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Abstract

Fruit-frost during spring is one of the main causes of damage to the harvest of fruit in orchards. Vari-
ous systems using different methods of preventing spring-frost are available on the market. To determine
when these systems should be activated, the temperature in the orchard needs to be determined.

In this project, a self-sustaining autonomous temperature sensor network is designed, which is capable
of making a 3D temperature map of the orchard. The system is used to warn farmers when the threat
of fruit-frost occurs and to gather data on the spatial variation of the temperature in the orchard. In this
thesis, the focus is put on designing the smart measurement and control system. This includes choosing
an appropriate control unit and temperature sensors. Also, the software for the control unit is designed,
which allows for a smart measurement scheme that balances energy usage and measurement frequency.
Finally, an estimation of the energy usage of the subsystem is given based on theoretical analysis.
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Chapter 1

Introduction

In the Netherlands fruit production is a large segment of the economy. There are over 2600 fruit produc-
tion companies which together use over 20,000 hectares of ground [1]. Most of these Dutch companies
focus on the production of pears and apples. The fruit production in the Netherlands, but effectively all
around the world, faces a large problem related to spring frosts in fruit trees. If temperatures drop below
the critical temperature, open and blooming flowers of the fruit trees can be damaged causing less fruit
to grow. The frost damages are mainly caused by the formation of ice, intracellular ice formation breaks
the blossom's tissue structure and causes a cell death [2]. Freeze injury is nowadays the biggest problem
of fruit production, which causes a loss far greater than any other type of natural hazard encountered with
the production. As a result, the yield of production and distribution of fruits are restricted.

A lot of research has been done in order to obtain a reduction in the losses caused by spring frosts. Two of
the main solutions that are provided are frost protection with sprinkler irrigation and frost protection with
wind machines. The frost protection with sprinkler irrigation works using extra-cellular ice formation to
prevent intracellular ice formation. Sprinkling water onto the tree’s flowers and buds causes ice nucleation
on the outer surface. This then causes the freezing of the water transporting vessels which protects the
flowers due to gradual dehydration [3]. Frost protection with wind machines aims to prevent intracellular
ice formation. By using a large wind machine or rotating fan a light wind (1.5 m/s) is created which causes
an instantaneous increase in temperature [4]. Because of the fan, a temperature increase is obtained of
upto 1°C ata 15 m distance from the wind machine. Due to this small increase, the flowers are protected
from the frost.

1.1 The project

So now there are two effective solutions used to prevent spring frosts in fruit trees. Both of these solutions
have a requirement to know the temperature of the air surrounding the trees, and their control systems
make decisions based on these measurements. But in order to implement these solutions in large scale
fruit production companies, an accurate temperature measurement is required over the whole field, rather
than one single temperature measurement. Therefore this project focuses on the acquisition of the 3D
temperature profile of a fruit orchard in the temperature range near the critical temperature.

B

Energy
Harvesters

Power

Management

Figure 1.1: A general overview of the system as a whole.



Figure 1.2: This figure gives an impression of how the system is installed in an orchard.

The great advantage of the acquisition of the temperature profile in contrast to a single temperature mea-
surement is that it provides the ability to perform local frost protection rather than frost protection over
the whole field. This in turn provides a reduction in the use of resources such as water and electric energy.
In addition, the acquisition of the temperature profile provides a valuable resource for further research on
the effectiveness of the frost protection methods.

In Figure[T.Tjan overview of the wireless sensor network is shown. This sensor network consists of multiple
sensor nodes. A sensor node consists of an energy harvesting module, a control unit, a wireless commu-
nication module, and five temperature sensors, which are all integrated onto a pole as shown in Figure[1.2}
The poles are positioned among the trees of the fruit orchard, and together they form a smart wireless
temperature sensor network in the fruit orchard, as shown in Figure[T.T} In Appendix [A-T|the choice of this
implementation is explained. The design is split into three subgroups, which each focus on a different part
of the system.

1.2 Subgroup division

The energy harvesting and control group is responsible for harvesting and storage of energy from ambient
sources, and the distribution of energy to all components in the system. The wireless communication sub-
group is responsible for communication between the end-devices and the base station. Lastly, the smart
measurement and control group is responsible for reading sensor data and controlling the other subsys-
tems, and is the focus of this thesis.

The data acquired from the sensors should be collected and converted such that it is transferable by the
wireless communication module and interpretable by the base station. The subsystem is also responsible
for managing the power consumption by controlling when certain parts are made inactive to conserve
energy. Furthermore, it adapts the frequency of the measurements done based on how close it is to the
critical temperature and the available energy in the system.

1.3 State of the Art

So to prevent fruit crop losses due to frost, the goal is to design a smart wireless temperature sensor net-
work that is able to warn the farmer when parts of the fruit orchard reach a threshold temperature. Such a
network can be classified as an Internet of Things network (loT). 10T is based on devices that can analyse
sensed information and transmit information to the user. These so-called 'smart’ devices can be used in
various applications such as smart cities, smart metering, security and emergency, industrial control, home
automation, healthcare and in this area of research: smart agriculture [5]. Mahmoud et al. [6] state that
the 10T is also called the third industrial revolution, which combines multiple sciences and technologies
with each other, such as data acquisition, power consumption, and wireless sensor networks. Further they
state that it is approximated that near the end of 2020, over 50 billion IoT devices will be connected over
the internet. AnloT device consists of four main building blocks, which are the main control Units, sensors,
communication modules and power sources [6]. Since this project requires a solution which makes use



of these four main components and is used in agriculture, the device which is designed can be classified
under loT for smart agriculture.

Currently, the use of labour is often needed to measure and monitor the temperature on a farm, and frost
protection equipment is activated manually when a critical temperature is measured [7]. Research con-
ducted by Ghaemi et al. [3] shows a successful implementation of automated irrigation systems for pro-
tecting blossom on peach and orange trees, where a few thermistors were connected by wires to the tree
on a height of 1.5 m above ground level to measure temperature. Pierce et al. [7] implemented an on-
farm wireless sensor network, which provides real-time monitoring of the temperature with an accuracy of
0.1 °C where an alarm is triggered if the temperature reaches a predetermined threshold, and is powered
by a battery and optionally a solar panel. In the work of Sushanth et al. [8], an 10T solution is proposed
which consists of a solar-powered Arduino board, where its temperature, humidity, and soil moisture sen-
sors are connected by wire to this Arduino. If action is required, a message is sent to an Android application.

In the above-described solutions of Ghaemi et al. [3] and Sushanth et al. [8], the sensors are connected
by wire to some form of a base station. When many sensors are distributed over a large orchard, in case
of an orchard 3D temperature profile, this will result in a lot of wiring. Also, possible maintenance costs
will increase when wires get disconnected. Therefore, a wireless sensor network solution is proposed.
Furthermore, a solution is proposed which focuses on energy harvesting instead of battery-operated only,
since battery-operated solutions go together with maintenance costs, for example, periodic replacement
of batteries, and have a limited lifetime. Furthermore, the individual nodes of the above-proposed solutions
are not able to work together smartly to form a smart system. These requirements finally lead to the design
of a wireless, self-sustainable smart sensor network.

1.4 Structure of thesis

First of all, the program of requirements is given in Chapter[2] After that, the choices of hardware for the
subsystem are elaborated in Chapter[3] Based on the selection of hardware, suitable software is developed
which is explained in Chapter[4} Following this, a breakdown of the power consumed by the subsystem is
discussed in Chapter|[5] Finally, the thesis is concluded in Chapter|e]



Chapter 2

Program of requirements

The goal of the project is to develop an autonomous and self-sustaining system that makes a 3D temper-
ature profile of an orchard and gives a warning when the threat of fruit-frost occurs. To get a clear view
of what functionalities the system should have, a list of requirements is made. The requirements are di-
vided into functional and non-functional requirements, which are further subdivided into mandatory and
trade-off requirements.

2.1 Requirements of the entire system

2.1.1 System functional requirements

Mandatory requirements:
1. The system must create a 3D temperature map.
The system must harvest its energy from ambient sources.
The system must communicate wirelessly to a base station.
The system must alert the end-user when a programmed critical temperature is reached.
The system must store the measured temperature data.
The system must be scalable in terms of the number of nodes it can support.
7. The system must be scalable in terms of the number of functions it can perform.

ook W

Trade-off requirements:
8. The system should preferably support over-the-air firmware updates.
9. The system should preferably have self-diagnosis.
10. The system should preferably have energy-level monitoring.
11. The system should preferably have bi-directional communication.

2.1.2 System non-functional requirements

Mandatory requirements:
12. The system must be able to function in a 10-hectare field.
13. The system must be able to measure temperatures between —10 °C and 10 °C.
14. The system must measure with an accuracy of +0.5 °C'.
15. The system must have nodes with five temperature sensors at different heights.
16. The system must support a maximum of 2.5 meters between sensor and control unit.
17. The system must support one node per 100m?2.
18. The system must have a lifespan of at least 20 years in normal operating conditions.
19. The system must operate during spring.
20. The system should measure the temperature at each node in the orchard at least once per hour.
21. The component cost of an end-device must be in the order of €100 or lower.
Trade-off requirements:
22. The system should preferably have an adaptive temperature measurement frequency.

23. The system should preferably measure the temperature at each node in the orchard at least once
per half-hour.



2.2 Requirements of the measurement and control subsystem

2.2.1 Subsystem functional requirements
Mandatory requirements:

24. The subsystem must communicate with the wireless communication module via UART.
25. The subsystem must be able to read an analogue input.

26. The subsystem must be able to write a digital output.

27. The subsystem must support five temperature sensors. (see Appendix

28. The subsystem must have a configurable alarming-temperature.

29. The subsystem must only transmit during its assigned time-slot [9].

Trade-off requirements:

30. The subsystem should preferably have an adaptive temperature measurement frequency based on
available energy and temperature.

31. The subsystem should preferably alert the base station within 5 minutes of reaching the user-configured
alarming-temperature.

10



Chapter 3

Component selection

To fulfil its task, the Measurement and Control subsystem consists of two main parts. Firstly, temperature
sensors are required to gather information from the environment of the node. Five of these sensors are
required to gather enough information for an accurate 3D temperature map. The information gathered by
these sensors needs to be transmitted to a base station via the wireless communication module, which
is a requirement of the system. However, the sensor is unable to properly interface with the wireless
communication module, and therefore an intermediary control unit is needed. This control unitis also used
to adapt the frequency of the measurements' according to the measured temperature and the available
energy. The control unit should, therefore, also be able to read out the available energy in the storage
system. In this chapter, the hardware to perform these tasks is chosen systematically. First, the choice of
the temperature sensor is considered, followed by the choice of the control unit. The chapter is concluded
with a selection of optimal components for the project.

3.1 Temperature sensor

There are many different temperature sensors available on the market with different specifications. The
most important specifications to consider are listed below.

Digital or analogue

Both digital or analogue temperature sensors can be used. However, digital sensors have the advantage
that they have an ADC built-in and that the output is already a numeric value of a temperature value that
is interpretable by the control unit. The output signal of an analogue sensor would first have to be con-
verted into a digital value using an ADC and subsequently into a temperature using a model of the sensor
behaviour. Since there is a distance of up to 2 meters that the signal has to travel over, as specified by Re-
quirement[T6] noise can be introduced in the signal. A digital implementation is less susceptible to noise
and is therefore preferred over an analogue implementation.

