage to the average power usage.The ratio Rlp,stop between the LPrun and stop mode power usage is calculated in Equation 5.2. From this,it follows that the LPrun mode consumes 17.43 times more power than the stop mode.

rlpr,stop =
Plpr

Pstop
=

46.2

2.65
= 17.43 (5.2)

To even reach 10%of the stopmode power usage, the subsystemwould have to be active for (5∗60/17.43)∗
0.1 = 1.72 seconds in which 1.72 ∗ 32768 = 56361 clock cycles would have to elapse for every measure-ment. This not expected for the application at hand. Based on this, the assumption is made that therunning mode power usage is negligible compared to the stop mode power usage. This could be verifiedby power measuring equipment. For this reason, the average power usage of the MCU is estimated to beroughly equal to the stop-mode current.
5.3 Serial communication dynamic power usage
The dynamic power usage of the serial communication protocols can be calculated based on the amountof data that is transferred. Here the power usage of the protocols is discussed for the use case in thisdesign.
5.3.1 I²C
From the datasheet of the temperature sensor, it can be found that in single-shot mode a transmissionrequires 87 bits of information to be sent with I²C. For the calculation of the power usage, the lowest pull-up resistor value is chosen, as this results in the most stable I²C output and the worst-case power usage.The lowest resistor value can be found using Equation 3.3, which gives a resistor value of Rmin = 467 Ω.The peak instantaneous power can then be foundwith Equation 3.5. This results in a peak power of 6.9mWper line. This power usage is sustained during the time that a 0 is transmitted over the I²C lines. In thesituation where the half of the transmitted bits are 0’s, the total time spent by the data line transmitting0’s can be calculated with Equation 5.3. Here t0 stands for the time spent transmitting 0’s and n0 for thenumber of 0’s present in the transmitted message.

t0 =
n0
f

=
0.5 ∗ 87

32000
= 1.36ms (5.3)

The energy consumed during this time can be calculated using Equation 3.6. The power consumed in theclock-line can be calculated in the same way, again with the clock line transmitting 0’s half of the time.Averaging the energy consumption of both lines over 5 minutes results in an average power of 63 nW .
19The contribution of the ADC to the power usage in LPrunmode is not considered since the ADC only needs sample 1 voltage permeasurement, and the ADC is only on during that time. The typical conversion time for the ADC is 0.56 µs and the running currentof the ADC is 1450 µA. So each measurement, the ADC only uses 0.82 nJ . This means that if the node measures every 5 minutes,the average power contribution of the ADC will be 0.82 nJ/(5 ∗ 60 s) = 2.71 pW , which is negligible compared to the total averagepower that is found. However, it is considered in the peak power consumption, which can be found in Table 5.4.

33

Multiplying this by five to account for the five sensors yields a total average dynamic power usage of
315 µW for the I²C communication.
5.3.2 UART
To transmit a message to the wireless communication module and to receive a reply, a total of 44 bytes ofdata is transmitted using UART. Via Equation 3.2 the dynamic energy required (Edyn,UART) for the trans-mission of 44 bytes can be calculated. The calculated energy can be averaged out over 5 minutes to findthe average dynamic power usage, as is demonstrated in Equation 5.4. This results in an average dynamicpower of Pavg,UART = 65 pW .

Pavg,UART = Nsensors ∗
Edyn,UART

t
= 5 ∗ 1.95 ∗ 10−8

5 ∗ 60
(5.4)

HereNsensors = 5 is the number of temperature sensors per pole. For the calculation of the peak instanta-neous power usage of the UART communication, the typical rise time of the voltage along a line is needed.As no clear values of this are specified in the datasheet of the chosen MCU and temperature sensor, themaximum I/O pin current IIO = 4 mA and maximum voltage VOH = Vdd = 1.8 V are used to make aworst-case estimation of the peak power. This results in a peak instantaneous power of 7.2 mW .

5.4 Power consumption of the measurement and control system
The average power consumed by the various part of the measurement and control system is presented inTable 5.3. In this table, the average power of the 5 sensors combined is used. The average power usageof all components adds up to a total of 4 µW .

