
 
 

Delft University of Technology

Personalized Human-Robot Cognitive Interaction via a Novel Fuzzy Logic Control and
Learning-Based Paradigm

Munster, Marcel; Jamshidnejad, Anahita

DOI
10.1109/ACCESS.2025.3584194
Publication date
2025
Document Version
Final published version
Published in
IEEE Access

Citation (APA)
Munster, M., & Jamshidnejad, A. (2025). Personalized Human-Robot Cognitive Interaction via a Novel
Fuzzy Logic Control and Learning-Based Paradigm. IEEE Access, 13, 112568-112593.
https://doi.org/10.1109/ACCESS.2025.3584194

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ACCESS.2025.3584194
https://doi.org/10.1109/ACCESS.2025.3584194


Received 20 May 2025, accepted 25 June 2025, date of publication 30 June 2025, date of current version 8 July 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3584194

Personalized Human–Robot Cognitive Interaction
via a Novel Fuzzy Logic Control and
Learning-Based Paradigm
MARCEL MUNSTER AND ANAHITA JAMSHIDNEJAD
Department of Control and Operations, Delft University of Technology, 2629 HS Delft, The Netherlands

Corresponding author: Anahita Jamshidnejad (a.jamshidnejad@tudelft.nl)

This work was supported in part by the Netherlands Organization for Scientific Research (NWO)-Open Competition Domain Science XS
Project ‘‘Creative Social Robots with Evolutionary AI for Dementia Therapy,’’ under Grant OCENW.XS2.055; and in part by the TU Delft
AI Laboratories and Talent Program.

This work involved human subjects in its research. Approval of all ethical and experimental procedures and protocols was granted by the
Human Research Ethics Committee of TU Delft under Approval 1952.

ABSTRACT Socially assistive robotics is an emerging field that, through effective human-robot cognitive
interactions (HRCIs), offers potential solutions for personalized care, education, and entertainment. For
improved impact and for acceptance by humans, socially assistive robots (SARs) should autonomously
personalize and adapt their behavior to, respectively, the personality and the changes in the states-of-mind
of people they interact with. Despite extensive research on the ethical, societal, and psychological aspects
of SARs, bridging systems-and-control-based methods and socially assistive robotics for developing control
approaches that automate the personalization and adaptation of HRCIs remains under-attended. We propose
the first systematic and generalizable paradigm for personalization and adaptation of the social interactive
behaviors of SARs, combining two highly promising modeling and decision making approaches, namely
fuzzy logic control (FLC) and reinforcement learning (RL). By replicating the rule-based decision making
of humans, FLC provides a highly effective personalization mechanism and warm-starts the RL algorithm,
which takes care of adapting the behaviors of SARs to the dynamics of people’s state-of-mind. Fuzzy logic
is also used to develop two consecutive processes inside the RL-based adaptation module that, from the
emotional responses of humans, estimate their state-of-mind and assign a reward to the most recent action
of the SAR. Our extensive experiments for validation of this combined paradigm and for comparing it with
conventional RL methods show meaningful improvements in the criteria that assess the personalization,
convergence of learning, and performance accuracy of the proposed steering system for SARs.

INDEX TERMS Socially assistive robots, human–robot cognitive interaction, learning-based decision
making, fuzzy logic control, personalization and adaptability of social robots.

I. INTRODUCTION
An emerging field in robotics that introduces potential
solutions for personalized care, education, and entertainment
concerns socially assistive robots (SARs) [1], [2], [3], [4].
SARs are expected to improve the engagement and reduce
the stress level of people who deal with cognitive disorders
or impairments (e.g., anxiety, depression, dementia, autism)

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Tang .

TABLE 1. Frequently used abbreviations in the paper.

during their therapy sessions, and to contribute to the develop-
ment of smooth interactions and communication between the

112568

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 13, 2025

https://orcid.org/0009-0001-7334-7799
https://orcid.org/0000-0001-9151-2607
https://orcid.org/0000-0002-0917-2277


M. Munster, A. Jamshidnejad: Personalized HRCI via a Novel FLC and Learning-Based Paradigm

FIGURE 1. Road map of the paper.

therapists and patients [5], [6], [7]. SARs, however, are not
meant solely for controlled therapeutic sessions. Ideally, they
should accompany and assist people, including those with
special needs, in their daily life activities [8], [9].

A. PROBLEM STATEMENT
Two key concepts, personalizability and adaptability, play a
crucial role for SARs in sustaining meaningful human-robot
cognitive interactions (HRCIs) with their users. Personal-
izability is the ability of tailoring the interactive social
behavior of a SAR to the particular needs and preferences
of each individual that interacts with the SAR. Adaptability
allows the interactive behavior of a SAR to properly change
with regards to the environmental/external variations that
impact the HRCIs and the evolving states-of-mind of the
human.

a: PROPOSED SOLUTION
Both personalizability and adaptability are crucial for SARs,
in order to be accepted by humans and to succeed in engaging
them within long-term social interactions [10], [11], [12],
[13], [14]. Thus, control systems that are designed to steer
the interactive social behavior of SARs should provide both
capabilities [15]. This requires integrated behavioral steering
methods aware of context-relevant states-of-mind of the users
and their inter-personal variations. In other words, autonomy,
reliability, and effectiveness of decision making by SARs
demands (1) incorporating the implicit and explicit feedback
of the users, (2) learning from interactions, and (3) handling
diverse environmental conditions. These cannot be achieved
by a solely learning-based, or intuitive, or control-theoretic
method, but by a systematic integration of them.

We adopt a human-centered engineering approach. This
involves identifying the needs and goals of user groups,
using these to define the objectives and constraints in the
development of HRCIs, and evaluating the resulting systems

first via simulations based on human data collected through
surveys. The step after this, as is detailed in Section IV, is to
evaluate the developed systems through real-life experiments
with human participants.

B. BACKGROUND AND STATE-OF-THE-ART CHALLENGES
Moyle et al. [16] report responses of dementia patients to
SARs, especially accepting andmaintaining interactions with
them. Their results stress the importance of personalization
and adaptation of the behavior of SARs for effective
interactions with humans. This is further supported in [12]
and [17]. In [17] the skill level of the participants, i.e.,
children with learning disabilities, is the basis for the SAR
to adapt the difficulty level of its interactive tasks and the
type of the feedback it provides for the children. In [12],
the vocal content, activity level, and proxemics of the SAR
are personalized based on the extroversion/introversion of the
patients in a post-stroke rehabilitation therapy session. The
results show that the participants prefer interactions by the
SAR that resemble their own personality.

SARs are still very new to the societies, and research on
SARs involves crucial psychological, societal, and ethical
aspects to be addressed. A correlated topic is the development
of systems-and-control-based paradigms that systematically
steer the social behavior of SARs towards desired psychologi-
cal, societal, and ethical impacts. However, despite extensive
research on ethics of SARs and on variables that influence
their societal and psychological impacts, incorporating or
adopting systematic control methods to steer the social
behavior of SARs remains under-attended [18], [19], [20].
Thus, the focus of this paper is on the development of a
systematic, personalizable and adaptable, control paradigm
for SARs.

Reinforcement learning is the most common method used
in the last decade for SARs [20], [21]. A main disadvantage
of RL, however, is its requirement for extensive trial-and-
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error-based interactions with participants during the learning
phase that may negatively impact the interactions [22], [23].
In order to train an RL algorithm, it is common for human-
robot interactions (see, e.g., [9], [17]) to use computer-
based simulated participants. However, the need for further
learning via trail-and-error for personalization to each real
participant and for adaptation with respect to the varying
state-of-mind and environmental conditions of the person
remains unchanged. Conventionally, RL-based methods lack
principle-based models that allow for generalizability and
that represent the learned policies in relation to the dynamics
and characteristics of the system that should be controlled
by these policies. This implies that non-negligible changes
in the states or dynamics of the system that RL steers,
the (exhaustive) learning procedure should be conducted
again. Finally, RL-based methods learn/evolve their policy
according to the rewards that they receive per action
generated via the candidate policy during the learning
procedure. Mathematical formulation of a relevant reward
function, however, is an open challenge for RL.

Three categories of learning-based methods exist: super-
vised learning, unsupervised learning, and reinforcement
learning (RL). Supervised and unsupervised learning meth-
ods use labeled and unlabeled data, respectively, for train-
ing [24], [25], whereas RL learns an optimal policy based
on the outcome of iterative interactions with a system. More
specifically, RL bases its learning on three main elements:
actions, states, and rewards per realized state for the selected
actions. Learning methods commonly use feedback (e.g., the
estimation error or the performance degradation) during the
training in order to adjust their parameters accordingly. The
feedback received in supervised learning is direct, through the
labeled data, while unsupervised learning receives no explicit
feedback. This poses a challenge on each method, i.e., the
requirement for having access to sufficiently large labeled
datasets in supervised learning, and the difficulty to interpret
the results and to validate the trained system in unsupervised
learning. The feedback on a candidate policy in RL is via the
reward from the system. RL has proven to effectively learn
policies that guarantee successful interactions with complex
environments, where other learning methods would struggle.
Accordingly, RL has been extensively used in interactions
that need personalization, especially for SARs.

