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Abstract

This research presents the design and implementation of a fault diagnosis filter
for a high-fidelity simulation model of the AB383 wire bonder. Fault diagnosis,
which consists of detecting, isolating, and estimating faults, enables more effective
maintenance strategies and potentially mitigates costly downtime in high-precision
motion and positioning systems. When a system deviates from its expected behav-
ior, it can be an indication of the presence of a fault within the system. Faults can
occur as either multiplicative faults, arising from deviations in parameters within
the system, or additive faults, resulting from external fault signals that impact the
system’s operation. This study uses a model-based methodology that generates
residuals that are subsequently analyzed using a regression method aimed at deter-
mining the influence of each fault in the residual signal, thereby facilitating fault
estimation. A residual signal represents the difference between the actual system
behavior and the expected behavior, mainly serving as an indicator of potential
faults within the system. A data-driven threshold design is proposed to determine
the detectability of faults. The main contributions of this work include the devel-
opment of a fault modeling framework for the residual generation method and the
application of the fault estimation framework to a linear high-fidelity simulation
model affected by both multiplicative and additive faults. The simulation results
demonstrate satisfactory performance, that is, accurately detecting and estimating
faults. Moreover, the proposed method effectively identifies external disturbances
and high levels of noise through power spectral density analysis. The findings high-
light the potential of this approach, outperforming alternative methods in terms of
accuracy when it comes to fault diagnosis for wire bonder machines. The research
findings contribute to the active field of fault detection and estimation for com-
plex systems, offering valuable insights for further studies and potential practical
applications.

Keywords - Fault Diagnosis, Fault Estimation, Data-Driven Threshold Design, Model-
Based Fault Diagnosis, Multiplicative Faults, Additive Faults, Regression
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1 INTRODUCTION

1 Introduction
This introductory chapter provides an overview of the thesis, which focuses on the de-
velopment, implementation, and evaluation of a fault diagnosis system for a high-fidelity
simulation model of the AB383 wire bonder. The chapter begins by discussing the back-
ground and motivation for this research in Section 1.1, highlighting the importance of
timely and accurate fault diagnosis in reducing downtime and improving efficiency. Sec-
tion 1.2 provides a brief overview of fault diagnosis methods for complex systems discussed
in the literature. The main research problems to be addressed in the thesis are outlined
in Section 1.3. The specific challenges to high-precision motion and positioning systems,
such as wire bonding machines, are discussed in Section 1.4, setting the context for the
main contributions of this research in Section 1.5. Finally, the organization of the thesis
is presented in Section 1.6, providing a roadmap for the subsequent chapters.

1.1 Background and Motivation

The manufacturing industry heavily relies on high-tech systems that operate within high
precision and repeatability requirements. Any instance of unplanned downtime in these
systems can lead to substantial costs, primarily resulting from factors such as a reduc-
tion in product yield or missed delivery deadlines. Hence, it is crucial to minimize such
downtime as much as possible. Therefore, timely and accurate fault diagnosis can play
an important role in reducing downtime, improving efficiency, and increasing the overall
reliability of manufacturing systems.

In recent decades, a wide range of fault diagnosis methods and techniques have been
developed and utilized in various fields. A comprehensive literature review on fault di-
agnosis for high-precision motion and positioning systems can be found in [8]. Fault
diagnosis methods have advanced significantly in response to the mounting complexity
of modern systems, which often operate across multiple physical domains simultaneously.

ASMPT Ltd. is one of the companies interested in fault diagnosis for their complex mo-
tion systems. ASMPT Ltd. specializes in providing hardware and software solutions used
in the production of semiconductors and electronics [1]. This thesis focuses on a fault
diagnosis system that has been developed and implemented on a high-fidelity simulation
model of the AB383 wire bonder, a machine designed and fabricated by ASMPT Ltd.
Wire bonders are used in the back-end of the electronics industry, as they create con-
nections between integrated circuits and their packaging [16]. The back-end process in
semiconductor manufacturing transforms individual dice into packaged devices ready for
integration into electronic systems.

8



1 INTRODUCTION

The AB383 wirebonder operates with a high level of precision and accuracy, maintain-
ing submicron accuracy at accelerations exceeding 150 Gs. In these types of systems,
several faults can potentially degrade the system’s performance. A lack of lubrication
can increase friction in one of the motion guides. Over time, the permanent magnets
in the actuators can demagnetize. The fasteners, connecting the different components
rigidly together, can untighten, leading to a reduction in structural stiffness. External
disturbances can be present because the environment of the machine might not properly
absorb factory floor vibrations.

Detecting and isolating these faults is challenging because they may only cause minor
deviations from the desired trajectory in the measurement data, yet still result in perfor-
mance that falls outside the necessary specifications. Figure 1 illustrates the comparison
between the nominal system and the system with a 20% friction increase in the x-motion
guide of the machine, executed during a 4mm closed-loop motion. Despite the presence
of the fault, the trajectories remain nearly identical; similar findings for the other possible
faults in this research can be found in Appendix A.1. This highlights the challenges in
developing a precise fault diagnosis system for the high-precision wire bonder, where even
minor deviations can result in performance outside the precision requirements.

Figure 1: A comparison between the measured x position of the x-motion stage for the
nominal system and the same system with increased viscous friction.

1.2 Review of Fault Diagnosis in Literature

This section provides a discussion of some of the most frequently used and well-known
fault estimation methodologies for motion systems.

Quantitative knowledge-based fault estimation methods make use of numerical data and

9



1 INTRODUCTION

measurements to analyze system behavior [12]. Techniques employed within this frame-
work include machine learning methods like neural networks, which have been successfully
applied in estimating actuator faults in wind turbine simulations [20]. Moreover, statisti-
cal approaches such as Principal Component Analysis (PCA) have been effectively used
to estimate sensor faults in centrifugal chillers [27]. These methods are advantageous
when diagnosing faults in complex systems with large volumes of available data. How-
ever, they require substantial computational resources and are sensitive to the quality
and quantity of data used. Their performance may also deteriorate when maintenance
or changes are made to the system [12].

Observer-based fault estimation methodologies, on the other hand, augment the state
vector by integrating the faults of interest as additional states. This procedure allows the
estimation of the state vector, which in turn, leads to the estimation of both the fault
signals and the original system states [13]. A study in [21] demonstrated the effective
application of an Unknown Input Observer (UIO) in detecting and estimating unknown
actuator faults. Furthermore, the research illustrated in [28] deployed a combination
of integral observers, sliding observers, and adaptive observers for the reconstruction of
sensor faults in satellite control systems.

Parameter estimation techniques employ statistical methods to approximate unknown
parameters within a model or system based on observed data. In [26], various faults
(sensor, actuator, and process) were individually implemented in a wind turbine case
study and successfully estimated. Despite their effectiveness in fault diagnosis and fault
identification, these techniques might require an extensive amount of data and can be
sensitive to noise and disturbances within the data [5].

1.3 Research Problems

The main research problem that needs to be addressed is designing a fault estimation
system for the high-fidelity simulation model of the AB383 wire bonder. This system
is a real-time algorithm that should process measured signals and convert these into an
estimate of a range of possible faults related to the actuators, system, and disturbances
that might be present in the system simultaneously.

The accurate modeling of faults, such as structural stiffness, friction, and motor faults,
is of importance in addressing the main research problem. These faults should be incor-
porated into the mathematical model of the system, enabling parameter adjustments for
performance verification.

10



1 INTRODUCTION

1.4 Challenges

Considering the implementation of fault diagnosis methods highlighted in the literature
1.2, a key challenge is the broad spectrum of potential faults, including component fail-
ures, actuator faults, and external disturbances, which further complicates the diagnosis
process. Effectively managing this diverse range of faults presents a significant challenge
that needs to be addressed.

While this work primarily focuses on implementing the fault diagnosis system on a high-
fidelity model, it is crucial to consider its potential applicability to a physical machine.
This implies that the proposed fault diagnosis system must exhibit a strong balance be-
tween detection sensitivity and robustness to disturbances and potential model mismatch.

By addressing these research problems and challenges, the current work aims to develop
fault diagnosis techniques for positioning and motion systems, with the ultimate goal of
enabling potential implementation on practical applications.

1.5 Main Contributions

This thesis provides several contributions to the field of fault diagnosis for complex sys-
tems, specifically concentrating on motion and positioning systems. The insights and
methodologies proposed directly address the challenges identified in Section 1.4.

The primary contribution of this thesis is the implementation of a model-based fault
estimation framework. This framework, designed for a high-fidelity simulation model of
a physical system, takes into account the distinct characteristics and requirements of mo-
tion and positioning systems. This proposed method effectively confronts the challenges
associated with high precision requirements, intricate system dynamics, and a wide array
of fault types. Therefore, it creates a promising foundation for an accurate fault diagnosis
system for the AB383 wire bonder.

Furthermore, a notable contribution of this work is the introduction of a novel fault
representation and modeling approach within the residual generation method. This ap-
proach makes an analysis of the Equations of Motion (EoM) to obtain the necessary
parameters within the system matrices which are related to the individual faults in the
diagnosis framework. This also includes mathematical transformations that effectively
convert parametric faults into external fault signals.

A novel contribution of this research is the introduction of a technique for identifying
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1 INTRODUCTION

and quantifying external disturbances through residual analysis. This technique utilizes
power spectral density analysis to determine elevated noise levels or specific frequency
disturbances impacting the system. This method is complemented by separating low
and high-frequency components, aiding in the real-time estimation of faults and high-
frequency disturbances simultaneously.

Lastly, the proposed fault diagnosis methods are validated through comprehensive sim-
ulations and experiments using the simulation model of the AB383 wire bonder. The
performance of the developed techniques is assessed based on their accuracy, effectively
demonstrating the effectiveness of the proposed methods in addressing the challenges and
requirements of fault diagnosis for these types of systems.

1.6 Thesis Organization

This thesis is structured into six distinct chapters, each contributing to the progression
of our research narrative.

Chapter 2 offers an in-depth introduction to our system of interest, the AB383 wire
bonder. The chapter includes a three-dimensional schematic representation of the wire
bonder. It also encompasses the linear and nonlinear mathematical representation of this
system, drawing upon the mass-spring-damper modeling framework [14]. The potential
faults and their implementation in the system are also discussed.

In Chapter 3, the model-based fault diagnosis method is elaborated. This includes the
necessary modeling considerations, the residual generation method based on the work
in [17], threshold design, the fault estimation method based on the work in [7], and ex-
ternal disturbances estimation.

Chapter 4 is dedicated to presenting the design and implementation details of the re-
search. It encompasses a thorough discussion of the fault detection and estimation ar-
chitectures, along with the specific configurations employed in simulations. Additionally,
the chapter provides a brief explanation of the controller utilized in this study.

In Chapter 5, the research findings are highlighted. The chapter showcases the detectabil-
ity of various fault types within the system, aided by the designed thresholds. It also
outlines the findings from fault estimations and external disturbances estimation. These
results are examined and compared to previous work.