Table 5.3: Overview total average power usage of the measurement and control system
Component Average current [µA] Average power [µW]Microcontroller 1.5 2.65Temperature sensor (x5) 0.5 0.9I²C (dynamic) 1.7e-1 0.3UART (dynamic) 1.8e-4 3.3e-4External crystal 5.6e-2 0.1Total 2.2 4.0

The peak instantaneous power is presented in Table 5.4. Here the instantaneous power of a single tem-perature sensor is used as the sensors are activated sequentially, and there is no situation where morethan 1 sensor is active at the same time.
Table 5.4: Instantaneous power for different components.
Component Peak instantaneous power [µW]Microcontroller22 46.2ADC on Microcontroller 2610Temperature sensor 41.15I²C (dynamic) 13886.8UART (dynamic)23 7200External crystal 0.5

20 Values specified for the microcontroller include peripheral power usage.21Based on the typical power usage specified in [32].22Values specified for the microcontroller include all power usage of all peripherals except for the ADC, which is considered as aseparate component. This is done because in the case the system consumes the most power, the ADC is not active and thus cannotbe added to the microcontroller peak power.23worst-case instantaneous power estimation for UART based on the maximum output current IIO = 4mA and output voltage
VOH = Vdd = 1.8 V of an I/O pin of the STM32L151CBT6TR [31, Table 43].

34

To estimate the peak power used by the whole system, powers cannot simply be added, as not all systemsare active at the same time. The worst-case instantaneous power usage occurs when both the microcon-troller and temperature sensor are active and are transferring data over I²C. In this case, the UART interfaceis not active, and also the ADC is not active on the MCU. This results in a peak instantaneous power of themeasurement and control system of about 14 mW .

35

Chapter 6
Discussion and Conclusion

The goal of the project was to design a wireless self-sustaining sensor system that smartly gathers tem-perature data to create a 3D temperature map of an orchard. The focus of the smart measurement andcontrol subsystemwas on designing a sensor system and a control system capable ofmeasuring the tem-perature at different heights and communicating with the wireless communication module. Additionally, asystem is created that allows for dynamic temperature measurements based on the available energy leveland the ambient temperature.
To this end, first different options for serial communication protocols are considered for the data transferbetween the sensor and control unit, based on energy usage and topology. After this, a selection of tem-perature sensors is made, which is primarily based on power usage, measurement accuracy, interfaces,error-checking capabilities and price. Following this, a selection of six suitable temperature sensors isfound, of which the I²C-based AS6212 came out as the best option. A compatible control unit is chosenbased on energy usage and price. A selection of sixmicrocontrollers that fit the requirements of the designwas put together, from which the STM32L151CBT6TR was chosen as the best option.
After component selection, the software is developed to control the various components of the subsystem,using the Arduino framework. An algorithm is developed to optimise the power usage of the system bydynamically adapting the measurement frequency. This is implemented in such a way that a sufficientlyhigh measurement frequency is maintained to detect fruit frost. This is achieved by making use of a tem-poral and spatial spread of the measurements in the orchard.
An estimate of the energy consumption, as well as the peak power requirements, is made based on in-formation in the datasheets of the chosen components and technologies. It is found that the subsystemrequires an average power of 4 µW , and a peak power of 14 mW .
Recommendations for future work
Viewing the energy consumption of all subsystems in the node, it turns out that the smart sensing andcontrol subsystem has a relatively small contribution to the energy usage of the complete system. Theenergy expended during 4 hours by the subsystem roughly equates to the energy expended during a sin-gle transmission. Also, the quiescent energy consumption of the other subsystems is significantly higherthan the measurement and control system. Therefore, more emphasis could be put on factors other thanlow energy consumption such as cost or other features. For example, more advanced microcontrollersthat support higher tolerance oscillator-crystals and RTC calibration features could be chosen, that werepreviously rejected due to their higher energy usage.
To verify the design, a prototype should be built. This could confirm or invalidate the theory-based es-timations, calculations and assumptions made in this design. The energy consumption of the variouscomponents could be measured, which would lead to a more accurate power breakdown. Implementingthe software on the prototype would give the possibility to find the execution time, which verifies whetherthe active energy consumption is rightfully deemed negligible. Furthermore, a prototype could potentiallybring to light unforeseen issues in the design. For example, noise is not taken into account when consid-ering the serial communication between temperature sensor and microcontroller. This could potentiallyresult in erroneous temperature data being sent to the base station. This would warrant a reconsiderationof the design choices such as a different serial communication protocol or additional error-checking.