Temperature measurement range

The temperature sensor should at least be able to measure the temperature in the range of interest (i.e.
-10°C to 10°C), as is specified by Requirement However, a wider measurement range is advantageous
as it increases the applicability of the system in another climate or other weather situations.

Energy consumption

A low power implementation is required as the node needs to be self-sustaining. Therefore, power usage
should be as low as possible. The power consumption of the sensor consists of two main parts: the run-
ning mode power consumption and standby power consumption. During standby, the sensor consumes
less power as it is not measuring the temperature, and various internal components are turned off. The
negative temperature change in the Netherlands over the last twenty years was 8.3°C'/hour at maximum,
which is found in Appendix[B} For this design, the maximum measurement frequency is chosen to be once
every 5 minutes. This ensures that a temperature change of 1 degree can be detected. Consequently,
the sensor can spend most of its time in standby mode, thereby limiting its power consumption. This
is quantified in Chapter[5} For this reason, the focus is on sleep-mode power consumption rather than

TIn this chapter, and the remainder of the thesis, one measurement is defined as a collection of sensor readouts of the 5 sensors
of a node at a certain time.

1



running-mode power consumption. An estimation of the power consumption at a given measurement fre-
guency can be made using the standby current, active current and conversion time at a certain operating
voltage. This is explained in further detail in Section[3.3]

Accuracy

The measured temperature should not deviate more than 0.5°C from the actual temperature, as specified
by Requirement[14} The accuracy of the measurement consists of two factors: the round off error and the
uncertainty of the measurement. The total deviation can be characterised by Equation|3.1

resolution

2
Here E denotes the errorin °C. The resolution is dependent on the temperature range of the sensor and
the number of bits that it uses to represent the data. This accuracy is only required in the temperature
range of interest (-10°C to 10°C), as specified by Requirement[13]

Accuracy = Eround—off + Euncertainty = + uncertainty < 0.5°C (8.1

Error checking

To ensure reliable transfer of temperature measurements from the sensors, error checking is desirable.
Especially since the design requires relatively long wires, which may introduce significant amounts of noise.
Also, interference from EM radiation from for example the wireless communication module, power supply
or external sources might deteriorate the signal quality. The most basic implementation of error checkingis
through the use of a parity bit, which is built into some serial communication protocols. Other more reliable
techniques exist such as checksum computations and cyclic redundancy checks (CRC). Some sensors
have these error checking technigues built-in. Other forms of error checking can also be implemented by
for example looking at the transmitted data. If the data deviates too much from the expected values, a
new measurement can be issued.

Cost

The cost of the components for the subsystem should be minimised such that Requirement[2T]is satisfied.

Compatibility / Communication protocol

In case a digital sensor is used, the communication protocol that the sensor uses should ideally be sup-
ported by the control unit so no additional conversion has to take place. Off-the-shelf digital sensors usually
interface with data transfer protocols such as UART (Universal Asynchronous Receiver-Transmitter), SPI
(Serial Peripheral Interface), 12C (Inter-IC) or SMBus (System Management Bus). The latter is based on
and generally compatible with I2C but supports higher data-rates. Other protocols exist, such as OneWire
and CAN (Controller Area Network), but these are generally not used by off-the-shelf temperature sen-
sors. Most temperature sensors make use of UART, I12C or SPI. These three communication protocols are
discussed in more detail.

3.2 Serial communication protocols
A comparison of the properties and limitations of the three most common communication protocols can

be found in Table[3.1} The importance of the specifications is considered, and an optimal communication
protocol is chosen.

12



Table 3.1: Comparison of different serial communication techniques [10] [17] [12] |13] [14].

UART/USART 12C SPI
Type Async/Sync Async/Sync Sync
Typical data rate | 9.6kb/s - 256kb/s | 100kb/s - 400kb/s (FM I2C) | 5 Mb/s - 20 Mb/s?
Maximum slaves | 1 1008 Limited to number of pins
Multiple masters | No Yes No
Error checking Yes (parity bit) No No
Data frame size | 5-8 bits 8 bits N/A
Number of wires | 2n 2 3+n
Duplexity Full-duplex Half-duplex Full-duplex
Ack. scheme No Yes No
Topology Star Bus Star

Here (a)sync means (a)synchronous and FM 12C means Fast-Mode I2C, which runs at 400kb/s instead of
the 100kb/s in normal mode. The maximum number of slave devices on an 12C bus depends on the num-
ber of bits used for addressing (7 or 10 bits). For the calculation of the required number of wires, n is the
number of sensors in the design. Half-duplex means that there can be bidirectional communication, but
information can only be sent in one direction at a given time. Full duplex means that there can be simulta-
neous bidirectional communication.

For this design, some parameters are not of importance. The type, number of masters, data frame size
and duplexity are therefore not included in the decision matrix. The focus of the design choice is on the
topology and power consumption of the different communication techniques.

3.2.1 Topology

The topology of the different communication techniques determines the number of wires and interfaces
that are needed between the control unit and temperature sensors. A bus topology is preferred over a star
topology in terms of practicality, as fewer cables and connectors are needed. UART uses separate data
lines for each of the sensors, and for each sensor, there is a receive and a transmit line. This means that 10
lines need to be drawn to support the 5 sensors. I12C uses 1 data-line which is used for both transmission
and reception (SDA) along with a clock line (SCL) controlled by the master device. These are shared among
the 5 sensors, meaning that only 2 wires are needed in total. SPI uses 1data bus for communication from
master-to-slave (MOSI) and a separate bus for slave-to-master communication (MISO). Furthermore, SPI
requires a single clock signal line (clk) and multiple slave/chip select (SS) lines. The different topologies
are illustrated in Figure[3.7] where Rx and Tx stand for receiver and transmitter respectively, SDA for serial
data and SCL serial clock. MOSI and MISO stand for master-out-slave-in and master-in-slave-out, and SS
for slave-select.

Microcontroller Microcontroller Microcontroller with
with UART with 12C SPI
A T x T T
SDA  scL clk ‘MISO|552‘ 554
MOSI| 581|883 | 555
<R
51 51 S1
~Tx
<Rx
52 32 s2
~Tx
R
33 33 83
—Tx
<Rx
54 sS4 sS4
—Tx
<R
S5 S5 S5
T

Figure 3.1: Comparison of topologies of different communication protocols. Only data paths
are shown.

2|n theory the speed of SPI can go higher than the specified value, but for the SPI temperature sensors no values higher than 20
Mb/s were found.
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3.2.2 Energy consumption estimation

For the energy consumption estimates done in this section, the wire capacitance of a CAT5 cable can be
used, which is typically around 56 pF/m [15]. Also, 4-way ribbon cables could be used, which have a lower
typical capacitance of 50 pF'/m [10], but are more susceptible to noise. As a reference, the capacitance of
a CAT5 cable is therefore used to make the energy consumption estimation for the different serial proto-
cols. The largest distance that needs to be covered by the cable is between the control unit and the lowest
positioned sensor, which is 2.5 meters as indicated by Requirement[16] Temperature sensors and control
units typically have between 5 pF and 10 pF® capacitance on their input/output pins (/0 pins). The dy-
namic energy consumption of different protocols per transmission per sensor for different payload sizes
are shown in Table[3.2] What should be kept in mind is that the static energy consumption will be different
for each protocol depending on the control unit and temperature sensors, which will be considered when
choosing the components.

UART

UART operates using 10 or 11-bit data frames containing 1 byte of data, a start-bit, stop-bit, and an optional
parity bit. For the calculations, the configuration with parity bit is chosen. The length of the cables varies
per sensor, ranging from 50 cm to 250 cm, depending on at what height the sensor is placed. This leads
to an average cable length of 1.5 meters, which has a capacitance of Cqp. = 84 pF.

The average dynamic energy consumed Eg,,, v arr by 1 transmission to and from 1 sensor can be esti-
mated using Equation 3.2}

Edyn,UART = (Ccable + CMCU + Csenso’r‘) * ded * Ngrans (32)

Here Cy;cu is the capacitance of the MCU serial interface pin, Ciensor iS the capacitance of the sensor
serial interface, V4 the supply voltage and ny.., IS the number of signal digital logic transitions on the line.

The value of ny-ons depends on the contents of the payload and the size. For a power estimation, a sce-
nario is considered where every consecutive bit has a 50% chance of being a transition, meaning that the
number of transitions equals half the number of bits transmitted.

SPI

SPI does not work with data frames, but with continuous data transmission, which has the advantage that
no stop and start bits are needed. It does however use a clock line, which continuously makes transitions
between 0 and 1. For the power calculation, it is assumed that every consecutive bit has a 50% chance
of being a transition. This means that the data line has on average 4 transitions per data byte. The clock
line has 8 transitions per byte. Furthermore, the slave select has 1 transition per message. Equation[3.2)is
used to calculate the dynamic energy consumption. Here the total sensor capacitance Cyen 0 Should be
5 times the capacitance of an individual sensor because multiple sensors are connected to the same bus.

12C

I2C uses an open-drain configuration, which means that a pull-up resistor is needed. The value of this
resistor depends on the rise time specified for 12C, the bus capacitance of the cable that is driven and the
voltage parameters of the sensor/MCU. The minimum value of the resistor can be calculated with Equation
where V4 stands for the supply voltage, V,,; for the voltage for which a sensor interprets the voltage
as a logic 0, and I,,; for the current at low-level [16].

Rmin = M (33)

ol

The values for V,; and I, vary per sensor and MCU, and are found to be typically around 0.4 V and 3 mA
respectively for a value* of 1.8 V for V4. This observation is made by looking at the datasheets of sensors
and control units discussed in Section[3.2.3]and Section[3.6] This results in a minimum resistor value of
467 Q.

3This estimation for the 1/0 capacitance has been found by looking at the datasheets of the components that are selected in

Section and Section
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The maximum resistor value R, can be calculated using Equation|16|‘

t
RO — 34
Romaa 0.8473 % Chus (34)

Here ¢, = 1us is the rise time defined for I2C running in normal mode, which supports clock rates up to
100 kH z [16]. This results in a maximum resistor value of 5901€2.

The power consumed by the resistor when the line is pulled low can be found using Equation[3.5]

V2
p— _dd 3.5

This consumption is sustained over the period where the line is transmitting a logic 0. This time ¢ the line
is draining current through the pull-up resistor is determined by dividing the number of O-transmissions
(no) by the data rate. Here it is assumed that half of the transmitted bits is a 0. The energy consumed per
transmission can then be calculated by Equation[3.6]

E:P*t:P*? (3.6)

As no real-life measurement is performed and different pull-up resistor values cannot be tested physically,
Ronin = 467 Q is chosen as pull-up resistor value when using 12C. This is done as the smallest resistor
value yields the most stable signal. This is also the implementation with the highest power consumption,
and in the power calculation therefore a worst-case scenario is assumed.

Overview

An overview of the energy consumed per transmission by each of the protocols is provided in Table[3.2]
The power consumed by 12C greatly depends on what resistor value is chosen. Ideally, to minimise the
power consumption, a large resistor is desirable. However, this leads to a less stable and less reliable
signal. In practice, a value between the minimum and maximum should be chosen, which minimises the
power consumption while maintaining stable communication.

