<]
TUDelft

Delft University of Technology

A Semi-Automatic and Low-Cost Method to Learn Patterns for Named Entity Recognition

Marrero, M.; Urbano, J.

DOI
10.1017/5135132491700016X

Publication date
2018

Document Version
Accepted author manuscript

Published in
Natural Language Engineering

Citation (APA)

Marrero, M., & Urbano, J. (2018). A Semi-Automatic and Low-Cost Method to Learn Patterns for Named
Entity Recognition. Natural Language Engineering, 24(1), 39-75.
https://doi.org/10.1017/S135132491700016X

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1017/S135132491700016X
https://doi.org/10.1017/S135132491700016X

Natural Language Engineering 1 (1): 1-39. Printed in the United Kingdom 1
(© 2017 Cambridge University Press

A Semi-automatic and Low-cost Method
to Learn Patterns for Named Entity Recognitionf

M. MARRERO

Barcelona Supercomputing Center, Spain
E-mail: marrero.monica@gmail.com

J.URBANO

Delft University of Technology, The Netherlands
E-mail: urbano.julian@gmail.com

(Received 17 January 2016; revised 18 April 2017; accepted 19 April 2017)

Abstract

Named Entity Recognition is a basic task in Information Extraction that aims at identify-
ing entities of interest within full text documents. The patterns used to recognize entities
can be rule-based, as in the popular JAPE system. However, hand-crafting effective pat-
terns is often difficult, and yet there is little research devoted to methods capable of
learning human-readable patterns, possibly with arbitrary sets of features. In this paper
we present a semi-automatic method to generate both regular expressions and a subset of
the JAPE language. It does not need a corpus annotated beforehand. Instead, it employs
active learning and combines clustering with an algorithm that finds alignments between
symbols present in the entities discovered during the learning process. The method cur-
rently supports a fixed set of character features and an arbitrary set of token features, but
it can incorporate other kinds of features as well. Through several experiments with an
English corpus we show the ability of the method to generate effective patterns at a low
annotation cost, and how it can successfully help in the annotation of brand new corpora.

1 Introduction

The dramatic rate at which digital information is generated requires in many cases
to go beyond merely retrieving full documents in response to a query, for instance
by extracting the exact pieces of information that users are looking for (Gantz and
Reinsel 2012). The goal of Named Entity Recognition (NER) is to identify entities
of interest in full documents, such as persons, locations and dates. NER is a basic
area in Information Extraction, necessary for example to identify referents and
their relations, or scenario compositions in order to satisfy specific user needs. It is
a topic of research especially active in fields like Biomedicine (Nédellec, Bossy, Kim,

t This work was partially supported by the Spanish Government through a Juan de la
Cierva fellowship and project MDM-2015-0502. We specially thank Jorge Morato and
Sonia Sdnchez for their advice, as well as the anonymous reviewers for their suggestions.

2 Marrero and Urbano

Kim, Ohta, Pyysalo and Zweigenbaum 2013; Marrero, Sanchez-Cuadrado, Urbano,
Morato and Moreiro 2012) or Social Media Analysis (Li, Wei, Zhang and Zhou 2013;
Ritter, Clark, Mausam and Etzioni 2011), and it is applied in other fields related
to Information Management and Natural Language Processing, such as Semantic
Annotation (Uren, Cimiano, Iria, Handschuh, Vargas-Vera, Motta and Ciravegna
2006; Reeve and Han 2005), Question Answering (Srihari and Li 1999), Ontology
Population (Maedche and Staab 2001; Etzioni, Cafarella, Downey, Popescu, Shaked,
Soderland, Weld and Yates 2005) and Opinion Mining (Pang and Lee 2007; Popescu
and Etzioni 2005).