36

References
[1] H. v. d. Meulen, “Fruitareaal en aantal bedrijven,” Fruitareaal, 2020. [Online]. Available: https://www.agrimatie.nl/SectorResultaat.aspx?subpubID=2232§orID=2237
[2] J. Rodrigo, “Spring frosts in deciduous fruit trees. Morphological damage and flower hardiness,” Sci-entia Horticulturae, vol. 85, no. 3, pp. 155–173, 2000.
[3] A. A. Ghaemi, M. R. Rafiee, and A. R. Sepaskhah, “Tree-Temperature Monitoring for Frost Protectionof Orchards in Semi-Arid Regions Using Sprinkler Irrigation,” Agricultural Sciences in China, vol. 8,no. 1, pp. 98–107, 2009. [Online]. Available: http://dx.doi.org/10.1016/S1671-2927(09)60014-6
[4] A. C. Ribeiro, J. P. De Melo-Abreu, and R. L. Snyder, “Apple orchard frost protection with wind machineoperation,” Agricultural and Forest Meteorology, vol. 141, no. 2-4, pp. 71–81, 2006.
[5] S. R. Prathibha, A. Hongal, and M. P. Jyothi, “IOT Based Monitoring System in Smart Agriculture,” Pro-ceedings - 2017 International Conference on Recent Advances in Electronics and Communication Tech-nology, ICRAECT 2017, pp. 81–84, 2017.
[6] M. S. Mahmoud and A. A. H. Mohamad, “A Study of Efficient Power Consumption Wireless Communi-cation Techniques/ Modules for Internet of Things (IoT) Applications,” Advances in Internet of Things,vol. 06, no. 02, pp. 19–29, 2016.
[7] F. J. Pierce and T. V. Elliott, “Regional and on-farm wireless sensor networks for agricultural systemsin Eastern Washington,” Computers and Electronics in Agriculture, vol. 61, no. 1, pp. 32–43, 2008.
[8] G. Sushanth and S. Sujatha, “IOT Based Smart Agriculture System,” 2018 International Conference onWireless Communications, Signal Processing and Networking, WiSPNET 2018, pp. 1–4, 2018.
[9] A. Bleeker and R. Wijnands, “Autonomous Temperature Sensor for Smart Agriculture - Wireless Com-munication,” 2020.

[10] B. Pinty, F. Roveda, M. M. Verstraete, N. Gobron, Y. Govaerts, J. V. Martonchik, D. J. Diner, and R. A.Kahn, “I2C-Cabling,” Analog Devices, Tech. Rep., 2013.
[11] T. Brand, “Isolated SPI Communication Made Easy,” Analog Devices, 2019. [Online]. Available:https://www.analog.com/en/technical-articles/isolated-spi-communication-made-easy.html
[12] L. Asena, S. G. Güngör, and A. Akman, “Comparison of keratometric measurements obtained by theVerion Image Guided System with optical biometry and auto-keratorefractometer,” International Oph-thalmology, vol. 37, no. 2, pp. 391–399, 2017.
[13] A. Gloria, F. Cercas, and N. Souto, “Comparison of communication protocols for low cost Internet ofThings devices,” South-East Europe Design Automation, Computer Engineering, Computer Networksand Social Media Conference, SEEDA-CECNSM 2017, 2017.
[14] K. Mikhaylov and J. Tervonen, “Evaluation of power efficiency for digital serial interfaces of microcon-trollers,” 2012 5th International Conference on New Technologies, Mobility and Security - Proceedingsof NTMS 2012 Conference and Workshops, 2012.
[15] CAT5e Horizontal, 4pr, UTP, PVC Jkt, CMR, Belden, 2020, rev. 0.405. [Online]. Available: https://catalog.belden.com/techdata/EN/1583A_techdata.pdf
[16] I2C-bus specification and user manual, NXP, 2014, rev. 6. [Online]. Available: https://www.nxp.com/docs/en/user-guide/UM10204.pdf
[17] Low-voltage, ultra-low-power, 0.5 °C accuracy I²C/SMBus 3.0 temperature sensor, ST-Microelectronics,2019, rev. 4. [Online]. Available: https://www.st.com/resource/en/datasheet/stts22h.pdf
[18] AS621x Digital Temperature Sensor, AMS, 2020, rev. 2. [Online]. Available: https://ams.com/documents/20143/36005/AS621x_DS000677_2-00.pdf/a90b32a5-d1f8-e6df-5327-bec856e093dd