Static rule bases may also be used to steer the behavior
of SARs, but due to a lack of systematic adaptability, their
use remains limited to very simple and high-level interactions
with humans, e.g., to explain the rules of a game for people,
to use encouraging speech while a user plays a game or solves
a puzzle, and to adjust the difficulty level of the game/puzzle
based, solely, on the user’s performance, e.g., the number of
the correct answers so far (see, e.g., [26]).
A common use of SARs is for assisting people with

autism spectrum disorder [27], [28]. In a recent paper [6],
an adaptive, personalizable control system is introduced for
a socially assistive drone that autonomously and interactively
performs dance movement therapy (an interactive therapeutic

method) for people with autism. The control framework
uses fuzzy logic control and real-time image processing
to let the drone interact with participants, such that their
level of engagement in the therapy and their performance
are incorporated in the decision making and are maintained
at desired levels. In parallel, the control system adapts
the rules in the fuzzy rule bases, according to the data
it collects during the interaction sessions per participant,
in order to personalize the interactions of the drone with
the participant. A main advantage of fuzzy logic is its
capability in replicating the rule-based decision making of
humans (e.g., expert therapists) with affordable online, on-
board computations. The results of the real-life experiments
presented in [6] that involved a tiny quadcopter (a Parrot
Bebop drone) and volunteer participants (without autism)
proved the effectiveness of fuzzy logic control and the
importance of personalizing and adapting the interactions in
engaging the participants for longer terms.

Recent advances in fuzzy logic (see, e.g., [29]) allow
to leverage this theory for effective modeling and control
of dynamic variables (i.e., variables with a memory). This
is particularly crucial since states-of-mind of humans are
mathematically modeled as dynamic variables [18].
No systematic framework has yet been proposed for

steering the social behavior of SARs that incorporates both
personalization with respect to the personality traits of
humans and adaptation to the evolution of their states-of-
mind and environment.Moreover, the methods that have been
proposed for the adaptation are mainly based on learning
from the data captured from humans performing particular,
simplistic tasks (e.g., solving simple math questions or
puzzles). The state-of-the-art personalization approaches for
SARs also simply mirror the personality of the users, which
is not necessarily preferred for all people and in all interactive
contexts.

C. MAIN OBJECTIVE AND CONTRIBUTIONS
We propose a novel integrated decision making paradigm for
SARs to achieve the following overarching objective:
Allowing the social interactive behavior of SARs to be

personalized to individual humans despite their different
personalities and to be adapted to the changes in the state-
of-mind of humans during the interactions, based on a
systematic, generalizable approach

Our main contributions, leading to this objective, include:

1) The first systematic and generalizable paradigm for
steering the social interactive behaviors of SARs
that allows for simultaneous personalization and
adaptation

2) A novel combination of fuzzy logic and reinforcement
learning (RL), resulting in an RL-based adaptation
module that, in addition to precise action selection
(with regards to real preferences of humans) for
SARs, is significantly more efficient in learning than
conventional RL-based methods
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3) Validation of the proposed paradigm through exten-
sive computer simulations and simulated participants,
designed based on data gathered from real humans via
two different online surveys, designed for this research

D. RATIONALE OF THE PROPOSED METHODS
• Unlike state-of-the-art approaches where the SAR
imitates the introversion level of a human in their
interactions, we allow the SAR to interact with the
human based on 3 relevant personality traits of that
person (as identified by psychological tests).

• The personality-aware social interactive behavior of
the SAR is not simplified to mimicry behavior, but
is determined via a fuzzy inference system, based
on heuristics and common sense of humans in social
interactions.

• SARs are brought to a new level, significantly enhancing
their adaptability, impact, and acceptability, through
introducing a fuzzy-logic-based dynamic cognitive
model that assesses and incorporates into the adaptation
procedure the evolution of the states-of-mind of the
human due to the interactions and environmental inputs.

• The learning procedure is warm-started by the outputs
of the personalization fuzzy inference system, thus it
requires significantly less number of exhausting trial-
and-error-based interactions with humans.

• Next to the personalization procedure and the cognitive
model used for adaptation, fuzzy logic, inspired by
and enriched with heuristics and common knowledge
of humans, is used to generate the rewards for the RL
algorithm during the learning phase. This solves the
lack of proper mathematical functions for the reward,
especially in the context of human-robot cognitive
interactions.

E. STRUCTURE OF THE PAPER
The rest of the paper is organized as it follows: Section II
provides the main motivations for the methodologies used
and the details of the proposed paradigm. Section III explains
the setup and implementation of the experiments and presents
and discusses the results. Finally, Section IV concludes the
paper and proposes topics for future research. To guide the
reader smoothly throughout the paper, a road map has been
illustrated in Figure 1. Moreover, Table 1 and Appendix F
represent the abbreviations used in the paper.

II. PROPOSED INTEGRATED CONTROL PARADIGM FOR
SARS
Developing effective autonomous behavioral steering sys-
tems for SARs is a twofold problem: (1) The SAR
should personalize its social interactive behavior to specific
characteristics of the human it interacts with. (2) The SAR
should adapt its social interactive behavior to the changes in
the states-of-mind of the human. In broader contexts, next to
the impact of the interactions on the evolution of the state-
of-mind, the influence of the environmental factors relevant

for the interactions may also be considered (see Figure 2).
Our idea for obtaining such a steering system for SARs is
based on a novel integration of fuzzy logic control (FLC) and
RL, as is illustrated in Figure 3. The next sections motivate
and discuss the details. Moreover, in addition to defining
the mathematical notations when they appear in the text,
Appendix A represents these notations and their definitions
at once.

A. FRAMING THE HUMAN-ROBOT COGNITIVE
INTERACTIONS
In this paper, we mainly focus on the cognitive, rather
than physical, interaction of SARs and humans. Thus, the
steering system of the SAR controls the cues and behavioral
parameters that relate mainly to the social behavior of the
SAR, in particular the following 7 elements/parameters:

1) Amount of speech
2) Volume of speech
3) Number of gestures
4) Type of interactive comments (e.g., energetic/cautious)
5) Type of motivating comments (e.g., cooperative/

challenging)
6) Type of feedback to the human (e.g., realis-

tic/nurturing)
7) Proxemics

Examples of interactive, motivating, and feedback statements
that the SAR may use include:

• Energetic comment: ‘‘I’ve got an amazing idea. Let’s
play this fun board game!’’

• Cautious comment: ‘‘What about playing this board
game? It could be fun!’’

• Cooperative comment: ‘‘Let’s try together to walk
another round around the block!’’

• Challenging comment: ‘‘I bet you cannot walk another
round around the block! Want to prove me wrong?’’

• Realistic feedback: ‘‘This time the exercises did not go
as expected. Let’s try different exercises next week!’’.

• Nurturing feedback: ‘‘You will for sure do better next
week with these aerobic exercises!’’

In the course of the interactions, the SAR regularly perceives
the state-of-mind of the patient (for details see Section II-C3),
and keeps on adapting its decisions considering the outcomes
of the interactions, particularly the influence on the state-of-
mind of the patient (see Section II-C4 for details).

B. FUZZY LOGIC CONTROL FOR PERSONALIZATION
The significance of considering the personality of the
users in improving the outcomes of the HRCIs has been
acknowledged, particularly in care domains [30], [31], [32].
In fact, any technology, including HRCI, that involves
understanding, prediction, and synthesis of human behavior
will benefit from methodologies that are capable of dealing
with differences in human personalities [33]. However, the
number of literature that systematically incorporate the
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FIGURE 2. The decision making system of the SAR personalizes and adapts the actions of the robot
according to the characteristics and sate-of-mind of the human, considering also the environmental
factors that influence the human-SAR interactions.

FIGURE 3. Different elements proposed for the decision making of SARs(FLC and RL stand for fuzzy logic control and reinforcement learning, respectively).

influence of the personality traits of humans into the decision
making of SARs is very narrow [34], [35].

The scarce literature that considers this (see, e.g., [12],
[36], [37]) mainly focuses on matching the personality of
the SAR and the human, particularly for one trait, i.e.,
extroversion.1 Research, however, shows that agreeableness2

and neuroticism,3 together with extroversion, play the main
role in cognitive and social interactions of humans, especially
for sensitive groups, e.g., for patients with dementia [35],
[38], [39]. Moreover, the claim that congruence between the
personalities (for example of clients and therapists, whose
social interactions with their clients may inspire the design of
the steering systems of SARs) could result in more impactful
interactions (e.g., enhancing desired therapeutic outcomes)

1High levels of extroversion are indicative of higher sociability, assertive-
ness, and activity.

2High levels of agreeableness are indicative of higher modesty, coopera-
tiveness, trustworthiness, and concern about the feelings of others.

3High levels of neuroticism are indicative of higher levels of anxiety,
insecurity, and depression.

has been tested for very specific cases (see, e.g., [36]) where
the SAR interacts with very specific, thus non-representative,
user groups (e.g., undergraduate students or community
members of a specific age range with no diagnosis of
cognitive impairments [40]). In-depth research on the impact
of the personality congruence, however, rebuts any positive
impact of such congruence, especially for agreeableness and
neuroticism, on the outcome of therapeutic interactions [41].
Therefore, instead of mirroring the same personality traits,

within the personalization module of the SAR we directly
implement the knowledge (based on heuristics and common
sense) of an average human in their daily social interactions.
In particular, next to extroversion, we consider agreeableness
and neuroticism. The scores, ranged between 0 and 100,
for each of these personality traits can be known via the
Big Five personality test [42]. The light red boxes in
Figure 3 build the personalization module, which receives
the scores for the personality traits of the person and
generates the corresponding behavioral (communication or
cue) parameters for the SAR.
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FIGURE 4. Flowchart representing the learning procedure for the Q-learning adaptation module (explanations are
included in Section II-C2): During the learning procedure, Q-values are updated (see Appendix C for details) and are
stored in a database. Estimation of the state-of-mind based on the user’s feedback, i.e., emotions, is discussed in
Section II-C3. The procedure of estimating the reward, using fuzzy inference systems, is given in detail in
Algorithm 1 in Section II-C4.

