
Cognitive Robotics

Continuously learning where to
go next from observing pedestri-
ans

Denesh Kumar Manivannan

M
as

te
ro

fS
cie

nc
e

Th
es

is

Continuously learning where to go
next from observing pedestrians

Master of Science Thesis

For the degree of Master of Science in Robotics at Delft University of
Technology

Thesis Committee :

Dr. Javier Alonso Mora
Dr. Laura Ferranti
Dr. Luca Laurenti

Msc. Luzia Knoedler

Institution : Delft University of Technology

Place: Faculty of Mechanical, Maritime and Materials Engineering
(3mE) · Delft

Program: MSc. Robotics

November 22, 2022

Cover Image credits: MIT Jackal robot

Copyright © Cognitive Robotics (CoR)
All rights reserved.

Delft University of Technology
Department of

Cognitive Robotics (CoR)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Continuously learning where to go next from observing pedestrians

by
Denesh Kumar Manivannan

in partial fulfillment of the requirements for the degree of
Master of Science Robotics

Dated: November 22, 2022

Supervisor(s):
Dr. Javier Alonso Mora

Msc. Luzia Knoedler

Reader(s):
Dr. Laura Ferranti

Dr. Luca Laurenti

Abstract

Socially compliant robot navigation in pedestrian environments remains challenging owing
to uncertainty in human behavior and varying pedestrian preferences in different social con-
texts. Local optimization planners like Model Predictive Control can incorporate collision
avoidance constraints, but they can only lead to socially compliant trajectories if the cost
function embeds information about the desired social behavior. The same holds for Rein-
forcement Learning, where a sophisticated reward function needs to be defined. However,
formalizing social behavior through a reward or cost function is difficult due to the complex
nature of pedestrian behavior. Imitation learning allows for inferring the desired behavior
by learning from human demonstrations, making them suitable for learning socially compli-
ant navigation policies but without any safety considerations. In this work, we propose to
learn a socially compliant navigation policy directly by observing surrounding pedestrians’
trajectories from a commonly available detection and tracking pipeline and combine it with a
local optimization planner to enhance safety. A Subgoal Recommender policy is developed to
guide the local optimization planner to generate socially compliant trajectories by providing
intermediate subgoals. To adapt the policy to changing social contexts without forgetting
previously learned information, we train the Subgoal Recommender in a Continual Learning
setup exploiting new pedestrian data.

We demonstrate in simulation that our method can learn a policy that has similar performance
metrics as that of the observed trajectories with 95% confidence estimated from a t-test,
resulting in a lesser number of collisions. Further, the policy can adapt to different social
preferences exhibited by pedestrians, while being able to remember the learned behavior in a
previously encountered social context. Furthermore, we show that our proposed method can
learn navigation policies from actual pedestrian data recorded using the onboard perception
pipeline of a Clearpath Jackal robot.

Master of Science Thesis Denesh Kumar Manivannan

ii

Denesh Kumar Manivannan Master of Science Thesis

Acknowledgements

I want to thank Dr. Javier Alonso Mora for granting me the opportunity to work in the Au-
tonomous Mobile Robots Lab and supervising my thesis research. His feedback and support
helped me through all stages of the thesis. I am incredibly grateful to my daily supervisor
Luzia. She has always been there for me, answering all my queries and having long, inter-
esting discussions that were valuable for completing my work. I want to thank my parents,
Manivannan R, Vimala D, and my sister Lakshmi M who have been a constant beacon of
support throughout my life. Without them, my journey in TU Delft would not have been
possible. With their love and support, I have been able to achieve my dreams.

Finally, I would like to thank my friends Anish, Barry, Dhruv, Dinesh, Francesco, Iva, Kathe-
rina, Ravi, Rajneesh, Renga, Steven, Tarun, Revanth, Varshiny and Vivek, who have provided
me with a lot of the support I needed throughout my TU Delft life, and made the last couple
of years more fun than I could imagine.

Master of Science Thesis Denesh Kumar Manivannan

iv Acknowledgements

Denesh Kumar Manivannan Master of Science Thesis

Chapter 1

Scientific paper

Master of Science Thesis Denesh Kumar Manivannan

Continuously learning where to go next from
observing pedestrians

1st Denesh Kumar Manivannan
Cognitive Robotics Dept.

TU Delft
Delft, Netherlands

Abstract—Socially compliant robot navigation in pedestrian
environments remains challenging owing to uncertainty in
human behavior and varying pedestrian preferences in different
social contexts. Local optimization planners like Model Predictive
Control can incorporate collision avoidance constraints, but
they can only lead to socially compliant trajectories if the
cost function embeds information about the desired social
behavior. The same holds for Reinforcement Learning, where
a sophisticated reward function needs to be defined. However,
formalizing social behavior through a reward or cost function
is difficult due to the complex nature of pedestrian behavior.
Imitation learning allows for inferring the desired behavior by
learning from human demonstrations, making them suitable for
learning socially compliant navigation policies but without any
safety considerations. In this work, we propose to learn a socially
compliant navigation policy directly by observing surrounding
pedestrians’ trajectories from a commonly available detection
and tracking pipeline and combine it with a local optimization
planner to enhance safety. A Subgoal Recommender policy is
developed to guide the local optimization planner to generate
socially compliant trajectories by providing intermediate
subgoals. To adapt the policy to changing social contexts without
forgetting previously learned information, we train the Subgoal
Recommender in a Continual Learning setup exploiting new
pedestrian data.

We demonstrate in simulation that our method can learn
a policy that has similar performance metrics as that of the
observed trajectories with 95% confidence estimated from a
t-test, resulting in a lesser number of collisions. Further, the
policy can adapt to different social preferences exhibited by
pedestrians, while being able to remember the learned behavior in
a previously encountered social context. Furthermore, we show
that our proposed method can learn navigation policies from
actual pedestrian data recorded using the onboard perception
pipeline of a Clearpath Jackal robot.

Index Terms—Social Compliance, Subgoal Recommender,
Robot navigation, Imitation Learning

I. INTRODUCTION

The applications of mobile robots in human-centered en-
vironments are becoming increasingly popular, ranging from
telepresence robots in offices [1] to robots that transport sterile
goods in hospitals [2], [3]. Workplace environments benefit
from such robots as they can transport equipment efficiently
between different places, thus obviating the need for a ded-
icated person to carry heavy objects constantly. Integrating
robots within workplace environments is challenging since
the robots should navigate seamlessly without distracting or
affecting the employees’ daily routines. For robots to be

accepted, they must not only avoid collisions but also behave
in a socially compliant way by maintaining a comfortable
distance, following social norms like passing on the right, and
showing similar low-level behaviors to humans [4].

Fig. 1: Jackal robot used for recording pedestrian trajectory
data at 3me faculty, TU Delft. The available detection and
tracking pipeline can be used to observe the surrounding
pedestrians continuously and adapt the behavior to new social
contexts.

Socially compliant navigation for mobile robots is an ac-
tive area of research. Previous works incorporating social
compliance in navigation algorithms include methods that
use Model-based techniques [5]–[8], Joint Planning [9]–[14],
Deep Reinforcement Learning (DRL) [15]–[19] and Imita-
tion Learning (IL) [20]–[29]. Model-based methods are inter-
pretable and computationally efficient since they are mostly
based on physics or geometry and can be expressed with
simple mathematical equations. However, they do not paint
an accurate picture of reality since they make many assump-
tions in modeling human navigation behavior. Joint Planning
methods are similar to model-based methods as they assume
some mathematical model for human navigation. However,
they are computationally expensive since they jointly plan
trajectories for all the agents in the scene. On the other
hand, DRL algorithms assume that humans aim to optimize
a certain reward function and thus learn a policy only by
maximizing the rewards. However, since it is difficult to
embed complex human behavior in hand-crafted rewards, the
learned navigation policies do not necessarily display the
desired level of social compliance. Furthermore, RL agents

are usually trained in simulations, where the learned behavior
is highly dependant on the simulated pedestrians’ models. In
contrast, RL algorithms trained with real humans cannot be
used owing to safety concerns. IL algorithms alleviate these
issues by learning policies directly from expert demonstra-
tions. Nevertheless, IL algorithms are limited by the amount
of training data since expert demonstrations are expensive.
Thus, we propose to observe the trajectories of the surrounding
pedestrians instead of having an expert drive the robot to
obtain sufficient demonstrations to train IL algorithms.

Current literature on socially compliant navigation algo-
rithms cannot guarantee to satisfy important environmental and
collision avoidance constraints with other dynamic agents such
as humans in the scene. The difference in robot and human
dynamics is also not considered while learning navigation
policies from human demonstrations. Model Predictive Control
(MPC) has been long used in industrial mobile robots for
trajectory tracking [30] since such constraints can be specified
explicitly to solve an optimization problem that calculates
feasible input commands. The performance of MPC algorithms
is limited by their planning horizon and cost function in
the optimization problem formulation. Hence, many recent
works started combining learning-based methods with MPC to
enhance closed-loop performance by using learning algorithms
such as RL and use MPC for constraint satisfaction [31]–[35].
We propose to learn a socially compliant guidance policy from
human trajectory data to enhance MPC by considering social
interactions beyond the prediction horizon and thus improve
performance and safety.