37

https://www.agrimatie.nl/SectorResultaat.aspx?subpubID=2232§orID=2237
https://www.agrimatie.nl/SectorResultaat.aspx?subpubID=2232§orID=2237
http://dx.doi.org/10.1016/S1671-2927(09)60014-6
https://www.analog.com/en/technical-articles/isolated-spi-communication-made-easy.html
https://catalog.belden.com/techdata/EN/1583A_techdata.pdf
https://catalog.belden.com/techdata/EN/1583A_techdata.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.st.com/resource/en/datasheet/stts22h.pdf
https://ams.com/documents/20143/36005/AS621x_DS000677_2-00.pdf/a90b32a5-d1f8-e6df-5327-bec856e093dd
https://ams.com/documents/20143/36005/AS621x_DS000677_2-00.pdf/a90b32a5-d1f8-e6df-5327-bec856e093dd

[19] TMP102 Low-Power Digital Temperature Sensor With SMBus and Two-Wire Serial Interface inSOT563, Texas Instruments, 2018. [Online]. Available: http://www.ti.com/lit/ds/symlink/tmp102.pdf?&ts=1589811705241
[20] TMP107 Digital Temperature Sensor With Bidirectional UART One-Wire Interface and EEPROM,Texas Instruments, 2020. [Online]. Available: https://www.ti.com/lit/ds/symlink/tmp107.pdf?ts=1591359280104
[21] Low-voltage, ultra-low-power, 0.5 °C accuracy I²C/SMBus 3.0 temperature sensor, Tyco Electronics,2015. [Online]. Available: https://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=TSYS02S&DocType=DS&DocLang=English
[22] Digital Thermometers and Thermostats with SPI/3-Wire Interface, Maxim Integrated, 2015, rev. 2.[Online]. Available: https://datasheets.maximintegrated.com/en/ds/MAX31722-MAX31723.pdf
[23] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits, 3rd ed. USA: Prentice HallPress, 2008.
[24] J. Borgeson, S. Schauer, andH. Diewald, “BenchmarkingMCUpower consumption for ultra-low-powerapplications,” Texas Instruments, Dallas, Tech. Rep., 2012.
[25] M. Hayashikoshi, H. Kawai, H. Ueki, and T. Shimizu, “Normally-off MCU architecture and power man-agement method for low-power sensor network,” ISOCC 2015 - International SoC Design Conference:SoC for Internet of Everything (IoE), pp. 151–152, 2016.
[26] MCU with Integrated 240–960 MHz EZRadioPRO® Transceiver, Silicon Laboratories, 2013, rev. 2.[Online]. Available: https://www.silabs.com/documents/public/data-sheets/Si106x-8x.pdf
[27] EFM32 Zero Gecko Family, Silicon Laboratories, 2013, rev. 2. [Online]. Available: https://www.silabs.com/documents/public/data-sheets/efm32zg-datasheet.pdf
[28] AVR®Microcontroller with Core Independent Peripherals and PicoPower® Technology, Microchip Inc.,2018. [Online]. Available: http://ww1.microchip.com/downloads/en/DeviceDoc/40001906C.pdf
[29] 8-bit ultra-low-power MCU, up to 64-KB Flash, 2-KB data EEPROM, RTC, LCD, timers, USARTs,I2C, SPIs, ADC, DAC, comparators, ST-Microelectronics, 2018, rev. 11. [Online]. Available: https://www.st.com/resource/en/datasheet/stm8l152k8.pdf
[30] Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS, up to 256KB Flash, 64KB SRAM,analog, audio, ST-Microelectronics, 2018, rev. 3. [Online]. Available: https://nl.mouser.com/datasheet/2/389/dm00257211-1798949.pdf
[31] Ultra-low-power 32-bit MCU ARM®-based Cortex®-M3, 128KB Flash, 16KB SRAM, 4KB EEPROM, LCD,USB, ADC, DAC, ST-Microelectronics, 2016, rev. 12. [Online]. Available: https://www.st.com/resource/en/datasheet/stm32l151cb.pdf
[32] ABS07-166-32.768KHZ-T; TUNING FORK CRYSTAL, Abracon, 2008, revised 19 March 2018. [Online].Available: https://nl.mouser.com/datasheet/2/3/ABS07-166-32.768kHz-T-1359238.pdf
[33] Quartz Crystal Ageing, IQD. [Online]. Available: https://www.iqdfrequencyproducts.com/media/pg/1589/1459502414/quartz-crystal-ageing.pdf
[34] RN2483 LoRa Technology Module Command Reference User’s Guide, Microchip, 2015, rev. B. [Online].Available: https://ww1.microchip.com/downloads/en/DeviceDoc/40001784B.pdf
[35] M. Huiskes and M. Miao, “Measurement and control software,” https://github.com/MichaelMiao99/BAP_measurement_control, 2020.
[36] M. v. d. Linden, “De dagen zijn weer langer dan de nachten,” 2020. [Online]. Available: https://www.weeronline.nl/nieuws/de-dagen-zijn-weer-langer-dan-de-nachten
[37] M. Hubers and R. van der Sande, “Autonomous Temperature Sensor for Smart Agriculture - EnergyHarvesting and Control,” p. 70, 2020.
[38] J. Bloksma, “Basiskennis Hoogstamfruit - Deel 1,” Tilburg, 2020.