At the core of NER systems are patterns capable of recognizing the entities
of interest. Even though statistical approaches are more frequently used to learn
these patterns, hand-crafted rules still play an important role in real world applica-
tions, especially in the industry (Chiticariu and Reiss 2013). The need for traceable
results, the lack of existing annotated data and the difficulty to create new annota-
tions, as well as unclear or unstable specifications, are some of the reasons that favor
rule-based approaches. Examples of successful rule-based systems are GATE with
JAPE (Java Annotation Patterns Engine) (Cunningham et al. 2013), and Apache
UIMA Ruta (Klueg, Toepfer, Beck, Fette and Puppe 2015). However, the user is
required to learn specific formal languages to write these rules. Even though there
are tools that help doing this, such as NooJ (Silberztein 2005) for grammars or Ul-
trapico Expresso for regular expressions, the user still has to review large amounts
of text to debug these rules and possibly refine them for the corpus at hand.

A natural development is thus the creation of systems capable of generating
recognition rules in an automatic fashion. However, currently there is little atten-
tion to such methods. Former methods employ a reduced set of features, and they
seldom allow the use of custom features or features of different levels of granularity.
In addition, these systems often learn in a supervised manner that requires large
numbers of annotations to obtain effective patterns.

We have developed a new method to semi-automatically learn regular expres-
sions and JAPE patterns that does not require any corpora annotated beforehand.
Instead, it guides the user throughout the annotation process thanks to active learn-
ing techniques, thus reducing the overall annotation cost required to generate the
patterns. The method uses features at both character and token levels to describe
entities, and applies exactly the same algorithm to identify rules in both cases, thus
simplifying its implementation and future extension to other types of feature. The
performance of the method is evaluated with three experiments and a varied set
of entity types. First, we show that it requires a small annotation effort to learn
JAPE patterns that achieve good effectiveness scores compared to the state of the
art. Second, we show that it can also be used to exhaustively annotate new corpora,
sparing users the need to review large amounts of text. Third, we show that it can
similarly learn very effective regular expressions from a small set of initial seeds.

The remainder of the paper is organized as follows. Section 2 presents an overview
of NER and related work. Section 3 describes the proposed algorithm to identify
rules for NER, and Section 4 describes how it is efficiently combined with clustering
and active learning in order to learn valid rules. Section 5 describes general evalua-

A Semi-automatic and Low-cost Method to Learn Patterns for NER 3

tion settings, and Sections 6, 7 and 8 present the experimental details and results.
Finally, Sections 9 and 10 present a final discussion and finish with conclusions and
lines for future research.

2 Named Entity Recognition
2.1 Problem Statement

The problem of Named Entity Recognition can be formulated as follows. Let &
be the set of all entities of a particular type (e.g. person names, countries, dates),
and let P be a pattern capable of recognizing all these entities. That is, £ = L(P)
where L(P) is the language recognized by P, and thus the pattern recognizes the
language of the particular entity type we are looking for and nothing else. The goal
is to generate a pattern P that estimates P from a set €t C & of positive examples
(i.e. known entities) and possibly a set £~ ¢ & of negative examples (i.e. text
fragments that are not entities of the target type).

These patterns are based on different combinations of features that character-
ize entities in £ and differentiate them from the rest of the text. These features
have different degrees of granularity. They are often found at the character level
(e.g. character classes) and at the token level (e.g. POS tag, morphological cat-
egory), though we can also find discourse features. Let ¥ be the alphabet of all
characters. A character feature f€ is a function f€ : ¥ — € that maps a character
onto a symbol of a certain alphabet X¢ specific of the feature. A token feature f7
is a function f7 : £* — %7 that maps a sequence of characters (i.e. a token) onto
a symbol in the feature output alphabet. Different NER systems can of course use
different sets of features.

For our purposes, a pattern learning method for NER is thus defined as a function
that estimates P from the sets £7 and £ of positive and negative examples, sets
F€ and F7 of character and token features, and a corpus D of documents. In this
paper we propose a semi-automatic method to learn P, such that L(IS) ~ L(P).
The accuracy of the pattern is measured in terms of precision and recall, that is,
its ability to generate the same language as P.