1) MOTIVATION FOR USING FUZZY LOGIC CONTROL
Fuzzy logic control (FLC), a rule-based method that mimics
reasoning of humans and that effectively deals with linguistic
variables [43], [44], [45], [46], [47], is used in this paper
to personalize the decisions of the SAR based on the
personality traits of humans. For more details regarding FLC
see Appendix B.

FLC was selected for the personalization of the SAR, due
to the following main reasons:

1) There are no mathematical models that explicitly relate
the personality scores with the behavior that people
prefer to experience from others in social interactions.
This relationship, however, can properly be captured
via fuzzy if-then rules, based on existing human

knowledge (see, e.g., [38] for some behaviors that,
according to the Big Five personality traits, people
with each personality trait prefer to experience in social
interactions).

2) Personality traits and variables that relate to them are
described across spectra, and associating precise crisp
quantities to them is either impossible or erroneous.
Personality traits and their related variables are by
nature fuzzy [46], so can most properly be captured
by inference systems that apply fuzzy sets and fuzzy
operations. FLC is built upon such inference systems
and handles partial memberships of fuzzy variables
that relate to the personality traits to fuzzy sets that
represent the corresponding quantitative terms (e.g.,
relatively high).

VOLUME 13, 2025 112573
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FIGURE 5. Flowchart illustrating the interactions between the FLC-based personalization module (green part of the flowchart) and
the RL-based adaptation module (blue part of the flowchart) for generating a suited interactive behavior for the SAR: The
formulation of the three fuzzy rules that are incorporated in the FLC-based personalization module is discussed in Section II-B2.
The gray database that includes the Q-values is generated through the learning procedure illustrated in Figure 4.

3) Humans properly personalize their behavior in the
course of interaction with each other [10]. Rule-
based approaches based on fuzzy logic, e.g., FLC,
are the closest methods to the reasoning and decision
making of humans [48], [49]. Thus, we hypothesize
that FLC will provide SARs with personalization
capabilities similar to those that humans deploy in
social interactions.

Remark 1: Methods other than FLC, e.g., neural net-
works [50] and RL [51], have been used to personalize
the behavior of SARs to humans. These methods, however,
require extensive training with large datasets. Thus, during
the training there are risks for reduced performance, lost
effectiveness, and thus withdrawal of the users. On the
contrary, the rule bases of FLC-based methods are built upon
the existing expert knowledge and from the start if HRCIs,
incorporate human heuristics in the interactions.

2) STRUCTURE OF THE PERSONALIZATION FLC MODULE
Querengässer and Schindler in [52] showed that the scores of
the personality tests are influenced by the state-of-mind of the
participants of these tests. This implies that to consider fixed
personality trait scores for humans is neither realistic, nor is

it effective for sustaining long-term HRCIs. Therefore, two
fuzzy inference systems (FISs), as is shown in Figure 3 and
is represented via the flowchart in Figure 5, are considered
for the personalization. The general formulations of the fuzzy
rules that are used by the SAR to, respectively, adjust the
personality trait scores and personalize its social behaviors
based on these scores for each human include:

Formulation of the fuzzy rules for the personalization
Personlization FIS 1
If external variable 1 isV1,v1 and . . . and external variable

next is Vnext,vnext , then score fluctuation for personality trait τ
is Fτ,fτ . τ = 1, 2, 3
Personlization FIS 2
If personality trait τ is Pτ,pτ and fluctuation score for

personality trait τ is Fτ,fτ , then adjusted personality trait τ is
Pτ,aτ . τ = 1, 2, 3

Personlization FIS 3
If adjusted personality trait 1 is P1,a1 and adjusted

personality trait 2 is P2,a2 and adjusted personality trait 3
is P3,a3 , then interactive behavior (cue parameter) is Bm1 (is
Cm2 ).
In the first set of rules, which correspond to FIS 1 (see

the top plot in Figure 6 as an example for FIS 1), external
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FIGURE 6. Fuzzy inference systems that adjust the scores for
thepersonality traits of the users depending on the external factors that
impact the state-of-mind of the users,and that determine candidate
behaviors and cues for the SAR in the course of HRCIs.

variable 1, . . . , external variable next refer to the external
factors that impact the state-of-mind, thus the personality
trait scores, of the person. For instance, these may be the
quality and the length of the sleep of the person, or, based
on the context, include the weather conditions, e.g., the
precipitation and the temperature. In addition, V1,v1 , . . . ,
Vnext,vnext (for vi = 1, . . . ,N v

i and i = 1, . . . , next) are fuzzy
sets corresponding to the linguistic terms that are used to
categorize these external variables. In these definitions, N v

1 ,
. . . , N v

next are the number of those categories. Similarly, Fτ,fτ
for fτ = 1, . . . ,N f

τ , is a fuzzy set representing the linguistic
term that describes the fluctuations in the score of personality
trait τ , with N f

τ the total number of these terms. Note that
τ = 1, 2, 3 refers to the three personality traits extroversion,
agreeableness, and neuroticism.

In the second set of rules, which correspond to FIS 2 (see
the middle plot in Figure 6 as an example for FIS 2), the three
personality traits are adjusted based on their qualification
obtained from the Big Five Personality test and based on
the fluctuations due to the external factors obtained from
the first set of rules. Note that Pτ,pτ is the fuzzy set that
describes personality trait τ , where pτ = 1, . . . ,N p

τ and for
τ = 1, 2, 3 the number of these fuzzy sets are, respectively,
N p
1 , N

p
2 , N

p
3 . For instance, when the personality traits are all

categorized as low, medium, or high, then N p
1 = N p

2 = N p
3 =

3.
In the third set of rules, which correspond to FIS 3 (see

the bottom plot in Figure 6 as an example for FIS 3), the
three adjusted personality trait qualities, i.e., P1,a1 , P2,a2 ,
P3,a3 where ai ∈ {1, . . . ,N

p
i } for i = 1, 2, 3, are used to

generate the candidate interactive behavior or cues of the
SAR. Moreover, Bm1 for m1 = 1, . . . ,N b is a fuzzy set
modeling the linguistic terms that describe the nature of a
social interactive behavior by the SAR, i.e., an interactive
comment, a motivating comment, a realistic feedback, or a
nurturing feedback (see Section II-A), and N b is the number
of different terms that describe these comments. Finally, Cm2

for m2 = 1, . . . ,N c is a fuzzy set modeling the linguistic
terms that describe the parameters corresponding to the SAR
cues (e.g., medium for the volume of speech) and N c is the
total number of these terms. The resulting personalization FIS

whose rule bases are composed of fuzzy rules with the given
formulations is a Mamdani inference system [53].

C. RL FOR ADAPTATION
While personalization of the SAR decisions with respect to
the personality traits of a patient is expected to improve
the quality of HRCIs, and to sustain the engagement of
the human and thus, the interactions for longer terms [34],
[35], such a personalization (i.e., considering an optimal
action per situation for a specific personality trait) by itself is
not sufficient for effective/engaging long-term interactions,
especially when these interactions follow specific, e.g.,
therapeutic, goals. This is further supported by the proven
essence and impact of the creativity and variation in the
responses of SARs for sustainable interactions in HRCI [7],
[10]. In other words, providing the same response over and
over, even if personalized to the human, is not effective in the
long term. Therefore, the SAR should adapt its behaviors to
the state-of-mind of the person. We use RL in order to adapt
the social interactions of SARs to different states-of-mind of
people.

1) MOTIVATION FOR USING RL
The main motivation for selecting RL is the following: While
personalization of the SAR behaviors via establishing general
rules per personality trait and by implementing FLC (see
Section II-B for details) appreciates the distinction among
various categories of a personality trait (e.g., very extrovert
and moderately extrovert), this does not incorporate the
variations per individual in each category. For instance,
highly introvert people may in general prefer to have a short
conversation with a SARwithout exhibiting high excitements
through the volume of the speech. When feeling sad (i.e.,
a particular state-of-mind), however, one highly introvert
individual may be more sensitive about the volume of the
speech, whereas another highly introvert individual may
prefer to use less statements in a conversation. Such a
difference, which specifies the importance or weight of each
fuzzy rule in the personalization module (see Section II-B),
can be learned using RL in the course of the interactions with
each person.

2) TRAINING THE RL MODULE
The RL module operates in a loop (see Figure 3 and the
flowchart represented in Figure 4): The SAR interacts with
the human and per interaction step receives the emotions
of the human as feedback, which it uses (as is detailed in
Section II-C3) to determine how the state-of-mind of the
person has evolved in the last interaction step. This evolution
of the state-of-mind is the basis for determining the reward,
which reflects the effectiveness of the social interactive
behaviors of the SAR. A crucial aspect of the proposed
paradigm is that the RL module is warm-started by the
action that is proposed for the SAR via the FLC-based
personalization module (see Figure 3). This is hypothesized
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to reduce the number of the learning iterations and thus, the
number of the trial-and-errors.