Another limitation of existing methods is that the policies
are learned offline and then deployed on the robot. Hence,
such static policies cannot adapt to environments that demand
varying levels of social compliance. For instance, in certain
places (most European countries and the USA), people prefer
to keep on the right side while crossing, while in other places
(UK and India), people prefer the left side, which makes it
essential for the robot to adapt its navigation policy to match
the environment.

The main contributions of this work include:
• A method to learn a socially compliant guidance policy

that recommends intermediate subgoals to the robot by
observing pedestrian trajectories, which can be combined
with MPC to satisfy the robot’s kinodynamic and colli-
sion avoidance constraints.

• A Continual Learning framework to adapt the learned
socially compliant navigation policy to different social
contexts by observing surrounding pedestrians in new en-
vironments without forgetting previously obtained knowl-
edge.

A. Related work

1) Socially compliant navigation: Kruse et al. [4] identify
Comfort, Naturalness and Sociability as the three principal
components of socially compliant navigation. Previous works
on socially compliant navigation incorporate one or more of
these components in the algorithms. Model-based algorithms

use hand-crafted fixed models inspired by physics [9], [13],
[14], [36], or geometry [37]–[39] to incorporate comfort and
sociability in the policy and enforce social compliance. On
the other hand, joint planning-based methods [10]–[12] solve
a joint optimization problem where the planner assumes a
model for the rest of the agents and plans the robot’s trajec-
tory by introducing constraints (minimum distance between
agents, smoothness) to induce socially compliant behavior.
Many approaches for socially compliant navigation using DRL
are based on Collision Avoidance with Deep Reinforcement
Learning (CADRL) [40] where the cooperation/interaction
behavior between the agents is embedded within the value
function. The following works suggest modifications to the
reward function to induce navigation behavior closer to that of
humans by encoding social norms [16], architectural changes
to consider human-robot interactions [17] and human-human
interactions [15]. IL for socially compliant navigation has
gained much traction recently since the policy incorporates all
components of social compliance by directly learning from
expert demonstrations. Previous works use Behavior Cloning
(BC) [41]–[44], where the policy is learned in a supervised
learning setting, Inverse Reinforcement Learning [24], [45]–
[47], in which the reward function that the humans are thought
to maximize is learned to train the policy in an RL framework,
and finally Adversarial learning methods [21], [27], [48], [49],
where a generator network competes against a discriminator
to learn policies that result in trajectories very similar to
that of the human experts. However, most of these works
directly predict input commands to be followed by the robot
without consideration for different robot dynamics and do not
focus on safety considerations. Further, the performance of the
policies in different social scenarios needs to be evaluated in
environments with varying degrees of social compliance.

2) Learning based methods to guide MPC: Optimization-
based planners like MPC are attractive in safety-critical ap-
plications because they can incorporate safety constraints into
their framework. However, the performance of classical MPC
algorithms is limited by the planning horizon. A low planning
horizon leads to sub-optimal short-sighted decisions, while
longer planning horizons lead to high computational costs.
Hence, many works propose to use learning-based policies
to enhance the performance of MPC. For instance, the typical
quadratic cost-to-go function is replaced with value functions
learned by RL in [34], [35]. Instead, we propose to have
a higher-level policy that computes intermediate subgoals
followed by the classical MPC controller that calculates input
commands at each instant. The concept of using subgoals to
guide local planners was introduced in [33], where a policy is
trained in an RL framework to recommend subgoals to the
MPC. However, no special emphasis on social compliance
was given in the reward function as it only focused on
discouraging collisions and reaching the goal efficiently. Since
human navigation behavior is difficult to embed in hand-
crafted reward functions, we propose to use Imitation learning
(IL) to learn a policy to recommend subgoals by taking social
interactions beyond MPC’s prediction horizon into account,

thus comprising the components of social compliance de-
scribed in I-A1 as well as safety considerations from the MPC.

3) Continual Learning: Traditional Deep Learning (DL)
methods focus on training models by assuming a fixed data
distribution. The performance of these static models is bound
to deteriorate with a shift in the data distribution of test
samples after deployment [50], [51]. An easy solution to
handle non-stationary data can be to collect new training
samples and retrain the network by aggregating them with
previous data. However, over the longer run, data aggregation
could be more computationally intense as the number of
training samples would become too high. Another possibility
is to initialize the network parameters obtained by training on
the previous tasks and retrain using the latest training samples
alone. However, the previously learned information is affected
while adapting the network parameters to learn new tasks. This
phenomenon is termed catastrophic forgetting [52]. The branch
of DL algorithms that proposes to adapt models to dynamic
data distributions without aggregating all previous data while
retaining previous knowledge is called Continual Learning
(CL) [53]. There are three main approaches in CL to prevent
catastrophic forgetting: Rehearsal [54]–[56], where few data
samples representative of the older data distributions are stored
and replayed; Regularization [52], [57], [58], that involves
adding a regularization term to the loss function to restrict
changes to parameters that are instrumental for previous tasks
performance and Architectural modifications [59], [60], where
new layers are added to the existing architecture to improve
performance in new tasks while preserving the layers that
are responsible for the performance in previous tasks. Earlier
works on CL assume the availability of information about
when the shift in data distribution occurs. Recent works on
Online Continual Learning (OCL) relax the assumption of
knowing the task label beforehand and propose methods to
infer the distributional change by calculating network param-
eters’ sensitivity to learning new information [61], storing
intermediate latent layers for replaying [62] and using Gaus-
sian mixture parameters in the architecture [63]. The tasks
mentioned above correspond to different social scenarios, and
we assume that the information about when the policy needs to
adapt is available to the robot. We propose a framework to train
a socially compliant navigation policy in a CL setting, where
the policy is adapted by observing the surrounding pedestrians
in the scene, which is yet to be attempted to the best of our
knowledge.

II. PRELIMINARIES

Vectors are denoted in bold lower case letters (x) and
matrices are capitalized (A), ||y|| represents the Euclidean
norm of vector y.

A. Socially compliant motion planning problem formulation

The robot’s goal is to navigate from an initial position p0

to a goal position g in the R2 plane. Let us consider ‘nt’
people in the robot’s field of view at a particular instant ‘t.’
st denotes the robot’s state, while sit denotes the state of the

ith closest pedestrian at time t. zt = [s1t s2t . . . s
nt
t] comprises

the states of all nt humans. Though the position and velocity
of humans are easy to observe, they have internal states like
the intended goal position and preferred speed, which are not
observable by the robot. Hence, it is essential to note that
zt corresponds to the observable state information of other
humans in the scene. The joint state for the robot navigation
problem is given by sjnt = [st, zt]. Let the robot’s action be
denoted by ut (for example, velocity). The objective to find
a policy that leads to trajectories that are similar to humans
while ensuring collision-free motion is formally defined as:

π∗ = argmin
π

T∑

t=1

||f(pt−1, π(s
jn
t−1))− hpos

t ||2 (1a)

s.t. st+1 = f (st,ut) (1b)
ht+1 = fh (ht) (1c)

ut = π(sjnt−1) (1d)

p0 = hpos
0 = p0 (1e)

pT = hpos
T = g (1f)

O (st) ∩ Oi
t = ∅ (1g)

ut ∈ U , st ∈ S (1h)
∀t ∈ [0, T], ∀i ∈ {1, . . . , nt}

where pt and hpos
t denote positions of the robot and the

average human agent at time t. T is the episode length or
in other words, the time limit imposed in the optimization
problem to reach the goal. The objective function (1a) consists
of the accumulation of Euclidean distance between the position
reached by the robot following policy π(.) and the position
reached by the average human agent. Equation (1b) refers to
the transition dynamics constraints of the robot considering
the dynamic model f , (1c) refers to the transition dynamics
constraints of a human considering the dynamic model fh.
The policy π maps the joint state configuration of the system
to the robot’s action as defined in (1d). O represents the
area occupied by the robot while Oi

t is the area occupied
by the ith agent at time t. The initial state constraints,
terminal constraints, collision avoidance and admissible states
and inputs constraints are given by (1e), (1f), (1g) and (1h)
respectively. We assume that all the other agents follow the
same policy like in [40].