Table 3.2: Dynamic energy consumption of different serial communication protocols.

Energy consumption for: | UART 12C SPI
Rmax Rmzn

1 data byte [nJ] 20| 1208 15274 8.4

10 data bytes [nJ] 20.2 614.9 7776.0 78.4

100 data bytes [nJ] 202.2 | 5556.4 70262.6 | 778.2

3.2.3 Choice of communication protocol

Some parameters are not important for this design and are therefore omitted from the decision matrix.
Data rate affects the amount of time the transmission takes. During this time the control unit and the
sensor should be active, meaning that at lower data rates both the control unit and sensor are active for
a longer period of time, and therefore consume more energy. However, the frequency of operation of
the control unit is expected to be below the maximum data rates of the listed protocols. Therefore, the
maximum data rate is not important as the data rate is limited by the operating frequency of the control
unit. Error checking is not considered, as it is something that would be beneficial if implemented already,
but it is not required. The UART protocol implements optional error checking with a parity bit, which —
while it could be useful — is far from ideal. Also duplexity is not considered, as simultaneous bi-directional
communication is not required.

In Table[3.3]the decision matrix is shown comparing the features of the different communication protocols.
The criteria are given a weight from 1to 10 depending on their importance. The different serial communi-
cation protocols are then given a score from 1to 10 for each of the criteria. The final weighted score then
gives an indication of what option is preferred, where a high score is better.

4The V44 = 1.8 V is a typical minimum value for the operating voltage of temperature sensors
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Table 3.3: Decision matrix for the communication protocol

UART I2C SPI
Criterion Weight Score | Weighted | Score | Weighted | Score | Weighted
Dynamic power consumption | 8 8 64 5 40 7 56
Topology 6 5 30 8 48 6 36
94 88 92

Dynamic power consumption has been given a high weight because it contributes to the total power con-
sumption of the system. As the system should be self-sustaining the power consumption should be as
low as possible. The topology has been given a lower weight as it mostly influences the practicality of the
system, but is less essential than power consumption. As can be seen, the final scores are close to each
other, and, therefore, sensors with UART, I12C and SPI are all considered.

3.3 Choice of temperature sensor

For this design, only digital temperature sensors are considered as they are less susceptible to noise. An-
other constraint is that it should operate with an accuracy of £0.5° C within the temperature range of
interest specified by Requirement[13] As a low-power implementation is crucial for this system, the focus
is on low power temperature sensors. From the available options, a decision is made based on power
consumption, accuracy, interfaces, error checking capabilities and cost. In Table [3.4 multiple low power
options are compared.

In this table, the average current is calculated in the situation where the sensor does 1 measurement ev-
ery 5 minutes. Here the assumption is made that the average current consumed by the sensor linearly
scales with the number of measurements done within a certain time frame. The value for T measurement
per 5 minutes is found by linearly interpolating between the standby current and the average current at a
certain frequency listed in the datasheet (varies per sensor), as is illustrated in Figure[3.2] Here ‘A’ stands
for the number of conversions per second when 1 measurement is done per 5 minutes, and ‘B’ stands
for the conversion frequency for which the average current consumption is listed in the datasheet. Here
conversion is defined as the process of acquiring analogue data and converting it to a digital output. This
calculation is necessary as not all datasheets mention the power consumption for the same frequency of
measurements.

Average current

Standby
current

|- —— — —_ - —

>|l— — —

Conversions per second

Figure 3.2: lllustrative graph showing the way the average current for a temperature sensor is
found for one measurement every 5 minutes. (Not on scale)

The number between brackets in the interface fields indicate the number of 12C addresses that can be set.
On an 12C bus, each sensor should have a unique address, so here the amount of addresses determines
the number of required interfaces on the control unit. Furthermore, ROl means the range of interest. The
prices are based on the largest purchase quantity (< 10000) listed on Farnell (STM, Tl and Microchip Inc.),
Digi-Key (AMS and Max) and Mouser (Tyco Electronics). It should be noted that out of the selection of
sensors that meet the requirements of the system, both UART and SPI are only supported by 1 single
sensor family.
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Table 3.4: Specifications of selected temperature sensors.

Model STTS22HTR |17] AS6212 |18 TMP102AIDRLT [19] |
Manufacturer ST™M AMS T
Temperature range [°C] -40t0 125 -40to 125 -40t0 125
Resolution 16 bits 16 bits 12 bits
Accuracy in ROI typical [°C] | 0.25 <02° 0.5

Accuracy in ROl max [°C] 0.5 0.2 2.0

Error checking N/A N/A N/A

Interface 12C (2) 12C (8) 12C (4)

Voltage range [V] 1.5-3.6 1.71-3.6 1.4-3.6
Standby current (max) [pA] | 0.50 0.10 0.50

Active current (max) [pA] 180 -6 -7

Average current [uA] 0.51 0.10 0.52

Bulk price per unit €0.588 €1.125 €0.717

Model TMP107BIDR |20] | TSYS02S [21] MAX31723 |22,
Manufacturer T Tyco Electronics | Maxim integrated
Temperature range [°C] -40 to0 125 -40 t0 125 -55t0 125
Resolution 14 bits 16 bits 12 bits
Accuracy in ROl typical [°C] | 0.125 0.5 0.3

Accuracy in ROl max [°C] 0.4 0.5 2

Error checking N/A CRC N/A

Interface SMAART/UART® 12C (1) SPI

Voltage range [V] 17-55 15-3.6 17-37
Standby current (max) [pA] | 3.8 0.14 2.00

Active current (max) [pA] 300 420 1150

Average current [pA] 3.84 0.20 2.77°

Bulk price per unit €1.41 €1.03 €1.80

The resolution of the sensors in terms of the temperature of a sensor with an n-bit resolution can be
calculated by Equation[3.7]

(3.7)

Resolution = gn—8

Here 8 is subtracted from n because 8 bits are needed to represent the integer range from -40 to 125, and
the remaining bits are used for the numbers after the decimal point. This results in a resolution of 0.0625
°C and 0.00391 °C for 12 and 16 bits respectively. Some sensors also provide the option to decrease the
resolution to conserve energy.

To choose the most suitable temperature sensor, a decision matrix is made in which the specifications
are evaluated and weighted. Here the same scoring system is used as before in Table The total
weighted score that results for each of the sensors then indicates which sensor should be used for the
design.

5The typical accuracy was not listed in the datasheet, but this should at least be better than the maximum-confidence accuracy.
6 The active current was not listed in the datasheet and therefore no comparison can be made.

’See Footnote

8SMAART is a proprietary technology by Texas Instruments that is compatible with the UART interface.

SThis value is calculated using the active current and conversion time.
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Table 3.5: Decision matrix for the temperature sensor

STTS22HTR AS6212 TMP102AIDRLT
ST-Microelectronics | AMS Texas Instruments
Criterion Weight Score | Weighted | Score | Weighted | Score | Weighted
Typical accuracy inROI | 5 8 40 8 40 6 30
Error checking 7 6 42 6 42 6 42
Interface '° 5 6 30 8 40 6 30
Average current ' 9 6 54 9 81 6 54
Bulk price per unit 5 8 40 7 35 8 40
206 238 196
TMP107BIDR TSYS02S MAX31723
Texas Instruments | Tyco Electronics Maxim Integrated
Criterion Weight Score | Weighted | Score | Weighted | Score | Weighted
Typical accuracy in ROl | 5 9 45 6 30 7 35
Error checking 7 6 42 9 63 6 42
Interface ' 5 8 40 6 30 8 40
Average current ' 9 4 36 8 72 4 36
Bulk price per unit 5 6 30 7 35 6 30
193 230 183

The typical accuracy in the temperature range of interest has been given a weight of 5 as a hard constraint
was already put on this value, meaning that all sensors have a typical accuracy of +0.5 °C in the temper-
ature range of interest. Any additional accuracy is preferred, but not necessary. Error checking is given a
weight of 7 as it improves the reliability of the data transfer between the sensors and control unit, which
is desirable in case noise is present. The interface has been a low weight as there is no clear preference
in the type of interface (as seen in Table[3.3). However, some I2C sensors support less than 5 separate
addresses on one bus, meaning that multiple busses have to be used. This means that the advantage of
the simple topology offered by I12C is diminished. Average current is the largest contributor in the score as
limiting power consumption is important due to the self-sustaining nature of the system.

Based on the total scores presented in Table [3.5] the AS6212 comes out as the preferred choice, with
the TSYS02S as a good alternative.

3.4 Controller type

Controllers can be implemented on computers, commercially available off-the-shelf microcontrollers or
custom-fabricated chips. Implementation of a computer-based system can easily be dismissed for the
following reasons. Computers are designed for general use purposes, and therefore not optimised for a
limited number of application-specific operations, which leaves a lot of unnecessary overhead. This gen-
erally comes at the cost of increased power usage, speed, physical dimensions, and price. Application-
specific integrated circuit (ASIC) chips are specifically designed for the task at hand, but require significant
financial investment and add more complexity to the design. The cost is only justified for large scale pro-
duction of products due to the fixed cost that comes with production [23]. Therefore custom fabricated
chips are not suitable for the design of a prototype and low-volume products.

The commercially available microcontrollers have a low power consumption relative to computers and
are cheaper. They can often provide the necessary computing power for many embedded applications un-
der low power conditions. Compared to custom-fabricated chips, microcontrollers do not require a huge
investment and are more readily available. Therefore microcontrollers are the most compelling option,
especially for a prototype design. For large scale production, a custom fabricated chip might be a more
interesting option. However, for this research, a microcontroller implementation will be explored.

0Here the scores are based on the addresses supported by the 12C interfaces of the sensors.
1 Average current usage for 1 measurement per 5 minutes.

12See Footnote(1Q

3See Footnote|l]]
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3.5 Microcontroller specifications

Many off-the-shelf microcontrollers are available, and an appropriate microcontroller has to be chosen
which fits the requirements of this project. The most important aspects to consider when comparing
different microcontrollers are listed below.

Number of 1/0 ports

There should be at least 2 GPIO pins present on the chosen microcontroller to interface with the energy-
level monitoring circuit.

Power usage & management

When quantifying the power usage of a microcontroller, different power categories need to be taken into
account.

First and foremost, standby power is the power used while the microcontroller is waiting for an internal or
external event to wake up the CPU to process data, make decisions and communicate with other system
components |24]. For many low power sensing applications, the microcontroller spends the majority of its
time in this state [25], often making it the largest factor in energy consumption. This is verified in Section

Ba

The device can be periodically woken-up from the low-power operating mode using a Real-time clock (RTC)
timer, which keeps track of the date and time on the device. It is therefore vital that the RTC is kept active
during this low-power mode. Secondly, the peripheral power is the power used by peripherals such as an
ADC, comparator and digital interfaces of the microcontroller with other components. Finally, active power
is the power that is consumed while the microprocessor is actively performing tasks.