In the RL framework, the state-of-mind of the human is
considered as the state variable sk of the RL module and
the change, with respect to the candidate action proposed
by the FLC-based personalization module, regarding any of
the behavioral elements of the SAR (where the 7 behavioral
elements considered for the SAR in this paper have been
indicated in Section II-A) is the action ak of the RL. The
integer k specifies the interaction step. The main question to
answer is that during the training phase of the RL module,
how, and based on what rationale, does the SAR select an
action, ak , at interaction step k when the state-of-mind of the
human is sk?
Since the number of the sate-action pairs in the given HRCI

context is finite, the Q-learning algorithm with an ϵ-greedy
approach [51] can be used by the RL module. For details
regarding this approach, we refer the readers to Appendix C.
After sufficient number of human-SAR interactions, when
the RL algorithm converges (which implies that the training
has sufficiently been performed), the trained RL module will
directly be used to steer the social interactive behavior of the
SAR.

3) FEEDBACK FOR THE RL MODULE DURING THE TRAINING
PHASE
The RL adaptation module receives receives the emotional
responses of users (collected via self-report, video/image
analysis, or multi-modal sensors) as feedback during the
HRCIs with SARs.

The level of engagement of people in social interactions
reflects their state-of-mind, which is a consequence of all the
active emotions that they experience and that bind them to
other individuals, places, and activities [54]. Compared to the
abstract concept of state-of-mind, i.e., the overall cognitive
state of a person, providing qualified assessments for different
emotions is more intuitive and straightforward for humans,
especially when precision is crucial. Moreover, there are
automated algorithms in literature (see, e.g., [55]) that detect
the emotions of a human from, e.g., their facial expressions.
Thus, we use the basic emotions, according to [56] (i.e.,
surprise, joy, sadness, fear, anger, disgust, trust, anticipation)
as the feedback for RL. Hence, in order to learn about the
impact of its social interactive behaviors, the SAR keeps
track of the emotions of the human, and adapt its interactive
behaviors accordingly to maintain the HRCIs.
Remark 2: In case real-time detection of the emotions

from the images/videos that capture the facial/body expres-
sions of humans is challenging or impossible (e.g., for people
in advanced stages of dementia or with the Parkinson’s
disease [57]) an additional FLC module may be used that
estimates the state-of-mind from other measurable variables.
Such an FLC module can be expanded to include the impact
of the environmental and external circumstances (e.g., the
weather condition, the stress level, the quality of sleep; see,

e.g., [58], [59] on how these variables can be obtained) on the
state-of-mind. This, however, is out of the scope of this paper.

In general, emotions, which are the main user feedback
received by the integrated behavioral control paradigm,
are experienced and assessed by humans in fuzzy terms,
which lack clear distinctions. For instance, joy and sadness,
although opposite, may at the same time be experienced by
a person. For proper incorporation of this fuzziness into the
analysis and computations for the decision making of SARs,
the emotions are represented as fuzzy variables, which allow
the overlapping emotions that may simultaneously exist (e.g.,
joy and sadness) to be represented via fuzzy membership
functions with overlaps.

The fuzzy scores for the emotions provided by a user will
be injected into a FIS that estimates the current state-of-mind
of the human, according to a fuzzy rule base (see Figure 3).
The corresponding fuzzy rules are generally given by:

Fuzzy rule for estimating the state-of-mind
If emotion 1 is E1,i1 and . . . and emotion nemot is

Enemot,inemot , then state-of-mind is Sℓ.
where emotion 1, . . . , emotion nemot are nemot different
emotions, especially those that are correlated (e.g., surprise
and trust), and E1,i1 , . . . , Enemot,inemot for i1 = 1, . . . ,N e

1 ,
. . . , inemot = 1, . . . ,N e

nemot are fuzzy sets corresponding to
the linguistic terms that categorize these emotions, with N e

1 ,
. . . , N e

nemot the number of these categories. Moreover, Sℓ for
ℓ = 1, . . . ,N s is a fuzzy set that represents the linguistic term
that describes the state-of-mind, with N s the total number of
these linguistic terms.

Next, another FIS is used to assign a reward to the action of
the SAR that has resulted in this state-of-mind for the human.

4) FUZZY-LOGIC-BASED REWARD MODULE
One of the fundamental challenges in the implementation
of RL for real-life problems is to choose a suitable and
relevant reward function for the given application [60], [61].
In particular, for our application of RL, i.e., steering the social
interactive behavior of SARs, there are no mathematical
functions that explicitly describe how emotions, state-of-
mind, and criteria of success in social interactions are
related. However, such relationships can be formulated
intuitively, using linguistic fuzzy rules. Thus, we propose a
FIS to compute the rewards based on both the quality and
the intensity of the changes, with respect to the previous
interaction step, in the state-of-mind.

For instance, if the state-of-mind of a human is improved
(is worsened) after interacting with the SAR, the correspond-
ing decision of the SAR is rewarded (is punished). This
implies rewarding the SAR based on the influence it has
on the quality of the changes in the state-of-mind of the
person. Moreover, an intense change in the state-of-mind
of the person is rewarded/punished more significantly. For
example, if the state-of-mind transitions from very sad to
happy, the corresponding reward is more significant than
when the state-of-mind transitions from happy to very happy.
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Algorithm 1 Reward Estimation Procedure for the RL
Module, Based on the Emotions (feedback) Captured From
Humans
Variables, functions, and parameters

k: Counter for the interaction steps
k int: Last interaction step
Ek : Set of all emotions of the human relevant for the
HRCI, given as fuzzy values at interaction step k
S̃k : Sate-of-mind of the human, given as a fuzzy value,
for interaction step k
FISSoM(·): Fuzzy inference system estimating the state-
of-mind of the human based on the emotions
FISQoR(·): Fuzzy inference system estimating the quality
component of the reward for the RL module, based on
the current state-of-mind of the human
FISIoR(·, ·): Fuzzy inference system estimating the
intensity component of the reward for the RL module,
based on the current and previous states-of-mind of the
human
w1 and w2: Given weight parameters
ρk : Reward of the RL module for interaction step k
Q̃k : Fuzzy quality component of the reward estimated for
the RL module at interaction step k
Ĩk : Fuzzy intensity component of the reward estimated
for the RL module at interaction step k
Defuzzify(·): Operator that defuzzifies fuzzy inputs

Reward estimation process
1: k ← 1
2: while k < k int do
3: Collect Ek from the human
4: S̃k ← FISSoM(Ek )
5: Q̃k ← FISQoR(S̃k )
6: if k > 1 then
7: Ĩk ← FISIoR(S̃k−1, S̃k )
8: else
9: k ← k + 1
10: Go to line 2
11: end if
12: ρk ← w1 Defuzzify(Q̃k )+ w2 Defuzzify(Ĩk )
13: k ← k + 1
14: end while

This implies that the rewarding is also based on the intensity
of the influence of the SARon the state-of-mind of the person.
Correspondingly, when the initial state-of-mind of the person
is sk and the SAR takes action ak , which results in state-of-
mind sk+1(ak ), the reward r (sk , ak) is given by:

r (sk , ak) = w1rquality (sk+1(ak ))+ w2r intensity (sk , sk+1(ak ))
(1)

where rquality (sk+1(ak )) and r intensity (sk , sk+1(ak )) are the
partial rewards based on, respectively, the quality of the new
state-of-mind and the intensity of the change in the state-
of-mind, and w1 and w2 are weights. The fuzzy rules for
determining these two components are generally given by:

Fuzzy rules for determining the reward
If new state-of-mind is Si, then quality component of the

reward is Qℓ.

If new state-of-mind is Si and old state-of-mind isOj, then
intensity component of the reward is Im.
with Si and Oj the linguistic terms that describe the new
and old states-of-mind, Qℓ and Im the linguistic terms that
describe the quality and intensity components of the reward,
i, j = 1, . . . ,N s, ℓ = 1, . . . ,N q, m = 1, . . . ,N i, and N q and
N i the number of the linguistic categories for, respectively,
the quality and intensity components of the reward. The
fuzzy-logic-based reward module uses a Mamdani FIS with
the center of gravity method for defuzzification.

The procedure of estimating the rewards for the RL
module, using FISs, has been summarized in Algorithm 1.
Remark 3: User feedback is incorporated into the pro-

posed behavioral control paradigm for SARs as follows:
During RL training, user emotions serve as primary feedback.
A FIS converts these emotions into states-of-mind, which
then inform another FIS to estimate rewards for the RL
module. This enables the RL module to learn actions suited
to various external and internal states for users. Once learning
converges, the FLC-based personalization module processes
user feedback, allowing the trained RL module to select
actions (based on Q-values) that best match the current state-
of-mind of the user (see the red arrow in Figure 3).

By using fuzzy logic at both the feedback interpretation
and reward shaping stages, the system ensures interpretabil-
ity, flexibility, and resilience to uncertainty, all being crucial
for real-world human-robot interaction.

III. EXPERIMENTS AND RESULTS
A road map that clarifies the body of this section has been
illustrated in Figure 7. In order to assess both the FLC-based
personalization module (see Section II-B) and the RL-based
adaptation module (see Section II-C) within the proposed
decision making paradigm for steering the social behavior of
SARs, a set of experiments were designed and executed.

A. EXPERIMENT DESIGN
This section explains the design of the experiments, as well
as the choice and processing of the data of the participants.