B. Agent Dynamics
We assume that the human agents follow a first-order Linear

Dynamics model [64] as the human body is very agile, and the
delay in executing the desired velocity commands is negligible.
However, the real robot has a considerable time delay due to
lesser degrees of freedom. Thus, we assume a second-order
unicycle model [65] for the robot that takes into account the
time delay by considering the linear and angular acceleration
as the input given by:

ẋt = Vt cos θt V̇t = ua

ẏt = Vt sin θt ω̇ = uα

θ̇t = ω

(2)

Step 1: Deploy robot in pedestrian environment and
record observations

Step 3 : Apply Velocity Recommender and extract
subgoals

Step 2: Train Velocity Recommender (VR) policy
with Continual Learning

Step 4: Compute input commands with MPC

Actor

Actor

Fig. 2: The proposed framework to continually recommend subgoals.

where xt and yt are the x and y coordinates of robot’s position,
θt is the heading angle in a global frame. The robot’s forward
velocity is given by Vt , while ω denotes the angular velocity
and ut = [ua uα] is the input containing linear and angular
acceleration respectively.

C. Model Predictive Control formulation

Brito et al. [33] propose to use DRL to learn intermediate
subgoals to provide global guidance to an MPC motion
planner. In this subsection, We present the MPC formulation to
calculate appropriate robot input commands to follow the sub-
goal denoted by psg

t . The observation ot contains the robot’s
state st and the combined states zt of the nt surrounding
humans. The action of the guidance policy is defined as a
position increment δt providing the direction maximizing the
robot’s rewards. Based on δt, the current subgoal to the robot
is:

psg
t = pt + δt (3)

The guidance policy is trained by considering a reward
function with a positive reward rgoal for being at the goal
g, a negative reward rcollision for being in a collision and a
negative reward rt otherwise. The subgoal psg

t is utilized in
the MPC cost function, which ensures that the calculated input
commands takes the robot’s position to the subgoal within
the prediction horizon with minimal efforts while dynamic
feasibility and collision avoidance constraints are satisfied. The

cost is composed of a terminal cost JN after N steps with the
weight coefficient QN , given by:

JN (p0,pN ,psg
0) =

∥∥∥∥
pN − psg

0

p0 − psg
0

∥∥∥∥
QN

(4)

and stage costs Ju
t (ut) = ∥ut∥Qu

with weight coefficient Qu

resulting in the following non-convex optimization problem:

min
s1:N ,u0:N−1

JN (p0,pN ,psg
0) +

N−1∑

t=0

Ju
t (ut)

s.t. st+1 = f(st,ut),∥∥pt − pi
t

∥∥ > r + ri,

ut ∈ U , st ∈ S,
∀i ∈ {1, . . . , n}; ∀t ∈ {0, . . . , N − 1}.

(5)

where n is the maximum number of other agents considered
for MPC’s calculation since it is computationally infeasible to
include all agents in the scene for the optimization problem.

III. METHOD

We present a four-level architecture for socially compliant
navigation consisting of an Observations collection, a Velocity
Recommender, a Subgoal Extractor and a local motion planner
(MPC). The overview of our framework can be seen in Fig
2. The first step shown involves the robot being deployed in
a pedestrian environment where it can either be stationary
or follow some initial policy to collect data by observing
pedestrians’ trajectories. In the second step, the sensor ob-
servations and corresponding pedestrian velocities are used

Tanh

FC
L

Tanh
FC

L
Tanh

Linear

FC
L

FC
L

512 512 512 256

FC
L Fully Connected LayerConcatenate inputs

along features' dimension

Fig. 3: Velocity Recommender architecture diagram

to train the “Velocity Recommender” (VR) network. We
explain the process of training the VR policy, taking in sensor
observations as input and predicting the velocity that a human
would have preferred for that observation in Subsec III-A.
However, since the robot may have different dynamics from a
human, the predicted velocity doesn’t necessarily lead to the
same position. Hence, the next step is to extract a subgoal from
the recommended velocity using the “Subgoal Extractor” (SE)
network that accounts for the robot’s kino-dynamic constraints.
The training procedure to extract subgoals from pedestrian tra-
jectories is presented in Subsec III-B. We term the combination
of VR and SE as the “Subgoal Recommender” (SR) network.
In the final step, the extracted subgoal is passed to the MPC
to calculate appropriate input commands satisfying collision
avoidance constraints. This process is repeated continuously in
a CL setting by adding an additional loss to restrict changes
in the network’s parameters that are essential to preserving
performance in previously trained scenarios. We delve into
the details of integrating the VR in a CL framework in Subsec
III-C.

A. Learning a Velocity Recommendation policy

Our primary objective is to learn robot navigation policies
that result in trajectories similar to pedestrians. Since velocity
is the primary component that determines the nature of the
trajectory, we propose to use IL [66] to predict what velocity
a pedestrian would prefer to take in a given instant.

1) Velocity recommendation formulation: Given the current
observation vector ot , we would like to determine the velocity
vt+1 to be followed by the robot in the next time-step. We

call this function πV R and term the module as “Velocity
Recommender”.

vt+1 = πV R(ot)

2) Network architecture: An FCN with Linear Layers and
Tanh activation is used, as shown in Figure 3.

The features used for the input ot are:

ot = [θt vt d
g
t dg

t r srelt]

where dgt , dg
t , r, srelt denote the distance to goal, relative

position vector to goal, the radius of robot and relative states of
the other agents respectively. Hence, observation ot correlates
to the joint state vector sjnt introduced in Subsec. II-A.

Information about the robot’s state st is contained in
[θt vt dgt dg

t r] and the other agents’ state information zt is
expressed relative to the robot’s states resulting in the relative
state for the ith closest agent as:

srelit = [preli
t vreli

t dit]

where preli
t , vreli

t and dit denote the relative position and
velocity vectors of the ith closest agent in robot’s frame and
the distance of the ith closest agent from the robot. Hence, the
combined relative state information vector for all the agents
is given by:

srelt = [srel1t . . . srelnt]

where n is the total number of other agents in the scene.
srelt is a crucial feature that warrants extra attention. It

captures the information of the other agents in the environment
and plays a major role in influencing human-robot interactions.

Normally there can be a variable number of agents in the
robot’s vicinity. Since it is impossible to represent the positions
of a variable number of agents in a fixed dimensional vector,
we limit the number of agents considered to be nmax. So, even
if there are more than nmax other agents in the environment,
information about the rest of the agents would be ignored by
the policy due to this limitation.

3) Training procedure: We choose a simple BC algorithm
to tackle the problem and assume that the model of the
environment is not known and only samples of the expert’s
policy are given (Both state transition functions and the
expert’s policy function are unknown). Suppose there are n
agents in a scene. In that case, expert demonstrations are
a collection of trajectories denoted by D = {τ1, τ2 . . . τn},
where each trajectory τl is a set of state-action pairs for the lth

agent with τl = {(pl
0, vl0), (pl

1, vl
1) . . . (pl

tl
, vltl)} ∀l ∈ [1, n]. tl

is the time episode length of the lth trajectory. We aim to learn
the policy πV R, such that it generates trajectories ‘similar’ to
expert demonstrations D. Expert trajectory data consisting of
position and velocity information of all the agents in a scene
are collected, and the observation data ot for each agent at
every time step is computed using the robot’s sensors. The
tuple (ot,vt+1) serves as the training data for training the
VR. It is essential to note that the training data consists of the
observation and velocity that a pedestrian took in the following
time step, not the current velocity. A Mean Squared Error
(MSE) loss that encourages the network to predict velocities
close to the ground truth is used to train the network as it is a
regression problem. L2 regularization loss is added in addition
to prevent overfitting.

B. Extract subgoals from trajectories using Supervised Learn-
ing

We would like the robot to reach the velocity computed by
the VR at each instant. However, due to robot’s kinodynamic
constraints, the robot may need to accelerate in a slightly
different direction in order to reach the desired velocity at that
instant. We learn this mapping between the desired velocity
and the right acceleration direction in the form of subgoals.
The subgoal points in the correct direction that the robot
needs to “aim” to move towards to reach the desired velocity
instantaneously. These subgoals are dynamically feasible as
they account for the robot’s dynamics already and can be used
by any local planner to generate the appropriate robot input
commands; we choose MPC to follow these subgoals.

Hence, the final objective is to extract subgoals from the
predicted velocity commands that can be combined with MPC
to generate safe input commands. We propose an algorithm
to extract subgoals from rolled-out trajectories of agents fol-
lowing any policy. Typically humans have different dynamics
from that of the robot, which means the internal subgoals that
they might consider for navigation don’t necessarily lead to the
same trajectory when followed by the robot. We are interested
in finding subgoals that the robot should consider that allows
it to follow similar trajectories to the humans.

1) Subgoal extractor’s formulation: Given the robot’s state
st and the desired velocity vt+1 for the next time-step, we
would like to calculate which subgoal psg

t should be given to
the MPC to calculate input commands that corresponds to the
desired velocity.

We denote the function that computes the velocity by
fMPC . The velocity is calculated by: vt+1 = fMPC(p

sg
t , st).