Chapter 6 concludes the thesis with a comprehensive discussion of the overall findings,
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1 INTRODUCTION

limitations, and potential directions for future research. The chapter draws conclusions
from the body of work and indicates how the study might inform or inspire subsequent
research in this field.
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2 SYSTEM OVERVIEW AND ANALYSIS

2 System Overview and Analysis
This chapter provides a detailed examination of the system under study, presented in
Section 2.1. It features a schematic diagram of the system alongside the linear and
nonlinear EoM, which are discussed in Section 2.2. Furthermore, the chapter outlines a
fault modeling framework in Section 2.3 accommodating the implementation of specific
faults that are considered throughout this research.

2.1 The AB383 Wire Bonder

This study focuses on high-fidelity simulation models of the AB383 wire bonder, a ma-
chine designed and manufactured by ASMPT Ltd. [1]. A wire bonder is a precision
machine utilized in the back-end process of the electronics and semiconductor industry,
creating precise electrical connections with thin wires between integrated circuits (ICs)
and their packaging. Figure 2 presents an image of the AB383 wire bonder, including its
isolated motion system. These systems are available for experimentation and are located
at the Center of Competency in Beuningen.

(a) AB383 wire bonder [9]. (b) Isolated motion system [2].

Figure 2: AB383 wire bonder and the isolated motion system.

2.2 System Modelling

In this section, the available models of the AB383 wire bonder are presented. This
includes a schematic representation of the system dynamics, the nonlinear and linear
EoM.
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2 SYSTEM OVERVIEW AND ANALYSIS

2.2.1 Schematic Representation of the System

Figure 3 provides a schematic diagram of the AB383 wire bonder that incorporates both
translational and rotational Degrees of Freedom (DoFs) of the motion system, including
nominal and parasitic DoFs, as well as prismatic and revolute joints. Nominal DoFs
refer to the intended motion paths or directions of the system, such as linear or rota-
tional movements facilitated by prismatic and revolute joints, respectively. In contrast,
parasitic DoFs represent unintended motion paths that emerge from the impossibility of
achieving perfect rigidity in the connections between subsystems. Table 1 presents the
various DoFs and their respective roles in the schematic illustration of the wire bonder
shown in Figure 3.

The machine’s base frame is connected to the ground through multiple spring-damper
connections on roller joints. The base frame serves as the foundation for both the x-
motion stage and the y-motion stage. These stages are responsible for movement along
the x and y directions, respectively, and their motion is controlled by actuators situated
on the base frame. To simulate friction, each employs a damper on a roller joint in-
corporated into their models. Moreover, to counteract any undesired orthogonal motion
(parasitic DoF), they both utilize a combination of a spring and a damper on a roller joint.

In order to monitor the positions of both the x-motion stage and the y-motion stage,
sensors are employed. The sensor for the x-motion stage measures the distance between
the base frame and itself, while the sensor for the y-motion stage measures the distance
between the x-motion stage and the y-motion stage. The z motion is controlled by a
rotational force and measured by a rotational sensor. However, to restrict the range of
motion, a torsion spring and damper are implemented. The nature of these connections
also allows for rotations in the various components.
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2 SYSTEM OVERVIEW AND ANALYSIS

Figure 3: A three-dimensional diagram illustrating the interconnections among various
system components that are used in the derivation of the mathematical model.

Table 1: Description of DoFs of the wire bonder model [14].

DoF Description
u1, u2 Parasitic translational DoFs between fixed world and chassis + base + x-guide
r1 Parasitic rotational DoF between fixed world and chassis + base + x-guide
X Nominal translational DoF between x-guide and x-stage
u3 Parasitic translational DoF between x-guide and x-stage
r2 Parasitic rotational DoF between x-guide and x-stage
u4 Parasitic translational DoF between y-guide and y-stage
Y Nominal translational DoF between y-guide and y-stage
r3 Parasitic rotational DoF between y-guide and y-stage
Z Nominal rotational DoF between y-stage and z-stage

2.2.2 Nonlinear Equations of Motion

A detailed analysis of the nonlinear EoM, provided by ASMPT [14], is outside of the
scope of this research, but the model used, as illustrated in Eq. 1, incorporates various
aspects of the dynamics of the system. The term q represents the generalized coordinates,
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2 SYSTEM OVERVIEW AND ANALYSIS

which describe the spatial positions of the joints within the system as illustrated in the
DoFs listed in Table 1. These coordinates’ respective derivatives, denoted by q̇, represent
the velocity of these DoFs, while q̈ symbolizes the acceleration. The inertia matrix also
referred to as the kinetic energy matrix, is represented as M(q) ∈ Rnq×nq . This term
captures how changes in the joint configuration influence the kinetic energy of the system.
The Coriolis and centrifugal forces are modeled in V (q, q̇) ∈ Rnq , which depend on the
joints’ velocity and position. G(q) ∈ Rnq refers to the gravity force vector, or more
accurately, the potential energy gradient. This force, oriented downward, is dependent
on the spatial configuration of the joints. Finally, Γ ∈ Rnq×nu represents the generalized
forces which may include actuator forces or other externally exerted forces on the system.
The variable u denotes the input to the system.

M(q)q̈ + V (q, q̇) +G(q) = Γu (1)

2.2.3 Linearized Equations of Motion

The linear EoM is obtained by linearizing the nonlinear EoM in Eq. 1. The rotational
parasitic DoFs, as shown in Table 1, are linearized around their zero-valued equilibrium
point, the static friction in the motion guides is neglected and the nominal rotational
DoF, Z, is around also linearized around its equilibrium. This linearized model is re-
structured as seen in Eq. 2 and Eq. 3, which is based on the work in [2]. Distinguishing
the model used in this research from previous work is the integration of all motion stages,
instead of decoupled systems [14].

The linear EoM are organized as shown in Eq. 2 [2]. This equation introduces a damping
D ∈ Rnq×nq and stiffness matrix K ∈ Rnq×nq .

Mq̈ +Dq̇ +Kq = Γu (2)

The measured position, denoted by p, is described by Eq. 3, where the matrix b ∈ Rnq×ny

characterizes the relationship between the generalized coordinates q and the measured
position p.

p = b⊺q (3)

The matrices corresponding to this MSD framework can be found in Appendix A.2.

2.3 Fault Scenario Analysis

This section addresses potential faults that may compromise the performance and pre-
cision of motion and positioning systems, e.g. the AB383 wire bonder. Methodologies
for modeling individual faults associated with motion guides, fasteners, actuators, and
external disturbances are presented.
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2 SYSTEM OVERVIEW AND ANALYSIS

2.3.1 Motion Guides

Motion guides are used in motion systems to provide precise and controlled movement
along a specific path. However, increased friction within these guides can cause faulty
system behavior. This can be the result of, e.g. insufficient lubrication in the motion
guides. The friction in this work is modeled with both static and viscous friction. How-
ever, in this study, only deviations in the viscous friction for both x- and y-motion stages
are considered.

Viscous friction in prismatic and revolute joints can be modeled with the generalized
damping coefficient associated with a corresponding motion guide in the damping matrix
D in Eq. 2. The fault corresponding to the viscous friction can be modeled by adjusting
the corresponding damping parameters of the nominal translational DoFs shown in Table
1. Specifically, the derivation of the faulty damping parameter dfi is shown in Eq. 4,
where the nominal damping parameter dni is related through the coefficient ζi. This
coefficient ranges from 1.00 to a maximum value of 1.20, allowing for a controlled increase
in friction within the motion guides for simulation. By incorporating these tuned damping
parameters into the damping matrix D of Eq. 2, the model captures the effects of increased
friction and enables the analysis of system behavior under these conditions.

dfi = ζi dni for ζi ∈ [1.00,1.20] ∀ i ∈ {X,Y } (4)

2.3.2 Structural Stiffness

Fasteners, which include bolts, nuts, and other mechanical connections, are critical in
sustaining the structural stiffness of the system. Over time, these mechanical compo-
nents can loosen, resulting in a decrease in stiffness. To model faults related to fasteners
connecting the motion stages with the other system components, the stiffness coefficients
within the stiffness matrix K in Eq. 2 can be adjusted. Specifically, a decrease in struc-
tural stiffness in a specific motion stage can be represented by modifying the generalized
stiffness coefficients of the parasitic DoFs, both rotational and translational, that connect
the corresponding motion stage subsystem to the other subsystems.

For the system of interest, the decrease in structural stiffness related to the x- and y-
motion stages can be modeled by deriving faulty stiffness parameters kf

i and kf
j as shown

in Eq. 5. In this equation, kn
i and kn

j represent the nominal stiffness parameters of the
parasitic DoFs linked to both the x- and y-motion stages, as outlined in Table 1. The
coefficients βx and βy range between 0.95 and 1.00, enabling effective adjustment of the
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structural stiffness of the corresponding motion stage.

kf
i = βx k

n
i for βx ∈ [0.95,1.00] ∀ i ∈ {u3, r2}

kf
j = βy k

n
j for βy ∈ [0.95,1.00] ∀ j ∈ {u4, r3}

(5)

2.3.3 Actuators

The system’s actuators generate the necessary force to drive both rotational and trans-
lational motion, thereby controlling the motion stages. However, these actuators can
experience performance degradation over time due to reasons such as the demagneti-
zation of the permanent magnets. This type of fault can be modeled by multiplying a
column in Γ, which is specific to the actuator under consideration, with a fault coefficient.

To address a decrease in the available motor force, adjustments can be made to the motor
force constants that describe the relationship between the input current and the force
generated to move the individual motion stages. The actuator fault can be implemented
using Eq. 6, where Kf

i denotes the faulty motor force constant for actuator i, Kn
i is the

nominal motor force constant for the respective actuator, and ηi provides the means to
tune the available motor force between 0.97 and 1.00.

Kf
i = ηiKn

i for ηi ∈ [0.97,1.00] ∀ i ∈ {X,Y,Z} (6)

2.3.4 External Disturbances

The performance of the system can be influenced by external disturbances present in
the machine environment. These disturbances can be classified as either unknown or
partially known, where certain prior knowledge is available. In the system context, these
disturbances can be treated as external signals that exhibit similar dynamics (Γ) as the
input to the system.

In the context of this research, there is prior knowledge regarding the frequencies of
the external disturbances signal acting on the system. This signal is represented by
a multisine input signal with frequencies of 100, 300, and 750 Hz. The mathematical
representation of these disturbances is presented in Eq. 7 where the amplitude A is
calculated as a proportion r of the maximum force Fmax that can be exerted on the motion
stages by the corresponding actuator. For the x and y-motion stages, the percentage r

is set to 1.00%, while for the θ-subsystem, it is set to 0.10%. The variable γ represents
the magnitude of the external disturbance signal and it has to be identified as a fault.

Fdist(t) = γ A (sin (2π100t) + sin (2π300 t) + sin (2π750 t)) where A = r ∣Fmax∣ (7)
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3 Method
This chapter presents the methodology used in this study, consisting of specific modeling
considerations in Section 3.1, the residual generation method for fault diagnosis in Section
3.2, and the estimation of faults, and external disturbances in Section 3.3.