1) EXPERIMENTAL STAGES
The experiments were composed of three stages:
Stage one. We asked 20 volunteer participants to fill in an
online survey designed for the purpose of these experiments.
Their responses were used to identify the parameters of the
fuzzy membership functions used by the inference system of
the personalization module, and to evaluate the performance
of the identified FLC-based personalization module.
Stage two. We asked the same participants to fill in a second
online survey. The data gathered from the responses was used
to model an extensive number of virtual, computer-based
participants and their cognitive responses in interactions with
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FIGURE 7. Road map of the experiments and results section.

SARs. These simulated participants were then used both to
train and to evaluate the RL-based adaptation module.
Stage three. We compared the performance of the pro-
posed combined paradigm and a conventional RL-based
steering system that is common for SARs. We used the
computer-based simulated participants for the training and
evaluation of these two steering systems.

2) PARTICIPANTS
This research introduces very novel methods to steer SARs.
Accordingly, due to ethical and safety concerns, preliminary
proofs-of-concept are required before involving humans,
especially vulnerable or sensitive groups who are the main
target groups that will benefit from SARs. Moreover, running
the experiments, which involve trial-and-error-based training,
identification, and validation phases, with real participants
may in general be frustrating, potentially harmful, or boring,
such that the reliability of the results is impacted. With
computer-based simulated participants, however, a large
number of interactions can be conducted and analyzed in a
reasonable time. Furthermore, a wide variety of interactive
scenarios, including different potential responses of the
simulated participants to the decisions of a SAR that uses
the proposed adaptation approach, can be simulated and
assessed. Obtaining such level of variety is overly difficult,
if not impossible, by considering even large groups of people.

At this stage of the research, we thus used data from
participants who do not belong to vulnerable, sensitive
groups with cognitive impairments, and computer-based
simulated participants for modeling long-term interactions
with a SAR that uses the proposed FLC-based and RL-
based personalization and adaptation approaches. Never-
theless, these mechanisms have been developed according
to generalized theories given in Sections II-B and II-C.
Therefore, if they prove effective for human-SAR interactions
with rules and policies that have been identified and trained
based on the cognitive needs of the participants without
cognitive impairments, by adjusting the rule base and the
policies according to the cognitive needs of participants with

cognitive impairments (e.g., dementia patients), the approach
is expected to work properly.

B. IMPLEMENTATION
Next, we provide details on the implementations, the deduc-
tion of the required information based on the data gathered
from our participants, and the processing procedures of the
data in order to generate the personalization FLC module.
We also present the corresponding results and discussions.

1) STAGE ONE: ASSESSING THE FLC-BASED
PERSONALIZATION MODULE
The FLC-based personalization module (see Section II-B
and Figure 3) computes, based on the scores of the Big
Five personality test for a particular participant, the initial
values for the 7 behavioral parameters (amount of speech,
volume of speech, number of gestures, relative number of
interactive (energetic vs cautious) comments, relative num-
ber of motivating (cooperative vs challenging) comments,
relative number of realistic and nurturing feedback, and the
proxemics) that a SAR uses in interactions with that person.

a: SETUP & FIRST ONLINE SURVEY
Appendix D gives detailed information on the rule bases of
the FISs that were used to adjust the scores of the personality
traits and to personalize the behavioral elements of the
SARs based on these scores (see Table 5 designed based
on [12], [38], [62], and Figures 23 and 24 in Appendix D).
Fine-tuning the personality scores of the participants with
respect to their environmental variations (e.g., the weather
conditions, the level of stress, the quality of sleep) requires
extensive interactions that expose the participants to different
circumstances, such that there is enough data that reflects the
variations in the preferences of the participants with respect
to these external factors. We thus excluded this from the
experiments.

An online anonymous survey was designed and shared
with the participants, who were asked to first fill in the Big
Five personality test [42] and enter their scores in the survey
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(see Figure 25 in Appendix D). Then, they were asked to
provide their answers to 10 questions that assessed, on a scale
from 1 to 5 (with a step of 0.1), their preferences in various
social interactive scenarios (see Figure 26 in Appendix D for
an example question from the survey). The complete survey
is accessible online via [63]. Out of the 20 sets of results
obtained from the survey, 14 datasets were used to identify
the membership functions of the FLC-based personalization
module, and 6 datasets were used to validate these functions.

b: ASSESSMENT CRITERIA
The criteria used to train and validate the personalization
module included the root mean squared error (RMSE):

RMSE(i) =

√√√√∑N part

j=1

(
bFLCj (i)− bpartj (i)

)2
N part (2)

with i an index for the behavioral element of the SAR
(i = 1 for the amount of speech, i = 2 for the volume
of speech, i = 3 for the number of gestures, i =
4 for the relative number of interactive (energetic/cautious)
comments, i = 5 for the relative number of motivating
(cooperative/challenging) comments, i = 6 for the relative
number of realistic and nurturing feedback, i = 7 for the
proxemics), bFLCj (i) the value of the behavioral parameter
computed by the FLC-based personalization module for
interaction with participant j, bpartj (i) the preferred value of
the behavioral parameter for participant j based on the results
obtained from the online survey, and N part the number of
participants.

Additionally, the scatter index (SI) was used to account for
the range over which the different values were observed:

SI(i) =
RMSE(i)

1
N part

N part∑
j=1

bFLCj (i)

(3)

c: RESULTS AND DISCUSSION OF THE RESULTS
The personalization module generates a candidate output for
each behavioral element of the SAR based on the consequent
of the fuzzy rules (see Table 5, Appendix D). Thus, first, the
parameters of the fuzzy membership functions that represent
the terms in the consequent of the rules (e.g., low, soft,
neutral, loud, . . . ) were identified such that the RMSE for the
output of the identified FIS with respect to the training dataset
(i.e., the responses that were provided by the 14 participants
of the first online survey, whose data was included in the
training dataset) was minimized. Figure 24 in Appendix D
illustrates the identified membership functions.

The identified personalization module was then evaluated
via the validation dataset (which included the responses of
the other 6 participants of the first online survey). Figure 8
shows the scores, based on the Big Five personality test, for
the extroversion, agreeableness, and neuroticism for these
participants, denoted by P1, . . . , P6. The outputs for the

FIGURE 8. Personality scores corresponding to the validation data set.

7 behavioral elements of the SAR, as preferred by the
participants according to the identified personalization FLC
module, were compared and illustrated in Figures 9-15. These
outputs were scaled to the range of 1 to 5, which matches the
scaling of the answers by the participants for the first online
survey.

Moreover, the corresponding values of RMSE and SI are
displayed in Table 2, where the values in the second column
of the table are the RMSE values within the scaled range of
1 to 5 and the values in the third column display the RMSE
values within the real range of that behavioral element.

The comparative bar plots shown in Figures 9-15, as well
as the values for the RMSE and the SI given in Table 2, imply
that the personalization module performs satisfactorily (i.e.,
an RMSE ≤ 14.5% and an SI ≤ 25%) for various behavioral
elements of the SAR. The only exception is for the amount
of the realistic versus nurturing comments where the RMSE
and the SI go up to 23.6% and 52.6%, respectively. Based
on the bar plots in Figure III-B1c, the larger values for the
RMSE and SI are due to the results for participant P2, who
shows the largest variation in the 3 different personality traits
compared to others. Since the parameters are identified for
all the participants at once, it is expected that for outliers the
errors are significant. Moreover, since the RMSE (see (2)) is
based on the squared values of the errors for the individual
participants, the outliers are penalized relatively heavily.

The results are expected to improve when situating partici-
pants in real-life scenarios instead of asking them to imagine
themselves in social interactions. Imagining that, particularly
to distinguish their preference regarding receiving realistic
or nurturing comments, may be challenging for multiple
participants. In case with a larger group of participants the
RMSE and SI do not improve, instead of re-identifying the
parameters of the membership functions, the formulation of
the fuzzy rules in Table 5 may be adjusted according to the
preferences of the participants.

2) STAGE TWO: ASSESSING THE RL-BASED ADAPTATION
MODULE
The setup and implementation of the experiments for assess-
ing the RL-based adaptation module, including the state-
of-mind estimation module, the fuzzy-logic-based reward
module, and the RL update module (see Section II-C and
Figure 3) are explained next.
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TABLE 2. The RMSE and SI values for different behavioral elements of the SAR, computed via the identified personalization FLC module and as specified
by the participants of the first online survey.

FIGURE 9. Comparing the output of the identified personalization
module(shown via the orange bars) for the amount of speech of the SAR
wheninteracting with the participants in the validation set with the
preferences(shown via the blue bars) that have been specified by the
participantsthemselves in the first online survey.

FIGURE 10. Comparing the output of the identified personalization
module(shown via the orange bars) for the volume of speech of the SAR
wheninteracting with the participants in the validation set with the
preferences(shown via the blue bars) that have been specified by the
participantsthemselves in the first online survey.

FIGURE 11. Comparing the output of the identified personalization
module(shown via the orange bars) for the number of gestures of the SAR
wheninteracting with the participants in the validation set with the
preferences(shown via the blue bars) that have been specified by the
participantsthemselves in the first online survey.

a: SETUP & SECOND ONLINE SURVEY
Appendix E gives detailed information on the rule bases of
the FISs used to estimate the state-of-mind and the reward
for the RL-based adaptation module of the SARs.