Clock frequency

A higher clock frequency results in a faster and more responsive system, as the clock frequency deter-
mines how many instructions are executed in a certain amount of time. A high clock speed is preferred
and can be crucial in high-speed applications. However, the contribution of the clock speed to the on-time
of the microcontroller is marginal since that the microcontroller software is relatively simple and few oper-
ations are done. Therefore clock speed is not a priority for this design. As high clock speed and power are
inherently related, the choice of high clock speed should not come at a detriment to the power consump-
tion.

Operation voltage

To minimise power consumption, a low operation voltage is desirable. Furthermore, the operation voltage
of the microcontroller should ideally match with that of the other components attached to it, so that no
voltage conversions are needed to supply the different components. It should be noted that lowering the
operation voltage puts a constraint on the maximum clock speed of the microcontroller.

Memory size

The microcontroller has memory modules for instructions and data. The instruction memory should be
large enough for the program to fit on the microcontroller. The size of the data memory module mainly
depends on the accuracy of the measurements, and the amount of data that needs to be sent every trans-
mission. MCUs with the same specifications can often be bought with various memory configurations,
which only affects the rest of the MCU in terms of price.

Ports and Interfaces

To properly interface with external components like the sensors and communication module, the chosen
microcontroller must have enough serial communication interfaces. At least one I12C interface is needed for
the communication with the temperature sensors, and one UART interface is needed for communication
with the wireless communication module. It should be noted that some microcontrollers have pins that
can be programmed to interface using either 12C or UART, but not both at the same time.
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Cost

The cost of the components must be minimised such that the total cost of the system does not exceed
the requirement specified by Requirement [21]

3.6 Choice of microcontroller

For this design, microcontrollers from low-power families of several well-established brands are compared.
Furthermore, the microcontroller should have at least one I2C interface, one UART interface and an RTC.
In Table[3.6]the specifications of 6 microcontrollers are compared.

Table 3.6: Specifications of selected microcontrollers

Model SI1060-A-GM |26] EFM32ZG |27] ATmega328PB 28]
Manufacturer Silicon Laboratories Silicon Laboratories Microchip Technology Inc.
Family Si106x EFM32 ATmega32

Core size [bits] 32 32 8

Architecture RISC RISC AVR® enhanced RISC
Max clock speed 25 MHz 24 MHz 20 MHz

Operating voltage [V] 1.8-3.6 1.98-3.8 1.8-5.5

Running current [uA/MHz] | 160 114 -16

Low power current [pA] * | 0.6 0.9 13

Bulk price per unit [€] 3.51 0.905 1.04

Model STMB8L152K8Y6TR [29] | STM32L431KBU6TR [30] | STM32L151CBT6TR [31] |
Manufacturer ST-Microelectronics ST-Microelectronics ST-Microelectronics ]
Family STM8L STM32L4 STM32L1

Core size [bits] 8 32 32

Architecture CISC RISC RISC

Max clock speed 16 MHz 80 MHz 32MHz

Operating voltage [V] 1.8-3.6 1.71-3.6 1.65-3.6

Running current [uA/MHz] | 200 84 214

Low power current [uA] ©° | 1.4 14 1.2

Bulk price per unit [€] 0.97 1.85 1.81

A few of these factors are unimportant to the design. The clock speed is left out because speed is not cru-
cial for this application, and the microcontroller spends most of its time in a low-power mode. The smallest
ratio between running current and low power current of the selected MCUs is 60 for the STM32L.431. At a
clock frequency of 1 MHz and a measurement frequency of once every 5 minutes, this MCU would have to
be active for 5 seconds per measurement to have the same active energy consumption as standby energy
consumption. This translates to 5 million clock cycles per measurement for the active current to have the
same contribution to energy consumption as the low power current. This is assumed to be far beyond the
number of operations needed for this design. Furthermore, the running current is not considered due to
its minimal contribution to the total power consumption. All other factors are weighed and scored in Table

[3.7]in a similar way as with the other two decision matrices in Table[3.3]and Table[3.5]

1see Footnote]16]

5The running current was not listed in yA/MHz. The running current at 1 MHz is 240 pA
16The current of the lowest power mode that supports the RTC and that continues code execution after wake up.
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Table 3.7: Decision matrix for the microcontroller

SI1060-A-GM EFM322G ATmega328PB
Silicon Labs Silicon Labs Microchip Technology Inc.
Criterion Weight Score | Weighted | Score | Weighted Score | Weighted
Minimum operating voltage | 8 6 48 5 40 6 48
Low power current 8 9 72 7 56 5 40
Bulk price per unit 5 4 20 7 35 7 35
140 131 123
STM8L152K8Y6TR | STM32L431KBU6TR | STM32L151CBT6TR
ST-Microelectronics | ST-Microelectronics ST-Microelectronics
Criterion Weight Score | Weighted | Score | Weighted Score | Weighted
Minimum operating voltage | 8 6 48 7 56 8 64
Low power current 8 5 40 5 40 6 48
Bulk price per unit 5 7 35 6 30 6 30
123 126 142

Both the minimum operating voltage and the low power current are given a high weight of 8, as they both
contribute to the power consumption of the system. Cost is given a lower weight as it is less important
than power consumption.

From this decision matrix, it can be concluded that the STM32L151CBT6TR is the best-suited option for
this design, with the SIT060-A-GM and EFM32ZG as good alternatives.

3.7 General remarks for chosen components

Microcontroller - STM32L151CBT6TR

The chosen STM32L151CBT6TR microcontroller features multiple low power modes [31] Chapter 3.1]. The
lowest-power running mode is the low-power-run-mode (LPRun), with the multi-speed internal RC oscil-
lator (MSI) set to 65.536 kH z as clock source. To minimise the power consumption, this clock source is
pre-scaled by 0.5, such that fgorx = 32.768 kHz, which is the clock speed used by the MCU core and
memory. This clock frequency is also from which the peripheral clock is derived. Furthermore, by default,
the 16 MHz HSI (High-Speed Internal) clock source is used for the ADC, and this cannot be changed.

For the RTC the low-speed external (LSE) oscillator is used, which makes use of an external crystal for
higher accuracy. This is done because of the timing requirements set by the wireless communication time
slot scheme. All nodes are assigned a time slot in which they are allowed to send, as mentioned in Require-
ment[3] The maximum allowable time drift is 356.4 ms at a transmission rate of once every 5 minutes. A
higher drift might lead to collisions in wireless transmissions.

For the external oscillator, the ABS07-166-32.768kHz-T crystal [32] is chosen as an external crystal with
a frequency of 32.768 kH z, which is the frequency required for the LSE oscillator. The chosen oscillator
has a load capacitance of Cp, = 7 pF which is the maximum recommended value specified by the MCU
datasheet [31). For a crystal, the accuracy of the frequency produced by the crystal is strongly dependent
on fabrication tolerances and the temperature. The chosen oscillator features a maximum fabrication tol-
erance of 10 ppm'’. The crystals on the market with better fabrication tolerances have load capacitances
higher than 7 pF, and are therefore not compatible with the MCU. The relation for the accuracy in ppm as
a function of the temperature for the chosen crystal is given in Equation

Af(T) = B(T = To)* + fo (3.8)

Here Af is the frequency deviation in ppm as a function of the temperature (T'), 3 the frequency deviation
constant in ppm/°C?, Ty the turn-over temperature and f, the frequency deviation in ppm at the turn-over
temperature. Furthermore, the drift can further increase due to the ageing of the crystal. According to the
datasheet of the oscillator, ageing is +3 ppm in the first year. For crystals in general, most ageing happens
in the first year of operation, after which the contribution of ageing asymptotically decreases. During the

7 ppm means parts per million, where 1% = 10000ppm
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first 10 years, a worst-case drift of 10 ppm is typical, but in practice, the drift is usually smaller [33]. To
account for ageing effects of the crystal, 13 ppm is added to the frequency tolerance, resulting in a total
tolerance of 23 ppm, which is an estimation for the expected time drift in the 20-year lifetime of the prod-
uct.

The frequency drift of the oscillator as a function of temperature is plotted in Figure Here a toler-

ance worst-case tolerance of +23 ppm is taken, a turnover temperature of Ty, = 25 °C and a frequency
deviation constant of 8 = —0.036 ppm/°C as is specified by the datasheet.

0 Frequency drift vs temperature for ABS07 with ageing >10 years
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Figure 3.3: Frequency deviation vs temperature for the ABSO7 crystal oscillator

To compensate for the frequency drift of the oscillator, periodic time synchronisation with the base station
is needed. The full reasoning and explanation for this can be found in [9]. A complete diagram of the clocks
and pre-scalers used can be found in Appendix|[C|

Temperature sensor - AS6212

The chosen AS6212 temperature sensor features a single-shot mode, in which the temperature sensor
can do a single measurement when asked to, and then go to sleep till the next request. The clock fre-
guency of the peripherals is set at 32.768 kH > on the MCU, and therefore the I12C clock speed is also set
t0 32.768 kH z, so no extra clock source is needed. Furthermore, the datasheet of the sensor states that a
10 nF decoupling capacitor is needed on the Vdd line.

LoRa module - RN2483A

For the wireless communication module, the RN2483A is used. The reasoning for the choice of the wire-
less communication module can be found in [9]. The RN2483 uses a UART interface to communicate
with the MCU and accepts a set of ASCIl commands as input. The set of commands can be found in the
command reference guide [34].

On the UART interface of the STM32L151CBT6TR, the oversampling rate is set to 8 by default and can-
not be lowered. As the clock frequency of the peripherals is set at 32.768 kHz on the MCU, the UART
interface should operate at a Baud rate of 32.768 kH z/8 = 4096 bits/s.

3.8 Summary hardware

In this design, the AS6212 is chosen as the temperature sensor. For each node, 5 of these sensors are con-
nected to an STM32L151CBT6TR microcontroller using the 12C protocol. The microcontroller is connected
to a wireless communication module with a UART interface. Furthermore, two GPIO pins are connected
to the monitoring circuit of the energy storage system. An overview of the whole system can be found in

Appendix D]
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Chapter 4

Software description

In this project, the microcontroller is used to regulate the number of temperature measurements and is
used to control the different components and data traffic of the system. Furthermore, to conserve energy,
the frequency of the measurements should be adaptable based on the available amount of energy and the
current temperature. An algorithm is devised to make a well-considered trade-off between measurement
frequency and energy usage. In this chapter, the algorithm and its implementation in code are discussed,
as well as tests on the different functions within it. The code itself can be found in a GitHub repository [35].

For this project, the Arduino compatible Nucleo L432KC development board from STM is used as a proto-
typing board. This development board is equipped with an STM321.432KC microcontroller which, like the
chosen microcontroller, is based on the STM32 series. The development board features similar capabili-
ties as the chosen microcontroller and is therefore suitable for testing code.

Different programming frameworks can be used to program the Nucleo L432KC, such as Arduino, Mbed
and STM32Cube. Mbed and STM32Cube provide more features than the Arduino framework but are more
complicated and harder to debug. Arduino is very well documented, provides a simple and clear program-
ming environment and has a great amount of pre-made libraries that can be used. The STM32duino library
is used to control the low-power modes and the RTC of the Nucleo board. Due to the limited amount of
time, the Arduino framework is, therefore, deemed most suitable to develop a proof of concept.