2.2 Pattern Learning Methods

Different machine learning approaches can be found in the literature for the au-
tomatic creation of NER patterns. According to Sarawagi (2008), these can be
broadly categorized as rule-based and statistical. While the former may produce a
customized model designed to exploit specific characteristics of the task, the latter
try to map the NER problem to some generic theoretical model that has to be fitted.
Rule-based methods are easier to develop and interpret, while statistical methods
are more robust to noisy unstructured text. Nonetheless, both rule-based and statis-
tical learning methods are still used depending on the specificities of the extraction
task (Sarawagi 2008). Chiticariu and Reiss (2013) show that rule-based methods
are more frequent in industrial settings, while statistical methods are used more

4 Marrero and Urbano

often in academia, probably because the former are easier to adopt, understand,
debug and maintain in scenarios where requirements are changing.

We find several rule-based approaches in the literature. Whisk (Soderland 1999)
and Amilcare (Ciravegna and Wilks 2003) calculate combinations of feature val-
ues and select the ones that best identify entities. RAPIER (Thompson, Califf
and Money 1999) computes possible alignments between feature values and selects
the ones with the best trade-off between accuracy and complexity of the pattern.
Wu and Pottenger (2005) learn patterns by identifying sequences of features and
iteratively expanding patterns from the most common feature value across enti-
ties. Li, Krishnamurthy, Raghavan, Vaithyanathan and Jagadish (2008) adapt reg-
ular expressions from annotated examples. Brauer, Rieger, Moca and Barczynski’s
method (2011) analyzes the prefixes and suffixes of the entities in order to determine
character patterns. Finally, Nagesh and Chiticariu (2012) induce rules by applying
a subset of operators from the declarative language AQL with basic features previ-
ously identified in the text.

Regarding statistical learning approaches, we find the use of Markov Models
(Bikel, Miller, Schwartz and Weischedel 1997; Hachey, Alex and Becker 2005),
Maximum Entropy Models (Borthwick, Sterling, Agichtein and Grishman 1998),
Conditional Random Fields (Tomanek, Wermter and Hahn 2007; McCallum and
Li 2003; Finkel, Grenager and Manning 2005), Support Vector Machines (Asahara
and Matsumoto 2003; Shen, Zhang, Su, Zhou and Tan 2004; Vlachos 2008; Li,
Bontcheva and Cunningham 2009), Neural Networks (Kazama and Torisawa 2007;
Ratinov and Roth 2009) and Decision Trees (Sekine, Grishman and Shinnou 1998).

Some other works have studied the application of bootstrapping techniques for
NER (Gupta and Manning 2014; Jones 2005; Nadeau 2007; Pasca, Lin, Bigham,
Lifchits and Jain 2006; Etzioni et al. 2005), as well as other unsupervised techniques
(Alfonseca and Manandhar 2002; Shinyama and Sekine 2004; Ritter et al. 2011).
Finally, some recent works have studied hybrid approaches (Fersini, Messina, Felici
and Roth 2014; Irmak and Kraft 2010; Liu et al. 2013; Nouvel et al. 2012).

2.3 Annotations

The initial sets £T and £~ are usually part of the corpus, where these entities
are already annotated. Statistical learning algorithms require a large number of
such annotations (Settles 2012), which often requires the user to review very large
amounts of text. As a result, these algorithms are seldom practical when there
are none or just a few annotations available. Unfortunately, this is usually the
case in NER when facing non-traditional types of entities (e.g. apparel brands,
software applications, years of experience) or simply a brand new corpus for which
known patterns are not suitable (Marrero, Urbano, Sanchez-Cuadrado, Morato and
Gémez-Berbis 2013; Marrero, Sdnchez-Cuadrado, Morato and Andreadakis 2009).
In addition, these algorithms may generate patterns biased towards precision be-
cause £ is normally outnumbered by £, that is, there are many more negative
examples than positive examples (Li et al. 2009).

Active learning techniques can reduce annotation costs, asking users to annotate

A Semi-automatic and Low-cost Method to Learn Patterns for NER 5

only certain documents or text snippets throughout the learning process. The sets
ET and £~ are initially smaller, and they are augmented with the new annotations
made during the learning process. Overall annotation costs are reduced by identify-
ing the most informative or relevant text snippets to annotate. Active learning has
been previously applied to both rule-based (Thompson et al. 1999; Soderland 1999;
Wu and Pottenger 2005) and statistical learning methods (Hachey et al. 2005; Shen
et al. 2004; Vlachos 2008; Li et al. 2009; Tomanek et al. 2007). However, even with
active learning it is still necessary in many cases to have many initial annotations
to obtain satisfactory results.