Now, given the state at the current time step and velocity that
MPC calculated for the next time-step, we would like to esti-
mate which subgoal was considered in the MPC calculation.
We call this function as πSG and term this module as the
“Subgoal Extractor” (SE). Like in [33], the difference between
the global reference subgoal position and the current position,
δt = (psg

t − pt) is learned by the network.

δt = πSG(s
sg
t ,vt+1) (6)

psg
t = δt + pt (7)

By learning the mapping from velocity to subgoal, we learn
the “inverse dynamics” of the robot that depends on the robot’s
forward dynamics and MPC algorithm. (The forward dynamics
is the mapping from subgoals to velocity commands for the
robot.) The features considered for the state vector ssgt are:

ssgt = [θt Vt] (8)

The SE network completes the final part of the Subgoal
Recommender’s pipeline by recommending subgoals from the
Velocity Recommender’s velocity output for each observation.

2) Network Architecture: We aim to approximate πSG us-
ing a Deep Neural Network (DNN). A FCN (Fully Connected
Network) with 4 linear layers and Sigmoid activation function
takes in the robot’s state and desired velocity as input and
returns the subgoal. The model architecture is shown in Fig.
4.

3) Training procedure: To generate the training data, we
consider a scenario with no other dynamic agents in the
environment and randomly sample subgoals that lie between
the current position and the goal at each time-step and repeat
it for different initial headings to achieve generalization. Each
state-transition comprises of the tuple (pt, s

sg
t ,vt+1) and we

collect (ssgt ,vt+1) for training the SE.

C. Adapting the policy to different scenarios

The second objective of our work is to adapt the trained
socially compliant navigation policy to different scenarios
without forgetting previously learned information. Thus, we
train the VR in a CL setting.

1) Continual Learning Formulation: Let us consider k dif-
ferent scenarios S = {a1 . . . ak}, where each scenario involves
different social contexts. For instance, one scenario would con-
sist of people preferring the left side, and a converse scenario
would involve people taking the right side. For simplicity, we
assume k = 2. {D1, D2} correspond to expert trajectories
obtained in scenarios a1 and a2 respectively. Initially, the robot
must learn to imitate trajectories corresponding to D1. The VR
policy obtained as a result of training on D1 is denoted by π1

V R

Sigmoid

FC
L

Sigmoid

FC
L

Sigmoid

Linear

FC
L

FC
L

512 512 512 256

t+1t+2t+N

FC
L Fully Connected LayerConcatenate inputs

along features' dimension

Fig. 4: Subgoal Extractor architecture diagram

and training on D2 results in the policy π2
V R. The objective

is to adapt π1
V R → π1,2

V R such that the robot’s resulting
trajectories when following π1,2

V R in a2 is similar to D2, while
being similar to D1 in a1. In general, if the robot encounters
scenarios a1, a2 . . . ak consecutively with the corresponding
expert demonstrations D1, D2 . . . Dk, we would like to arrive
at a policy π1,...,k

V R that results in trajectories similar to Dj

when deployed in scenario aj ∀j ∈ [1, k] .
2) Training procedure: We employ Elastic Weight Con-

solidation (EWC) [52] to update the network parameters for
learning the desired navigation behavior in new scenarios.

The training process is almost the same as in III-A3 with
a minor modification in the loss function. In the original
formulation, a Mean Squared Error (MSE) loss penalizing
the L2 norm between ground-truth labels and velocity pre-
dictions similar to Subsec. III-A3 is used for training the
network. To incorporate CL, a regularization term is added
to the original loss and the training is performed for each
scenario consecutively. A coreset that contains a small subset
of data from previously encountered scenarios is maintained
and added during training to reduce catastrophic forgetting.
The optimization step is performed using Stochastic Gradient
Descent (SGD). For each scenario j, Fischer information
matrix (Fj), which is an indication of the network parameters’
(βj) importance is stored after training in addition to βj . Based
on F0:j−1 and β0:j−1, the following regularization term is
added to the loss function:

LEWC(β) =
k−1∑

j=0

λ

2
Fj (β − βj)

2

Where β is the current set of weights, k refers to the index of

the current scenario, and λ is a hyperparameter used to balance
between retaining old previous knowledge and learning new
information. The complete loss function then looks as follows:

L = LMSE + LEWC

= ||πV R(xi)− yi||22 +
λ

2

k−1∑

j=0

Fj ||β − βj ||22

where xi and yi denotes the input and the corresponding
ground-truth label.

The pseudo-code for Continual Learning training is given
in Algorithm 1.

Algorithm 1 Continual learning training

Input: k, F0:k−1, Dk, β0:k−1, π
k−1
V R .

Output: πk
SR, Fk

1: β ← InitializeParams()
2: while epochs < nepochs do
3: for i = 0 . . . nmini batch do
4: (xi, yi)← Sample(Dk)
5: L ← ComputeL(xi, yi, β, β0:k−1)
6: β ← SGDupdateStep(L)
7: end for
8: end while
9: Fk ← CalculateF ischer(πk

V R, Dk)

return {πk
V R, Fk}

IV. SIMULATION RESULTS

In this section, we evaluate each component of our proposed
framework. The simulation settings used are detailed in Subsec

(a) SF (10) (b) SESF-MPC (10)

(c) SF (25) (d) SESF-MPC (25)

Fig. 5: Comparison between SF and SESF-MPC with other agents following SF (10) and SF (25) in PS scenario. As can be
seen, the distance between the agents while crossing is higher for policies with higher SFF.

IV-A. The performance results for the SE, the SR and the
CL are shown in Subsec. IV-B, IV-C and IV-D respectively.
A key challenge in evaluating navigation policies trained on
real pedestrian trajectories is that it isn’t possible to compare
the learned behavior against human behavior in reproducible
scenarios. Although, there are pedestrian behavior models
available, they do not represent all aspects of pedestrian
navigation behavior. Hence, we initially consider a well known
pedestrian model, namely the Social Forces (SF) model [36],
to approximate pedestrian behavior and learn from the result-
ing trajectories. This allows a more extensive evaluation of
our proposed method. We also test the method on real human
data and show the results in the next section.

A. Simulation setup

We consider two variants of SF, where the Social Forces
Factor (SFF) is increased from 20 to 25. SFF is a measure of
how social we would like the agent to behave. For instance,
a higher SFF leads to a larger distance maintained from the

other agents. Given a maximum of 4 agents, the following
scenarios are mainly considered in our simulations similar to
[33]:

• Pairwise Swap (PS): Initial positions are random. The
agents are divided into pairs of two, and the task for each
agent is to swap their positions with their counterpart.

• Symmetric Swap (CS): Each agent’s position is ini-
tialized in different parts of the quadrant in R2 plane
with equal distances from the origin and the agents from
opposite quadrants need to swap their positions.

Since we are interested in evaluating the social compliance
of the learned policy, we choose the following metrics as
introduced in [4], [33] :

• Minimum distance: Distance between the ego-agent and
the closest (by Euclidean distance) agent encountered.

• Trajectory smoothness: Mean change in heading between
consecutive time-steps.

• Efficiency ratio: Ratio between the time taken to reach
the goal if the ego-agent were to follow a straight line

path at the maximum velocity and the actual time taken
to reach the goal.

• Number of collisions: Number of scenarios in which the
distance between the center of the ego-agent and any
other agent goes below a threshold value ϵ.

• Number of deadlocks: Number of scenarios in which the
ego-agent gets stuck and fails to reach the goal.

B. Subgoal Extractor

In order to evaluate the performance of the SE, we would
need the true subgoals to compare with the extracted subgoals.
However, since the subgoal information for arbitrary policies is
not available, we compare the ground truth trajectories with the
trajectories resulting from following the extracted subgoals.
When evaluating the performance of the SE in open-loop, the
errors get accumulated. Hence, we use SF to get the next
step’s velocity at each time-step and pass it to the SE for
calculating the subgoal. The extracted subgoal is then passed to
the MPC which leads to a different robot state and the process
is repeated in a closed loop fashion. We refer to this policy as
“SESF-MPC” (Subgoals Extracted from SF with MPC).

The performance for all test scenarios are summarized in
Table I. It is worth noting that the number of collisions have
dropped down when using SESF-MPC compared to the ground
truth, thus establishing the potential for combining learning
based policies with MPC that lead to much safer trajectories.
Further, we perform the 2-sample t-test between ground truth
and SESF-MPC for each of the metrics to check if they
are statistically close. It is worth noting that the collision
avoidance of MPC is turned off for calculating the metrics
to avoid influence of MPC in the calculations. We report
the number of collisions and deadlocks for both cases of
turning off and turning on the collision avoidance of MPC.
The results of the t-test (Two-sided) is shown in Table II.
The null hypothesis chosen is that the population means are
equal for both the distributions. For a significance level of 0.05
(α = 0.05), the corresponding threshold (t∗) is calculated to be
1.967 and 1.966 respectively for both the cases (The different
values are due to different number of cases without collisions).
The null hypothesis would be rejected if |t| > |t∗|. As can
be seen from Table II, the calculated t values are within the
threshold value for all the metrics in PS scenario implying that
the ground truth and SESF-MPC policies result in trajectories
that have similar characteristics with 95% confidence in that
scenario. However except for the other agents’ efficiency ratio,
the rest of the metrics are not all within the threshold for CS
scenario. For instance, the ego-agent’s efficiency ratio have
high magnitude t-values. This doesn’t mean that the behavior
is significantly different; it can partly be explained due to
the fact that the variance for these metrics as seen in Table
I are quite low. Narrow distributions tend to have very less
overlap compared to wider distributions, thus leading to large
differences in similarity metrics for the same difference in
mean values. Since the efficiency ratio of the other agents is
similar to SF for all the scenarios, we can infer that SESF-
MPC doesn’t disrupt the actions of other agents dramatically.