A draw-back that comes with choosing the Arduino framework is that fewer low-power modes are avail-
able in the STM32duino library than are present on the microcontroller. Therefore, the ideal power modes
have to be substituted by their closest counterpart. This limits the ability to test the behaviour of the chip
in the desired power modes. The higher power usage is not an issue as the Nucleo board, in this case, is
mainly used to test software behaviour. When the actual product is implemented, the STM32L151CBT6TR
microcontroller would be used with the STM32Cube or Mbed framework instead of the development board
with the Arduino framework.

In the code that is presented in this chapter, the deep-sleep-mode serves as a substitute for the stop-mode
that would be used in an actual implementation without development board. Furthermore, the low-power-
run-mode is replaced by the regular run mode.

4.1 Core functionality

In essence, the software has three main tasks: setting up the wireless communication module, reading out
sensor data and controlling the frequency of temperature sensors and transmissions. After boot up, the
system first enters a setup state in which all settings are configured, a connection with the LoRa network
is established, and a time-slot is assigned. After this, the system enters one of two main modes of oper-
ation: normal operation and off-season operation. The two modes differ in what they focus on achieving.
In normal operation, the system focuses on providing as many measurements as its energy level allows
and how many are necessary. In off-season mode'®, the system focuses on maintaining enough power to
transmit consistently with a lower measurement frequency, as during a part of the off-season period less
energy can be harvested due to shorter days. The farmer can adjust what period of the year the system
should be in what state via the base station.

18Here off-season is defined as the period of the year where no fruit frost occurs. The user can put the system in off-season mode
from the base station.
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However, since transmitting measurements and receiving information is energy consuming, it is impor-
tant to make sure that there is enough energy in the system to do the transmission. Before measuring
the temperature, the system first reads out the state of charge of the energy harvesting module. If not
enough energy is present, the system should wait for a certain amount of time before attempting another
measurement/transmission. Checking the energy level and determining what operation mode is used, is
done in the power saving state. An overview of the functionality of the software is provided in Figure[4.1]
Each of the states is elaborated in more detail in the following sections.

Setup state

Joined =1

A

Power saving
state

Energy > Threshold_PSM & off-season =1  Energy > Threshold_PSM & off-season = 0

Off-season state Normal state

Main loop

Figure 4.7: A top level overview of the software. Here threshold_PSM is one of the configurable
parameters of the system, which are explained in Table[E-T)

4.1.1 Setup state

In the setup state, the software first configures the settings of the MCU, which include settings like the
RTC time format, ADC resolution and wake-up sources. Following that, the system attempts to join the
wireless network. Since this process makes use of wireless transmissions, the energy level is checked
beforehand (further explained in Section . If enough energy is present, the system continues with the
join procedure. If there is too little energy, the MCU enters sleep mode for 5 minutes before attempting
again. If the attempt to join is unsuccessful, it means that there was a collision in the transmission. The
system then waits a random time between 1 second and 5 minutes before attempting again in order to
avoid another collision. Once the system has successfully joined the network, the program continues to
the power saving state.

Join procedure

The join procedure involves setting up the UART baud rate of the wireless communication module, joining
the network and obtaining a time-slot. To set the UART baud rate, a break condition is sent, after which the
automatic baud-rate detection of the wireless communication module matches its baud-rate to that of the
MCU. Through the established UART connection, several commands are sent to the wireless communica-
tion module. These include setting the pre-programmed unique device ID, the spreading factor, the network
session key and the application session key, which are necessary for activation-by-personalisation (ABP),
which is the join procedure chosen by the wireless communication group [9]. Finally, the system attempts
tojoin the network via ABP. If the UART communication is successful, the wireless communication module
replies with "ok". If the wireless transmission also completes successfully, the module returns "accepted"
if the node has been accepted to the network. The MCU then requests a time slot from the base station.
This is done by sending a request message to the base station. The base station then returns the current
time, a free time slot, the critical temperature, and whether the off-season functionality should be turned
on or off. This concludes the join procedure. This mode is not used anymore unless the system restarts
after a shut-off, or an error occurs in the network.
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4.1.2 Power saving state

After the join procedure, the system enters the power saving state. Here, it measures whether there is
enough energy for a measurement and a transmission. If there is enough energy, this state is immediately
exited. Otherwise, the system enters the low power mode for 5 minutes, after which the energy level is
measured again. The energy level is then compared to the last level, to get an indication of how much
energy is harvested during the last 5 minutes. Based on this energy harvesting rate, a prediction can be
made on how long the system has to be in a low power mode to have enough energy for a transmission.
This estimated duration is limited to a minimum of 1 minute and a maximum of 15 minutes. This mini-
mum of 1 minute is set to make sure the system does not measure too often as it approaches the energy
threshold for transmissions, thereby draining unnecessary amounts of energy. The maximum of 15 min-
utes makes sure the system does not sleep for too long, as the temperature slope calculation is only valid
for short periods of time. After the system wakes up after the calculated duration, the energy is checked
once again, and if enough energy is present, the time to the next available transmit window is calculated,
and a wake-up alarm is set for that time. A flowchart of this function can be found in Figure

Check energy

The function checkEnergy calculates how many transmissions can be done in 12 hours with the current
energy level and the worst-case energy consumption. The value of 12 hours is chosen as in the budding
season nights can be up to 12 hours long [36]. During the night no energy can be harvested, meaning
that the current energy level has to last through the whole night. The system has to be able to calculate
how many transmissions can be done throughout one night to determine at what frequency measure-
ments should be done. This is done by measuring the currently available energy, and quiescent energy
consumption of the whole system. Based on this, an estimation can be made on how much energy is left
for transmissions, and how many transmissions can be done in 12 hours.

The energy stored in the super-capacitor of the energy harvesting system can be found using the volt-
age over the supercapacitor. The energy harvesting module provides a voltage between 0 V and 1.7 V,
which is a scaled-down version of the actual super-capacitor voltage that ranges from 0 V 10 5.3 V. To
read this voltage, the monitoring circuit first needs to be activated, which is done by providing a digital-high
output to the diode of the circuit. The system then has to wait for 3 ms before the voltage has settled. The
voltage is then read with a GPIO pin that is configured as ADC, and the value can be used to calculate the
energy stored via Equation[4.T} Here the capacitance is equal to the super-capacitor capacitance C' = 15 F..
Also, it should be noted that the energy in the voltage range between 0 V and 3.3 V is not accessible.

1 5.3 1
Eiotal = 3 * C x (Ve * ﬁ)2 -3 *C x3.32 4.7

The quiescent energy consumption of the whole system (MCU, sensors, serial communication, wireless
communication and power harvesting) in a worst-case scenario 34.7 uW, which is calculated from the
values given in the energy harvesting report [37]. Additionally, there is a worst-case leakage current of the
super-capacitor itself of 85 uA. These values are used to calculate the power usage with Equation 4.2

5.3
P = Pquiescent + Ilkg,c * Vox ﬁ (42)

If this power is sustained over the period of 12 hours, the remaining energy left for transmissions can be
calculated with Equation|4.3
Etrans = Etotal —12%x60%60* P (43)

Using the fact that a single transmission consumes about 0.04968 J [37], the number of transmissions
that can be done is calculated using Equation[4.4] This number is returned by the function.

Etrans
Nirans = 4.4
¢ 0.04968 (44)

In Figure [4.2] the number of transmissions that can be done with the available energy level at a certain
measured voltage is plotted. At a measured voltage of around 1.15 V' the system has just enough energy
to sustain the nodes energy consumption without transmitting.
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Figure 4.2: The number of transmissions that can be cone with the available energy corre-
sponding to the measured voltage.

4.1.3 Normal state

In the normal state, the system has to actively measure to check for fruit frost. The measurement fre-
quency is adaptive, and transmissions with temperature measurements can be done either every 5,10, 15,
20 or 30 minutes. The frequency is limited to a maximum of T measurement per 5 minutes. This value is
chosen as the maximum temperature slope during spring is —8.3 °C' per hour as is found in Appendix[B] A
change —1 °C can thus happen in 7 minutes. It is therefore decided to measure at once per 5 minutes to
be able to detect such changes. The minimum frequency of once per 30 minutes is set in order to comply
with both Requirementand Requirement The exact measurement frequency is determined with the
current energy level and temperature.

Firstly, upon entering the normal operation state, the system transmits its current energy level calculated
with the checkEnergy function and its temperature data, which it has acquired using the tempMeasurenme |
nt and transmit functions. Following this, the system calculates the time of the next transmission. A
flowchart for the whole normal state function can be found in Figure[H.2}

Temperature measurements

The temperature measurements are acquired from the sensors via an 12C interface with the function te
mpMeasurement. This function puts the sensor in single-shot by changing the configuration register of the
sensor. After the sensor is done converting, it puts the measured value in the tvalue-register, from which
it can be read from the MCU. The interpretation of the bits is done as prescribed in the datasheet of the
sensor [18]. This process is repeated sequentially for the 5 sensors. The data from the sensors is put in
an array for transmission.

Transmission

When a transmission needs to be done in normal mode, the transmit function is called. The energy-level
along with the temperature are first converted into hexadecimal. Subsequently, the two hexadecimal val-
ues are put together in a single string following the format described in the report of the wireless commu-
nication part [9]. Then the string containing the data is sent along with a transmission command to the
RN2483 communication module over the UART interface. Every transmission, there is a probability that
the node receives a downlink message that synchronises the system, adjusts the time-slot and critical
temperature if necessary, and indicates whether off-season mode should be activated. If no down-link
message is received within 20 transmissions, it can be assumed that the system has failed and that it
should rejoin the network [9]. Here the same request function is called as in the join procedure which
returns a new time slot and the current system time.
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Calculating the next transmission time

After the measurement and transmission of the temperature data has been completed, the time of the next
transmission is determined. The system first calls the checkEnergy function and determines the number
of transmissions the system can still do within the next 12 hours with the current energy level. Based on
the number of transmissions possible with the current energy, the maximum measurement frequency that
can be sustained for 12 hours is calculated. The results achieved with this process are illustrated in Figure
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Figure 4.3: The number of measure-
ments that can be done as function of
measured voltage.

After that, the temperature is measured using the tempMeasurement function, which returns the temper-
atures from the 5 sensors. Subsequently, closestPeriod finds the minimum measurement frequency
needed to detect a temperature under the critical temperature. From the resulting two measurement fre-
quencies, which are based on the current temperature and the available energy, the minimum frequency is
chosen as the operating frequency. This is done so that the system can always sustain itself for 12 hours
in the chosen operating mode, and the measurement frequency which is closest to the frequency needed
to detect fruit frost is chosen. In Figure [4.4]the time between measurements is plotted as a function of
temperature for different energy levels with a critical temperature of T, = 0 °C. Here 1 energy unit is de-
fined as the amount of energy needed for 1transmission. As can be seen, more measurement frequencies
are available if enough energy is present in the system. Also, when the temperature is close to the critical
temperature, the measurement frequency increases.

For the design, it is desirable to have a constant flow of temperature measurements at the base station,
even at low measurement frequencies. Therefore, the system should ideally spread out the transmissions
of different nodes over time.