Some studies discuss different approaches to measure the effort required from
the user (Settles 2012). For instance, Vijayanarasimhan and Grauman (2009) esti-
mates annotation cost from the time it takes the user to annotate a few examples.
Nevertheless, the most common measures of required user effort are the number
of elements to review (e.g. number of tokens), and the number of actions required
(e.g. change a label). A very important aspect in the first case is the length of the
text units that users are given to annotate. In the case of NER, RAPIER (Thomp-
son et al. 1999) uses full documents, Whisk (Soderland 1999) and Wu and Pot-
tenger (2005) use predefined text snippets (assuming previous knowledge about the
type of documents and the boundaries of the entities), Hachey et al. (2005) and
Tomanek et al. (2007) use sentences, Shen et al. (2004) use the entities themselves,
and Vlachos (2008) and Jones (2005) use tokens. Li et. al. (2009) compare the
use of documents, text fragments and tokens with active learning. They observed
that when the annotation units are text fragments or tokens instead of full docu-
ments, the performance of algorithms is significantly lower. But large documents do
not necessarily contain more entities, so using full documents makes both overall
annotation costs and algorithm performance more variable across document types.

Regarding the measurement of effort as the number of actions taken by the
user, Culotta and Mccallum (2005) consider the actions of correcting the start
boundary, end boundary, and type of an entity, as well as choosing from a list of
suggestions with various boundaries. Others try to combine the number of elements
to review and the number of actions. For instance, Ringger, Carmen, Haertel, Seppi,
Londsdale, McClanahan, Carroll and Ellison (2008) and Haertel, Seppi, Ringger and
Carroll (2008) apply an hourly cost model to the labeling of POS that depends on
the number of tokens per sentence reviewed by the user, and the number of words
whose label needs correcting.

2.4 Features

Entities may be recognized with regular expressions when their patterns respond to
sequences of characters, such as in e-mail addresses, phone numbers and names of
some genes and proteins. However, not even the typical NER entities (e.g. location,
organization, person) can be recognized with only these features; custom token fea-
tures are needed as well to describe more complex patterns. It is therefore important
that a pattern learning method permits generality (i.e. to employ a diverse set of
features to be able to recognize various entity types, even in different types of doc-

6 Marrero and Urbano

Phase: personsA
Input: Token Lookup
Rule: rulel

({Token.category == "NNP",

Token.string ==~ "A.+",

Lookup.majorType == "person_first"}) :pname
--> :pname.Person = {type = "first"}

Phase: doctorsA
Input: Token Person
Rule: rulel

({Token.string ==~ "Dr\\.?"}
{Person.type == "first"}) :drname
--> :drname.Person = {title = "doctor"}

Fig. 1. Sample cascade grammar in JAPE notation. Each phase represents a finite
state transducer, whose input alphabet is specified after Input. Each rule contains a
left-hand-side with a pattern, the separator -->, and a right-hand-side with an action.
The text matched by the pattern can be identified with a label (eg. : pname), which is used
in the action to add certain annotations to that specific string. In the above example,
the first phase recognizes person first names, made up of a token with morphosyntactic
category NNP, whose initial character is A (==" indicates that the right-hand side is a regular
expression), and is also included in the person_first gazetteer. The text matched by this
pattern is annotated as Person.type="first". The second phase uses these annotations
to recognize first names that are preceded by a token matching the regular expression
Dr\\.?, and annotates them as Person.title="doctor".

ument) as well as retargetability (i.e. to include custom features, even at different
granularity levels, to recognize specific or novel types of entities) (Freitagl1998; Mar-
rero et al. 2013). These capabilities have a direct impact on the learning method,
which needs to deal with an arbitrarily large number of features and alphabet sym-
bols. This is especially troublesome with features at the character level, because
they are applied to each of the individual characters of the entities and lead to
a high degree of variability. This is often the case with statistical learning meth-
ods, which very rarely work with character-level features and, when they do, they
usually employ n-grams instead of single characters.