FIGURE 12. Comparing the output of the identified personalization
module (shown via the orange bars)for energetic versus cautious
comments by the SAR when interacting with the participants in the
validation setwith the preferences (shown via the blue bars) that have
been specified by the participants themselves in the first online survey.

FIGURE 13. Comparing the output of the identified personalization
module (shown via the orange bars)for cooperative versus challenging
comments by the SAR when interacting with the participants in the
validation setwith the preferences (shown via the blue bars) that have
been specified by the participants themselves in the first online survey.

FIGURE 14. Comparing the output of the identified personalization
module (shown via the orange bars)for realistic versus nurturing
comments by the SAR when interacting with the participants in the
validation setwith the preferences (shown via the blue bars) that have
been specified by the participants themselves in the first online survey.

The state-of-mind estimation module uses a Mamdani
FIS to determine the overall state-of-mind of a person as
a fuzzy variable that adopts very good, good, neutral, bad,
or very bad. The FIS receives the quantified scores (on a
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FIGURE 15. Comparing the output of the identified personalization
module (shown via the orange bars)for the proxemics of the SAR when
interacting with the participants in the validation setwith the preferences
(shown via the blue bars) that have been specified by the participants
themselves in the first online survey.

continuous range from 0 to 100) or the fuzzy evaluations
(very high, high, low, very low) provided by a person about
their emotions, including surprise, joy, sadness, fear, anger,
disgust, trust, anticipation. The rules used by the FIS are given
in Table 6, Appendix E: Some rules are fired via two input
values regarding two different emotions, where these inputs
are aggregated by an adjunct operator (logical and). Other
rules are fired by only one input, i.e., the (fuzzy) value for one
emotion or for two emotions that have been aggregated via
a conjunct operator (logical or). The membership functions
for describing the terms in the antecedent and consequent of
the rules are illustrated in Figures 27 and 28 of Appendix E.
If none of the fuzzy rules in Table 6 are fired, then the state-
of-mind will be set to neutral.

The reward of the RL-based adaptation module is com-
posed of an absolute (depending on the current state-of-mind
of the person) and a relative (depending on the changes in
the state-of-mind of the person) term. A set of rules that have
been given in Table 7 of Appendix E is used to generate the
value of the absolute component of the reward based on the
state-of-mind of the person. For instance, if the updated state-
of-mind of the person is either good or very good, a positive
absolute reward of, respectively, 1.5 and 2.5 is given. This is
equivalent to a simple, static Takagi-Sugeno-Kang FIS. For
estimation of the relative component of the reward, a fuzzy
Mamdani inference system is used with the rule base given
in Table 8 of Appendix E. These rules suggest a fuzzy value
for the relative component of the reward that adopts very
negative, negative, neutral, positive, or very positive, based
on the inputs, the previous and the current state-of-mind of
the person given as a fuzzy value. Thus, the fuzzy outputs
of the state-of-mind estimation module for the previous and
current state-of-mind can directly be used as the input of this
Mamdani FIS. The terms in the consequent of these rules are
described by the membership functions that are illustrated in
Figure 29 of Appendix E.

In the next section, we explain how simulated participants
were generated to train and assess the RL-based adaptation
module. In order to generate simulated participants that make
realistic sense and that cover a wide range of personalities,
we designed and conducted a second online survey, accessible

via [64]. The participants of the survey were the same as
for the first survey. They were asked to qualify the changes
in their state-of-mind due to experiencing specific behaviors
from a friend or partner in 160 different interactive scenarios.
Per scenario, a hypothetical situation was pictured. The
participant was asked to consider a given initial state-of-mind.
A particular interaction was then described where the friend
or partner would show particular behaviors (based on the
interactive behavioral elements considered for the SAR). The
participant was asked to qualify their state-of-mind variations
according to very positively, positively, neutrally, negatively,
very negatively. Next we explain how the results of the survey
were used to simulate computer-based participants.

b: COMPUTER-BASED SIMULATED PARTICIPANTS
Since the RL-based adaptation module works based on
the feedback (i.e., the emotions) from the participants (see
Section II-C3 for details), the emotional response (i.e., the
score for the eight basic emotions) to various behaviors of
the SAR for the simulated participants should be modeled.
Stochastic models were developed that, for any state-of-mind
and change in behavioral parameters of the SAR, generate the
probability that the resulting value of the emotions surprise,
joy, sadness, fear, anger, disgust, trust, anticipation, for the
participant would fall in [0, 25], (25, 50], (25, 75], (75, 100].

Table 9 in Appendix E shows an example of such a stochas-
tic model, providing the emotional response of a simulated
participant for the emotion surprise to the variations that the
SAR makes in its volume of speech. The scores associated
to the emotion per behavioral parameter that the SAR selects
have been divided into four ranges, [0, 25], (25, 50], (50, 75],
(75, 100]. The probabilities assigned to these ranges for
each fuzzy state-of-mind (very bad, bad, neutral, good, very
good) of the simulated participant represent the likelihood
that a score within that range is provided in response
to the behavioral parameter change (i.e., increase a lot,
increase, decrease a lot, decrease). For instance, when the
state-of-mind of this simulated participant is good, and the
SAR selects ‘‘increase a lot’’ for its volume of speech,
the probability that the score for the emotion surprise of
the simulated participant is in the ranges [0, 25], (25, 50],
(50, 75], (75, 100], is, respectively, 0%, 20%, 30%, 50%.

Using the results of the second online survey, we deduced
the stochastic models that generate the same results as those
provided by the participants of the online survey. We then
expanded the set of the simulated participants by randomly
fluctuating the parameters of these stochastic models, such
that a wider range of 100 potential participants is simulated.

c: ASSESSMENT CRITERIA
The computer-based simulated participants were used to
train and validate the RL-based adaptation module. We used
the Q-learning algorithm (see Appendix C for details). The
criteria of assessing the training and validation processes
included, respectively, the convergence tolerance of the
learning and the suitability of the behavior in response to
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FIGURE 16. Evolution of the changes in the average Q-values during
105simulated interactions for a simulated participantthat was modeled
according the real data from one of the participants of the second online
survey.

FIGURE 17. Evolution of the changes in the average Q-values during
105simulated interactionsfor a randomly generated simulated
participant,which was modeled by small (bounded) fluctuations in the
real-lifedata that has been gathered from one of the participants of the
second online survey:In this case the model of the simulated participant
was once more changedat interaction 5 × 104 in order to assess the
robustness of the learning procedureto changes in the cognitive
responses of a person.

different emotional states of a simulated participant by a
SAR that used the trained RL-based adaptation module. For
the convergence tolerance, the evolution of the changes in
average Q-values during a maximum of 105 interactions was
scanned. In case the absolute value of the evolution (i.e.,
the absolute difference of two consecutive average Q-values)
remained below 5× 10−5, convergence was considered. For
the performance of the trained RL-based adaptation module
(i.e., suitability of the chosen behavior), action ap,σ proposed
by the trained RL-based adaptation module to the SAR
in interaction scenario σ with simulated participant p was
compared with action aproperp,σ that, according to the stochastic
models of participant p, and using the fuzzy-logic-based
reward module, resulted in the highest reward for participant
p during scenario σ .
For example, for the participant modeled via Table 9 in

Appendix E, when the current state-of-mind is very good, and
the SAR selects ‘increase a lot’ for the volume of speech, the
average expected value for surprise is 0.3(62.5)+ 0.7(87.5).
For all possible behavioral elements for the SAR, this average
expected value is estimated and goes through the fuzzy-
logic-based reward module to determine the corresponding
reward. The action that corresponds to the highest reward is
considered as the proper action aproperp,σ .
Since 7 behavioral elements for the SAR per state-of-mind

of a participant exist, the total number of possible scenarios

for all the 5 states-of-mind for a participant is 35. Therefore,
the accuracy αRL

p of the trained RL-based adaptation module
for simulated participant p was calculated via:

αRL
p =

∑35
σ=1 βRL

p,σ

35
. (4a)

where we have:

βRL
p,σ =

{
1 ap,σ = aproperp,σ

0 ap,σ ̸= aproperp,σ
(4b)

d: RESULTS AND DISCUSSION OF THE RESULTS
Figure 16 shows the evolution of the changes in the
average Q-values during the training procedure of the
RL-based adaptation module for a computer-based simulated
participant, modeled based on the real data of one of the
participants. The training procedure covered 105 interactions,
where, to keep the figure readable, the average absolute
change in the Q-values has been plotted per 100 interactions
(see the blue curve in Figure 16). Moreover, the average
overall trend of the evolution has been shown by the orange
curve. The plot shows that the difference in the average
Q-values for consecutive interactions decreases during the
training interactions, and that the learning process eventually
converges. More accurately, from interaction 3.64 × 104

onward, the slope of the orange curve remains under 5 ×
10−5. The performance accuracy of the RL-based adaptation
module is 84.3%.

Figure 17 shows the evolution of the changes in the
average Q-values during the learning process for one of the
100 randomly generated simulated participants. In order to
assess the robustness of the learning process, the model was
changed slightly at interaction 5×104. The plot shows that the
difference in average Q-values decreases consistently, where
around interaction 5 × 104, i.e., when the stochastic model
of the simulated participant fluctuates, a slight increase is
observed. Soon after, however, the average Q-values continue
to decline consistently again. The performance accuracy of
the RL-based adaptation module is 82.9%.