Every hour is split into 12 time-segments of 5 minutes. During each time-segment, only a certain set of
nodes can transmit data. This ensures that there are transmissions during all time-segments. For each
of the measurement frequencies there is a different number of sets (Nget.totat = 12/ fineas) Where fieas
is the number of measurements per hour. To determine which nodes belong to a certain set, the nodes
are assigned a group number from 0 to 11 upon fabrication. The set-number of a node (n,.:) can be found
using the total amount of sets Nyet tota; @nd the group number ng,.0,,;, With Equation The set number
ranges from 0 t0 (Nset totat — 1).

Nset = Ngroup (mOd Nset,totul) (45)

A gquantitative representation of the set division of the different groups at the various measurement fre-
quencies is given in Table[F]]
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To determine which set can transmit in what time-segment Equationﬂcan be used. Here ts,,, is the set
containing all time segment numbers of a particular set.

tSset = {Nset,total * k4 Nget | tsger <=11 | k= {07 1,2, }} (46)

To further illustrate this concept, two examples will be given. First a case with fi,cas = 2 Measurements
per hour, followed by a case with f,,.qs = 4 measurements per hour.

2 measurements per hour For this example, the procedure is followed for a node with group number 0.
At the specified measurement frequency, there are 6 sets, each containing nodes from 2 different groups.
Here group 0 belongs to set 0. The time segments that belong to this set are found to be time segment 0
and 6. This means that the node can transmit during its time-slot in these time segments. These segments
correspond to the minute 0 to 5 and minute 30 to 35 respectively. An illustration of this concept is shown
in Figure[4.5 Here the time segments corresponding to set 0 are coloured in blue. On the right, the nodes
that can transmit at this time in at this measurement frequency are coloured.

® Set0: {GO, G6}
® Set1:{G1,G7}
® set2:{G2,G8}

Set 3: {G3, G9}
Set 4: {G4, G10}
Set 5: {G5, G11}

Figure 4.5: For a measurement frequency of twice per hour, groups 0 and 6 can transmit in
time segment 0 and 6.

In this same example, a node with group number 7 ends up in set 1 (coloured in red). Given that it also
measures twice per hour, it can transmit between minute 5 and 10 as well as between minute 35 and 40.
This is illustrated in[4.6l

® set0:{GO, G6}
® Set1:{G1,G7}
® Set2:{G2,G8}

Set 3: {G3, G9}
Set 4: {G4, G10}
Set 5: {G5, G11}

Figure 4.6: For a measurement frequency of twice per hour, groups Tand 7 can transmit in time
segment 7and 7.
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4 measurements per hour At a measurement frequency of 4 measurements per hour, there are only 3
sets containing 4 groups each. A node with group number 0 belongs to set 0. The node can thus transmit
during time-segment 0, 3, 6 and 9, as can be seen in Figure

® Set0: {GO, G3, G6, GO}
® Set1:{G1,G4,G7, G10}
Set 2: {G2, G5, G8, G11}

L _JOROX
OJOX 20
@&

Figure 4.7: For a measurement frequency of 4 times per hour, groups 0, 3, 6 and 9 can transmit
during time segment 0, 3, 6, and 9.

In the same example, a node with group number 7 ends up in set 1. It can transfer during time-segment 1,
4,7 and 10, as can be seen in Figure[4.8

® Set 0:{GO, G3, G6, G9}
® Set 1:{G1, G4, G7, G10}

. JOJOX _
oJol JO

Figure 4.8: For a measurement frequency of 4 times per hour, groups 1, 4, 7 and 10 can transmit
during time segment 1, 4, 7 and 10.

After the available time segments have been calculated, the node determines what time segment is clos-
est to the one it is currently in. This is done by the function nextTimeSeg, which is tested in Appendix[G.1]
Then, a wake-up alarm is set for that time and the system enters its low power mode. When it wakes up
from this mode, it returns to the power saving mode where the cycle is repeated again.

The advantages of the group and set system are not limited to temporal spreading. It has the added
benefit that it also allows the measurements of one time-segment to be spread over the whole field as
opposed to just a single area. The nodes can be placed in the field such that nodes with different group
numbers are placed together as is shown in Figure[4.9] This maximises the probability that at least T mea-
surement is received from each of the areas indicated by the boxes. The closestPeriod function is tested

in Appendix[G.2]
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Figure 4.9: An example of how the group numbers can be distributed over a field of about 1
hectare.
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4.1.4 Off-season state

The off-season state is an operation mode that specialises in maximising the uptime of the system when
the farmer is not particularly interested in frequent temperature measurements. The farmer can indicate
via the base station when this mode should be active. This mode is necessitated since, during winter, early
spring and late autumn little solar energy can be harvested. To avoid complete outages that would require
the nodes to have to reconnect to the network, energy usage should be decreased. Since no fruit frost
occurs during these periods, because the trees do not have fragile blossoms or buds, there is no need
for frequent temperature updates at the base station. Instead, multiple temperature measurements can
be collected and transmitted together at the same time. There is also no need for dynamic temperature
measurements, so the system can lower its measurement frequency down to a fixed T measurement per
hour.

The wireless communication module supports payload sizes that can be large enough to transmit data of
up to 4 different measurements at once. By sending multiple measurements over the same transmission,
less energy is lost due to the overhead of the protocol. In the program, measurements made at 4 different
times are stored in an array. When the array is full after 4 hours, the system transmits the data to the
base station. This is done in a similar way as during normal operation. However, the system rejoins after
5 transmissions without confirmation [9]. A flowchart of the off-season state can be found in Figure

4.1.5 Watchdog timer

The watchdog timer (WDT) is used to detect and resolve malfunctions due to software failures. A reset
sequence is triggered on the MCU if no reset signal is provided within a certain time window. This window
is programmed to have the maximum value of 32.8 seconds to minimise the number of times the system
has to wake up from sleep. At the beginning and end of every function call, the watchdog is reset. During
the low power mode, the system wakes up periodically every 30 seconds to reset the timer.
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Chapter 5

Power breakdown

To get an estimate on how much power the measurement and control subsystem uses, first the power
usage of the different components is looked at separately, after which a worst-case power usage of the
whole measurement and control system is calculated. In this chapter, all calculations are based on the
most power-consuming mode of the system, which is when it measures once every 5 minutes. Further-
more, all components are supplied with a voltage of V4 = 1.8V.

The following factors contributing to power are considered:

Temperature sensor

- Standby power: the power used by the temperature sensor when it is in standby mode.

- Active power: the power used by the temperature sensor when it is actively measuring the tempera-
ture and sending data over I2C.

Microcontroller

- Stop mode power: power usage when the MCU is in stop mode with all peripherals turned off.
- Active power usage: power used when the MCU is in LP run mode, where the CPU is active.

- Peripheral power usage: power usage by the different peripherals of the MCU, such as the I2C- and
UART interface and the WDT.

12C

+ Dynamic power usage: Power used by the transmission of logic zeros on the I12C data-bus and clock
line.

UART

-+ Dynamic power usage: power consumed by the transitioning between a logic high and low on the
data lines.

First, the power usage of the temperature sensor is discussed, followed by the power usage of MCU and
communication protocols. To conclude an overview of the found results is presented in Table [5.3] and

Table[5.4]

5.1 Temperature sensor power usage

The average power usage of the temperature sensor can be calculated by multiplying the average running
current and the operating voltage, which results in an average power usage of 0.2 uW. In Table[5.3]this
power usage is multiplied by 5 to take all 5 sensors into account. The peak instantaneous current of the
sensor is not listed in the datasheet. The value found for the peak instantaneous current in Table[5.3]is
deduced from the datasheet values by using Equation By subtracting the standby power from the
average power given in the datasheet for 4 conversions per second, the additional energy consumed by 4
measurements can be found. Dividing by 4 then gives the additional energy consumed by a single conver-
sion. This energy can then be divided by the conversion time to find an approximation for the power usage
during one conversion. This is added on top of the standby power usage to find the peak instantaneous
power. A visual representation of how this calculation works can be found in Figure [5.1] Here the areas
coloured in blue represent the additional energy consumed by the sensors due to the conversions, which
is equal in both graphs. Here the assumption is made that the power consumption is constant during
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conversion, and the sensor can immediately switch between active and standby mode. This assumption
is based on a figure found in the datasheet of the temperature sensor where the power usage over time is
depicted in a similar manner [18| Figure 16].

Povgaarz — Pstanay 1
Pactive == Econv/tconv + Pstandby = =1 z kil J * + Pstandby (5‘])
4 tCO’ﬂ’U
Power Power
Peak - -
power |
Average s toonv s A >
Power @4Hz
Standby Standby
power power
Time Time

Figure 5.1: Figure illustrating the way the peak power usage of the AS621x temperature sensor
is found using the average current given in the datasheet for 4 measurements per second. (Not
on scale)

5.2 Microcontroller power usage

The microcontroller spends most of its time in a low power mode. For the chosen MCU this is the stop
mode, as this is the lowest power mode which keeps the RTC active while maintaining the program state.
This is important since the software is developed such that the program should continue where it left off
when it entered its low power mode. The MCU periodically exits this state to perform a measurement and
a transmission in its low-power-run-mode (LPrun). This mode is chosen as it is the mode with the lowest
power usage while being able to operate the I12C and UART interface and perform calculations. Without any
peripherals on, and the MCU core running at f.o... = 32 kH z, the MCU uses 24 pA of current in low-power-
run-mode while executing code from flash memory and keeping the RTC on, which results in a running
power of 43.2 uW in the low-power-run-mode. This, however, does not include the peripheral power used
by the MCU.

To obtain the total active power, the MCU peripheral power should be added to the running power. The
MCU peripheral power consists of the power used by the I2C and UART interfaces, GPIO pins, ADC, RTC
and watchdog timer. The power contributions in the LPrun mode are divided into frequency-dependent
power contributions and static power contributions. An overview of the frequency-dependent power us-
age of the peripherals is provided in Table[5.1and the static power contributions of the peripherals are
listed in Table[5.2

Table 5.1: Overview of frequency-dependent MCU power usage in LPrun mode

Peripheral | Current per MHz [uA/MHz] | Current at 32KHz [pA] | Power usage at 1.8 V at 32KHz [uW]
UART 7.5 0.2 0.4
12C 6.5 0.2 0.4
GPIO (x2) | 7 02 0.4
ADC 9.0 0.3 0.5
Total 30.0 1.0 1.7
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Table 5.2: Overview of static MCU power usage in LPrun mode "°

Peripheral Static power consumption [pW]
MCU (LPrun mode) | 43.2
RTC 0.85
WDT 0.45
Total 44.5

Adding the frequency-dependent and static MCU peripheral power to the LPrun mode power, the total
power used by the MCU in LPrun mode equals Py, = 46.2 uW.

In stop mode, the MCU consumes a current of 1.2 u A, meaning that it uses 2.2 uW of power. This already
includes the power used by the RTC. During this mode, all peripherals but the watchdog timer and RTC are
switched off. Adding the peripheral power used by the WDT gives a total power usage of Py, = 2.65 uW
in stop mode.