It is safe to conclude that the behavior of SESF-MPC policy is
close to that of SF policy’s behavior. The plot corresponding to
one of the test cases corresponding to PS scenario comparing
SF and SESF-MPC policies are shown in Fig. 5. The difference
in closest distance between the agents can be seen increasing
from SFF 10 (Fig. 5(a) and 5(b)) to SFF 25 (Fig. 5(c) and
5(d)).

C. Subgoal Recommender

The SR policy which is a combination of VR and SE is
obtained by following the training procedure mentioned in
III-A3. In order to mitigate covariate shift, DAGGER [67]
was used to improve the performance. The policy is tested
against agents following SF policy on 200 random scenarios
not seen during training and compared with the following
baseline policies:

• SF (Ground truth)
• Goal Oriented - MPC (GO-MPC) : Trained against agents

following SF(20) policy.
• Reciprocal Velocity Obstacles (RVO)
The resulting trajectories of all the policies for one of the

scenarios is shown in Fig 6. The trajectory displayed by the
agent following SR looks similar to that of the agent following
SF for CS scenario with SFF 20. The performance metrics
for all the test scenarios is tabulated in Table III. In order to
verify that the observed collision avoidance behavior is not due
to MPC, the collision avoidance was turned off for the plot
as well as for calculating the metrics. We report the number
of collisions and deadlocks both with and without collision
avoidance of MPC. GO-MPC has the lowest number of
collisions/deadlocks with collision avoidance. The number of
collisions/deadlocks for SR is comparable to GO-MPC without
collision avoidance. Further, in order to better compare the
results, we repeat the t-test as explained in Subsec. IV-B. Table
IV comprises of the comparison of the t-values for evaluating
the trajectories of all the policies considered. Overall, almost
all the metrics have t-values within the threshold for SR policy.
It is not fair to compare the t-values for SR policy with RVO as
they are not meant to imitate the SF policy unlike SR; we show
them only for sake of completeness. Comparison between t-
values of GO-MPC and SR is valid as GO-MPC was trained
against agents following SF policy.

SR policy has t-values within the threshold for trajectory
smoothness and other agents’ efficiency ratio and is closer
to SF policy’s behavior for these metrics. GO-MPC has t-
values within the threshold for the minimum distance kept,
but SR keeps a higher distance than GO-MPC which makes
our policy’s behavior relatively more comfortable for pedes-
trians. Further, GO-MPC results in more efficient trajectories
compared to SR with almost similar efficiency ratio values
to that of RVO, which has highly efficient trajectories as it
approaches the goal aggressively. This suggests that the GO-
MPC agent has learned to exploit the SF agent’s socially
compliant behavior. This also can be inferred from the low
trajectory smoothness values which suggests that the GO-
MPC agent doesn’t make as many turns compared to SR

Policy
Training and

test
scenarios

Other agents’
policy

Min.
distance

(m)

Trajectory
smoothness

(rad)

Ego agent’s
efficiency ratio

Other agents’
efficiency ratio

Collisions /
Deadlocks

(Without MPC)

Collisions /
Deadlocks
(With MPC)

Ground truth

PS
SF (20) 1.387 ± 0.146 0.630 ± 0.402 0.679 ± 0.253 0.675 ± 0.160 15 / 0 -

SESF-MPC (20) 1.374 ± 0.193 0.558 ± 0.369 0.711 ± 0.254 0.679 ± 0.158 10 / 0 5 / 0
Ground truth SF (25) 1.469 ± 0.164 0.519 ± 0.331 0.672 ± 0.253 0.668 ± 0.161 12 / 0 -

SESF-MPC (25) 1.462 ± 0.161 0.537 ± 0.352 0.704 ± 0.256 0.664 ± 0.162 3 / 0 2 / 0
Ground truth

CS
SF (20) 1.415 ± 0.158 0.539 ± 0.147 0.423 ± 0.048 0.342 ± 0.050 16 / 0 -

SESF-MPC (20) 1.379 ± 0.163 0.515 ± 0.148 0.459 ± 0.019 0.341 ± 0.049 14 / 0 6 / 0
Ground truth SF (25) 1.498 ± 0.170 0.583 ± 0.171 0.415 ± 0.052 0.338 ± 0.05 9 / 0 -

SESF-MPC (25) 1.466 ± 0.179 0.458± 0.132 0.455 ± 0.022 0.337 ± 0.050 11 / 0 7 / 0

TABLE I: Policy performance statistics with other agents (3) following SF policy in simulation. SESF-MPC policy is both
trained and evaluated in PS and CS scenarios respectively.

Policy Scenario
Min.

distance
t-value

Trajectory
smoothness
t-value

Ego agent’s
efficiency ratio

t-value

Other agents’
efficiency ratio

t-value
t∗(α = 0.05)

SESF-MPC (20) PS 0.717 1.786 -1.197 -0.235 1.967
SESF-MPC (25) 0.375 -0.493 -1.201 0.180 1.966
SESF-MPC (20) CS 2.092 1.549 -9.164 0.193 1.967
SESF-MPC (25) 1.778 7.943 -9.645 0.176 1.966

TABLE II: Subgoal Extractor: t values for calculated metrics by comparing SESF-MPC (20) and SESF-MPC (25) with SF
(20) and SF(25) respectively in PS and CS scenarios.

Policy Other agents’
policy

Min.
distance

(m)

Trajectory
smoothness

(rad)

Ego agent’s
efficiency ratio

Other agents’
efficiency ratio

Collisions /
Deadlocks

(Without MPC)

Collisions /
Deadlocks
(With MPC)

Ground
truth

SF (20)

1.396 ± 0.139 0.648 ± 0.439 0.674 ± 0.252 0.674 ± 0.160 17 / 0 -

RVO 1.135 ± 0.194 0.518 ± 0.368 0.739 ± 0.243 0.678 ± 0.155 9 / 4 -
GO-MPC (20) 1.411 ± 0.353 0.505 ± 0.335 0.738 ± 0.240 0.681 ± 0.156 20 / 0 6 / 1

SR (20) 1.539 ± 0.482 0.606 ± 0.397 0.725 ± 0.258 0.677 ± 0.162 18 / 0 8 / 1
Ground

truth
SF (25)

1.479 ± 0.155 0.535 ± 0.379 0.666 ± 0.249 0.669 ± 0.162 15 / 0 -

RVO 1.179 ± 0.193 0.335 ± 0.241 0.739 ± 0.241 0.665 ± 0.159 9 / 0 -
GO-MPC (20) 1.466 ± 0.333 0.342 ± 0.238 0.741 ± 0.243 0.675 ± 0.159 13 / 0 5 / 1

SR (20) 1.567 ± 0.460 0.516 ± 0.342 0.731 ± 0.252 0.670 ± 0.161 16 / 0 9 / 5

TABLE III: Policy performance statistics of various policies with baseline policies like RVO and GO-MPC along with our SR
policy and other agents (3) following SF(20) and SF(25) policies in PS scenario.

Policy Other agents’
policy

Min.
distance
t-value

Trajectory
smoothness
t-value

Ego agent’s
efficiency

ratio
t-value

Other agents’
efficiency

ratio
t-value

t∗(α = 0.05)

RVO
SF (20)

14.518 3.002 -2.472 -0.206
1.967GO-MPC (20) -0.526 3.344 -2.371 -0.423

SR (20) -3.784 0.941 -1.859 -0.155
RVO

SF (25)
16.193 6.014 -2.809 0.263

1.967GO-MPC (20) 0.456 5.748 -2.872 -0.351
SR (20) -2.416 0.505 -2.427 -0.065

TABLE IV: t values for calculated metrics comparing some baseline policies like RVO and GO-MPC along with our SR policy
in PS scenario.

agent thus making the other agents swerve around instead.
The exploitation behavior of GO-MPC can be seen in Fig. 13.
However, the efficiency ratio of other agents’ is similar for
all the policies which means that the time taken for the other

agents to reach the goal is not very different from the ground
truth.