2.5 Representation of Patterns

An important difference between rule-based and statistical learning approaches is
the transparency of the generated patterns. Statistical learning patterns are used as
a black-box, because they are based on statistical models that are hard to interpret
by humans. On the other hand, rule-based patterns can be more easily interpreted
and analyzed, even during the learning process (Siniakov 2008). This further allows
users to edit and refine patterns, possibly aided by computer tools (Chiticariu, Kr-
ishnamurthy, Li, Reiss and Vaithyanathan 2010). The need to represent features at
different levels of granularity gave rise to a number of different ways and syntaxes

A Semi-automatic and Low-cost Method to Learn Patterns for NER 7

to specify rule-based patterns in NER, from formal patterns such as regular expres-
sions to ad-hoc patterns that represent predefined features. Unfortunately, neither
regular expressions nor higher level grammars allow more than one input alphabet
at once. On the other hand, languages for ad-hoc patterns, except maybe for recent
developments like the UIMA language, lack standardization (Marrero and Urbano
2015).

Cascade grammars do allow us to use several types of features in the same pattern.
The Common Pattern Specification Language (CPSL) (Appelt and Onyshkevych
1998) standardizes this representation, and it is widely used in Information Ex-
traction tasks. It has been adopted and customized to different extents by different
platforms (Boguraev 2004; Drozdzynski, Krieger, Piskorski, Schfer and Xu 2004; Ri-
naldi et al. 2005), GATE (Cunningham et al. 2013) being one of the most successful
ones with its JAPE notation, which provides finite state transduction over GATE’s
document annotations. Each transducer consists of a set of pattern-action rules, the
actions being new annotations over the matched text (see Fig. 1). The rule-based
methods described in Section. 2.2 are in principle capable of generating some valid
rules for this standard, but they usually employ only character features to gener-
ate regular expressions (Brauer et al. 2011; Li et al. 2008), or only token features,
predefined (Soderland 1999; Thompson et al. 1999) or not (Nagesh and Chiticariu
2012; Ciravegna and Wilks 2003). There are some approaches like (Wu and Pot-
tenger 2005) that use both types of features, but they can not be customized. The
method we present in this paper is capable of generating cascade grammars with
features that are more customizable than in other rule-based methods for NER,
making it more general and retargetable.

3 Algorithm to Identify Potential Rules

In this section we describe the core of the proposed method to learn rules for
NER: Section 3.1 first describes the type of patterns learned by the method, and
Section 3.2 explains the algorithm to identify the rules that compose those patterns.
Section 3.3 lists the features used by the method and how they are represented,
and Section 3.4 finally describes how the validated rules are stored prior to the
translation to JAPE notation. Afterwards, Section 4 will explain how this algorithm
is efficiently combined with clustering and active learning, as well as the generation
of the final JAPE patterns.

Throughout the remainder of the paper we will follow the simple scenario in
Fig. 2 as the main example for demonstration purposes, though we will explicitly
use other examples to illustrate some specific concepts. The set of initial positive
examples contains two entities: ET = {e1 = 4:50_pm,es = 10.55_am}.

3.1 Sequential Patterns

The most common criterion to recognize textual entities is the occurrence of the
same symbol in all entities. For instance, the two entities in Fig. 2.a contain dig-
its and a time expression (am or pm). The declarative languages UIMA, AQL or

8 Marrero and Urbano

a) Seed Entities
el = 4:50_pm ez = 10.55_am

b) Feature Matrices
Character Features

4 : 5 0 . p m 1 0 . 5 5 . a m
A§=|Nd Po Nd Nd Zs [Pp] [Mn] AS=|Nd Nd Po Nd Nd Zs [Aa] [Mm
DPDDS L L DDPDDS L L

Token Feature_s

AT =

<> <time>
<italics> <italics>

AT — <> <time>
L 7| <italics> <italics>

c) Pattern Matrices

Character Patterns

e o o o _ o ° e o o o o _ o °
Bf: Nd Po Nd Nd e e [Mm] Bg: Nd Nd Po Nd Nd e e [Mm]
L® © o o o L ° L® © o o o o L °