The average power cannot accurately be calculated since the active time of the MCU is unknown. However,
an assumption can be made on the contribution of the active power usage to the average power usage.
The ratio Ry, s10p between the LPrun and stop mode power usage is calculated in Equation From this,
it follows that the LPrun mode consumes 17.43 times more power than the stop mode.
Py 46.2

Tlpr,stop = P:tpop = % =17.43 (52)
To evenreach 10% of the stop mode power usage, the subsystem would have to be active for (5x60/17.43)x
0.1 = 1.72 seconds in which 1.72 x 32768 = 56361 clock cycles would have to elapse for every measure-
ment. This not expected for the application at hand. Based on this, the assumption is made that the
running mode power usage is negligible compared to the stop mode power usage. This could be verified
by power measuring equipment. For this reason, the average power usage of the MCU is estimated to be
roughly equal to the stop-mode current.

5.3 Serial communication dynamic power usage

The dynamic power usage of the serial communication protocols can be calculated based on the amount
of data that is transferred. Here the power usage of the protocols is discussed for the use case in this
design.

5.3.1 I)C

From the datasheet of the temperature sensor, it can be found that in single-shot mode a transmission
requires 87 bits of information to be sent with I2C. For the calculation of the power usage, the lowest pull-
up resistor value is chosen, as this results in the most stable I12C output and the worst-case power usage.
The lowest resistor value can be found using Equation [3.3] which gives a resistor value of Ry, = 467 Q.
The peak instantaneous power can then be found with Equation[3.5] This results in a peak power of 6.9 mW
per line. This power usage is sustained during the time that a 0 is transmitted over the I12C lines. In the
situation where the half of the transmitted bits are Q’s, the total time spent by the data line transmitting
0’s can be calculated with Equation Here tq stands for the time spent transmitting 0's and ng for the
number of O's present in the transmitted message.

ng 0.5 % 87

= 32000 1.36ms (5.9)
The energy consumed during this time can be calculated using Equation[3.6] The power consumed in the
clock-line can be calculated in the same way, again with the clock line transmitting 0’s half of the time.
Averaging the energy consumption of both lines over 5 minutes results in an average power of 63 nW.

to =

9The contribution of the ADC to the power usage in LPrun mode is not considered since the ADC only needs sample 1voltage per
measurement, and the ADC is only on during that time. The typical conversion time for the ADC is 0.56 us and the running current
of the ADC is 1450 . A. So each measurement, the ADC only uses 0.82 nJ. This means that if the node measures every 5 minutes,
the average power contribution of the ADC will be 0.82 nJ/(5 * 60 s) = 2.71 pW, which is negligible compared to the total average
power that is found. However, it is considered in the peak power consumption, which can be found in Table
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Multiplying this by five to account for the five sensors yields a total average dynamic power usage of
315 uW for the I12C communication.

5.3.2 UART

To transmit a message to the wireless communication module and to receive a reply, a total of 44 bytes of
data is transmitted using UART. Via Equation the dynamic energy required (E4yn,varr) for the trans-
mission of 44 bytes can be calculated. The calculated energy can be averaged out over 5 minutes to find
the average dynamic power usage, as is demonstrated in Equation[5.4} This results in an average dynamic
power of Pyyg uarT = 65 pW.

EdmeART 1.95 % 108

Pavg,UART = Nsenso’rs * f = 0% W (54)

Here N,.nsors = 5 is the number of temperature sensors per pole. For the calculation of the peak instanta-
neous power usage of the UART communication, the typical rise time of the voltage along a line is needed.
As no clear values of this are specified in the datasheet of the chosen MCU and temperature sensor, the
maximum |/O pin current I;o = 4 mA and maximum voltage Vog = Vygq = 1.8 V are used to make a
worst-case estimation of the peak power. This results in a peak instantaneous power of 7.2 mW.

5.4 Power consumption of the measurement and control system

The average power consumed by the various part of the measurement and control system is presented in
Table[5.3] In this table, the average power of the 5 sensors combined is used. The average power usage
of all components adds up to a total of 4 uWV.

Table 5.3: Overview total average power usage of the measurement and control system

Component Average current [uA] | Average power [uW]
Microcontroller 1.5 2.65

Temperature sensor (x5) | 0.5 0.9

I2C (dynamic) 1.7e-1 0.3

UART (dynamic) 1.8e-4 3.3e-4

External crystal 5.6e-2 0.1

Total 2.2 4.0

The peak instantaneous power is presented in Table[5.4] Here the instantaneous power of a single tem-
perature sensor is used as the sensors are activated sequentially, and there is no situation where more
than 1 sensor is active at the same time.

Table 5.4: Instantaneous power for different components.

Component Peak instantaneous power [uW]
Microcontroller?’ 46.2

ADC on Microcontroller | 2610

Temperature sensor 4115

12C (dynamic) 13886.8

UART (dynamic)?° 7200

External crystal 0.5

20 values specified for the microcontroller include peripheral power usage.

21Based on the typical power usage specified in [32].

22v/alues specified for the microcontroller include all power usage of all peripherals except for the ADC, which is considered as a
separate component. This is done because in the case the system consumes the most power, the ADC is not active and thus cannot
be added to the microcontroller peak power.

Zworst-case instantaneous power estimation for UART based on the maximum output current I = 4 mA and output voltage
Vou = Vgq = 1.8 V of an I/0 pin of the STM32L151CBT6TR (31 Table 43].
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To estimate the peak power used by the whole system, powers cannot simply be added, as not all systems
are active at the same time. The worst-case instantaneous power usage occurs when both the microcon-
troller and temperature sensor are active and are transferring data over I2C. In this case, the UART interface
is not active, and also the ADC is not active on the MCU. This results in a peak instantaneous power of the
measurement and control system of about 14 mW.
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Chapter 6

Discussion and Conclusion

The goal of the project was to design a wireless self-sustaining sensor system that smartly gathers tem-
perature data to create a 3D temperature map of an orchard. The focus of the smart measurement and
control subsystem was on designing a sensor system and a control system capable of measuring the tem-
perature at different heights and communicating with the wireless communication module. Additionally, a
system is created that allows for dynamic temperature measurements based on the available energy level
and the ambient temperature.

To this end, first different options for serial communication protocols are considered for the data transfer
between the sensor and control unit, based on energy usage and topology. After this, a selection of tem-
perature sensors is made, which is primarily based on power usage, measurement accuracy, interfaces,
error-checking capabilities and price. Following this, a selection of six suitable temperature sensors is
found, of which the 12C-based AS6212 came out as the best option. A compatible control unit is chosen
based on energy usage and price. A selection of six microcontrollers that fit the requirements of the design
was put together, from which the STM32L151CBT6TR was chosen as the best option.

After component selection, the software is developed to control the various components of the subsystem,
using the Arduino framework. An algorithm is developed to optimise the power usage of the system by
dynamically adapting the measurement frequency. This is implemented in such a way that a sufficiently
high measurement frequency is maintained to detect fruit frost. This is achieved by making use of a tem-
poral and spatial spread of the measurements in the orchard.

An estimate of the energy consumption, as well as the peak power requirements, is made based on in-
formation in the datasheets of the chosen components and technologies. It is found that the subsystem
requires an average power of 4 uW, and a peak power of 14 mW .

Recommendations for future work

Viewing the energy consumption of all subsystems in the node, it turns out that the smart sensing and
control subsystem has a relatively small contribution to the energy usage of the complete system. The
energy expended during 4 hours by the subsystem roughly equates to the energy expended during a sin-
gle transmission. Also, the quiescent energy consumption of the other subsystems is significantly higher
than the measurement and control system. Therefore, more emphasis could be put on factors other than
low energy consumption such as cost or other features. For example, more advanced microcontrollers
that support higher tolerance oscillator-crystals and RTC calibration features could be chosen, that were
previously rejected due to their higher energy usage.

To verify the design, a prototype should be built. This could confirm or invalidate the theory-based es-
timations, calculations and assumptions made in this design. The energy consumption of the various
components could be measured, which would lead to a more accurate power breakdown. Implementing
the software on the prototype would give the possibility to find the execution time, which verifies whether
the active energy consumption is rightfully deemed negligible. Furthermore, a prototype could potentially
bring to light unforeseen issues in the design. For example, noise is not taken into account when consid-
ering the serial communication between temperature sensor and microcontroller. This could potentially
result in erroneous temperature data being sent to the base station. This would warrant a reconsideration
of the design choices such as a different serial communication protocol or additional error-checking.
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Appendix A

The top-level system

A.1 Top-level system implementation

Before the three subsystems are designed the implementation of the entire system is considered. The goal
of the implementation is such that it fits the requirements of the entire system and that each subsystem
can comply with their own requirements. When all these requirements are met, aspects that have to be
reduced are manufacturing cost, deployment cost and maintenance cost. Furthermore, durability has to be
taken into consideration. To prevent further confusion, a single-node is regarded as a subsystem with one
wireless communication module, one microcontroller and one energy harvesting module. The possible
implementations of the system that were considered that fit into the requirements of the system are the
following:

- Tree multi-node: An implementation where each single-node has one temperature sensor. As a
result, a tree contains 5 separate nodes all on one tree. These multiple nodes are placed at different
heights in the tree. This is a multi-node implementation in a tree.

- Tree single-node: A system where every node consists of a single MCU, wireless communication
module and energy harvester, while multiple temperature sensors are connected to this single MCU.
All sensors are placed in a tree at different heights.

- Pole multi-node: A system where every node contains a single temperature sensor. Multiple nodes
are placed on different heights on a pole.

- Pole single-node: A system where every node has multiple connected temperature sensors and
every node is integrated on a pole with the sensors at different heights.

To come to a design decision each option is weighted in the sections below. Based on this weight and the
importance of each aspect an end decision is made which implementation is ultimately chosen.

Power consumption

The main power consumer is the wireless communication module. In a single-node implementation, four
wireless communication modules and MCUs are spared and thus this implementation is more preferable
over a multi-node implementation. The power consumption does not differ between a pole or tree imple-
mentation.

Cost

By implementing a single-node structure, four wireless communication modules, four microcontrollers and
four energy harvesting modules are spared compared to a multi-node structure. This gives a single-node
structure more advantages. The purchase of a pole gives a tree implementation preference compared to
the pole implementation, although this can be offset by the lower installation cost.

Durability

Durability assesses the lifetime of the system. A pole implementation is considered more durable than
a tree implementation since it has a more robust structure than the more fragile branches of a tree. For
the pole implementation, it is difficult to assess whether a multi-node or a single-node implementation is
better. However, in a single-node implementation, fewer components are used and thus the chance of
component failure is lower. On the other hand, in a single-node implementation, temperature sensors are
connected by wire and it depends on the type of integration whether this can have a signification negative
impact on the device its lifetime.
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Deployment

The deployment of the system assesses how easily the system can be installed. A significant advantage
of a pole implementation is that it can be prefabricated and quickly installed by only planting the pole. For
the tree, the on-sight installation has to be performed which can be quite work-intensive, since sensors
have to be installed on a certain height. Regarding a multi-node or single-node solution, the only main
difference is the wiring which comes with a single-node system. This is concerned to be more dramatic in
a tree than on a pole since wiring of prefabricated poles can be implemented more easily.

Placement consistency

The consistency of the system assesses how uniform the heights of the sensors are for each of the
trees/poles. For an implementation with a pole the distance between sensors can easily be made very
consistent, whereas, for the implementation in a tree, heights can be slightly different due to the fact that
trees have different shapes. For this factor, it does not matter whether a single-node or multi-node imple-
mentation is chosen.