Overall, SR results in trajectories that are very close to SF
in terms of smoothness and a more conservative behavior as

(a) SF (20) (b) SR (20)

(c) GO-MPC (d) RVO

Fig. 6: Simulation with other agents following SF(20) in CS scenario. The SR(20) policy means it was trained from observing
agents following SF (20) policy. We deploy SR(20) trained in PS scenario on CS scenario; clearly the policy generalizes well.

opposed to GO-MPC which exploits the other agents’ behavior
and RVO which has no regard for proxemics.

D. Continual Learning

In Subsec. IV-C, we demonstrated how SR policy performs
in test scenarios that belong to the same data distribution
from which the training data were sampled. Now, we would
like to investigate the effect on SR policy’s performance on
test scenarios in which the agents display different degrees
of social compliance; in particular, different side preferences.
Agents following SF (20) policy tend to prefer the right hand
side, while agents following SF (-20) prefer the left side. The
resulting trajectories from different side preferences are shown
in Fig 7. We consider a SR policy that is initially trained
by observing agents following SF (20) and then adapted to
behave similar to agents following SF (-20) policy using the
CL algorithm described in Alg. 1. We demonstrate the effects
of both Sequential and Continual Learning of SR (20) and SR
(-20) policies with the same model in Fig. 8. In Sequential

Learning, the model is trained using data from the current
social context without applying EWC loss. The first learning
curve corresponding to Sequential Learning in Fig.8(a) clearly
shows an increase in the validation and test loss for SR (20)
when the model starts to learn from data corresponding to SR
(-20); this is the essence of Catastrophic Forgetting. For CL,
the EWC loss is applied in combination with a coreset from the
previous social context while adapting the model to learn the
current social context The second learning curve in Fig.8(b)
corresponding to CL displays a saturation in the validation and
test loss of SR (20), implying that the data corresponding to
SR(-20) is learned in a continual fashion.

The performance of SR policy trained to prefer the right
side and then adapted to prefer the left side applying CL in
comparison with SR policies trained to only prefer the right
or left side is shown in Table V. Since the focus here is on
how well the policy adapts to different side preferences, we
compare the number of collisions and deadlocks and number
of wrong sides. The number of wrong sides refer to cases when

(a) SF (20) - Right (b) SF (-20) - Left

Fig. 7: Simulation with all agents following SF(20) and SF (-20) in PS scenario. The agents prefer to keep on the right side in
SF(20), while SF(-20) encourages agents to prefer the left. Increase in lightness of the agent’s colour is further into the future.

(a) SR (20) , SR (-20) (b) CL(20)(-20)

Fig. 8: Learning curves containing loss plots for Sequential Learning (top) and Continual learning (bottom). The training loss
corresponds to the task learned currently, while the validation and test losses always corresponds to the first task learned to
observe how previously learned information is retained.

the robot doesn’t take the side preferred by the other agent;
it is counted only for the cases where the agent manages to
reach the goal. Policies trained to make the robot prefer one
side are tested against an agent preferring the opposite side.
For instance, SR (20) where the robot prefers right side is
tested against an agent following SF (-20) preferring the left
side and vice-versa.

It is immediately obvious that having different side prefer-
ences than the other agents in the environment, leads to a sharp
decline in performance as the number of collisions increase
drastically, especially in the case of SR (20) deployed amongst
an agent following SF (-20). Even MPC is not able to avoid the
collisions since the SR policy constantly recommends subgoals
that lead to trajectories inadvertently crashing into the very
agent it’s trying to stay away from. It is clear from Table V
that once CL is applied, the number of collisions drop down
and the robot is able to keep the correct side for majority of
the test cases.

We show an interesting case in Figure 9. The collision
avoidance is turned on here for better inference. The agent in
Fig. 9(a) following SR (20) collides with the agent following
SF (-20) and the agent following CL(20)(-20) in Fig. 9(b) is
able to keep left throughout since it was trained to keep to the
left side in it’s latest training. In fact, the agent following
CL(20)(-20) in Fig 9(d) initially tilts towards the left side
against the agent following SF (20), but on observing that the
other agent prefers right, it is able to steer away on getting
closer. Thus, we are able to illustrate how the agent following
CL(20)(-20) is still able to adapt to keep to the left side while
not forgetting the previously learned right side preference
behavior.

Ego Policy Other agent’s
Policy

wrong
sides

Collisions /
Deadlocks

(without MPC)

Collisions /
Deadlocks
(with MPC)

SR (20) SF (20) 0 4 / 0 1 / 0
SF (-20) 0 192 / 0 140 / 0

SR (-20) SF (20) 17 173 / 0 85 / 1
SF (-20) 0 15 / 0 12 / 0

SR (20 + -20) SF (20) 13 40 / 0 40 / 0
SF (-20) 0 48 / 0 48 / 0

TABLE V: Policy performance statistics of CL policy against
another agent following SF (20) and SF (-20) policies in
PS scenario. The performance of SR (20) and SR (-20)
against SF (-20) and SF (20) respectively are also included
for comparison.

V. EXPERIMENTAL VALIDATION

In section IV, the SR policy was trained based on rolled-out
trajectories from agents following the SF policy in simulation.
In this section, we demonstrate the performance of the policy
trained on real pedestrian trajectories. We describe the ex-
perimental setup used for recording the data in Subsec. V-A,
followed by performance results of the SR policy trained on
the collected pedestrian data in Subsec. V-B and CL results in
Subsec. V-C.

A. Experimental setup

A Clearpath Jackal robot equipped with five RealSense
cameras, an Ouster Lidar and an internal onboard computer
running ROS Melodic is used in our experiments. The percep-
tion pipeline contains a Person Detection package using which
we extract each pedestrian’s trajectory data in the scene. A
snapshot of the experimental setting with the Jackal recording
pedestrian trajectory data is shown in Fig. 1. Data of two
agents walking in multiple PS scenarios for both left and
right preferring cases are recorded. The result of replaying
one such recorded trajectory in the Gym Collision Avoidance
environment is shown in Fig. 10.

B. Subgoal Recommender from real pedestrian data

The recorded trajectories are used to train left and right
preferring SR policies separately which we term as SR (left)
and SR (right) respectively. Training data from the ETH
dataset [68] is augmented to improve the training process. The
trained policy is deployed against agents following SF policy
with the same side preference. A plot showing the performance
of both SR (right) and SR (left) is shown in Fig. 11. The
performance metrics of the trained policies are shown in Table
VI. The number of collisions is reasonably low for both the
policies. SR (left) has relatively higher number of collisions
and time-outs because the amount of training data collected
for the left scenarios was lower than that of the right scenarios.
Further as evidenced by the much higher minimum distance,
the agent following SR (left) policy is more conservative from
the beginning which compromises the ability to reach the goal
perfectly.

C. Continual learning of social preferences

In Subsec. V-B, separate policies were trained for learning
left and right preferring policies. However, we are interested
in learning both right and left preferring behaviors based
on other agents’ preference. To demonstrate CL of different
social preferences from real human data, we train the agent
to learn a right preferring policy and then adapt it to keep to
the left. The performance results of the CL(right)(left) policy
tested against both right and left preferring agents is shown
in Table VII. As expected, the performance of policies trained
to prefer one side leads to a lot of collisions when tested
against an agent preferring the opposite side. The continually
learned policy leads to much lower collisions compared to
the individually trained policies when tested against agents
preferring the opposite side. However, the number of collisions
is still not close to the performance of individual policies tested
against agents preferring the same side. This can be attributed
to the limitation in the network architecture and the trade-
off between plasticity and elasticity of network parameters for
retaining and learning new information by means of hyper-
parameter λ. The results of the policy is shown in Fig. 12.
As observed in Subsec. IV-D, the agent prefers the left side
initially and then swerves to the right as seen in Fig. 12(a). The
agent is able to keep left throughout against the left preferring
agent as seen in Fig. 12(b), since it corresponds to the latest

(a) SR (20) against SF(-20) (b) CL(20)(-20) against SF(-20)

(c) SR (-20) against SF(20) (d) CL(20)(-20) against SF(20)

Fig. 9: Simulation showing cases where deploying SR(20) (on top-left) and SR(-20) (on bottom-left) with other agents
following SF(-20) and SF(20) leads to collisions. In contrast, when the policy is adapted using CL (on right column), the agent
no longer collides on adapting to the side preferences.

(a) SF (20) (b) SR (-20)

Fig. 10: Plot of agents’ trajectories following right and left preferring policies of two people walking in TU Delft 3me Dept.

(a) SR (right) (b) SR (left)

Fig. 11: Simulation with ego agent following SR(right) and SR (left) in PS scenario against agent following SF(20) and SF(-20)
respectively.