Token Patterns
. <time> :| . <time>

B7' B7>:
1 2 <italics> <italics>

" | <italics> <italics>

d) JAPE Pattern

Phase: char_phase Phase: token_phase

Input: Token SpaceToken Input: Token T_1_2

Rule: C_1 Rule: T_1_2
({Token.string ==~ ({T_1_2.sT == "1",

"\\p{Nd\\p{PoI\\p{Nd}{2}"} Token.fT2 == "italics"}

) :tokenl {T_1_2.sT == "2",
({SpaceToken.string == " "}) Token.fT1 == "time",
({Token.string ==~ "\\p{L1}[Mm]"} Token.fT2 == "italics"}
) :token2) :match

-=> -=>
:token1.T_1_2 = {sT = "1"}, :match.entity =
:token2.T_1_2 = {sT = "2"} {type = "time_italics"}

Rule: C_2

({Token.string ==~
"\\p{Nd}2M\\p{PoF\\p{Nd}{2}"}

) :tokenl
({SpaceToken.string == " "})
({Token.string ==~ "\\p{L1}[Mm]"}
) :token2

-—>
:tokenl.T_1_2 = {sT = "1"},
:token2.T_1_2 = {sT = "2"}

Fig. 2. Sample application of the pattern learning method to recognize times in italic
font: a) the set of initial seeds e; and ez, b) their character feature matrices A and their
token feature matrices A] (see Section 3.3), ¢) the learned pattern matrices BS and B
for each feature matrix, containing the fixed rules (see Section 3.4), and d) the final JAPE
pattern generated from the pattern matrices (see Section 4.3).

A Semi-automatic and Low-cost Method to Learn Patterns for NER 9

JAPE include operators to specify this type of conditions in the elements to ana-
lyze (e.g. CONTAINS), but patterns for NER are usually much more complex. They
can be combined with other conditions to create sequential patterns, which are far
more common in Natural Language Processing. These patterns consist of sequences
of symbols that repeat in all the items of interest (Srikant and Agrawal 1996). These
symbols may appear next to each other or with a number of symbols in between,
which may be fixed or vary across items. In our example, if we represent the hour
and time expressions as symbols, then they respond to a sequential pattern where
those symbols are at a distance of 1 from each other. Note that patterns that rely
only on one symbol could also be dealt with as sequences of two symbols, where
one of them is the starting or the end symbol.

Markov Models and CRF implicitly model these dependencies among symbols
in a sequence. Other statistical models such as SVM or Decision Trees rely on
the features to add sequence information to the model (e.g. n-grams, left/right
context features). Declarative languages include sequence conditions such as AFTER
or BEFORE. Implicitly, systems based on regular expressions and transducers also
search for sequences of symbols with the use of automata.

Examples of rule-based systems that learn sequential patterns are Whisk and
Amilcare, which enumerate possible sequences of symbols and select the best ones
based on several statistics. However these techniques may not be scalable in large
search spaces, so domain information is usually employed to maintain the problem
tractable. For instance, the search space could be pruned, as Amilcare does, or
constrained with certain conditions as part of a known, customized model. For ex-
ample, RAPIER looks for features that appear in the exact same position in all the
entities. In that case, when two entities have the same value for a specific feature
(string, POS and semantic) and at the same position, that value gets fixed. Other-
wise, all the values appearing in the known entities at that position are accepted by
the pattern. Using a customized model rather than a general classification model
is specially relevant when, in addition to the scalability problem, we do not have
enough data to statistically validate the patterns. In the latter case the user could
provide some kind of feedback by means of active learning techniques, as we will see
in Section 4.2.2, but the learning method should keep the interaction at a minimum,
finding the most relevant patterns to ask based on the model we know.

3.2 Rule Vectors

Our pattern search space is composed of what we will call rule vectors. A rule
vector is associated with a particular symbol from some feature, and it contains
the positions of that symbol in all the known entities. In particular, if 2’ is a rule
vector related to a symbol «, each component z; € 7 is the position of « in the i-th
known entity. At this point, let us assume that the symbol « is present just once
in all entities; this restriction is relaxed in Section 4.2.1.