Efficiency

The efficiency of the system describes how efficiently the system can harvest energy and transmit sig-
nals. For a pole implementation with the antenna on top, the transmitted signal likely comes across fewer
obstacles. Also with the solar panel on top of a pole instead of on a tree, the panel will receive a lot more
solar energy due to the fact that there is less shadow from the three itself. The difference between a multi-
node implementation and single-node implementation also give rise to different signal transmission- and
energy harvesting efficiency. In the multi-node case, the solar panels are positioned on different heights.
The nodes that are positioned higher will likely receive more solar radiation than lower positioned nodes.
Furthermore transmitted signal from the nodes that are positioned lower will likely come across more
obstacles.

Flexibility

The flexibility of the system describes the ease of changing the number of sensors at a location. For a
multi-node pole implementation, the number of sensors is changed with more ease than for a single-node
implementation. This is because, for a single-node implementation, a sensor should be added or removed
from the MCU, while for a multi-node implementation only a complete module should be placed or removed
without the need of connecting or disconnecting wires. The same holds for a tree implementation.

Maintainability

An important measure for designing a system is minimising the cost of maintenance after the system has
been designed to reduce further costs and time. To maintain the system where each node has a single
sensor greatly increases the amount of hardware that can fail and needs to be maintained. The time it
takes to replace a node can be neglected in the comparison between multi and single-node as it will have
much less influence on the total maintenance cost than the total amount of hardware failures. To compare
the tree and pole solution it comes to the same comparison as with deployment namely disassembling
the node and installing it again.

Expandability

By implementing a single-node structure, more nodes can be added before the communication system
gets saturated. This because of the limitation in the number of wireless communication nodes that can
be used for a certain gateway. By implementing a multi-node structure, the maximum number of nodes
gets reached more easily, and so the size of the sensor network becomes more limited.
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Table A.1: Decision matrix for a tree or pole and multi- or single-node implementation

Tree multi-node Tree single-node Pole multi-node Pole single-node

Criterion Weight Score | Weighted | Score | Weighted | Score | Weighted | Score | Weighted
Power consumption 5 3 15 10 50 3 15 10 50
Cost 7 6 42 10 70 5 35 9 63
Durability 9 4 36 3 27 9 81 8 72
Deployment 2 4 8 3 6 10 20 10 20
Placement consistency 2 6 12 6 12 10 20 10 20
Efficiency 5 1 5 5 25 3 15 10 50
Flexibility 3 8 24 2 6 8 24 2 6
Maintainablity 7 1 7 8 56 2 14 9 63
Expandability 2 2 4 10 20 2 4 10 20

153 272 228 364

Final decision

From Table [A] it clear that, with a score of 364, a single-node pole implementation is the best option
for this application. The sub-modules in this project are designed according to this specific implementa-
tion. For the remainder of the thesis, a pole-length of 3 meters is considered as this is the typical max-
imum length of a dwarf or semi-dwarf apple tree [38] Page 11], which are common in the commercial
fruit-orchards.
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Appendix B

Maximum temperature slope

In order to determine the frequency with which the system should measure so that the system will give
an alert on-time, the maximum change in temperature over time is a necessary parameter. For estimating
this temperature change, data from the KNMI (Royal Dutch Meteorological Institute) is used. The data-
set used contains the temperature measured in an hourly interval for 50 weather stations spread over the
Netherlands, for a period of 20 years.

The change in temperature varies at different times of the year and at different temperature ranges. For the
purposes of this project, only temperatures around the freezing point that were measured during spring
are considered.

In Figure the maximum drop in temperature between when the temperature first drops below 0 de-
grees and an hour before is plotted. These are the maxima of values collected in between 1 February and 1
Junein the 20 years between 2000 and 2020. From this figure, it can be seen that the maximum tempera-
ture slope found is around 8.3 °C'/hour. This measurement is an extreme outlier, but the designed system
should be able to detect such changes, as that is what farmers are most interested in.

Maximum hourly temperature change

w ) 8] [e)] ~

Temperature drop [degrees Celsius]

N

1 Feb 1 Mar 1 Apr 1 May

Figure B.1: The maximum hourly temperature change that results in a sub-0 temperature.
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Appendix C

System clock overview
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Figure C.1: An overview of the clock system in the MCU.
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Appendix D

System overview
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Figure D.1: An overview of the measurement and control subsystem
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Appendix E

Software parameters

In Table [E.T|below, the configurable parameters of the software can be found, including their meaning and
default values.

Table E.1: Configurable parameters in the software

Parameter Function Default value
threshold_PSM Indicates the minimum energy value needed in order for the device to come out of power saving mode (PSM) | 2
threshold_Join Indicates the minimum energy needed to be able join the LoRa network 2
sensorCount Indicates the amount of temperature sensors connected to the MCU 5
maximumTemperatureSlope | The maximum hourly temperature change that can occur in the area the device is used 8.3 °C//hour
offSeasonlterations Amount of measurement times before transmission in off-season mode 4
OffSeasonSleepDuration The amount of time between measurements in off-season mode 60 minutes
groupNumber The group number assigned to the node -

deveui LoRa device ID

sf Spreading factor

nwkskey LoRa network session key

appskey LoRa application session key

Threshold_PSM has been given a default value of 2. This is equivalent to the energy needed for 2 mea-
surements and transmissions (see Equation[4.4). The limited resolution of the ADC gives an inaccuracy
of 0.032 .J in the energy level measurement.

This is 64% of the energy consumed by T measurement. The threshold is given a value of 2 as it provides
a small overhead on the amount of energy needed for a single transmission and to compensate for the
inaccuracy of the energy level measurement. The join threshold threshold_Join is given the same value
for the same reason.
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Appendix F

Set division

Table F.1: Set number for different group numbers and number of measurements per hour

Group number | | 4 15 3|4 5/6|7|8|9 101

Frequency
2101112134 ]5]0]1]2|3]| 4 5
3011213012 ]3]0]1 2 3
4 1012012011210/ 1 2
6 /0|10 1T10]17]01 171011 0 1
2/0(0|0]0|O0OJ]0O|O0O]0O|O0O]0O]| O 0
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Appendix G

Software function tests

In this chapter the behaviour is tested of the nextTimeSeg and the closestFrequency functions. The func-
tions are run with different input combinations and the output of the functions is checked to verify whether
the functions are working as intended.

G.1 nextTimeSeg

The code seen in Listing[Tis used to test the nextTimeSeg function. The group number, time segment the
device is currently in and f,,eqs Can be set. The test code will then keep calculating the next time segment
based on the last time segment. Note that the nextTimeSeg function is not included in Listing[T} but can be

© ®w N e o A W N e

L T T S S S S Y
© ® N o o A W N = O

N
(=]

found the in GitHub repository [35].

Listing 1: Test code for the next time segment function.

int groupNumber = 0; // Set ground number
int currentTimeSegment = 2; // Set the time-segment the device starts in
int f_meas = 4; // Set the measurement frequency per hour

int measurementPeriod = 60/f_meas; // Calculate the period between measurements

void setup() {
// put your setup code here, to run once:
Serial.begin(9600);

}

void loop() {
// put your main code here, to run repeatedly:
while(1){
currentTimeSegment = nextTimeSeg(currentTimeSegment,measurementPeriod);
Serial.println(currentTimeSegment); //print output
delay(500);
}

The output for two different cases are shown in Figure [G.7]and which behave as expected following

the logic explained in Chapter|4.1.3
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Figure G.1: Result of the nextTimeSeg function for a device with group number O, freas = 2
measurements per hour and which starts in time-segment 2
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Figure G.2: Result of the nextTimeSeg function for a device with group number 3, fcas = 6
measurements per hour and which starts in time-segment 4

G.2 closestPeriod

The code seen in Listing[2)is used to test the closestPeriod function. Here the temps-variable represents
the minimum temperature measured by the sensors from the last measurement. The values in the temps-
array are the test values. The criticalTemp represents the set critical temperature, which for this example
is setto 1 °C and the maxTempSlope variable is the maximum temperature slope per minute as discussed

inBl

Listing 2: Test code for the closestPeriod function.

int temps([8] = {-60,10,20,30,40,50,60,180}; //current temperature value x10, so

- -6,1,2,3,4,5,6 and 18 degrees

int criticalTemp = 10; // critical temperature x10 -> critical temp is 1 degree celcius
float maxTempSlope = 83.0/60; //temperature slope per minute
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int temperature;

void setup() {
// put your setup code here, to run once:
Serial.begin(9600);

}

void loop() {
// put your main code here, to run repeatedly:
delay(2000);
for (size_t i
{
temperature = temps[i];
int closestPer = closestPeriod();
Serial.print("Time between measurements when the current temperature is ");
Serial.print(temps[i]/10);
Serial.print(": ");
Serial.println(closestPer);
Serial.print(" minutes");
Serial.println();
}
}

0; i<8; i++)

int closestPeriod()
{
int minTimeToNext = (temperature - criticalTemp) / maxTempSlope;
int availablePeriods[5] = {30, 20, 15, 10, 5};
int minPeriod = 5;
for (size_t i = 0; i < 5; i++)
{
if (availablePeriods[i] < minTimeToNext)
{
minPeriod = availablePeriods[i];
break;
}
}

return minPeriod;

The results of the code presented in Listing[2] which calculates the needed measurement interval for the
different temperatures in the temps array, is shown in Figure |G.3] The results are as expected, as the
resulting measurement intervals are such that a temperature under or equal to the critical temperature is
detected with a minimum time period of 5 minutes.
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Figure G.3: Results for the test function (Listing@ written for the closestPeriod function.
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Appendix H

Software flowcharts

H.1 Flowchart for power saving mode
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Figure H.1: Flowchart of the software behaviour of the power saving mode
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H.2 Flowchart for normal mode
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Figure H.2: Flowchart of the software behaviour of the normal mode.
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H.3

Flowchart for off-season mode
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Figure H.3: Flowchart of the software behaviour of the off-season mode.

53



	Introduction
	The project
	Subgroup division
	State of the Art
	Structure of thesis

	Program of requirements
	Requirements of the entire system
	System functional requirements
	System non-functional requirements

	Requirements of the measurement and control subsystem
	Subsystem functional requirements


	Component selection
	Temperature sensor
	Serial communication protocols
	Topology
	Energy consumption estimation
	Choice of communication protocol

	Choice of temperature sensor
	Controller type
	Microcontroller specifications
	Choice of microcontroller
	General remarks for chosen components
	Summary hardware

	Software description
	Core functionality
	Setup state
	Power saving state
	Normal state
	Off-season state
	Watchdog timer


	Power breakdown
	Temperature sensor power usage
	Microcontroller power usage
	Serial communication dynamic power usage
	I²C
	UART

	Power consumption of the measurement and control system

	Discussion and Conclusion
	References
	Appendices
	The top-level system
	Top-level system implementation

	Maximum temperature slope
	System clock overview
	System overview
	Software parameters
	Set division
	Software function tests
	nextTimeSeg
	closestPeriod

	Software flowcharts
	Flowchart for power saving mode
	Flowchart for normal mode
	Flowchart for off-season mode