The RL-based adaptation module converged for all models
that were based on the real participants. In average, the
learning convergence occurred around the training interaction
3.4917 × 104, and the average performance accuracy of
the trained RL-based adaptation module is 84.3%. For the
100 participants that were simulated by expanding the initial
models of the real participants, the convergence occurred,
in average, around training interaction 2.8472 × 104 before
themodels were changed (i.e., before interaction 5×104), and
around training interaction 5.4060×104 after themodels were
changed. Thus, the second convergence needed less training
interactions. The average performance accuracy of the trained
RL-based adaptation module is 81.7%.

The slightly smaller average performance accuracy for the
extended set of simulated participants may be due to the fact
that (1) there is more variation in the stochastic models, and
that (2) the models provide more dynamic and widespread
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cognitive preferences compared to models generated based
on real data from the participants of the surveys.

3) STAGE THREE: COMPARING THE PROPOSED PARADIGM
AND CONVENTIONAL RL-BASED STEERING METHODS FOR
SARS
In this section, we compare the performance of the com-
bined FLC-based personalization and RL-based adaptation
modules for steering the social interactive behaviors of
a SAR and a frequently-used approach that is based on
conventional RL. The question is whether or not combining
the personalization and adaptation procedures and integrating
human-inspired and learning-based methods will allow the
autonomous decisions of the SAR to converge faster to high-
performing ones.

a: SETUP
From the computer-based simulated participants based on the
real data from the participants of the surveys, 6 representative
ones were selected to train and validate the steering meth-
ods. For the combined paradigm, the RL-based adaptation
module was warm-started via the outputs of the FLC-based
personalization module. For the conventional RL method the
initialization was random.

b: ASSESSMENT CRITERIA
The number nconverge of the successful convergences from all
the 35 scenarios possible for a participant, the convergence
speed given as the number κconverge of the interactions when
convergence has occurred, and the performance accuracy
α of the two steering approaches are compared for all
combinations of the state-of-mind of the each simulated
participant and the 7 behavioral elements of the SAR.

c: RESULTS AND DISCUSSION OF THE RESULTS
From the results, given in Table 3, the number nconverge

of successful convergences for the combined paradigm
was significantly larger than for the conventional RL-based
method. For the combined paradigm, in only 1 case the
learning did not converge. The number of the convergence
interactions κconverge for the combined paradigm was in
average 13.6 % smaller than for the conventional RL-
based method. This implies, as it was hypothesized, that the
FLC-based personalization module properly initializes the
RL-based adaptation module of the SAR, leading to a faster
convergence.

When the combined paradigm was trained, it always had
a larger performance accuracy than the conventional RL-
basedmodule.More precisely, themaximum difference in the
performance accuracy was 7.9% (participant 1 in Table 3) and
the average difference for all cases was 4.7%.

C. SUMMARIZED OVERVIEW OF THE RESULTS
The main findings based on the results of the case study are
summarized below:

• Incorporating a fuzzy-logic-based personalization
approach significantly enhances SAR decision making,
yielding interactions that align with the needs and
preferences of the participants:
– Optimizing membership functions via RMSE min-

imization (based on data from 20 participants),
resulted in a very satisfactory performance across
most behavioral elements (RMSE ≤ 14.5%,
SI ≤ 25%), except for ‘‘realistic vs. nurturing
comments’’ (RMSE = 23.6%, SI = 52.6%) due
to an outlier.

– RMSE penalized outliers more heavily due to its
squared-error formulation.

• Leveraging RL, warm-started by the fuzzy-logic-based
personalization module, enables real-time adaptation to
dynamics of state-of-mind:
– Training the RL-based adaptation module with

105 interactions using computer-based simulated
participants led to consistent convergence after,
on average, 3.64× 104 interactions.

– The trained adaptation module achieved 84.3%
accuracy for simulated participants.

– Robustness testing with 100 randomly generated
participants, showed initial learning convergence
after 2.8472× 104 interactions, with a significantly
faster re-convergence (after, on average, 4.06 ×
103 interactions) after model deviation.

– The extended test group showed a slightly lower
average accuracy of 81.7%, due to greater varia-
tions and extreme cases in simulated participants.

• The paradigm integrating fuzzy-logic-based personal-
ization and RL-based adaptation modules significantly
outperforms conventional RL methods used for steering
the behavior of SARs. The key advantages of such
integration, in particular, are:
– Convergence rate, according to the results, was

significantly higher (i.e., learning failed only once,
while conventional RL faced multiple failures).

– Learning was faster, requiring 13.6% fewer training
interactions for convergence.

– Accuracy was higher, outperforming standard RL
in all cases, with a maximum accuracy gain of 7.9%
and an average improvement of 4.7%.

These results confirm that the fuzzy-logic-based personal-
ization module provides a strong initialization for the RL-
based adaptation module, leading to faster and more effective
learning in SAR decision making.

IV. CONCLUSION AND FUTURE RESEARCH
We proposed a novel paradigm to steer the social interactive
behavior of socially assistive robots (SARs). This paradigm
integrates two highly effective modeling and control meth-
ods, i.e., fuzzy logic control (FLC) and reinforcement learn-
ing (RL) in a novel way, allowing SARs to systematically
personalize their behavior to various users and adapt their
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TABLE 3. The results for the combined FLC-RL-based steering paradigm and the conventional RL-based steering method for social interactive behavior of
SARs.

interactions based on changes in their state-of-mind during
the interactions. This steering system is generalizable, i.e.,
it has not been developed for a specific case study or
interactive task and benefits from general theories that can be
adopted for human-robot cognitive interactions (HRCIs) with
varying goals. We ran extensive computer-based simulations
for validation and comparison of the proposed paradigm
with conventional RL, the most common method for steering
SARs. The experiments were designed based on real-life data
from extensive online surveys with 20 volunteer participants.

a: COMPARISON WITH EXISTING STUDIES
The learning procedure of the proposed RL-based adaptation
module is warm-started by the outputs of the FLC-based
personalization module. This significantly reduces the num-
ber of the exhausting, potentially harmful, trial-and-error-
based interactions with humans, as confirmed by the results
of our experiments (a reduction of almost 14%). Moreover,
by including three FLC-based modules (for personalization,
for estimation of the state-of-mind of the human, and for
generating a reward according to the evolution of this state-
of-mind), in addition to improved learning convergence, the
performance accuracy of the proposed combined paradigm
was improved for up to 8% compared to conventional RL.

b: IMPLICATIONS FOR REAL-LIFE APPLICATIONS
Following a human-centered engineering approach, we
allowed the needs of humans to serve as the main objectives
and constraints in developing the behavioral steering system
of SARs, through a novel systematic integration of FLC and
RL. The follow-up stage of this research will be to implement
this in real-life experimental setups, based on:

• Designing a plan for long-term evaluation of the impacts
of the SAR on physical and mental health, well-being,
and cognitive enhancement of elderly users

• Ensuring compliance with ethical laws, norms, and
standards for service/medical robots

• Developing clear and transparent consent procedures so
that the participants understand the purposes and data
collection policies of the experiments

• Interviewing the users, caregivers, and healthcare staff
to identify specific needs of each group of users, and to
tune the range of the actions of the robot accordingly

• Foreseeing and deploying essential measures to protect
the privacy and confidentiality of the data that is
collected during the experiments

• Scheduling introduction and supervised training ses-
sions for the participants on how to work safely with the
SAR or to seek help whenever needed

• Establishing support frameworks to address potential
questions that may raise during the experiments

• Running real-time monitoring and detection methods to
address unexpected risks in timely manners

c: LIMITATIONS AND FUTURE WORK
We proposed a novel, human-centered engineering approach
for personalized and adaptable human-robot cognitive inter-
actions between SARs and elderly users. While the develop-
ment of such systematic methods is grounded in engineering
principles, the users are the central factor in identifying,
formulating, and incorporating the requirements, objectives,
and constraints of the methods and evaluation metrics.
Therefore, the primary proofs-of-concept provided in this
paper combine requirements and inputs gathered via surveys
from humans, with computer-based simulations. These will
serve the next stage of the research where the proposed
paradigm will be evaluated in real-world interactions with
diverse populations of users. During these experiments, the
methods, parameters, and rules of the FISs will be refined if
needed, considering human-focused subjective and objective
metrics.

A key technical challenge to be addressed for real-world
implementation is the computational complexity arising from
the large state-action space of the RL module and the
fuzzy operations on extensive rule bases. To mitigate this,
we propose several strategies.

First, as suggested in [65], incorporating expert-defined
rules into the RL process through a modified actor-critic
framework can significantly reduce the exploration of
sub-optimal regions in the the state-action space, thereby
improving sample efficiency and reducing computational
demand.

Second, following modularity principles as described
in [66], the architecture can be decomposed into indepen-
dently manageable components, enabling localized optimiza-
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TABLE 4. Mathematical notations used in the paper.

tion and parallel processing, which in turn lowers the overall
computational load on the system.

Additionally, we propose employing fuzzy rule clustering
and weighting techniques [7], which allow for filtering
and prioritization of relevant rules, thereby avoiding the
exhaustive evaluation of the entire rule base for each FIS.

To further enhance real-time feasibility, pre-training of
fuzzy membership functions and offline tuning of RL
parameters can be carried out prior to deployment.