3.1 Modeling Methodology

The residual generation method, discussed in Section 3.2, necessitates particular modeling
considerations, which are discussed in this section. These considerations require the
transformation of various mathematical models such as a linear MSD equation into a
state space model (SSM), which is then further translated into a differential-algebraic
equation (DAE). Moreover, a method is introduced that formulates a modeling technique
addressing faults and potential disturbances, essential in the deployment of the residual
generation filter.

3.1.1 State Space Model

The linear SSM in continuous time is formulated as shown in Eq. 8. The state vector
of the SSM can be expressed as x = [ q, q̇ ]T , where the DoFs presented in Table 1 are
employed as the generalized coordinates q and their respective derivatives q̇.

ẋ(t) = Ax(t) +Buu(t)

y(t) = Cx(t) +Duu(t)
(8)

The system matrix A ∈ Rnx×nx , the input matrix Bu ∈ Rnx×nu , the output matrix C ∈
Rny×nx , and the feedthrough matrix Du ∈ Rny×nu , associated with a mass-spring-damper
model, are defined in Eq. 9. The corresponding MSD matrices are detailed in Section
2.2.3. For clarity, the matrices in the MSD framework are as follows: the stiffness matrix
K ∈ Rnq×nq , the damping matrix D ∈ Rnq×nq , the relation between the generalized coordi-
nates and the output matrix b ∈ Rnq×ny , and the generalized forces matrix Γ ∈ Rnq×nu .

A =
⎡⎢⎢⎢⎢⎣

0nq×nq Inq×nq

−M−1K −M−1D

⎤⎥⎥⎥⎥⎦
, Bu =

⎡⎢⎢⎢⎢⎣

0nq×nu

M−1Γ

⎤⎥⎥⎥⎥⎦
,

C = [ bT 0ny×nq
] , Du = [0ny×nu

] .

(9)

3.1.2 Effects of Faults and Disturbances

To consider the potential effects of external disturbances d(t) and fault signals f(t), the
SSM is extended as shown in Eq. 10. The extended SSM involves the introduction of an
input disturbance matrix Bd ∈ Rnx×nd , a fault input matrix Bf ∈ Rnx×nf , a disturbance
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feed-through matrix Dd ∈ Rny×nd , and a fault feed-through matrix Df ∈ Rny×nf . However,
the matrices Bd and Dd are excluded from the modeling framework utilized in this study.
Additionally, the system’s lack of fault feed-through results in the feed-through matrix
being represented as Df = 0ny×nf

.

ẋ(t) = Ax(t) +Buu(t) +Bdd(t) +Bff(t)

y(t) = Cx(t) +Duu(t) +Ddd(t) +Dff(t)
(10)

3.1.3 Modelling of Bf

The design of the fault input matrix Bf depends on the type of fault that needs to be
detected. The types of faults considered are external fault signals acting on the system
and parametric faults in the system matrices.

External Faults
The modeling of the dynamics of external fault signals acting on the system relies on
prior knowledge of these specific signals. In this study, for simplicity, it is assumed
that the disturbances have similar dynamics to the input and affect all input channels
simultaneously. Therefore, the matrix Bu is used as the Bf matrix to model the external
disturbance fault.

Parametric Faults
Parametric faults cannot be directly represented as external signals because their effect
is contained within the system matrices. These faults can be associated with actuators,
motion guides, or components responsible for preserving structural stiffness.

For actuator faults, the assumption is made that a fault in actuator i affects the system
similarly as the corresponding column in matrix Bui

. Resulting in matrix Bf = Bui
as

the vector used to model the independent actuator faults.

The faults related to structural stiffness and viscous friction in the motion guides, as out-
lined in Section 2.3, are simulated by adjusting specific generalized damping coefficients
dfi and stiffness coefficients kf

i .

To accurately represent the structural stiffness of the x- and y-motion stages, we modify
the generalized stiffness coefficient of the rotational and orthogonal DoFs corresponding
to the respective motion stage. In Table 1, these DoFs are denoted by u3 and r2 for
the structural stiffness fault in the x-motion stage, and by u4 and r3 for the structural
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stiffness fault in the y-motion stage.

The faults related to viscous friction in the x- and y-motion guides are modeled by ad-
justing the generalized damping coefficients of the nominal DoFs related to the respective
motion stage. As indicated in Table 1, this correlates to DoF X for the viscous friction
fault in the x-motion guide, and DoF Y for the viscous friction fault in the y-motion guide.

Each of the aforementioned DoFs also corresponds to specific states, which are presumed
to be most affected by the respective faults. This relationship is demonstrated in Eq. 11,
where the vector Bf is modeled with a nonzero value for the states impacted by the fault,
denoted by iDoFf

, and zero otherwise.

Bf,i =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if i = iDoFf

0 otherwise
(11)

Example 1. Parametric Fault Transformation.
Consider a system that incorporates a parametric fault ∆f as exemplified in the following
equation:

ẋ = (A +∆fA)x =
⎡⎢⎢⎢⎢⎣

A11 A12

∆fA21 A22

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

x1

x2

⎤⎥⎥⎥⎥⎦
This system can be restructured into a state-dependent fault input vector Bf(x):

ẋ = Ax +Bf(x) =
⎡⎢⎢⎢⎢⎣

A11 A12

A21 A22

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

x1

x2

⎤⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎣

0

(∆f − 1)x1

⎤⎥⎥⎥⎥⎦
.

The state-dependent Bf(x) vector can be transformed, with f = (∆f − 1)x1, into a static
Bf = [0,1]T :

ẋ = Ax +Bff(x) =
⎡⎢⎢⎢⎢⎣

A11 A12

A21 A22

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

x1

x2

⎤⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎦
(∆f − 1)x1.

The validity of this model relies on x1 being nonzero, which is a necessary prerequisite.
Within the context of dynamical motion systems, states linked to positioning coordinates
are conventionally presumed nonzero, being integral components of system dynamics.

3.1.4 Linear Differential-Algebraic Equations

In this study, the residual generation method is applied for DAEs rather than focusing on
more specific model classes such as transfer functions, state-space models, and descriptor
models. As DAE models encompass all these model classes, the methods proposed in this
study are applicable to each of the aforementioned models [11].
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The general framework for a DAE for fault diagnosis is shown in Eq. 12 [17]. Signal x
captures all unknown signals, including internal states and unknown external inputs (e.g.
external disturbances), z contains all known signals, such as control signals and output
measurements, and f represents the fault signals. The signals x, z, and f are assumed
piece-wise continuous functions. Matrices H(p), L(p), and F (p) represent polynomial
matrices where p can represent either a differential operator, a complex variable, distri-
butional derivative operator, a normal derivative operator, or a discrete-time difference
operator.

H(p)x +L(p)z + F (p)f = 0 (12)

Example 2. Generality of the DAE framework.
To demonstrate the generality of the DAE framework, consider the mass-spring-damper
system in Figure 4, a second-order system, which can be represented using different models.

Figure 4: A second-order mass-spring-damper system [23].

• Transfer Function
The transfer function of this system is given by:

G(s) = X(s)
F (s)

= 1

ms2 + cs + k

where m is the mass, c is the damping coefficient, k is the spring constant, X(s) is
the Laplace transform of the output x(t), and F (s) is the Laplace transform of the
input F (t).

• State-Space model
The state-space representation of this system can be written as:

ẋ =
⎡⎢⎢⎢⎢⎣

0 1

−k/m −c/m

⎤⎥⎥⎥⎥⎦
x +
⎡⎢⎢⎢⎢⎣

0

1/m

⎤⎥⎥⎥⎥⎦
u

y = [1 0]x + 0u

where x = [x1, x2]T are the state variables and the force F is the input u.
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• Descriptor model
The descriptor model of the system can be given by:

Eẋ = Ax +Bu

y = Cx

where

E =
⎡⎢⎢⎢⎢⎣

1 0

0 m

⎤⎥⎥⎥⎥⎦
, A =

⎡⎢⎢⎢⎢⎣

0 1

−k −c

⎤⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎦
, C = [1 0] .

Differential Algebraic Equation Model
Transforming the state-space or descriptor model, the system can be expressed as a DAE
by including an algebraic equation that correlates the states with the outputs. If a sensor
is implemented to directly measure the position x1, the system representation becomes:

Eẋ = Ax +Bu,

0 = y −Cx.

In this DAE formulation, the dynamic behavior of the system is encapsulated by the first
equation (a differential equation), while the algebraic constraint, derived from the system
or sensor dynamics, is given by the second equation. The use of DAE models provides
a general approach to representing systems by accommodating a broader spectrum of
dynamics and constraints compared to the aforementioned models.

Assumption 1. Observability.
Following the work outlined in [17], a condition is introduced for the system model matri-
ces, as detailed in Eq. 12. This condition necessitates the absence of linear dependencies
when the fault parameter f is zero, thus ensuring the observability of the system state.

This observability prerequisite is fulfilled when the augmented matrix [H(s) L(s)] has
full row rank, signifying the maximum number of linearly independent rows. This condi-
tion enables the isolation of faults due to the unique definition of all possible observations
within the DAE framework if there is no fault present, as described in Eq. 12.

3.1.5 Transform a State Space Model into a Differential-Algebraic Equation

In the context of the method introduced in [17], it is necessary to transform the extended
SSM into a DAE with matrices H(s) ∈ C(nx+ny)×(nx+nd), L ∈ R(nx+ny)×(ny+nu), and F ∈
R(nx+ny)×nf , as depicted in Eq. 13.

⎡⎢⎢⎢⎢⎣

−sI +A Bd

C Dd

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

H(s)

⎡⎢⎢⎢⎢⎣

X

d

⎤⎥⎥⎥⎥⎦
±

x

+
⎡⎢⎢⎢⎢⎣

0 Bu

−I Du

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L

⎡⎢⎢⎢⎢⎣

Y

u

⎤⎥⎥⎥⎥⎦
±

z

+
⎡⎢⎢⎢⎢⎣

Bf

Df

⎤⎥⎥⎥⎥⎦
²

F

f = 0 (13)
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3.2 Residual Generation Filter

The aim of this section is to provide a detailed description of the residual generation
and its mathematical foundation. In Section 3.2.1, the theoretical background of the
residual generation approach is presented. Followed by Section 3.2.2 which describes the
translation of the mathematical theorem into a linear programming (LP) framework. To
give more practical insights, an example is given to intuitively understand the mechanism
of the residual generation method. Section 3.2.3 discusses the method to establish the
thresholds for the residual signals to determine fault detectability.

3.2.1 Theoretical Background

In [17], a linear model is formulated as shown in Eq. 12 where the nominal behavioral
set M is determined as described in Eq. 14. This mathematical representation forms
the foundation of the residual generation filter. NH(s) consists of rows that form an
irreducible polynomial basis for the left null space of the matrix H(s), L consists of the
input and output signal dynamics as shown in Eq. 13 and signal z consists of the known
signals. The set Wnz is described by the piece-wise continuous function z from R+ into
Rnz with nz = nu + ny.

M= {z ∈ Wnz ∣ NH(s)Lz = 0} (14)

The transfer function of the residual generation filter, R(s), is shown in Eq. 15. N(s) is
chosen as a linear combination of the rows of NH(s) together with stable dynamics d(s)
which is a denominator of sufficient order to ensure the residual filter is both stable and
realizable.