38

http://www.ti.com/lit/ds/symlink/tmp102.pdf?&ts=1589811705241
http://www.ti.com/lit/ds/symlink/tmp102.pdf?&ts=1589811705241
https://www.ti.com/lit/ds/symlink/tmp107.pdf?ts=1591359280104
https://www.ti.com/lit/ds/symlink/tmp107.pdf?ts=1591359280104
https://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=TSYS02S&DocType=DS&DocLang=English
https://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=TSYS02S&DocType=DS&DocLang=English
https://datasheets.maximintegrated.com/en/ds/MAX31722-MAX31723.pdf
https://www.silabs.com/documents/public/data-sheets/Si106x-8x.pdf
https://www.silabs.com/documents/public/data-sheets/efm32zg-datasheet.pdf
https://www.silabs.com/documents/public/data-sheets/efm32zg-datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40001906C.pdf
https://www.st.com/resource/en/datasheet/stm8l152k8.pdf
https://www.st.com/resource/en/datasheet/stm8l152k8.pdf
https://nl.mouser.com/datasheet/2/389/dm00257211-1798949.pdf
https://nl.mouser.com/datasheet/2/389/dm00257211-1798949.pdf
https://www.st.com/resource/en/datasheet/stm32l151cb.pdf
https://www.st.com/resource/en/datasheet/stm32l151cb.pdf
https://nl.mouser.com/datasheet/2/3/ABS07-166-32.768kHz-T-1359238.pdf
https://www.iqdfrequencyproducts.com/media/pg/1589/1459502414/quartz-crystal-ageing.pdf
https://www.iqdfrequencyproducts.com/media/pg/1589/1459502414/quartz-crystal-ageing.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/40001784B.pdf
https://github.com/MichaelMiao99/BAP_measurement_control
https://github.com/MichaelMiao99/BAP_measurement_control
https://www.weeronline.nl/nieuws/de-dagen-zijn-weer-langer-dan-de-nachten
https://www.weeronline.nl/nieuws/de-dagen-zijn-weer-langer-dan-de-nachten

Appendix A
The top-level system

A.1 Top-level system implementation
Before the three subsystems are designed the implementation of the entire system is considered. The goalof the implementation is such that it fits the requirements of the entire system and that each subsystemcan comply with their own requirements. When all these requirements are met, aspects that have to bereduced aremanufacturing cost, deployment cost andmaintenance cost. Furthermore, durability has to betaken into consideration. To prevent further confusion, a single-node is regarded as a subsystem with onewireless communication module, one microcontroller and one energy harvesting module. The possibleimplementations of the system that were considered that fit into the requirements of the system are thefollowing:

• Tree multi-node: An implementation where each single-node has one temperature sensor. As aresult, a tree contains 5 separate nodes all on one tree. These multiple nodes are placed at differentheights in the tree. This is a multi-node implementation in a tree.
• Tree single-node: A system where every node consists of a single MCU, wireless communicationmodule and energy harvester, while multiple temperature sensors are connected to this single MCU.All sensors are placed in a tree at different heights.
• Pole multi-node: A system where every node contains a single temperature sensor. Multiple nodesare placed on different heights on a pole.
• Pole single-node: A system where every node has multiple connected temperature sensors andevery node is integrated on a pole with the sensors at different heights.