Example: with the entities in Fig. 2, a possible rule vector would be (4,2) for
symbol 0, meaning that the fourth character of the first entity and the second

10 Marrero and Urbano

character of the second entity are both 0. That vector suggests fixing those specific
symbols in those specific positions as rules of the final pattern. O

We identify sequential patterns by comparing pairs of rule vectors, trying to
determine how well they are aligned with each other. For two arbitrary vectors o
and ¥ that contain positions of two symbols o and (not necessarily from the same
feature), the ideal case would be such that @ = ¥ + 4, meaning that all entities
contain symbols « and S in the same order and at a distance of ¢ from each other.
However, in practice the distance between sequential symbols is not always the
same, so we define the following distance function between two rule vectors:

A,) = |(vig1 — uigr) = (0 — wi))|
K3

Pairs of vectors with small distances are more likely to get fixed in the final pattern.
Symbols that always appear at similar positions from the beginning or from the end
of the entity can be identified by introducing two additional vectors. The first one,
Zp, contains only zeros to detect patterns with respect to the beginning of entities,
that is, symbols that appear at a similar distance from the first symbol in each
entity. The second vector, Z., contains the length of each entity and allows us to
detect patterns with respect to their end, that is, symbols that appear at a similar
distance from the last symbol of each entity.

For each feature, we iteratively calculate all rule vectors and compute their dis-
tance A with each of: i) all other possible rule vectors, ii) vectors z, and Z, iii)
all vectors already fixed in the final pattern and from the same feature, and iv) all
vectors already fixed in the final pattern but from previous features. In the end, we
select the rule vectors whose distance with other vectors was minimal in the whole
set, as they are most likely to produce valid rules. We note that for two vector rules
to actually define a sequential pattern, the symbols they represent must always ap-
pear in the same order in all entities. This means that if in any entity the symbols
are swapped, the vectors are not even paired to compute their distance.

In addition, it generally does not make sense to fix a rule vector involving for
instance the same character found in the body of some entities and in the context of
some others. Because we do not force symbols to appear in the exact same position
across entities, we look for rule vectors separately within the entities and within
their contexts. The identification of rule vectors within the contexts is made by
joining together the left and right context, so we are able to find sequential patterns
involving matching symbols from both contexts. This approach would help finding
symbols that appear sequentially in the left and right context of an entity, such as
< and >, and would also let us identify symbols that could appear indistinctly in
the left or right contexts in each entity.

3.3 Feature Matrices

As mentioned, a rule vector contains the positions of a certain symbol in all entities.
These symbols are computed with different feature functions, which in our case are
either at the character level or at the token level. The set F€ of character features

A Semi-automatic and Low-cost Method to Learn Patterns for NER 11

Table 1. Custom groups of Unicode categories in the third character feature.

Symbol Grouped Unicode categories
U: Uppercase letter Lu

L: Lowercase letter L1

D: Digit Nd

Y: Symbol Sm, Sc, So

S: Separator Cc, Zs

P: Punctuation Pc, Pd, Ps, Pe, Pi, Pf, Po
0: Others rest of Unicode categories

is fixed to three feature functions similar to Brauer (2011). The first feature simply
maps a character onto the character itself. The second feature maps characters onto
their Unicode category, except for alphabetic characters, which are represented
in case-insensitive form. The third one maps characters onto a custom group of
Unicode symbols (see Table 1). The method allows the use of an arbitrary set F7
of features at the token level.

All these features are represented in what we will call feature matrices
(see Fig. 2.b). The character feature values for an arbitrary entity e; are represented
by a matrix A, such that each row corresponds to a feature and each column cor-
responds to a character of the entity, that is, aicjk € AS is the value of the j-th
feature with the k-th character of entity e;. Similarly, a matrix A7 represents the
token feature values of the entity.

Example: In our main example in Fig. 2, the fourth column of AS represents the
fourth character of the second entity. Because this character is 5, the character
feature values are agylA =5, ag7274 = Nd and a37374 =D