R(s) = d−1(s)N(s)L. (15)

Remark 1. Derivation of d(s).
An LTI system maintains its frequency response characteristics regardless of any vari-
ations or modifications in its internal components or parameters. Considering that the
system under consideration is an LTI system, the derivation of the denominator d(s) of
the residual generation filter, as indicated in Eq. 15, can be determined by evaluating the
highest frequencies present in the input signals during typical trajectories. To ensure the
observability of faults, d(s) can be designed as a low-pass filter (e.g., a Butterworth filter)
of sufficient order and with a cutoff frequency set adequately high to avoid suppressing
any fault frequencies.

In order to obtain the residual generation filter, it is necessary to find a suitable N(s)
that will be used in generating a residual signal, as shown in Eq. 15. This signal should
be insensitive to nominal dynamics, indicating that the residual signal remains unaffected
when the system operates within the nominal system behaviorM as defined in Eq. 14, as
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shown in Eq. 16a. However, the filter should be sensitive to faults that cause the system
to deviate from the nominal behavioral set, as shown in Eq. 16b.

N(s)H(s) = 0 (16a)

N(s)F (s) ≠ 0 (16b)

Remark 2. Fault Detectibility.
In accordance with the methodology in [10], it is argued that a viable solution N(s) for
Eq. 16 can be obtained if and only if:

Rank ([H(s) F (s)]) > Rank ([H(s)])

This condition, where F (s) can consist of the dynamics of a single fault or multiple faults,
establishes a higher rank for the augmented matrix as compared to H(s).

Example 3. Insight into the Residual Generation Method for Fault Detection.
The general method for residual generation can be represented by the architecture shown
in Figure 5. There are a group of signals acting on the LTI system, that is, an external
fault signal, an unknown input, and a third signal which corresponds to the input signal
in an open-loop system or the reference signal in a closed-loop system. The input and
output signals are used to generate a residual signal.

Figure 5: The architecture of the general residual generation filter.

Figure 6 shows the ideal output of the residual generation filter. In the absence of a
fault within the system, the residual should approximate zero, meaning the filter must
remain insensitive to the nominal dynamics produced by the input/reference signal and
any unknown system inputs. However, in the presence of a fault, the filter’s output should
deviate from zero to give an indication that a fault is present in the system.
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Figure 6: The desired residual filter output: zero-valued in the presence of nonzero
unknown inputs, and nonzero-valued when a fault affects the system.

The residual generation method can be mathematically illustrated using a simple ordinary
differential equation (ODE) including a possible additive fault fa:

dy

dt
= 0.2u + 0.2y + fa

When the system operates under normal conditions, fa = 0, it is anticipated to remain
within a defined hyperplane, depicted in Figure 7a. The equation for this hyperplane is
defined as:

dy

dt
− 0.2u − 0.2y = 0

However, the behavior of the system changes in the presence of an additive fault signal,
such as fa = 1.0. Under this circumstance, the behavioral set evolves, and the possible sys-
tem trajectories are not captured within the initial hyperplane. Instead, these trajectories
are found within a new parallel hyperplane shown in Figure 7b.
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(a)

dy

dt
= 0.2y + 0.2u

(b)

dy

dt
= 0.2y + 0.2u + fa

= 0.2y + 0.2u + 1.0

Figure 7: The effect of an additive fault fa = 1.0 on the behavioral set M.

Parametric faults fp can also change the system dynamics and as a result, the possible
trajectories are also no longer captured within the initial hyperplane. Instead, they lie
within a modified rotated hyperplane as shown in Figure 8b. If the system behavior does
not deviate from the axis of rotation, there is a risk this could result in the inability to
detect the fault under investigation. However, it is worth noting that the trajectories
employed in this study sufficiently excite the system, ensuring that this issue is mitigated.

(a)

dy

dt
= 0.2y + 0.2u

(b)

dy

dt
= 0.2y + fp 0.2u

= 0.2y + 0.5u

Figure 8: The effect of an parametric fault fp = 2.5 on the behavioral set M.
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Following the theorem, the residual filter for the given ODE is obtained, which includes
an example d(s) that ensures the filter is stable and proper:

dy

dt
− 0.2u − 0.2y = 0

Y s − 0.2U − 0.2Y = 0
Y s − 0.2U − 0.2Y

s2 + 2s + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d(s)

= R(s) = 0

The application of the residual generation method in this work is based on the principle
illustrated in this example. Assuming proper operation within the nominal behavioral set,
the residual is expected to remain at zero or, in the event of transient behavior triggered
by initial conditions, it should eventually converge to zero over time. However, deviations
from this set due to faults, should result in a nonzero residual value.

3.2.2 Linear Programming Framework

In [17], a linear programming framework is presented for expressing the polynomial ma-
trices given in Eq. 16. In this framework, if N(s) is a solution to Eq. 16, the polynomial
matrices can be expressed as shown in Eq. 17, where dH , dF , and dN correspond to the
order of the corresponding polynomial matrices.

H(s) ∶=
dH

∑
i=0

His
i, F (s) ∶=

dF

∑
i=0

Fis
i, N(s) ∶=

dN

∑
i=0

Nis
i. (17)

Then, the conditions stated in Eq. 16 can be written as shown in Eq. 18,

N̄H̄ = 0,

∥N̄F̄ ∥∞ ≥ 1
(18)

where the infinite norm is denoted by ∥ ⋅ ∥∞.

It is worth noting that if N̄ is a solution to N̄H̄ = 0, then the negative of N̄ , denoted as
−N̄ , is also a solution. Consequently, the inequality ∥N̄F̄ ∥∞ ≥ 1 can be interpreted as a
set of m distinct LP problems, where m corresponds to the number of columns in F̄ and
is defined as m = nf (dF + dN + 1). Here, nf represents the dimension of the signal f in
Eq. 12. The matrices N̄ , H̄, and F̄ are provided in Eq. 19 [17].

N̄ ∶= [N0 N1 ⋯ NdN ] ,

H̄ ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0 H1 ⋯ HdH 0 ⋯ 0

0 H0 H1 ⋯ HdH 0 ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0

0 ⋯ 0 H0 H1 ⋯ HdH

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
(19)
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F̄ ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0 F1 ⋯ FdF 0 ⋯ 0

0 F0 F1 ⋯ FdF ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0

0 ⋯ 0 F0 F1 ⋯ FdF

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L̄ ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L0 L1 ⋯ LdL 0 ⋯ 0

0 L0 L1 ⋯ LdL ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ 0

0 ⋯ 0 L0 L1 ⋯ LdL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Example 4. Generation of the Bar Matrices.
The SSM presented in Example 2 is reconsidered with the inclusion of additive fault
dynamics. The new SSM can be expressed as:

ẋ =
⎡⎢⎢⎢⎢⎣

0 1

−k/m −c/m

⎤⎥⎥⎥⎥⎦
x +
⎡⎢⎢⎢⎢⎣

0

1/m

⎤⎥⎥⎥⎥⎦
u +
⎡⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎦
f, y = [1 0]x

The SSM is then transformed into the DAE framework as shown in the method discussed
in Section 3.1.5:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−s 1

−k/m −s − c/m
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

H(s)

x +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 1/m
−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L

z +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
°
F

f = 0

The model is then rewritten in the form of bar matrices, with dH = 1, dF = 0, dL = 0, and
dN = 2, as shown in Eq. 19:

H̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 −1 0 0 0 0 0

− k
m − c

m 0 −1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 −1 0 0 0

0 0 − k
m − c

m 0 −1 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 −1 0

0 0 0 0 − k
m − c

m 0 −1
0 0 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

1 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 1

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and L̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 1
m 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1
m 0 0

0 0 −1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1
m

0 0 0 0 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Obtain N̄ by making use of the method in Eq. 18 and substituting k = 1, b = 1, and m

= 1:
N̄ = [1 1 1 1 0 1 0 0 1]

With the corresponding continuous-time residual generation filter:

R(s) =
⎛
⎜⎜
⎝

−s2 − s − 1
1.333e10−9s3 + 4e10−6s2 + 0.003667s + 1

1

1.333e10−9s3 + 4e10−6s2 + 0.003667s + 1

⎞
⎟⎟
⎠
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3.2.3 Establishing Thresholds for Residual Signals

To effectively monitor the residual signal r(t) and determine the detectability of potential
faults in the system, it is essential to set suitable thresholds. This approach is similar
to limit checking, where the minimum and maximum allowable values for the residual
signal, denoted as rmin and rmax, are established [6]. By comparing the residual signal
r(t) with these thresholds, deviations from the acceptable range can be identified. The
equation representing this comparison is provided in Eq. 20.

rmin < r(t) < rmax (20)

To calculate the thresholds rmin and rmax, the maximum and minimum values of the
residual signal r(t) over a specified number of trajectories N is obtained. The equations
for determining rmin and rmax, including an additional detectability margin α, are shown
in Eq. 21.

rmax = α
N

max
i=1

max
t

ri(t) for i = 1,2, . . . ,N

rmin = α
N

min
i=1

min
t

ri(t) for i = 1,2, . . . ,N
(21)

Given that the only unknown disturbance affecting the system is a Band-Limited Gaus-
sian measurement noise, one approach to estimating the parameter α involves fitting a
normal distribution to a set of residuals generated from N trajectories. This method
allows for the determination of a suitable α based on the characteristics of the observed
residuals.

A more detailed design method of the detectability margin α is beyond the scope of
this research, but it is noteworthy to mention its functionality. This margin could be
obtained after deployment or repair as a calibration step of the system of interest. The
inclusion of a detectability margin acts as a buffer, providing an additional layer of
robustness to the fault detection mechanism. This detectability margin accommodates
potential disturbances or variations in normal operations without triggering a false fault
indication. Thus, the optimal selection of a detectability margin is a balance between
accurate fault detection and avoiding unnecessary alerts.

3.3 Fault Estimation

The following section outlines the methodological approach implemented for estimating
faults as discussed in Section 3.3.1, for estimation of external disturbances referenced in
Section 3.3.2, and a method for the segmentation of high and low-frequency components
within the residual signal as elaborated in Section 3.3.3.
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3.3.1 General Fault Estimation Framework

Figure 9 illustrates the fault estimation framework, an adaptation based on the work
in [25]. This enhanced framework integrates additional elements into the fundamen-
tal fault detection system, as represented in Figure 5. The signal ϕ comprises multiple
sub-signals, each generated by the pre-filter Φ(s), which are used to assess the impact
of individual fault components within the residual signal r, produced by the residual
generation filter R(s). In the fault estimation block, a regression method is employed
to estimate the magnitude of each specific fault present in the system. Furthermore,
the framework introduces the integration of a new filter Rdist(s) in combination with a
high-pass filter HP(s). These filters are used in combination with power spectral den-
sity analysis, enabling the estimation of elevated levels of noise and unknown external
disturbances, represented as d̂.

Figure 9: The architecture used for fault and disturbance estimation.

Generation of Fault Mode Components
The set of faults F and the corresponding fault magnitudes C used for fault estimation
are presented in Eq. 22. It is important that the fault magnitudes ci are sufficiently large
to ensure detectability through the residual generation method.