Ego Policy Other agents’
Policy

Min.
distance

(m)

Trajectory
smoothness

(rad)

Ego agent’s
efficiency

ratio

Other agents’
efficiency

ratio

Collisions /
Deadlocks

(without MPC)

Collisions /
Deadlocks
(with MPC)

SR (right) SF (20) 1.229 ± 0.201 0.601 ± 0.420 0.738 ± 0.243 0.705 ± 0.243 13 / 0 12 / 0
SR (left) SF (-20) 1.798 ± 0.554 0.615 ± 0.381 0.583 ± 0.296 0.723 ± 0.245 26 / 5 1 / 21

TABLE VI: Policy performance statistics of SR (right) and SR (left) policies trained with real pedestrian data and tested against
an agent following SF policy with the same side preference in PS scenario.

learned behavior. Thus, we are able to validate our proposed
framework’s performance on real data.

Ego Policy Other agents’
Policy

wrong
directions

Collisions /
Deadlocks

(without MPC)

Collisions /
Deadlocks
(with MPC)

CL(right)(left) SF (20) 21 58 / 1 19 / 15
SF (-20) 2 66 / 1 13 / 7

SR (right) SF (20) 0 13 / 0 12 / 0
SF (-20) 1 168 / 0 54 / 1

SR (left) SF (20) 56 114 / 0 8 / 32
SF (-20) 0 26 / 5 1 / 21

TABLE VII: Policy performance statistics of CL(right)(left)
policy trained with real pedestrian data with right and left
preferences using CL and tested against an agent following
SF policy with the both side preferences in PS scenario.
The results of SR(right) and SR(left) tested against an agent
following the opposite side preference is also shown for
comparison.

VI. CONCLUSION

This work introduced a methodology to learn a Subgoal
Recommender policy that provides intermediate subgoals for
the robot by continuously observing pedestrian trajectories in
the environment. The learned Subgoal Recommender is used
to guide an optimization-based local planner to generate tra-
jectories with fewer collisions while being socially compliant.
We employed Behavior Cloning to learn subgoal recommen-
dations that are kinodynamically feasible from observations

of pedestrian trajectories and combined it with MPC to cal-
culate input commands to the robot that satisfy kinodynamic
and collision avoidance constraints. Our policy is shown to
generate trajectories with similar smoothness and efficiency as
that of the Social Forces policy, whose behavior was learned
with 95% confidence verified by t-tests. In addition to that,
our policy maintains more minimum distance compared to
the Social Forces policy, thus respecting pedestrians’ comfort.
Further, the policy can adapt to the environment when other
agents display varying side preferences without forgetting the
desired behavior for previously encountered social contexts,
which was tested by changing the side preference of the other
agents.

VII. LIMITATIONS AND FUTURE WORK

The following points list some limitations and suggestions
on overcoming them:

• Our work only considers human-human interactions and
does not incorporate environmental constraints. Informa-
tion about the occupancy grid map can be included in
the input features to allow the network to recommend
subgoals that do not lead the robot to bump into walls,
for example.

• Since we used an FCN, only a fixed number of input
features could be used, due to which the number of agents
considered was limited to nmax. We can account for all
the agents in the environment by having an attention

(a) CL(right)(left) against
SF (20)

(b) CL(right)(left) against
SF (-20)

Fig. 12: Simulation with ego agent being able to display both left and right preferring navigation behavior with the same
policy.

layer to reduce variable-sized input features to a fixed-
size feature vector. This way, the network can learn to
focus on reacting to people who are most likely to cross
paths with the robot.

• The MPC planner uses a constant velocity model for pre-
dicting the pedestrian’s velocity. Though the CV model
is shown to have excellent performance over various
learning methods [69], it still needs improvement. Hence,
we cannot necessarily avoid colliding with pedestrians if
they walk erratically.

• We chose BC combined with DAGGER to perform IL
in simulations. However, since the expert policy is not
available for the actual data, we can try out Adversarial
algorithms like GAIL [70] to mitigate the accumulation
of errors due to covariate shift [51].

• An RNN architecture that can keep track of the history
of observations can be used to experiment if it is possible
to infer the side preference of the other agents early on to
adapt the robot’s behavior as required in the beginning.

• We assumed that the information on when the distribution
shift happens in the environment is given to us. In
other words, we assume that the robot is aware when
pedestrians exhibit a different level of social compliance,
and the policy needs to be adapted. This assumption
may not hold in reality, and other metrics like perceived
comfort that measure the drop in performance should be
used to inform the pipeline to retrain the policy.

• The chosen social scenarios are opposite, meaning the
agent is forced to unlearn previously acquired information
to adapt to the new situation. It would be interesting to
test the CL policy on tasks that do not have conflicting
requirements.

REFERENCES

[1] P. Kurup and K. Liu, “Telepresence robot with autonomous navigation
and virtual reality: Demo abstract,” in Proceedings of the 14th ACM
Conference on Embedded Network Sensor Systems CD-ROM, 2016, pp.
316–317.

[2] “Mobile robot transports sterile goods in hospital.” [Online].
Available: https://ifr.org/ifr-press-releases/news/mobile-robot-transports-
sterile-goods-in-hospital

[3] G. Fragapane, H.-H. Hvolby, F. Sgarbossa, and J. O. Strandhagen,
“Autonomous mobile robots in hospital logistics,” in IFIP International
Conference on Advances in Production Management Systems. Springer,
2020, pp. 672–679.

[4] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware
robot navigation: A survey,” Robotics and Autonomous Systems, vol. 61,
no. 12, pp. 1726–1743, 2013.

[5] E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon, “A human
aware mobile robot motion planner,” IEEE Transactions on Robotics,
vol. 23, no. 5, pp. 874–883, 2007.

[6] T. Kruse, P. Basili, S. Glasauer, and A. Kirsch, “Legible robot navigation
in the proximity of moving humans,” pp. 83–88, 2012.

[7] C. Rösmann, M. Oeljeklaus, F. Hoffmann, and T. Bertram, “Online
trajectory prediction and planning for social robot navigation,” pp. 1255–
1260, 2017.

[8] A. J. Sathyamoorthy, U. Patel, M. Paul, N. K. S. Kumar, Y. Savle, and
D. Manocha, “Comet: modeling group cohesion for socially compliant
robot navigation in crowded scenes,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 1008–1015, 2021.

[9] H. Khambhaita and R. Alami, “Viewing robot navigation in human
environment as a cooperative activity,” in Robotics Research. Springer,
2020, pp. 285–300.

[10] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially
compliant mobile robot navigation via inverse reinforcement learning,”
The International Journal of Robotics Research, vol. 35, no. 11, pp.
1289–1307, 2016.

[11] M. Pfeiffer, U. Schwesinger, H. Sommer, E. Galceran, and R. Siegwart,
“Predicting actions to act predictably: Cooperative partial motion plan-
ning with maximum entropy models,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2016, pp. 2096–
2101.

[12] W. Schwarting, A. Pierson, J. Alonso-Mora, S. Karaman, and D. Rus,
“Social behavior for autonomous vehicles,” Proceedings of the National
Academy of Sciences, vol. 116, no. 50, pp. 24 972–24 978, 2019.

[13] P. T. Singamaneni, A. Favier, and R. Alami, “Human-aware navigation
planner for diverse human-robot interaction contexts,” in 2021 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 5817–5824.

[14] P. Teja S. and R. Alami, “Hateb-2: Reactive planning and decision
making in human-robot co-navigation,” in 2020 29th IEEE International
Conference on Robot and Human Interactive Communication (RO-
MAN), 2020, pp. 179–186.

[15] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforcement
learning,” in 2019 International Conference on Robotics and Automation
(ICRA), 2019, pp. 6015–6022.

[16] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 1343–1350.

[17] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among dynamic,
decision-making agents with deep reinforcement learning,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018, pp. 3052–3059.

[18] Ó. Gil and A. Sanfeliu, “Effects of a social force model reward in robot
navigation based on deep reinforcement learning,” in Iberian Robotics
conference. Springer, 2019, pp. 213–224.

[19] S. Liu, P. Chang, W. Liang, N. Chakraborty, and K. Driggs-Campbell,
“Decentralized structural-rnn for robot crowd navigation with deep
reinforcement learning,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp. 3517–3524.

[20] J. Bi, T. Xiao, Q. Sun, and C. Xu, “Navigation by imitation in a
pedestrian-rich environment,” arXiv preprint arXiv:1811.00506, 2018.

[21] M. Fahad, G. Yang, and Y. Guo, “Learning human navigation behav-
ior using measured human trajectories in crowded spaces,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2020, pp. 11 154–11 160.

[22] Q. Fang, X. Xu, X. Wang, and Y. Zeng, “Target-driven visual navigation
in indoor scenes using reinforcement learning and imitation learning,”
CAAI Transactions on Intelligence Technology, 2021.

[23] A. Hussein, E. Elyan, M. M. Gaber, and C. Jayne, “Deep imitation
learning for 3d navigation tasks,” Neural computing and applications,
vol. 29, no. 7, pp. 389–404, 2018.