To come to a design decision each option is weighted in the sections below. Based on this weight and theimportance of each aspect an end decision is made which implementation is ultimately chosen.
Power consumption
The main power consumer is the wireless communication module. In a single-node implementation, fourwireless communication modules and MCUs are spared and thus this implementation is more preferableover a multi-node implementation. The power consumption does not differ between a pole or tree imple-mentation.
Cost
By implementing a single-node structure, fourwireless communicationmodules, fourmicrocontrollers andfour energy harvesting modules are spared compared to a multi-node structure. This gives a single-nodestructure more advantages. The purchase of a pole gives a tree implementation preference compared tothe pole implementation, although this can be offset by the lower installation cost.
Durability
Durability assesses the lifetime of the system. A pole implementation is considered more durable thana tree implementation since it has a more robust structure than the more fragile branches of a tree. Forthe pole implementation, it is difficult to assess whether a multi-node or a single-node implementation isbetter. However, in a single-node implementation, fewer components are used and thus the chance ofcomponent failure is lower. On the other hand, in a single-node implementation, temperature sensors areconnected by wire and it depends on the type of integration whether this can have a signification negativeimpact on the device its lifetime.

39

Deployment
The deployment of the system assesses how easily the system can be installed. A significant advantageof a pole implementation is that it can be prefabricated and quickly installed by only planting the pole. Forthe tree, the on-sight installation has to be performed which can be quite work-intensive, since sensorshave to be installed on a certain height. Regarding a multi-node or single-node solution, the only maindifference is the wiring which comes with a single-node system. This is concerned to be more dramatic ina tree than on a pole since wiring of prefabricated poles can be implemented more easily.
Placement consistency
The consistency of the system assesses how uniform the heights of the sensors are for each of thetrees/poles. For an implementation with a pole the distance between sensors can easily be made veryconsistent, whereas, for the implementation in a tree, heights can be slightly different due to the fact thattrees have different shapes. For this factor, it does not matter whether a single-node or multi-node imple-mentation is chosen.
Efficiency
The efficiency of the system describes how efficiently the system can harvest energy and transmit sig-nals. For a pole implementation with the antenna on top, the transmitted signal likely comes across fewerobstacles. Also with the solar panel on top of a pole instead of on a tree, the panel will receive a lot moresolar energy due to the fact that there is less shadow from the three itself. The difference between amulti-node implementation and single-node implementation also give rise to different signal transmission- andenergy harvesting efficiency. In the multi-node case, the solar panels are positioned on different heights.The nodes that are positioned higher will likely receive more solar radiation than lower positioned nodes.Furthermore transmitted signal from the nodes that are positioned lower will likely come across moreobstacles.
Flexibility
The flexibility of the system describes the ease of changing the number of sensors at a location. For amulti-node pole implementation, the number of sensors is changed with more ease than for a single-nodeimplementation. This is because, for a single-node implementation, a sensor should be added or removedfrom theMCU,while for amulti-node implementation only a completemodule should be placed or removedwithout the need of connecting or disconnecting wires. The same holds for a tree implementation.
Maintainability
An important measure for designing a system is minimising the cost of maintenance after the system hasbeen designed to reduce further costs and time. To maintain the system where each node has a singlesensor greatly increases the amount of hardware that can fail and needs to be maintained. The time ittakes to replace a node can be neglected in the comparison between multi and single-node as it will havemuch less influence on the total maintenance cost than the total amount of hardware failures. To comparethe tree and pole solution it comes to the same comparison as with deployment namely disassemblingthe node and installing it again.
Expandability
By implementing a single-node structure, more nodes can be added before the communication systemgets saturated. This because of the limitation in the number of wireless communication nodes that canbe used for a certain gateway. By implementing a multi-node structure, the maximum number of nodesgets reached more easily, and so the size of the sensor network becomes more limited.

40

Table A.1: Decision matrix for a tree or pole and multi- or single-node implementation
Tree multi-node Tree single-node Pole multi-node Pole single-nodeCriterion Weight Score Weighted Score Weighted Score Weighted Score WeightedPower consumption 5 3 15 10 50 3 15 10 50Cost 7 6 42 10 70 5 35 9 63Durability 9 4 36 3 27 9 81 8 72Deployment 2 4 8 3 6 10 20 10 20Placement consistency 2 6 12 6 12 10 20 10 20Efficiency 5 1 5 5 25 3 15 10 50Flexibility 3 8 24 2 6 8 24 2 6Maintainablity 7 1 7 8 56 2 14 9 63Expandability 2 2 4 10 20 2 4 10 20153 272 228 364

Final decision
From Table A.1, it clear that, with a score of 364, a single-node pole implementation is the best optionfor this application. The sub-modules in this project are designed according to this specific implementa-tion. For the remainder of the thesis, a pole-length of 3 meters is considered as this is the typical max-imum length of a dwarf or semi-dwarf apple tree [38, Page 11], which are common in the commercialfruit-orchards.