F ∶= {f1, f2,⋯, fnf
}

C ∶= {c1, c2,⋯, cnf
}

(22)

For each fault mode i in the set F , the corresponding system matrices are derived. The
difference between these matrices and the nominal system matrices are scaled by the
corresponding fault magnitude ci from C. This process generates delta system matrices
that capture the difference between the nominal system and the system under fault mode
i.

∆Ai =
Ai −Anom

ci
∆Bi =

Bi −Bnom

ci

∆Ci =
Ci −Cnom

ci
∆Di =

Di −Dnom

ci

(23)
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Generation of Prefilter Numerator
It is necessary to derive the H̄i and L̄i matrices for each faulty system, characterized
by the set of state-space model (SSM) matrices as presented in Eq. 23. To obtain the
pre-filter Φ, Eq. 24 can be used, resulting in a residual sub-signal for each corresponding
fault [7].

Φi = N̄(L̄i − (H̄i (H̄T H̄)−1)H̄T L̄) (24)

Regression method
The regression framework is shown in Eq. 25 where nf denotes the number of faults and
T represent the time horizon. The time horizon must be sufficiently large to effectively
capture each residual sub-signal, thus allowing for accurate detection and estimation of
faults. Furthermore, the sampling frequency should be adequate to guarantee that the
highest frequency components present in the faulty residual signal are also identified.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1

r2

⋮
rT

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
±

r

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1,1 ϕ1,2 ⋯ ϕ1,nf

ϕ2,1 ϕ2,2 ⋯ ϕ2,nf

⋮ ⋮ ⋱ ⋮
ϕT,1 ϕT,2 ⋯ ϕT,nf

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

G

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f̂1

f̂2

⋮
f̂nf

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
²̂

f

(25)

To determine the fault estimates f̂ an Ordinary Least Squares (OLS) estimator is imple-
mented as shown in Eq. 26 [15].

f̂ = (GTG)−1GT r (26)

3.3.2 Estimating External Disturbances

In order to detect the presence of high-frequency faults, such as external disturbances or
elevated levels of measurement noise within the system, power spectral density (PSD)
analysis can be used. PSD is a mathematical framework used to understand how the
power of a signal is distributed across different frequencies. It can provide valuable in-
sights into the dominant frequencies and allows the analysis of the overall frequency
components present in the signal under examination.

The continuous-time residual signal, denoted as r(t), can be transformed using the Fourier
transform [18]. This transformation is represented in Eq. 27.

r̂(f) ≜ ∫
∞

−∞
e−i2πftr(t)dt (27)

The Power Spectral Density of a signal r(t), represented as Srr(f), is defined as the
square of the magnitude of its Fourier transform, r̂(f). This is expressed in Eq. 28 [22].

Srr(f) ≜ ∣r̂(f)∣2 (28)
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In this study, thresholds are computed for both the peak values and the total frequency
spectrum. Peak value thresholds contribute to the detection of specific frequencies of
interest, while total frequency spectrum thresholds offer a possible understanding of the
measurement noise in the system through integration over the entire PSD signal [3].

Threshold for Peak Values
The peak value threshold, denoted by Rpeak, is derived by computing the PSD of numerous
residual signals associated with typical machine trajectories N . Each signal is generated
by the residual generation filter for the nominal system and corresponds to individual
trajectories. Threshold Rpeak includes a detectability margin, denoted as βpeak, incorpo-
rated to account for variations and uncertainties in the system. The PSD of the residual
signal, R(f), can be continuously analyzed to identify dominant frequency components
surpassing the pre-set threshold Rpeak. This concept is mathematically represented in
Eq. 29. When the PSD value at a specific frequency exceeds the Rpeak threshold, it sug-
gests the presence of a predominant frequency within the system, potentially due to a
periodic external disturbance signal.

Rpeak =
N

max
i=1
(max

f
(∣Rr,i(f)∣)) + βpeak

R(f) > Rpeak

(29)

Threshold for Total Noise
The total frequency spectrum threshold, symbolized as Rtotal, is established by integrat-
ing the PSD of residual signals over a specified frequency range, denoted as [fmin, fmax],
across a similar set of trajectories N as used for the derivation of Rpeak. This threshold
also incorporates a detectability margin βtotal for similar reasoning as previously discussed.
The integrated value signifies the total frequency spectrum, which is subsequently com-
pared to the pre-set threshold, Rtotal. This concept is mathematically defined in Eq. 30.
If the total frequency spectrum exceeds the Rtotal threshold, it may suggest an elevation
in system noise compared to nominal noise levels.

Rtotal =
N

max
i=1 ∫

fmax

fmin
Rr,i(f)df + βtotal

∫
fmax

fmin
Rr(f)df > Rtotal

(30)

By implementing these thresholds for the PSD, the system can effectively monitor high-
frequency faults and identify dominant frequencies, which could aid in improving the
reliability of the fault estimation system.
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3.3.3 Segmentation of High- and Low-Frequency Signal Components

The fault estimation framework shown in Figure 9 incorporates two separate residual
generation filters.

Filter Rdist(s) aims to detect the existence of external disturbances and elevated noise.
The denominator d(s) in this high-frequency oriented residual generation filter should be
designed such that it does not attenuate high-frequency components in the signal. This
can be achieved using the Butterworth filter denominator, characterized by a sufficiently
high cutoff frequency, as discussed in Section 3.2. Furthermore, a high pass filter can be
employed to attenuate as many low-frequency components generated by faults as pos-
sible. If the noise and disturbances operate at frequencies higher than those produced
by the residual generation filter for all other faults, segregation of external disturbances
from other faults is feasible.

Filter R(s) is dedicated to detect the parametric faults and suppress high-frequency
noise and disturbances. The design approach for the denominator d(s) follows a similar
method, where it should have a cutoff frequency equal to or higher than the highest
frequency signal produced by all other faults in their respective residual. The maximum
frequency present in a signal can be determined by executing a Fourier analysis of the
signal, as depicted in Eq. 27.
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4 Design and Implementation
This chapter outlines the architectural design and implementation procedures of the
study. It is divided into the following parts: Section 4.1 details the fault detection system,
outlining its architecture and the specific configurations used during simulations. Section
4.2 goes into depth about the fault estimation system, highlighting its architecture and
the settings used in the simulations. The controller implemented in this study is discussed
in Section 4.3.

4.1 Fault Detection

This section examines the architecture of the fault detection system employed to assess
fault detectability for both linear and nonlinear EoM in this study, as shown in Figure 10.
Depending on the implementation of the feedback control element, the reference signal
yref is used to generate the feedback control input signal ufb. The feedforward element
is represented by uff . The external disturbances act as an additive fault fa, while faults
associated with the motion guides, structural stiffness, and the actuator are denoted
as the parametric fault signal fp. To accurately model sensor precision, Band-Limited
Gaussian white noise is incorporated as measurement noise w. The augmented input
signal u and output signal y are denoted as signal z, which undergoes a transformation
into a residual signal r using the residual generation filter discussed in Section 3.2.

Figure 10: Schematic diagram of the residual generation filter for both the linear and
nonlinear model.

4.1.1 Fault Detection Simulation Parameters

In all simulation scenarios, successful isolation of all faults from the nominal dynamics
was accomplished using a filter order, denoted dN , of seven. The sampling frequency was
set at Fs = 8e3 Hz, and the simulations were conducted over a duration of Tsim = 2.5
seconds. To mimic real-world conditions, band-limited white noise was incorporated with
an amplitude corresponding to a noise power of 5e-20 dB/Hz. The specific controller used
in this study is further explained in Section 4.3.
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4.1.2 Designing the Denominator of the Residual Generation Filter

The denominator, denoted as d(s), of the residual generation filter R(s) was chosen to
be a seventh-order Butterworth low-pass filter with a cut-off frequency of 50 Hz. This
choice was based on the order of the numerator, ensuring the realizability of the residual
generation filter. The low-pass filter, referred to as LP(s), is represented by Eq. 31, and
its Bode magnitude response can be found in Appendix A.3.

LP(s) = 3.02e17

s7 + 1412s6 + 9.966e05s5 + 4.524e08s4 + 1.421e11s3 + 3.09e13s2 + 4.32e15s + 3.02e17
(31)

4.1.3 Residual Generation Filter

The residual generation filter employed in the simulations of the linear model is defined
by Eq.32. The denominator of the filter is determined using Eq.31, while the numerator
is designed following the approach detailed in Section 3.2.

R(s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−3.464e − 07s7 + 0.07468s6 + 77.66s5 + 1.547e07s4 + 3.761e09s3 + 5.525e12s2 + 1.837e14s
s7 + 1412s6 + 9.966e05s5 + 4.524e08s4 + 1.421e11s3 + 3.09e13s2 + 4.32e15s + 3.02e17

−0.01483s6 − 47.13s5 − 7.812e06s4 − 1.16e10s3 − 7.205e12s2 − 7.783e15s
s7 + 1412s6 + 9.966e05s5 + 4.524e08s4 + 1.421e11s3 + 3.09e13s2 + 4.32e15s + 3.02e17

−554.4s5 − 4.341e07s4 − 2.124e10s3 − 3.488e13s2 − 8.258e14s − 3.02e17
s7 + 1412s6 + 9.966e05s5 + 4.524e08s4 + 1.421e11s3 + 3.09e13s2 + 4.32e15s + 3.02e17

2.035e − 53s6 + 2.148e − 07s5 − 0.04644s4 − 29.11s3 − 4.586e06s2 − 9.459e08s − 1.584e12
s7 + 1412s6 + 9.966e05s5 + 4.524e08s4 + 1.421e11s3 + 3.09e13s2 + 4.32e15s + 3.02e17

5.819e − 52s6 + 9.146e − 12s5 + 0.008674s4 + 1838s3 + 1.46e08s2 + 6.751e10s + 1.128e14
s7 + 1412s6 + 9.966e05s5 + 4.524e08s4 + 1.421e11s3 + 3.09e13s2 + 4.32e15s + 3.02e17

8.838e − 52s6 + 2.245e − 46s5 + 0.04913s4 + 3.334e06s3 + 2.61e11s2 + 1.228e14s + 2.051e17
s7 + 1412s6 + 9.966e05s5 + 4.524e08s4 + 1.421e11s3 + 3.09e13s2 + 4.32e15s + 3.02e17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(32)

4.2 Fault Estimation

This section details the architecture and settings for the fault estimation framework used
during the simulations.

4.2.1 Estimation Architecture

Notably, it incorporates the pre-filter Φ(s) to generate multiple residual sub-signals ϕ.
These sub-signals, in combination with the residual r, are transformed into fault estimates
f̂ . Additionally, the disturbance residual generation filter Rdist is utilized to produce the
disturbance residual rdist. Lastly, the high-pass filter HP(s) is applied to convert rdist

into the estimated disturbance signal d̂ by making use of spectral density analysis. The
architecture of this approach is illustrated in Figure 11.
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Figure 11: Schematic representation of the implemented fault estimation architecture for
the linear simulation model.