[24] A. Konar, B. H. Baghi, and G. Dudek, “Learning goal conditioned
socially compliant navigation from demonstration using risk-based fea-
tures,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 651–658,
2021.

[25] L. Liu, D. Dugas, G. Cesari, R. Siegwart, and R. Dubé, “Robot
navigation in crowded environments using deep reinforcement learning,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2020, pp. 5671–5677.

[26] M. Pfeiffer, S. Shukla, M. Turchetta, C. Cadena, A. Krause, R. Siegwart,
and J. Nieto, “Reinforced imitation: Sample efficient deep reinforcement
learning for mapless navigation by leveraging prior demonstrations,”
IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 4423–4430,
2018.

[27] C.-E. Tsai and J. Oh, “A generative approach for socially compliant
navigation,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 2160–2166.

[28] S. Wei, X. Chen, X. Zhang, and C. Qi, “Towards safe and socially
compliant map-less navigation by leveraging prior demonstrations,”
in International Conference on Intelligent Robotics and Applications.
Springer, 2020, pp. 133–145.

[29] B. Xiong, F. Wang, C. Yu, F. Qiao, Y. Yang, Q. Wei, and X.-J.
Liu, “Learning safety-aware policy with imitation learning for context-
adaptive navigation,” 2019.

[30] C. Wang, X. Liu, X. Yang, F. Hu, A. Jiang, and C. Yang, “Trajectory
tracking of an omni-directional wheeled mobile robot using a model
predictive control strategy,” Applied Sciences, vol. 8, no. 2, 2018.
[Online]. Available: https://www.mdpi.com/2076-3417/8/2/231

[31] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger, “Learning-
based model predictive control: Toward safe learning in control,” Annual
Review of Control, Robotics, and Autonomous Systems, vol. 3, pp. 269–
296, 2020.

[32] D. Limon, J. Calliess, and J. M. Maciejowski, “Learning-based nonlinear
model predictive control,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 7769–
7776, 2017.

[33] B. Brito, M. Everett, J. P. How, and J. Alonso-Mora, “Where to go
next: Learning a subgoal recommendation policy for navigation among
pedestrians.” [Online]. Available: https://arxiv.org/abs/2102.13073

[34] K. Lowrey, A. Rajeswaran, S. Kakade, E. Todorov, and I. Mordatch,
“Plan online, learn offline: Efficient learning and exploration via model-
based control,” arXiv preprint arXiv:1811.01848, 2018.

[35] F. Farshidian, D. Hoeller, and M. Hutter, “Deep value model predictive
control,” arXiv preprint arXiv:1910.03358, 2019.

[36] D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,”
Physical review E, vol. 51, no. 5, p. 4282, 1995.

[37] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The international journal of robotics research,
vol. 17, no. 7, pp. 760–772, 1998.

[38] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obsta-
cles for real-time multi-agent navigation,” in 2008 IEEE International
Conference on Robotics and Automation, 2008, pp. 1928–1935.

[39] S. Kim, S. J. Guy, W. Liu, D. Wilkie, R. W. Lau, M. C. Lin, and
D. Manocha, “Brvo: Predicting pedestrian trajectories using velocity-
space reasoning,” The International Journal of Robotics Research,
vol. 34, no. 2, pp. 201–217, 2015.

[40] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforcement
learning,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), 2017, pp. 285–292.

[41] P. A. Vasconcelos, H. N. Pereira, D. G. Macharet, and E. R. Nascimento,
“Socially acceptable robot navigation in the presence of humans,” in
2015 12th Latin American Robotics Symposium and 2015 3rd Brazilian
Symposium on Robotics (LARS-SBR). IEEE, 2015, pp. 222–227.

[42] Y. Wang, D. Zhang, J. Wang, Z. Chen, Y. Li, Y. Wang, and R. Xiong,
“Imitation learning of hierarchical driving model: From continuous
intention to continuous trajectory,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 2477–2484, 2021.

[43] P. Cai, Y. Sun, H. Wang, and M. Liu, “Vtgnet: A vision-based trajectory
generation network for autonomous vehicles in urban environments,”
IEEE Transactions on Intelligent Vehicles, vol. 6, no. 3, pp. 419–429,
2020.

[44] L. Qin, Z. Huang, C. Zhang, H. Guo, M. Ang, and D. Rus, “Deep
imitation learning for autonomous navigation in dynamic pedestrian
environments,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2021, pp. 4108–4115.

[45] M. Fahad, Z. Chen, and Y. Guo, “Learning how pedestrians navigate:
A deep inverse reinforcement learning approach,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2018, pp. 819–826.

[46] B. H. Baghi and G. Dudek, “Sample efficient social navigation using
inverse reinforcement learning,” 2021.

[47] D. Hadfield-Menell, S. J. Russell, P. Abbeel, and A. Dragan, “Coopera-
tive inverse reinforcement learning,” in Advances in Neural Information
Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, Eds., vol. 29. Curran Associates, Inc., 2016.

[48] Y. Li, J. Song, and S. Ermon, “Infogail: Interpretable imitation learning
from visual demonstrations,” vol. 30, 2017.

[49] L. Tai, J. Zhang, M. Liu, and W. Burgard, “Socially compliant navigation
through raw depth inputs with generative adversarial imitation learning,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA), 2018, pp. 1111–1117.

[50] M. Sayed-Mouchaweh and E. Lughofer, Learning in non-stationary
environments: methods and applications. Springer Science & Business
Media, 2012.

[51] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,” in
Proceedings of the thirteenth international conference on artificial intel-
ligence and statistics. JMLR Workshop and Conference Proceedings,
2010, pp. 661–668.

[52] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
catastrophic forgetting in neural networks,” Proceedings of the National
Academy of Sciences, vol. 114, no. 13, pp. 3521–3526, mar 2017.

[53] K. Shaheen, M. A. Hanif, O. Hasan, and M. Shafique, “Continual
learning for real-world autonomous systems: Algorithms, challenges and
frameworks,” Journal of Intelligent & Robotic Systems, vol. 105, no. 1,
pp. 1–32, 2022.

[54] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl:
Incremental classifier and representation learning,” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, 2017, pp.
2001–2010.

[55] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep
generative replay,” Advances in neural information processing systems,
vol. 30, 2017.

[56] R. Kemker and C. Kanan, “Fearnet: Brain-inspired model for incremen-
tal learning,” 2018.

[57] H.-R. Wei, S. Huang, R. Wang, X. Dai, and J. Chen, “Online distilling
from checkpoints for neural machine translation,” in Proceedings of the
2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), 2019, pp. 1932–1941.

[58] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE transactions
on pattern analysis and machine intelligence, vol. 40, no. 12, pp. 2935–
2947, 2017.

[59] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural
networks,” 2016. [Online]. Available: https://arxiv.org/abs/1606.04671

[60] J. Yoon, E. Yang, J. Lee, and S. J. Hwang, “Lifelong learning
with dynamically expandable networks,” 2017. [Online]. Available:
https://arxiv.org/abs/1708.01547

[61] R. Aljundi, K. Kelchtermans, and T. Tuytelaars, “Task-free continual
learning,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 11 254–11 263.

[62] L. Pellegrini, G. Graffieti, V. Lomonaco, and D. Maltoni, “Latent
replay for real-time continual learning,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp.
10 203–10 209.

[63] D. Rao, F. Visin, A. Rusu, R. Pascanu, Y. W. Teh, and R. Hadsell,
“Continual unsupervised representation learning,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[64] M. Sadeghi Lahijani, T. Islam, A. Srinivasan, and S. Namilae, “Con-
strained linear movement model (calm): Simulation of passenger move-
ment in airplanes,” PLoS one, vol. 15, no. 3, p. e0229690, 2020.

[65] D. DeVon and T. Bretl, “Kinematic and dynamic control of a wheeled
mobile robot,” in 2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2007, pp. 4065–4070.

[66] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from
observation,” 2018. [Online]. Available: https://arxiv.org/abs/1805.01954

[67] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings, 2011, pp.
627–635.

[68] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool, “You’ll never walk
alone: Modeling social behavior for multi-target tracking,” in 2009 IEEE
12th International Conference on Computer Vision, 2009, pp. 261–268.

[69] C. Schöller, V. Aravantinos, F. Lay, and A. Knoll, “What the constant
velocity model can teach us about pedestrian motion prediction,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 1696–1703, 2020.

[70] J. Ho and S. Ermon, “Generative adversarial imitation learning,” 2016.

VIII. APPENDIX

The following table shows values of some important param-
eters introduced in the paper.

ϵ (m) nmax λ
Learning rate
(α) Weight decay

0.05 9 100 5× 10−4 1× 10−3

TABLE VIII: Important hyperparameters

Fig. 13: GOMPC exploiting the social compliance of SF agent
and goes straight without regard for comfort.

	Front Matter
	Cover Page
	Title Page
	Signatures
	Acknowledgements

	Main Matter
	Scientific paper