41

Appendix B
Maximum temperature slope

In order to determine the frequency with which the system should measure so that the system will givean alert on-time, the maximum change in temperature over time is a necessary parameter. For estimatingthis temperature change, data from the KNMI (Royal Dutch Meteorological Institute) is used. The data-set used contains the temperature measured in an hourly interval for 50 weather stations spread over theNetherlands, for a period of 20 years.
The change in temperature varies at different times of the year and at different temperature ranges. For thepurposes of this project, only temperatures around the freezing point that were measured during springare considered.
In Figure B.1, the maximum drop in temperature between when the temperature first drops below 0 de-grees and an hour before is plotted. These are the maxima of values collected in between 1 February and 1June in the 20 years between 2000 and 2020. From this figure, it can be seen that the maximum tempera-ture slope found is around 8.3 °C/hour. This measurement is an extreme outlier, but the designed systemshould be able to detect such changes, as that is what farmers are most interested in.

Figure B.1: The maximum hourly temperature change that results in a sub-0 temperature.

42

Appendix C
System clock overview

Figure C.1: An overview of the clock system in the MCU.

43

Appendix D
System overview

Figure D.1: An overview of the measurement and control subsystem

44

Appendix E
Software parameters

In Table E.1 below, the configurable parameters of the software can be found, including their meaning anddefault values.
Table E.1: Configurable parameters in the software

Parameter Function Default valuethreshold_PSM Indicates the minimum energy value needed in order for the device to come out of power saving mode (PSM) 2threshold_Join Indicates the minimum energy needed to be able join the LoRa network 2sensorCount Indicates the amount of temperature sensors connected to the MCU 5maximumTemperatureSlope The maximum hourly temperature change that can occur in the area the device is used 8.3 °C/houroffSeasonIterations Amount of measurement times before transmission in off-season mode 4OffSeasonSleepDuration The amount of time between measurements in off-season mode 60 minutesgroupNumber The group number assigned to the node -deveui LoRa device ID -sf Spreading factor -nwkskey LoRa network session key -appskey LoRa application session key -

Threshold_PSM has been given a default value of 2. This is equivalent to the energy needed for 2 mea-surements and transmissions (see Equation 4.4). The limited resolution of the ADC gives an inaccuracyof 0.032 J in the energy level measurement.This is 64% of the energy consumed by 1 measurement. The threshold is given a value of 2 as it providesa small overhead on the amount of energy needed for a single transmission and to compensate for theinaccuracy of the energy level measurement. The join threshold threshold_Join is given the same valuefor the same reason.

45

Appendix F
Set division

Table F.1: Set number for different group numbers and number of measurements per hour

Frequency Group number 0 1 2 3 4 5 6 7 8 9 10 11
2 0 1 2 3 4 5 0 1 2 3 4 53 0 1 2 3 0 1 2 3 0 1 2 34 0 1 2 0 1 2 0 1 2 0 1 26 0 1 0 1 0 1 0 1 0 1 0 112 0 0 0 0 0 0 0 0 0 0 0 0

46

Appendix G
Software function tests

In this chapter the behaviour is tested of the nextTimeSeg and the closestFrequency functions. The func-tions are run with different input combinations and the output of the functions is checked to verify whetherthe functions are working as intended.
G.1 nextTimeSeg
The code seen in Listing 1 is used to test the nextTimeSeg function. The group number, time segment thedevice is currently in and fmeas can be set. The test code will then keep calculating the next time segmentbased on the last time segment. Note that the nextTimeSeg function is not included in Listing 1, but can befound the in GitHub repository [35].

Listing 1: Test code for the next time segment function.
1 int groupNumber = 0; // Set ground number
2 int currentTimeSegment = 2; // Set the time-segment the device starts in
3 int f_meas = 4; // Set the measurement frequency per hour
4

5 int measurementPeriod = 60/f_meas; // Calculate the period between measurements
6

7 void setup() {
8 // put your setup code here, to run once:
9 Serial.begin(9600);

10 }
11

12 void loop() {
13 // put your main code here, to run repeatedly:
14 while(1){
15 currentTimeSegment = nextTimeSeg(currentTimeSegment,measurementPeriod);
16 Serial.println(currentTimeSegment); //print output
17 delay(500);
18 }
19

20 }

The output for two different cases are shown in Figure G.1 and G.2, which behave as expected followingthe logic explained in Chapter 4.1.3.