Lastly, the use of lightweight approximators [67] within
the RL module can maintain learning performance while
significantly reducing computational overhead.
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Collectively, these approaches improve the computational
efficiency of the integrated decision making paradigm,
making it more practical for real-time deployment in SAR
applications.

APPENDIX A
MATHEMATICAL NOTATIONS
This section represents a list of the mathematical notations
that are used in the paper, together with their definitions.

APPENDIX B
FUZZY LOGIC CONTROL SYSTEMS
Fuzzy logic control (FLC) is one of the best choices for cases
where instead of mathematical models, heuristic human-
inspired reasoning is available or is preferred.

Fuzzy rules are the core of FLC-based controllers, and
are described as logical if-then statements (propositions) that
include linguistic terms. These terms are mathematically
represented by fuzzy sets, as opposed to crisp sets.

While in classical logic, an element either belongs to or
does not belong to a crisp set, in fuzzy logic, elements may
partially belong to fuzzy sets. Consequently, fuzzy sets handle
ambiguous data, and are thus used to mathematically model
linguistic terms, which humans use in their reasoning. For
instance, for a given temperature range, e.g., [0◦C, 45◦C], the
term ‘‘warm’’ is represented by a fuzzy set, to which each
temperature in the given interval belongs with a membership
degree in [0, 1].

The processes used in FLC are, in general, composed of
the following stages:
• Fuzzification, i.e., transforming real-life crisp input
values into fuzzy values, unless the inputs are already
fuzzy

• Fuzzy inference, i.e., evaluating the fuzzy input set
according to the fuzzy rule base, which includes all the
fuzzy rules of the FLC-based controller, and performing
an inference based on fuzzy operations on fuzzy sets to
provide a fuzzy output

• Defuzzification, i.e., converting the fuzzy output into a
crisp output that directly steers a real system

Figure 18 represents different elements of an FLC system.
In case the input to the FLC system is fuzzy (e.g., it is
a linguistic term that is provided directly via a human
user) this input is directly injected into the fuzzy inference
system. Otherwise, any crisp (non-fuzzy) input should first
be fuzzified.

APPENDIX C
Q-LEARNING AND DETAILED RESULTS FROM THE CASE
STUDY
Q-learning uses a value function Q : S × A → R that
quantifies the quality of any combination of the states and
actions within, respectively, S, i.e., the set of all states (in
this paper this represents the states-of-mind for a human
interacting with the SAR), and A, i.e., the set of all actions
(in this paper this represents the behavioral parameters of the

FIGURE 18. Schematic view of the two sub-modules of the
fuzzy-logic-control-based decision making module.

FIGURE 19. Evolution of the changes in the average reward values during
105simulated interactions for a simulated participantthat was modeled
according the real data from one of the participants of the second online
survey.

FIGURE 20. Evolution of the average reward values during 105simulated
interactions for a simulated participantthat was modeled according the
real data from one of the participants of the second online survey.

SAR). Note that R is the set of the real numbers. This value
function is numerically evaluated for various realizations
of the state-action pair during the training phase. For the
training iteration ℓ that corresponds to the interaction step
k , the realized value of the value function Q(·, ·|ℓ) for the
state-action pair (sk , ak ) is updated based on the realized
reward (for more details regarding the reward in HRCIs, see
Section II-C4 of the paper). The following relationship is used
to update the value of this value function, for the same state-
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TABLE 5. Fuzzy rule base for personalizing the behavioral elements of the SAR based on the personality trait scores.

FIGURE 21. Evolution of the changes in the average reward values during
105simulated interactions for one of the randomly simulated participants.

action pair, from iteration ℓ to iteration ℓ+ 1:

Q (sk , ak |ℓ+ 1) = Q (sk , ak |ℓ)

+ λ
(
r (sk , ak)+ γ max

α∈A
Q (sk+1(ak ), α|ℓ)− Q (sk , ak |ℓ)

)
(5)

where sk and ak are the values associated to the state variable
and the action at interaction step k ,Q (sk , ak |ℓ) is the realized
value of the value function Q(·, ·) at training iteration ℓ for
the state-action pair (sk , ak), λ is the learning rate of the
algorithm, r : S × A → R is the reward function with
r (sk , ak) the reward that the learning system (which in this
paper is the steering system of the social interactive behavior
of the SAR) obtains during the training phase for selecting

FIGURE 22. Evolution of the average reward values during 105simulated
interactions for one of the randomly simulated participants.

action ak when the state is sk , and γ is a discount factor.
Moreover, the state that will be realized at the next interaction
step, k + 1, if action ak is chosen at interaction step k is
shown by sk+1(ak ), and maxα∈A Q (sk+1(ak ), α|ℓ) evaluates
the maximum expected value of function Q(·, ·) at the next
interaction step, k + 1, for all possible actions α ∈ A and
based on the data that is available at training iteration ℓ.

In an ϵ-greedy Q-learning approach, with a chance
of ϵ a random action is chosen from A (this is called
the exploration), and with a chance of 1 − ϵ an action
is chosen that, based on the existing data, will result
in the highest realized value for the value function
Q(·, ·) at the upcoming interaction step (this is called
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FIGURE 23. Membership functions describing the quality of the linguistic termsused in the
antecedent of the fuzzy rules in Table 5.

FIGURE 24. Membership functions describing the quality of the linguistic termsused in the
consequent of the fuzzy rules in Table 5,after being tuned for the volunteer participants based
on the results of the online survey.
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FIGURE 25. A screenshot from the first online survey, where the participants were asked to take
and report the scores of the Big Five personality test.

FIGURE 26. A screenshot from an example question from the first online survey, where the
participants were asked to specify their preferred behavior in given social interactions.

FIGURE 27. Membership functions describing the quality of the linguistic termsin the antecedent of
the fuzzy rules in Table 6.

the exploitation). After sufficient number of training inter-
actions, the RL algorithm is expected to converge, i.e.,
the values of function Q(·, ·) do not change significantly
anymore.

Next, in Figures 19 and 21, we have presented the evolution
of the reward values during the training procedure of the
RL-based adaptation module for a computer-based simulated
participant, modeled based on the real data of one of the
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FIGURE 28. Membership functions describing the quality of the linguistic termsin the consequent of
the fuzzy rules in Table 6.

FIGURE 29. Membership functions describing the fuzzy terms in the consequent of the rulesgiven in
Table 8.

TABLE 6. Fuzzy rule base for the fuzzy inference system used by the state-of-mind estimation module.

participants as well as for one of the randomly generated
participants. The changes in these average reward values
almost follow a steady trend (see Figures 20 and 22).
Analyzing these results next to those for the Q-values given
in Figures 16 and 17 indicates that an optimal policy is being
followed (as is evidenced by the stabilized Q-values), while
exploration is still happening (due to an ϵ-greedy approach
with non-zero ϵ). Thus, while due to this exploration the RL
module still discovers actions with higher rewards, because
the Q-values are already stable, these discoveries do not
significantly affect the value function. Instead, they lead to
a higher reward accumulation.

APPENDIX D
ADDITIONAL DETAILS FOR THE EXPERIMENTS WITH THE
FLC-BASED PERSONALIZATION MODULE
This appendix includes the rule base and the fuzzy member-
ship functions that were used in the experiments of the paper
for the FLC-based personalization module.

TABLE 7. The rules that determine the absolute component of the reward
based on the new state-of-mind of the person the SAR interacts with.

In particular, Table 5 gives the fuzzy rule base that has been
designed for personalizing the 7 behavioral elements of the
SAR according to the scores for the three personality traits,
extroversion, agreeableness, and neuroticism. Figures 23
and 24 illustrate the fuzzy membership functions that
represent the linguistic terms that describe the, respectively,
antecedent and consequent of the fuzzy rules in this table.

Finally, Figures 25 and 26 show screenshots of parts of the
first online survey that was designed and conducted for the
experiments of this paper.
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TABLE 8. Fuzzy rule base for determining the relative component of the reward.

TABLE 9. Stochastic model for the emotional response of one simulated participant to the changes in the volume of the speech by the SAR.

APPENDIX E
ADDITIONAL DETAILS FOR THE EXPERIMENTS WITH THE
RL-BASED ADAPTATION MODULE
This appendix includes the rule base and the fuzzy member-
ship functions that were used in the experiments of the paper
for estimating the state-of-mind and the rewards for the RL-
based adaptation module.

In particular, Table 6 gives the filtered fuzzy rule base that
has been designed for estimating the state-of-mind based on
the feedback about the emotions of the person. Figures 27
and 28 illustrate the fuzzy membership functions that
represent the linguistic terms that describe the, respectively,
antecedent and consequent of the fuzzy rules in this table.

Table 7 shows the rules that are used to determine the
absolute component of the reward, based on the new state-
of-mind of the person that the SAR interacts with. Table 8
includes the fuzzy rule base that is used for determining the
relative component of the reward, with Figure 29 showing
the fuzzy membership functions that represent the linguistic
terms that describe the consequent of the fuzzy rules in this
table.

Finally, Table 9 shows an example stochastic model that
has been developed for the emotional response of a simulated

participant to the changes in the volume of the speech by the
SAR.

APPENDIX F
ABBREVIATIONS
The following table includes the definition for the abbrevia-
tions that are used throughout the paper:
• FLC: Fuzzy logic control
• FIS: Fuzzy inference system
• HRCI: Human-robot cognitive interaction
• RL: Reinforcement learning
• SAR: Socially assistive robot
• RMSE: Root mean squared error
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