4.2.2 Simulation Settings for Fault Estimation

In the simulation scenarios employed for fault estimation, the filter order dN is set con-
sistently at seven, reflecting the conditions applied during the fault detection simula-
tions. Other parameters, such as the sampling frequency, total simulation time, and
noise factors, remain unchanged from those established in the fault detection scenarios.
Additionally, the controller from the previous scenarios is repurposed. The matrix G in
Equation 26 includes the residual sub-signals ϕ generated by the pre-filter Φ(s). The
sampling rate for the residual sub-signals ϕ is set to 0.0005 seconds to accurately rep-
resent the underlying data and a regression horizon, denoted by T , of 60000 samples is
chosen, providing a comprehensive analysis of the sub-signals.

4.2.3 Disturbance Residual Generation Filter

The disturbance residual generation filter is formulated as shown in Equation 33. This
filter in combination with a high-pass filter aims to isolate the disturbance effect from
the original signals to enhance the accuracy of the estimation process.

Rdist(s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−3.464e − 07s7 + 0.07468s6 + 77.66s5 + 1.547e07s4 + 3.761e09s3 + 5.525e12s2 + 1.837e14s
s7 + 2.118e04s6 + 2.242e08s5 + 1.527e12s4 + 7.196e15s3 + 2.347e19s2 + 4.921e22s + 5.16e25

−0.01483s6 − 47.13s5 − 7.812e06s4 − 1.16e10s3 − 7.205e12s2 − 7.783e15s
s7 + 2.118e04s6 + 2.242e08s5 + 1.527e12s4 + 7.196e15s3 + 2.347e19s2 + 4.921e22s + 5.16e25

−554.4s5 − 4.341e07s4 − 2.124e10s3 − 3.488e13s2 − 8.258e14s − 3.02e17
s7 + 2.118e04s6 + 2.242e08s5 + 1.527e12s4 + 7.196e15s3 + 2.347e19s2 + 4.921e22s + 5.16e25

2.035e − 53s6 + 2.148e − 07s5 − 0.04644s4 − 29.11s3 − 4.586e06s2 − 9.459e08s − 1.584e12
s7 + 2.118e04s6 + 2.242e08s5 + 1.527e12s4 + 7.196e15s3 + 2.347e19s2 + 4.921e22s + 5.16e25

5.819e − 52s6 + 9.146e − 12s5 + 0.008674s4 + 1838s3 + 1.46e08s2 + 6.751e10s + 1.128e14
s7 + 2.118e04s6 + 2.242e08s5 + 1.527e12s4 + 7.196e15s3 + 2.347e19s2 + 4.921e22s + 5.16e25

8.838e − 52s6 + 2.245e − 46s5 + 0.04913s4 + 3.334e06s3 + 2.61e11s2 + 1.228e14s + 2.051e17
s7 + 2.118e04s6 + 2.242e08s5 + 1.527e12s4 + 7.196e15s3 + 2.347e19s2 + 4.921e22s + 5.16e25

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(33)
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4.2.4 High-Pass Filter Description

The high-pass filter HP(s) integrated into the disturbance estimation simulations is pre-
sented in Equation 34. This filter is a third-order Butterworth high-pass filter, with its
cutoff frequency configured at 100 Hz, which corresponds to the lowest frequency present
in the disturbance signal. The Bode magnitude response of the high-pass filter is provided
in Appendix A.4.

HP(s) = s3

s3 + 1257s2 + 7.896e05s + 2.481e08
(34)

4.3 Controller Design

The controller design for the simulations was facilitated by ASMPT [14]. It should be
noted that the detailed design process of the controller falls beyond the scope of this
work. The primary focus of this section is to provide an overview of the control scheme’s
application and the manner in which it regulates system behavior.

4.3.1 Feedforward Control

Feedforward control serves as a predictive control strategy, aiming to improve system
performance by compensating for the predictable influences in advance. The control
signals for each actuator are generated according to Eq. 35. These control signals are
generated by incorporating the predicted trajectory’s derivative elements, namely ve-
locity, acceleration, and snap. These derivatives are multiplied by specified gains and
added together to create the feedforward control signals. Thus, the feedforward control
essentially anticipates the system’s input needed based on the desired trajectory.

Cff
x (t) = 2.9926e − 09

....
x ref(t) + 0.0551 ẍref(t) + 1.9117 ẋref(t)

Cff
y (t) = 3.6429e − 10

....
y ref(t) + 0.0713 ÿref(t) + 2.7063 ẏref(t)

Cff
z (t) = 1.3069e − 09

....
z ref(t) + 0.0032 z̈ref(t) − 0.0028 żref(t)

(35)

4.3.2 Feedback Control

Our research utilizes a feedback control strategy that comprises three distinct controllers.
Each controller generates an input signal for the corresponding actuator to minimize the
error between the measured and reference signals for each nominal DoF as defined in Table
1. Essentially, the feedback controller continually modifies the control inputs based on
the observed error, which is the difference between the desired (reference) trajectory and
the actual trajectory. This adjustment process allows the system to respond effectively
to disturbances or changes in system dynamics.
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Cfb
x (s) =

8.384e05s2 − 1.644e06s + 8.06e05
s2 − 1.119s + 0.1185

Cfb
y (s) =

6.69e04s2 − 1.316e05s + 6.47e04
s2 − 1.828s + 0.8277

Cfb
z (s) =

1.223e04s − 1.192e04
s − 0.7891

(36)

By effectively combining the predictive capabilities of feedforward control with the re-
sponsive capabilities of feedback control, the overall system performance can be signifi-
cantly enhanced, and the system’s behavior can be effectively regulated, even in the face
of disturbances or changes in system dynamics. Figure 12 presents the control archi-
tecture implemented in all simulations throughout this study. Here, xenx, yenc, and zenc

signify the respective measurements of each motion stage.

Figure 12: The control architecture implemented in both linear and nonlinear simulations.
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5 Results
This chapter provides a thorough review of our findings. In Section 5.1, the experimental
reference and input signals utilized for the evaluation of the fault diagnosis filter are
described. In Section 5.2, the analysis of generated thresholds is presented. Section 5.3
explores the detectability of faults for the linear EoM, with various control strategies
under consideration. Furthermore, Section 5.4 investigates fault detectability when both
feedback and feedforward control are applied to the nonlinear EoM. Lastly, the results of
our fault estimation, complete with an estimation of noise levels and the assessment of
external disturbances, are illustrated in Sections 5.5 and 5.6. The chapter is concluded
in Section 5.7 with a detailed analysis of the obtained results.

5.1 Reference and Input Signals for Experimentation

To evaluate the effectiveness of the proposed fault diagnosis filter, a series of simula-
tions are conducted. Specifically, a reference trajectory is designed to incorporate typical
movements observed in the operation of the AB383 wire bonder, as depicted in Figure
13. This trajectory consists of three distinct reference trajectories, covering translational
movements in the x and y direction and a rotational movement to obtain the z mo-
tion. This provides a comprehensive representation of the system’s operational behavior.
Different control strategies are implemented to track the reference signal to enable perfor-
mance evaluation of the fault diagnosis filter under different control approaches consisting
of both feedforward and feedback control elements discussed in Section 4.3.

Figure 14 provides a visual representation of the input signals that are used to follow
the reference signals of the first movement, as depicted in Figure 13. These input sig-
nals correspond to the three spatial dimensions: x-motion, y-motion, and z-motion. The
results demonstrate the system exhibits high accuracy and conformity to the desired ref-
erence signal when a combination of feedback and feedforward control is implemented.
This observation highlights the importance of testing the fault diagnosis filter under the
presence of both control strategies to achieve optimal performance in system behavior.
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(a) A comparison of x-motion measurements under various control strategies during the process
of reference tracking.

(b) A comparison of y-motion measurements under various control strategies during the process
of reference tracking.

(c) A comparison of z-motion measurements under various control strategies during the process
of reference tracking.

Figure 13: The reference signals used to analyze the different control strategies on all
spatial measurements during the process of reference tracking.
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(a) The input signal corresponding to the x-actuator while tracking the reference signal in
Figure 13a

(b) The input signal corresponding to the y-actuator while tracking the reference signal in
Figure 13b

s

(c) The input signal corresponding to the z-actuator while tracking the reference signal in
Figure 13c

Figure 14: Input signals applied to the actuators during the first 0.05 s of the reference
signal tracking process, as depicted in Figure 13.
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5.2 Threshold Design and Detectability Margin

In the context of fault detectability, the initial procedure involves the design of thresholds
for the residual signal. This process, outlined in Section 3.2.3, makes use of the maximum
rmax and minimum rmin values of the residual signal. These values are determined for var-
ious trajectories during the normal, fault-free operation of the system, consisting of the
setpoints shown in Figure 13. These trajectories include movements in a single direction,
represented as ri where i belongs to the set of spatial dimensions x,y, z. Furthermore,
they encompass combinations of movements, denoted by rxy and rxyz. Figure 15 provides
a graphical representation of the designed thresholds using the aforementioned method,
including a detectability margin α.

Figure 15: The designed threshold for the residual signal, based on the residual signals
for the nominal system during various different trajectories consisting of the reference
trajectories illustrated in Figure 13.

The histogram and estimated probability distribution of the residual signals for the nomi-
nal system are presented in Figure 16. These findings depict the thresholds applied in the
fault detectability examination, set at α = 2 to minimize the likelihood of false positives.
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Figure 16: Histogram and estimated normal distribution of the nominal residual signals
shown in Figure 15, including the thresholds used in Figures 17.

5.3 Fault Detectability for the Linear Model

To assess fault detectability before progressing to fault estimation, the technique elabo-
rated in Section 3.2 is utilized for generating residuals. Each fault is incorporated indi-
vidually into the system, and its detectability is tested. The thresholds are determined
through the procedure discussed in Section 3.2.3. The specifics of the linear model, con-
troller, and simulation configurations, integral to the fault detection process, are detailed
comprehensively in Section 4.1.

5.3.1 Generated Residuals

To analyze the effect of various control strategies on the produced residuals, three differ-
ent experimental scenarios were designed. In these scenarios, the system is manipulated
using either feedback control, feedforward control, or a combination of both strategies.
Figure 17 provides a visual representation of the residuals corresponding to each fault
under different control architectures.

The residuals corresponding to the trajectory in the nominal system are represented as
rnom. Residuals generated in the faulty system are represented as follows: under feedback
control as rufb , under feedforward control as ruff , and under the combined application of
both control methods as ruff+fb .
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(a) Residual filter output with a 0.5% increase in viscous friction in the x-motion guide. (ζx
= 1.005)

(b) Residual filter output with a 0.1% increase in viscouss friction in the y-motion guide. (ζy
= 1.001)

(c) Residual filter output with a 99.9% decrease in structural stiffness in the x-motion stage.
(βx = 0.001)
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(d) Residual filter output with a 99.9% decrease in structural stiffness in the y-motion stage.
(βy = 0.001)

(e) Residual filter output with a 0.5% decrease of actuator force the x-motion. (ηx = 0.995)

(f) Residual filter output with a 0.1% decrease of actuator force the y-motion. (ηx = 0.999)
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(g) Residual filter output with a 0.01% decrease of actuator force the z-motion. (ηx = 0.9999)

(h) Residual filter output with 0.1% External disturbances present in the system. (γ = 0.001)

Figure 17: Residual signals during a simulation with individual faults implemented and
various control strategies such as feedforward, feedback, and a combination as input
signals shown in Figure 14.