47

Figure G.1: Result of the nextTimeSeg function for a device with group number 0, fmeas = 2measurements per hour and which starts in time-segment 2

Figure G.2: Result of the nextTimeSeg function for a device with group number 3, fmeas = 6measurements per hour and which starts in time-segment 4

G.2 closestPeriod
The code seen in Listing 2 is used to test the closestPeriod function. Here the temps-variable representstheminimum temperature measured by the sensors from the last measurement. The values in the temps-array are the test values. The criticalTemp represents the set critical temperature, which for this exampleis set to 1 °C and themaxTempSlope variable is themaximum temperature slope per minute as discussedin B.

Listing 2: Test code for the closestPeriod function.
1 int temps[8] = {-60,10,20,30,40,50,60,180}; //current temperature value x10, so

-6,1,2,3,4,5,6 and 18 degrees↪→

2 int criticalTemp = 10; // critical temperature x10 -> critical temp is 1 degree celcius
3 float maxTempSlope = 83.0/60; //temperature slope per minute

48

4 int temperature;
5 void setup() {
6 // put your setup code here, to run once:
7 Serial.begin(9600);
8 }
9

10 void loop() {
11 // put your main code here, to run repeatedly:
12 delay(2000);
13 for (size_t i = 0; i<8; i++)
14 {
15 temperature = temps[i];
16 int closestPer = closestPeriod();
17 Serial.print("Time between measurements when the current temperature is ");
18 Serial.print(temps[i]/10);
19 Serial.print(": ");
20 Serial.println(closestPer);
21 Serial.print(" minutes");
22 Serial.println();
23 }
24 }
25

26 int closestPeriod()
27 {
28 int minTimeToNext = (temperature - criticalTemp) / maxTempSlope;
29 int availablePeriods[5] = {30, 20, 15, 10, 5};
30 int minPeriod = 5;
31 for (size_t i = 0; i < 5; i++)
32 {
33 if (availablePeriods[i] < minTimeToNext)
34 {
35 minPeriod = availablePeriods[i];
36 break;
37 }
38 }
39 return minPeriod;
40 }

The results of the code presented in Listing 2, which calculates the needed measurement interval for thedifferent temperatures in the temps array, is shown in Figure G.3. The results are as expected, as theresulting measurement intervals are such that a temperature under or equal to the critical temperature isdetected with a minimum time period of 5 minutes.

49

Figure G.3: Results for the test function (Listing 2) written for the closestPeriod function.

50

Appendix H
Software flowcharts

H.1 Flowchart for power saving mode

Figure H.1: Flowchart of the software behaviour of the power saving mode

51

H.2 Flowchart for normal mode

Figure H.2: Flowchart of the software behaviour of the normal mode.

52

H.3 Flowchart for off-season mode

Figure H.3: Flowchart of the software behaviour of the off-season mode.

53

	Introduction
	The project
	Subgroup division
	State of the Art
	Structure of thesis

	Program of requirements
	Requirements of the entire system
	System functional requirements
	System non-functional requirements

	Requirements of the measurement and control subsystem
	Subsystem functional requirements

	Component selection
	Temperature sensor
	Serial communication protocols
	Topology
	Energy consumption estimation
	Choice of communication protocol

	Choice of temperature sensor
	Controller type
	Microcontroller specifications
	Choice of microcontroller
	General remarks for chosen components
	Summary hardware

	Software description
	Core functionality
	Setup state
	Power saving state
	Normal state
	Off-season state
	Watchdog timer

	Power breakdown
	Temperature sensor power usage
	Microcontroller power usage
	Serial communication dynamic power usage
	I²C
	UART

	Power consumption of the measurement and control system

	Discussion and Conclusion
	References
	Appendices
	The top-level system
	Top-level system implementation

	Maximum temperature slope
	System clock overview
	System overview
	Software parameters
	Set division
	Software function tests
	nextTimeSeg
	closestPeriod

	Software flowcharts
	Flowchart for power saving mode
	Flowchart for normal mode
	Flowchart for off-season mode