5.3.2 Fault Detection Performance Analysis

Table 2 presents an overview of the detectability of each fault using the residual genera-
tion filter for the linear system controlled by a combination of feedback and feedforward
control. The fault symbols and their corresponding values are provided, reflecting the
effectiveness of the fault detection process.
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Fault Symbol Value ∆%

Viscous friction in the x-motion guide ζx 1.005 +0.5

Viscous friction in the y-motion guide ζy 1.001 +0.1

Structural stiffness between the x-motion stage
and the base frame in the global y-direction

βx undetectable -

Structural stiffness between the y-motion stage
and the x-motion stage in the global x-direction

βy 0.001 -99.9

Actuator for the x-motion ηx 0.995 -0.5

Actuator for the y-motion ηy 0.999 -0.1

Actuator for the z-motion ηz 0.9999 -0.01

External disturbances γ 0.001 0.1

Table 2: An overview of the fault detectability for each individual fault in the system,
controlled by a combined application of feedback and feedforward control, making using
the residual generation filter.

Among the implemented faults, the viscous friction in the x-motion guide and the viscous
friction in the y-motion guide are detectable by an increase of 0.5% and 0.1%, respectively.
A fault in the structural stiffness related to the x-motion stage, is classified as undetectable
in Table 2. This implies that the residual generation filter is not sensitive enough to detect
this fault reliably. A fault related to the structural stiffness related to the y-motion stage
is nearly undetectable, but with a decrease of 99.9%, it is detectable. Regarding the
actuators for the x-motion, y-motion, and z-motion, a reduction in motor force of 0.5%,
0.1%, and 0.01%, is detectable. Lastly, the external disturbances in the system have a
detectability value of 0.1%, indicating that the residual generation filter is sensitive in
detecting such disturbances.

5.4 Fault Detectability for the Nonlinear Model

The aim of this section is to explore the detectability of faults within the nonlinear, high-
fidelity simulation model, shown in Eq. 1. To achieve this, the same reference signal is
applied, composed of the reference trajectories as displayed in Figure 13. A combination
of feedback and feedforward control, which is discussed in Section 4.3, is implemented.
The simulation configuration remains consistent with that described in Section 5.3.
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5.4.1 Generation and Analysis of Residuals

Figure 18 illustrates an analysis of the residuals resulting from the possible faults in
the system. The threshold design for this analysis follows the same approach as in the
residual analysis in Section 5.2.

(a) Residual filter output with an 50% increase in friction in the x-motion guide. (ζx = 1.50)

(b) Residual filter output with an 3% increase in friction in the y-motion guide. (ζy = 1.03)

(c) Residual filter output with an 99% decrease in structural stiffness in the x-motion stage.
(βx = 0.01)
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(d) Residual filter output with an 99% decrease in structural stiffness in the y-motion stage.
(βy = 0.01)

(e) Residual filter output with an 40% decrease of actuator force the x-motion. (ηx = 0.60)

(f) Residual filter output with an 35% decrease of actuator force the y-motion. (ηy = 0.65)
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(g) Residual filter output with an 20% decrease of actuator force the z-motion. (ηz = 0.80)

(h) Residual filter output with 1% External disturbances present in the system. (γ = 0.01)

Figure 18: An overview of the fault detectability for each individual fault in the system,
controlled by a combined application of feedback and feedforward control, utilizing the
residual generation filter during the simulations with the nonlinear model.

5.4.2 Evaluation of Fault Detection Performance

Following the generation and analysis of residuals, the performance of fault detection is
quantified in Table 3. The table provides an overview of the detectability of various faults
using the residual generation filter for the nonlinear simulation model.
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Fault Symbol Value ∆%

Viscous friction in the x-motion guide ζx 1.50 +50

Viscous friction in the y-motion guide ζy 1.03 +3.0

Structural stiffness between the x-motion stage
and the base frame in the global y-direction

βx undetectable -

Structural stiffness between the y-motion stage
and the x-motion stage in the global x-direction

βy undetectable -

Actuator for the x-motion ηx 0.60 -0.4

Actuator for the y-motion ηy 0.65 -0.35

Actuator for the z-motion ηz 0.80 -0.20

External disturbances γ 0.001 0.1

Table 3: An overview of the fault detectability using the residual generation filter for the
nonlinear simulation model for each individual fault implemented in the system.

A comprehensive simulation has been conducted for the nonlinear model using a specific
calibration trajectory. The detailed results of this simulation can be found in Appendix
A.6.

5.5 Evaluation of Fault Estimation Performance

This section presents a detailed assessment of the fault estimation process which was
developed and outlined in Section 3.3. The detectable faults, as specified in Table 2, are
incorporated into the system. The fault estimation results are graphically represented in
Figure 19. Section 4.2 provides the simulation settings used in the simulations discussed
in this section.

For the purpose of fault estimation, both viscous friction faults (ζx and ζy) and actuator
faults (ηx, ηy, and ηz) are taken into account. The implemented values of the incorpo-
rated faults are denoted by ζreali for i ∈ x, y and ηreali for i ∈ x, y, z. The approximations of
these faults are symbolized by ζesti for i ∈ x, y and ηesti for i ∈ x, y, z. Lastly, the average
estimates of the faults are represented by ζavgi for i ∈ x, y and ηavgi for i ∈ x, y, z.

Figure 19 illustrates the estimation of considerable faults through a residual analysis,
utilizing the fault estimation framework. The results provide insights into the effectiveness
of the fault estimation process for the implemented faults. The estimation errors during
the simulation are shown in Figure 20.
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Figure 19: Estimation of considerable faults to evaluate the fault estimation framework
discussed in Section 4.2.

Figure 20: Graphical representation of the estimation errors in the results corresponding
to Figure 19.

Finally, the performance of the fault estimation framework is tested with the smallest
detectable faults, as shown in Table 2. For clarity in visualization, a minor increase in the
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y-actuator fault is implemented. The corresponding fault estimations and the estimation
errors are represented in Figures 21 and 22, respectively.

Figure 21: Estimation of smallest detectable faults, as shown in Table 2, based on the
method discussed in Section 4.2.

Figure 22: Graphical representation of the estimation errors from the simulation results
corresponding to Figure 21.
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5.6 Analysis and Estimation of Disturbances

The presence of external disturbances and an amplified level of measurement noise can be
identified through PSD analysis performed on the residual signal, as elaborated in Section
3.3. The residual signal is acquired with the same approach implemented in Section 5.3.
However, an adjustment in the denominator of the residual filter (Eq. 33) is necessary to
ensure that the high-frequency content in the signal remains unattenuated. Furthermore,
applying a high-pass filter (Eq. 34) of adequate order attenuates the frequencies generated
by the other faults, provided that its cutoff frequency remains lower than the lowest
frequency disturbances intended to be detected or estimated.

5.6.1 External Disturbances

Figure 23 presents the PSD plot of the residual signal rdist(t) after undergoing high-pass
filtering. The plot visually illustrates the distribution of power across different frequencies
in the residual signal. It includes a comparison between the nominal case and a scenario
where the system is subject to 1% of external disturbances during the execution of the
reference tracking task outlined in Figure 13. The resulting analysis shows peak values
at the frequencies of 100, 300, and 750 Hz. These frequencies correlate with the external
disturbance signal, as defined in Section 2.3.

Figure 23: PSD analysis of the residual signal under the influence of 1% external distur-
bances impacting the system.

5.6.2 Measurement Noise

Measurement noise, represented by Band-Limited Gaussian white noise, has been con-
sistently integrated into all the simulations conducted throughout this study. Figure 24
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visualizes the PSD analysis of the residual signal generated with the nominal system,
compared with a scenario where the measurement noise is increased by a factor of ten.

Figure 24: PSD analysis of the residual signal depicting amplified measurement noise.

5.7 Analysis of the Results

This section evaluates the different results obtained during this study. The impact of
diverse control strategies on residual generation for fault detection, the detectability of
faults, threshold design, and the estimation of faults and disturbances.

The reference signal used during the simulations is emulating realistic wire bonder ma-
chine movements. Even though z-motion movements are usually isolated, the system is
tested with a variety of isolated and combined trajectories, yielding consistent results
across all simulations.

For the z-motion, the feedback control, could be further improved. However, the best
performance in terms of reference tracking was observed with a hybrid of feedback and
feedforward control and this control structure is used throughout all simulations. The
variations in residuals generated by a system under feedback, feedforward, or a combina-
tion of both control strategies are negligible which shows that the residual generation is
relatively robust against closed-loop control.

For the linear model, as highlighted in Section 2.3, viscous friction can potentially in-
crease by 20%. Nevertheless, the friction was successfully detected with an increase of
0.5% in the x-motion guide and 0.1% in the y-motion guide. The force exerted by the
actuators can reduce by up to 3%, and a reduction of 0.5% for the x-actuator, 0.1% for
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the y-actuator and 0.01% for the z-actuator is detected. The external disturbances with
amplitudes less than 0.1% of the disturbance signal have been successfully detected. Fur-
thermore, the methodology employed for threshold design yielded no false alerts during
all the simulations.

The structural stiffness faults are not detectable. Despite the system’s observability,
comparing the system with structural stiffness faults and the nominal system by Bode
analysis (Appendix A.5) reveals a minimal magnitude change across all input and output
relations. This may be attributed to the effect of structural stiffness on the parasitic DoFs
within the machine, as discussed in Section 2.3. Detection of changes in the parasitic DoFs
might be challenging since they are not measured directly, demonstrating its effectiveness.

The research presented in [24] applied a data-driven fault diagnosis approach to the de-
coupled linear simulation model of the wire bonder shown in Section 2.2.3. This method
involved the use of time and frequency features for fault detection, followed by the imple-
mentation of a Support Vector Machine (SVM) for fault isolation. All simulations were
designed such that the fault magnitude incrementally increased throughout the simula-
tion. The friction in the motion guides experienced an increase that varied between 8%
and 300%. The resonance frequency, which is directly linked to the structural stiffness
faults, demonstrated a decrease from 900 Hz to 800 Hz. It’s important to note that these
faults are considered non-comparable because they are modeled using the stiffness param-
eters of the nominal DoFs, not those associated with the parasitic DoFs related to the
corresponding motion stage. The motor force in the actuators experiences a reduction
that varied from 0.4% to 10%. External disturbances are tested with 0.04-1% of the max-
imum amplitude. The most significant result for the data-driven method is an accuracy
of 98.4% for fault detection and 93% for fault isolation. A comparative analysis of the
performance between the method proposed in this study and the data-driven solution
from [24] is presented in Table 4.
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Fault Symbol Residual-Based ∆ % Data-Driven ∆ %

Friction in the x-motion guide ζx 1.005 +0.5 1.08-3.00 + 8-300

Friction in the y-motion guide ζy 1.001 +0.1 1.08-3.00 + 8-300

Structural stiffness between the x-motion stage
and the base frame in the global y-direction

βx non-comparable - non-comparable -

Structural stiffness between the y-motion stage
and the x-motion stage in the global x-direction

βy non-comparable - non-comparable -

Actuator for the x-motion ηx 0.995 -0.5 0.996-0.9 - 0.4-10

Actuator for the y-motion ηy 0.999 -0.1 0.996-0.9 - 0.4-10

Actuator for the z-motion ηz 0.9999 -0.01 0.996-0.9 - 0.4-10

External disturbances γ 0.001 0.1 0.0004-0.01 0.04-1

Table 4: A comparison between the performance in fault detection and estimation for
the data-driven method implemented in [24] and the direct residual-based methodology.

The fault detectability for the nonlinear EoM, as mentioned in Section 5.4, does not meet
the requirements outlined in Section 2.3. Nevertheless, this limitation can be addressed by
employing a method that is discussed in Section 6. This method focuses on robustifying
the residual signals against model mismatch, thereby enhancing fault detectability [19].

The fault estimation framework for the linear model proposed in this study demonstrates
promising results, illustrating successful fault estimation with the proposed methodology.
As part of future work, the fault estimation for the nonlinear model can be assessed once
the aforementioned robustification method has been implemented.

The presence of external disturbances and increased levels of noise are successfully de-
tected. Although the performance for the detection and estimation of structural stiffness
faults lacks comparability with previous work, the precision of detecting and estimating
faults related to the actuators, friction, and external disturbances in the high-fidelity
linear simulation model is promising.
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6 Conclusion
This research presents a comprehensive design and implementation of a fault diagnosis
filter for a high-fidelity simulation model of the AB383 wire bonder, a high-precision
motion and positioning system. By integrating a model-based methodology with resid-
ual generation and regression techniques, the study successfully addresses the detection,
isolation, and estimation of faults within the system. Furthermore, the research findings
highlight the potential of the power spectral density analysis for residual signals in iden-
tifying unknown external disturbances and elevated noise levels.

The reference signal used during the tracking task consisted of several setpoints which
are representative of typical realistic movements for the wire bonder machine. The con-
trol design, provided by ASMPT Ltd., can be further enhanced to improve the tracking
results, but for the performance evaluation of the fault diagnosis filter, the implemented
control structure is considered sufficient. The differences in the residuals generated by
either feedback, feedforward, or a hybrid control structure are negligible, concluding that
the diagnosis performance is relatively independent of the control structure used.

All the parametric faults, except for structural stiffness faults, are detectable to a rel-
atively small deviation in system parameters from the nominal system. Similar perfor-
mance is obtained for the residual regression methodology utilized in the fault estimation
framework. The spectral density analysis of the disturbance residual signal, designed to
be sensitive to high-frequency signal components, demonstrates the possibilities in the
estimation of elevated levels of noise and unknown external disturbances. In conclusion,
the fault diagnosis performance is significantly improved in terms of accuracy with re-
spect to previous work.

The main strength of the model-based methodology is the performance in terms of fault
detection and estimation accuracy. The frequency characteristics of the external distur-
bances are considered known throughout this work, but the spectral density analysis also
allows the assessment of unknown disturbances, such as elevated levels of noise or distur-
bance signals containing specific frequencies. The primary limitation lies in the necessity
for system modeling, which might be unavailable in some applications.

To improve fault detectability for the nonlinear EoM, and potentially implement the fault
estimation framework to the nonlinear EoM, a residual robustification method can be ap-
plied discussed in [19]. This method allows for the creation of an abstract linear model,
capable of producing residuals robust with respect to nonlinearities and model mismatch.
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This approach has the potential to improve the performance of nonlinear simulations and
practical applications involving the physical wire bonder. It offers a viable solution to
the challenges associated with achieving an accurate model of complex systems.

Moreover, further development and implementation of the residual generation method in
the actual system could establish the fault diagnosis performance for the AB383 wire bon-
der. This work could include the implementation of various different disturbance signals
to verify the diagnosis performance in different machine environments. The real-world
implementation can also include the verification of the threshold design strategy.

To solve possible false detection alerts, a possible extension could be the analysis of the
integral of the residual signal. Most inherent faults in high-precision motion and position-
ing systems gradually affect the system while disturbances can change more frequently
in the machine environment.

In this study, external disturbances are considered faults whose detection is necessary.
Consequently, they are not included in the Dd and Bd matrices within the DAE frame-
work to maintain the observability of the disturbance faults. Nevertheless, it might be
possible to employ the Dd and Bd matrices in the design of a filter that remains robust
against the effect of disturbance dynamics.

Another possible direction for future research is the design of a fault-tolerant controller.
In Figure 25, the framework for fault-tolerant control is provided. This method evaluates
the health of the system and re-designs the controller based on this diagnosis to potentially
enhance the system’s performance.

Figure 25: The architecture used in fault-tolerant control [4].
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In summary, the main contributions of this study can be summarized as follows: the
development of a model-based fault estimation framework for a high-fidelity simulation
model, the introduction of a systematic fault representation, and the implementation
of a technique for identifying and quantifying external disturbances using power spectral
density analysis. This work demonstrates the potential to improve maintenance strategies
and reduce downtime for complex systems like the AB383 wire bonder. Thus, setting the
stage for further research and practical applications.
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A Appendix

A.1 Implementation of Diverse Fault Conditions

To illustrate the effects of various faults, the trajectory from Section 5 is simulated for
both the nominal system and each individual faulty system. The open loop architecture,
which is employed to create residuals, can be observed in Figure 26. The resulting
residuals are displayed in Figure 27. All faulty systems, except for the one with the
structural stiffness fault, fail to meet the machine’s precision requirement of submicron
precision deviations with respect to the nominal system.

Figure 26: The architecture open loop residual generation.

(a) Motor force residual. (b) Structural stiffness residual.

(c) Friction residual. (d) External disturbance residual.

Figure 27: Residuals of the difference between the x position during the trajectory in
Figure 13 for the nominal behavior and with the different faults implemented.
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A.2 MSD Matrices of the Linear EoM

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

315.3 0 −6.771 3.419 0 0.01219 1.807 0 0.02761 0

0 315.3 −9.093 0 1.613 −0.1075 0 1.807 −0.009357 −0.0009811
−6.771 −9.093 29.49 0.04354 −0.1351 0.03133 0.02761 −0.04775 0.008539 2.454e − 05
3.419 0 0.04354 3.419 0 0.01219 1.807 0 0.02761 0

0 1.613 −0.1351 0 1.613 −0.09809 0 0 0 0

0.01219 −0.1075 0.03133 0.01219 −0.09809 0.02877 0.01104 −0.009357 0.008087 3.687e − 06
1.807 0 0.02761 1.807 0 0.01104 1.807 0 0.02761 0

0 1.807 −0.04775 0 0 −0.009357 0 1.807 −0.009357 −0.0009811
0.02761 −0.009357 0.008539 0.02761 0 0.008087 0.02761 −0.009357 0.00834 3.687e − 06

0 −0.0009811 2.454e − 05 0 0 3.687e − 06 0 −0.0009811 3.687e − 06 0.0001668

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.08e08 0 0 0 0 0 0 0 0 0

0 1.08e08 0 0 0 0 0 0 0 0

0 0 1.407e07 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 2.0e08 0 0 0 0 0

0 0 0 0 0 1.479e06 0 0 0 0

0 0 0 0 0 0 2.0e08 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1.479e06 0

0 0 0 0 0 0 0 0 0 1.472

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

64000.0 0 0 0 0 0 0 0 0 0

0 64000.0 0 0 0 0 0 0 0 0

0 0 8340.0 0 0 0 0 0 0 0

0 0 0 116.0 0 0 0 0 0 0

0 0 0 0 1600.0 0 0 0 0 0

0 0 0 0 0 12.12 0 0 0 0

0 0 0 0 0 0 1600.0 0 0 0

0 0 0 0 −69.0 −0.1152 0 69.0 0 0

0 0 0 0 0 0 0 0 11.91 0

0 0 0 0 0 0 0 0 0 0.003145

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

bT =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0.07375 0 0 0 0

0 0 0 0 −1 −0.00167 0 1 0.03923 0

0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(37)

A.3 Bode Analysis of the Low-Pass Filter

Figure 28 provides a graphical representation of this low-pass filter’s response across
different frequencies using a Bode plot.
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Figure 28: Bode magnitude plot of the low-pass filter, which is used as the foundation
for determining the denominator in the residual generation filter.

A.4 Bode Analysis of the High-Pass Filter

The magnitude response of this high-pass filter, depicted using a Bode Magnitude plot, is
presented in Figure 29. This graphical representation illustrates how the filter’s response
varies across different frequencies.

Figure 29: Bode magnitude plot of the implemented high-pass filter in the fault estimation
simulations.

A.5 Bode Analysis of Structural Stiffness Faults

Figure 30 presents a Bode analysis, illustrating the difference between the nominal system
and the system featuring a reduction of structural stiffness by 99%.
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Figure 30: The bode plot of the difference between the nominal system and the system
with 99% less structural stiffness.

A.6 Nonlinear Fault Detection with a Detectability Trajectory

The architecture illustrated in Figure 31 was utilized to generate the residual. This
included the use of the residual filter and the subtraction of the nominal residual created
during the same trajectory. All the other settings are similar to the implementation
shown in Section 5.4.

Figure 31: The architecture of the implemented residual filter on the closed loop nonlinear
model during the detectability trajectory.

The residual baseline rnom and the thresholds are constructed in a similar method as
discussed in Section 5.4.
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(a) Residual filter output with an 20% increase in friction in the x-motion guide. (ζx = 1.20)

(b) Residual filter output with an 1% increase in friction in the y-motion guide. (ζy = 1.01)

(c) Residual filter output with an 99% decrease in structural stiffness in the x-motion stage.
(βx = 0.01)
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(d) Residual filter output with an 99% decrease in structural stiffness in the y-motion stage.
(βy = 0.01)

(e) Residual filter output with an 10% decrease of actuator force the x-motion. (ηx = 0.90)

(f) Residual filter output with an 10% decrease of actuator force the y-motion. (ηy = 0.90)
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(g) Residual filter output with an 2% decrease of actuator force the z-motion. (ηz = 0.98)

(h) Residual filter output with 1% External disturbances present in the system. (γ = 0.01)

Figure 32: An overview of the fault detectability using the residual generation filter in
combination with a fixed trajectory for the nonlinear simulation model for each individual
fault implemented in the system.
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Detection Performance

Fault Symbol Value ∆%

Viscous friction in the x-motion guide ζx 1.20 +20

Viscous friction in the y-motion guide ζy 1.01 +1.0

Structural stiffness between the x-motion stage
and the base frame in the global y-direction

βx 0.01 -99

Structural stiffness between the y-motion stage
and the x-motion stage in the global x-direction

βy 0.01 -99

Actuator for the x-motion ηx 0.90 -0.10

Actuator for the y-motion ηy 0.98 -0.02

Actuator for the z-motion ηz 0.98 -0.02

External disturbances γ 0.001 0.1

Table 5: The fault detectability for the nonlinear simulation model during the detection
trajectory for each individual fault implemented in the system.
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